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Abstract

Understanding how galaxies form and evolve is at the heart of modern astronomy.
With the advent of large-scale surveys, remarkable progress has been made in the
last few decades as the overall picture has been established. Nevertheless, the
importance of the physical processes behind the phenomena are far from known,
as primarily correlations have been identified rather than the underlying causality.
While simulations are inherently causal by nature, the causal effect itself is intractable
given meaningful complexity. In this thesis, the causal inference framework is applied
to move beyond correlations to causation, in an effort to truly understand the galaxy

formation and evolution process.

First—Dbefore inference (i.e., the why)—the equally important task of prediction
(i.e., the what) is tackled as machine learning (ML) is utilised to predict galaxy
properties. Concretely, a novel method based on the random forest (RF) algorithm
is developed to generate joint probability distribution functions (PDFs). As a
demonstration, joint redshift—stellar mass PDF's are estimated, which have many
science applications. Compared to a traditional SED-fitting approach, the ML-based
method has superior performance in terms of accuracy (based on predefined metrics)

and speed (by ~ 5 orders of magnitude).

Then, combining causal inference and ML, causal ML is applied to infer the
causal effect of environment on galaxies, specifically on their star-formation rate
(SFR). To achieve this, a comprehensive causal model of galaxy formation and
evolution is constructed, and the long-outstanding problem of disentangling nature
and nurture is tackled. The causal effect is found to be negative and substantial, with
environment suppressing the SFR by a factor of ~ 100. While the overall effect at
z = 0 is negative, in the early Universe, environment is discovered to have a positive

impact, boosting star formation by a factor of ~ 10 at z ~ 1 and by even greater
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amounts at higher redshifts.



Impact Statement

Broadly, the work in this thesis contributes to advancing our understanding of galaxy
formation and evolution, with potential applications to other fields. The estimation
of galaxy properties with machine learning (ML) is hugely significant, as traditional
methods are unlikely to scale to the billions of galaxies that will be observed by the

next generation of large-scale surveys, such as Euclid, LSST, and Roman.

Delving deeper, moving beyond point estimates to probability distribution
functions (PDF's) enables more accurate analyses since the latter fully characterise
uncertainties. The joint PDF, in particular, is more informative than the marginal as it
captures any potential correlations between galaxy properties, so their incorporation
could reduce bias. This work directly contributes to the LSST DESC Science
Roadmap (SRM), as estimating joint PDFs of redshift and an ancillary property
is one of its enhanced objectives. Furthermore, methods have been introduced to
validate multivariate PDF's, and they have already been implemented in studies to
validate posterior distributions of the reionisation parameters obtained from the

21-cm power spectrum (Zhao et al., 2022, 2023).

I have developed and published GALPRO—an open-source, state-of-the-art Python
package for estimating multivariate PDFs of galaxy properties. GALPRO is fast and
efficient, able to compute joint PDFs for a million galaxies in just under 6 minutes
with consumer computer hardware. Moreover, it can generate PDFs on the fly once
trained, thus solving the potential challenge of data storage. The package has already
been employed to estimate joint redshift—luminosity and redshift—stellar mass PDF's
in order to estimate the Hubble constant using gravitational waves (Palmese et al.,
2023) and constrain the stellar-to-halo mass relation (SHMR) with galaxy clustering
and weak lensing (Zacharegkas et al., in prep), respectively. Overall, GALPRO will

facilitate galaxy formation and evolution and cosmological studies in the era of “Big
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Data”.

Estimating the causal effect of environment on star-formation rate (SFR) by
tackling the key challenge of disentangling nature and nurture propels the field to a
deeper understanding. With the introduction of a principled framework (to the field)
to infer causality, this work paves the way towards potentially unravelling some of
the biggest mysteries in galaxy formation and evolution, such as: why do galaxies
quench, what is responsible for morphological transformations of galaxies, what is
the impact of supermassive black holes (SMBHs) on their host galaxies, and the
long-outstanding question, which is more important: nature or nurture?

Causality is at the heart of many sciences, so this work has broad applications.
In particular, it is pertinent to dynamical systems with feedback loops (here being
galaxies), and they are ubiquitous. One of the most complex and important is the
Earth’s climate system. The method utilised in this work can be applied to determine,
for example, the anthropogenic activity that most contributes to global warming,

which is critical to tackling climate change.



Acknowledgements

From a young boy on a small Indian island who first saw thousands of twinkling stars
in the night sky during a blackout and became fascinated—to eventually pursuing
a PhD in astronomy, it has been quite a journey—a journey that would have been

impossible without the support of many people.

First and foremost, I would like to express my deepest gratitude to my supervisors:
Prof. Ofer Lahav, Dr. William Hartley, and Prof. Timothy Scanlon. Ofer, thank
you for your guidance and wisdom. You gave me the freedom to explore and follow
my interests whilst gently nudging me in the right direction and always being there
for support. I take with me your immense curiosity and insatiable desire for learning.
Will, thank you for nurturing me as a scientist, with seemingly infinite patience and
humility. Knowing that I could make mistakes and that you would explain without
judgement allowed me to grow and learn. Your gentle reassurance and support
helped me push through the difficult periods. Thank you for being so kind and

understanding.

A massive thank you to Prof. Ciaran Gilligan-Lee for introducing me to the
world of causal inference and ultimately inspiring me to apply it to the field of galaxy
formation and evolution. It was amazing to collaborate with you on the project.
Also, thank you to Prof. Antonella Palmese for guiding and working with me right
from the beginning of my PhD. Thanks to also Prof. Chihway Chang, Prof. Clécio
Roque De Bom, Dr. Lorne Whiteway, Dr. Judit Prat, and Dr. Georgios Zacharegkas
for collaborating with me, and Prof. Asa Black and Dr. Alex Alarcon-Gonzalez for

examining and providing valuable feedback on my first paper.
Rewinding back the time, thank you Mr. Jack Harrison. Your A-level Physics
lectures all those years ago truly inspired me and cemented my interest in the subject.

You played a big role in me choosing to study physics at university and, to a certain



Acknowledgements 9

degree, my path thereafter. Also, I would like to acknowledge Prof. Hartmut Boesch
and Dr. Hilke Oetjen for giving me the opportunity to conduct research at the
National Centre for Earth Observation (NCEO) at University of Leicester. This
first experience of researching in a professional environment was truly invaluable.
Thank you also to Prof. Richard Ambrosi and Prof. Mervyn Roy for highlighting
the opportunity.

My deepest gratitude to Prof. Mark Wilkinson. Mark, I count myself lucky to
have had you as my supervisor (for 3rd year and Master’s projects). I had so much
fun researching, and it was then that I realised I could aim for a PhD. However, it
felt out of reach for multiple reasons. You gave me the confidence and courage to
pursue it. You really went above and beyond to support me, especially after the
setback. All I can say is thank you for believing in me. I will forever be grateful.

Finally, from the bottom of my heart, thank you to my family. Mum and Dad,
words cannot really express how grateful I am for everything you have done for me.
You gave me every opportunity to pursue what I wanted despite our circumstances
and have always trusted and believed in me. Thank you for your unconditional love
and support. I hope I have made you proud. Sonu, thank you for listening to my
endless ramblings about everything and especially for trying your hardest not to fall
asleep during my practice presentations. Jokes aside, I could not have asked for a
better brother. Thank you for always having my back. Also, a big thank you to my
uncles, aunts, and extended family. A special mention also to my lovely and caring

grandma, or Baa. I really could not have done this without all of you. Thank you.



Declarations 10

UCL Research Paper Declaration Form: referencing the

doctoral candidate’s own published work(s)

1. 1. For a research manuscript that has already been published (if not

yet published, please skip to section 2):

(a)

What is the title of the manuscript?
A machine learning approach to galaxy properties: joint redshift—stellar

mass probability distributions with Random Forest

Please include a link to or doi for the work:

https://doi.org/10.1093/mnras/stabl164

Where was the work published?

Monthly Notices of the Royal Astronomical Society

Who published the work?

Oxford University Press

When was the work published?
January 2021

List the manuscript’s authors in the order they appear on the
publication:

S. Mucesh, W. G. Hartley, A. Palmese, O. Lahav, L. Whiteway, A. F. L.
Bluck, A. Alarcon, A. Amon, K. Bechtol, G. M. Bernstein, A. Carnero
Rosell, M. Carrasco Kind, A. Choi, K. Eckert, S. Everett, D. Gruen, R.
A. Gruendl, I. Harrison, E. M. Huff, N. Kuropatkin, I. Sevilla-Noarbe,
E. Sheldon, B. Yanny, M. Aguena, S. Allam, D. Bacon, E. Bertin, S.
Bhargava, D. Brooks, J. Carretero, F. J. Castander, C. Conselice, M.
Costanzi, M. Crocce, L. N. da Costa, M. E. S. Pereira, J. De Vicente,
S. Desai, H. T. Diehl, A. Drlica-Wagner, A. E. Evrard, 1. Ferrero, B.
Flaugher, P. Fosalba, J. Frieman, J. Garcia-Bellido, E. Gaztanaga, D. W.
Gerdes, J. Gschwend, G. Gutierrez, S. R. Hinton, D. L. Hollowood, K.
Honscheid, D. J. James, K. Kuehn, M. Lima, H. Lin, M. A. G. Maia, P.
Melchior, F. Menanteau, R. Miquel, R. Morgan, F. Paz-Chinchén, A. A.
Plazas, E. Sanchez, V. Scarpine, M. Schubnell, S. Serrano, M. Smith, E.
Suchyta, G. Tarle, D. Thomas, C. To, T. N. Varga, and R.D. Wilkinson


https://doi.org/10.1093/mnras/stab164

Declarations 11

(DES Collaboration)

(g) Was the work peer reviewed?

Yes

(h) Have you retained the copyright?
Yes

(i) Was an earlier form of the manuscript uploaded to a preprint
server (e.g. medRxiv)? If ‘Yes’, please give a link or doi
https://doi.org/10.48550/arXiv.2012.05928
If ‘No’, please seek permission from the relevant publisher and check the

box next to the below statement:

O I acknowledge permission of the publisher named under 1d to include

in this thesis portions of the publication named as included in 1c.

2. For a research manuscript prepared for publication but that has not

yet been published (if already published, please skip to section 3):

(a) What is the current title of the manuscript?
(b) Has the manuscript been uploaded to a preprint server ’e.g.
medRxiv’?

If Yes’, please please give a link or doi:
(¢) Where is the work intended to be published?
(d) List the manuscript’s authors in the intended authorship order:

(e) Stage of publication:

3. For multi-authored work, please give a statement of contribution
covering all authors (if single-author, please skip to section 4):
S. Mucesh: investigation, methodology, data curation, formal analysis, valida-
tion, interpretation, writing, visualisation, software
W. G. Hartley: supervision, conceptualisation, methodology, validation, inter-
pretation, writing (review and editing)
A. Palmese: supervision, conceptualisation, writing (review)

O. Lahav: supervision, writing (review)


https://doi.org/10.48550/arXiv.2012.05928

Declarations 12

4. In which chapter(s) of your thesis can this material be found?

Chapters 2 and 4

e-Signatures confirming that the information above is accurate (this
form should be co-signed by the supervisor/ senior author unless this is not appro-

priate, e.g. if the paper was a single-author work):

Candidate: Sunil Mucesh
Date: 02/02/2024
Supervisor/Senior Author signature (where appropriate): Ofer Lahav

Date: 02/02/2024



Declarations 13
UCL Research Paper Declaration Form: referencing the

doctoral candidate’s own published work(s)

1. 1. For a research manuscript that has already been published (if not

yet published, please skip to section 2):

(a) What is the title of the manuscript?
(b) Please include a link to or doi for the work:

¢) Where was the work published?

e

)
)
(c)
(d) Who published the work?
) When was the work published?
)

(
(f) List the manuscript’s authors in the order they appear on the

publication:
(g) Was the work peer reviewed?
(h) Have you retained the copyright?

(i) Was an earlier form of the manuscript uploaded to a preprint
server (e.g. medRxiv)? If ‘Yes’, please give a link or doi
If ‘No’, please seek permission from the relevant publisher and check the

box next to the below statement:

O I acknowledge permission of the publisher named under 1d to include

in this thesis portions of the publication named as included in 1c.

2. For a research manuscript prepared for publication but that has not

yet been published (if already published, please skip to section 3):

(a) What is the current title of the manuscript?
The Causal Effect of Environment on Star Formation with Causal Machine

Learning

(b) Has the manuscript been uploaded to a preprint server ’e.g.
medRxiv’?
If *Yes’, please please give a link or doi:

(¢) Where is the work intended to be published?

Nature Astronomy or Communications



Declarations 14

(d) List the manuscript’s authors in the intended authorship order:
S. Mucesh, W. G. Hartley, C. M. Gilligan-Lee, O. Lahav,
(e) Stage of publication:

In Preparation

3. For multi-authored work, please give a statement of contribution
covering all authors (if single-author, please skip to section 4):
S. Mucesh: conceptualisation, investigation, methodology, data curation, formal
analysis, validation, interpretation, writing, visualisation, software
W. G. Hartley: supervision, interpretation, writing (review and editing)
C. M. Gilligan-Lee: supervision, methodology, interpretation, writing (review)

O. Lahav: supervision, writing (review)

4. In which chapter(s) of your thesis can this material be found?

Chapters 3 and 5

e-Signatures confirming that the information above is accurate (this
form should be co-signed by the supervisor/ senior author unless this is not appro-

priate, e.g. if the paper was a single-author work):

Candidate: Sunil Mucesh
Date: 02/02/2024

Supervisor/Senior Author signature (where appropriate): Ofer Lahav

Date: 02/02/2024



Contents

1 Introduction 29
1.1 The Cosmological Framework . . . . . .. ... ... ... ...... 30
1.1.1 The Standard Model of Cosmology . . . . . . ... ... ... 30
1.1.2 Friedmann-Lemaitre-Robertson-Walker Metric . . . .. . .. 30
1.1.3  Friedmann Equations . . . .. .. ... ... ... ...... 31
1.1.4 Redshift, Distance and Lookback Time. . . . . ... ... .. 32

1.2 Measuring Galaxy Properties . . . . ... ... ... ... ... .. 36
1.2.1  Spectral Energy Distribution . . . .. .. .. ... ... ... 36

1.2.2 Redshift . . . . ... 36
1.2.3 Stellar Population Synthesis . . . . . .. ... ... ... ... 39
1.2.4 SED Fitting . . . . . . . . . .. 44
1.2.5 Uncertainties, PDFs and Big Data . . . . . . ... ... ... 45

1.3 The Galaxy Population . . .. .. ... ... ... ... ....... 47
1.3.1 Physical Properties . . . . . .. .. ... .o . 47
1.3.2 Environment and Correlations . . . . .. .. .. ... .... 50
1.3.3 High Redshift and Evolution . . . .. .. ... ........ 55
1.3.4 Nature versus Nurture . . . . . .. .. ... ... ... .... 58

1.4 Thesis Outline . . . . .. ... .. ... ... 60
2 Machine Learning 62
2.1 Decision Trees. . . . . . . . . . . . 64
2.1.1 Classification and Regression Trees . . . . . . . . .. ... .. 64

2.2 Random Forests . . . .. .. .. ... ... 67

2.2.1 Hyperparameters . . . . . . . . . . ... oo 69



Contents 16

3 Causal Inference 70
3.1 Causal Models and Graphs . . . . . ... ... ... .. ....... 71
3.2 Causal Framework . . . . .. .. .. .. ... .. .. .. 73
3.3 Causal Assumptions . . . . . . . . . . ... .. e 74
3.4 Biases and Adjustments . . . . ... ... L Lo 76

3.4.1 Confounding Bias . . . .. ... ... ... ... ... 76
3.42 SelectionBias . . . .. ... o oL 78
3.5 Causal Machine Learning . . . . .. ... ... ... ... ...... 80

4 Galaxy Properties with Machine Learning 82
4.1 Introduction . . . . . . . . . . .o 84
4.2 Method . . . . . ... 87
4.3 Data . . . . . . 88

4.3.1 Cosmological Evolution Survey . . . .. ... ... .. .... 89
4.3.2 Dark Energy Survey . . . . . ... ... oL 89
4.3.3 Preprocessing . . . . . ... ... Lo oo 91
4.4 Models and Implementation . . . . . . . ... ... ... ... ..., 94
4.5 Results and Discussion . . . . . . . .. ... L oo 96
4.5.1 Point Estimates. . . . . . ... ... Lo oL, 96
4.5.2 Marginal Probability Distributions . . . . . . ... ... ... 98
4.5.3 Joint Probability Distributions . . . . . . ... ... ... .. 104
4.6 Comparison: ML versus SED Fitting . . . . . ... ... ... .... 108
4.7 Conclusions . . . . . . . .. 113
5 The Causal Effect of Environment on Galaxies with Causal Machine

Learning 115
5.1 Introduction. . . . . . . . . ... 117
5.2 Causal Model of Galaxy Formation and Evolution . . ... .. ... 121
5.2.1 Galaxy Formation . . . ... ... ... ... ......... 122
5.2.2 Galaxy Evolution . . . . ... ... ... .. . 125
5.2.3 Causal DAG and Effects . . . . . ... ... ... .. ..... 135
5.3 Data . . . . oL 138



5.4

5.5

5.6

5.7

5.8

Contents

5.3.2 The Galaxy Sample . . . .. ... ... ... ... ...,
Method . . . . . . ..
5.4.1 Propensity Scores . . . . .. .. ...
5.4.2 Inverse Probability Weighting . . . . . . . .. ... ... ...
Estimation . . . . . . . ... L
551 Overview . . . . . .. ..
5.5.2 Application . . . . ...
Validation . . . . . . . . .. L
5.6.1 Diagnostic Tests . . . . . . . ... ... L.
Results and Discussion . . . . . . . ... ..o,
5.7.1 Overall Causal Effect of Environment . . . . . .. ... ...
5.7.2 Role of Environment over Time . . . . . . . ... ... ....
5.7.3 Model Comparison . . . . . . . . . .. ... ...
Conclusions . . . . . . . . . L

6 Conclusions

6.1
6.2

SUMMATY . . . . o v o e e e e e e

Future Prospects . . . . . . . . . . ...

Appendices

A GALPRO

Al
A2
A3
A4
A5
A6

Training Model . . . . . .. .. .. Lo o
Testing Model . . . . . . . . .. oo
On-the-fly PDFs . . . . . . . .. . .
Validating Model . . . . . . . . . .. .. ...
Plotting . . . . . . . . o

Configuration . . . . . . . . ... L

17

139
145
147
148
152
154
154
157
158
162
162
164
168
176

180
181
183

185



List of Figures

1.1

1.2

1.3

Redshifted rest-frame spectral energy distribution (SED) anticipated
from a galaxy at z = 7, showing the Lyman, Balmer, and 4000 A
breaks. The Lyman break is sampled by the optical (F775W and
F850LP) and near-infrared (NIR) filters (F105W, F125W and F160W)
on-board the Hubble Space Telescope (HST), while the Balmer and
4000 A breaks are sampled by infrared (IR) filters (3.6pm, 4.51m) on

the Spitzer Space Telescope. Reproduced from Dunlop (2013).

Overview of the stellar population synthesis (SPS) technique. The
upper panels highlight the ingredients necessary for constructing simple
stellar populations (SSPs): an initial mass function (IMF), isochrones,
and stellar spectra. The middle panels highlight the ingredients
necessary for constructing composite stellar populations (CSPs): star
formation histories (SFHs), chemical evolution, SSPs, and a model
for dust attenuation and emission. The bottom row shows the final
CSPs both before and after a dust model is applied. Reproduced from
Conroy (2013). . . . . . .

Tuning-fork style diagram of the Hubble sequence (Hubble, 1936).
The visual classification scheme designates galaxies into three Hubble
types: ellipticals (E), lenticulars (S0), and spirals (S). The spirals are
further separated into normal (S) and barred (SB). Note that the
location of galaxies on the sequence does not indicate the temporal

evolution of galaxies. Reproduced from Hubble (1936). . . . . . . ..

38



List of Figures

1.4 Distribution of galaxy colours and colour-magnitude relation of ~

1.5

1.6

1.7

365,000 galaxies in the Sloan Digital Sky Survey (SDSS; York et al.

2000). The colour distribution is bimodal, with most galaxies being
either blue or red. In the colour-magnitude diagram, the blue galaxies
dominate the faint end, while the red galaxies the bright end. These
two populations are dubbed the “blue sequence” (also known as the
“blue cloud”) and the “red sequence”, respectively (Bell et al., 2004).
The sparse population between the two is in the so-called “green
valley” (Wyder et al., 2007; Martin et al., 2007; Salim et al., 2007;
Schiminovich et al., 2007). Reproduced from Mo et al. (2010).. . . .

Colour distribution of SDSS galaxies overlaid with early versus late
morphology type. The black triangles and open squares represent
early-type and late-type galaxies, respectively. In the left panel, there
are 500 galaxies, which are classified spectroscopically. In the right
panel, there are 287 bright galaxies, which are classified by visual

inspection. Reproduced from Strateva et al. (2001).. . . . . . . . ..

The star-formation rate (SFR)-stellar mass (M) relation of SDSS
galaxies. The galaxies separate into star-forming (upper contours) and
quenched (lower contours). The star-forming main sequence (MS) fit
to the star-forming galaxies is from Renzini and Peng (2015) and is
shown as a solid magenta line. The minimum of the bimodal density
contours is shown as a dashed magenta line. The plot is colour coded
by the mean logarithmic distance to the MS. The solid black line
indicates the median SFR — M, relationship, which shows a rapid
transition from the star forming to the quenched density peak at

log(M,/Mg) ~ 10.5. Adapted from Bluck et al. (2020a). . . . . . . .

Spatial distribution of ~ 80,000 galaxies in the 2dF Galaxy Redshift
Survey (2dFGRS; Colless et al. 2001) in a 4° slice projected onto
the redshift/right ascension plane. The galaxies are not randomly
distributed but are part of the cosmic web (Bond et al., 1996), consist-
ing of voids, sheets or walls, filaments, and nodes. Reproduced from

Peacock et al. (2002). . . . . ... ... o

19

49

50

51



1.8

1.9

1.10

1.11

List of Figures

The morphology—density relation (Dressler, 1980). The fraction of
ellipticals (E), lenticulars (S0), and spirals (S) and irregulars (Irr) as
a function of environmental density (log of the projected density), in
a sample of 55 rich clusters at z ~ 0. The fraction of the different
morphological types in the field is also indicated for comparison.
The upper panel shows the number of galaxies in each density bin.

Reproduced from Dressler (1980). . . . . . . ... .. ... ... ...

The colour-density relation (Kodama et al., 2001). The colour (V —1I)
as a function of environmental density (10th nearest neighbour density)
of galaxies brighter than I = 23.4 in the rich cluster A851 at z = 0.41.
The open circles and filled triangles show the galaxies brighter or fainter
than I = 21.4 (M} + 2), respectively. The three red lines represent
the loci of the 25th, 50th, and 75th percentile colours. Reproduced
from Kodama et al. (2001). . . . .. ... ... ... ... ... ...

The star-formation rate (SFR)-density relation (Gomez et al., 2003).
The SFRs of SDSS galaxies as a function of environmental density
(10th nearest neighbour density). The shaded area represents the
distribution of corrected SFRs (Hopkins et al., 2001). The median
is the solid line, and the top and bottom are the 25th and 75th

percentiles, respectively. There is an abrupt transition in the SFR at

20

53

54

surface density ~ 1 h7_52 Mpc~2. Reproduced from Gémez et al. (2003). 55

The fraction of ellipticals (E), lenticulars (S0), ellipticals and lenticu-
lars (E + SO0), and spirals and irregulars (Sp + Irr) in clusters over
time. The open and filled circles denote clusters in the ESO Distant
Cluster Survey (EDisCS; White et al. 2005) and Fasano et al. (2000),

respectively. Reproduced from Desai et al. (2007). . . ... ... ..



List of Figures

1.12 The fraction of galaxies with luminosities greater than (Mp—>5logh) <

2.1

2.2

3.1

—20 in four rest-frame colour bins as a function of environment (6 on
R = 5h~!Mpc) in four different redshift intervals. The horizontal bars
indicate the amplitude of the bins in ¢ (i.e., the range spanned by the
lower 5% and upper 95% percentile of the objected contained in each
bin), while the vertical error bars represent a Poissonian 1o uncertainty.
The shaded areas are obtained by smoothing the red (blue) fraction
with an adaptive sliding box containing the same number of objects
in each bin as the point marked explicitly. Reproduced from Cucciati

et al. (2006). . . ...

Binary decision tree in a radial layout, spanning out from the root
node close to the centre. The root and decision nodes are represented
as circles, and the leaf nodes are grey triangles. The colour of the root
and decision nodes identifies the unique variable on which data is split.
The subpanel shows a zoomed in region from the tree. Reproduced

from Carrasco Kind and Brunner (2013). . .. ... ... ... ...

Overview of the random forest (RF) prediction process. The pre-
dictions of all N decision trees are aggregated in a final result. For
classification, the final prediction is the mode, and for regression, it is
the average. Adapted from https://www.spotfire.com/glossary/

what-is-a-random-forest.. . . . . . . . . . . .. ... ... ...

Causal graph representing the causal relationship between two vari-
ables, T' and Y. The direct edge (black arrow) from T to Y implies
that T directly causes Y. The causal association (i.e., the association
due to causation) ‘flows’ asymmetrically from 7" to Y (represented by
the blue dashed line arrow), while association ‘flows’ symmetrically
(represented by the red dashed line). The causal graph is an example
of a directed acyclic graph (DAG). A DAG is a graph that is: (i)

directed (i.e., has edges that imply a direction) and (ii) acyclic (i.e., a

21

o7

65

68

variable does not cause itself either directly or through another variable). 72


https://www.spotfire.com/glossary/what-is-a-random-forest
https://www.spotfire.com/glossary/what-is-a-random-forest

3.2

3.3

List of Figures

Mlustration of confounding bias. DAGs representing the causal rela-
tionships between treatment 7', outcome Y, and their common cause
or confounder X. (a) There are two paths for association to flow
between T" and Y: (i) the direct path between T and Y and (ii)
the backdoor path linking 7" and Y via X. The causal association
(depicted with the blue dashed line arrow) flows through the former,
while the non-causal confounding association (depicted with the red
dashed line arrow) flows through the latter. The admixture of the
causal and non-causal associations means association is not causation.
(b) The act of conditioning on X (visualised with the greyed-out node)
blocks the non-causal confounding association from flowing via the

backdoor path. . . . . . . ... ...

Ilustration of selection (or collider) bias. DAGs representing the causal
relationships between treatment 7', outcome Y, and their common
effect or collider X. (a) Similar to Figure 3.2, there is a direct path and
a backdoor path between T' and Y for association to flow. As before,
the causal association (depicted with the blue dashed line arrow) flows
through the former. However, the non-causal association (depicted
with the red dashed line arrow) cannot flow through the latter as it
is now blocked because of the collider. (b) The act of conditioning
on X (visualised with the greyed-out node) unblocks the previously
blocked backdoor path, allowing once again the non-causal association
to flow. As a result, association is not causation as it is once again an
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Chapter 1

Introduction

Galaxies are islands of stars in the vast and dark cosmic ocean. They are fascinating
entities, exhibiting various colours, sizes, and morphologies, but above all, they are
the fundamental building blocks of the visible Universe.

In the current paradigm, galaxies form and evolve in haloes of dark matter
(White and Rees, 1978; Efstathiou and Silk, 1983; Blumenthal et al., 1984). The
overall scenario is as follows. Quantum fluctuations in the very early Universe
generate density perturbations in the primordial matter density field (Guth and Pi,
1982; Hawking, 1982; Linde, 1982; Starobinsky, 1982; Bardeen et al., 1983). These
initial perturbations grow and evolve under gravitational instability until they reach
over-density, at which point they decouple from the cosmic expansion and collapse to
form dark matter haloes. Baryonic matter falls into the gravitational potential wells
of these haloes and subsequently cools and condenses into a gas cloud. Finally, the
cloud collapses into stars, giving rise to a galaxy. Over time, galaxies grow and evolve
as they accrete new matter from their surroundings and merge with neighbouring
galaxies via their haloes.

This chapter is organised as follows. Section 1.1 briefly overviews the cosmological
framework within which galaxy formation and evolution unfolds. Section 1.2 covers
how the properties of galaxies are derived from their light. Section 1.3 describes the
galaxy population along with a discussion on how galaxies have formed and evolved.

Finally, Section 1.4 provides the outline of this thesis.
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1.1 The Cosmological Framework

Modern cosmology is founded on the cosmological principle, which states that the
Universe is spatially homogeneous (i.e., it looks the same from any location) and
isotropic (i.e., it looks the same in all directions) on large scales, and Einstein’s theory
of general relativity (GR; Einstein 1916), which describes gravity as a geometric

property of spacetime.

1.1.1 The Standard Model of Cosmology

The Universe is composed of three main components: dark energy, dark matter,
and baryonic matter. The nature of dark energy and dark matter is unknown, but
their roles are reasonably well understood. Dark energy is driving the accelerated
cosmic expansion, as inferred from observations of distant Type Ia supernovae (Riess
et al., 1998; Perlmutter et al., 1999). And dark matter is responsible for structure
formation in the Universe. Indirect evidence of this invisible matter has come from
velocity dispersions of galaxy clusters (Oort, 1932; Zwicky, 1933, 1937), rotation
curves of galaxies (Freeman, 1970; Rubin and Ford, 1970), gravitational lensing (see
Massey et al., 2010, for a review), and the cosmic microwave background (CMB).
This leads to the standard model of cosmology—Lambda cold dark matter (ACDM).
The cosmological model describes a flat universe of ~ 68% dark energy (described
by the cosmological constant A), ~ 27% cold dark matter (CDM), and only ~ 5%
baryonic matter that constitutes the visible Universe (i.e., planets, stars, galaxies,

etc.) (Planck Collaboration et al., 2020).

1.1.2 Friedmann-Lemaitre-Robertson-Walker Metric

The matter distribution in the Universe governs the geometry of spacetime according
to the Einstein field equations,
1 81G

GMV = RNV — iguyR = 7T,U'V + Ag/“" (1].)

On the left-hand side, G/, is the Einstein tensor, R,, and R are the Ricci tensor

and Ricci scalar respectively, and g, is the metric tensor. On the right-hand side,

T, is the energy-momentum tensor, and A is the cosmological constant.
Assuming the cosmological principle, the exact solution of the Einstein field

equations is the Friedmann-Lemaitre-Robertson-Walker (FLRW) metric,
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dr?
1— kr?

ds® = 2dt* — d®(t) + 72(dh* + sin® 0dp?) | , (1.2)

where ds is the spacetime interval, ¢ is the speed of light, dt is the proper time
interval, a(t) is the scale factor, k is the spatial curvature constant, and (r, 6, ¢) are
comoving coordinates. The scale factor and spatial curvature constants characterise
the expansion (or contraction) and curvature of the Universe, respectively. The scale
factor is 1 at the present time, and the values of —1, 0, +1 for the spatial curvature

constant correspond to open, flat, and closed geometries, respectively.

1.1.3 Friedmann Equations

The expansion of a homogeneous and isotropic universe is described by the Friedmann
equations (Friedmann, 1922). The expansion rate & is given by the Friedmann

equation,

N 2 2
a G ke Ac

= - — 4+ — 1.3
( ) L (13

a

and the acceleration of the Universe d is given by the Friedmann acceleration equation,

o —4”G< 3P> Ac (1.4)

a 3 e 37
where G is the gravitational constant, and p and P are the energy density and
pressure of the fluid, respectively. The expansion rate divided by the scale factor is

the Hubble parameter,

H = 4. (1.5)

The Hubble parameter at the present time is called the Hubble constant and is
denoted by Hj.

The Friedmann equation is usually written in terms of the density parameter,

p
Q= 1.6
Pec (16)
where the critical density,
3H?
Pc = (17)

811G’
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is the density of a spatially flat universe. The Friedmann equation is then simply:

1= Qp + Qi + Q4 (1.8)
where
QO = 8;;;, (1.9)
Q= Cj; (1.10)
A= ?1)\52 (1.11)

are the matter, spatial curvature, and cosmological constant (or vacuum) densities,
respectively. In terms of the present-day density parameters, the Friedmann equation

is:

H? = Hg(QT’Oa_Zl + Qmpa_?’ + Q]@Oa_Q + QAD), (112)

where the additional component €2, is the radiation density. The values of these
cosmological parameters are: Hy = 67.4 4 0.5 kms™'Mpc ™, Q0 = 0.315 £+ 0.007,
Qa0 = 0.6847 +0.0073, and o = 0.001 £ 0.002 (Planck Collaboration et al., 2020).

The uncertainties are 68% confidence intervals.

1.1.4 Redshift, Distance and Lookback Time

As light travels in an expanding universe, it loses energy and its wavelength increases
and frequency decreases. This phenomenon is called redshift (z) since the light shifts
towards the red end of the spectrum, and it is determined by the ratio of the scale
factors at the time of observation (a.ps) and emission (aemit)-

A
14 7= Lo Jobs (1.13)

Aemit Aemit

where A\,ps and Aepnie are the observed and emitted wavelengths, respectively.
There are two fundamental distance measures in an expanding universe: comov-

ing and proper. The comoving distance is the distance in the comoving reference
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frame. In other words, the comoving distance between two objects moving with the
Hubble flow is constant over time. Conversely, the proper distance is the distance
between two objects at a specific moment in cosmological time, which does change
over time due to the expansion of the Universe.

The light from an object travels on a null geodesic (ds = 0), so the comoving

distance x from the FLRW metric is:

tobs dt
X = / c—, (1.14)
temit a(t)

where tem;: and tops are the times of emission and observation, respectively. The

scale factor converts the comoving distance to the proper distance,

d=a(t)x. (1.15)

In a spatially flat universe (kK = 0), the comoving distance is equal to the radial
comoving distance 7.

The comoving and proper distances are not directly observable. However, if the
size or luminosity of an object is known then its distance can be measured. These
objects are called standard rulers and standard candles, respectively. The angular

diameter distance,

da =

D X
—_ = 1.1
0 ) ( 6)

where D and 6 are the physical and angular sizes, respectively. The luminosity

dL:\/%zx(l—i-z), (1.17)

where L is the luminosity and F' is the flux. Combining the previous two equations,

distance,

the luminosity distance is related to the angular diameter distance via:

dr =da(1+ 2)° (1.18)

The different distance measures are only equal to each other in a static universe. At

small redshifts (z < 1), the luminosity distance,
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c 1
dy ~ — ~(1-— 24 1.1
L HO z+ 2( qO)Z + ) ( 9)

where the deceleration parameter,

ap
To the first-order approximation,
cz = Hody,. (1.21)

When the recessional velocity is much less than the speed of light, the redshift

z ~wv/c. Thus,

v = Hyd. (1.22)

This is Hubble’s law, also known as the Hubble-Lemaitre law (Lemaitre, 1927; Hubble,
1929), which states that the recessional velocity of an object is directly proportional
to its distance.

Finally, the time taken for light to travel from an object at redshift z, or the

lookback time,

1 z dz
tr, = Ho/o AT EG (1.23)

where E(z) = H(z)/Hj is the dimensionless Hubble parameter.

The connection between redshift, distance, and lookback time makes redshifts
crucial for both cosmology and galaxy formation and evolution. Distances are
necessary to map the large-scale structure (LSS) of the Universe, which is heavily
dependent on cosmology. Specifically, the spatial distribution of galaxies can constrain
the nature of dark energy via probes such as galaxy cluster counts (Haiman et al.,
2001), weak lensing tomography (Hu, 1999), and baryonic acoustic oscillations
(BAO; Eisenstein 2005). On the other hand, the lookback time is important as it
pinpoints galaxies in time. Due to the timescales involved, it is impossible to witness
the evolution of individual galaxies. However, the finite speed of light provides

an opportunity, as galaxies at larger distances are observed when the Universe
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was younger. In this regard, redshifts are fundamental because by comparing the
properties of the galaxy population at different epochs, it is possible to infer how

galaxies form and evolve.
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1.2 Measuring Galaxy Properties

Galaxies are diverse entities and are thus characterised by a large number of properties,
with stellar mass, star-formation rate (SFR), metallicity, and age being among the
most important. Before describing the galaxy population, this section covers how to

estimate such physical properties and redshift from the light of a galaxy.

