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DUNE SENSITIVITY
TO SOLAR NEUTRINOS
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Deep Underground Neutrino Experiment Event Reconstruction: CC ve

DUNE: Long-baseline neutrino oscillation experiment with a 1.2 MW e Data from comprehensive simulation of the FD geometries and
beam produced at Fermilab (Illinois, USA), characterised with a ND readout chain (e.g. noise, backgrounds...) using the LArSoft [3]

complex and measured with liquid argon detectors at SURF (South framework.
Dakota, USA) 1.5 km underground. e Reconstruction for low energy events follows a hit-clustering scheme

based on channel and time proximity (3 channels - 12.5 us).
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DUNE Far Detector (FD) modules [1]: | LR

e Excavation ready to host 4 detectors. ,DUNE Worlf-lnl-Prp.%:;e.ﬁH} :
e 1/kT LAr~66x19 x 18 m3 cryostat. - ' . = T
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Liquid Argon TPC technology:

, , e Electron energy resolution ~ 16% (with ideal drift reconstruction).
e High density (1.4 g/cm3).

onization (42K e /MeV) @ 500 V/em. e Reconstruction optlmlsed for main electron. Additional deexcitation
T gammas from quantised nuclear states add 4 MeV or 5.9 MeV.
Transparent to scintillation light.
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e Scintillation (24k y/MeV) @128 nm. ® Neutrino reconstruction follows from combining electron + gamma
®

3D reconstruction & particle ID. clusters.

CC Interaction (nuclear deex.): “°Ar — 40K* — 40K +y (+ N-y) J

Currently studying full range of radiological & external backgrounds.
Neutrons — Most challenging due to penetration and signal topology.

SO|aI‘ NEUtrinOS in DU N E Appropriate cut selection result in S/B 119% (> 10 MeV).

e DUNE will be sensitive to solar neutrinos 1.5 - 19 MeV (8B + hep ). 25— Reconst_ruct,eé Energy - . Reconstructed Spectrum_
e Mostly detected from CC Ar - v_ with x-section ~ 10742 cm? [2]. | 12125 MeV RMS(13% g W Fobne
e For 4 FD modules — 171 k CC v_events per /0 kT - year exposure. |
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[ CC Interaction (Q 1.5 MeV): v, + VAr - e + 4K

Counts 400 kT-year
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—Solar Neutrino Spectrum DUNE Exposure to Solar v__

From Solar Model:
8 B16-GS98 [5]
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e Solar neutrinos arrive almost entirely as v, mass eigenstate (~ 5 v ).

o Up(?n dgtection @.S.URF, mgtter effects (f.rom Earth) influence the e Fitting the final neutrino spectrum (solar best fit [4]) against results from
oscillation probability causing the day / night asymmetry. an oscillation parameter scan provides statistical sensitivity contours.

Goal Sensitivity Contours
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