

The ECRIS facility at BARC and its utilization for low energy nuclear reactions and fast neutron production

R.G. Thomas^{1,2}, Ajay Kumar¹, G. Mishra^{1,2}, Sukanya De^{1,2}, A. Mitra¹, S. Goel¹, R.R. Sahu¹, N.K. Mishra¹, L.M. Pant^{1,2}, A.K. Gupta^{1,2}, and R.K. Choudhury³

¹*Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai - 400085, India*

²*Homi Bhabha National Institute, Anushakti Nagar, Mumbai - 400094, India and*

³*Formerly at NPD, Bhabha Atomic Research Centre, Trombay, Mumbai - 400085, India*

A high current Electron Cyclotron Resonance Ion Source (ECRIS) [1] has been installed at the Bhabha Atomic Research Centre, Mumbai. This ECRIS is capable of delivering a wide range of ion beams with typical species including $p, d, {}^4\text{He}$ and ${}^{16}\text{O}$ produced with emA currents. It operates at 30 kV extraction voltage on the 300 kV platform, providing a maximum energy of 330 keV per charge state of the ion. Low energy nuclear reaction experiments and ion-induced atomic physics experiments have already been initiated with this facility at the Centre [2].

In a phased upgradation, it is also planned to augment the ECRIS with a room temperature heavy-ion RFQ (Radio Frequency Quadrupole, 575 keV/u), which is currently under development. This will enhance the capability of the facility for producing multi-energy fast neutrons using low energy exoergic reactions (e.g. $d+{}^7\text{Li}$), for a variety of applications in both basic and applied research [3].

Compact accelerator-driven neutron sources based on low-energy neutron-producing reactions, are being built across the world due to their increasing importance in basic and applied research [4–6]. Experiments performed in these facilities include study of fast neutron induced fission, (n, f), of actinides particularly relevant to GEN-IV reactors and Accelerator Driven Systems (ADS), (n, cp) reactions important for fusion reactor technology, (n, Xn) reactions relevant for radioisotope production and various

aspects of nuclear astrophysics and nuclear spectroscopy [4–8]. With the addition of an appropriate RFQ and DTL, the ECRIS could provide deuterium beams in the range of 1 – 3 MeV and ${}^7\text{Li}$ beams in the range of 14 – 21 MeV at high currents, suitable for the production of fast neutrons of sufficient intensity and time-energy characteristics relevant for the various applications mentioned above [3].

Some of the recently published results from the low energy nuclear reaction experiments carried out at the ECRIS and the layout and details of the schemes for producing multi-energy fast neutrons, will be presented in the talk.

References

- [1] G. Gaubert et al., Rev. Sci. Instrum. 83 (2012) 02A344.
- [2] R. K. Choudhury et al., Europhysics Letters, 126 (2019) 12002.
- [3] G. Mishra et al., JINST 16 (2021) T09003.
- [4] I.S. Anderson et al., Physics Reports 654 (2016) 1-58.
- [5] John M. Carpenter, EPJ Web of Conferences 231, (2020) 010 01.
- [6] N. Colonna, F. Gunsing, F. Kappeler, Progress in Particle and Nuclear Physics 101 (2018) 177-203.
- [7] Masayuki Ohta et al., Nuclear Materials and Energy 15 (2018) 261-266.
- [8] Ka-Ngo Leung et al., Applied Radiation and Isotopes, 137 (2018) 23-27.