1.2.1 Spectral Energy Distribution

Galaxies emit light across the electromagnetic (EM) spectrum, characterised by
the spectral energy distribution (SED), i.e., the energy emitted as a function of
wavelength or frequency. The majority of the stellar population emits in the optical
and near-infrared (NIR), with the exception being young, massive stars that emit
in the near-ultraviolet (NUV). The galactic starlight is processed by the gas and
dust lying between the stars in the interstellar medium (ISM). Specifically, the
gas (primarily atomic hydrogen) absorbs extreme-UV (EUV) photons and emits at
specific wavelengths, producing absorption and emission lines such as the Ha. On the
other hand, the dust radiates in the mid-infrared (MIR) to far-infrared (FIR) range.
Lastly, an active galactic nucleus (AGN) powered by an accreting supermassive black

hole (SMBH) emits in most, if not all, wavebands and produces strong emission lines.

1.2.2 Redshift

From the previous section, redshift is defined as the ratio between the shift in

wavelength and the emitted wavelength.

y = Aobs - )\emit. (124)
)\emit

The redshift of a galaxy consists of: (i) cosmological redshift due to the expansion
of the Universe, (ii) Doppler redshift due to peculiar motions separate from the
Hubble flow as a result of local gravitational effects, and (iii) gravitational redshift
due to light travelling from a strong to a weak gravitational potential. Of the three,
the cosmological redshift is the most relevant and significant. The Doppler redshift
is only important at low redshifts (# < 0.01) and in rich clusters, which can have
velocity dispersions over 1000 km/s (Girardi et al., 1993). Lastly, the gravitational
redshift is usually negligible. It is important to measure redshifts because they can

be converted into distances to galaxies, for example, through Hubble’s law. The
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caveat is that the redshift must be the cosmological redshift.

1.2.2.1 Spectroscopic Redshifts

Measuring redshifts from SEDs is straightforward as the task reduces to identifying
strong absorption and emission lines in the spectra and determining the shift in
their positions from known rest-frame wavelengths. These so-called spectroscopic
redshifts (spec-zs) are highly accurate with relative errors of less than 0.1% (Mo
et al., 2010). The downside is that long exposures are necessary to achieve a sufficient
signal-to-noise (S/N) ratio, especially for faint galaxies. For this reason, it is not
feasible to obtain redshifts with spectroscopy for anything above tens of millions
of galaxies with the current technology. For example, the ongoing Dark Energy
Spectroscopic Instrument (DESI; DESI Collaboration et al. 2016) will record spectra

of some 30 million galaxies.

1.2.2.2 Photometric Redshifts

The alternative to spec-zs are photometric redshifts (photo-zs), i.e., redshifts es-
timated from photometry. With photometry, the amount of light is measured in
several wavebands rather than at specific wavelengths. This rough sampling of the
underlying SED makes it impossible to pinpoint individual absorption and emission
lines to obtain redshifts, so the photo-z estimation method relies on the detection of

the overall shape and strong broad features such as:

e The Lyman break at 912 A due to the absorption of photons of wavelengths
shorter than the Lyman limit by neutral atomic hydrogen (HI) gas within the

galaxy or in the intergalactic medium (IGM).

e The Balmer break at 3646 A due to the absorption of photons more energetic

than the Balmer limit.

e The 4000 A break due to absorption by ionised metals in stellar atmospheres.

This break is enhanced by a deficiency in young, blue stars (Hamilton, 1985).

The breaks are associated with a rapid rise/drop in light intensity, as can be
observed in Figure 1.1. As a result, they are easy to detect by comparing the
fluxes/magnitudes between two bands, i.e., the colour. Given that the features are

sampled by filters only at specific redshifts, a single colour predicts a galaxy’s redshift
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Figure 1.1: Redshifted rest-frame spectral energy distribution (SED) anticipated from a
galaxy at z = 7, showing the Lyman, Balmer, and 4000 A breaks. The Lyman
break is sampled by the optical (F775W and F850LP) and near-infrared (NIR)
filters (F105W, F125W and F160W) on-board the Hubble Space Telescope
(HST), while the Balmer and 4000 A breaks are sampled by infrared (IR) filters
(3.6pm, 4.5pm) on the Spitzer Space Telescope. Reproduced from Dunlop
(2013).

to within a range. The combination of multiple colours narrows this range further
since the multi-dimensional colour space is small at a given redshift.

Photo-zs can be estimated for a large sample because photometry is quicker
to obtain than the spectra of galaxies. Additionally, the method can be extended
to much fainter galaxies. However, photo-zs are less reliable than spec-zs due to
colour-redshift degeneracies (beside filter widths). Indeed, these degeneracies are
broken by the detection of breaks, so the number and type of filters utilised determines
the magnitude of errors. For example, IR filters (JHK) are necessary to bracket
the Balmer break as it moves out of the visible range at z = 1.2 — 2.2. Also, the U
filter is required for galaxies at z < 0.4 because none of the other filters can detect
a strong break. The method is also fundamentally limited because if there are no
breaks in the first place, then the error will always be significant. This is the case for
star-forming galaxies, which lack a pronounced 4000 A break. Generally, photo-z
errors are in the order of 3 — 10% (Mo et al., 2010). Despite the larger uncertainty,

some analyses such as weak lensing, benefit more from the increased statistical power



1.2. Measuring Galaxy Properties 39

of a larger sample size than from precision (Palmese, 2018). Consequently, the next
generation of surveys, such as Euclid (Laureijs et al., 2011), the Rubin Observatory
Legacy Survey of Space and Time (LSST; LSST Science Collaboration et al. 2009),
and the Nancy Grace Roman Space Telescope (Roman; Spergel et al. 2015), will
primarily be photometric.

There are many approaches to estimating photo-zs, such as colour—colour (Koo,
1985) and colour-redshift (Pello et al., 1996) diagrams, but the most common is SED
fitting or template fitting (Baum, 1962; Puschell et al., 1982; Loh and Spillar, 1986).
The basic idea is to first compute expected colours (or fluxes/magnitudes) at a given
redshift from SED templates (which can be either empirical or theoretical) and then
perform a match to the observed colours (or fluxes/magnitudes) to determine the
best-fit redshift. Since SEDs are shaped by the different physical processes occurring
in galaxies, SED fitting not only provides redshifts but also physical properties. Before
laying out the process in more detail, the next section describes how theoretical

SEDs are created.

1.2.3 Stellar Population Synthesis

Stellar population synthesis (SPS) or evolutionary population synthesis (EPS) (Tins-
ley, 1968, 1972; Searle et al., 1973; Tinsley and Gunn, 1976; Larson and Tinsley,
1978; Bruzual A., 1983) is a method for modelling galaxy SEDs. As the light from a
galaxy is composed of contributions from different components, the basic premise
behind SPS is to model each galaxy component and combine their contributions,

beginning with the primary constituent—the stars.

1.2.3.1 Stars

Broadly speaking, a galaxy is a population of stars ranging from the most common,
low-luminosity, long-lived, dwarf M-types to the less numerous, high-luminosity,
short-lived, massive OB-types. For simplicity, an ensemble of stars of a certain age
and metallicity called a simple stellar population (SSP) is modelled rather than
individual stars. The galaxy spectrum is then the sum of spectra of many SSPs.
There are two methods for constructing SSPs: isochrone synthesis (Chiosi et al.,
1988; Maeder and Meynet, 1988; Charlot and Bruzual A, 1991) and fuel consumption
(Renzini and Buzzoni, 1986; Maraston, 1998). The difference between the two lies in

the integration variable adopted in the post-main sequence (PMS). The isochrone
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synthesis method integrates the spectra of all stars along an isochrone, i.e., a curve on
the Hertzsprung-Russell (HR) diagram representing a population of stars of the same
age but different masses. A potential problem is that the isochrones are calculated at
discrete time steps, so any phases of stellar evolution more rapid than the time step
are poorly represented. To circumvent this issue, isochrones are computed up to the
end of the early asymptotic giant branch (E-AGB), and later rapid stellar phases
like the thermally-pulsating asymptotic giant branch (TP-AGB) are added manually.
On the other hand, the fuel consumption method solves this issue directly by
changing the integration variable above the main sequence turnoff (i.e., a point in
the HR diagram when a star leaves the main sequence) to the so-called fuel, which is
the amount of hydrogen and helium consumed via nuclear burning during a given
PMS phase. This is because the luminosity of PMS stars, which are among the most
luminous, is directly linked to the fuel available at the turnoff mass (Buzzoni, 1989;
Maraston, 1998, 2005).
The spectrum of an SSP at time ¢ and metallicity Z can be written as (Conroy,
2013):
Maup
fose2) = | fual T log (Mol Z) #(MAM,, (125
where M, is the stellar mass at the zero-age main sequence, ®(M,) is the initial

mass function (IMF), and fsar is the stellar spectrum.

e The IMF is the initial distribution of stellar masses of zero-age main sequence
stars. Three known empirical forms are the simple power law (Salpeter, 1955),
broken power law (Kroupa, 2001), and lognormal (Chabrier, 2003). These
IMFs are derived from observations of stars in the solar neighbourhood. There
are also top-heavy and bottom-heavy IMF's, but the most commonly used are

the broken power law and lognormal.

e The isochrones are constructed from stellar evolution tracks computed with
stellar evolution theory. The most widely used stellar evolution tracks and
isochrones are the Padova (Bertelli et al., 1994; Girardi et al., 2000; Marigo
and Girardi, 2007; Marigo et al., 2008), Geneva (Schaller et al., 1992; Lejeune
and Schaerer, 2001), and BaSTT (Pietrinferni et al., 2004, 2006; Cordier et al.,
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2007). The isochrones determine the relation between the effective temperature

Ter and surface gravity g for a given stellar mass M., at time ¢ and metallicity

Z.

e Stellar spectral libraries convert the outputs of stellar evolution into stellar
spectra. There are both theoretical libraries, such as BaSel (Lejeune et al.,
1997, 1998; Westera et al., 2002), and empirical libraries, such as STELIB (Le
Borgne et al., 2003) and MILES (Sénchez-Blazquez et al., 2006; Cenarro et al.,
2007).

1.2.3.2 The Interstellar Medium

The stars are embedded in an interstellar medium (ISM) of gas and dust, which
processes the starlight. Interstellar gas is primarily composed of hydrogen. It is
present in both atomic and molecular forms, but the latter does not contribute
significantly to the overall SED (Young and Scoville, 1991; Hollenbach and Tielens,
1997). Any neutral hydrogen (HI) gas near young, massive OB stars is ionised by
the Lyman continuum photons they emit, and the recombination of this ionised
hydrogen (HII) gas creates various emission lines. As the OB stars have a short
lifespan, these HII regions or emission nebulae are strong indicators of recent star
formation. Furthermore, the flux of hydrogen emission lines is proportional to the
Lyman continuum flux produced by the stars, so they are used to determine the
SEFR. The most commonly used is the Ha emission line in the optical range. Also, HI
gas by itself is responsible for the 21-cm radio emission line. The cause is a spin-flip
transition within the atom. Several codes are available that predict the nebular
emission as a function of the physical state of the gas, such as CLOUDY (Ferland
et al., 1998) and MAPPINGSIII (Groves et al., 2004a,b).

Interstellar dust is believed to be produced by AGB stars and injected into
the ISM via stellar winds (Mo et al., 2010). The dust absorbs and scatters galactic
starlight in the IR-UV range, thus causing extinction. The effect of extinction is
interstellar dimming (i.e., galaxies appear dimmer than expected) and interstellar
reddening (i.e., galaxies appear redder than expected) because shorter wavelength
light is absorbed and scattered more easily. The radiation absorbed by the dust is
re-emitted in the MIR and FIR.

It is hard to accurately model the impact of dust on the final spectrum because
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not only does it depend on the star—dust geometry (i.e., the distribution of dust
within the galaxy relative to stars) but also the chemical composition and size of the
dust grains. Furthermore, light can be scattered into the line of sight as well as out
of it. This complexity is usually captured by Calzetti et al. (2000) or Charlot and
Fall (2000) attenuation curves. Lastly, the contribution from an AGN must also be

modelled for active galaxies.

1.2.3.3 Composite Stellar Populations

The final step of SPS modelling to produce SEDs is evolving the galaxies. Specifically,
the stellar population is evolved by specifying a star-formation history (SFH) and
chemical evolution model. Combining all the ingredients results in a composite stellar
population (CSP), as shown in Figure 1.2. The spectrum of a galaxy at time ¢ can

be written as (Conroy, 2013):

t'=t Z=Zmax ,
fesp(t) = / Y(t—t') P(Z,t—t') fssp(t, Z)e ™)t Afqus(t, Z) dt'dZ,
t'=0 JZ=0

(1.26)
where 9 is the SFR, P is the metallicity distribution function, 74 is the optical
depth controlling dust attenuation, fgust is the dust emission function, and A is the
normalisation constant. All of the functions are time-dependent and metallicity-
dependent.

An exponentially-declining SFH is widely adopted as given by the exponential
or 7-model (Schmidt, 1959), where 1 (t) « e */7. In recent years, rising SFHs
have been adopted to explain the SEDs of high-redshift galaxies (Maraston et al.,
2010; Papovich et al., 2011), e.g., 1(t) o t?e~*/7. The time-dependent metallicity
distribution function is usually a §-function. In other words, a single metallicity is
assumed for the entire composite population.

Some widely known SPS models are PEGASE (Fioc and Rocca-Volmerange,
1997) and PEGASE-HR (Le Borgne et al., 2004), GRASIL (Silva et al., 1998),
STARBURST99 (Leitherer et al., 1999), GALAXEV (also known as BCO3; Bruzual
and Charlot 2003), M05 (Maraston, 2005), and FSPS (Conroy et al., 2009; Conroy
and Gunn, 2010). In summary, SPS generates SEDs by modelling the components

and physical processes of galaxies. The ultimate goal is then to invert the process
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Figure 1.2:

L (um)

Overview of the stellar population synthesis (SPS) technique. The upper panels
highlight the ingredients necessary for constructing simple stellar populations
(SSPs): an initial mass function (IMF), isochrones, and stellar spectra. The
middle panels highlight the ingredients necessary for constructing composite
stellar populations (CSPs): star formation histories (SFHs), chemical evolution,
SSPs, and a model for dust attenuation and emission. The bottom row shows
the final CSPs both before and after a dust model is applied. Reproduced from
Conroy (2013).
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and derive the physical properties of galaxies from their SEDs.

1.2.4 SED Fitting

SED fitting involves fitting template SEDs to observational data (photometric or
spectroscopic) to estimate redshifts and physical properties of galaxies. The general
procedure is as follows. First, a library of template SEDs is generated. The templates
can be either empirical (Coleman et al., 1980; Kinney et al., 1996; Mannucci et al.,
2001; Assef et al., 2010) or theoretical (Bruzual and Charlot, 2003; Conroy et al.,
2009; Conroy and Gunn, 2010). With the latter, one typically starts from SSPs and
then fits for varying SFHs, metallicities, dust attenuation, etc. Next, the templates
are redshifted and then convolved and integrated with the filter transmission curves
of a particular survey to produce expected fluxes (or magnitudes) at a given redshift.
The observed fluxes O are compared to the expected fluxes E, and the best-fit redshift

and best-fit template are usually found by minimising the chi-square statistic,

N 2
Z O; — bE;

i=1
where o; is the error on the observed fluxes in filter ¢, and b is the scaling factor
between the two sets of data.

The parameters of the best-fitting template can then be used to determine
physical properties. One of the most important is stellar mass, which is computed
by multiplying the observed luminosity L with the stellar mass-to-light ratio M /L.
The M/L ratio is given by (Walcher et al., 2011):

M Jw(t) dt

Iy~ TLA0) To(0) db” (1.28)

where Ly and T are the luminosity of an SSP and the mean transmission of the
ISM at a given wavelength, respectively.

SFRs can also be estimated with SED fitting. However, high-quality data are
necessary to break the age-dust-metallicity degeneracy; otherwise, the SFRs can
be unreliable. Also, the choice of model priors on the dust model and SFH library
often imposes strong biases. For these reasons, SFRs are more commonly derived
from monochromatic and hybrid indicators (see Kennicutt, 1998; Kennicutt and

Evans, 2012, for reviews). Besides the already mentioned Ha nebular emission line,
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there are many others like the 24pm luminosity, UV luminosity, total IR luminosity,
radio continuum luminosity, and X-ray flux. The various indicators are sensitive to
different SFR timescales.

Examples of well-established SED-fitting codes are LEPHARE (Arnouts et al.,
1999), HYPERZ (Bolzonella et al., 2000), BPZ (Benitez, 2000), CIGALE (Burgarella
et al., 2005; Noll et al., 2009; Boquien et al., 2019), ZEBRA (Feldmann et al., 2006),
EAZY (Brammer et al., 2008), FAST (Kriek et al., 2009), and MAGPHYS (da Cunha
et al., 2011).

1.2.5 Uncertainties, PDFs and Big Data

Out of all the physical properties estimated with SED fitting, stellar mass is the most
robust (Papovich et al., 2001; Shapley et al., 2001; Wuyts et al., 2009; Muzzin et al.,
2009; Lee et al., 2009). The M/L ratios for most galaxies with ‘normal’ SEDs are
probably accurate to within ~ 0.3 dex, assuming a fixed IMF (Conroy, 2013). The
uncertainty is primarily due to incorrect modelling of TP-AGB stars and assumptions
about the SFH (Walcher et al., 2011). Also, the treatment of metallicity (often held
fixed over the SFH) contributes. Between star-forming and quiescent galaxies, stellar
masses of the former are considered to be less accurate. The primary reason is that
young stars can outshine the older stellar population and thus obscure the total

mass.

Ultimately, the accuracy of redshifts and physical properties estimated with
SED fitting depends on the identification of the correct template SED. As such, the
template library must be accurate and complete. However, this is unlikely to be the
case when using empirical or theoretical spectral libraries. Empirical libraries are
constructed from observations of stars in the solar neighbourhood, and as a result,
they are likely incomplete. On the other hand, theoretical libraries are probably
complete but not entirely accurate because while the theory of stellar evolution
is advanced, short-lived and bright stellar phases such as massive stars, TP-AGB
stars, extreme horizontal branch (EHB) stars, and blue stragglers are still not fully
understood (Walcher et al., 2011).

Mismatches can also arise if the multi-dimensional parameter space is not
exhaustively explored when generating templates from SSPs for different combinations

of model parameters. Here, Markov Chain Monte Carlo (MCMC) techniques are
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efficient (Conroy et al., 2009; Acquaviva et al., 2012). Furthermore, the templates
are usually calibrated using galaxies at low redshifts, so there is greater uncertainty
on predictions for galaxies at high redshifts (Carrasco Kind and Brunner, 2013).

Even a valid and representative template set does not guarantee accuracy because
of the intrinsic degeneracies that exist in the colour-redshift and colour—physical
properties spaces. The colour of a galaxy is related to the age and metallicity of its
stellar population. For example, redder galaxies are either older, more metal-rich, or
both. Moreover, a galaxy may appear red even though it is blue in reality because of
dust extinction. This degeneracy in the colour-age-dust-metallicity space means that
two or more templates can match the same input colours.

Given the possibility of multi-modal solutions, the standard approach of assuming
Gaussian uncertainties is flawed. Hence, the new generation of SED-fitting codes such
as GALMC (Acquaviva et al., 2011), BAYESed (Han and Han, 2012, 2014, 2019), BEAGLE
(Chevallard and Charlot, 2016), PROSPECTOR (Leja et al., 2017; Johnson et al., 2021),
and BAGPIPES (Carnall et al., 2018) have moved beyond a single-point estimate
and a Gaussian error to output probability distribution functions (PDFs). These
PDFs fully characterise uncertainties, which translates to more accurate analyses.
For example, using PDFs rather than point estimates of redshift has been shown
to improve the accuracy of cosmological measurements (Mandelbaum et al., 2008;
Myers et al., 2009; Sheldon et al., 2012; Carnero et al., 2012; Jee et al., 2013) without
introducing further bias (Bordoloi et al., 2010; Abrahamse et al., 2011). The issue is
that it is not feasible to obtain PDFs for a large number of galaxies. For example,
BAGPIPES takes on average a few minutes to fit each galaxy, making it impractical
to fit modern datasets where sample numbers can exceed hundreds of millions. And
the situation becomes worse now in the era of “Big Data” when surveys such as
Fuclid, LSST, and Roman are primed to observe galaxies in the billions. Another
separate but equally important challenge is storing and sharing the PDFs (Rau et al.,
2015). In this thesis, machine learning (ML) is applied to estimate PDFs of galaxy
properties at speed and on the fly, culminating in a highly intuitive and efficient

Python package called GALPRO.



1.3. The Galaxy Population 47

1.3 The Galaxy Population

This section describes the galaxy population and discusses the implications for how
galaxies have formed and evolved based on the observations. First, the salient
properties of the population are presented. Next, the correlations between galaxy
properties and environment are outlined. Following on, the population as observed
at high redshift and its subsequent evolution is described. Lastly, the nature versus

nurture debate in the context of galaxy formation and evolution is summarised.

1.3.1 Physical Properties

Galaxies are richly diverse, and one of the most striking properties is their shape or

morphology. There are four broad types:

1. Ellipticals (E): ellipsoidal-shaped galaxies with little to no internal structure,
supported by the random motion of their stars. Elliptical galaxies are further
categorised based on their apparent degree of ellipticity, ranging from highly
spherical EOs to flat E7s.

2. Spirals (S): thin, disk-like galaxies with spiral arm structures and a central
bulge, mainly supported by rotation. Spiral galaxies come in two types: normal
(S) and barred (SB). The latter exhibit an elongated bar-like structure in
the central region. Each type is further split into three classes—a, b, and
c—according to the following criteria: the brightness of the central bulge, the
tightness of the spiral arms, and the degree to which the spiral arms are resolved

into stars, HII regions, and ordered dust lanes.

3. Lenticulars (S0): thin, disk-like galaxies with a central bulge like spirals
(though more prominent) but a smooth light distribution and no spiral arms

like ellipticals. An intermediate class between the two types.
4. Irregulars (Irr): galaxies with no defined shape or structure.

The different morphological types are arranged in the famous Hubble sequence
(Hubble, 1936) shown in Figure 1.3, with the ellipticals on the left, lenticulars in
the centre, and spirals on the right. Notably, irregular galaxies are missing in the
original Hubble sequence, but they are now included as they are considered to be

perturbed spiral galaxies (Mo et al., 2010). Ellipticals and lenticulars are referred
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Figure 1.3: Tuning-fork style diagram of the Hubble sequence (Hubble, 1936). The visual
classification scheme designates galaxies into three Hubble types: ellipticals
(E), lenticulars (S0), and spirals (S). The spirals are further separated into
normal (S) and barred (SB). Note that the location of galaxies on the sequence

does not indicate the temporal evolution of galaxies. Reproduced from Hubble
(1936).

to as early-type galaxies, while spirals and irregulars are called late-type galaxies.
Somewhat confusingly, the location of the galaxies on the Hubble sequence and
the nomenclature do not relate to their temporal state. The galaxies are simply
placed in order of structural complexity from left to right, and this is the connotation
behind ‘early’ and ‘late’. In other words, the Hubble sequence is not an evolutionary
sequence of galaxies whereby structurally-simple ellipticals evolve into more complex
spirals over time. In fact, the polar opposite is now believed to be true: galaxies
form disk-like and then transform into elliptical-like over time. Consequently, the
diagram may be read from right to left, with some debate over the placement of SO

galaxies (Kormendy and Bender, 1996).

The galaxy population is bimodal in colour (Strateva et al., 2001; Hogg et al.,
2002, 2004; Blanton et al., 2003; Bell et al., 2004; Baldry et al., 2004b, 2006; Gial-
longo et al., 2005; Weiner et al., 2005; Willmer et al., 2006; Brammer et al., 2009).
Specifically, most galaxies are either blue or red, according to Figure 1.4. In the
colour distribution, there is a broad peak at the blue end of the spectrum and a
narrow peak at the red end, so there are more blue galaxies than red. Furthermore,
the blue galaxies are predominantly faint, while the majority of the red galaxies are
bright, as evident from the colour—-magnitude distribution. These two populations are

dubbed the “blue sequence” (also known as the “blue cloud”) and the “red sequence”
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Figure 1.4: Distribution of galaxy colours and colour-magnitude relation of ~ 365,000
galaxies in the Sloan Digital Sky Survey (SDSS; York et al. 2000). The colour
distribution is bimodal, with most galaxies being either blue or red. In the
colour-magnitude diagram, the blue galaxies dominate the faint end, while
the red galaxies the bright end. These two populations are dubbed the “blue
sequence” (also known as the “blue cloud”) and the “red sequence”, respectively
(Bell et al., 2004). The sparse population between the two is in the so-called
“oreen valley” (Wyder et al., 2007; Martin et al., 2007; Salim et al., 2007;
Schiminovich et al., 2007). Reproduced from Mo et al. (2010).

of galaxies, respectively (Bell et al., 2004). There is also a sparse population of
galaxies between the two in the so-called “green valley” (Wyder et al., 2007; Martin
et al., 2007; Salim et al., 2007; Schiminovich et al., 2007).

The morphology of a galaxy is correlated to its colour: early-type galaxies are
redder than late-type galaxies, which are bluer (Humason, 1936; Holmberg, 1958;
de Vaucouleurs, 1961; Roberts and Haynes, 1994). However, this relation is not
perfect as a significant number of dusty red spirals (van den Bergh, 1976; Wolf et al.,
2009; Masters et al., 2010) and blue ellipticals (Schawinski et al., 2009) have also
been observed. Overall, late-type galaxies primarily populate the blue cloud, while

early-type galaxies occupy the red sequence (see Figure 1.5).

The colour of a galaxy is determined by the age and metallicity of its stellar
population. The most important are OB stars because they are very luminous and
thus dominate the total light emitted. These hot, blue stars have a short lifespan,
which means blue galaxies have ongoing or recent star formation, while red galaxies
do not. Nevertheless, dust extinction complicates this basic picture (Whitaker et al.,

2012; Taylor et al., 2015). In general, galaxies are either “star-forming” or “quenched”.
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Figure 1.5: Colour distribution of SDSS galaxies overlaid with early versus late morphology
type. The black triangles and open squares represent early-type and late-type
galaxies, respectively. In the left panel, there are 500 galaxies, which are
classified spectroscopically. In the right panel, there are 287 bright galaxies,
which are classified by visual inspection. Reproduced from Strateva et al.
(2001).

However, whether the SFR distribution is bimodal, like the colour distribution, is
subject to debate (Elbaz et al., 2007; McGee et al., 2011; Feldmann, 2017).

The SFR of star-forming galaxies are tightly correlated with their stellar mass (see
Figure 1.6). This relation is called the star-forming main sequence (MS; Brinchmann
et al. 2004; Salim et al. 2007; Noeske et al. 2007; Daddi et al. 2007), and it exists
at least up to M, ~ 10950, at which point some observational studies report a
flattening (Whitaker et al., 2014; Lee et al., 2015; Schreiber et al., 2015; Tasca et al.,
2015; Tomczak et al., 2016; Eales et al., 2017; Popesso et al., 2019).

In summary, galaxy properties are correlated with each other, and there are two
distinct populations in the local Universe: one of massive, red, early-type, quiescent
galaxies that constitute the red sequence, and the other of less-massive, blue, late-
type, star-forming galaxies that occupy the blue cloud. The fundamental question is

then: why is the population bimodal?

1.3.2 Environment and Correlations

In a ACDM universe, structures form bottom up in a hierarchical manner—starting
with galaxies, which merge over time to form galaxy groups, which in turn merge to
create clusters and superclusters. Hence, at the present time, a significant fraction

of galaxies are located in groups and clusters, consisting of tens and upwards of
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Figure 1.6: The star-formation rate (SFR)-stellar mass (M,) relation of SDSS galaxies.
The galaxies separate into star-forming (upper contours) and quenched (lower
contours). The star-forming main sequence (MS) fit to the star-forming galaxies
is from Renzini and Peng (2015) and is shown as a solid magenta line. The
minimum of the bimodal density contours is shown as a dashed magenta line.
The plot is colour coded by the mean logarithmic distance to the MS. The
solid black line indicates the median SFR — M, relationship, which shows
a rapid transition from the star forming to the quenched density peak at
log(M, /Mg) ~ 10.5. Adapted from Bluck et al. (2020a).

hundreds, respectively (Hubble and Humason, 1931; Shapley, 1933; Zwicky, 1937,
1938, 1952; Abell, 1958, 1965). Conversely, some galaxies are relatively isolated in the
field. These galaxies were either part of fossil groups where all members eventually
merged (Ponman et al., 1994; Jones et al., 2000, 2003) or have been isolated for their
entire lifetime. On the largest scales, galaxies are part of a complex “cosmic web”
(Bond et al., 1996), composed of voids, sheets or walls, filaments, and nodes (see
Figure 1.7). Simply put, galaxies reside in different environments of varying densities.

Significantly, the physical properties of a galaxy are correlated to its environment.
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Figure 1.7: Spatial distribution of ~ 80,000 galaxies in the 2dF Galaxy Redshift Survey
(2dFGRS; Colless et al. 2001) in a 4° slice projected onto the redshift/right
ascension plane. The galaxies are not randomly distributed but are part of the
cosmic web (Bond et al., 1996), consisting of voids, sheets or walls, filaments,
and nodes. Reproduced from Peacock et al. (2002).

The morphology—density relation

The different morphological types are unevenly distributed in the Universe. Typically,
early-type galaxies inhabit high-density environments, while late-type galaxies occupy
low-density environments (Hubble and Humason, 1931; Abell, 1965; Oemler, 1974;
Davis and Geller, 1976). According to the morphology—density relation (Dressler,
1980) in Figure 1.8, the fraction of spirals and irregulars decreases smoothly with
increasing environmental density, from ~ 60% in the highest-density region to
~ 10% in the lowest-density region of clusters. Meanwhile, the trend is reversed for
ellipticals, which increase from ~ 10% to ~ 40%. The portion of lenticulars also

increases, but more modestly, from ~ 30% to ~ 50%.

The colour—density relation
Galaxy colour is also correlated with environment: the colour—density relation
(Kodama et al., 2001). As environmental density increases, galaxies tend to become

redder (see Figure 1.9).
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Figure 1.8: The morphology—density relation (Dressler, 1980). The fraction of ellipticals
(E), lenticulars (S0), and spirals (S) and irregulars (Irr) as a function of
environmental density (log of the projected density), in a sample of 55 rich
clusters at z ~ 0. The fraction of the different morphological types in the field
is also indicated for comparison. The upper panel shows the number of galaxies
in each density bin. Reproduced from Dressler (1980).

The star-formation rate—density relation

Given the causal connection between colour and SFR and the colour—density relation,
the SFR is also correlated with the galaxy environment. The SFR-density relation
(Goémez et al., 2003) in Figure 1.10 shows that SFR decreases with increasing
environmental density. This trend is particularly strong for highly star-forming
galaxies in the 75th percentile of the SFR distribution (i.e., the top of the shaded
area). Furthermore, there seems to be a characteristic density (~ 1 h7_52 Mpc~2) at

which the SFR increases (or decreases) rapidly.

In summary, galaxies become redder, form fewer stars, and exhibit more early-
type morphologies as environmental density increases. Essentially, the red sequence

of the galaxy population is mainly located in high-density environments, while the
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Figure 1.9: The colour—density relation (Kodama et al., 2001). The colour (V —I) as a
function of environmental density (10th nearest neighbour density) of galaxies
brighter than I = 23.4 in the rich cluster A851 at z = 0.41. The open circles
and filled triangles show the galaxies brighter or fainter than I = 21.4 (M} +2),
respectively. The three red lines represent the loci of the 25th, 50th, and 75th
percentile colours. Reproduced from Kodama et al. (2001).

blue sequence is found in low-density environments. So, is environment the cause of
the bimodal population and are the correlations causal in nature? Also, which of the
relations with environment are truly causal, and which are just a result of correlations
that exist between galaxy properties? For example, Bamford et al. (2009) and Skibba
et al. (2009) disentangled the influence of environment on colour and morphology
and found that the colour—density relation is stronger than the morphology—density
relation, so the latter may arise as a consequence of the former. There is potential
evidence of the correlations being causal from observations of the galaxy population

at high redshift.
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Figure 1.10: The star-formation rate (SFR)-density relation (Gémez et al., 2003). The
SFRs of SDSS galaxies as a function of environmental density (10th nearest
neighbour density). The shaded area represents the distribution of corrected
SFRs (Hopkins et al., 2001). The median is the solid line, and the top and
bottom are the 25th and 75th percentiles, respectively. There is an abrupt
transition in the SFR at surface density ~ 1 h7_52 Mpc~2. Reproduced from
Goémez et al. (2003).

1.3.3 High Redshift and Evolution

At high redshift (z 2 0.5), the fraction of lenticulars in clusters is significantly lower
compared to the local Universe, while the spiral fraction is higher (Dressler et al.,
1997; Treu et al., 2003; Postman et al., 2005; Guzzo et al., 2007). Tracing the
population over time, the portion of lenticulars has increased gradually while that of
spirals (and irregulars) has decreased, as shown in Figure 1.11 (Fasano et al., 2000;
Smith et al., 2005; Desai et al., 2007; Capak et al., 2007; Just et al., 2010; Cavanagh
et al., 2023). On the other hand, the fraction of ellipticals has remained roughly
constant. This suggests that spiral galaxies are progenitors of lenticular galaxies and

have evolved into the latter over time.

Also in distant clusters, the fraction of blue, star-forming galaxies is higher

than in the local clusters (Butcher and Oemler, 1978; Couch and Newell, 1984): the
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Figure 1.11: The fraction of ellipticals (E), lenticulars (S0), ellipticals and lenticulars (E
+ S0), and spirals and irregulars (Sp + Irr) in clusters over time. The open
and filled circles denote clusters in the ESO Distant Cluster Survey (EDisCS;
White et al. 2005) and Fasano et al. (2000), respectively. Reproduced from
Desai et al. (2007).

Butcher-Oemler effect. As shown in Figure 1.12, the fraction increases with redshift
(Butcher and Oemler, 1984; Aragon-Salamanca et al., 1993; Rakos and Schombert,
1996; Lubin, 1996; Margoniner and de Carvalho, 2000; Margoniner et al., 2001;
Ellingson et al., 2001; Kodama and Bower, 2001; Poggianti et al., 2006; Cucciati
et al., 2006; Cooper et al., 2007). Unsurprisingly, given the correlation between colour,
SFR, and morphology, these galaxies are predominantly spirals (Dressler et al., 1994;
Couch et al., 1994, 1998; Oemler et al., 1997). Furthermore, a significant fraction
have perturbed morphologies, which further supports the case for the morphological
transformation of galaxies.

