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Abstract

We study radiation of a quantum deformed Schwarzschild black hole surrounded by a quintessence field, 
through a tunneling process. When the background spacetime of a black hole is covered by a scalar field, 
such as a quintessence field, metric of the black hole changes for a particular range of the mass. Then, the 
geometry of the Schwarzschild black hole with one black hole horizon converts to geometry with two hori-
zons: a black hole horizon and a cosmological horizon. In the presence of the quintessence as a background 
field, we study the tunneling process for massless and massive particles and we obtain the temperature of 
the black hole. We calculate and compare particles’ tunneling rate from both of the black hole horizon and 
the cosmological horizon. The obtained temperature is regular, radiation modes encompass correlations and 
there is the Planck scale remnant with the quintessence contents. As an important result, thermodynamics 
of the Schwarzschild black hole surrounded by the quintessence field has a significant difference in the 
range − 2

3 < wq < − 1
3 relative to the ordinary case. Also, the behavior of temperatures in our case becomes 

similar to the Schwarzschild de-Sitter black hole temperatures. Furthermore, we show that quantum cor-
rection of the black hole in an embrace of the quintessence field changes the location of horizons but the 
quintessence field is more effective in this change. Eventually, while the quantum correction prevents to 
reach the singularity at r = 0 in the final stage of the evaporation of the quantum deformed Schwarzschild 
black hole surrounded by quintessence, there is a Planck scale remnant with quintessence content.
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1. Introduction

There are so many enigmatic objects in the world that scientists have been working on them 
for a century, nowadays we know that they really exist by a close-up image of the center of 
galaxy M87; they are the black holes. After releasing the general relativity by Einstein in 1915, 
the Schwarzschild solution has been accepted as the most important spherically symmetric so-
lution which describes the space-time outside of the gravitational mass. This solution is known 
as a mathematically specified surface, the so-called “event horizon”; The radius of this surface 
is named the Schwarzschild radius. A black hole forms if a gravitational mass collapses to it-
self until it reaches the Schwarzschild radius. Until 1974, it was believed that nothing can escape 
from the event horizon and then Hawking announced his exciting theoretical discovery that black 
hole can emit radiation which is called “Hawking radiation” [1]. Hawking’s opinion opened the 
major ways to new investigations in the field. As an important progress, Parikh and Wilczek ex-
plained [2,3] the tunneling process. Particle and antiparticle pairs be created in the neighborhood 
of horizon; one of these created objects can tunnel through the horizon and go away from the 
black hole as radiation. However, there are many unsolved problems in this picture such as the 
temperature divergence and information loss. Also, they considered the quantum process with-
out applying the quantum effects on the black hole itself. We apply Parikh-Wilczek method and 
solve the mentioned problems by considering quantum effects in a background of quintessence 
field. Besides the Parikh and Wilczek method, mentioning the Refs. [4–6] is useful for a compre-
hensive view of the tunneling process. In Ref. [4], authors explained the tunneling process while 
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the particle treated as a spherical shell and so in their method a shell of matter interacts with a 
black hole instead of particles moving along the geodesics. Also, authors in Refs. [5,6] applied 
the method based on the complex paths.

Another issue is that the Schwarzschild metric suffers from the singularity problem. The co-
ordinate singularities could be put down with the coordinate transformation, but the intrinsic 
singularities stay and prevent a perfect global space-time structure. In this condition, it’s clear 
that in the strong gravitational field (for instance, near the Planck scale), the Schwarzschild solu-
tion is not applicable and we should consider the quantum effects in these scales. We don’t know 
exactly what happens inside the black hole and near the horizon, but we hope that the ultimate 
quantum gravity theory has an answer for these issues finally. As we know, it is possible that 
quantum corrections propound on the right-hand side or left-hand side of the Einstein field equa-
tions. This issue has been discussed in details in several literature. We benefit from the proposed 
method in Ref. [7] and use a deformed metric due to quantum corrections by considering spher-
ically symmetric excitations. In this picture, space-time is depicted in asymptotically flat sheets 
paste on the hypersurface of constant radial parameter r = rmin, so if an observer stays on the 
sheet out of the horizon, another sheet will be behind of the horizon. As a result, the space-time 
structure has been regular because of the singularity at r = 0 transfers to rmin ≡ rP l . Also, they 
showed that the metric for out of the gravitational mass at scales larger than the Planck scale is 
not Ricci flat and the scalar curvature tends to zero; So we don’t observe it in the gravitational ex-
periment. This deformed metric is pervasive whatever gravitational ghosts and matter be present 
or absent. More discussion about horizons in this picture is given in Refs. [8,9]. We are going 
to probe the thermodynamics of such a black hole in the presence of a quintessence field. We 
expect that linkage between thermodynamics and gravity would be useful for the formulation of 
the final quantum gravity theory.

