

Enhanced $E1$ transitions in ^{119}I

Mamta Prajapati,^{1,*} Nidhi Goel,¹ Aalakh Kumar,¹ Somnath Nag,¹ R. Palit,² Vishal Malik,² P. Dey,² Biswajit Das,² A. Kundu,² A. Sindhu,² Gaurchand Manna,³ S. Rajbanshi,³ A. K. Singh,⁴ H. Pai,⁵ S. Bhattacharya,⁶ A. Mukherjee,⁷ T. Trivedi,⁸ D. Choudhury,⁹ Sahab Singh,⁹ Abraham T Vazhappilly,² S. Jadhav,² B. S. Naidu,² and Raghava Varma^{1,10}

¹Department of Physics, Indian Institute of Technology (BHU), Varanasi 221005, India

²Department of Nuclear and Atomic Physics,

Tata Institute of Fundamental Research, Mumbai 400005, India

³Department of Physics, Presidency University, Kolkata 700073, India

⁴Department of Physics, Indian Institute of Technology Kharagpur, West Bengal 721302, India

⁵Extreme Light Infrastructure-Nuclear Physics (ELI-NP), IFIN-HH, Magurele, 077125, Romania

⁶Amity Institute of Nuclear Science and Technology,

Amity University, U.P., Noida 201313, India

⁷Department of Pure and Applied Physics,

Guru Ghasidas Vishwavidyalaya, Koni, Bilaspur 495009, India

⁸Department of Physics, University of Allahabad, Prayagraj 211002, India

⁹Department of Physics, Indian Institute of Technology, Ropar, Punjab 140001, India

¹⁰Department of Physics, Indian Institute of Technology, Mumbai 400076, India

I. INTRODUCTION

The γ -soft nuclei in $A \approx 120$ are intriguing as the number of valence nucleons outside the ^{100}Sn shell core is sufficient to induce deformation in the system. The availability of octupole driving $\pi d_{5/2}$ and $\pi h_{11/2}$ orbitals close to the Fermi surface in odd I isotopes makes them suitable candidates to exhibit octupole correlation [1]. Octupole correlation arises when nucleons near the Fermi surface occupy opposite parity states with $\Delta l = \Delta j = 3$. The phenomenon is predominant in nuclei having $Z, N = 34, 56, 88, 136$. The experimental fingerprint of octupole correlation is the existence of enhanced $E1$ transitions between the alternate parity bands or observation of collective $E3$ transitions [1]. The ^{119}I ($Z=53, N=66$) nucleus has three protons in $\pi g_{7/2}/d_{5/2}$ and a couple of neutrons in $\nu d_{3/2}$ respectively. The nucleons can easily be excited to the $h_{11/2}$ orbital, which along with the occupancy of $d_{5/2}$ may lead to octupole interaction in iodine nuclei. Recently, on the basis of $B(E1)/B(E2)$ measurements, oc-

tupole correlation was reported around $I \approx 8\hbar$ in ^{127}I by S. Chakraborty *et. al* [2]. In search of possible occurrence of octupole correlation in ^{119}I , the $B(E1)/B(E2)$ ratio at high-spin states were measured and compared with other nuclei where octupole correlation has already been reported.

II. EXPERIMENTAL DETAILS

The excited states of ^{119}I were populated through $^{109}\text{Ag}(^{13}\text{C}, 3n\gamma)^{119}\text{I}$ reaction at a beam energy of 54 MeV. The ^{13}C beam, provided by the 14UD pelletron accelerator (TIFR) was incident on a ^{109}Ag target of thickness 1.05 mg/cm^2 backed with 10 mg/cm^2 . The emitted γ rays were detected in Indian National Gamma Array (INGA), which consisted of 18 Compton suppressed clover HPGe detectors. A total of $1.66 \times 10^9 \gamma\gamma$ coincidence events were collected into a two-dimensional matrix format by using RADWARE software [3]. Efficiency and energy calibrations were carried out using the ^{152}Eu and ^{133}Ba standard radioactive sources.

III. RESULTS AND DISCUSSION

In this work a couple of new $E1$ γ -transitions with energies 477^* and 419^* keV have been observed in addition to the already known γ rays.