Lastly, galaxies with strong Balmer lines in absorption but no detectable emission
lines have been observed in distant clusters (Dressler and Gunn, 1983; Couch and
Sharples, 1987). The absence of emission lines means these galaxies have little
to no ongoing star formation, and the presence of strong Balmer absorption lines

indicates an excessive population of A-stars, which implies that they had elevated
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Figure 1.12: The fraction of galaxies with luminosities greater than (Mp—>5logh) < —20 in
four rest-frame colour bins as a function of environment (§ on R = 5h~*Mpc)
in four different redshift intervals. The horizontal bars indicate the amplitude
of the bins in § (i.e., the range spanned by the lower 5% and upper 95%
percentile of the objected contained in each bin), while the vertical error bars
represent a Poissonian 1o uncertainty. The shaded areas are obtained by
smoothing the red (blue) fraction with an adaptive sliding box containing the
same number of objects in each bin as the point marked explicitly. Reproduced

from Cucciati et al. (2006).

levels of star formation in the past and have recently quenched in the last 1 — 2

Gyrs. These post-starburst (PSB, also known as E4+A or K+A; see French, 2021,

for a review) galaxies at high redshift (z > 1) are spheroidally dominated (Whitaker
et al., 2012; Yano et al., 2016; Almaini et al., 2017; Maltby et al., 2018). For all

these reasons, PSBs are likely galaxies transitioning from the blue cloud to the red

sequence (Caldwell et al., 1996; Zabludoff et al., 1996; Norton et al., 2001; Yang
et al., 2004, 2008; Pracy et al., 2009; Zwaan et al., 2013; Yesuf et al., 2014; Wu

et al., 2014; Pattarakijwanich et al., 2016). Note that PSBs have also been found

in the field (Tran et al., 2004), but they are more prevalent in denser environments

(Dressler et al., 1999; Poggianti et al., 2009; Vergani et al., 2010; Muzzin et al., 2012;
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Socolovsky et al., 2018; Paccagnella et al., 2019; Taylor et al., 2023), with some
studies reporting a significant fraction of the galaxy population in clusters (Henry

and Lavery, 1987; Fabricant et al., 1991; Tran et al., 2003, 2007).

In conclusion, galaxies have undergone rapid evolution in dense environments
whereby blue, star-forming, late-type galaxies at high redshifts have transformed
into red-and-dead early-type galaxies at low redshifts. On this basis, environment
does seem responsible for the bimodal population in the local Universe, and if so, the
correlations are causal. However, one has to be careful because the same correlations
between galaxy properties and environment also exist with stellar mass, as massive
galaxies are likely to be early types, red, and quenched (Kauffmann et al., 2004;
Baldry et al., 2006; Fontana et al., 2009; van Dokkum et al., 2009; Peng et al.,
2010; Nayyeri et al., 2014). Furthermore, stellar mass is correlated with environment
(Balogh et al., 2001; Hogg et al., 2003; Mo et al., 2004; Croton et al., 2005; Hoyle et al.,
2005; Blanton et al., 2005). Consequently, are the correlations with environment
mere reflections, and is the observed evolution due to internal processes that scale
with stellar mass rather than external processes associated with environment? This
is the essence of the nature versus nurture debate in the context of galaxy formation

and evolution (Irwin, 1995).

1.3.4 Nature versus Nurture

Galaxies form and evolve as: (i) hot gas cools through radiative cooling, (ii) stars
form out of the cold gas, evolve, and eventually die—in a cycle—enriching the ISM
in the process, and (iii) SMBHs grow via accretion and mergers and their feedback
heats and/or expels the gas. Simultaneously, haloes are accreting matter from their
surroundings and merging with their neighbours. In a nutshell, the formation and
evolution of galaxies depends on both nature and nurture.

The nature of a galaxy can be associated with its halo mass since galaxies form
in dark matter haloes, while nurture is related to its environment. There is complex
interplay between nature and nurture as haloes and their environments interact with
each other through the processes of accretion and mergers and co-evolve over time.
Furthermore, the effects of nature depend on nurture and vice versa, as internal
processes driven by halo mass are affected by environment, and external processes

linked to environment depend on halo mass. In summary, nature and nurture are
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heavily intertwined.

To disentangle nurture from nature, studies have controlled for the stellar mass
(a proxy of halo mass) at a snapshot in time, typically by binning galaxies into fixed
bins of stellar mass. Nevertheless, this has been demonstrated to be insufficient
in disentangling nature and nurture (De Lucia et al., 2012). The problem remains
unsolved and therefore, the individual causal effects of nature and nurture on galaxy
formation and evolution are unknown.

The principal approach to establish causality has been through simulations. Phys-
ical models have been developed and tested by comparing simulations to observations,
leading to insights into the galaxy formation and evolution process. Nonetheless,
the causal effect itself is intractable in a simulation of any meaningful complexity.
A method called genetic modification (GM; Roth et al. 2016) has emerged that
estimates the causal effect through controlled experiments (Cadiou et al., 2021),
mimicking in effect, a randomised control trial (RCT). However, it is limited to a
single object (at a time) and clearly cannot be applied to the real Universe.

In this thesis, the causal inference framework is adopted to infer causality.
Specifically, causal inference is combined with ML, and causal machine learning
(causal ML) is applied to disentangle nature and nurture and estimate the causal

effect of environment on galaxies.
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1.4 Thesis Outline

The outline of this thesis is as follows:

Chapter 2 briefly overviews machine learning (ML) and describes random forests
(RFs), an ensemble learning method based on decision trees (DTs) that is utilised in
this thesis.

Chapter 3 introduces the causal inference framework and core concepts, such as
causal models and causal graphs. Additionally, this chapter presents the emerging
field of causal machine learning (causal ML), which combines causal inference and
ML.

In Chapter 4, ML is applied to estimate galaxy properties. Specifically, a
novel method based on the RF algorithm is developed to estimate joint probability
distribution functions (PDFs). As an example, joint redshift—stellar mass PDFs
are estimated. The outcome of this work is GALPRO—a highly intuitive and efficient
Python package that rapidly generates multivariate PDFs on the fly. Appendix A
provides the documentation for the package.

In Chapter 5, causal ML is applied to disentangle nature and nurture and
estimate the causal effect of environment on star-formation rate (SFR). To achieve
this, the causal inference method, inverse probability weighting (IPW) of marginal
structural models (MSMs), is combined with the RF algorithm.

Finally, Chapter 6 provides a summary of this thesis and discusses potential

future prospects.
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This thesis is based on the following papers, together with ongoing work:

e Mucesh, S., Hartley, W. G., Palmese, A., Lahav, O., Whiteway, L., Bluck,
A.F. L., ... & (DES Collaboration). (2021). A machine learning approach
to galaxy properties: joint redshift—stellar mass probability distributions with
Random Forest. Monthly Notices of the Royal Astronomical Society, 502(2),
2770-2786. (Chapters 2 and 4)

e Mucesh, S., Hartley, W. G., Gilligan-Lee, C. M., & Lahav, O. (in prep).
The Causal Effect of Environment on Star Formation with Causal Machine

Learning. (Chapters 3 and 5)
Other papers contributed to but not covered in this thesis:

e Palmese, A., Bom, C. R., Mucesh, S., & Hartley, W. G. (2023). A Standard
Siren Measurement of the Hubble Constant Using Gravitational-wave Events
from the First Three LIGO/Virgo Observing Runs and the DESI Legacy Survey.
The Astrophysical Journal, 943(1), 56.

e Zacharegkas, G., Chang, C., Prat, J., Mucesh, S., Hartley, W. G., Pandey,
S., Ferrero, 1., Blazek, J., Jain, B., Crocce, M., DeRose, J., Palmese, A., Seitz,
S., Sheldon, E., Wechsler, R. H., Dodelson, S., Fosalba, P., Krause, E., Park,
Y., Sénchez, C., ... & (DES Collaboration). (in prep). Constraining the
Stellar-mass-to-halo-mass Relation with Galaxy Clustering and Weak Lensing

from DES Year 3 Data.
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Chapter 2

Machine Learning

This Chapter is based on a section in Mucesh et al. (2021): A machine learning
approach to galaxy properties: joint redshift—stellar mass probability distributions
with Random Forest. Monthly Notices of the Royal Astronomical Society, 502(2),
2770-2786. It has been modified and augmented for the thesis.


https://doi.org/10.1093/mnras/stab164

63

Machine learning (ML) is concerned with the development of computer algorithms
that can ‘learn’ from data to make predictions or decisions without being explicitly
programmed to do so. It is a subset of the broader field of artificial intelligence (AI).

In general, there are three types of learning paradigms:

e Supervised learning — the training set consists of input features X and target
variables Y. The goal is to learn a mapping X — Y between the two sets of
data. The most common types of supervised learning tasks are classification

and regression.

o Unsuperuvised learning — the training set consists of input features but no targets.
The goal is to learn some kind of structure of the underlying distribution of data
(e.g., model the distribution itself, identify clusters/modes, identify anomalies,

learn the underlying lower-dimensional manifold where the data live).

o Reinforcement learning — there is no training set. The goal is to interact with
a dynamic environment and learn from feedback to achieve a predefined goal

(e.g., driving a car).

The first application of ML was to teach a computer to play the game of
checkers—Arthur Samuel’s checkers-playing program (Samuel, 1959). Since then,
ML has been applied to solve a wide range of problems across many fields. In
astrophysics, the application of ML began as early as the 1990s with the use of
artificial neural networks (ANNSs) for star—galaxy separation (e.g., Odewahn et al.,
1992) and morphological classification of galaxies (e.g., Storrie-Lombardi et al., 1992;
Lahav et al., 1995). With the advent of large-scale surveys such as the Sloan Digital
Sky Survey (SDSS; York et al. 2000) and more recently the Dark Energy Survey (DES;
The Dark Energy Survey Collaboration 2005; The Dark Energy Survey Collaboration
et al. 2016; Lahav et al. 2020), ML algorithms have been widely adopted to cope
with the enormous influx of data and to do novel science (see Baron, 2019; Fluke
and Jacobs, 2020, for recent reviews). This trend is likely to continue with the next
generation of surveys, such as Euclid (Laureijs et al., 2011), the Rubin Observatory
Legacy Survey of Space and Time (LSST; LSST Science Collaboration et al. 2009),
and the Nancy Grace Roman Space Telescope (Roman; Spergel et al. 2015), as

they will produce an order of magnitude more data than the previous. This chapter
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describes decision trees and the ensemble learning method based on them: random

forests.

2.1 Decision Trees

Decision trees (DTs) are a non-parametric supervised learning method. A decision
tree is a type of data structure that allows one to make a decision using a series
of yes-or-no questions. There are many different decision tree algorithms, but the
most notable are ID3 (Quinlan, 1986), C4.5 (Quinlan, 1993), and Classification and
Regression Trees (CART; Breiman et al. 1984). In the following section, the CART

algorithm is explained.

2.1.1 Classification and Regression Trees

CART is a recursive algorithm that splits the data into two groups at each step until
some predefined condition is achieved. The main components of the decision tree are
the root, decision, and leaf nodes. The root node defines the first and optimal split
on the full training dataset. The decision nodes describe the subsequent splits, and
the leaf nodes contain the final groups. An illustration of a decision tree is shown in
Figure 2.1.

The exact process of building a decision tree is as follows. At each step, all
possible splits are evaluated in all dimensions of the input feature space. For
classification, the data are split to best separate different classes, and this is achieved
by maximising the information gain,

Np Nr

IG(D, X) = I(D) = =F1(Dy) = <1(Dp), (2.1)

where X is the input feature, D is the parent node containing number of samples
N, and Dy, and Dpg are the child nodes containing number of samples N; and Ng,
respectively.

There are three commonly used criteria for the impurity /: the Shannon entropy

(also called the information entropy; Shannon 1948),

K
H=-= prlogy(ps), (2.2)
=1
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Figure 2.1: Binary decision tree in a radial layout, spanning out from the root node close to
the centre. The root and decision nodes are represented as circles, and the leaf
nodes are grey triangles. The colour of the root and decision nodes identifies
the unique variable on which data is split. The subpanel shows a zoomed in
region from the tree. Reproduced from Carrasco Kind and Brunner (2013).
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the Gini coefficient (also known as the Gini index or Gini ratio; Gini 1912),

K
G=1-> 1}, (2.3)
k=1
and the classification error,
Cg =1 — max{p}, (2.4)

where pj is the proportion of samples of class k£ in a node. The Shannon entropy
and Gini coefficient are zero when a node is ‘pure’ (i.e., all samples belong to the
same class) and one when the node is ‘balanced’ (i.e., there is an even representation
of all classes).

For regression, the data are split such that the average values of the target
variable are representative of the nodes. Usually, this is accomplished by minimising

the sum of squared errors,

1 ~ _ 2 1 ~ — 2
SSE = N, > (@i — 9, + No > (5 — Upn)’ (2.5)

ieDyp, ieDg
where 7; are the values of the target variable of samples in a node, and yp, and yp,
are the node means of the target variable.

Once the decision tree is built (‘trained’), it can be used to make predictions. If
the training data used to build the tree are complete and representative, then a new
datapoint will end up in a leaf node that is representative of itself. The content of
the leaf node can then be used to make a prediction. For classification, the prediction
is the mode, and for regression, it is the mean of the leaf node.

Decision trees are easy to interpret and understand. Their “white box” nature
combined with the simplicity of the algorithm makes it one of the most popular
learning mechanisms. However, there are a few major limitations. Decision trees
are not stable due to the manner in which they are constructed. For example,
two decision trees can predict different outcomes with only a slight variation in the
training data (Gareth et al., 2013). Also, axis-parallel splits may not always effectively
(and efficiently) capture decision boundaries, leading to suboptimal performance.
Furthermore, decision trees are prone to overfitting and thus do not generalise well

to new, unseen data. This problem can be mitigated by reducing the complexity of
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trees with “pruning” (i.e., removing redundant parts of the tree). However, a more
encompassing yet simple solution is to combine multiple decision trees—the basis of

ensemble methods such as random forests.

2.2 Random Forests

Random forests (RFs) are a supervised learning method based on ensemble learning.
The first RF algorithm was proposed by Ho (1995), but the de facto is that of
Breiman (2001). RF's solve many of the issues associated with decision trees by
constructing multiple decision trees and making a few adjustments. For example,
when building the decision trees, only a subset of the training data and features is
used. This technique is called feature bagging and it injects randomness, making
RFs more flexible and better suited to make predictions on data not encountered
before. By using multiple decision trees in combination with feature bagging, RFs
alm to preserve the low bias of a single decision tree whilst simultaneously reducing
variance to successfully navigate the bias-variance tradeoff'. In summary, a RF can

be built using the following process:

1. Create a bootstrapped dataset by sampling randomly from the training data

with replacement.

2. Choose from a random subset of input features to split on at each node when

building a decision tree using the bootstrapped data.
3. Repeat the process to build multiple decision trees, thus creating a ‘forest’.

The process of predicting with a RF is similar to predicting with a single decision
tree. The only difference is that predictions from all the decision trees are aggregated.
For classification, the prediction is the most predicted class, and for regression, it is

the mean of all the values predicted by the decision trees (see Figure 2.2).

'The bias error is an error from erroneous assumptions in the learning process. A high-bias model
is an oversimplified model that fails to capture the true relationship between the input features
and the target variable (underfitting). It performs poorly both on the training and test sets. The
variance is an error from sensitivity to small fluctuations in the training data. A high-variance model
captures noise rather than the underlying patterns (overfitting). Such a model performs well on the
training data but poorly on unseen data because it fails to generalise. Reducing bias often increases
variance and vice versa, i.e., the bias-variance tradeoff. The goal is to strike a balance between the
two.
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Figure 2.2: Overview of the random forest (RF) prediction process. The predictions of all
N decision trees are aggregated in a final result. For classification, the final
prediction is the mode, and for regression, it is the average. Adapted from
https://www.spotfire.com/glossary/what-is-a-random-forest.


https://www.spotfire.com/glossary/what-is-a-random-forest

2.2. Random Forests 69

2.2.1 Hyperparameters

Hyperparameters are parameters of an ML algorithm that control the learning process
and are specified prior to training. RF's have many hyperparameters, but the most

important are:

e n_estimators — the number of decision trees used to build the RF determines
its effectiveness. Each decision tree is built using a subset of training data. As
a result, if the number used is too small, the likelihood of complete coverage of
the training data decreases, resulting in poor performance. The performance
improves as the number of trees increases, but at a cost, the time taken for
training. The key is to find the right balance between performance and training

time because the gains become negligible after a certain point.

e max_features — the maximum number of features considered at each step
when building the decision trees controls the correlation between them and,
hence, the flexibility of the RF. Usually, vV N features are sufficient to build

each decision tree, where IV is the total number of input features.

e max_depth — the maximum depth defines the number of levels in the decision
tree and thus determines how finely or coarsely the training data are grouped.
A low depth leads to underfitting, while a high depth may cause overfitting. In
essence, the maximum depth provides a stopping criterion for the constituent
decision trees. The minimum number of training samples in a leaf node
(min_samples_leaf) and the minimum number of training samples in a leaf

node before the data are split (min_samples_split) also serve the same purpose.

Generally, RFs require very little configuration and work well out of the box.
Besides their ease of use, RFs are efficient, interpretable, and versatile, performing
competitively in many tasks across various fields. Given all these qualities, the
algorithm is utilised in this thesis. In Chapter 4, RF is applied to predict redshifts
and stellar masses of galaxies. While ML can make predictions, it generally cannot
perform inference. This is because ML, broadly, learns the data not the underlying
data-generating process (DGP). In the following chapter, a theoretical framework is

introduced for inferring causality.



Chapter 3

Causal Inference

This Chapter is based on a section in Mucesh et al. (in prep): The Causal
Effect of Environment on Star Formation with Causal Machine Learning. It has been

modified and augmented for the thesis.
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Causal inference is concerned with inferring cause and effect (see Pearl, 2009a, for
an overview). The field is well established, with significant advancements made in
recent decades (see Pearl, 2010, for a review). The goal is to identify and quantify
the causal effect of one thing on another, e.g., a vaccine on a disease. A correlation’
between the vaccine and outcome (disease cured or not) hints at its effectiveness
but does not guarantee it as “correlation does not imply causation”. The observed
correlation can be due to a common cause (Reichenbach, 1956) that causes both the
vaccine and outcome. For example, age is a potential common cause as it typically
influences whether an individual can receive a vaccine and their chance of recovery
from a disease. In the extreme case, there may not be a causal connection between
the vaccine and outcome, and the correlation may be entirely due to age, which would
signify that the vaccine is ineffective. However, if the vaccine has a causal effect on
the outcome, the correlation will be partly due to age and the vaccine. Regardless
of the situation, the measured effectiveness of the vaccine without considering age
will be biased. Herein lies the fundamental difference between statistical and causal
inference: the former ascertains a relationship between two quantities (assuming one
exists), while the latter can establish the causal nature of the relationship. This
chapter describes a mathematical framework of causal inference and key tenets, such

as causal models and causal graphs.

3.1 Causal Models and Graphs

The principal component for any causal inference task is a causal model or structural
causal model (SCM), i.e., a model that describes causal relationships between
variables. Formally, an SCM specifies a set of exogenous, or latent, variables U =
{u1,...,u,} distributed as P(U), a set of endogenous, or observable, variables
V = {v1,...,un}, a directed acyclic graph (DAG), called the causal structure of
the model, whose nodes are the variables U U V', and a collection of functions
F ={f1,..., fn}, such that v; = f;(PA;,u;), fori = 1,...,n, where PA denotes
the parent observed nodes of an observed variable (Pearl, 2009b). The collection of
functions and distribution over latent variables induces a distribution over observable

variables: P(V = v) 1= 3\t (pa,u)=v;) £ (ui). We can thus assign uncertainty

!Technically, “correlation” only refers to the degree to which a pair of variables are linearly related.
Consequently, the broader term “association” is used instead to refer to statistical dependence
because it describes any relationship between variables, linear or not.
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Figure 3.1: Causal graph representing the causal relationship between two variables, T
and Y. The direct edge (black arrow) from T to Y implies that T directly
causes Y. The causal association (i.e., the association due to causation) ‘flows’
asymmetrically from T to Y (represented by the blue dashed line arrow), while
association ‘flows’ symmetrically (represented by the red dashed line). The
causal graph is an example of a directed acyclic graph (DAG). A DAG is a
graph that is: (i) directed (i.e., has edges that imply a direction) and (ii) acyclic
(i.e., a variable does not cause itself either directly or through another variable).

over observable variables despite the fact the underlying dynamics are deterministic.

Structural equations (F') fully capture and mathematically describe a causal
model. However, a graphical representation of a causal model in the form of causal
graphs (also called causal diagrams) is more intuitive for understanding causal
relationships. A causal graph is a probabilistic graphical model and consists of a
collection of nodes and edges that connect the nodes (Wright, 1921). The nodes
represent variables, while the edges communicate the causes of the variables. Figure
3.1 shows the fundamental causal graph between two variables, T' and Y. The direct
edge (black arrow) from 7" to Y implies that 7" directly causes Y. The causal graph is
an example of a DAG because it is: (i) directed (i.e., has edges that imply a direction)
and (ii) acyclic (i.e., a variable does not cause itself either directly or through another
variable).

DAGs make it easy to deduce if two variables share a causal or non-causal
relationship. More importantly, they allow one to effortlessly conclude if association is
causation with a few basic rules. For example, causal association (i.e., the association
due to causation) can be imagined as ‘flowing’ asymmetrically along directed paths

(a sequence of adjacent nodes with direct edges all in the same direction), while



3.2. Causal Framework 73

association ‘flowing’ symmetrically along directed paths. In the DAG in Figure
3.1, the causal association flows in one direction from 7" to Y along the direct path
(as shown by the blue dashed line arrow). However, the association flows in both
directions along the same path (as shown by the red dashed line). Hence, association
alone does not provide any information on the direction of causality. It does not
distinguish between the following possible causal relationships between the two

variables:

1. T causes Y (direct causation)
2. Y causes T (reverse causation)
3. T and Y share a common cause (common causation)

4. T and Y cause each other (cyclic causation)

Furthermore, it is also possible that T and Y are not related at all, and the
association is spurious. Consequently, association does not imply causation. Never-
theless, the DAG in this instance conveys that all association is causal as there is
only a solitary direct path between T and Y. If the DAG represents the true causal
model of the vaccine—disease example, where T is the vaccine and Y is the outcome,
the observed correlation does imply causation. The following section describes a

framework for reasoning and quantifying causality.

3.2 Causal Framework

The Rubin causal model (Holland, 1986), also known as the Neyman—Rubin causal
model (Neyman, 1923; Rubin 1974), is a mathematical framework of causal inference
based on the idea of potential outcomes (see Yao et al., 2020, for a recent review).
The framework is inspired by how humans reason about causality. We compare
an outcome Y given an action T' with the outcome under no action. If there is a
difference in the two outcomes, we reason that the action has had a causal effect on

the outcome. The individual causal effect (ICE) on a unit 4,

i = Yi(1) — Yi(0), (3.1)

where Y;(1) and Y;(0) are the two potential outcomes under action and no action,

respectively. It is impossible to know both potential outcomes given that the two
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potential realities, the one in which the action takes place and the other in which it
does not, cannot be observed simultaneously. The potential outcome that is observed
is “factual”, whereas the unobserved potential outcome is “counterfactual”. This
dilemma is the “fundamental problem of causal inference” (Holland, 1986). The
impossible nature of the task is the reason why causality is such a challenging subject
to tackle. Nevertheless, it is possible to estimate rather than compute causal effects.
Generally, it is difficult to accurately estimate unit-level causal effects, but it is
feasible to reliably estimate an average of the causal effect within a population—the

average causal effect (ACE; Holland 1986),

7= E[ri] = E[Yi(1) - Yi(0)] = E[Yi(1)] — E[Y;(0)]. (3.2)

We make the reader aware of the terminology we use throughout this thesis: the
action T is the quantity we are interested in measuring the causal effect of, and the
outcome Y is the quantity we want to measure the causal effect on. Furthermore,
the action is sometimes referred to as an intervention, an exposure, or a treatment,
depending on the scientific nature of the study. We will refer to the action as the

treatment from hereon.

3.3 Causal Assumptions

Causal inference necessitates the following assumptions:

1. Ezchangeability — the potential outcomes are independent of the treatment.

Y(t) LT (3.3)

2. Positivity — the probability of receiving treatment is greater than zero but less

than one.

0<P(T) <1 (3.4)

3. Consistency — the treatment is well-defined such that the observed outcome is

equal to the potential outcome under treatment.

Y =Y(t) (3.5)
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4. No interference — the potential outcome of a unit only depends on its treatment

and not on the treatment of other units (Cox, 1958).

Y; = Yi(t:) (3.6)

The exchangeability assumption states that potential outcomes must be inde-
pendent of the treatment. In other words, it must be possible to exchange treatment
groups without changing their potential outcomes. To understand why the assump-
tion is essential, consider the aforementioned vaccine—disease example, with age as a
common cause. If age influences who receives the vaccine, then the treatment and
control groups are not exchangeable because their age distributions are dissimilar.
And if age also impacts one’s ability to recover from the disease, then the causal
effect estimated using the groups is biased as it is an admixture of the causal effects
of the vaccine and age. Exchangeability ensures that the causal effect is bias-free
because if the treatment groups are similar in all of their characteristics except for
the treatment, then any outstanding causal effect must be the result of the treatment
only.

Positivity states that there must be a non-zero probability of receiving any
treatment. This assumption is important because its violation leads to undefined
causal effects. For example, consider the situation where everyone or no one receives
the vaccine. In such a scenario, the causal effect of the vaccine would be mathemat-
ically impossible to estimate because the counterfactual would always be missing.
Intuitively, causal effects are only meaningful if the outcome under “treatment” is
contrasted to the outcome under “no treatment” within the potential outcomes
framework of causal inference.

Consistency states that the observed outcome must equal the potential outcome
under treatment. When this assumption is not met, the causal effect is inconclusive.
Following the vaccine-disease example, there must be only one version of the vaccine
if the goal is to estimate its efficacy. If multiple versions exist and they are labelled
as the treatment, then the causal effect will be a mixture of the individual causal
effects of the different vaccines. Furthermore, if the temperature of the vaccine affects
the outcome, then all individuals must receive the vaccine at the same temperature.

Simply put, the treatment must be well-defined.
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Lastly, the no interference assumption states that the potential outcome of a
unit must only depend on its treatment. Violation of this assumption makes the
causal effect of treatment ill-defined in the strict sense because the treatment is now
an admixture of multiple units’ treatment and must be redefined. This situation is
common in many real-world cases and is referred to as spillover effects. For example,
the likelihood of contracting COVID-19 depends not only on one’s immunity to the
disease but also on the immunity within the population.

The consistency and no interference assumptions are sometimes grouped into
the so-called stable unit treatment value assumption (SUTVA; Rubin 1980) because
their violation results in ill-defined causal effects. If all of the above assumptions are

met, the ACE is identifiable and is the statistical quantity,

r=E[Y(1)] - E[Y(0)] =E[Y|T = 1] - E[Y|T = 0]. (3.7)

3.4 Biases and Adjustments

The gold standard for causal inference is a randomised control trial (RCT; Chalmers
et al. 1981). A well-conducted RCT always outputs a true measure of the ACE
because the causal assumptions are met by construction. However, it is not always
possible to perform RCTs because they can be unethical, infeasible, or outright
impossible. More often than not, only observational data is available that is prone
to many biases, unlike experimental data. The biases violate the causal assumptions
and distort the true causal effect. Here, causal graphs truly come into their own as
they make it easy to identify such biases and adjust for them such that the causal
assumptions hold, resulting in valid estimates of the causal effect. There are many
different types of biases, but the primary two are confounding bias and selection (or

collider) bias.

3.4.1 Confounding Bias

Confounding bias arises in the presence of a common cause or confounder X that
causes both the treatment and the outcome, as illustrated in Figure 3.2. Unlike
the DAG in Figure 3.1, there are two paths for association to flow between T and
Y: (i) the direct path between T' and Y and (ii) the backdoor path linking 7" and

Y via X. The causal association flows through the former, and the non-causal
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Figure 3.2: Illustration of confounding bias. DAGs representing the causal relationships
between treatment T', outcome Y, and their common cause or confounder X.
(a) There are two paths for association to flow between T' and Y: (i) the direct
path between T and Y and (ii) the backdoor path linking 7" and Y via X. The
causal association (depicted with the blue dashed line arrow) flows through
the former, while the non-causal confounding association (depicted with the
red dashed line arrow) flows through the latter. The admixture of the causal
and non-causal associations means association is not causation. (b) The act of
conditioning on X (visualised with the greyed-out node) blocks the non-causal
confounding association from flowing via the backdoor path.

confounding association flows through the latter. The amalgam of causal and non-
causal associations means association is not causation, and the causal effect is biased.
Specifically, the causal effect is an admixture of the causal effects of the treatment
and confounder. Intuitively, if age influences the treatment and outcome in the
aforementioned vaccine—disease example, then it is difficult to separate the causal
effect that age has on the outcome from the causal effect of the treatment. In terms of
the causal assumptions, the presence of confounders violates exchangeability because
the treatment is not independent.

In experimental data, confounding is not an issue as RCTs remove its effect
via randomisation of the treatment. In DAGs, treatment randomisation translates
to removing the direct edge from X to T, making T independent, so confounding
association cannot flow via the backdoor path as it does not exist. As a result,
association is causation because exchangeability holds, and the causal effect does
not suffer from confounding bias. In contrast, confounding is a major issue in

observational data because, by its nature, the treatment is not randomised beforehand
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via experimentation. The goal with observational data is not to solve the issue
directly but rather to negate it by adjusting the data such that the estimates of
causal effects are bias-free. The first step is to modify the causal assumptions to be
appropriate for observational data. For example, conditional exchangeability must
hold for observational data, as the prevalence of confounders will always violate
exchangeability. Conditional exchangeability states that potential outcomes are

independent of the treatment given confounders.

Y(t) 1L T|X. (3.8)

Visually, conditioning on a confounder blocks the non-causal confounding association
from flowing from T to Y via the backdoor path, as shown in Figure 3.2b, leaving
only the causal association. Also, as exchangeability and confounding are intertwined
concepts, the conditional exchangeability assumption is sometimes referred to as
unconfoundedness. An alteration of the positivity assumption is also necessary to
account for confounding. Following on from the original definition, the conditional
probability of receiving treatment given confounders must be greater than zero and

less than one.

0 < P(T|X) < 1. (3.9)

Given the prior consistency and no interference assumptions, in addition to conditional

exchageability and positivity, the ACE

r=E[Y(1)] -E[Y(0)] =Ex[E[Y|T =1, X] ~E[Y|T =0,X].  (3.10)

This is known as the adjustment formula because adjustments are made post-data

generation to infer true, unbiased causal effects.

3.4.2 Selection Bias

While confounding bias persists when there is a lack of adjustment of a common cause,
selection bias occurs precisely due to adjustment of a common effect X, as illustrated
in Figure 3.3. A common effect is a variable that is caused by both the treatment
and the outcome. As previously, there is a direct path and a backdoor path between

T and Y for association to flow. The causal association flows through the former as
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Figure 3.3: Illustration of selection (or collider) bias. DAGs representing the causal relation-
ships between treatment 7', outcome Y, and their common effect or collider X.
(a) Similar to Figure 3.2, there is a direct path and a backdoor path between T
and Y for association to flow. As before, the causal association (depicted with
the blue dashed line arrow) flows through the former. However, the non-causal
association (depicted with the red dashed line arrow) cannot flow through the
latter as it is now blocked because of the collider. (b) The act of conditioning
on X (visualised with the greyed-out node) unblocks the previously blocked
backdoor path, allowing once again the non-causal association to flow. As
a result, association is not causation as it is once again an admixture of the
causal and non-causal associations.

before, but the non-causal association does not flow through the latter as it is now
a blocked path. The flow of association from 7" and Y ‘collides’ on X, as shown in
Figure 3.3a. Hence, X is also referred to as a collider. In this scenario, association is
causation, and the causal effect is not biased. By incorrectly conditioning on X, the
backdoor path is unblocked, allowing the non-causal association to flow as shown in

Figure 3.3b, which ultimately induces selection bias.

Continuing the vaccine-disease example: assume the vaccine has side effects and
can cause hospitalisations in rare cases. The disease can also cause hospitalisations
by deteriorating the health of individuals. Figure 3.3 represents this exact situation,
where hospitalisation X is the common effect of the vaccine T and disease Y.
Conditioning on X by selecting only the hospitalised patients induces a non-causal
association between the vaccine and disease. Specifically, a positive association
between the vaccine and disease would be observed as the hospitalised population is

more likely to be vaccinated or have the disease than the general population. The
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conclusion that one would draw from the selected data is that the vaccine causes
the disease, which would be detrimental as it would dissuade people from receiving
the vaccine. In terms of the causal assumptions, conditioning or selecting on the

common effect also violates exchangeability.

3.5 Causal Machine Learning

Causal machine learning (Causal ML) is an emerging field that combines causal
inference and machine learning (ML) to leverage the benefits of one for the other
(see Kaddour et al., 2022, for a review).

Causal Inference for Machine Learning

Although ML has been successful in a wide range of applications and transformed

many fields, there are some major limitations. Traditional ML suffers from:

1. Generalisability — ML algorithms rely on training and testing data being
identically and independently distributed (i.i.d.). When the i.i.d. assumption
does not hold under distributional shifts—a highly likely occurrence in real-
world scenarios—the performance drops drastically. Simply put, ML algorithms
fail to generalise to out-of-distribution (OOD) data (see Shen et al., 2021, for a

recent survey).

2. Interpretability — defined as the ability to understand how an ML model makes
its decisions (Lipton, 2016). Thus, an interpretable model is one that can be
easily understood by humans and readily explained in terms of its underlying
logic or rules. ML, and especially deep learning (DL) models, are complex and
difficult to interpret. Furthermore, there is a tradeoff between accuracy and
interpretability (Kuhn et al., 2013). ML algorithms like linear regression are
highly interpretable but often do not achieve outstanding accuracy. Conversely,
artificial neural networks (ANNSs) generally have great accuracy but are less

interpretable.

3. Explainability — defined as the ability to explain why an ML model made its
particular decision (Miller, 2017). An explainable model is one that can provide
human-understandable explanations for its predictions, which is the goal of
explainable AI (XAI; see Dosilovié¢ et al., 2018; Verma et al., 2020; Karimi
et al., 2020; Burkart and Huber, 2020, for surveys).
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4. Bias and Fairness — bias can be introduced at various stages of the ML pipeline,
from data collection and preprocessing to the selection of the model and its
hyperparameters. A biased ML model is unfair if its decisions discriminate
against an individual or group based on their inherent or acquired characteristics

(see Mehrabi et al., 2019, for a recent survey).

Many of the shortcomings are believed to stem from ML being correlation-based
rather than causal-based. For example, explainability is an inherently causal problem
as it is concerned with the question of why. As such, incorporating causality into
ML algorithms is argued to be the solution (Pearl, 2019; Ahmed et al., 2020; Goyal
and Bengio, 2020; Scholkopf et al., 2021).

Machine Learning for Causal Inference

There are two common causal inference tasks: (i) causal effect estimation (i.e.,
estimating the causal effect of a treatment on an outcome) and (ii) causal discovery
(i.e., identifying the causal relationships between variables to determine the underlying

causal model). ML can aid in both with:

1. Improved modelling of non-linear relationships — ML algorithms can model
non-linear relationships, making it possible to capture more complex causal

relationships in the data.

2. Better handling of high-dimensional data — ML techniques can handle high-
dimensional data, making it possible to estimate causal effects in settings where

traditional causal inference methods may struggle.

Traditional ML algorithms redesigned for causal inference include causal k-
nearest neighbours (CkNNs; Zhou and Kosorok 2017), causal forests (CRFs; Wager
and Athey 2015; Athey et al. 2016), and causal artificial neural networks (CANNs;
Shi et al. 2019; Xia et al. 2021). Note, these causal ML algorithms do not perform
causal effect estimation and causal discovery on their own. In Chapter 5, causal
inference and ML is combined to infer the causal effect of environment on SFR. ML
is utilised solely for estimation, and the causal inference framework to infer causality.
Specifically, the standard RF algorithm is combined with the causal inference method,

inverse probability weighting (IPW) of marginal structural models (MSMs).