Observational data of COBE, WMAP, Planck and other spacecrafts affirms that the universe 
is not only expanding, but also it has a positively accelerating expansion. These observations 
mutate our thoughts about the universe. So in late decades, scientists tried to understand this 
accelerating expansion. One of their suggestions is that the universe is full of the obscure stuff 
with negative pressure, the so-called “Dark Energy”. Dark energy forms the nearly 70 percent 
of the universe content and we don’t know what is it truly yet. One of the candidates for dark 
energy is the “cosmological constant”. However, for accepting the cosmological constant as a 
candidate for dark energy, there are several unsolved problems yet such as non-evolutionary 
nature, fine-tuning and coincidence problem. This issue is an accompaniment with some pre-
dictions of particle physics and gets proposed the presence of particles with negative pressure 
such as the quintessence [10,11]. In other words, the quintessence is a scalar field that arises 
in particle physics and this is one of the important candidates of the dark energy [12–14]. 
Quintessence action is written by an ordinary scalar field minimally coupled to gravity. The 
equation of state parameter wq for quintessence is in the range −1 ≤ wq ≤ − 1

3 . What matters 
to us is the Schwarzschild black hole in a quintessence background and especially its thermo-
dynamics. In Ref. [15], Kiselev solved the Einstein field equation in quintessence background 
and presented the form of the density for quintessence matter as ρq = − c

2
3wq

r3(wq+1) and then he 

rendered the metric of this Schwarzschild black hole. In several references, the thermodynamics 
of the Schwarzschild black hole surrounded by quintessence has been inspected. For example 
Ref. [15] has ascertained that the temperature of the quintessence Schwarzschild black hole is 
less than the ordinary Schwarzschild black hole one. Several references have worked on heat 
capacity and it has been indicated that in the presence of the quintessence field, there is a second-
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order phase transition. As a result, for the quintessence Schwarzschild black hole there exists a 
stable phase against the ordinary Schwarzschild black hole that has a negative heat capacity and 
is unstable [16,17]. In Ref. [16] it has been proved that the phase transition doesn’t happen for a 
sharp wq , but it occurs for a range − 2

3 < wq < − 1
3 ; Moreover, they studied tunneling process in a 

perturbative way that differs from our work. Also, Reissner-Nordsröm black hole surrounded by 
quintessence has been studied in Ref. [18] and the phase transition for a charged black hole in the 
quintessence field has been found out. They have obtained similar results in the presence of the 
quintessence field [19,20]. In Ref. [19] it has been pointed out that for Reissner-Nordström black 
hole surrounded by quintessence, by increasing the density of quintessence matter, the phase tran-
sition point is shifted toward a lower entropy and temperature of the black hole is decreased too. 
Mass, temperature, heat capacity and entropy of Schwarzschild and Reissner-Nordsröm black 
hole surrounded by quintessence have been glanced in Ref. [21].

Along these studies, we consider the thermodynamics of the Schwarzschild black hole in the 
quintessence field through particle tunneling from the horizon in the framework of semiclas-
sically quantum tunneling that has been proposed by Parikh and Wilczek [2]. We show how 
changes in different values of wq influence on the horizons and tunneling processes. Moreover, 
we consider the quantum corrections and quintessence background together and we probe ther-
modynamics of such a black hole structure for the first time. It should be noted that in Ref. [22], 
thermodynamics of quantum corrected Schwarzschild black hole surrounded by quintessence has 
been studied by using the standard thermodynamic equations but our method is different from 
the mentioned study.

First, we consider a Schwarzschild black hole in the background of quintessence field and we 
achieve the temperature of Hawking radiation with a tunneling process for different wq and for 
massive and massless particles separately. In section 3, we look into the tunneling process from 
quantum corrected Schwarzschild black hole’s horizon surrounded by quintessence. Finally, we 
summarize our results in the conclusion.

2. Tunneling of massless and massive particles from Schwarzschild black hole surrounded 
by quintessence

Since the tunneling process happens on the horizons, before starting of studying tunneling 
process, we need a precise review of the Schwarzschild black hole metric and horizons in the 
presence of the minimally coupled scalar field such as the quintessence. The metric is introduced 
in Ref. [15] as follows

ds2 = −g00(r)dt2 + g−1
00 (r)dr2 + r2d�2, (2.1)

g00(r) = 1 − 2M

r
− c

r3wq+1 . (2.2)

Where wq is the equation of state parameter of the quintessence field and c is a normalization 

factor related to the energy density, ρq = − c
2

3wq

r3(wq+1) . We show the behavior of this metric for 
various M , c and wq in Figs. 1 and 2.

Considering various values of wq , we have different horizon(s). If wq = − 1
3 , there is one hori-

zon for any values of other parameters. If wq = − 2
3 , we have two horizons for a Schwarzschild 

black hole surrounded by quintessence that these are coincident when M = 1
8c

; This value for 
wq is very remarkable for us because it is an appropriate limit in confrontation with observation 
(95% CL) for today’s equation of state parameter of cosmic fluid [23]. We have said before, there 
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Fig. 1. Behavior of g00(r) versus r and wq . The right panel is depicted with c = 0.1. The left panel is with c = 0.01. By 
decreasing c, the possibility of having two horizons is more probable.

Fig. 2. Behavior of g00(r) versus r with M = 1. The curves are depicted from top to down for wq = − 1
3 , − 2

3 , −1. The 
right panel is illustrated with c = 0.1 and the left one is with c = 0.01.

is a phase transition in the range between wq = − 1
3 and ωq = − 2

3 so it is valuable that compare 
our result for these two values of wq . Finally, if wq = −1 it is possible to have two real horizons 
or no horizon at all. This case corresponds to the Schwarzschild de-Sitter metric [24] and implies 
that c ∼ �

3 .
Parikh and Wilczek described Hawking radiation as a particles’ tunneling from the horizon. 