*Electronic address: mamta.prajapati.rs.phy19@itbhu.ac.in

The multipolarities of these transitions are determined using DCO ratio. The DCO ratio is defined as:

$$R_{DCO} = \frac{I(\gamma_1) \text{ at } 157^\circ, \text{ gated by } \gamma_2 \text{ at } 90^\circ}{I(\gamma_2) \text{ at } 90^\circ, \text{ gated by } \gamma_1 \text{ at } 157^\circ}$$

The R_{DCO} values of stretched dipole and quadrupole transitions are ≈ 0.5 (1.0) and ≈ 1.0 (2.0), respectively, in a pure quadrupole (dipole) gate. Clover detectors facilitate the linear polarization measurement studies of *EM* radiation. The polarization asymmetric parameter $\Delta_{asym}(\frac{a(E_\gamma)N_\perp - N_\parallel}{a(E_\gamma)N_\perp + N_\parallel})$ is positive (negative) for electric (magnetic) transitions, where N_\perp (N_\parallel) is the intensity of γ -ray transitions scattered perpendicular (parallel) to the reaction plane and $a(E_\gamma)$ is a correction factor arising from any experimental asymmetry. The value of $a(E_\gamma)$ was determined from the ratio of parallel to perpendicular scattered events of unpolarized γ rays from ^{133}Ba and ^{152}Eu radioactive sources. By fitting the experimentally observed $a(E_\gamma)$ values at different energies with a expression, $a(E_\gamma) = a_0 + bE_\gamma$, we obtained $a_0 = 1.024(5)$ and $b = 1.004(8) \times 10^{-6}$ keV $^{-1}$. We have confirmed the spin and parity of the level via which the transitions 477* and 419* keV were observed to decay by using R_{DCO} and asymmetry measurements.

The enhanced *E1* nature of two new γ -transitions and one already known transition is determined from the ratio of the reduced transition probability of electric dipole and electric quadrupole transitions, which is defined as:

$$\frac{B(E1)}{B(E2)} = \frac{1}{1.3 \times 10^6} \frac{E_\gamma^5(E2)L_\gamma(E1)}{E_\gamma^3(E1)L_\gamma(E2)} [fm^{-2}]$$

The observed $B(E1)/B(E2)$ ratio for 662-, 477*- and 419*-keV transitions of ^{119}I are given in table.I and have been compared with different nuclei (*see* Fig. 1), in which octupole correlation is reported. We have also calculated the intrinsic electric dipole moment, D_0 by using the following relation [4]:

$$D_0 = Q_0 \left[\frac{5}{16} \frac{B(E1)}{B(E2)} \right]^{1/2} [efm]$$

where Q_0 is the intrinsic electric dipole moment. The value of Q_0 (2.80 b) is taken from the ref.[5].

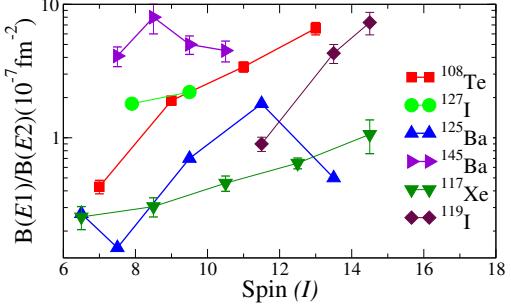


FIG. 1: The experimental $B(E1)/B(E2)$ ratios as a function of spin in different nuclei.

The observed values of $B(E1)/B(E2)$ show the possible evidence of octupole correlation in ^{119}I . Other details will be presented during the conference.

TABLE I: Measured $B(E1)/B(E2)$ ratios and deduced electric dipole moment in ^{119}I .

$E\gamma$ (keV)	$I_i \rightarrow I_f$	$B(E1)/B(E2)$ ($10^{-6} fm^{-2}$)	D_0 (efm)
662	$23/2^- \rightarrow 21/2^+$	0.090 (11)	0.047 (4)
477*	$27/2^- \rightarrow 25/2^+$	0.43 (7)	0.102 (12)
419*	$29/2^- \rightarrow 27/2^+$	0.73 (14)	0.130 (18)

Acknowledgements

The authors would like to acknowledge all the members of TIFR-INGA collaboration for their support. M. Prajapati acknowledges the fellowship support from the Department of Science and Technology (No.:DST/INSPIRE fellowship/2019/IF190275). S. Nag acknowledges the financial support from the SERB-DST India under CRG (File No.: CRG/2021/006671).

References

- [1] P. A. Butler and W. Nazarewicz, Rev. Mod. Phys. **68**, 349 (1996).
- [2] S. Chakraborty *et al.*, International Journal of Modern Physics E Vol. 30, No. 5 (2021) 2150030.
- [3] D. C. Radford, Nucl. Instrum. Methods A **361**, 297 (1995).
- [4] P. A. Butler and W. Nazarewicz, Nucl. Phys. A **533**(1991) 249.
- [5] S. Törmänen *et al.*, Nuclear Physics A **613** (1997) 282-310.