Chapter 4

Galaxy Properties with Machine

Learning

This Chapter is based on Mucesh et al. (2021): A machine learning approach to
galaxy properties: joint redshift—stellar mass probability distributions with Random

Forest. Monthly Notices of the Royal Astronomical Society, 502(2), 2770-2786.
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We demonstrate that highly accurate joint redshift—stellar mass probability distri-
bution functions (PDFs) can be obtained using the random forest (RF) machine
learning (ML) algorithm, even with few photometric bands available. As an example,
we use the Dark Energy Survey (DES), combined with the COSMOS2015 catalogue
for redshifts and stellar masses. We build two ML models: one containing deep
photometry in the griz bands, and the second reflecting the photometric scatter
present in the main DES survey, with carefully constructed representative training
data in each case. We validate our joint PDFs for 10,699 test galaxies by utilising
the copula probability integral transform and the Kendall distribution function, and
their univariate counterparts to validate the marginals. Benchmarked against a basic
set-up of the SED-fitting code BAGPIPES, our ML-based method outperforms SED
fitting on all of our predefined performance metrics. In addition to accuracy, the RF
is extremely fast, able to compute joint PDF's for a million galaxies in just under 6
minutes with consumer computer hardware. Such speed enables PDFs to be derived
in real-time within analysis codes, solving potential storage issues. As part of this
work, we have developed GALPRO'—a highly intuitive and efficient Python package to
rapidly generate multivariate PDFs on the fly. GALPRO is documented and available

for researchers to use in their cosmological and galaxy evolution studies.

"https://galpro.readthedocs.io/
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4.1 Introduction

The next generation of photometric surveys, such as the Rubin Observatory Legacy
Survey of Space and Time (LSST; LSST Science Collaboration et al. 2009) and
Euclid (Laureijs et al., 2011), will observe billions of galaxies. The sheer amount
of data generated will enable studies ranging from the cosmic large-scale structure
(LSS) to the formation and evolution of galaxies to be conducted in unprecedented
detail, ultimately leading to a transformation in our understanding of the Universe.
However, one of the key challenges will be developing algorithms that can quickly

and reliably extract physical properties and redshifts of galaxies.

The success of many scientific analyses critically hinges on redshift measurements.
For example, redshifts are required in weak lensing tomography (Hu, 1999); one of
the primary probes to unveil the nature of dark energy. As a result, a large number
of methods now exist to estimate redshifts from photometric data, i.e., photo-zs (see
Salvato et al., 2019, for a review). In general, they are either physically-motivated or

data-driven.

SED-fitting methods fall into the former category as they require prior knowledge
in the form of SED templates. These templates are fit to the observed fluxes, and
photo-zs are usually determined using chi-square minimisation (e.g., Bolzonella et al.,
2000). Baum (1962) originally applied SED fitting to estimate photo-zs of elliptical
galaxies. Since then, a plethora of codes have been developed for the task, such as
LEPHARE (Arnouts et al., 1999), HYPERZ (Bolzonella et al., 2000), BPZ (Benitez, 2000),
ZEBRA (Feldmann et al., 2006), EAZY (Brammer et al., 2008), and BCNZ2 (Eriksen
et al., 2019).

The fundamental principle behind data-driven methods is to learn a mapping
between photometry and redshift using training data. Connolly et al. (1995) used a
polynomial function for the mapping. However, since the new millennium, machine
learning (ML) methods have become popular as they are able to learn more complex
mappings. Once trained, ML algorithms can make predictions on ‘new’ galaxies.
As with SED fitting, a large number of ML algorithms have been used to predict
photo-zs. These include artificial neural networks (ANNs; Firth et al. 2003; Collister
and Lahav 2004; Sadeh et al. 2016), support vector machines (SVMs; Wadadekar
2005), self-organizing maps (SOMs; Geach 2012; Way and Klose 2012; Carrasco Kind
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and Brunner 2014), Gaussian processes (GPs; Way and Srivastava 2006), genetic
algorithms (GAs; Hogan et al. 2015), k-nearest neighbours (kNNs; Ball et al. 2007),
boosted decision trees (BDTs; Gerdes et al. 2010), random forests (RF's; Carliles
et al. 2008, 2010; Carrasco Kind and Brunner 2013; Rau et al. 2015), and sparse
Gaussian framework (Almosallam et al., 2016). Furthermore, deep learning (DL)
methods have also been implemented (Hoyle, 2016; D’Isanto and Polsterer, 2018;
Pasquet et al., 2019).

Galaxies are described by a wide range of physical properties, with stellar
mass, star-formation rate, age, and metallicity being among the most important.
SED-fitting codes such as FAST (Kriek et al., 2009), CIGALE (Burgarella et al., 2005;
Noll et al., 2009; Boquien et al., 2019), MAGPHYS (da Cunha et al., 2011), and
BMASTELLARMASSES (Palmese et al., 2020a) have been specifically designed to output
these quantities. Meanwhile, the application of ML in this field has been fairly
limited, but literature has now begun to emerge (Acquaviva, 2016; Stensbo-Smidt

et al., 2016; Bonjean et al., 2019; Delli Veneri et al., 2019).

While single-value (point) estimates are useful, probability distribution functions
(PDF's) have become increasingly important in recent years as a full characterisation
of the uncertainties, beyond a point estimate and an error bar, is required for
accurate analyses. This has been particularly true in the role of redshifts for weak
lensing cosmology (e.g., Bonnett et al., 2016), where it has been shown that using
distributions instead of point estimates can improve the accuracy of cosmological
measurements (Mandelbaum et al., 2008; Myers et al., 2009). It is possible to extract
redshift PDFs using both SED fitting and ML methods. However, ML, methods have
recently grown in use due to their efficiency. For example, packages such as ArborZ
(Gerdes et al., 2010), TPZ (Carrasco Kind and Brunner, 2013), SOMz (Carrasco Kind
and Brunner, 2014), SkyNet (Bonnett, 2015), and ANNz2 (Sadeh et al., 2016) all have
foundations in ML. To reach a consensus on the best algorithm in terms of PDF
accuracy, Schmidt et al. (2020) and Euclid Collaboration: Desprez et al. (2020) have

compared a dozen or more popular algorithms from both approaches.

The redshift and physical properties of a galaxy, measured via modelling its pho-
tometry, are correlated, and thus should be described with a multivariate distribution.

The commonly used marginal distributions in redshift, stellar mass, etc., constitute a
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loss of information and could potentially introduce biases into a scientific analysis as
a result. Consequently, a new class of SED-fitting codes has come to the fore, such as
BAYESed (Han and Han, 2012, 2014, 2019), BEAGLE (Chevallard and Charlot, 2016),
and BAGPIPES (Carnall et al., 2018). They utilise Bayesian statistical techniques
such as Markov chain Monte Carlo (Goodman and Weare, 2010; Foreman-Mackey
et al., 2013) and nested sampling algorithms (Skilling, 2006; Feroz and Hobson, 2008;
Feroz et al., 2009, 2019) to generate multivariate posterior distributions of the most
important properties. By estimating redshift and physical properties simultaneously,
they allow for any uncertainties on redshift to propagate to the statistical constraints
on physical properties, whilst accounting for any potential correlations (Chevallard
and Charlot, 2016). The only drawback is that it is not feasible to obtain these
distributions for a large number of galaxies. For example, BAGPIPES takes on average
a few minutes to fit each galaxy, making it prohibitively expensive to fit modern
datasets where sample numbers can exceed hundreds of millions, let alone upcoming
surveys where the numbers will exceed a billion. Moreover, the results of the fit to
each galaxy must somehow be stored in a way that is accessible to scientific analysis

routines.

Based on the speed and competitive performance of ML algorithms when used
to estimate photo-zs, it is possible that an ML approach to the problem could
be promising. With this in mind, we take a significant step towards realising the
ultimate goal of extracting full posterior distributions of galaxy properties using
ML by first focusing on 2D posterior distributions of redshift and stellar mass. We
choose these properties as they are two of the most important and accurate to predict
(Walcher et al., 2011; Conroy, 2013). Furthermore, joint PDFs are straightforward
to visualise and thus ideal for uncovering any hidden correlations or degeneracies

that exist between the properties.

Joint redshift—stellar mass PDFs have many potential science applications, such
as determining the evolution of the stellar mass function (SMF; e.g., Papovich
et al., 2003; Mortlock et al., 2015; Capozzi et al., 2017), the cross-correlation function
between galaxies and galaxy groups (Yang et al., 2005), understanding the connection
between stellar mass and dark matter in galaxy clusters (Palmese et al., 2016, 2020a),

and the stellar-to-halo mass relation (SHMR; see Wechsler and Tinker, 2018, for
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an overview). However, their storage remains a potential issue. Unless there is a
revolution in data storage, it will not be feasible to store a large number of multivariate
PDFs. To solve this dilemma, we have developed GALPRO—a highly intuitive and
efficient Python package for rapid, on-the-fly generation of n-dimensional PDFs.
GALPRO is documented and available for fellow researchers to use in their analyses at
https://galpro.readthedocs.io/.

An interesting application of GALPRO could be to generate joint red-
shift-luminosity PDFs for measurements of the Hubble constant from gravitational
wave events that lack an electromagnetic counterpart (Schutz 1986; Palmese et al.
2019; Soares-Santos and Palmese et al., 2019). The use of full redshift PDF's rather
than point estimates is very important for standard siren measurements (Palmese
et al., 2020b), and the inclusion of joint redshift-luminosity PDF's allows one to
correctly define the selection function of the galaxy sample at the same time.

The outline of this chapter is as follows. In Section 4.2, we outline the method
we use to extract point estimates and marginal and joint posterior probability
distributions of redshift and stellar mass using the RF algorithm. In Section 4.3, we
describe the preprocessing steps we perform to construct the necessary datasets. In
Section 4.4, we describe the different RF models we train and explain the motivation
behind them. We compare, discuss, and validate our results in Section 4.5, and place
them into a familiar context via a comparison to those achieved by BAGPIPES in

Section 4.6. Finally, we summarise this work in Section 4.7.

4.2 Method

The RF algorithm has previously been utilised to extract point estimates (Carliles
et al., 2008, 2010) and PDF's (Carrasco Kind and Brunner, 2013) of redshift. Recently,
Bonjean et al. (2019) used the algorithm to predict stellar masses and star-formation
rates of galaxies. They built a single model to predict both target variables simul-
taneously. The process of building decision trees to achieve this is conceptually
similar to building them to predict one target variable. The only difference is that
at each step, to decide the best split, the average loss function for two or more
variables is minimised. In Equation 2.5, g;, and yp, and yp,, are now vectors of
target variables and the means, respectively. As this loss function is scale-dependent,

the target variables must be transformed to place them on scales with similar ranges.
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Otherwise, the variance of one will dominate, resulting in the algorithm expending
more effort in getting one target variable correct at the expense of others (Breskvar
et al., 2018). Once trained, the leaf nodes in the decision trees contain values of the
target variables.

We apply this methodology to predict redshift and stellar mass simultaneously,
thus preserving any correlation between the properties. As both variables are
continuous, we use regression trees to build the forest. However, it is entirely possible
to use classification trees as shown by Gerdes et al. (2010) and Carrasco Kind and
Brunner (2013). Another motivation for using regression trees is that they are
generally faster to train and better suited to non-uniform data. To summarise the

process,

e Galaxies cluster together in n-dimensional space if they have comparable values

of input features.

e The algorithm identifies these clusters by minimising the loss function (Equation

2.5), with redshift and stellar mass being the target variables.

e These clusters end up in the leaf nodes of the decision trees. In the end, the

leaf nodes contain redshifts and stellar masses of similar galaxies.

We extract point estimates of redshift and stellar mass by running a ‘new’ galaxy
down all the decision trees and using the mean of all the predicted values. To build
marginal posterior distributions, we aggregate the values of redshift and stellar mass
in the leaf nodes across all the decision trees, respectively. Finally, we combine the
aggregated values to build joint posterior distributions. We would like to point out
that our method is flexible and can be adapted to generate joint PDF's of any other
combination of properties. However, we chose redshift and stellar mass as they are
two of the most important and accurate properties to predict. Furthermore, the
method is flexible and can be applied to generate n-dimensional PDFs. We describe

the implementation of the RF in this work and the input features in Section 4.4.

4.3 Data

We use data from two different surveys to train and test our RF models. These

are the Dark Energy Survey (DES; The Dark Energy Survey Collaboration 2005;
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The Dark Energy Survey Collaboration et al. 2016; Lahav et al. 2020) and the
Cosmological Evolution Survey (COSMOS; Scoville et al. 2007).

4.3.1 Cosmological Evolution Survey

The COSMOS observed a 2deg? equatorial field in the entire spectral range from
radio to X-ray with both ground and space-based telescopes, collecting photometric
and spectroscopic data. In this field, ~ 2 million galaxies were detected, spanning

75% of the age of the Universe (Scoville et al., 2007).

We use the COSMOS2015 (Laigle et al., 2016) catalogue from the field for
its photo-zs and stellar masses. Usually, to train an ML algorithm to predict
photo-zs, spectroscopic redshifts (spec-zs) are used. However, the photo-zs in this
catalogue have been shown to be precise and accurate. Compared to photo-zs from
surveys such as DES and the Sloan Digital Sky Survey (SDSS; York et al. 2000),
the COSMOS photo-zs have been computed using more than 30 bands spanning
a huge portion of the electromagnetic spectrum, as opposed to four or five optical
bands. The most precise photo-zs have been estimated for very bright, low redshift,
star-forming galaxies, with a normalized median absolute deviation (NMAD; Hoaglin
and Mosteller 2000) of 0.007, of which 0.5% are catastrophic outliers (i.e., objects with
|Zphot — Zspeel /(1 + Zspee) > 0.15). Furthermore, in the deepest regions of the survey,
90% of galaxies with stellar mass greater than 10'°M, at z = 4 have been detected
(Laigle et al., 2016). The high photo-z precision and the overall completeness of the

survey in stellar mass makes this an exemplary dataset to use in this work.

4.3.2 Dark Energy Survey

The DES is a visible and near-infrared survey that has imaged ~ 5100 deg? of the
South Galactic Cap ten times in grizY photometric bands using the Dark Energy
Camera (DECam; Flaugher et al. 2015) over a span of six years, starting in 2013. It
is expected to have generated ~ 310 million galaxies with photo-zs, once all the data
has been processed. In addition, the survey targeted a set of four fields with a total
of ten DECam pointings over 27 deg? for supernova (SN) science. This SN survey
had an approximately weekly cadence and thus many more epochs per pointing than
the main survey (Neilsen et al., 2019). We use two datasets from the DES survey,

which are discussed in the following sections.
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4.3.2.1 DES Deep Fields

As part of the DES Year 3 (Y3) cosmology analysis, observations from the SN
survey were combined with community data, additional DES exposures (particularly
in u-band) and coincident near-infrared data to form the DES Deep Fields (DF)
catalogue (Hartley and Choi et al., 2020). The principal aims of the DF project are
to improve calibration of redshift distributions in the main survey and to act as a
prior on the population of full multicolour images for Balrog (discussed in the next
section), to better understand the systematics and selection function of the wide-field
(WF) survey. These goals rely on the fact that the DF represents a statistically
complete, yet effectively noiseless, population of the galaxies that are found in the
WF survey. Other motives include conducting galaxy evolution studies, science with
the faintest possible sources, and the properties of the host galaxies of transient

events.

The Y3 DF catalogue consists of data from three SN fields plus the COSMOS
field, with a total coverage of 5.88 deg? and photometry of over 1.7 million objects
(after masking for image defects) in DECam ugriz and VIRCam JH K bands. We
combine the deep (~ 1.25 mag fainter than the WF data) and precise griz photometry
in this catalogue with the accurate redshifts and stellar masses from the COSMOS2015
catalogue to produce a baseline DF dataset. Specifically, we utilise the bulge+disc
model-fit magnitudes computed using the Multi-Object Fitting (Drlica-Wagner et al.,
2018) algorithm.

Our goal is to produce valid posterior PDF's of galaxies in the main DES survey,
and to achieve this, we require a suitable dataset with which to train a RF model.
The photometric errors in the DF dataset would not reflect those in the WF and
so would lead to biased results if used directly as training data. Furthermore, the
COSMOS field does not overlap the main survey area and the redshifts and stellar
masses that could be derived from model fitting to the four-band WF data are grossly
imprecise compared to those in the COSMOS2015 catalogue. In essence, we require
a catalogue of DF galaxies that emulate galaxies in the WF to overcome these issues,

and for this, we take advantage of the Balrog algorithm.
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4.3.2.2 Balrog

Balrog is a Python package designed for the purpose of measuring the selection
function of imaging surveys (Suchyta et al., 2016; Everett et al., 2020). The process
by which it achieves this is as follows. A realistic ensemble of fake stars and galaxies
is generated using GALSIM (Rowe et al., 2015), including survey characteristics
appropriate to their intended sky location, e.g., seeing FWHM. The fake objects
are then embedded into real survey images, thus inheriting many of their properties.
Finally, the objects are detected and measured using SExtractor (Bertin and Arnouts,
1996) in the same way as the original survey images. The output catalogue comprises a
Monte Carlo sampling of the selection function and measurement biases and naturally
accounts for systematic effects arising from the photometric pipeline, detector defects,
seeing, and other sources of observational systematic errors.

The Balrog process requires a prior population of galaxies from which to draw
objects. The DES Y3 Balrog catalogue (Everett et al., 2020) was produced by
injecting model fits of galaxies drawn randomly from the Y3 DF catalogue into DES
Y3 single-epoch images and then measuring their properties. This catalogue contains
true and measured griz photometry of nearly 4 million objects, and it provides us
with ready-made emulated galaxies that reflect our target WF dataset, the DES Y3
GOLD (Sevilla-Noarbe et al., 2020). By combining the Y3 Balrog catalogue with
COSMOS2015, we obtain a dataset that closely matches and is representative of
the WF data, capturing many of the details of the objects’ noise properties, but
with the addition of accurate redshifts and stellar masses. From the catalogue, we
use composite model magnitudes in this work. In the next section, we outline the

preprocessing steps we perform to create the DF and WF datasets.

4.3.3 Preprocessing

To construct the DF dataset, we first cross-match galaxies in the Y3 DF and
COSMOS2015 catalogues using TOPCAT (Taylor, 2005), with a matching radius of
1 arcsec. This serves the dual purpose of enabling the use of accurate photo-zs
(PHOTOZ) and stellar masses (MASS_BEST) in our analysis and removing galaxies in all
the other fields besides the COSMOS field. Next, we discard stars, as well as galaxies
with unreliable or missing redshift and stellar mass, by ensuring 0 < z < 9.99. We

produce a magnitude-limited sample by selecting galaxies with ¢ < 23.5. These
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cuts automatically remove saturated objects and bad areas. We discover that there
are some faint galaxies with close to zero or even negative fluxes in the grz bands,
resulting in their magnitudes being undefined. To solve this issue, we convert all
galaxy fluxes into “asinh” magnitudes or “luptitudes” (Lupton et al., 1999), defined

as

(S
— ht( L 4.1
= po — asin <26 7 (4.1)
where pg = mg — 2.5logb, a = 2.5loge, f is the flux, b is an arbitrary softening
parameter, and myg is the magnitude zero point. The authors state that the optimal
value of b = y/ao, where o is the standard deviation of the flux. We set the value
of o to be the median of the standard deviations. Additionally, we transform flux

errors into luptitude errors using

ao

=5 (4.2)

Op

Luptitudes behave like magnitudes for bright photometry and like fluxes for faint
photometry, with the turning point in the behaviour determined by the softening
parameter. By converting to luptitudes, we avoid introducing an additional selection

effect by not discarding galaxies with negative fluxes.

To produce the WF dataset, we start anew and match “WF” galaxies in the Y3
Balrog catalogue to their counterparts in the Y3 DF using the ID column. Next, we
cross-match the galaxies in the intermediate catalogue to the COSMOS2015 catalogue.
There are multiple scattered WF copies of each DF galaxy in the Balrog catalogue to
efficiently sample the DES selection function, and to preserve this, we keep all of the
copies. This is an important aspect of our set-up, as it captures the selection function
through the galaxy detection probability as a function of true photometry and light
profile, as well as the asymmetric scatter between photometry and galaxy properties
(redshift and stellar mass) that it induces. We remove any galaxies with erroneous
flux measurements by selecting all galaxies with MEAS_CM_FLAG = 0 (Everett et al.,
2020). Finally, we repeat all the aforementioned cuts and steps used in constructing
the DF dataset, the only difference being that on this occasion, we apply the i-band

cut to the magnitudes of WF galaxies. Thus, we have augmented a completely
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Figure 4.1: Marginal and joint distributions of redshifts and stellar masses of galaxies in
the DF dataset and the distributions of griz luptitudes. The colours in the
joint distribution indicate the density of points. The DF dataset is created by
cross-matching galaxies in the DES Y3 Deep Fields (DF) and the COSMOS2015
catalogues. All galaxies with unreliable or missing redshift and stellar mass
are discarded from the dataset, and a magnitude-limited sample is produced
by selecting galaxies with ¢ < 23.5. The griz luptitudes in the dataset are
computed from fluxes in the Y3 DF catalogue, while the redshifts and stellar
masses are from the COSMOS2015 catalogue.

realistic target dataset which effectively replicates the systematics in the WF survey
without compromising on the accuracy of redshifts and stellar masses.

After all the preprocessing steps, there are 53,491 galaxies in the DF dataset and
393, 276 galaxies in the WF dataset. Each dataset contains the following information:
griz luptitudes and luptitude errors, photo-zs, and stellar masses. Additionally, we

compute all the relevant lupticolours, and the associated errors using the standard

Oc= /0% + 02, (4.3)

where 0, and o,, are the errors on the luptitudes, and o. is the error on the

error propagation formula:

computed lupticolour. Figure 4.1 shows the marginal and the joint distribution of
redshifts and stellar masses of galaxies in the DF dataset, and the distributions of

griz luptitudes. The average redshift and stellar mass is approximately 0.7 and
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5 x 10° M, respectively. For the sake of brevity, we do not show a similar figure for
the WF dataset as the distributions are broadly similar.

We perform an 80 : 20 split on the DF and WF datasets to create their training
and testing datasets, respectively. As there are multiple copies of each galaxy in the
WF dataset, we ensure that there is no admixture of unique galaxies in its training
and testing datasets. In other words, unique galaxies that exist in the training
dataset do not appear in the testing dataset, and vice versa. As a consequence,
there are 314,196 and 79,080 galaxies in the WF training and testing datasets,
respectively. Lastly, we randomly sample 10, 699 galaxies without replacement from
the WF testing dataset to construct its final version. We do this to ensure that the
number of galaxies in both the DF and WF testing datasets matches, thus enabling
us to make a fair comparison when testing our RF models.

The training datasets represent prior information that the RF models utilise in
order to make predictions on the test datasets. As a result, one must construct a suit-
able and representative training dataset (as we have done) when using outputs from
an ML model in their scientific analysis. In the next section, we describe the different
RF models, explain the motivation behind them, and detail the implementation of

the RF algorithm we use in this work.

4.4 Models and Implementation

We train and test two different RF models, with redshift and stellar mass as the

target variables and the following as input features:
e griz luptitudes
e griz luptitude errors
e g— 1, r—1i,and ¢ — z lupticolours, and their associated errors

We build the first model using the DF dataset and refer to it as DES-DF from
here onwards. The high-precision photometry of DF galaxies combined with the
accurate redshifts and stellar masses allows us to establish the baseline performance.
We build the second model to produce valid posterior PDFs of galaxies in our target
dataset (the DES Y3 GOLD) by training on the WF dataset. We refer to this model
as DES-WF.
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To train and test our RF models, we use the implementation of the algorithm
in the Python ML package scikit-learn (Pedregosa et al., 2011). In particular, we
use the RANDOMFORESTREGRESSOR module from the package, which allows us to do
regression. Before training, we do not perform feature scaling as the RF algorithm is
invariant under monotonic transformations. Furthermore, we do not scale the target
variables because redshift and stellar mass (in the logarithmic form) have similar
ranges. Besides, scikit-learn automatically normalises the variances of individual
target variables so that they contribute equally to the loss function.

As previously discussed in Section 2.2, RF has hyperparameters that can be
tuned to increase the performance of a model. Therefore, we tune our RF models
before training using a combination of random search and grid search, adopting k-fold
cross-validation (specifically, 3-fold). We first set up a wide grid of hyperparameters
and run the models using 100 different combinations. Next, we use a grid search
around the best hyperparameters found in the previous searches. After tuning, we
find that the performance of the models, in terms of the root-mean-square error
(RMSE), only improves by 1—2%. In principle, one could use metrics associated with
the validity of PDFs (described in Sections 4.5.2.1 and 4.5.3.1). However, we opted
for the simple RMSE as we do not believe that there exists a single metric that can
fully characterise the performance of a model. Given the insignificant improvements
in the performance of our models, we ultimately resorted to using the following

default scikit-learn hyperparameters for training both models:
e n_estimators: 100
e max_features: auto
e max_depth: none
e min_samples_leaf: 1
e min_samples_split: 2
e max_leaf nodes: none
e min_impurity_decrease: 0.0

e min impurity_split: none
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e min weight fraction leaf: 0.0

With these hyperparameters, the decision trees are fully grown until the training
data can no longer be split. We set max_features to auto instead of v/ N, where N
is the total number of input features, to ensure that our models have sufficient prior
information, given that we are using a limited number of photometric bands to begin
with. We train and test both models on a 13” Macbook Pro (2.4 GHz Intel Core i5,
16GB LPDDR3) using GALPRO, and it takes less than 1 and 5 minutes respectively,
to generate PDFs for 10,699 galaxies. In the next section, we compare, discuss, and
validate the point estimates and marginal and joint posterior PDFs of redshift and

stellar mass of test galaxies estimated from the trained models.

4.5 Results and Discussion
4.5.1 Point Estimates

We extract point estimates by averaging predictions from all the decision trees in a
given RF model. In order to quantify how the models are performing, we use the

NMAD metric for redshift and stellar mass. The NMAD is defined as:

oNMAD = 1.4826 x median | g; — 3; |, (4.4)

where ¢; and g; are the predicted and true values of redshift and stellar mass of
galaxies, respectively. For redshift, the bias § — g is divided by 1 + 3.

Figure 4.2 shows the redshifts and stellar masses of test galaxies versus the
predictions made by DES-DF and DES-WF. Most of the data points lie close to the
diagonal, which indicates that the predicted redshifts and stellar masses are accurate.
However, there are outliers at low and high redshifts and low stellar masses. There
is a lack of training data available in these regions, as can be observed in Figure 4.1.
Given the strong correlation between the accuracy of a RF model and the abundance
of training data, these outliers are to be expected.

Moreover, the degradation in performance could be due to degeneracies that
exist in the colour-redshift space. For example, at z < 0.2, there is a lack of strong
spectral features that can be detected in the griz bands. Using the u-band can break
the degeneracies. However, we do not use it as an input feature as the band is not

available in the DES data. Furthermore, in the redshift range, 1.2 < z < 2.2, there is
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Figure 4.2: ‘True’ redshifts and stellar masses of test galaxies versus the predictions made by
the DES-DF and DES-WF models. The colours indicate the density of points.
The normalized median absolute deviation (NMAD; Hoaglin and Mosteller
2000) metric values are stated for redshift and stellar mass, respectively. For
redshift, the bias § — ¢ is divided by 1 + 4 in Equation 4.4.

a lack of strong spectral features in the visible bands (Bolzonella et al., 2000). These
degeneracies can lead to incorrect clustering of training galaxies and thus inaccurate
point predictions.

Comparing the two models, the point-estimate performance of DES-DF is better
than DES-WF, with onmap of 0.04 and 0.15 dex for redshift and stellar mass,
respectively. There is a visible increase in the scatter in the DES-WF plots, and
this is reflected in the values of the performance metric doubling for redshift to 0.08
and increasing by ~ 73% to 0.26 dex for stellar mass. This drop in performance is
primarily due to the degraded photometric precision, which makes it difficult for the
RF to cluster galaxies, resulting in imprecise predictions. Nevertheless, DES-WF
still performs well for a significant portion of test galaxies, as can be observed. On a
related note, we also explored the impact on the performance when predicting one
versus two variables. We built two models each using the DF and WF datasets to

predict redshift and stellar mass separately and found that there was an insignificant
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improvement in the performance, with oxmap decreasing by 0.001 — 0.002.

4.5.2 Marginal Probability Distributions

The point estimates we extracted are not perfect. In general, inaccuracies can arise

from:

e Incomplete and incorrect information — the information provided to an ML
algorithm may not be sufficient to learn the perfect mapping between the
input features and target variables. For example, to estimate redshifts to a
high degree of accuracy, spectroscopic data are required. However, we use
photometric data that only provides a rough sampling of the underlying SED.
Furthermore, the data used for training and testing have to be accurate. In
our case, the redshifts and stellar masses we use to train our RF models
may contain some errors. They have been estimated using the SED-fitting
code LEPHARE, which utilises template SEDs, and they may not be a perfect
representation of the true SED. Therefore, the mappings learnt by the RF's
may not be entirely accurate, and this could lead to the observed errors in the
estimates. Furthermore, we predict redshifts and stellar masses using four-band
photometry, while those in the COSMOS2015 catalogue are computed using
more than 30 bands. Consequently, there will be subtle differences between

our predictions and the ‘truth’.

o Unrepresentative and incomplete training data — the lack of representative and
complete training data can also lead to errors. In our case, the training data are
highly likely to be representative. However, in some regions, the data are sparse
and therefore do not provide a complete sampling of the target population.
For example, at low and high redshifts, the number of galaxies available for
training reduces dramatically, as can be observed in Figure 4.1, and this causes
the performance of the algorithm to suffer. Furthermore, the effect of sample

variance from the small COSMOS area can lead to some incompleteness.

e ML algorithms and hyperparameters — different ML algorithms learn using
different methods. As a result, predictions on the same datapoint can be
slightly different. Furthermore, the hyperparameters can also have an effect, as

discussed in Section 2.2. However, the performance of ML algorithms suitable
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for a specific problem generally converges given sufficient and good quality

training data.

In order to characterise uncertainties associated with our point estimates, we
extract marginal posterior distributions of redshift and stellar mass. We do this by
aggregating the redshift and stellar mass values in the leaf nodes of the decision
trees in a RF that are representative of the test galaxy in question. We extract the
distributions from the trained models and validate them using several techniques

and metrics described in the next section.

4.5.2.1 Marginal PDFs Validation

Unlike point estimates, it is not possible to validate individual redshift and stellar
mass PDFs as the true distributions are not available. Consequently, we aim to
determine the validity of the marginal PDFs as a whole. We use the framework
developed by Gneiting et al. (2007), which is founded on the paradigm of maximising
the sharpness of the predictive distributions subject to calibration. Sharpness refers
to the concentration of predictive distributions and is a property of the distributions
only. The authors describe calibration as the statistical consistency between the
distributions and the truth. We refer to this as validation as it better captures
the essence of use in our context. However, for consistency, we will use the former
when describing the authors’ work. In this work, we focus on calibration to validate
the marginal PDF's produced by our models, rather than sharpness, as the latter is
useful when ranking competing calibrated methods. Furthermore, as demonstrated
by Bordoloi et al. (2010), one could use the framework to empirically recalibrate
marginal PDFs. However, this can be challenging and could potentially result in

unforeseen issues.

Gneiting et al. (2007) introduce three modes of calibration: probabilistic,
marginal, and exceedance. The first two modes are the most important, and they can
be empirically assessed. As a result, we focus on them to determine if the marginal
PDF's produced by our models are valid and exclude exceedance calibration in our
analysis. Probabilistic calibration can be assessed using the probability integral
transform (PIT; Rosenblatt 1952). It is the cumulative distribution function (CDF)

evaluated at its true redshift or stellar mass:
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= [ s, (4.5)

where ¢ is the true redshift or stellar mass, and f(y) is the marginal PDF. If the
marginal PDF's are probabilistically calibrated, then the true redshifts and stellar
masses should be random draws from their respective distributions. This statement
is equivalent to requiring that the CDF evaluated at the true redshift should not
have a preferred value. In this case, for an ensemble of galaxies, the distribution of
PIT values should follow the standard uniform distribution (U(0,1); Dawid 1984),
i.e., one percent of galaxies should have their spec-zs found within the first percentile
of their CDF's, and so on. Deviations from uniformity can be interpreted as follows.
If the marginal PDF's are overly broad, then fewer objects will have true redshifts
in the tails of their PDF, instead being closer to 0.5, and the PIT distribution will
be convex-shaped. Conversely, if they are overly narrow, then the PIT distribution
will be concave-shaped. Finally, if the PIT distribution has a gradient, then this
means that the marginal PDFs are biased. In the past, the PIT distribution has
been utilised to determine the validity of redshift PDFs (e.g., Bordoloi et al., 2010;
Polsterer et al., 2016; Tanaka et al., 2018; Schmidt et al., 2020; Euclid Collaboration:
Desprez et al., 2020).

The uniformity of the PIT distribution is a necessary condition for marginal
PDFs to be valid. However, Hamill (2000) has shown that uniformity can also
arise from biased distributions. Therefore, probabilistic calibration may not be
sufficient in some cases, and marginal calibration may be required to reach a concrete
conclusion. Marginal calibration is associated with the equality of the predicted and
true distributions of redshift and stellar mass. Specifically, the average predictive

CDF (Fy) is compared to the true empirical CDF (G7).

Fily) = 3 Y E), (4.6)
1=1
B} 1 X
Grly) =+ > 1 <y}, (4.7)
=1

where N is the number of test galaxies, F; is the predicted CDF, ¢; is the true

redshift or stellar mass of a galaxy, and 1 is the indicator function, defined as:
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1 if True
Wy <y} = : (4.8)

0 if False
If the PDFs are marginally calibrated, then the average predictive CDF should equal
the true empirical CDF. To assess probabilistic calibration, we check the uniformity
of the PIT distributions visually and use quantile—quantile (Q—-Q) plots to highlight
deviations. In a Q-Q plot, the quantiles of one distribution are plotted against the
quantiles of another distribution. In our case, these are the PIT and U(0,1). If the
two distributions are identical, then the quantiles match and lie along the diagonal.
Furthermore, we use several metrics to quantitatively determine the uniformity of
the PIT distributions (Schmidt et al., 2020), such as the Kullback-Leibler (KL;
Kullback and Leibler 1951) divergence, Kolmogorov—Smirnov (KS; Shiryayev 1992)
test, and Cramér-von Mises (CvM; Cramér 1928) test. All of these metrics measure
the similarity between two distributions in different ways. The KL divergence is

defined by the following integral:

KL= /OO p(x) log(@)daﬂ, (4.9)

oo q(x)
where p(z) and g(z) are the reference (U(0,1)) and target (PIT) PDFs, respec-
tively. The KS test is a non-parametric test and is the maximum distance between
the empirical distribution function (F,(x)) and the CDF (F(z)) of the reference

distribution.

K S = supg|Fp(x) — F(x)|, (4.10)

where sup, is the supremum of the set of distances. The CvM is an alternative to

KS test and is more sensitive to the edges of a distribution.

CoM = /OO (Fo(z) — F(x))*dF(z). (4.11)

A value of zero for the different metrics indicates that there is a perfect match
between the two distributions.

Figure 4.3 shows the redshift and stellar mass PIT distributions and Q-Q plots
for the models. The black-dashed line represents the quantiles of U(0, 1), and the
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quantiles of the PIT distributions are shown using the solid blue curves. The values
of the metrics, along with the percentage of catastrophic outliers, are also indicated.
We define a catastrophic outlier to be any galaxy for which the true value of redshift

or stellar mass is completely outside the support of its marginal PDF.