Particle and antiparticle pairs create near the horizon; Since there is no classical path for crossing 
the horizon, virtual particle tunnels to outside the horizon semi-classically. In this picture, the 
height of the tunneling wall is determined by tunneling particle itself. In other words, particle 
tunnels from the barrier that has been created by itself. On the other hand, the hypothetical 
observer will see that the black hole radius reduces by emitting the particle of energy ω. For this 
tunneling process, the existence of the metric which is nonsingular on the horizon is necessary but 
the given metric (2.1) is singular on the horizon and we should resolve this obstacle. To construct 
the nonsingular line element on the horizon, a new time coordinate has been defined, tp by 
tp = t − f (r) [25,26] named the Painlevé coordinate transformation. Using this transformation 
on the metric (2.1), we have

ds2 = −g00(r)dt2
p + 2f ′(r)g00(r)dtpdr + ( 1 − g00(r)(f

′(r))2)dr2 + r2d�2. (2.3)

g00(r)
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In view of the fact that the constant-time slice should be flat, we obtain the condition 1
g00(r)

−
g00(r)(f

′(r))2 = 1. Applying this restriction on the Eq. (2.3), the metric (2.1) changes to the 
following form

ds2 = −g00(r)dt2
p + dr2 + 2

√
1 − g00(r) dtpdr + r2d�2. (2.4)

To continue, we discuss the thermodynamics of a quintessence Schwarzschild black hole with 
different wq .

2.1. Tunneling of massless particles

2.1.1. The case with wq = − 1
3

Substituting wq = − 1
3 in Eq. (2.2), we have

g00(r) = 1 − 2M

r
− c, (2.5)

where there is one horizon in this case

r = 2M

1 − c
. (2.6)

First, we calculate imaginary part of the action for a particle that is moving from an initial state 
in rin to the final state in rout

ImS ≡ Im
∫

E dt = Im

rout∫
rin

pr dr = Im

rout∫
rin

pr∫
0

dp̃r dr, (2.7)

where rin = 2M
1−c

− ε and rout = 2(M−ω̃)
1−c

+ ε, ω̃ is energy of the particle and we suppose this as a 
self interaction. With Hamilton equation, dpr = dH

ṙ
, (2.7) changes to the following form

ImS = Im

rout∫
rin

M−ω∫
M

dH

ṙ
dr = −Im

ω∫
0

rout∫
rin

dr

ṙ
dω̃. (2.8)

We consider the light-like geodesics for massless particles’ tunneling. Regarded to (2.4), we have

ṙ2
p + 2

√
1 − g00(r) ṙp − g00(r) = 0. (2.9)

As a result, we find

ṙp = ±1 − √
1 − g00(r). (2.10)

Where + and − signs indicate the outgoing and ingoing trajectories respectively. By substituting 
(2.10) in (2.8), the imaginary part of the action is given by

ImS = −Im

ω∫
0

rout∫
rin

dr dω̃

1 − √
1 − g00

. (2.11)

Given the presence of a pole in the range of integral, we utilize the residue calculus to find



S. Eslamzadeh, K. Nozari / Nuclear Physics B 959 (2020) 115136 7
Fig. 3. Behavior of �SBH versus M with c = 0.5 and ω = 0.01. Ordinary Bekenstein-Hawking Entropy (dashed line) 
and Quintessence Schwarzschild Entropy with wq = − 1

3 (solid line).

ImS =
ω∫

0

8π(M − ω̃)

(c − 1)2 dω̃ . (2.12)

Therefore, the imaginary part of the action is calculated as the following form

ImS = 2πω(2M − ω)

(c − 1)2 . (2.13)

Emission rate can be represented in terms of imaginary part of the action as follows

	 � e−2ImS = e−βω = e+�SBH . (2.14)

And finally we get the emission rate as follows

	 � exp
(

− 4πω(2M − ω)

(c − 1)2

)
. (2.15)

According to Fig. 3 we see that with particle tunneling, black hole’s entropy is reducing 
(�SBH < 0) which is obvious, because with tunneling of particles to out of the black hole 
horizon, number of surface quanta is reducing and so entropy decreases. Furthermore, in the 
presence of quintessence with wq = − 1

3 , this reduction of entropy is stronger. Another issue is 
that quintessence prevents more evaporation of the black hole. Moreover, for a remnant mass in 
the presence of quintessence there is no further entropy change for the remnant.

For calculation of the correlation between radiated modes, we apply the method that intro-
duced in Ref. [27] and suppose a massless particle of energy ω1 and another massless particle of 
energy ω2 that are tunneling from the horizon and compute the correlation function as follows

χ(ω1 + ω2;ω1,ω2) = ln [	(ω1 + ω2)] − ln [	(ω1)	(ω2]), (2.16)
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Fig. 4. Temperature versus Mass for ordinary Schwarzschild black hole (dashed line) and Schwarzschild black hole 
surrounded by a quintessence (solid line). Existence of the quintessence field predicts the lower temperature for black 
hole, but it can’t prevent temperature divergency. The figures are plotted with c = 0.5.

χ(ω1 + ω2;ω1,ω2) = 8π(ω1+ω2)(2M−(ω1+ω2))

(c−1)2

− 8πω1(2M−ω1)

(c−1)2 − 8πω2(2M−ω2)

(c−1)2

= 16πω1ω2
(c−1)2 . (2.17)

Correlation function is not zero here; this means that the probability of tunneling of two par-
ticles of energy ω1 and ω2 is not the same as probability of tunneling of one particle with 
energy ω1 + ω2 and so there is correlation between the emitted modes. Also, existence of ω2

in Eq. (2.13) demonstrates existence of correlation between radiate modes and we see this corre-
lation in Eq. (2.17). As a result, the quintessence field causes the information to be emerged from 
black hole as correlation between emitted modes and this potentially resolves the information 
loss problem.

For large M , we neglect ω2 in (2.15) and finally we achieve the temperature of Schwarzschild 
black hole surrounded by quintessence with wq = − 1

3 in the following form

T = 1

β
= (c − 1)2

8πM
. (2.18)

By plotting T versus M for ordinary Hawking temperature and Schwarzschild quintessence one, 
we conclude that quintessence with wq = − 1

3 can not prevent temperature divergency in this 
setup but as will be seen in the next section, with the choice wq = − 2

3 , the behavior of temper-
ature will become so different. Eq. (2.18) shows that with neglecting c, we have the Hawking 
temperature, see Fig. 4.

So, as an important result in this subsection, the correlations between the emitted modes are 
not zero in our study. This means that the probability of tunneling of two particles of energy ω1

and ω2 is not the same as probability of tunneling of one particle with energy ω1 + ω2. This 
means that there are correlations between the emitted modes and these correlations are capable 
of explaining the issue of information loss in essence.
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Fig. 5. r versus M with c = 0.01, rBH and rCH are coincident for M = 1
8c

.

2.1.2. The case with wq = − 2
3

Substituting wq = − 2
3 in Eq. (2.2), we have

g00(r) = 1 − 2M

r
− cr. (2.19)

In this case there are two horizons located at

rBH = 1 − √
1 − 8cM

2c
, rCH = 1 + √

1 − 8cM

2c
. (2.20)

Note that rBH is the black hole horizon and rCH is the cosmological horizon similar to the 
Schwarzschild-de Sitter black hole. As we see from Fig. 5, rBH and rCH are coincided for 
M = 1

8c
. When M = 1

8c
, there can be something like that the Schwarzschild-de Sitter extreme 

black hole named Nariai black holes [28,29]. Nariai solution describes such a situation when the 
event horizon coincides with the cosmological horizon. Besides, compared with the next section 
one should pay attention that without applying the quantum effect, rBH gets the condition r = 0
and so there is an intrinsic singularity yet. In other words, the existence of the quintessence 
cannot prevent the intrinsic singularity.

Regarded to the fact that there are two horizons, the black hole event horizon and the cosmo-
logical horizon, there are two temperatures defined locally with particles’ tunneling from each 
of the horizons. Gibbons and Hawking have investigated the properties of the black hole event 
horizon and the cosmological horizon in details [30]. They have shown that there are thermo-
dynamics similarities between the black hole event horizon and the cosmological horizon. This 
issue for black holes in de Sitter background has been regarded in several papers [31–34,36]. 
In Ref. [31], particles’ tunneling from cosmological horizon in de Sitter space has been investi-
gated. In Ref. [32], both of cosmological event horizon temperature and black hole temperature 
has been calculated and compared. In Ref. [33], the relation between the cosmological event 
horizon and Hawking temperature has been shown. In Ref. [34], thermodynamics of the black 
hole in anti-de Sitter space has been investigated. In Ref. [36], it has been pointed out that in 
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such situations when there are geometry with two horizons, there are two temperatures too, so 
that there is the non-equilibrium thermodynamics. Therefore, authors in Ref. [36], investigated 
evolution of such black holes. In the following, we calculate the local temperature of the cosmo-
logical horizon and the black hole horizon respectively. First, we consider the outgoing particles’ 
tunneling from the cosmological horizon. Similar to the previous section, we calculate the imag-

inary part of the action for particle which is going from the initial state at rin = 1+√
1−8cM
2c

− ε

to the final state at rout = 1+√
1−8c(M−ω̃)

2c
+ ε as follows

ImS = −Im

ω∫
0

rout∫
rin

dr dω̃

1 − √
1 − g00(r)

. (2.21)

Substituting (2.19) in (2.21) we have two poles in the range of integral. So, to deduce the poles 
we expand the denominator in terms of rout

ṙp = 1 −
√

1 − [g00(rout ) + g′
00(rout )(r − rout ) − ...], (2.22)

where a prime indicates derivative with respect to r . Therefore, we have

ImS = −Im

ω∫
0

rout∫
rin

dr dω̃

1 −
√

1 +
(
c − 8c2(M−ω̃)

(1+√
1−8c(M−ω̃))2

)(
r − 1+√

1−8c(M−ω̃)

2c

) . (2.23)

Using the residue calculus (see [35]), we find

ImS = −
ω∫

0

(1 + √
1 − 8c(M − ω̃))2 dω̃

c
[
1 − 8c(M − ω̃) + √

1 − 8c(M − ω̃)
] . (2.24)