Visually, the PIT distributions of DES-DF and DES-WF appear to be uniform,
and this is reinforced by the quantiles of the PIT distributions lying close to the
diagonal in the Q—Q plots, if not on it. Consequently, at first glance, both models
seem to be performing equally well. However, on closer inspection, subtle differences
can be observed in the PIT distributions. The PIT distributions of DES-DF are
more uniform compared to those of DES-WF, and the main difference arises at the
edges. Specifically, the PIT distributions of DES-WF are slightly concave-shaped, as
indicated by the minor deviations in the Q—Q plots at the extremes and quantitatively
confirmed by the significantly larger CvM criterion values. Hence, the marginal
PDFs produced by DES-WF' are somewhat overly narrow or underdispersed. Taking
into account the degraded photometry, DES-WF is still performing admirably, with
only small increases in the number of catastrophic outliers compared to DES-DF.
Overall, both models are producing probabilistically calibrated marginal PDFs and

performing at an unprecedented level.

To assess marginal calibration, we plot the difference between the average
predictive and true empirical CDFs of redshift and stellar mass at regular intervals
in their respective ranges. If the PDFs are marginally calibrated, then only minor
fluctuations about the zero line are expected. Figure 4.4 shows the redshift and
stellar mass marginal calibration for the models. There are negligible fluctuations
about the zero line, with maximum deviations of ~ 0.005. Therefore, both models
are producing marginally calibrated redshift and stellar mass PDF's, with DES-DF
performing marginally better with a smaller average deviation compared to DES-
WF'. To summarise, the marginal PDF's are both probabilistically and marginally
calibrated, thus giving us confidence that they are valid. Finally, in the next section,
we analyse and perform validation checks of the joint redshift—stellar mass posterior

distributions.
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Figure 4.3: Redshift and stellar mass PIT distributions for the DES-DF and DES-WF

models. These distributions are used to assess the probabilistic calibration of
marginal PDFs of test galaxies produced by the models. They are overlaid
with Q—Q plots to highlight deviations from uniformity. The black-dashed
and solid blue lines represent the quantiles of U(0, 1) and PIT distributions,
respectively. The percentage of catastrophic outliers along with the values of
the Kullback-Leibler (KL) divergence, Kolmogorov—Smirnov (KS) test, and
Cramér-von Mises (CvM) metrics are also stated to quantify uniformity of the
PIT distributions. We define a catastrophic outlier to be any galaxy with a
redshift or stellar mass completely outside the support of its marginal PDF.
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Figure 4.4: The difference between the average predictive CDF (F}) and the true empirical

CDF (Gy) of redshift and stellar mass plotted at different intervals in their
respective ranges. These diagnostic plots are used to assess the marginal
calibration of marginal PDFs of test galaxies produced by the DES-DF and
DES-WF models.
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4.5.3 Joint Probability Distributions

In general, a joint PDF encompasses more information than its marginals. Therefore,
we extract joint redshift—stellar mass PDFs of test galaxies from DES-DF and DES-
WE. We build the distributions by combining the aggregated values of redshift and
stellar mass in the leaf nodes across all the decision trees. Figure 4.5 shows some
examples of the joint PDFs of the same test galaxies produced by the models. The
gold and white stars alongside the dashed lines indicate the ‘true’ and predicted
redshifts and stellar masses, respectively. We remind the reader that the predicted
redshifts and stellar masses are computed by averaging the predictions from all the
decision trees in a RF. Visually, the joint PDFs of the same test galaxy look alike
and occupy similar regions of the redshift—stellar mass space. However, the joint
PDFs produced by DES-WF are more spread out compared to the ones produced by
DES-DF, or in other words, the probability is more dispersed. This is a reflection of
the degraded photometry in the WF dataset. Overall, we do not expect the joint
PDFs of the same galaxy to resemble each other perfectly as both models have been

trained using different datasets.

4.5.3.1 Joint PDFs Validation

It is more challenging to validate joint PDFs compared to marginal PDFs as the
relatively straightforward methods adopted to validate the latter are no longer
applicable. As a result, we use the multivariate extensions of probabilistic and
marginal calibration developed by Ziegel and Gneiting (2014) to validate joint PDFs
in our case. These are probabilistic copula calibration and Kendall calibration,
respectively. Probabilistic copula calibration can be empirically assessed by using

the copula probability integral transform,

copPIT = Ky (H(Y)), (4.12)

where H(7) is the joint CDF evaluated at the true redshift and stellar mass, and

K is the Kendall distribution function, defined as:

K (w) = P(H(y) < w), (4.13)

where H(y) is the predicted joint CDF and w € [0,1]. Simply put, the Kendall
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Figure 4.5: Examples of joint redshift—stellar mass PDFs produced by the DES-DF and
DES-WF models of the same test galaxies (in rows). The gold and white stars
alongside the dashed lines represent the ‘true’ and predicted redshifts and
stellar masses of the galaxies, respectively. The predicted redshifts and stellar
masses are computed by averaging the predictions from all the decision trees in
the individual RFs. The green circles indicate the values of redshift and stellar
mass in the leaf nodes that are representative of the test galaxies.
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distribution function is the CDF of H(y). For marginal PDFs, it corresponds to the
standard uniform distribution, and the copPIT coincides with the PIT. To assess
Kendall calibration, we compare what we refer to as the “average Kendall distribution
function” (Kp,) to the empirical CDF of the predicted joint CDFs evaluated at the

true redshifts and stellar masses (J7):

N 1 N
K, (w) = 5> Kn(w), (4.14)
i=1
- 1 N
Ji(w) =5 > 1{Hi(G:) < w}. (4.15)
i=1

Probabilistic copula calibration and Kendall calibration can be interpreted in
the same manner as their univariate counterparts. As such, probabilistic copula
calibration ascertains if the true redshifts and stellar masses of galaxies are random
draws from their corresponding joint PDFs, as they should be. If this is the case,
then for an ensemble, the copPIT distribution is uniform, and the joint PDFs are
probabilistically copula calibrated. On the other hand, Kendall calibration probes
how well the dependence structure between redshift and stellar mass is predicted on
average, and can be understood as marginal calibration of the Kendall distribution.
If K u, is comparable to Jr, then the joint PDFs are Kendall calibrated. Once again,
if both modes of calibration are satisfied, then we can claim with some conviction
that the joint PDF's are valid overall. Furthermore, we would like to point out that
while we use probabilistic copula calibration and Kendall calibration to validate our
joint redshift—stellar mass PDFs, they can be applied to validate higher dimensional
PDFs also.

Figure 4.6 shows the copPIT distributions for the DES-DF and DES-WF models.
The distributions are uniform with minor deviations, which are more prominent for
DES-WF. Overall, both models are performing well with no substantial differentiation
and producing joint PDF's that are probabilistically copula calibrated. Furthermore,
in comparison to the PIT distributions in Figure 4.3, the copPIT distributions
of DES-WF are somewhat less uniform, as primarily reflected by the large CvM
value. Hence, the marginal PDFs produced by the model are better probabilistically
calibrated than the joint PDFs.
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Figure 4.6:

copPIT distributions for the DES-DF and DES-WF models. They are overlaid
with Q-Q plots to aid in visually assessing the probabilistic copula calibration
of joint redshift—stellar mass PDFs of test galaxies. The black-dashed and
solid blue lines represent the quantiles of U(0,1) and copPIT distributions,
respectively. The percentage of catastrophic outliers along with the values of
the Kullback—Leibler (KL) divergence, Kolmogorov—Smirnov (KS) test, and
Cramér-von Mises (CvM) metrics is also stated to quantify uniformity of the
copPIT distributions. We define a catastrophic outlier to be any galaxy that
is completely outside the support of its marginal PDFs. Probabilistic copula
calibration is the multivariate analogue of probabilistic calibration.
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The difference between the “average Kendall distribution function” (Kg,) and
the empirical CDF of the predicted joint CDF's evaluated at the ‘true’ redshifts
and stellar masses (j 1), plotted at regular intervals in the probability space
w € [0, 1]. This diagnostic plot is used to assess the Kendall calibration of the
joint PDFs produced by the DES-DF and DES-WF models. Kendall calibration
is the multivariate analogue of marginal calibration.
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Figure 4.7 shows the difference between ICHI and J; at regular intervals in
the probability space w. For DES-WF, the fluctuations about the zero line are
smaller compared to those for DES-DF, thus indicating that the joint PDFs produced
by the former are better Kendall calibrated. We believe that DES-WF is better
capturing the redshift—stellar mass dependence structure as it is trained using the
WF dataset that contains multiple scattered copies of the same DF galaxies, resulting
in better incorporation of photometric errors present in the data into the model.
Collectively, the joint PDFs are less marginal /Kendall calibrated compared to the
marginal PDFs as the deviations are larger in magnitude. However, we hypothesise
that the deviations in the Kendall calibration are not significant given the complex
nature of joint PDFs, and to prove this, we compare our results to those achieved by

the SED-fitting code BAGPIPES in the next section.

4.6 Comparison: ML versus SED Fitting

The different diagnostic plots and the metrics we utilise to validate the marginal
and joint PDF's produced by our RF models are difficult to fully appreciate without
familiar context. Consequently, we utilise Bayesian Analysis of Galaxies for Physical
Inference and Parameter EStimation, or BAGPIPES (Carnall et al., 2018), to bench-
mark our results. BAGPIPES is a Python package that uses MultiNest (Feroz and
Hobson, 2008; Feroz et al., 2009, 2019) nested sampling algorithm, accessed through
the PyMultiNest interface (Buchner et al., 2014), to model the emission from galaxies
and to fit these models to any combinations of spectroscopic and photometric data
in order to output multivariate posterior distributions of parameters such as redshift
and stellar mass, hence making it ideal for comparison.

The photometry in the COSMOS2015 and DES Y3 DF catalogues have been
calibrated independently of one another. So, although we can expect them to be
broadly consistent, it is possible that small differences in absolute calibration between
the two remain. Even minor offsets in the calibration baseline may have a significant
impact on the stellar mass posterior PDFs produced using BAGPIPES with respect
to COSMOS2015, and perhaps also some subtle effects in redshift. Accordingly,
validation of the PDF's using the point predictions in the catalogue would not be
appropriate. To solve this dilemma, we run BAGPIPES on Subaru V, r, i+, and z + +

bands’ photometry from the catalogue in place of the DES DF griz bands. We
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specifically choose these bands in order to imitate the DES bands as far as possible
and therefore allow for an adequate comparison between the SED-fitting method and
our ML-based method. Although this does not match exactly the degradation in
the information provided to the RF, it is nevertheless very similar as we measure
PDFs using four optical bands instead of the 30-plus bands available in the catalogue.
Importantly, however, we avoid introducing any possible systematic effects that could
arise from inter-dataset calibration differences.

The model SED templates used by Laigle et al. (2016) cannot be exactly
reproduced in BAGPIPES. It is important for the validity of our comparison that
the four-band PDFs and the truth values are constructed under the same set of
model assumptions. Therefore, we produce a new set of truth values using the 22
COSMOS bands (including the four aforementioned) listed in Table 4.1. In both
the four-band and 22-band runs, we employ the same physical information about
the model as outlined in Table 4.2. These choices were made to closely mimic the
set-up adopted by Laigle et al. (2016) to compute the redshifts and stellar masses
in the COSMOS2015 catalogue, so that we can make a fair comparison. There are,
however, slight differences that we cannot negate, and as such, a direct comparison
is not possible. Nevertheless, they are mostly similar, and the aggregate metric
results should be comparable. We compute total COSMOS flux and flux errors
from those measured in a 3 arcsec diameter aperture, correct for photometric and
systematic offsets, and foreground galaxy extinction before initiating the runs. We
define the true values of redshift and stellar mass from the 22-band run to be the
mean predictions for each galaxy. Finally, we extract marginal and joint PDFs of
redshift and stellar mass from the four-band run and validate them using these
new ‘truth’ values. We utilise a total of 14 nodes for both runs, with each node
consisting of 12 Xeon X5660 cores and 16GB of random-access memory (RAM). The
runs take approximately 900 and 1,400 hours to generate PDFs for 10,699 galaxies,
respectively. Naturally, we only run BAGPIPES on test galaxies in the DF dataset.

SED fitting with four bands is known to be difficult due to degeneracies in the
parameter space (see Renzini, 2006, for a review). To compensate, authors sometimes
restrict the parameter space, for example, by neglecting dust extinction to improve

results (e.g., Capozzi et al., 2017), and this amounts to a hard prior in the galaxy
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Instrument / Telescope (Survey) Band
UltraVista Y, J, H, Ks
CFHT u
Subaru B, V, r, i+, z++,

1A427, TA464, TA484, TA505
1A527, IA574, IA624, TA479
IA709, IA738, IA767, IA827

110

Table 4.1: List of 22 COSMOS bands used to build a ‘truth’ catalogue to validate the
marginal and the joint PDFs of redshift and stellar mass produced by BAGPIPES

using the four-band (V, r, i+, and z + +) Subaru photometry.

Free parameter Prior Limits Fixed parameter Value
Ay Uniform [0, 4] logo(U) -3
log,o(My/Mg) Uniform [4, 13] aBc 0.01 Gyr
z Uniform [0, 10] € 3
T Uniform [0.3, 10] SPS models Bruzual and Charlot (2003)
Z|Zg Uniform [0, 2.5] IMF Kroupa and Boily (2002)

Table 4.2: Fixed and fitted parameters with their associated priors for the delayed expo-
nentially declining (7~2te~*/7) star-formation history (SFH) model used in the
BAGPIPES runs. The model is not readily available in BAGPIPES, so we lightly
modify the code to meet our requirements. We adopt the Calzetti et al. (2000)
attenuation curve, stellar population synthesis (SPS) models of Bruzual and
Charlot (2003), and a Kroupa and Boily (2002) initial mass function (IMF). Ay
is the attenuation in the V-band, 7 is the star formation time-scale, Z is the
metallicity, U is the ionisation parameter, apc is the lifetime of HII regions, and

€ is a constant that controls the extra attenuation towards them.
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population. By design, RF includes an implicit prior built from the training data.
We approximate the effect of this prior by applying a 2D population prior formed
from the redshifts and stellar masses in the ‘truth’ catalogue to the PDFs estimated
by BAGPIPES using the four-band photometry. To apply the prior, we fit a kernel
density estimate (KDE) to the ‘true’ redshifts and stellar masses. We use 1% of the
total number of point predictions to fit this prior, which equates to ~ 200,000 data
points. Next, we compute the prior probability density at each redshift—stellar mass
sample point output by the BAGPIPES nested sampling (with four-band photometry).
We produce a smoothed posterior of these points, weighted by the prior probability,
via another KDE. Finally, we draw 1000 importance samples from this smoothed

posterior. We repeat this process for all the galaxies.

We explored the possibility of applying a full 6D prior because, in principle,
it should further improve the results. However, doing so caused a large number of
galaxies to become catastrophic outliers. It is beyond the scope of this work to go
through the painstaking process of carefully optimising a high-dimensional prior,
as we simply want a comparison that assists the reader’s intuition in interpreting
the result from our RF models. Nevertheless, we still had a considerable percentage
(6 — 7%) of catastrophic outliers even with our 2D prior. These outliers can skew
the performance in terms of the metrics we have chosen and can often be treated
separately in scientific analyses. Hence, we remove these outliers and then perform
the different calibration checks to better gauge the performance of the population at

large.

Figure 4.8 shows the PIT and the copPIT distributions alongside the marginal
and Kendall calibration plots from the analysis, and for comparison, they are overlaid
with results from the DES-DF model, labelled as GALPRO. The PIT distributions are
not uniform and indicate biased marginal PDFs for the galaxy population, which
correlates well with the marginal calibration plots that have large fluctuations about
the zero line. Nevertheless, the marginal redshift PIT distribution is competitive
with SED-fitting approaches used in code comparison works, e.g., Schmidt et al.
(2020, Figure 2) and Euclid Collaboration: Desprez et al. (2020, Figure 7). However,
these studies use deeper data than in this work. Unsurprisingly, a small number

of joint PDFs are also biased, as reflected by the non-uniform copPIT distribution.
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Figure 4.8:

copPIT w

Comparison diagnostic plots for benchmarking the performance of GALPRO on
test galaxies in the DF dataset against that of BAGPIPES on a comparable
dataset, which is composed of the same galaxies but with Subaru photometry
in four bands (V, r, i+, and z + +) from the COSMOS2015 catalogue. The
marginal and joint PDF's of redshift and stellar mass produced by BAGPIPES
are validated using a ‘truth’ catalogue constructed by running BAGPIPES on
photometry in 22 COSMOS bands listed in Table 4.1.
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Despite the biased PDF's, BAGPIPES does manage to capture the dependence structure
between redshift and stellar mass on a similar level to that achieved by the RF. On the
whole, RF outperforms BAGPIPES on the metrics we have considered in our analysis.
Having said that, it should be possible for BAGPIPES to match the performance of
the RF through judicious use of priors and great care in photometric calibration. A
great advantage of the RF is that the large effort that would be required to do so is
not necessary. An implicit prior is automatically applied, transferring information
from the rich training dataset to our target data.

To summarise, we have benchmarked the performance of GALPRO against
BAGPIPES, and by doing so, we have been able to place our results into context. We
have found that our ML-based method performs better in every aspect compared to
a SED-fitting method that employs a fairly standard set-up. Thus, we have confi-
dence that our models are producing valid marginal and joint posterior probability
distributions, based on the different calibration modes and metrics we have employed

in our analysis.

4.7 Conclusions

The emergence of SED-fitting methods with the capability of generating multivariate
PDFs of redshift and physical properties of galaxies represents a paradigm shift.
These PDFs account for potential correlations between different galaxy properties
and fully characterise uncertainties associated with point estimates of the quantities.
However, with their potential benefits, comes the task of generating them quickly,
which is difficult given their complexity. For example, the SED-fitting code BAGPIPES
takes a few minutes to fit each galaxy. While this may not seem significant, the
amount of time required to generate them for hundreds of thousands of galaxies, let
alone the billions that will be observed with the upcoming photometric surveys such
as LSST and Euclid, quickly becomes impractical. Coupled with the difficulty of
storing such PDFs, a solution that enables on-the-fly production at speed is greatly
desirable.

In this work, we tackle the problem by using an ML-based approach. We
introduce a novel method based on the RF algorithm to generate joint PDFs. As an
example, we generate PDF's for the probability space in redshift and stellar mass,

as they are two of the most important to accurately predict. Our method can
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be generalised to extract n-dimensional PDFs. However, we focus on this specific
two-dimensional space as it is easy to visualise and exhibits well-known correlations
between the properties.

To demonstrate the method, we train two RF models to produce joint PDFs of
galaxies in the DES DF and the main WF DES survey, respectively. We separately
combine the COSMOS2015 catalogue, with the DES Y3 DF and the Y3 Balrog
to construct the necessary datasets, which contain 53,941 and 393,276 galaxies,
respectively. From the trained models, we extract point estimates and marginal and
joint PDF's of 10, 699 test galaxies. We then proceed to determine the validity of both
sets of PDF's, and for this, we utilise the notions of probabilistic copula calibration
and Kendall calibration to validate the joint PDFs, and their univariate counterparts
to validate the marginals. We highlight in particular the advantage of incorporating
realistic photometric errors into the RF on Kendall calibration. We benchmark
our results against those achieved by BAGPIPES, adopting a basic set-up and simple
population-derived prior in redshift and stellar mass, to provide some context to
the metric values and guide our intuition. We find that our ML-based method is
producing valid PDFs with only small calibration errors and performs at a superior
level on every metric we consider in our analysis compared to BAGPIPES. Despite the
success of our method, SED-fitting approaches such as BAGPIPES undoubtedly still
have a vital role to play in building the training samples for ML-based codes.

To conclude, joint redshift—stellar mass PDFs have many potential science
applications, from determining the evolution of the SMF to constraining the SHMR.
Consequently, we have developed GALPRO, a highly intuitive and efficient Python
package for rapidly generating n-dimensional PDFs on the fly, thus solving the
potential issue of storage. We have trained and tested our RF models using GALPRO
on a 13” Macbook Pro (2.4 GHz Intel Core i5, 16GB LPDDR3) and found that, at
best, it takes on average a few milliseconds to generate a PDF. Thus, GALPRO can
potentially offer a 100,000z reduction in run time compared to packages based on
SED-fitting methods, making it ideal for the impending era of “Big Data”. Of course,
one must ensure that the training dataset is representative and suitable for their

scientific analysis to fully reap the benefits of GALPRO.



Chapter 5

The Causal Effect of Environment on

Galaxies with Causal Machine Learning

This Chapter is based on Mucesh et al. (in prep): The Causal Effect of

Environment on Star Formation with Causal Machine Learning.
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The formation and evolution of galaxies is a consequence of both their nature and
nurture. The two components are heavily intertwined, as nature influences nurture
and vice versa in a feedback loop as the galaxies and their environments co-evolve
over time. This muddling of causality combined with the lack of knowledge of the
evolutionary history of galaxies has hindered progress and restricted observational
studies to imply a galaxy—environment causal connection without the causal effect.

We aim to make progress with the emerging field of causal machine learning
(causal ML). In this work, we establish the causal nature of the star-formation rate
(SFR)-density relation in the IllustrisTNG simulations, specifically the TNG100-1
run. We construct a comprehensive causal model of galaxy formation and evolution
and employ the g-method, inverse probability weighting (IPW) of marginal structural
models (MSMs; Section 5.4), to disentangle nature and nurture. We apply the
random forest (RF) algorithm in a two-step estimation process to determine the
overall causal effect of environment on the SFR at z = 0. Additionally, we estimate
the causal effect at different redshifts going back to z ~ 3 (with a baseline at z ~ 6)
to understand how the role of environment has changed over time.

We find the causal effect is negative and substantial, with environment suppress-
ing the SFR by a factor of ~ 100. While the environment has a negative impact on
star formation at low-to-intermediate redshifts (z < 1), at high redshifts (z 2 1),
the role is reversed as it has a positive impact and boosts the SFR. Furthermore,
we reveal that: (i) nature plays a significant role since ignoring its effect results
in the causal effect in the densest environment being underestimated by a factor
of ~ 6, (ii) controlling for the stellar mass at a snapshot in time (as is common
in the literature) is not only insufficient but actually has an adverse effect. The
negative effect at low-to-intermediate redshifts is overestimated, while the positive
effect at high redshifts is underestimated, by up to a factor = 10 at specific densities,
though (iii) stellar mass is an adequate proxy of the effects of nature. The results
are supported by diagnostic tests, which indicate that our causal model is valid and

the causal assumptions might be satisfied.
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5.1 Introduction

Galaxies are diverse entities, with no two being completely alike. However, the
population naturally separates into two distinct, broad classes: the red sequence of
massive, red, early-type, quiescent galaxies, and the blue sequence of less-massive,
blue, late-type, star-forming galaxies. In the local Universe, the bimodal population
is unevenly distributed, with the red sequence mainly found in groups and clusters
and the blue sequence located in relative isolation in the field. In other words, galaxy
properties are correlated with environment. The fundamental question is then: are

the correlations causal?

The well-established morphology—density (Dressler, 1980), colour—density (Ko-
dama et al., 2001), and star-formation rate (SFR)-density (Gémez et al., 2003)
relations reveal that as environmental density increases, there is a shift from late-type
to early-type morphologies (Hubble and Humason, 1931; Zwicky, 1937; Morgan,
1961; Abell, 1965; Oemler, 1974; Davis and Geller, 1976; Postman and Geller, 1984;
Whitmore and Gilmore, 1991; Santiago and Strauss, 1992; Whitmore et al., 1993;
Hermit et al., 1996; Guzzo et al., 1997; Dominguez et al., 2001; Giuricin et al.,
2001; Treu et al., 2003; Goto et al., 2003), an increase in the fraction of red galaxies
(Willmer et al., 1998; Brown et al., 2000; Pimbblet et al., 2002; Zehavi et al., 2002;
Hogg et al., 2004; Blanton et al., 2005; Martinez and Muriel, 2006), and a decline in
the star-formation activity of galaxies (Balogh et al., 1997, 1998; Hashimoto et al.,
1998; Poggianti et al., 1999; Balogh et al., 2000; Couch et al., 2001; Postman et al.,
2001; Carter et al., 2001; Lewis et al., 2002; Balogh et al., 2004a; Tanaka et al.,
2004; Rines et al., 2005), respectively. The correlations may be causal, but one
has to be careful as “correlation does not imply causation”. Notably, stellar mass
is strongly correlated with most galaxy properties (McGaugh and de Blok, 1997;
Blanton et al., 2003; Kauffmann et al., 2003b,a; Baldry et al., 2004b; Hogg et al.,
2004) and environment (Balogh et al., 2001; Hogg et al., 2003; Mo et al., 2004; Croton
et al., 2005; Hoyle et al., 2005; Blanton et al., 2005). Consequently, are the observed
correlations due to internal processes that scale with stellar mass rather than external
processes associated with environment? This is the essence of the nature versus

nurture debate.

Galaxy formation and evolution is conceivably a result of both nature and nurture.
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Typically, analyses have attempted to isolate the effect of nature by controlling for
stellar mass. A common approach has been to bin galaxies into fixed bins of stellar
mass before drawing conclusions from the residual trends. Most studies have found
that galaxy properties still depend on environment (Kauffmann et al., 2004; Balogh
et al., 2004b; Baldry et al., 2004a, 2006; Weinmann et al., 2006; Bamford et al., 2009;
Skibba et al., 2009). Overall, there is little doubt that environment plays a role in
shaping the evolution of a galaxy. But the magnitude of the role is still up for debate
(Pasquali et al., 2009; Thomas et al., 2010; Griitzbauch et al., 2011).

There is uncertainty on whether controlling stellar mass is sufficient to disentangle
the roles of nature and nurture (De Lucia et al., 2012). Furthermore, it is still unclear
whether the nature versus nurture debate is sensible in the first place. In biology and
many other fields, there is consensus that nature influences nurture and vice versa in
a feedback loop. This is arguably true for galaxy evolution as well, as galaxies and
their environments interact with each other over time. In this instance, the notion of

separating the influence of nature and nurture is muddled and ill-defined.

There is some evidence to suggest that the effects of stellar mass and environment
are separable (Peng et al., 2010; Quadri et al., 2012; Kovac et al., 2014). Peng et al.
(2010) concluded that there are two processes associated with stellar mass and
environment that play a major role in quenching galaxies independently of each other,
which they termed “mass quenching” and “environmental quenching”, respectively.
Simply put, massive galaxies become quiescent independent of their environment,
and galaxies located in high-density regions quench independently of their stellar
mass. Given the strong possibility of a causal connection between stellar mass and
environment (Bolzonella et al., 2010; De Lucia et al., 2012; Mortlock et al., 2015;
Darvish et al., 2015; Davidzon et al., 2016), and contradictory studies (Lin et al.,
2014; Knobel et al., 2015; Darvish et al., 2016; Kawinwanichakij et al., 2017), the

result is puzzling and requires further exploration.

As galaxies and their environments co-evolve over time, consideration of their
histories is likely paramount to infer causality. Yet, observational studies in the
past have been confined to a sole snapshot in time, predominantly focused on the
local Universe due to the limitations of the then-available surveys. The advent of

deep surveys, such as COMBO-17 (Wolf et al., 2003), Great Observatories Origins



5.1. Introduction 119

Deep Survey (GOODS; Giavalisco et al. 2004), Deep Extragalactic Evolutionary
Probe (DEEP; Vogt et al. 2005) and DEEP2 Galaxy Redshift Survey (DEEP2;
Davis et al. 2003; Newman et al. 2013), and Cosmic Evolution Survey (COSMOS;
Scoville et al. 2007) and zCOSMOS (Lilly et al., 2007), has enabled studies to utilise
multiple snapshots over time. However, they still suffer from being unable to trace

the evolution of an individual galaxy, thereby weakening any evidence of causality

(VanderWeele et al., 2016).

In summary, we believe the lack of a theoretical framework to think and reason
about causal questions, combined with the limitations of observational data, has
hindered progress in the field. The studies have been largely statistical in nature, so
they have hinted towards causality but without mathematical conviction. We aim to
make progress by: (i) adopting the causal inference framework to comprehend and
solve the discussed problems and (ii) using simulations to trace both the evolution of

the galaxy population and individual galaxies over time.

Causal inference methods have been applied to answer crucial questions in various
fields, such as economics (Angrist and Krueger, 1991; Card and Krueger, 1993; Cengiz
et al., 2019), political science (Kam and Palmer, 2008), education (Angrist and Lavy,
1999; Carlsson et al., 2015), policy (Ghosh et al., 2018), public health (Doll and
Hill, 1950; Chay and Greenstone, 2003; Clark and Royer, 2013; Desouza et al., 2022),
and more recently, astronomy (Scholkopf et al., 2015; Wang et al., 2016). Despite
their success, the methods do not scale to handle high-dimensional and unstructured
data and non-linear relationships. Conversely, these are the strengths of machine
learning (ML) methods. ML has proliferated in most fields, including astrophysics
(see Baron, 2019; Fluke and Jacobs, 2020, for recent reviews). And in recent years,
ML algorithms have even been utilised for causal insights into galaxy formation and
evolution by determining the predictive power (Teimoorinia et al., 2016; Bluck et al.,
2019, 2020a,b, 2022; Brownson et al., 2022; Piotrowska et al., 2022; McGibbon and
Khochfar, 2022). For example, Bluck et al. (2022) estimated feature importances
with the random forest (RF; Breiman 2001) algorithm and demonstrated that it is
capable of identifying causal from non-causal parameters (known from simulations).
Nonetheless, the predictive power of a variable does not translate to the causal effect

and cannot guarantee causality because ML is fundamentally correlation-based. The
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missing ingredient is causal inference.

Causal machine learning (Causal ML) aims to empower causal inference with
powerful ML techniques and ML with causal reasoning (see Kaddour et al., 2022, for
a review). The field is still in its infancy but is developing rapidly and has already
shown some promising results (Richens et al., 2020). In this chapter, we apply causal
ML to disentangle the roles of nature and nurture and establish the causal nature of
the SFR—density relation. We estimate the causal effect of environment on the SFR
at z = 0 to determine the overall impact and at different redshifts out to z ~ 3 to
determine how the role of environment has changed over cosmic time. Furthermore,

we answer the fundamental questions:
1. Is stellar mass an adequate proxy of the effects of nature?

2. Does controlling for the stellar mass at a snapshot in time disentangle the

effects of nature and nurture?

3. Is nature important in the nature-nurture debate? Specifically, is galaxy
formation and evolution top-down determined by environment with no reverse

influence of nature?

The outline of this chapter is as follows. In Section 5.2, we construct a compre-
hensive causal model of galaxy formation and evolution. In Section 5.3, we detail the
preprocessing steps we follow to prepare the galaxy sample we use in our analysis.
In Section 5.4, we describe the causal inference method we employ to disentangle
nature and nurture and estimate the causal effect of environment on SFR. In Section
5.5, we outline the overall two-step ML estimation process we apply to estimate the
causal effects. In Section 5.6, we validate our results by performing diagnostic tests
to ascertain whether the causal assumptions are satisfied and our causal model is
correct. In Section 5.7, we discuss and interpret the results, and place them into
a wider context via a model comparison. Finally, we summarise this chapter and

discuss potential future work in Section 5.8.
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5.2 Causal Model of Galaxy Formation and Evolution

Our goal is to estimate the causal effect of environment on SFR. Given that per-
forming an RCT on the Universe is impossible, we must infer the causal effect from
observational data'. As detailed in Chapter 3, observational data suffers from many
biases, which make any direct inference invalid. Causal inference from observational
data necessitates identifying and nullifying the biases with expert knowledge and a
priori assumptions about the data-generating process (DGP) in the form of causal

models. Consequently, we construct a causal model of galaxy formation and evolution.

We assume the cold dark matter (CDM) paradigm, in which galaxies form and
evolve hierarchically in dark matter haloes (White and Rees, 1978; Efstathiou and
Silk, 1983; Blumenthal et al., 1984). To build our causal model, we review established
theories of galaxy formation and evolution, and in particular ideas from semi-analytic
modelling (SAM; White and Frenk 1991; Cole 1991; Kauffmann et al. 1993; Cole
et al. 1994; Kauffmann et al. 1999; Somerville and Primack 1999; Springel et al. 2001;
Hatton et al. 2003; Springel et al. 2005; Kang et al. 2005; Lu et al. 2011; Benson 2012;
Henriques et al. 2015; also see Baugh 2006; Benson 2010, for reviews), and express
them as causal graphs. We carefully consider all the relevant physical processes and
assemble the causal model step-by-step with mini causal models before connecting

all the pieces.

We note that a method called genetic modification (GM; Roth et al. 2016) has
emerged that can determine the causal effect in simulations. Based on performing
controlled experiments, it mimics in effect an RCT and has been applied to estimate
the causal effect of environment (Cadiou et al., 2021). While the approach is promising,
it is limited to a single object (at a time) and, more importantly, cannot be applied
to the real Universe. Also, while we build the causal model, it is conceivable to infer
it—the aim of causal discovery. However, identifying causality is not our goal, but
rather the question this thesis attempts to address is: given our knowledge of galaxy
formation and evolution, how can we estimate the causal effect?

We adopt a straightforward naming convention in the causal model: any variables
associated with the halo and galaxy are preceded by them, respectively. Furthermore,

halo refers to the dark matter halo that hosts a galaxy, and host halo refers to the

!Observational data here refers to data not acquired through experimentation.
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parent dark matter halo that hosts other haloes. As such, halo refers to both distinct
haloes and subhaloes. In the following section, we describe the galaxy formation
process. Figure 5.1 shows the mini causal models of the different stages of galaxy

formation and standard physical processes occurring in galaxies.

5.2.1 Galaxy Formation

In the very early Universe, quantum fluctuations of the scalar field drive inflation and
generate density perturbations in the initial matter density field, sowing the seeds for
galaxy formation (Guth and Pi, 1982; Hawking, 1982; Linde, 1982; Starobinsky, 1982;
Bardeen et al., 1983). The small perturbations evolve under gravitational instability
as regions of space with above-average density attract matter and become denser
over time. Conversely, regions of space with below-average density lose matter and
become rarefied over time. The outcome is the amplification of the initial density

contrast.

Once a region reaches over-density (6p/p ~ 1), it breaks away from the cosmo-
logical expansion and collapses to form a dark matter halo (Mo et al., 2010). The
primordial haloes are small as perturbations on the smallest scales collapse first
(Benson, 2010). The mass and environment of the dark matter halo are a product of
the evolution of the initial matter density field, or more specifically, the amplitude
and pattern of the initial density perturbations, respectively. In the causal model,
we loosely label this as “initial conditions”: the ‘cause’ of the initial haloes and their
environment (Figure 5.1-1). Given that galaxies form in dark matter haloes, we

associate nature with halo mass, and nurture to environment.

The ordinary baryonic matter falls into the gravitational potential well of the
dark matter halo and is shock-heated to the haloes’ virial temperature to produce
a hot gas halo that is supported against further collapse by the pressure of the
gas. Thus, halo gas mass and temperature depend on halo mass (Figure 5.1-2,3).
Subsequently, the hot gas can cool through various mechanisms (Kauffmann et al.,
1993), which removes the pressure support and causes the gas to sink to the centre
of the gravitational potential well (Silk, 1977; Rees and Ostriker, 1977; Binney, 1977;
White and Frenk, 1991; Cole, 1991; Lacey and Silk, 1991). If the angular momentum
is conserved during the cooling process, the gas spins up as it flows inwards and

forms a rotationally supported disc (Fall and Efstathiou, 1980; Mo et al., 1998).
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Primarily, two factors determine the mass of cold gas in the disc: (i) the cooling
rate (i.e., the mass of gas cooled per unit time) and (ii) the free-fall time (i.e., the
time taken for the cooled gas to transfer from the halo to the disc) (Figure 5.1-6).
The cooling rate depends on the metallicity, temperature, and density of the halo gas
(Figure 5.1-4). Specifically, the temperature and density determine the ionisation
state and collision rate, respectively. The free-fall time depends on the halo mass
and radius (Figure 5.1-5).