The imaginary part of the action can be calculated to find

ImS = π

2c2

[
4ωc − √

1 − 8cM + √
1 − 8c(M − ω)

]
. (2.25)

According to Eq. (2.14), finally we get the emission rate as follows

	 � exp
[
− π

c2

(
4ωc − √

1 − 8cM + √
1 − 8c(M − ω)

)]
. (2.26)

By plotting �SBH versus M , we see that �SBH is rapidly changing for a specific range of the 
mass and then it changes in the same way as the ordinary Schwarzschild black hole. As might be 
expected, the final entropic state, in other words, the entropy of state with the quintessence field 
content is related to the stable and ultraviolet fixed point state, see Fig. 6.
Existence of correlation between radiated modes is clear from Eq. (2.27):

χ(ω1 + ω2;ω1,ω2) = π
c2

[
4(ω1 + ω2)c − √

1 − 8cM + √
1 − 8c(M − ω1 + ω2)

]

− π
c2

[
4(ω1)c − √

1 − 8cM − √
1 − 8c(M − ω1)

]

− π
c2

[
4(ω2)c − √

1 − 8cM − √
1 − 8c(M − ω2)

]
. (2.27)

For large M , with Taylor expansion of (2.25) in terms of ω, we obtain
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Fig. 6. �SBH versus M with c = 0.1 and ω = 0.01. Ordinary Bekenstein-Hawking Entropy (dashed line) and 
Quintessence Schwarzschild Entropy with wq = − 2

3 (solid line).

ImS = 2π(1 + √
1 − 8cM)

c(
√

1 − 8cM)
ω. (2.28)

And finally, we derive the temperature of Schwarzschild black hole surrounded by quintessence 
with equation of state parameter wq = − 2

3 as follows

TCH = 1

β
= c(

√
1 − 8cM)

4π(1 + √
1 − 8cM)

. (2.29)

With the same calculation process, we can set the local temperature due to particles’ tunneling 
from black hole event horizon rBH as follows

TBH = c(
√

1 − 8cM)

4π(1 − √
1 − 8cM)

. (2.30)

Note that both of these temperatures in the absence of the quintessence field recover the 
Hawking temperature if we rewrite Eqs. (2.29) and (2.30) (according to Eq. (2.20)) in the form 

T = (
√

1−8cM)
4πr

and set c = 0. As mentioned previously, when the mass of the Schwarzschild 
black hole reaches a special mass, then the quintessence field (with wq = − 2

3 ) causes the one 
horizon Schwarzschild black hole to become two horizons Schwarzschild black hole surrounded 
by the quintessence. Fig. 7 shows that when the mass of black hole reaches to M = 1

8c
, cor-

respond to the coincident horizons, both temperatures are vanishing. This situation may seem 
stable at the classical level but it’s unstable situation obviously under the small perturbations in 
a quantum or semiclassical viewpoint (similar to Nariai solution for de Sitter space [31]). After 
that, the temperature of black hole horizon is more than the temperature of cosmological hori-
zon, TBH ≥ TCH (see also [15]). Therefore, we can infer that there is a pure current from the 
black hole horizon towards the cosmological horizon. Eventually, radiation continues to reach 
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Fig. 7. Temperature of black hole horizon (dashed line) and Temperature of cosmological horizon (solid line) versus 
Mass. When the Schwarzschild black hole is surrounded by the quintessence with wq = − 2

3 , the temperature becomes 
regular. With M = 1

8c
, both temperatures are vanishing. Then, because of TBH ≥ TCH , there is a pure flow from the 

black hole horizon towards the cosmological horizon. In the final stage of evaporation, there is a remnant temperature 
with quintessence content when the mass of the black hole is over. The figure is depicted with c = 0.01.

the finite cosmological temperature with the quintessence content. As a more explanation, Fig. 7
demonstrates that the quintessence field with wq = − 2

3 prevents the divergence of temperature 
in the final stage of evaporation of the Schwarzschild black hole and there is a temperature rem-
nant with the quintessence content. Our result for the behavior of the black hole temperature 
(Eq. (2.30)) and cosmological temperature (Eq. (2.29)) is coincident with the result of several 
research papers about the temperature of the quintessence Schwarzschild black hole (see for in-
stance [15,29]) and the Schwarzschild in de Sitter Space [25,26,31,36]. Furthermore, to more 
discussion on the temperature of the black hole and cosmological horizons and related local and 
non-local thermodynamics, one can refer to Ref. [36]. On the other hand, it should be noted 
that the main difference between our work and the results of the author in Ref. [22] is that we 
predicted a remnant temperature for the final stage of the Hawking radiation of the quintessence 
Schwarzschild black hole. There is no trace of such an important result in Ref. [22].

2.2. Massive particles

As a generalization, now we consider a massive particles’ tunneling from the Schwarzschild 
black hole surrounded by quintessence. In some research papers, authors have considered out-
going massive particles’ tunneling in the form of the massive shell and so they have applied the 
wave equation for that particle and moved forward based on formulation of the WKB approxima-
tion [37]. Our work in this section is based on Parikh and Wilczek method [2] and the techniques 
that have been used in Ref. [38] for massive particles’ tunneling. In this method, massive par-
ticles cross the horizon on the timelike geodesics. We describe tunneling of this particle from 
the cosmological horizon of quintessence Schwarzschild black hole and we use the result for the 
forthcoming section. To read more and discussion about the massive particles’ tunneling from 
the cosmological horizon, one can be referred to Refs. [37,39–44].

To start, we need to derive equation of motion from the following Lagrangian

L = m
gμν

dxμ dxν

. (2.31)

2 dτ dτ
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In Ref. [10], authors discussed advantage and disadvantage of exponential potential for 
quintessence field. Also in Refs. [45,46] the authors introduced different potentials and discussed 
the corresponding outcomes. However, we continue our calculation without any potential. Using 
the Painlevé metric for time-like geodesics and equation of motion that is derived from Euler-
Lagrange equation with concern on tp, we have the following two equations

−g00(r) ṫ2
p + ṙ2

p + 2
√

1 − g00(r) ṫpṙp = −1, (2.32)

ptp ≡ −∂L
∂ṫ

= m(−g00(r) ṫp + √
1 − g00(r) ṙp) = cte. ≡ ω. (2.33)

With these two equations, we obtain

ṙp =
√

ω2 − m2g00(r), (2.34)

ṫp = 1

g00(r)

(
ω + √

1 − g00(r)

√
(ω2 − m2 g00(r))

)
. (2.35)

Finally, the radial motion of particle has the following form

ṙ = g00(r)
√

ω2 − m2 g00(r)

ω + √
(1 − g00(r))(ω2 − m2 g00(r))

. (2.36)

We use this equation in next subsection for the quintessence black hole and the quantum 
quintessence black hole with different wq .

2.2.1. The case with wq = − 1
3

Substituting (2.5) into (2.36) and replacing ṙ in imaginary part of the action (Eq. (2.8)) leads 
to

ImS = −Im

ω∫
m

rout∫
rin

ω̃ +
√

(c + 2 M−ω̃
r

)(−m2(1 − c − 2 M−ω̃
r

) + ω̃2)

(1 − c − 2 M−ω̃
r

)

√
[−m2(1 − c − 2 M−ω̃

r
) + ω̃2]

dr dω̃, (2.37)

where rin and rout are defined in section 2.1.1. One notices that considering a massive particle 
leads to the lower limit of integral in Eq. (2.8) changes from m to ω in Eq. (2.37) [38]. Imaginary 
part of the action is calculable with the following integral

ImS = −
ω∫

m

4π
M − ω̃

(c − 1)2 dω̃. (2.38)

Finally, we have

ImS = − 2π

(c − 1)2

[
2M(m − ω) − (m2 − ω2)

]
. (2.39)

Also, the emission rate is calculated as follows

	 � exp
[ 4π

(c − 1)2

(
2M(m − ω) + (m2 − ω2)

)]
. (2.40)

The result of comparing (2.13) and (2.39) is that the mass of the particle in the tunneling pro-
cess causes the change of entropy to be increased. Using Eqs. (2.14) and (2.40), we obtain the 
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temperature of the Schwarzschild black hole surrounded by quintessence with wq = − 1
3 , with 

tunneling of a massive particle from the horizon as follows

T = 1

β
= (c − 1)2

8πM
. (2.41)

As we see, based on comparing (2.41) and (2.18), temperature of the black hole has no depen-
dence on the mass of the tunneling particle. In other words, the mass of the particle has no effect 
on temperature, see the same result in Refs. [37–40,47].

2.2.2. The case with wq = − 2
3

Substituting (2.19) into (2.36) and replacing ṙ in imaginary part of the action, we obtain

ImS = −Im

ω∫
m

rout∫
rin

ω̃ +
√

(cr + 2(M−ω̃)
r

)(ω̃2 − m2(1 − cr − 2(M−ω̃)
2 ))

(1 − cr − 2(M−ω̃)
2 )

√
(cr + 2(M−ω̃)

r
)(ω̃2 − m2(1 − cr − 2(M−ω̃)

2 ))

dr dω̃.

(2.42)

With residue calculus, we achieve

ImS = −
ω∫

m

π (1 + √
1 − 8c(M − ω̃))

c
√

1 − 8c(M − ω̃)
dω̃. (2.43)

Therefore, the imaginary part of action is calculated as the following form

ImS = − π

4c2

[
4c(m − ω) + √

1 − 8c(M − m) − √
1 − 8c(M − ω)

]
. (2.44)

Finally we derive the emission rate as follows

	 � exp
π

2c2

(
4c(m − ω) + √

1 − 8c(M − m) − √
1 − 8c(M − ω)

)
. (2.45)

As has been explained previously, in comparison with the emission rate of massless particle 
tunneling (2.26), the emission rate of massive particle tunneling is larger. If we calculate tem-
perature, as expected, results would be the same as equations (2.29) and (2.30). To summarize, 
trace of the particles’ mass just can be sensed in the surface of the black hole and related entropy 
and emission rate but there is no trace of the mass in temperature of radiation that has received 
at infinity.