As the gas accumulates, its self-gravity dominates over that of the dark mat-
ter—and it collapses. The exact process of star formation from a self-gravitating gas
cloud is unknown, but there are two theories. In the bottom-up theory, low-mass
stellar cores acquire gas from the cloud in a competitive accretion process (Bonnell
et al., 1997), while in the top-down theory, the gas cloud simply fragments and
the sub-clouds collapse to form stars (Krumholz et al., 2005). Independent of the
exact model, the star-formation rate (SFR) depends on the local density of cold gas
(Schmidt, 1959; Kennicutt, 1998) (Figure 5.1-7,8). This is the standard paradigm of
galaxy formation.

We remark that halo accretion also depends on environment, and generally,
the halo and forming galaxy are subject to external processes (discussed in Section

5.2.2.2). Thus, galaxy formation depends not only on nature but also nurture.
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5.2.2 Galaxy Evolution

In this section, we describe the internal and external processes that shape the
evolution of galaxies. We do not attempt to model the different processes in detail
or as accurately as possible because our goal is to estimate the overall causal effect
of environment rather than of individual processes. Instead, we focus on conveying
how the processes are related to halo mass and environment and their impact on
galaxy properties, especially SFR. Figures 5.2 and 5.3 show the mini causal models

of internal and external processes related to galaxy evolution, respectively.

5.2.2.1 Internal Processes

As stars form, the stellar mass of a galaxy increases, and the amount of cold gas
available for future star formation decreases by construction (Figure 5.2-1). The
consequence of the feedback loop between galaxy gas mass and SFR is that without
further accretion of gas, a galaxy will eventually die as it exhausts its cold gas and
star formation ceases.

Besides the natural evolution, feedback from massive stars can actively shape
a galaxy’s evolution and accelerate its demise. The most massive stars explode
in a supernova at the end of their lives, and the resulting feedback (Larson, 1974;
Dekel and Silk, 1986) can both positively and negatively affect SFR (see Hopkins
et al., 2014, for an overview). For example, supernova-driven galactic winds heat
the interstellar medium (ISM) and eject cold gas from the disc back to the halo,
or in the extreme case, out of the halo altogether, thus suppressing star formation
(Heckman et al., 1990; Martin, 1999; Scannapieco et al., 2008). Conversely, the blast
waves may compress the cold gas to temporarily boost star formation. Supernovae
(SNe) feedback also ejects material, which enriches the halo and galaxy gases. A
more metal-rich halo gas increases the cooling rate (or shortens the cooling time),
which may ultimately lead to increased star formation (Figure 5.2-3).

Supermassive black holes (SMBHs) are also important in the evolution of a
galaxy because they are responsible for AGN feedback (Dekel and Silk, 1986). There
are two main modes of AGN feedback: the quasar mode and the radio mode. In the
quasar mode, a SMBH grows via accretion of cold gas and mergers with other SMBHs
(in galaxy mergers). In the radio mode, SMBHs accrete gas directly from the halo

and release a vast amount of energy, heating the halo gas and suppressing cooling
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(Croton et al., 2006) (Figure 5.2-6,8). In both modes, AGN feedback negatively
impacts star-formation activity by diminishing the cold gas. Nevertheless, like SNe
feedback, there are mechanisms whereby AGN feedback can boost SFR (see Fabian,
2012; Heckman and Best, 2014, for recent reviews). In the causal model, AGN
feedback represents only the ‘output’ processes.

SNe feedback depends on the initial mass function (IMF) and the SFR (Figure
5.2-2). The IMF dictates the overall fraction of stars that end up as supernovae,
while the SFR determines the overall number. On the other hand, the picture for
AGN feedback is far less clear as it depends on how, when, and where SMBHs form.
Nevertheless, AGN feedback must scale with the mass of the SMBH (Soltan, 1982;
Silk and Rees, 1998) (Figure 5.2-7), which depends on accretion and merger rates,
but the reverse is true for the former as well, so there is a feedback loop (Figure
5.2-4). The accretion rate depends on halo and galaxy gas masses (Figure 5.2-6),
while the merger rate is broadly determined by the number of galaxy mergers (Figure
5.2-5), which as will be discussed in detail in the following section, depends on halo
mass and environment. In summary, there is believed to be a causal connection
between AGN feedback and star-formation activity.

Overall, there are feedback cycles between halo and galaxy gases, SFR, and
feedback. For example, an increase in cold galaxy gas from enhanced cooling of hot
halo gas boosts star formation. A fraction of the stars born explode in a supernova,
determined by the IMF, and the resulting feedback expels and/or heats the cold gas
in the galaxy, transferring it back to the halo, which in turn reduces star formation.
We emphasise that while the feedback theories discussed are likely to resemble reality,
the fact is that the precise mechanisms are unknown. Furthermore, it is still unclear
how SMBHs form in the first place.

In the following section, we describe the external environmental processes that
shape a galaxy’s evolution (see Boselli and Gavazzi, 2006, for a review). There are
many definitions of environment, but ultimately one means the mass density field.

Thus, we bear this in mind to derive the causal model.
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5.2.2.2 External Processes

Many processes associated with environment influence galaxies, but two of the most
fundamental are accretion and mergers. The halo accretion and merger rates depend
on halo mass and environment. For example, a massive halo is able to accrete more
matter, but environment also plays a role since it determines the amount available
for accretion. Also, a massive halo in a dense environment has to compete with
neighbouring haloes to attract matter. Accretion changes halo mass and environment
(assuming the local mass density field), so there is a feedback loop. Undoubtedly, a
feedback loop also exists between halo mass, environment, and mergers. However,
unlike accretion, mergers may not affect halo mass depending on the merger type
(clarified below). In summary, halo mass (i.e., nature) and environment (i.e., nurture)
influence each other via accretion and mergers in a feedback loop. In this context,

we define the nature versus nurture debate in this thesis (Figure 5.3-1).

Mergers are broadly categorised into two types: major and minor. A major
merger occurs when the progenitors are of similar masses, and in such a merger, the
progenitor haloes and galaxies merge violently to form a more massive halo with a
new galaxy residing at its centre. If the progenitors are disc galaxies with a mass ratio
1 : 1, then the post-merger remnant resembles an elliptical (Toomre and Toomre,
1972; Toomre, 1977; Hernquist, 1992, 1993; Barnes, 1988, 2002; Cox et al., 2006).
Later on, if the shock-heated and ejected gas from outflows cools with significant
angular momentum, a disc forms, and then the post-merger remnant resembles an
early-type spiral galaxy with a disc-bulge system (Hopkins et al., 2009; Sparre and
Springel, 2016; Pontzen et al., 2017). A galaxy merger is a cause of morphological

transformation (Figure 5.3-2).

A period of star formation activity follows a major merger if the progenitor
galaxies contain large quantities of cold gas. In the short term, the influx of cold gas
and/or an increase in the galaxy gas density due to interactions between galaxies
trigger starbursts (Mihos and Hernquist, 1994, 1996; Hopkins et al., 2006, 2008b,a;
Snyder et al., 2011; Hayward et al., 2014; Sparre and Springel, 2016). Also, the
halo gas shock-heated during the merger has the opportunity to cool, leading to
star formation in the long term. However, AGN feedback can prevent this from

happening (Sanders et al., 1988; Di Matteo et al., 2005; Hopkins and Hernquist, 2009;
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Treister et al., 2012). If the progenitor galaxies harbour SMBHs, they may merge in
the process. Additionally, the same influx of gas that fuels star formation can feed
the SMBH. The subsequent growth of the SMBH from the merger and accretion can
consume any leftover halo and galaxy gases (in a feedback loop) and suppress the

halo gas from cooling, resulting in a galaxy devoid of star formation (Figure 5.3-2).

A minor merger occurs when the progenitors are of dissimilar masses, and in
such a merger, the smaller galaxy is ‘absorbed’ by the larger galaxy. In our causal
model, we have defined two types of mergers: “halo mergers” and “galaxy mergers”.
As the names suggest, a halo merger refers to the merger of haloes, while a galaxy
merger refers to the merger of galaxies. As such, major and minor mergers are
halo mergers followed by galaxy mergers in our causal model (Figure 5.3-1). We
distinguish minor mergers into “minor halo mergers” and “minor galaxy mergers”.
In a minor halo merger, the haloes ‘merge’ as the smaller halo orbits within the
larger halo, but the galaxies may or may not. Accordingly, we refer to it as a halo
merger, but not exclusively. As in simulations, we model the halo merger with the
following perspective: the smaller and larger subhaloes occupy a common host halo
that is a sum of its parts. In other words, the progenitor haloes retain their identity
unless a galaxy merger follows a halo merger. Consequently, we continue referring to
progenitor haloes (and the associated variables) post-merger as haloes rather than

subhaloes of the host halo in the causal model.

Halo mergers are responsible for the formation of groups and clusters. In such
environments, the central galaxy is the most massive and located near the centre,
while the satellite galaxies orbit around it. Central galaxies reside deep in the
gravitational potential well of the host halo, while satellite galaxies reside further
out at different depths and distances. As a result, the environmental effect on these
galaxies is asymmetrical as satellites experience most of the processes and not centrals.
Satellite galaxies in these dense environments are subject to different processes that

are either a consequence of, or scale with, the host halo mass.

A satellite galaxy experiences dynamical friction (Chandrasekhar, 1943a,b,c)
as it orbits within its host halo. The drag slows down the satellite, which causes it
to spiral inwards and eventually merge with the central galaxy in a process called

galactic cannibalism. The magnitude of dynamical friction depends on the satellite’s
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halo mass and environment. For example, a satellite is subject to greater dynamical
friction if it is more massive and occupies a larger host halo. Galactic cannibalism is

the predominant environmental process that affects central galaxies (Figure 5.3-3).

Another critical process linked to environment is ram-pressure stripping (RPS;
Gunn and Gott 1972). As a satellite travels through the hot intergalactic medium
(IGM) of groups and clusters, its relatively cold halo and galaxy gases encounter
a hydrodynamical drag force due to the relative motion of the two fluids. If the
drag force exceeds the satellites’ restoring force, its cold gas is ablated. Accordingly,
while environment causes RPS (assuming the amount and temperature of hot gas
correlates), its extent also depends on halo mass. Evidently, the depletion of gas
(hot and cold) negatively impacts the SFR, and a decline in star formation affects
the visual morphology of the galaxy. More specifically, a satellite galaxy that is
initially spiral may resemble a lenticular (S0) galaxy. Nonetheless, there is doubt
whether the effects of RPS are negative and/or permanent. For example, there is
evidence that any gas not stripped may be compressed by RPS to cause an increase
in star formation activity in the disc (Dressler and Gunn, 1983; Gavazzi et al., 1995).
Additionally, the stripped gas may remain bound, to later fall back and induce
starbursts (Vollmer et al., 2001). In retrospect, RPS is likely to be only partially
responsible for the morphology—density and SFR—-density relations (Abadi et al.,
1999) (Figure 5.3-4).

Groups and clusters comprise tens and upwards of hundreds of galaxies respec-
tively, so gravitational interactions are a common occurrence. In group environments,
a satellite galaxy experiences tidal forces from other galaxies. The tidal interactions
can remove its cold and hot gases, stars, and dark matter via tidal stripping (Moore
et al., 1999). As was the case with RPS, the effectiveness of tidal stripping depends
on environment (the number of interactions is related to the density) and halo mass.
Note that there is a feedback loop between tidal stripping and halo mass, so the
process becomes more effective over time (Kampakoglou and Benson, 2007) (Figure

5.3-5).

In cluster environments, satellite galaxies are typically not subject to tidal
stripping and mergers (not resulting from dynamical friction) because strong gravita-

tional interactions are infrequent due to their high velocities (Ghigna et al., 1998).
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Instead, they are subject to multiple, weak interactions, and the cumulative effect
of such interactions is called galaxy harassment (Farouki and Shapiro, 1981; Moore
et al., 1996). The high-speed encounters can impulsively heat the disc of a satellite
galaxy, which pushes its stars onto elliptical orbits, and the disc transforms into a
spheroidal component, thus altering its morphology (Moore et al., 1998; Gnedin,
2003; Mastropietro et al., 2005; Aguerri and Gonzalez-Garcia, 2009). At its extreme,
the stars can become completely unbound, which decreases the galaxy’s stellar mass
(Smith et al., 2010, 2015; Bialas et al., 2015). The heating of the disc naturally
impacts the SFR as it affects the density of the cold gas (via a change in the galaxy
gas mass and/or radius). Galaxy harassment scales with the number and strength of
interactions, which depends on environment, and resistance to its effects depends on

halo mass, like tidal stripping (Figure 5.3-6).

The hot halo surrounding a galaxy is in constant flux as the gas condenses to
form stars, and the subsequent feedback returns the cold gas back to the halo. Simply
put, the hot gas acts as a reservoir for future star formation. The combination of
RPS and tidal stripping can annihilate this reservoir, and without further accretion in
a dense environment, a satellite galaxy eventually stops forming stars as it exhausts
its fuel. This process is called strangulation (Larson et al., 1980; Benson et al., 2000).
We do not have a specific node for it in our causal model because it is not a process
in and of itself and is already captured by the existing variables. Also, we do not
have nodes for thermal evaporation (Cowie and Songaila, 1977) and viscous stripping
(Nulsen, 1982) because they are variants of RPS. Furthermore, whilst important,
variables such as colour, stellar metallicity, and luminosity are not included as they

are not the subject of this study.

Finally, we have not precisely defined or modelled morphology and related
processes because our target is the SFR—density relation. Nonetheless, internal
dynamical effects can change the morphology of galaxies, a well-known example
being the bar instability. A thin disc with high surface density is susceptible to a
non-axisymmetric instability, which creates a bar-like structure. Bars can funnel gas
to the central region of a galaxy (Athanassoula, 1992), which can fuel AGNs and
star formation (Zurita et al., 2004; Sheth et al., 2005). The bar may also buckle

to produce a “pseudobulge” (see Kormendy and Kennicutt, 2004, for a review),
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which can prevent the disc from collapsing and forming stars (Fang et al., 2013).
Additionally, there is a strong connection between bulges and SMBHs (Kormendy
and Richstone 1995; Magorrian et al. 1998; Ferrarese and Merritt 2000; Gebhardt
et al. 2000; Haring and Rix 2004; also see Kormendy and Ho 2013, for a review).
Thus, morphology can directly and indirectly influence SFR (and vice versa). Still,
detailed modelling of morphology is unnecessary to estimate the SFR—density relation
because it is not a confounding factor given that it does not also impact environment.
In fact, controlling for morphology may induce selection bias (Figure 3.3) since it is
a common effect of environment and SFR.

The key findings are: (i) galaxy formation and evolution depends on nature and
nurture, (ii) nature (i.e., halo mass) and nurture (i.e., environment) influence each
other through accretion and mergers, and (iii) internal processes associated with
nature also depend on nurture, and external processes associated with nurture also
depend on nature, as both halo mass and environment determine their impact on
galaxies. In conclusion, nature and nurture are heavily intertwined. In Section 5.4,
we describe a causal inference method to disentangle the causal effects of nature and
nurture. And to do so, we first unravel the feedback loops between them over time

in the causal model.
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5.2.3 Causal DAG and Effects

Figure 5.4 shows the causal model of galaxy formation and evolution in its entirety
with all the mini causal models and variables connected. The causal model is complex
and richly interconnected with multiple interactions and feedback loops between
the variables. The presence of feedback loops blurs the notion of causality. If two
variables cause each other in a cycle, then what is the causal effect of one thing on
another? Alternatively, the flow of causal association is symmetric along bidirected
edges, so the causal effect is undefined. Fundamentally, the fuzziness emerges due
to a lack of a causal arrow of time, i.e., a cause precedes its effect. Technically,
the causal graph is a directed cyclic graph (DCG) because it does not satisfy the
“variable does not cause itself” criterion. We transform the DCG into a DAG by
unravelling the feedback loops over time to make it easy to interpret and estimate

causal effects.

5.2.3.1 Causal DAG

We aim to estimate the causal effect of environment on SFR. Assuming the causal
model is representative of the DGP, we identify potential biases that may distort the
causal effect. Upon careful inspection, we find that halo mass is the fundamental
confounder as it causes the treatment (i.e., environment) and outcome (i.e., SFR)
through various processes. We focus only on these quantities of interest and unravel
the feedback loops between them to construct a DAG of the causal model, as shown
in Figure 5.5. In the DAG, H, E, and SFR denote halo mass, environment, and
SFR respectively, and the subscripts indicate time, increasing from left to right (with
zero marking the present). The causal model refers to the DAG from hereon unless
otherwise specified.

The initial haloes and their environments emerge from the initial conditions in
the early Universe. Subsequently, they interact and co-evolve over time in a feedback
loop, influencing galaxies in the process via various mechanisms. The structure of

the causal model is as follows:

Ex — SF Ry, Environment affects the SFR as: (i) tidal stripping and RPS deplete the
fuel necessary for star formation by annihilating the cold galaxy and hot halo
gases and (ii) galaxy harassment impacts the galaxy gas density by impulsively

heating the cold gas.
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FRg

Figure 5.5: Directed acyclic graph (DAG) of the causal model of galaxy formation and
evolution (Figure 5.4). It is constructed from carefully tracing the causal chains
and unravelling the feedback loops between halo mass (H), environment (E),
and star-formation rate (SFR). The subscripts indicate time, increasing from
left to right (with zero marking the present). The DAG is the causal model
unless otherwise specified.

Hi — SFR; Halo mass dictates the amount and density of the cold gas for star
formation as it indirectly influences the cooling rate and free-fall time via the
halo gas temperature and density. Furthermore, it determines the susceptibility

of a galaxy to environmental processes, which affects the SFR (see above).

SFRy — SF Ry, Intrinsically, the act of forming stars consumes gas, thus impacting
the future SFR. Additionally, feedback as a consequence of star formation
actively affects the SFR through the expulsion of hot halo and cold galaxy

gases and suppression of the cooling process.

Hy_1,E;_1 — Hp, B, Halo mass and environment are determined by the halo accre-
tion and merger rates, which ultimately depend on the previous halo mass and
environment. Also, environmental processes such as tidal stripping affect the

halo mass.

Hy_1,E;_1 — SFRy Accretion and mergers alter many halo and galaxy properties
besides halo mass, which all converge on the SFR. In other words, there is a
direct lagged effect of the previous halo mass and environment on the current

SFR.

There are many causal effects in the causal model. Then, what is the causal

effect of environment on SFR? We provide an explicit definition.
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5.2.3.2 Causal Effects

Environment affects galaxies over a period of time, so it is a time-varying treatment
rather than a time-fixed treatment. Concretely, a time-fixed treatment takes place
at a single point in time, while a time-varying treatment occurs at multiple points in
time. The causal effect of a time-varying treatment is not uniquely defined (Hernan

and Robins, 2023). We define two types of causal effects:
1. The marginal causal effect is the effect of a single treatment 7}, on outcome Y.

2. The joint causal effect is the effect of multiple treatments or treatment history

T}, on outcome Yy, where Ty, = [Tp, T, ..., Tj]

The marginal and joint causal effects of environment on SFR provide different
insights. The marginal effect of Ej represents the short-term impact of environment,
while the joint effect of Ej, captures the long-term impact on SFR. We estimate the
joint effect as we are interested in the overall impact and refer to it as the causal
effect. Although, we also determine the marginal effect for comparison. We define

the environmental history,

J
Ej = %Z (5.1)

k=0
where N is the number of treatments and j = k (see Hagedoorn and Helbich, 2021, for
more complex characterisations). Note that j is used instead of k for mathematical
correctness in this equation and where necessary, but not in text for consistency. The
joint effect of Ej, represents the impact of average environment, which we de facto
mean by the causal effect of environment.

We highlight that while our goal is simply to determine the causal effect of
environment, there are many other causal questions one could investigate as there
are at least 2F possible treatment histories to contrast and thus 2¥~! causal effects
to estimate at time point k (for a binary treatment). For example, what is the
causal effect of occupying a moderately dense environment throughout time versus
a late infall into a high-density environment? In practice, data is limited, and the
number of histories observed is far less than the total, so specific questions require

careful consideration of the causal assumptions. In Section 5.4, we explain the causal
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inference method we apply to estimate both types of causal effects. Before that, we

describe the data we use in the next section.

5.3 Data

According to the causal model and method (as will become apparent in the next
section), we require the evolutionary history of galaxies to disentangle nature and
nurture. Such data is not readily available observationally, so we rely on simulations,
which enable the tracing of galaxies over time using merger trees. In particular, we
utilise the IustrisTNG simulations (Pillepich et al., 2018a; Springel et al., 2018;
Nelson et al., 2018; Naiman et al., 2018; Marinacci et al., 2018; Nelson et al., 2019).

5.3.1 IllustrisTNG

MlustrisTNG (hereafter TNG) is a suite of cosmological, gravo-magnetohydrodynamical
(MHD) simulations run with the moving-mesh code AREPO (Springel, 2010). TNG
adopts a flat ACDM cosmology with Planck Collaboration et al. (2016) cosmolog-
ical parameters (Qx0 = 0.6911,€,,0 = 0.3089,Q¢ = 0.0486,08 = 0.8159,n, =
0.9667, and h = 0.6774). The simulations start at z = 127 from initial conditions
created with the Zeldovich approximation (Zel’dovich, 1970) and the N-GenIC code
(Springel, 2015). There are 100 snapshots of each simulation, approximately equally

spaced in cosmic time from z ~ 20 to the present day z = 0.

TNG is the next-generation follow-up to the original Illustris simulation (Vogels-
berger et al., 2014b,a; Genel et al., 2014) and improves upon its predecessor in many
aspects. It incorporates a comprehensive physical model (Weinberger et al., 2017;
Pillepich et al., 2018b) to simulate the formation and evolution of galaxies within the
CDM paradigm, built upon the original model (Vogelsberger et al., 2013; Torrey et al.,
2014). The model includes prescriptions of various astrophysical processes, such as
star formation, stellar evolution, chemical enrichment, primordial and metal-line
gas cooling, stellar feedback-driven galactic outflows, and SMBH formation, growth,
and feedback (Pillepich et al., 2018a). Furthermore, the model has been tuned or
calibrated to reproduce key observational results at z = 0, such as the galaxy stellar
mass function and the stellar-to-halo mass relations, the total gas mass content
within the virial radius of massive groups, and the stellar mass—stellar size and the

BH—galaxy mass relations. Additionally, the overall shape of the cosmic SFR density
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at z < 10 has also been preserved (Nelson et al., 2019).

Haloes and galaxies are identified in the simulations in a two-step process. A
friends-of-friend (FoF') algorithm (Davis et al., 1985) connects dark matter particles
separated by less than 0.2 times the mean interparticle distance to construct a FoF
halo. The SUBFIND code (Springel et al., 2001; Dolag et al., 2009) detects subhaloes
within each FoF halo by identifying gravitationally bound substructures using all the
particle types. Subhaloes may be dark or contain a luminous galaxy. A FoF halo can
contain zero, one, or more than one subhalo. A FoF halo with one subhalo is simply
a halo, while one with two or more subhaloes is a host halo. The most massive
subhalo in a host halo is the central subhalo; the rest are satellite subhaloes. In
postprocessing, merger trees are generated by linking the FoF haloes and subhaloes
over time using LHALOTREE (Springel et al., 2005) and SUBLINK (Rodriguez-Gomez
et al., 2015).

There are three flagship simulations: TNG50, TNG100, and TNG300, corre-
sponding to the rough side lengths of the simulation boxes in comoving Mpc. The
different simulations enable the exploration of various aspects of galaxy formation.
The largest volume simulation, TNG300, enables analyses of galaxy clustering, for
example. At the other end of the spectrum, TNG50 allows examinations of the
structural properties of galaxies in finer detail because the mass resolution is a few
hundred times better than the TNG300 simulation (Nelson et al., 2019). We use
the TNG100 simulation, which represents a good trade-off between volume and
resolution, particularly for intermediate mass haloes. Specifically, we utilise the
highest-resolution run of the simulation, TNG100-1. The simulation is initialised
with 18203 dark matter and gas particles of mass resolutions 5.1 x 10°Mg, and

9.4 x 10°M,, respectively.

5.3.2 The Galaxy Sample

We require the evolutionary history of galaxies for our analysis. First, we select a
sample of galaxies to trace over time as follows. We start with the group catalogue
at z = 0, which contains 6291349 FoF haloes and 4371211 subhaloes. We match
each subhalo to its FoF halo using the SubhaloGrNr field, which results in 3430706
FoF haloes (i.e., more than half of FoF haloes do not have any subhaloes). There

are some subhaloes of non-cosmological origin, which means they have not formed
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due to the process of structure formation and collapse and are likely fragments or
clumps rather than bonafide galaxies (Nelson et al., 2019). We discard these objects
by setting SubhaloFlag = 1. Finally, we remove any subhaloes with no detectable
dark matter and retain all galaxies with stellar mass M, > 109M, resulting in 20935
galaxies. We chose the relatively high stellar mass cut because it corresponds to
well-resolved galaxies with at least 1000 star particles (Donnari et al., 2019), but

more importantly, to trace galaxies further back in time.

There is a possibility that applying the stellar mass cut introduces selection bias
since stellar mass may be a common effect of both environment and SFR. One can
interpret this as survivor bias (a form of selection bias) since we are selecting galaxies
that made it to the stellar mass at the ‘end’ of the galaxy formation and evolution
process. In the model, there is a causal connection between SFR and stellar mass, as
well as environment and stellar mass, but significantly only the former is direct, while
the latter is indirect through SFR. There is a ‘direct’ connection via harassment and
tidal stripping between environment and stellar mass, but it is likely to be weak
in comparison and not universal. Consequently, we reason that selecting galaxies
based on their stellar mass at z = 0 does not bias our analysis. Indeed, preliminary
tests supported this, as different stellar mass cuts were applied, and it was found
that while the amplitude of the SFR—-density relation changed, the shape did not. In
other words, the causal effect remained unmodified. Another potential source of bias
is that haloes form earlier in denser environments (Gottlober et al., 2001; Sheth and
Tormen, 2004; Gao et al., 2005; Harker et al., 2006; Maulbetsch et al., 2007), and
thus galaxies within them have had more time to evolve. This assembly bias can
explain the observed phenomenon of “downsizing” (Cowie et al., 1996), i.e., massive
galaxies form early and rapidly, while low-mass galaxies form later and over a more
extended timescale (see Fontanot et al., 2009, for a detailed discussion). We assume
that selecting galaxies above a relatively high stellar mass means the formation times

are similar.

We track the selected galaxies back in time with SUBLINK merger trees. The
merger tree of a subhalo can have many branches if its progenitors have undergone
mergers. We follow the main progenitor branch (MPB), which traces the most

massive progenitor at each point in time. For the analysis, we use 11 approximately
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equally-spaced snapshots in cosmic time from z ~ 6 to z = 0 (i.e., snapshots
13,25,35,43,51,59,67,75,83,91,and 99). We decided upon z ~ 6 as the baseline
because it was the furthest we could trace most galaxies back in time. The average
timespan between each snapshot is ~ 1.3 Gyr. After all the preprocessing steps, the

galaxy sample contains 18629 galaxies.

5.3.2.1 Environment and Measurement Choices

There are different measures available of halo and galaxy properties. In our analysis,
we use the quantities derived by summing all particles/cells bound to a subhalo
associated with the particular property. The choice of measure does not impact our
results because our questions are causal rather than statistical in nature. For the
same reason, we stick with instantaneous SFRs measured in the simulations instead
of using time-averaged SFRs that better match SFRs estimated observationally
with various tracers. Due to the finite numerical resolution of the simulation, the
instantaneous SFRs of galaxies are unresolvable if they are below the minimum value
of log(SFR) ~ —4 for TNG100 (Donnari et al., 2019). The SFRs of such galaxies are
labelled zero, which could cause numerical issues when estimating the causal effect.
Following Donnari et al. (2019), we resolve the problem by randomly assigning an
SEFR value between —4 and —5.

There are many definitions of environment in the literature (see Muldrew et al.,
2012, for a review), but the most popular are nearest-neighbour-based and fixed-
aperture-based measures. The former best probe the ‘local environment’, while the
latter the ‘large-scale environment’. Simply put, there is no universal definition of
environment, and the most suitable method is scale dependent (Muldrew et al., 2012).
As we are interested in the impact of the local environment, our environment proxy

is the Nth nearest neighbour density,

N

log(Xn) = m,

(5.2)

where ry is the three-dimensional (3D) distance to the Nth nearest neighbour
from the galaxy in question. Specifically, we compute densities at the 10th nearest
neighbour, which is a popular choice in the literature (Lewis et al., 2002; Pimbblet
et al., 2002; Cassata et al., 2007; Sobral et al., 2011). We note that a rough analysis

was performed with a range of nearest neighbours from N =3 — 64. Below N <7,
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the SFR—density relation was found to be noisy and flat, and thereafter, it became
more stable and negative with increasing N. These preliminary results indicate that
the causal effect of environment varies at different scales. Most subhaloes in the
simulation are small and dark (i.e., do not possess any galaxies), so considering the
entire population would result in a noisy density measure. For a more informative
estimate, we remove such subhaloes by applying the same cuts as when selecting the
galaxy sample, but we do not apply the stellar mass cut at 10°Mg. Instead, we drop
subhaloes with no detectable stars.

We considered using host halo mass as a proxy since many environmental
processes are either a consequence of it or scale with it. Ultimately, we opted against
it because it is not a fine-grained measure of environment and its effects. Galaxies in
a group or cluster are not in the same environment because they reside at different
depths in the gravitational potential well of the host halo. Consequently, they are
subject to varying degrees of environmental effects, and the effects are asymmetrical,
as satellites experience most of the environmental processes and not centrals (as
explained in Section 5.2.2.2). Precisely, the treatment is not well defined with host
halo mass and thus the consistency assumption is violated. Furthermore, there are
conceptual and practical issues with using host halo mass as an environmental proxy.
The host halo mass of a central galaxy is approximately equal to its subhalo mass,
and they are equivalent for an isolated galaxy (i.e., a galaxy that is not part of a
group or cluster). So, the environment would be undefined for isolated galaxies, and
for both, the line between nature and nurture would be blurred.

Following our naming convention, FoF haloes and subhaloes are host haloes
and haloes in our causal model respectively, so we refer to them and the associated
properties accordingly from here onwards. Figure 5.6 shows the relationships between
fundamental halo and galaxy properties such as host halo mass, halo mass, stellar
mass, and SFR, as well as the average environmental density of the galaxy sample at
z = 0. A clear positive correlation can be observed between host halo mass and the
10th nearest neighbour density, which suggests that the latter is a suitable measure
of environment, at least to the first order (see Haas et al., 2012, for a comparison
between different environment measures and host halo mass). As expected, the SFR

overall decreases with increasing environmental density.
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Figure 5.6: Distributions of fundamental halo and galaxy properties, such as host halo
mass, halo mass, stellar mass, and star-formation rate (SFR), as well as the
average environmental density (10th nearest neighbour density), of the galaxy
sample at z = 0.
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Figure 5.7: Evolutionary history of a galaxy (following the main progenitor branch) in

terms of its host halo mass, halo mass, stellar mass, star-formation rate (SFR),
and environmental density (10th nearest neighbour density), from z ~ 6 to
z = 0. The various histories are min-max normalised to allow for comparison
on the same scale.

Figure 5.7 shows the evolutionary history of a galaxy in terms of the aforemen-

tioned properties from z ~ 6 to z = 0. The various histories have been min-max

normalised to allow for comparison on the same scale. Between z ~ 6 and z ~ 2,

the galaxies’ halo mass and stellar mass increase sharply, with a peak in the SFR at

z ~ 3. Soon after, the halo mass and SFR start to decline rapidly, and the stellar

mass plateaus. In other words, star formation is effectively shutdown. We believe

the cause is a halo merger because there is a significant jump in the host halo mass.

Specifically, the merger cuts off the supply of fresh fuel, and environmental processes

possibly strip the remaining halo and galaxy gases.
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5.4 Method

There are many causal inference methods to infer causal effects from observational
data. Fundamentally, they exploit one of two approaches to adjust for biases,
specifically confounding bias. The first approach is to block the backdoor path
between the treatment and outcome by conditioning on the confounder (as described
in Section 3.4.1). The act of conditioning stops the flow of non-causal confounding
association via the confounder (Figure 3.2b), which means that all association is
causal and the causal effect is unbiased. We refer to this as the conditional approach.
The second approach is to remove the backdoor path entirely by making the treatment
independent of the confounder, as achieved experimentally with RCTs. Visually, this
translates to no direct edge (i.e., arrow) from the confounder to the treatment in the
DAG. By removing the backdoor path, confounding bias is eliminated altogether. We
refer to this as the marginal approach. For time-fixed treatments, both approaches
produce unbiased causal effects. However, for time-varying treatments, only the
marginal approach performs well. Specifically, the conditional approach cannot
estimate valid joint causal effects, but the marginal approach can estimate both the

marginal and joint causal effects of time-varying treatments.

Consider the marginal effect of Ey on SF Ry in the causal model in Figure 5.5.
There are two confounders, H; and E7, as they directly cause the treatment Ejy, and
directly and indirectly (via SFR; and Hj) cause the outcome SFRy. To estimate
the causal effect of the ‘current’ environment on the ‘current’ SFR, it is essential to
adjust for the confounders, i.e., the ‘previous’ halo mass and environment. Intuitively,
if the previous halo mass and environment affect the current SFR, then it is necessary
to negate their roles to determine only the impact of the current environment. Both
conditional and marginal approaches can appropriately adjust for the confounding

bias to estimate the marginal effect.

Now consider the joint effect of Fy, E1, and Es on SFRy. Once again, H; is
a confounder of the causal effect of Ey on SFRy. However, unlike before, H; is
now also a mediator as it lies on the causal pathway of the causal effect of Fs on
SF Ry. This scenario is problematic for conditional approaches because conditioning
on the confounder to eliminate confounding bias will block some of the causal effect

of the previous environment on the current SFR and introduce over-adjustment bias.
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Simply put, the causal effect of environment on the SFR would be underestimated.
It is possible to either estimate the unbiased causal effect of the current environment
or the previous environment on the current SFR, but not both simultaneously. On
the other hand, marginal approaches do not suffer from the same conundrum and

can estimate the joint effect.

Generally, conditional approaches fail in estimating unbiased joint causal effects
of time-varying treatments when there is: (i) a time-varying confounder that causes
the outcome and subsequent treatment and (ii) the time-varying confounder itself
is affected by the previous treatment, i.e., there is treatment-confounder feedback.
The causal model satisfies both conditions: Hj is a time-varying confounder since it
causes outcome SF' Ry and the subsequent treatment Ejy1, and there is treatment-
confounder feedback as Hj is affected by the previous treatment Fj_q, i.e., the
previous environment affects the current halo mass which then affects the subsequent
environment in a cycle. Consequently, we adopt a marginal approach to infer the

causal effect of environment.

In summary, estimating the causal effect of environment is difficult due to the
interdependence of nature and nurture. The causal effects of nature and nurture are
intertwined as the causal effect of environment partially flows through halo mass and
vice versa. As a result, it is challenging to isolate the effect of one from the other
without introducing bias. Conditional approaches cannot adequately separate the
causal effects even if given all the necessary data. So, the challenge is not only of
data but also methodological. In this section, we present a method for disentangling

nature and nurture to estimate the causal effect of environment.

There are three different methods to estimate causal effects of time-varying
treatments in the presence of time-varying confounding and treatment-confounder
feedback: (i) the g-computation algorithm formula (g-formula; Robins 1986), (ii)
g-estimation of structural nested models (SNMs; Robins 1994; see Vansteelandt and
Joffe 2015, for an overview), and (iii) inverse probability weighting (IPW) of marginal
structural models (MSMs; Robins et al. 2000). These are collectively referred to as

Robins’ generalised methods (g-methods; see Naimi et al., 2017, for an overview).

We utilise IPW of MSMs to estimate the marginal and joint causal effects

of environment on SFR. The method has been applied to conceptually similar
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problems in other fields, e.g., to study the effects of methotrexate on mortality among
people with rheumatoid arthritis (Fewell et al., 2004), asthma rescue medication on
pulmonary function (Mortimer et al., 2005), neighbourhood poverty on alcohol use
(Cerd4 et al., 2010), physical activity on knee pain in patients with osteoarthritis
(Mansournia et al., 2012), adverse childhood social conditions on chronic diseases
(Nandi et al., 2012), and religious service attendance on depression (Li et al., 2016).
Before we describe the method, we introduce its key component—the propensity

score.

5.4.1 Propensity Scores

The propensity score (PS; Rosenbaum and Rubin 1983) is the conditional probability

of treatment given covariates X,

e(r) =p(tle) = P(T = 1|1 X = x). (5.3)

An extension of the propensity score to continuous treatments is the generalized

propensity score (GPS; Hirano and Imbens 2004),

e(t,z) = f(t|x), (5.4)

where f(t|z) is the conditional probability density function (PDF). For conciseness,
we refer to the GPS as simply the propensity score from hereon. Furthermore, we
denote p(t|x) as f(t|z) in the equations even when the treatment is binary because
the concept is the same. A propensity score close to zero or one means there is a low
or high probability of receiving the specific treatment given covariates, respectively.
Essentially, the propensity score represents the dependence of treatment on covariates.
As treatment dependence correlates with confounding bias when the covariates are
confounders, the propensity score can adjust for confounding to estimate causal
effects. There are four known techniques to adjust using the propensity score (see

D’Agostino Jr, 1998; Austin, 2011, for overviews):

1. Matching — units from the treatment group are matched to their counterparts
in the control group based on their propensity scores. This process makes the
treatment and control groups comparable in terms of their covariate distribu-

tions, which ultimately means they are exchangeable. As explained in more
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detail in Section 3.3, exchangeability ensures no confounding.

2. Stratification — the population is divided into distinct strata or subgroups based
on the propensity score. This negates any confounding effect because within

each stratum the level of confounding is similar.

3. Covariate adjustment — the propensity score is included along with the treat-

ment as a covariate in a model to predict the outcome.

4. IPW — units are weighted according to their propensity score. We discuss how

this eliminates confounding bias in the following section.

Previous studies have employed matching, stratification, and covariate adjust-
ment to eliminate confounding bias, but just not with the propensity score. For
example, the common approach of binning galaxies according to their stellar mass
is a form of stratification. Also, galaxies have been matched on redshift and stellar
mass when creating treatment and control groups (Ellison et al., 2008; Smethurst
et al., 2017; Garduno et al., 2021; Sotillo-Ramos et al., 2021), and stellar mass has
been included as a variable in models (Teimoorinia et al., 2016; Bluck et al., 2019,
2020a,b, 2022; Brownson et al., 2022; Piotrowska et al., 2022). We use the IPW
approach (see Chesnaye et al., 2022, for an overview) as the other techniques are
either unable or unsuitable to estimate the causal effect of environment. Stratification
and covariate adjustment are conditional approaches (Williamson and Ravani, 2017)
and thus cannot estimate the joint effect, and there is no clear strategy with matching

(Thoemmes and Ong, 2016).

5.4.2 Inverse Probability Weighting

In this section, we first describe the IPW method for time-fixed treatments and then

extend it to time-varying treatments.

5.4.2.1 Time-fixed Treatments

IPW is a statistical technique that adjusts for confounding bias by weighting each
unit with the inverse of their probability of receiving treatment, i.e., the propensity

score.

w(t) = . (5.5)
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Intuitively, the propensity score quantifies the magnitude of confounding bias, so
weighting each unit with its propensity score directly negates the influence of con-
founders. Specifically, the method works as follows: a unit with a high propensity
score implies the treatment it received is likely given the confounders. In other words,
the influence of the confounders is significant, so the unit is down-weighted to reduce
its impact. Conversely, a unit with a low propensity score implies that the treatment
it received is unlikely given the confounders. Crucially, such a unit is a counterfactual
of units that received a different treatment, and thus it is up-weighted because it
holds valuable information. In a sense, IPW is comparable to the technique of
importance sampling (Kloek and Van Dijk, 1978). Overall, assigning weights to each
unit creates a pseudo-population in which treatment is independent of confounders,

and thus [IPW is a marginal approach.

Units with specific characteristics that predispose them to a particular treat-
ment, or from the alternative viewpoint, units subject to a treatment confined to
a subpopulation, will have propensity scores close to zero or one because of the
strong causal association between the covariates and treatment. Consequently, a
disproportionately small fraction of units can dominate and drastically skew the
causal effect. A simple solution is to truncate or trim the extreme weights from the
analysis, typically at the 1st and 99th percentiles. Though this can introduce its own
unknown bias (Cole and Herndn, 2008). A better approach is to stabilise the weights

with the marginal probability of treatment f(t) such that,

w(t) = . (5.6)

Besides counteracting the effect of extreme weights, stabilised weights generally
reduce the variance of causal effect estimates (Robins et al., 2000). Furthermore,
when the treatment is continuous, unstabilised weights are not an option as they

have infinite variance (Robins et al., 2000). For binary or discrete treatments,

(5.7)

B (0] =B | 17—

f(T = t[X)

where 1 is an indicator function that is 1 if 7' = ¢ and 0 otherwise. Thus, the ACE

of a binary treatment,
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1(T=1Y 1(T=0)Y
r—E[Y(1)—Y(0) = E [j‘"((T:H)XJ _ [M} . (5.8)
Using the Horvitz-Thompson estimator (Horvitz and Thompson, 1952),
. LU =0Y 1T =0
TN ; ( (X 1-éx) > ! (5.9)

where N is the number of units. Therefore, ACEs of binary treatments can be
directly estimated using the weights. However, this is not the case for continuous
treatments as the estimand (Equation 5.7) is biased for E[Y (¢)] and is not valid
(Hernan and Robins, 2023). For continuous treatments, a model that describes the
causal relationship between the treatment and outcome is necessary. One such class
of causal models are MSMs. A MSM is a model for the potential outcome under

treatment, for example,

E[Y'(t)] = Bo + pit. (5.10)

Unlike ‘regular’ models, MSMs consider the expected outcome under different treat-
ments, which is not observable due to the “fundamental problem of causal inference”.
Nonetheless, it is possible to reliably estimate MSMs with IPW adjustment because

if the causal assumptions are met, the MSM is equal to:

E[Y|T] = Bo + p1T. (5.11)

The parameters of MSMs have causal interpretations. For example, 81 represents
the ACE in the case of binary treatments. To summarise, weights are applied to fit
a MSM to estimate ACEs of continuous treatments (and also binary treatments).
As there are an infinite number of values when a variable is continuous, the goal
with continuous treatments is to estimate the causal dose-response curve (CDRC),

wu(t) = E[Y ()], rather than a single causal effect 7.

The weights in their current form are valid for causal effects of time-fixed
treatments and marginal causal effects of time-varying treatments but may not
sufficiently adjust to estimate joint causal effects of time-varying treatments. Thus,

we describe the extension of the method to joint effects in the following section.
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5.4.2.2 Time-varying Treatments

Time-varying treatments affected by time-varying confounders necessitate adjust-
ments to eliminate confounding bias as before. However, unlike time-fixed treatments,
simply adjusting for all the confounders together in the presence of treatment-
confounder feedback fails when the goal is to estimate the joint effect. Suppose we
adjust for halo masses Hy since it is the time-varying confounder in the causal model.
Accordingly, there are no direct paths from Hj to time-varying treatments Ey, so
there is no confounding bias. But, since the same paths constitute causal pathways
of Ej to outcomes SF Ry, the joint effect now suffers from over-adjustment bias.
This scenario is exactly the same as encountered with conditional approaches where
the joint effect is biased whether one adjusts for confounders or not. The solution to
the dilemma is simple: adjust for biases step-by-step rather than all at once.

With joint effects, the idea is to repeat the IPW process to adjust for biases
at each time point. The exact method is as follows: estimate weights for each time
point and then multiply them together to construct a final weight. This strategy
eliminates confounding bias without introducing over-adjustment bias, so there is
no overall bias. The method creates pseudo-populations at each time point, so the
principle is the same as with time-fixed treatments. The general form of stabilised

weights at time point k(= j) (Robins et al., 2000),

i ST
wi= s % (512

where T}, is the treatment at time point k, Tj_; is the treatment history up until the
time point, and X, is the confounder history to the time point. The numerator is the
conditional PDF of the current treatment given the previous treatment history, and
the denominator is the conditional PDF of the current treatment given previous treat-
ment and confounder histories. Compared to the weights for time-fixed treatments,
the treatment history is conditioned on because time-varying treatments can be,
and are, confounders if the previous treatments influence the current treatment and
outcome from the perspective of a point in time. As before, the weights are applied
to fit a MSM to estimate joint causal effects of interest. We apply the methodology to
estimate the causal effect of environment. The key takeaway is that simply adjusting

for the halo mass and environmental histories is insufficient to disentangle nature
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and nurture.

In summary, IPW of MSMs consists of: (i) estimating weights to adjust for
biases and (ii) fitting a MSM using the weights to estimate causal effects. Weights
can be estimated directly from data if the treatment and confounders are binary
or categorical variables and there are a limited number of them. In our case,
environment and halo mass are inherently continuous variables, and we suffer from
the curse of dimensionality with 11 total snapshots, so direct estimation is not feasible.
Additionally, we cannot fit a parametric MSM to estimate causal effects since the
causal relationship between environment and SFR is unknown. For both stages,
we apply ML to estimate the marginal and joint causal effects of environment. We

describe the ML algorithm we employ and the estimation process in the next section.

5.5 Estimation

Machine learning (ML) has revolutionised most fields, including astrophysics (see
Baron, 2019; Fluke and Jacobs, 2020, for recent reviews). Significantly, in recent years,
ML has been applied for causal insights into galaxy formation and evolution. Many
studies have estimated the predictive power in an attempt to determine the primary
factors in galaxy quenching (Teimoorinia et al., 2016; Bluck et al., 2019, 2020a,b, 2022;
Brownson et al., 2022; Piotrowska et al., 2022). Moreover, McGibbon and Khochfar
(2022) explored the importance of nature versus nurture. They incorporated the
evolutionary histories of galaxies from the TNG simulations (similar to this analysis)
and predicted galaxy properties with halo properties as inputs. Based on the feature
importance being higher at later rather than earlier cosmic times, they concluded
that nurture plays a more important role than nature. Nonetheless, predictive power
does not necessarily imply causation due to the possibility of confounding factors, for
example. If the confounders are input, ML can account for their influence by covariate
adjustment to output predictive power with causal implications. At the same time,
the predictive power can easily be biased if one is not careful and simply includes all
variables assuming that ML will automatically make the necessary adjustments. For
example, if a collider is present the predictive power would suffer from selection bias.
In our case, if we input the halo mass and environmental histories and estimate the
causal effect of environment, it would be biased because of the conditional approach.

Overall, ML on its own cannot infer causality because it is correlation-based.
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Causal machine learning (Causal ML) seeks to integrate causal reasoning into
ML to move from correlations to causation (see Kaddour et al., 2022, for a review).
The aim is to improve both causal inference with ML and ML with causal inference.
The field is being pioneered but has already had successes, e.g., in improving the
accuracy of medical diagnosis (Richens et al. 2020; also see Sanchez et al. 2022, for
a review of causal ML for healthcare). We combine ML and causal inference to
estimate the causal effect of environment on SFR. ML allows us to handle the high-
dimensional data and model the potentially non-linear relationships between halo
mass, environment, and SFR, and causal inference provides a theoretical framework to
infer causality. Specifically, we follow the IPW method and utilise ML for estimation.
In this regard, various ML algorithms have been applied to estimate propensity
scores (see Setoguchi et al., 2008; Lee et al., 2010; Westreich et al., 2010; Cannas and
Arpino, 2019, for comparisons), including a boosting algorithm based on decision
trees (McCaffrey et al., 2004; Zhu et al., 2015). Furthermore, a recurrent neural
network (RNN) architecture based on the method has been proposed that forecasts
treatment responses over time (Lim, 2018). We employ the random forest (RF;
Breiman 2001) as it has been shown to perform the best (out of the algorithms

compared) in estimating propensity scores (Cannas and Arpino, 2019).

RF is an ML algorithm for regression, classification, and other tasks. It is
an ensemble learning method as it leverages a multitude of decision trees to make
predictions. Each decision tree is built by recursively dissecting the feature space to
cluster data with similar target values until some predefined threshold. This process
creates a mapping from input features to target variables, which enables predictions
on new data after training. The algorithm is versatile and has been applied to
solve a wide range of problems. In astrophysics, RFs have been utilised to predict
photometric redshifts (photo-zs) and physical properties of galaxies (Carliles et al.,
2008, 2010; Bonjean et al., 2019; Mucesh et al., 2021), classify supernovae (Lochner
et al., 2016), and detect trans-Neptunian objects (Henghes et al., 2021), for example.
Furthermore, the ML method has been used by most of the aforementioned galaxy
quenching studies (Bluck et al., 2020a,b, 2022; Brownson et al., 2022; Piotrowska
et al., 2022).
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5.5.1 Overview

Estimation of causal effects using IPW of MSMs requires: (i) weights and (ii) a MSM.

We utilise the RF algorithm for both tasks and define two types of models:

o Weighting model — the input features and target variable are the confounders
and treatment, respectively. The model output is the expectation of treatment

given confounders, E[T|X].

e Qutcome model — the input feature and target variable are the treatment and
outcome, respectively. The model output is the expectation of outcome given

treatment, E[Y|T.

As the names suggest, the weighting and outcome models estimate weights and

MSMs, respectively. We devise the following multi-step estimation process:
1. Train a weighting model.

2. Predict the treatment of each unit with the weighting model to estimate the

propensity score.
3. Repeat the above steps, but now to estimate the numerator.
4. Construct weights.
5. Train an outcome model with each unit weighted.
6. Predict treatment outcomes with the outcome model to estimate causal effects.

5.5.2 Application

In the causal model, the previous halo mass Hj_; and environment E}_; affect the
current environment Fj and star-formation rate SF Ry. Therefore, it is necessary
to adjust for them at each time point to eliminate confounding bias. We go a step
beyond and adjust for the entire previous halo mass and environmental histories
(Hj_1 and Ej_1) as a precautionary measure to account for any direct lagged effects
of halo mass and environment that may hypothetically exist from further back in

time. Taking everything into consideration leads us to the weights,

wj = ﬁ 7 S (Ei|Eya) . (5.13)
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The only difference compared to the general form (Equation 5.12) is in the denomina-
tor, where X (Hy) is replaced with X;_; (Hy_1) because halo mass does not affect
environment in the same time point. The numerator is the conditional PDF of the
current environment given the previous environmental history, and the denominator
is the conditional PDF of the current environment given the previous environmental

and halo mass histories.

We estimate the propensity score (i.e., the denominator) as follows. We train
a weighting model with the previous halo mass and environmental histories as the
inputs and the current environment as the target. Once trained, we predict the
current environment with the model, which is the E[Ey|Ey_1, Hy_1]. Subsequently,
we construct a normal distribution with the mean set to the prediction and the
standard deviation equal to that of the residuals. Finally, we evaluate the density

function at the true value.

We estimate the numerator following the same process. In the weighting model,
we input the previous environmental history, with the target once again the current
environment. The model output is the E[Eg|E)_1]. We train separate weighting
models to estimate the weights at each time point. The exception being z ~ 6 because
there is no prior confounding by default as it is the baseline snapshot. The weights
at the redshift are equal to one. We note that we have assumed the conditional
PDFs follow the normal distribution to estimate the densities. Also, we trained and

predicted on the same dataset because our goal is inference, not prediction.

Finally, we construct the weights as appropriate and incorporate them in outcome
models to estimate the marginal and joint causal effects of environment. For the joint
effect, we multiply the weights and use the final product weight. For the marginal
effect, we simply apply the time-point weight. As our environment proxy, the 10th
nearest neighbour density, is a continuous variable, we estimate CDRCs rather than
single causal effects. For this, we define a grid of 21 treatment values between the 1st
and 99th percentiles of the treatment distribution and predict with outcome models.
As discussed in Section 5.2.3.2, the marginal effect of environment represents the
short-term impact, while the joint effect represents the long-term impact. As per the
defined environmental history Ej (Equation 5.1), the joint effect is the impact of the

average environment, which we de facto mean by the causal effect of environment.



5.5. Estimation 156

First, we focus on z = 0 to understand the final outcome of the galaxy formation
and evolution process. We estimate the joint causal effect of environment on the
SFR at z = 0 to determine the overall impact. We train an outcome model with the
average environment Ey and the star-formation rate SFRy at z = 0 as the input
and target, respectively. Once trained, we predict the final SFR at different average
environments to estimate the CDRC. The weights applied are the product of weights
at all redshifts, and the model prediction is the E[SF Ro|Ey]. Following the same
process, we estimate the marginal causal effect of environment on the SFR at z =0
to understand the most recent impact. In the outcome model, we input the final
environment Fj, with the target once again the final star-formation rate SF Ry. The
weights applied are simply the weights at z = 0, and the model prediction is the
E[SFRy|Ey).

Next, we extend our analysis to all the redshifts to determine how the role of
environment has changed over time. We bootstrapped the entire estimation process
to obtain confidence intervals around the CDRCs. This resulted in weighting models
predicting a few extreme weights, probably due to the limited sample size. Given
that they could drastically skew the causal effect, we trimmed the weights at the 1st
and 99th percentiles. 1000 bootstrap samples were used.

We utilised the scikit-learn (Pedregosa et al., 2011) ML Python package
to train the RF models, specifically the RANDOMFORESTREGRESSOR module. In re-
gards to hyperparameter tuning, we kept the defaults and only coarsely tuned
min samples_leaf, which is the minimum number of samples in a leaf node. Our
primary motivation was to best reduce the noise in the CDRCs due to: (i) the
non-linear nature of RF and (ii) extrapolation beyond the training data. We found
that the combination of 5 and 200 for the weighting and outcome models performed
the best out of a limited parameter space, respectively. Consequently, we trained all
the models with the aforementioned values. Before presenting and discussing the
results in Section 5.7, we verify their validity in the next section by qualitatively and

quantitatively checking whether the causal assumptions are met.
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5.6 Validation

The validity of any causal inference depends on the satisfaction of the key causal as-
sumptions described in Section 3.3, which are exchangeability, positivity, consistency,

and no interference.

The exchangeability assumption states that potential outcomes must be inde-
pendent of the treatment. In other words, it must be possible to swap treatment
groups without changing their potential outcomes. To achieve exchangeability, it is
necessary to adjust for any confounders, and thus we adjusted for halo mass, the
time-varying confounder in the causal model. Whether or not the assumption is
satisfied is untestable due to the possibility of unobserved confounders, which by
definition are not known. Here, sensitivity analysis is invaluable because it allows one
to determine the magnitude of impact on the results in the presence of unobserved
confounding (Robins, 1999). However, we do not perform any such analysis as we
have considered many known aspects of galaxy formation and evolution to construct
the causal model, which shows no other confounders besides halo mass that causally

affect both environment and SFR.

Positivity states that there must be a non-zero probability of receiving any
treatment. In the context of this study, galaxies of all halo masses (or stellar
masses, due to their correlation) must have some probability of occupying different
environments to reliably estimate the causal effect of environment at any particular
density. This is reasonably true according to the halo/stellar mass—environment
distribution in Figure 5.6, which shows a relatively uniform halo/stellar mass coverage
at different environmental densities. Though, in the lowest-density environments,
there is a lack of the least and the most massive haloes. To alleviate this positivity
violation, we have defined the treatment grid between the 1st and 99th percentiles of
the environmental density distribution, so environments at both extremes are not

considered.

Consistency states that the observed outcome must equal the potential outcome
under treatment. In other words, the treatment must be well-defined. The treatment
in our case is the environment, which has no universal definition, and this opens up
the possibility of violating the assumption. We employ the 10th nearest neighbour

density, and as long as the proxy consistently measures the environmental density in
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varied environments and the effect of environment is similar at a particular density,
we satisfy the consistency assumption.

Lastly, the no interference assumption states that the potential outcome of a
unit must only depend on its treatment. This assumption is irrelevant in our case
because galaxies in close proximity are roughly in the same environment, so they
are subject to the same treatment. We are concerned about neighbourhood-level
no interference (VanderWeele, 2008), which means that a galaxy’s SFR must only
depend on its environment and not the neighbouring environment. It is hard to
imagine a physical mechanism that would result in the above being untrue, so we
are reasonably confident that the no interference assumption holds. In summary, we
believe the consistency and no interference assumptions hold. In the following section,
we quantitatively verify exchangeability (assuming no unmeasured confounders) and
positivity.

5.6.1 Diagnostic Tests

The critical component of our causal analysis is the weights, which we utilise to
capture and adjust biases via the IPW method to estimate MSMs. Their validity
directly translates to unbiased causal effects, which means they can provide clues on
the satisfaction of the causal assumptions. As a result, we perform diagnostic tests
on them to check exchangeability and positivity. We highlight that we conduct the
tests on the weights estimated from the non-bootstrapped analysis.

The goal of IPW is to create a pseudo-population in which the treatment
is independent, and this produces exchangeability as the treatment groups are
comparable in terms of their covariate distributions when the treatment does not
depend on anything. We assess the covariate balance using the correlation-based
method of Zhu et al. (2015) to determine exchangeability. The basic premise is to
determine the correlation between the confounders and treatment in the pseudo-
population, and if it is minimal, then the treatment is independent, there is no

confounding, and exchangeability is achieved. The exact procedure is as follows:
1. Sample data with replacement from the original dataset according to the

weights w;.

2. Compute the correlation coefficient p,, between confounder X, and treatment

T in the weighted sample.
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3. Repeat the above steps N times and calculate the average correlation coefficient

Pm-

4. Finally, average the absolute values of all the average correlation coefficients to

compute the average absolute correlation coefficient AACC.

We assess the covariate balance at each time point because, if achieved, the joint
effects are valid along with the marginal effects. Accordingly, the data is sampled per
the time-point weights, not the final product weights. For consistency, the correlation
coefficients are computed with the previous environments Ej,_; and halo masses Hj_1
even though the confounders of the current environment E; and star-formation rate
SF R, may only be the prior environment Ej_; and halo mass Hy_q. Specifically,
Kendall’s tau coefficient (Kendall, 1938) is estimated because the halo mass and
environment distributions are not normal, and the relationship between them is
non-linear (as can be observed in Figure 5.6). In total, 1000 bootstrap samples are
generated to calculate the average correlation coefficients.

Figure 5.8 shows the AACC at the different redshifts in the original population
before weighting and in the pseudo-population after weighting. Zhu et al. (2015)
claim that there is minimal confounding when AACC < 0.1, medium confounding
when 0.1 < AACC < 0.3, and large confounding when AACC > 0.55. However,
these limits are based on heuristics, and there is no theoretical AACC value for
exchangeability. In this case, the relative change in the AACC' is more important
than the absolute value. As observed, there is a clear decrease in the AACC post
weighting across all the redshifts, which indicates that IPW has reduced confounding
and improved exchangeability.

The mean of the stabilised weights is expected to be one because the size of the
pseudo-population equals that of the original population (Herndn and Robins, 2006).
Crucially, significant deviations indicate misspecification of the weighting model,
violation of positivity, or both (Cole and Hernén, 2008). However, as is the case with
the AACC, there is no reference value. Figure 5.9 shows the weight distributions
at the different redshifts. The means are close to one, so the causal model seems to
be valid, and positivity is not violated. Based on the reasoning and diagnostics, the
causal assumptions seem to have been met or at least not grossly violated (although

it cannot be definitively proven). Thus, the results can be considered valid.
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Figure 5.8: Average absolute correlation coefficients (AACC) at different redshifts in
the original population before weighting and in the pseudo-population after
weighting.
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5.7 Results and Discussion

In this section, we first discuss the overall causal effect of environment, contrasting
the marginal and joint causal effects. Next, we describe how the role of environment
has changed over time. Finally, we compare different causal models to our causal

model.

5.7.1 Overall Causal Effect of Environment

Figure 5.10 shows the CDRCs of the marginal and joint causal effects of environment
on the SFR (i.e., causal SFR—density relations) at z = 0. The CDRC denotes the
average response in the population if all units were subject to treatment 17" = ¢. By
comparing any two points on the curve, one can determine the mean change in the
outcome if all units received, for example, treatment T = ¢, instead of T" = t;. This
difference in outcome is the ACE 7. The CDRC of the marginal effect represents the
average SFR of galaxies if they inhabited the specific environment at z = 0, and the
CDRC of the joint effect represents the average SFR of galaxies if they inhabited, on
average, the specific environment over time. The bottom panel shows the ACEs of
different density environments (comparing to the lowest-density environment).

Focusing on the joint effect (i.e., the causal effect), the CDRC is relatively flat and
the causal effect of environment is negligible up to log(319) ~ 1. Subsequently, the
CDRC trends downwards and the causal effect of environment becomes negative as
the average SFR decreases with increasing environmental density until log(¥319) ~ 2.5,
at which point there is a reversal as the average SFR rises overall. In summary,
environment does not influence the SFR at low densities, but at intermediate-to-high
densities, it has a negative effect. On the other hand, at the highest densities, the
causal effect of environment is positive (explained in Section 5.7.3). Furthermore,
there is a characteristic density (log(319) ~ 1) beyond which environment starts
playing a role. We believe this may be physical, as not only has it previously been
evidenced by Lewis et al. (2002) and Gémez et al. (2003), but they also reported
the same characteristic density (albeit projected 2D). The density probably marks a
transition from the field to group environment. In short, the overall causal effect is
negative and substantial, with environment maximally suppressing the average SFR
by a factor of ~ 100.

Comparing the marginal and joint effects, the CDRCs are broadly similar in
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Figure 5.10: Causal dose-response curves (CDRCs) of the marginal and joint causal effects

of environment on the SFR (i.e., causal SFR—density relations) at z = 0.
The bottom panel shows the average causal effects 7 of different density
environments (comparing to the lowest-density environment). The shaded
regions represent the 68% confidence interval, estimated with bootstrapping.
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terms of the overall trend. However, they diverge in absolute values, especially after
the characteristic density. Specifically, the marginal effect predicts a higher average
SFR than the joint effect across most of the domain. There are two important
implications given the above: (i) the SFR does not only depend on the current
environment but also the previous environments, i.e., there is a long-term effect of
environment, and thus (ii) the marginal effect is a biased estimator of the overall
causal effect of environment. Neighbourhood effect studies (Do, 2009; Do et al., 2013;
Clarke et al., 2014; Yang and South, 2018) have also evidenced the same in their
context (see Jivraj et al., 2019, for a recent review). In conclusion, snapshot studies
are insufficient to estimate the causal effect of environment. And longitudinal studies
that employ snapshot environment as a measure rather than the environmental
history (in some form) will estimate a biased causal effect. Consequently, we focus

on the joint effect from hereon, referring to it as the causal effect.

5.7.2 Role of Environment over Time

Figure 5.11 shows the CDRCs of the causal effects of environment on the SFR
at z = 0 and at different redshifts going back to z ~ 3. The causal effect is
the most substantial at z = 0 and weaker in the recent past, implying that the
impact of environment accumulates over time. The negative trend largely flatlines at
z = 0.7—and surprisingly—reverses at z = 0.95. At and beyond this redshift, the
average SFR increases with increasing environmental density, so the causal effect
of environment on the SFR is positive. Furthermore, the effect is significant and

becomes stronger with redshift, from a factor of ~ 10 to over 100.

The downtrend observed at low redshifts is consistent with previous studies,
but the uptrend at high redshifts is unexpected given the consensus: environment
negatively affects star formation. Despite this, studies have been inconsistent in
their findings, and there is an active debate on whether the SFR—density relation, as
observed in the local Universe, exists at intermediate (z ~ 1) to high redshifts (z > 1).
Some studies have found that the relation persists in the early Universe (Patel et al.,
2009; Muzzin et al., 2012; Quadri et al., 2012; Chartab et al., 2020), others have
evidenced a flattening (Feruglio et al., 2010; Griitzbauch et al., 2011; Scoville et al.,
2013; Ziparo et al., 2014; Darvish et al., 2016), while others yet have noted a reversal
(Elbaz et al., 2007; Cooper et al., 2008; Tran et al., 2010; Popesso et al., 2011; Santos
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Figure 5.11: Causal dose-response curves (CDRCs) of the causal effects of environment on
the SFR (i.e., causal SFR—density relations) at z = 0 and at different redshifts
going back to z ~ 3. The bottom panel of z = 0 shows the average causal
effects 7 of different density environments (comparing to the lowest-density
environment). The shaded regions represent the 68% confidence interval,
estimated with bootstrapping.
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et al., 2015; Lemaux et al., 2022). The lack of consistency between the studies is due
to a multitude of reasons, beginning with the ambiguity around the SFR—density
relation itself. The term is loosely used in the literature and is polysemous, as studies
have analysed the specific star-formation rate (sSFR)-density, colour-density, and
star-forming/quiescent fraction—density relations under the SFR-density relation
moniker. These quantities, while related, are fundamentally different and cannot be
compared. Another point for contention is the data or lack thereof. Deep surveys
observe a small patch of the sky, so the studies are susceptible to cosmic variance.
Lastly, since there is no universal definition of environment (Muldrew et al., 2012),

the choice of measure is possibly responsible for part of the disagreements.

It is difficult to draw parallels to the literature for all the aforementioned reasons,
but the most critical aspect is that the analyses have been largely statistical in nature.
In summary, studies have attempted to adjust for confounding by investigating sSFR
instead of SFR and/or binning the relation into fixed bins of stellar mass, which is
only correct if stellar mass is a true confounder. Furthermore, they have focused on
snapshots of galaxies with no knowledge of their evolutionary histories due to the
restrictions of observational data. As a result, they have been unable to disentangle
the causal effects of nature and nurture by unravelling the feedback loops present in
the causal model. Regardless, both observational (Elbaz et al., 2007; Lemaux et al.,
2022) and simulation studies (Tonnesen and Cen, 2014; Hwang et al., 2019) have
found SFR—density reversals (albeit at a weaker level) independent of the stellar
mass correlation, thus supporting a positive impact of environment. Additionally,
Hwang et al. (2019) and Lemaux et al. (2022) observed the uptrend strengthening
with redshift, as we do here. The consistency of our results, with Hwang et al. (2019)
in particular, given that they also used the TNG simulations (though the larger
volume TNG300 instead of TNG100), is strong evidence for the reliability of our

study.

Assuming our results are genuine, a possible explanation for the positive causal
effect of environment in the early Universe is that denser environments have a larger
reservoir of material. As a result, galaxies in such environments are able to accrete
more matter, which assuming gas cooling translates to enhanced star formation.

While this is true for high-density environments in the late Universe as well, the
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difference is that in the early Universe there is limited competition between haloes
and thus accretion is more unrestricted because the density is not too high. The
lower density also means that the negative environmental processes have yet to affect
galaxies, which in addition to the above, can explain the positive causal effect.

Another potential cause is major mergers, which are more likely at high redshifts
(Le Fevre et al., 2000; Kampezyk et al., 2007; Kartaltepe et al., 2007; Lotz et al.,
2011) in dense regions when the velocities are not too large. An influx of cold gas
in a gas-rich galaxy merger can trigger starbursts. It is a different fact that such
mergers can accelerate the evolution of a galaxy and quench it altogether, so the
causal effect of environment in the long term is still negative, as observed at z = 0.
We iterate that the positive trend is not just a consequence of massive galaxies in
denser environments. Given that haloes form earlier in denser regions (i.e., assembly
bias), a significant positive causal effect of environment on SFR in the early Universe
followed by a downturn later on, is consistent with and explains galaxy downsizing.
That is, massive galaxies form earlier and at an accelerated rate, while low-mass
galaxies form later and more slowly (Cowie et al., 1996; Heavens et al., 2004; Kodama
et al., 2004; Jimenez et al., 2005; Juneau et al., 2005; Thomas et al., 2005; Bauer
et al., 2005; Bell et al., 2005; Nelan et al., 2005; Feulner et al., 2005; Bundy et al.,
2006; Drory and Alvarez, 2008; Vergani et al., 2008; Mortlock et al., 2011).

In the following section, we place our results into a wider context by comparing
our causal model to others. We answer the following critical questions: (i) is nature
important in the nature versus nurture debate? Specifically, is galaxy formation
and evolution top-down dominated by environment with no reverse influence of
halo mass? (ii) is controlling for the stellar mass at a snapshot in time sufficient
to estimate the causal effect of environment? and (iii) is stellar mass an adequate
proxy of nature? In other words, can stellar mass be substituted for halo mass in

the causal model to estimate the causal effect?
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5.7.3 Model Comparison

We first consider the possibility of no confounders. In our causal model, halo mass
is the sole confounder as it causes environment and SFR. However, this may be
time-dependent and scale-dependent as it is likely that in the late Universe and on
the largest scales, environment completely dominates the evolution of a galaxy and
halo mass has no reverse influence on environment, so it ceases to be a confounder.
In this scenario, the raw correlation between environment and SFR is the unbiased
causal effect of environment. Consequently, the first step of the estimation process
is skipped as no bias adjustment is necessary and unweighted outcome models are
directly trained to learn the SFR—density relation. As before, an outcome model is
trained for each time point with environment Ej and star-formation rate SFRy, as

the input and target, respectively. We refer to the model as the naive model.

Next, we mimic previous studies—that is—we adjust for stellar mass at a snap-
shot in time to estimate the causal effect of environment. The method supposes the
causal model illustrated in Figure 5.12; in which stellar mass (M,) is the confounder.
Obviously, stellar mass does not cause environment and SFR, and hence the model is
implicit in the literature. Furthermore, the model fails to capture dynamic systems
with feedback loops that galaxies ultimately are. Nonetheless, the model/approach
is still adopted, in part because of the shortcomings of observational data where the
halo mass information and evolutionary history of galaxies are not readily available.
Controlling for the stellar mass at a snapshot in time represents the only practical
option (given that it correlates with halo mass) to disentangle nature from nurture,
even though it has been demonstrated by De Lucia et al. (2012) that this is not

sufficient. We refer to the model as the traditional model.

We implement the model following the same estimation process. In the weighting
models, the input is the stellar mass, and the target is the current environment. We
highlight that we only input the current stellar mass and not the stellar mass history
into the models, unlike in the causal model case, where we had input both the halo
mass and environmental histories. The weighting models are then used to estimate
the conditional densities f(E|M,). The marginal densities f(FE) are determined via
kernel density estimation (KDE), and no further models are trained. Finally, the

weights are constructed with both densities and incorporated into outcome models.
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Figure 5.12: The causal model assumed implicitly in the literature to estimate the effect
of environment. We refer to it as the traditional model.

The time-point weights are not multiplied together to form the final product weights,
but rather they are applied separately to replicate the previous analyses. We train
two outcome models, one with the snapshot environment and the other with the
average environment, for a like-to-like comparison with the previous studies and
consistency with our results, respectively. For brevity, we refer to the causal effect
estimated with the former as the marginal and the latter as the joint effect, even
though it is technically neither.

Finally, we redo the analysis assuming our causal model, but on this occasion,
we input stellar mass as the time-varying confounder instead of halo mass in the
weighting models (labelled as “causal model (stellar mass)”). Our goal is to answer
the question: is stellar mass a suitable proxy of nature (halo mass) given a valid
causal model and method to disentangle nature and nurture. This is important
because halo mass (not host halo mass) is challenging to infer observationally. Figure
5.13 shows the CDRCs of the causal effects of environment on the SFR at z = 0 and
at different redshifts going back to z ~ 3, of the different causal models. The bottom
panel of z = 0 shows the difference in the average SFRs between the different causal

models and the causal model (labelled as “causal model (halo mass)”).