3. Temperature of quantum deformed Schwarzschild black hole surrounded by 
quintessence through the tunneling process

In this section, we investigate particle tunneling from a Schwarzschild black hole that is de-
formed with quantum correction and surrounded by the quintessence field. To start the discussion, 
firstly we should determine the metric and horizons of this black hole as has been introduced in 
Ref. [22] as follows

ds2 = −g00(r)dt2 + g−1
00 (r)dr2 + r2d�2, (3.1)

g00(r) = −2M + 1√
r2 − a2 − c

3ω +1 . (3.2)

r r r q
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Fig. 8. Behavior of g00(r) versus r with c = 0.01 and a = 0.1. Diagrams are depicted from top to down for wq =
− 1

3 , − 2
3 , −1.

Where a is a constant related to the gravitational constant and it has the dimension of length [7]. 
Fig. 9 demonstrates the behavior of g00(r) for different values of equation of state parameter 
and the quintessence normalization factor (which is connected with the energy density of the 
quintessence field). Also, comparing Fig. 8 with Fig. 2 or equations (3.2) and (2.2), we see 
that the effect of quintessence is more effective than the quantum effect which is an obvious 
result, because the quantum effect is usually more important for r ∼ rP l regime and it prevents 
formation of an intrinsic singularity.

3.1. Massless particles

To continue our study of tunneling process with massless particles, we set wq = − 2
3 and find 

the location of horizons analytically as follows

g00(r) = −2M

r
+ 1

r

√
r2 − a2 − cr = 0, (3.3)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

rBH =
√

1−4Mc−
√

1−4a2c2−8cM

2c2 ,

rCH =
√

1−4Mc+
√

1−4a2c2−8cM

2c2 .

(3.4)

As in the previous section, there are two horizons: the black hole horizon (rBH ) and the 
cosmological horizon (rCH ). It should be noted that for M = 1−4a2c2

8c
two horizons will be coin-

cident; in comparison with a black hole without quantum correction (section 2), we see that this 
mass is smaller. Actually, when the mass of the black hole reaches this special value, quantum 
effects and quintessence field form two new horizons and with decreasing of mass, the difference 
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Fig. 9. r versus M with c = 0.01 and a = 10.

between these two increases. As an important result in this section, when quantum correction is 
considerable, it prevents to reach the singularity at r = 0, as it is illustrated in Fig. 9.

Within the standard method of tunneling process, we apply the Painlevé coordinates and pay 
attention to the lightlike geodesics for tunneling of a massless particle to arrive at the imaginary 
part of the action as follows

ImS = −Im

ω∫
0

rout∫
rin

drdω̃

1 −
√

1 + 2M
r

−
√

r2−a2

r
+ cr

. (3.5)

Using the residue theorem and extension of the metric around the cosmological horizon, we have

ImS = −
ω∫

0

4π[1 − 4c(M − ω̃) + ζ ] √
1 − 2a2c2 − 4c(M − ω̃) + ζ dω̃

c
[
− 2

√
2a2c2 + (1 − 8c(M − ω̃) + ζ )

√
1 − 2a2c2 − 4c(M − ω̃) + ζ

] ,

(3.6)

where ζ is defined as

ζ ≡
√

1 − 4a2c2 − 8c(M − ω̃). (3.7)

Finally, we find the imaginary part of the action as follows

ImS = π

2c2

[
4ωc −

√
1 − 4a2c2 − 8Mc +

√
1 − 4a2c2 − 8c(M − ω)

]
. (3.8)

According to (2.14) and Taylor expansion of (3.8), we find the local temperature of quantum 
corrected Schwarzschild black hole surrounded by quintessence with wq = − 2

3 through the tun-
neling of massless particle from the cosmological horizon in the following form

TCH = 1

β
= c

√
1 − 4a2c2 − 8cM

4π(1 + √
1 − 4a2c2 − 8cM)

. (3.9)

Without repeating the calculations, the local temperature of the black hole horizon is obtained as 
follows

TBH = 1

β
= c

√
1 − 4a2c2 − 8cM√

2 2
. (3.10)
4π(1 − 1 − 4a c − 8cM)
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Fig. 10. Temperature of black hole horizon (dashed line) and Temperature of cosmological horizon (solid line) versus 
Mass. With M = 1−4a2c2

8c
, both temperatures are vanishing. Considering quantum corrections in the presence of the 

quintessence field, by decreasing M , one gains the remnant with the Planck scale and quintessence content. The figure is 
depicted with c = 0.01 and a = 10.

In comparison with the result of the local temperature of the black hole and the cosmological 
horizons without considering quantum correction, the general behavior of temperature doesn’t 
change significantly. In other words, the behavior of temperature is similar to the last result in 
section 2.1.2, but the important point is that the effect of the quintessence field on temperature 
is more significant than the quantum correction term. Therefore, even though the quantum cor-
rections prevent divergence of temperature [47], but the quintessence field has an even more 
important role in this respect. Eventually, while the quantum correction prevents to reach the 
singularity at r = 0, in the final stage of the evaporation of Schwarzschild black hole surrounded 
by quintessence, there is a Planck scale remnant with quintessence content, see Fig. 10.

3.2. Massive particles

To completion, regarding Eq. (2.8) and substituting (3.3) into (2.36) we have

ImS = −Im

ω∫
m

rout∫
rin

ω̃ +
√

(1 + 2M
r − 1

r

√
r2 − a2 + cr)(ω̃2 − m2(− 2(M−ω̃)

r + 1
r

√
r2 − a2 − cr))(

− 2(M−ω̃)
r + 1

r

√
r2 − a2 − cr

)√
ω̃2 − m2(− 2(M−ω̃)

r + 1
r

√
r2 − a2 − cr)

dr dω̃.

(3.11)

By solving this integral and expanding in terms of ω, the imaginary part of the action is in the 
following form

ImS = 2π(1 + √
1 − 4a2c2 − 8cM)

c
√

1 − 4a2c2 − 8cM
(ω − m) − 4π

(1 − 4a2c2 − 8cM)
3
2

(ω2 − m2) + ... .

(3.12)
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Existence of m and ω2 and higher order terms of m and ω in the imaginary part of the action, 
displays that the emission rate is not purely thermal and there is a correlation between radiation 
modes (χ 
= 0).
By considering Eqs. (2.14) and (3.12), finally we find the temperature of quantum corrected 
Schwarzschild black hole surrounded by quintessence with tunneling of a massive particle from 
the cosmological horizon as follows

TCH = 1

β
= c

√
1 − 4a2c2 − 8cM

π(1 + √
1 − 4a2c2 − 8cM)

. (3.13)

As we have explained previously, this is the temperature of cosmological horizon due to massless 
particle tunneling because the mass alone cannot change the temperature.

4. Summary and conclusion

We probed the tunneling process of a Schwarzschild black hole in the background of a mini-
mally coupled scalar field (such as a minimally coupled quintessence field).
Firstly we checked the geometry of the quintessence Schwarzschild black hole and demonstrated 
that c, as the normalization factor (which is related to the energy density) and wq are effective on 
the number of horizons. By increasing c, the probability of formation of two horizons for smaller 
wq is decreasing. Moreover, due to the observational evidence for wq , we regarded the special 
case wq = − 2

3 .
We have shown that if wq = − 1

3 , the temperature of the quintessence Schwarzschild black 
hole is less than the ordinary Schwarzschild black hole temperature but the general behavior of 
the temperature doesn’t change significantly. But, if wq = − 2

3 , there is the considerable differ-
ence. After the mass of the black hole reaches a special value, M = 1

8c
, the geometry changes 

to a black hole with two horizons: a black hole horizon and a cosmological horizon. By consid-
ering the tunneling process from both horizons, we conclude that the temperature of the black 
hole horizon is larger than the cosmological horizon. So, there is the net flow from the black 
hole horizon towards the cosmological horizon. Eventually, radiation continues to reach the fi-
nite cosmological temperature with the quintessence content. We have demonstrated that the final 
stage of evaporation of the Schwarzschild black hole surrounded by quintessence is a remnant 
with no gravitational mass content, but with the quintessence field. As a comparison, one can 
see that the behavior of temperature versus the mass matches with the behavior of temperature 
of Schwarzschild black hole in de Sitter space. The other significant result is a major change 
in the temperature of the Schwarzschild black hole surrounded by quintessence in the range of 
− 2

3 < wq < − 1
3 . In Ref. [16], it has been indicated that a phase transition occurs in this range 

and as we have shown, the behavior of temperature is changing significantly in this special range 
for wq .

We have studied the change of entropy in the tunneling process. In the case wq = − 2
3 , an 

interesting effect has been observed for the special mass range; variation of entropy is rapidly 
and after that, the behavior of entropy variation is the same as in ordinary Schwarzschild black 
hole. Adding a mass for the tunneling particle in the tunneling process from a quintessence 
Schwarzschild black hole’s horizons, results in that the mass of particle causes more reduction 
of the entropy of the black hole. In summary, the trace of the particles’ mass just can be sensed 
in the surface of the black hole and related entropy and emission rate, but there is no trace of the 
mass in temperature of radiation that has received at infinity.
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After all, in section 3, by adding quantum effect on the Schwarzschild black hole, we have 
considered the tunneling process from the cosmological horizon and the black hole horizon of 
quantum deformed Schwarzschild black hole surrounded by a minimally coupled scalar field 
such as a quintessence field. Considering quantum effects caused by smaller c, there are two 
horizons for Schwarzschild black hole in the quintessence field with wq ≤ − 2

3 . Also, quantum 
effects form a regular space-time in r � rP l and prevent from the singularity at r = 0. The incor-
poration of quantum effects in our case as studied here leads to a reduction of the special mass of 
the black hole, M = 1−4a2c2

8c
, which after it, the black hole is mainly affected by the quintessence 

field. Also, the quantum correction leads to less temperature for both the black hole and the cos-
mological temperatures. Eventually, while the quantum corrected prevent to reach the singularity 
at r = 0, in the final stage of the evaporation of quantum deformed Schwarzschild black hole sur-
rounded by quintessence, there is the remnant with the Planck scale and the quintessence content. 
Finally, we note that although we have started with the same metric as in Ref. [22], but the au-
thor of Ref. [22] has applied the standard thermodynamics equations while we have worked in the 
Parikh-Wilczek tunneling framework which is essentially a quantum tunneling process. The main 
difference between our work and Ref. [22] is that while in Ref. [22] the black hole completely 
evaporates and there will be no trace of black hole remnant, in our tunneling mechanism black 
hole cannot evaporate totally and there would be a black hole remnant (a Planck size remnant) 
that could be interpreted as a candidate for the Dark Matter.
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