5.7.3.1 Causal versus Naive Model

At z ~ 3, the CDRCs of the naive and causal models are largely similar, which implies

halo mass has minimal influence on environment (assuming it impacts the SFR).
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This is not surprising because at this redshift, haloes are mostly isolated and yet to
majorly influence the environment a galaxy inhabits. There is a slight deviation after
log(31p) ~ 2, so halo mass does have an impact in the denser regions, essentially
supporting the former. Over time, the curves diverge further as the impact of halo
mass accumulates. At z = 0, there is a factor of ~ 6 difference in the average SFR in

the densest environment between the two models.

Up to log(X19) ~ 2 at z = 0, the CDRC of the naive model is above the causal
model’s, which signifies that halo mass has a positive effect on the SFR because, post
adjustment, the average SFR is lower. The probable explanation is that at low-to-
intermediate densities, a larger halo is able to accrete more gas from its surroundings,
which up to a certain extent, translates to enhanced star formation if the hot gas
can effectively cool. Between log(X19) ~ 2 — 2.5, there is no discernible difference
between the two models, so halo mass has no effect on environment. In the host halo
mass—environment distribution in Figure 5.6, log(X19) 2 2 in average density probably
corresponds to large group and cluster host haloes, where environment is indeed
believed to dictate galaxy evolution. Ultimately, the causal effect of environment is

the largest in this density regime.

Beyond log(319) ~ 2.5, there is no consistent pattern. To begin with, the CDRC
of the naive model is below the causal model’s, so halo mass has a negative impact on
the SFR. However, just before log(X19) ~ 3, the curves flip, and halo mass resumes
its positive effect. We do not think this is physical and believe the fluctuation is
just a manifestation of galaxies switching from centrals to satellites when a smaller
group merges with a larger group. Halo mass is considered to influence centrals
more than satellites, so when galaxies switch from the former to the latter, its effect
also changes. And since the causal effect is of the average environment over time,
the effect of halo mass is observed to be inconsistent. Surprisingly, the causal effect
of environment is less negative as the average SFR, on the whole, increases with
environmental density. However, we do not think galaxies are actually less affected
in the highest-density environments. We argue that the result is because of the
asymmetry of the environmental effects on centrals versus satellites, whereby the
former is not subject to most of the environmental processes. As for the uptick itself,

the cause is likely galactic cannibalism since it is one of the few known processes that
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Figure 5.13: Causal dose-response curves (CDRCs) of the causal effects of environment on
the SFR (i.e., causal SFR—density relations) at z = 0 and at different redshifts
going back to z ~ 3, of the nalve, traditional, and causal models (with stellar
mass and halo mass as the confounder, respectively). The bottom panel of
z = 0 shows the difference in the average SFRs between the different causal
models and the causal model (i.e., causal model (halo mass)). The shaded
regions represent the 68% confidence interval, estimated with bootstrapping.
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is understood to affect central galaxies in dense cluster environments and one that
can boost the SFR. All things considered, the next step is to split the causal effect
of environment on centrals and satellites. When the causal effect of a treatment is
modified by a variable V' (central or satellite), it is referred to as effect modification,
and IPW of MSMs can be adapted to estimate the separate effects. We do not

explore this in this thesis and leave it for future work.

In conclusion, nature is important and galaxy formation and evolution is not
top-down determined by environment. The environment affects halo mass, but halo
mass influences the environment of a galaxy as well. Ignoring the role of nature by
not adjusting for halo mass leads to the causal effect in the densest environment
being underestimated by a factor of ~ 6. The next step is to estimate the causal
effect of halo mass on SFR to answer the long-outstanding question: which is more
important, nature or nurture? This can be achieved by repeating the analysis but

now with halo mass as the treatment and environment as the confounder.

5.7.3.2 (Causal versus Traditional Model

As expected, the traditional model predicts a negative causal effect of environment at
low-to-intermediate redshifts. However, unlike many previous studies, the negative
trend does not flatten at high redshifts. Instead, it reverses analogous to the causal
model, and the causal effect of environment becomes positive. For a like-to-like
comparison, Figure 5.14 shows the marginal causal effects. While the uptrend is
certainly weaker than the joint causal effect, it is still present nonetheless, especially at
z = 1.82 and z ~ 3. The results further confirm that the positive trend observed with
the causal model is not simply due to massive galaxies in denser environments that
form more stars because we adjust for this fact by controlling for stellar mass with
the traditional model. As explained in the previous section, the positive causal effect
at high redshifts may be a consequence of the early Universe not being dense enough
for the negative environmental processes whilst simultaneously being conducive to
the positive processes such as halo accretion and (major) mergers. For a definitive
answer, the causal effect of individual environmental processes must be estimated.
The critical work has been done with the construction of a comprehensive causal
model (Figure 5.4). Using this model, we can extend our analysis to estimate the

causal effects of different processes (see Smethurst et al., 2017, for work in this



5.7. Results and Discussion 173

direction).

Comparing the traditional to causal model, the former overestimates the negative
causal effect of environment at low-to-intermediate redshifts and underestimates the
positive causal effect at high redshifts by up to a factor = 10 at specific densities. At
z = 0, the CDRC of the traditional model is largely identical to the naive model’s
except in the high-density regime, so adjusting for the stellar mass at the redshift
has mostly had no effect. It has not eliminated the confounding bias and is therefore
insufficient to estimate the causal effect of environment. In fact, the traditional
model deviates further from the assumed truth (i.e., the causal model) than the
naive model, so adjusting for the stellar mass at a snapshot in time actually has an
adverse effect. The failure of the traditional model is hinted by the skewed weight
distributions in Figure 5.15, with means farther from one compared to the causal

model’s (Figure 5.9).

5.7.3.3 Causal Model: Halo versus Stellar Mass

While there are differences at specific densities, the CDRCs of causal model (halo
mass) and causal model (stellar mass) are similar overall. Consequently, stellar mass
is an adequate proxy of halo mass and thus nature. This finding is highly significant
because unlike halo mass (not host halo mass), stellar mass can be readily inferred
observationally, and the ultimate goal of this study is to estimate the causal effect
of environment on galaxies in the real Universe. Evidently, the lack of evolutionary
histories of galaxies, or more specifically, the halo/stellar mass and environmental
histories is a major hurdle. On this front, star-formation histories (and thus stellar
mass histories) can be recovered by modelling and fitting spectral energy distributions
(see Conroy, 2013, for a recent review), both in parametric (Maraston et al., 2010;
Papovich et al., 2011; Ciesla et al., 2016; Lee et al., 2018; Carnall et al., 2018) and
non-parametric forms (Heavens et al., 2000; Cid Fernandes et al., 2005; Ocvirk et al.,
2006; Tojeiro et al., 2007; Koleva et al., 2009; MacArthur et al., 2009; Pacifici et al.,
2016; Leja et al., 2017; Belli et al., 2019; Iyer et al., 2019; Johnson et al., 2021; Ji and
Giavalisco, 2022, 2023). And recently, Sarpa et al. (2022) employed the extended
Fast Action Minimization (eFAM) method to reconstruct the environmental history
of galaxies. Consequently, it is feasible to estimate the real causal effect (on star

formation at least).



5.7. Results and Discussion

174

z=0.10
_I'T' PR N e
5 -1 \\
2=0.00 > N
) ™~
-05 ./-\._.s./'\././. = 2 .,
\ 3 \
—-10 < 3 g
g '\- g AN
5-15 \ < . .
° .
Z 20 \,/ \
& z=0.21
E -2.5 Yo - " %0000,
g \ | o M N
o . N
S -3.0 \ ? 1 \
-35 \ =) ¥
= \
\,
w0
. 1 2 2}
0 0 o 3 e \
-1 N ) 0 2
- V \ 2=0.35
-2 -—\ _I-Tv — e .,'\....--....._.\.\
N\ 5 v
-3 N 2o v \
0 1 2 3 g .\.\
log(Z10) [h3 cMpc~3] g -2 .
¢ \
2 3 \
0 2
z=0.50 z=0.70 z=0.95
{ ./Pr.-"-.-...\.‘.—H\\,_. s JE X .,.,A.,.‘_._.,.‘.\/.\ 0.00 s /.’.
o 1 ‘\ ' 025)  af0 TN
= \ =
= °"\ -10 \+ -050
2]
g 2 \ -15 \ -0.75 \
U) .
S v oo -1.00
0 2 0 2 0 1 2 3
z=1.30 z=1.82 z=23.01
- A 0.5 A
L 02 //\' 0 a /
Eo 0.0 / \ /'/ 0.0 /
&£ 02 Na'l 00 A >
-0. VAV . =
A ]
5 -0.4 I 05 N AN M
0 i 2 3 0 1 2 3 0 1 p) 3

10g(Z10) [h® cMpc=2]

1og(Z10) [h® cMpc2]

log(Z10) [h® cMpc3]

Figure 5.14: Causal dose-response curves (CDRCs) of the marginal causal effects of en-
vironment on the SFR (i.e., causal SFR-density relations) at z = 0 and at
different redshifts going back to z ~ 3, assuming the traditional model. The
bottom panel of z = 0 shows the average causal effects 7 of different density
environments (comparing to the lowest-density environment). The shaded
regions represent the 68% confidence interval, estimated with bootstrapping.
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5.8 Conclusions

In this chapter, we tackle the challenging problem of disentangling nature and nurture
to estimate the causal effect of environment on star-formation rate (SFR). We develop
a comprehensive causal model of galaxy formation and evolution and apply causal
machine learning (causal ML) by combining the causal inference framework with
ML. Specifically, we employ the g-method, inverse probability weighting (IPW) of
marginal structural models (MSMs), and the random forest (RF) algorithm. We
devise and implement an overall two-step estimation process on the IllustrisTNG
simulations, specifically the TNG100-1 run. The dataset consists of 18629 galaxies
traced over cosmic time with merger trees from z ~ 6 to the present day z = 0, and
our environment proxy is the 3D 10th nearest neighbour density. We estimate the
causal effect at z = 0 to determine the overall impact and at different redshifts going
back to z ~ 3 to understand the role of environment over time. Also, we compare
our causal model to others to place our results into a wider context and answer some
fundamental questions.

The causal effect is found to be negative and substantial, with environment

suppressing the SFR by a factor of ~ 100. Furthermore, we discover that:

1. There is a characteristic density, log(X19) ~ 1, at which environment starts
playing a role. This ‘break’ in the SFR—density relation has been previously
evidenced by Lewis et al. (2002) and Gémez et al. (2003), who in fact reported
the same value (albeit in projected 2D density). We believe the density marks

a transition from the field to group environment.

2. The causal effect is not the strongest in the densest environments (log(X19) 2
2.5) as the average SFR, overall, increases with environmental density. We
argue the reason is the asymmetry of the environmental effects on centrals and
satellites (with the former not subject to most of the environmental processes)
rather than galaxies being inherently less affected at the highest densities.
Specifically, the density regime primarily probes cluster environments where
central galaxies are likely cannibalising their satellites, and hence the SFR is
mildly boosted and the causal effect appears to be weaker. All things considered,
the separate causal effects of environment on centrals and satellites must be

estimated. We note this is feasible with the causal inference method we have
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utilised, IPW of MSMs.

. While the environment negatively affects the SFR at low-to-intermediate red-
shifts (z < 1), at high redshifts (z 2 1), it has a positive impact as the
average SFR increases with environmental density. Furthermore, the causal
is significant, with environment boosting star formation by a factor of ~ 10
at z ~ 1 and by even greater amounts at higher redshifts. The result goes
against the general consensus, but some recent studies, both observational
(Lemaux et al., 2022) and simulation (Hwang et al., 2019), have hinted towards
a positive environmental effect at high redshifts (albeit at a weaker level), as the
SFR-density relation has been found to reverse even after adjusting for stellar
mass. Moreover, they also observed the SFR enhancement increasing with
redshift. The fact that our findings are consistent with Hwang et al. (2019),
who also employed the IllustrisTNG simulations (though the larger volume
TNG300 instead of TNG100), instils confidence in the reliability of our study.
The simplest explanation for the positive causal effect is that the early Universe
is not sufficiently dense for the negative environmental processes whilst being
favourable to the positive processes. Specifically, we think halo accretion and
major mergers are responsible for the boosted SFR in denser environments,
with the former being the primary cause. Nonetheless, for a definitive answer,
the causal effect of individual environmental processes must be estimated. Our
work can be extended to achieve this. We iterate that the positive trend is not

just due to massive galaxies in denser environments that form more stars.

. Nature (associated with halo mass) is important in the nature-nurture debate.
Specifically, galaxy formation and evolution is not top-down determined by
environment as the environment affects halo mass, but halo mass also influences
the environment of a galaxy as well. Ignoring the role of nature leads to the
causal effect in the densest environment being underestimated by a factor of
~ 6. At low-to-intermediate densities (log(219) < 2), halo mass has a positive
impact on the SFR. But at high densities (log(210) 2 2 — 2.5), it has negligible
influence as the environment dominates galaxy evolution, which aligns with
the general belief. Although at the highest densities (log(X19) 2 2.5), the role

of halo mass is inconclusive. We attribute this to central galaxies becoming
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satellites as part of mergers. As before, the solution is to distinguish between

the two in the analysis and estimate the separate causal effects on both.

5. Controlling for the stellar mass at a snapshot in time, as is common in the
literature, does not disentangle nature and nurture (in agreement with De
Lucia et al. 2012). Not only is it insufficient to estimate the causal effect of
environment, but it actually has an adverse effect. The causal effect is biased as
it is overestimated at low-to-intermediate redshifts and underestimated at high
redshifts, by up to a factor 2 10 at specific densities. We remark the causal
effect at high redshifts is still positive, though reduced in magnitude. Overall,
snapshot studies are inadequate, and the evolutionary history of galaxies is

required.

6. Nevertheless, stellar mass is a sufficient proxy of the effects of nature (i.e., halo
mass), assuming our causal model is valid and given stellar mass history and

method to disentangle nature and nurture.

Our results can be relied upon because the diagnostic tests we perform suggest
that the causal assumptions are met (or at least not outright violated) and our causal
model is valid—the basis of causal inference.

By moving beyond correlations to causal effects, this work represents a significant
leap towards truly understanding how galaxies form and evolve. We have laid the
foundations in this thesis by estimating the causal effect of environment on SFR, and
now one can expand further to answer fundamental questions, such as what drives
galaxy quenching, are environmental processes responsible for the morphological
transformations of galaxies, what is the impact of supermassive black holes (SMBHs)
on their host galaxies, and above all, which is more important: nature or nurture? The
stumbling block, observationally, is the lack of evolutionary histories of galaxies, which
are critical to disentangling nature and nurture. Here, spectral energy distribution
(SED) fitting can recover the star-formation history (SFH), and recently, a back-in-
time reconstruction technique was shown to reconstruct the environmental history of
galaxies (Sarpa et al., 2022). Thus, with additional effort and further advancements,
our work can be applied to the real Universe. Alternatively, our work can be viewed

as an approach to interpret and tune simulations, which are an indispensable tool for
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testing our theories of galaxy formation and evolution. The timing is opportune as
the James Webb Space Telescope (JSWT; Gardner et al. 2006), Euclid (Laureijs et al.,
2011), the Rubin Observatory Legacy Survey of Space and Time (LSST; LSST Science
Collaboration et al. 2009), and the Nancy Grace Roman Space Telescope (Roman;
Spergel et al. 2015) are set to revolutionise our understanding (see Robertson et al.,
2019; Robertson, 2022, for reviews). For example, the discovery of candidate massive
galaxies at high redshifts (Castellano et al., 2022; Naidu et al., 2022; Finkelstein et al.,
2022; Adams et al., 2023; Rodighiero et al., 2023; Atek et al., 2023; Donnan et al.,
2023; Harikane et al., 2023; Labbé et al., 2023), if confirmed, may have ramifications
for galaxy formation models and/or cosmology (Lovell et al., 2023; Boylan-Kolchin,

2023).



Chapter 6

Conclusions

How galaxies have formed and evolved is one of the biggest mysteries in modern
astronomy. In the last few decades, tremendous progress has been made as the overall
picture has been pieced together. Having said that, the importance of the physical
processes responsible for the observed phenomena are not fully known, as establishing
causality has been challenging. The primary approach has been through simulations:
by developing and simulating physical models and then comparing the outcome to
observations, causal insights have been made. Nonetheless, the causal effect itself is
intractable in a simulation of any meaningful complexity. In this thesis, the causal
inference framework has been applied to move beyond correlations to causation, in

an effort to truly understand the galaxy formation and evolution process.
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6.1 Summary

Before inference (i.e., the why), the task of prediction (i.e., the what) is tackled
because to understand galaxy formation and evolution, galaxy properties are required
first. In this thesis, a novel machine learning (ML) approach is developed based on
the random forest (RF) algorithm to generate joint probability distribution functions
(PDFs) of galaxy properties. As an example, the method is applied to estimate
highly important joint redshift—stellar mass PDFs, which showed unprecedented levels
of calibration in diagnostic tests. Benchmarked against a traditional SED-fitting
approach, the ML-based method demonstrates superior performance in terms of both
accuracy (based on predefined metrics) and speed (by ~ 5 orders of magnitude).

This work culminated in GALPRO—a Python package capable of estimating
multivariate PDFs of galaxy properties (Appendix A). GALPRO generates PDFs quickly
and efficiently, for example, it estimated joint redshift—stellar mass PDFs of a million
galaxies in just under 6 minutes on consumer computer hardware. Furthermore, it
can generate PDFs on the fly. The speed combined with the on-the-fly ability means
GALPRO will facilitate galaxy formation and evolution and cosmological studies in
the era of “Big Data”. The package has already been employed to estimate joint
redshift-luminosity and redshift—stellar mass PDFs to determine the Hubble constant
from gravitational waves (Palmese et al., 2023) and constrain the stellar-to-halo mass
relation (SHMR) with galaxy clustering and weak lensing (Zacharegkas et al., in
prep), respectively.

Next, the causal inference framework is combined with ML, and causal ML
is applied to infer the causal effect of environment on star-formation rate (SFR).
To achieve this, a comprehensive causal model of galaxy formation and evolution
is constructed from established theories, and using the g-method, inverse probabil-
ity weighting (IPW) of marginal structural models (MSMs), the long-outstanding
problem of disentangling nature (i.e., internal processes) and nurture (i.e., external
processes) is tackled. Utilising the RF in an overall two-step estimation process, the
causal effect at z ~ 0 is estimated to determine the overall impact and at different
redshifts going back to z ~ 3 (with a baseline at z ~ 6) to understand how the role

of environment has evolved over time.
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The causal effect is found to be negative and substantial, with environment
suppressing the SFR by a factor of ~ 100. However, while the overall effect is negative,
it is discovered that in the early Universe (z 2 1), environment had a positive impact.
Furthermore, the causal effect is significant, with environment boosting the SFR. by
a factor of ~ 10 at z ~ 1 and by even greater amounts at higher redshifts. Again,
this is independent of the fact of massive galaxies inhabiting denser environments
that form more stars. The causes are likely halo accretion and major mergers, with
the former being the primary. Given haloes forming earlier in denser regions (i.e.,
assembly bias), a substantial positive causal effect of environment on SFR in the
early Universe, followed by a negative impact in the late Universe, is consistent with

and explains the observed galaxy “downsizing”. Other key results include:

1. Nature (associated with halo mass) is important in the nature—nurture debate,
and galaxy formation and evolution is not top-down determined by environment.
Specifically, the environment affects halo mass, but halo mass also influences
the environment of a galaxy as well. Ignoring the role of nature leads to the
causal effect in the densest environment being underestimated by a factor of

~ 6.

2. Controlling for the stellar mass at a snapshot in time, as is common in the
literature, does not disentangle nature and nurture. Overall, snapshot studies

are inadequate, and the evolutionary history of galaxies is required.

3. However, stellar mass is an adequate proxy of the effects of nature, assuming the
causal model is valid and given stellar mass history and method to disentangle

nature and nurture.

With the introduction of a theoretical framework (to the field) to infer causality
and a potential solution to the challenging nature—nurture problem, this work paves
the way towards potentially unravelling some of the biggest mysteries in galaxy
formation and evolution, such as: why do galaxies quench, what is responsible for
morphological transformations of galaxies, what is the impact of supermassive black
holes (SMBHSs) on their host galaxies, and the age-old question, which is more

important: nature or nurture?
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6.2 Future Prospects

Galaxy Properties from Images

In this thesis, magnitudes and colours (along with errors) are input into ML to predict
galaxy properties (i.e., redshift and stellar mass). A natural extension of this work
would be to train a deep learning (DL) algorithm directly on photometric images to
estimate the properties. Images contain information that is simply not captured by
integrated quantities, such as morphology, size, surface brightness, disk inclination
and, if present, colour gradients and companions. This additional information, if
important, can improve the prediction accuracy. Furthermore, with images as inputs,
no prior belief is imposed through feature selection. On the other hand, compared to
‘traditional” ML, DL methods are generally less interpretable, explainable, and more

computationally expensive.

Research has already been conducted in this direction as studies have estimated
redshifts (Hoyle, 2016; Schuldt et al., 2021; Henghes et al., 2022), physical properties
(Dobbels et al., 2019; Wu and Boada, 2019; Wu, 2020), and both (Euclid Collabora-
tion et al., 2023). Furthermore, PDF's of redshift have also been estimated (D’Isanto
and Polsterer, 2018; Pasquet et al., 2019). The proposed work would push beyond

by estimating multivariate PDF's of redshift and physical properties.

Temporal-based Causal Inference

In order to estimate the causal effect of environment on SFR, a causal model was
constructed from established galaxy formation and evolution theories and assumed.
As such, the validity of the effect depends on the model being accurate, which
does appear to be the case according to diagnostic tests. Regardless, a ‘model-free’
approach would be incredibly valuable. Besides a causal effect free from potential
biases due to gaps in our knowledge, by imposing no prior beliefs, the door is left
open to new discoveries. Here, it is feasible to not only estimate the causal effect but
also learn the causal model itself from time series data (see Moraffah et al., 2021;

Runge et al., 2023, for reviews), based on temporal order as a constraint, i.e., a cause

precedes its effect in time.
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1. Model-Free Causal Effects

Galaxies form and evolve over a vast period of time. However, the impact of
environment may occur in a relatively short timescale (Darvish et al., 2016), possibly
in a “once-only” process (Peng et al., 2010), e.g., when a galaxy falls into a group
or cluster. In this instance, the treatment is time-invariant, and a method called
Difference-in-Differences (DiD) can be applied to estimate the causal effect of
environment. The basic idea would be to create treatment and control groups of
galaxies, define a treatment point (e.g., an average point in time at which galaxies in
the treatment group enter a ‘dense’ environment), and then compare the outcome of
interest (e.g., SFR) of the two groups before and after to estimate the causal effect.
A generalisation of DiD is Bayesian Structural Time Series (BSTS; Scott and Var-
ian 2014, 2015), which can explicitly model the counterfactual (Brodersen et al., 2015).

2. Causal Discovery of Galaxy Formation and Evolution

As mentioned, although very difficult, it is possible to learn the causal structure—a
task called causal discovery (see Glymour et al., 2019; Zanga et al., 2022, for reviews).
In other words, one may be able to infer the causal model of galaxy formation and
evolution. Causal discovery is still in development but has already been successfully
applied in many fields, such as Earth system science (see Runge et al., 2019, for a
review). For example, causal discovery algorithms correctly identified the causal
relationship between greenhouse gases and global warming (Stips et al., 2016) and
discovered that sea surface temperature is a common driver of both sardine and
anchovy abundances (Sugihara et al., 2012). To begin with, one could attempt to

recover the physical models in simulations.



Appendix A

GALPRO

GALPRO! is a novel Python machine learning (ML) code based on the random forest
(RF) algorithm for estimating multivariate posterior probability distribution func-
tions (PDF's) of galaxy properties (e.g., redshift, stellar mass, star-formation rate,
metallicity).

It is hosted on PyPI and can be installed using:

pip install galpro

GALPRO is built on top of other excellent Python packages such as:
e scikit-learn: for implementing the random forest algorithm.
e joblib: for saving and loading a trained random forest model.
e hbpy: for reading and writing PDF's to disk.

To become familiar with the package, we recommend going through the example

Ipython notebooks. For ease of use, GALPRO is built around a single core class Model.

"https://github. com/smucesh/galpro


https://github.com/smucesh/galpro/tree/master/examples
https://github.com/smucesh/galpro
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A.1 Training Model

To train a random forest model, the training and testing datasets are required. The
model must be given a unique name using model name. Besides this, there are other
optional parameters, such as target_features and save_ model, for passing in a list

of all the target features and saving the model, respectively:

import galpro as gp

target_features = [‘$2$’, ‘$\log(M_{\star} / M_{\odot})$’]

model = gp.Model(model_name=‘model’,
X_train=x_train,
y_train=y_train,
X_test=x_test,
y_test=y_test,
target_features=target_features,

save_model=True)

If the model is saved, it will be located in the directory /galpro/model name/
as a .sav file. The Model class can also be used to load a previously trained model
by specifying its name via model name. Once a new model has been trained or a

previously trained model has been loaded, it can be utilised.

A.2 Testing Model

The trained model can be used to generate point predictions and posterior PDF's

using;:

point_estimates = model.point_estimate(save_estimate=True,

make_plots=True)

posteriors = model.posterior(save_posteriors=True,
make_plots=True,

on_the_fly=False)

The point_estimate function will return an array of point estimates. The

posterior function will return an h5 file object containing posteriors, which can be
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accessed using test object numbers as keys. If the point predictions and PDFs are
saved, they will be stored as .h5 (Hierarchical Data Format) files in the subdirectories
/galpro/model name/point_estimates/ and /galpro/model_name/posteriors/,

respectively. The plots will be saved in the /plots/ folder.

A.3 On-the-fly PDFs

GALPRO has the ability to generate PDFs on the fly, thus eliminating the problem of

storage. It can be easily incorporated into research codes with the following;:

posterior = model.posterior(save_posteriors=False,
make_plots=False,

on_the_fly=True)

for sample in range(no_samples):

sample_posterior = next(posterior)

In this instance, the on_the fly parameter is set to True. By -calling
next (posterior), the function will return posterior PDFs of test objects one
at a time. Naturally, the other parameters are set to False, and the following

functionalities are not available if generating PDFs in this mode.

A.4 Validating Model

The posterior PDF's generated by the trained model can be validated using;:

validation = model.validate(save_validation=True,

make_plots=True)

Marginal PDF's are validated using the framework developed by Gneiting et
al. (2007), and multivariate PDFs are validated using the multivariate extension
of the framework developed by Ziegel and Gneiting. (2014). A brief introduction
to the methods can be found in our paper (Mucesh et al. 2021). The function will
return a .h5 file object, and the different modes of validation can be accessed using
the keys: pits, coppits, marginal calibration, and kendall _calibration. The

validation is stored in the subdirectory /galpro/model name/validation/.


https://hal.archives-ouvertes.fr/file/index/docid/363242/filename/jrssb1b.pdf
https://hal.archives-ouvertes.fr/file/index/docid/363242/filename/jrssb1b.pdf
https://projecteuclid.org/download/pdfview_1/euclid.ejs/1418313582
https://doi.org/10.1093/mnras/stab164
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A.5 Plotting

GALPRO can generate various plots:

model.plot.scatter() # Creates scatter plots of point predictionms.
model.plot.marginal() # Creates marginal PDF plots.

model.plot.joint_pdf() # Creates joint PDF plots.

model.plot.corner() # Creates a corner style plot for multivariate PDFs.
model.plot.pit() # Plots the probability integral transform (PIT) distribution.

model .plot.coppit() # Plots the copula probability integral transform (copPIT) distri
model .marginal_calibration() # Plots the marginal calibration.

model .kendall_calibration() # Plots the kendall calibration.

These plotting functions can take in two optional parameters, which are show
and save. By default, these are set to False and True, respectively. All plots are
saved in the /plots/ folder in the respective subdirectories. The same plots can
also be created by setting make_plots=True, when running model.point_estimate,
model .posterior, or model.validate. Additionally, these functions can also be
used to recreate the different plots, given that the model and the necessary .h5 files

have been saved in the previous run.

A.6 Configuration

The hyperparameters associated with the random forest algorithm are defined in the
conf . py file. We expect the default hyperparameters to work well in most situations.
However, if the user wishes to tune the hyperparameter to their liking, they can do
so by modifying their values in the configuration file before loading the package. The
plotting aesthetics are also defined in the same configuration file. The user can tweak

them to their preference by stating the matplotlib or seaborn settings accordingly.



Bibliography

Abadi, M. G., Moore, B., and Bower, R. G. (1999). Ram pressure stripping of spiral
galaxies in clusters. MNRAS, 308(4):947-954.

Abell, G. O. (1958). The Distribution of Rich Clusters of Galaxies. ApJS, 3:211.
Abell, G. O. (1965). Clustering of Galaxies. ARA&A, 3:1.

Abrahamse, A., Knox, L., Schmidt, S., Thorman, P., Tyson, J. A., and Zhan, H.
(2011). Characterizing and Propagating Modeling Uncertainties in Photometrically
Derived Redshift Distributions. ApJ, 734(1):36.

Acquaviva, V. (2016). How to measure metallicity from five-band photometry with
supervised machine learning algorithms. MNRAS, 456(2):1618-1626.

Acquaviva, V., Gawiser, E., and Guaita, L. (2011). Spectral Energy Distribution
Fitting with Markov Chain Monte Carlo: Methodology and Application to z = 3.1
Lya-emitting Galaxies. ApJ, 737(2):47.

Acquaviva, V., Gawiser, E., and Guaita, L. (2012). SED fitting with MCMC:
methodology and application to large galaxy surveys. In Tuffs, R. J. and Popescu,
C. C., editors, The Spectral Energy Distribution of Galazies - SED 2011, volume
284, pages 42-45.

Adams, N. J., Conselice, C. J., Ferreira, L., Austin, D., Trussler, J. A. A., Juodzbalis,
I., Wilkins, S. M., Caruana, J., Dayal, P., Verma, A., and Vijayan, A. P. (2023).
Discovery and properties of ultra-high redshift galaxies (9 j z | 12) in the JWST
ERO SMACS 0723 Field. MNRAS, 518(3):4755-4766.

Aguerri, J. A. L. and Gonzélez-Garcia, A. C. (2009). On the origin of dwarf elliptical
galaxies: the fundamental plane. A&A, 494(3):891-904.



BIBLIOGRAPHY 190

Ahmed, O., Trauble, F., Goyal, A., Neitz, A., Bengio, Y., Scholkopf, B., Wiithrich,
M., and Bauer, S. (2020). CausalWorld: A Robotic Manipulation Benchmark for

Causal Structure and Transfer Learning. arXiv e-prints, page arXiv:2010.04296.

Almaini, O., Wild, V., Maltby, D. T., Hartley, W. G., Simpson, C., Hatch, N. A_,
McLure, R. J., Dunlop, J. S., and Rowlands, K. (2017). Massive post-starburst
galaxies at z j 1 are compact proto-spheroids. MNRAS, 472(2):1401-1412.

Almosallam, I. A., Lindsay, S. N., Jarvis, M. J., and Roberts, S. J. (2016). A
sparse Gaussian process framework for photometric redshift estimation. MNRAS,

455(3):2387-2401.

Angrist, J. D. and Krueger, A. B. (1991). Does compulsory school attendance affect
schooling and earnings? The Quarterly Journal of Economics, 106(4):979-1014.

Angrist, J. D. and Lavy, V. (1999). Using maimonides’ rule to estimate the effect
of class size on scholastic achievement. The Quarterly journal of economics,

114(2):533-575.

Aragon-Salamanca, A., Ellis, R. S., Couch, W. J., and Carter, D. (1993). Evidence
for systematic evolution in the properties of galaxies in distant clusters. MNRAS,

262:764-794.

Arnouts, S., Cristiani, S., Moscardini, L., Matarrese, S., Lucchin, F., Fontana, A.,
and Giallongo, E. (1999). Measuring and modelling the redshift evolution of
clustering: the Hubble Deep Field North. MNRAS, 310(2):540-556.

Assef, R. J., Kochanek, C. S., Brodwin, M., Cool, R., Forman, W., Gonzalez, A. H.,
Hickox, R. C., Jones, C., Le Floc’h, E., Moustakas, J., Murray, S. S., and Stern,
D. (2010). Low-Resolution Spectral Templates for Active Galactic Nuclei and
Galaxies from 0.03 to 30 pm. ApJ, 713(2):970-985.

Atek, H., Shuntov, M., Furtak, L. J., Richard, J., Kneib, J.-P., Mahler, G., Zitrin,
A., McCracken, H. J., Charlot, S., Chevallard, J., and Chemerynska, I. (2023).
Revealing galaxy candidates out to z 16 with JWST observations of the lensing
cluster SMACS0723. MNRAS, 519(1):1201-1220.



BIBLIOGRAPHY 191

Athanassoula, E. (1992). The existence and shapes of dust lanes in galactic bars.

MNRAS, 259:345-364.

Athey, S., Tibshirani, J., and Wager, S. (2016). Generalized Random Forests. arXiv
e-prints, page arXiv:1610.01271.

Austin, P. C. (2011). An introduction to propensity score methods for reducing the
effects of confounding in observational studies. Multivariate behavioral research,

46(3):399-424.

Baldry, I. K., Balogh, M. L., Bower, R., Glazebrook, K., and Nichol, R. C. (2004a).
Color bimodality: Implications for galaxy evolution. In Allen, R. E., Nanopoulos,
D. V., and Pope, C. N., editors, The New Cosmology: Conference on Strings and
Cosmology, volume 743 of American Institute of Physics Conference Series, pages

106-119.

Baldry, I. K., Balogh, M. L., Bower, R. G., Glazebrook, K., Nichol, R. C., Bam-
ford, S. P., and Budavari, T. (2006). Galaxy bimodality versus stellar mass and
environment. MNRAS, 373(2):469-483.

Baldry, I. K., Glazebrook, K., Brinkmann, J., Ivezi¢, Z., Lupton, R. H., Nichol, R. C.,
and Szalay, A. S. (2004b). Quantifying the Bimodal Color-Magnitude Distribution
of Galaxies. ApJ, 600(2):681-694.

Ball, N. M., Brunner, R. J., Myers, A. D., Strand, N. E., Alberts, S. L., Tcheng, D.,
and Llora, X. (2007). Robust Machine Learning Applied to Astronomical Data
Sets. II. Quantifying Photometric Redshifts for Quasars Using Instance-based
Learning. ApJ, 663(2):774-780.

Balogh, M., Eke, V., Miller, C., Lewis, I., Bower, R., Couch, W., Nichol, R., Bland-
Hawthorn, J., Baldry, I. K., Baugh, C., Bridges, T., Cannon, R., Cole, S., Colless,
M., Collins, C., Cross, N., Dalton, G., de Propris, R., Driver, S. P., Efstathiou,
G., Ellis, R. S., Frenk, C. S., Glazebrook, K., Gomez, P., Gray, A., Hawkins, E.,
Jackson, C., Lahav, O., Lumsden, S., Maddox, S., Madgwick, D., Norberg, P.,
Peacock, J. A., Percival, W., Peterson, B. A., Sutherland, W., and Taylor, K.
(2004a). Galaxy ecology: groups and low-density environments in the SDSS and
2dFGRS. MNRAS, 348(4):1355-1372.



BIBLIOGRAPHY 192

Balogh, M. L., Baldry, 1. K., Nichol, R., Miller, C., Bower, R., and Glazebrook, K.
(2004b). The Bimodal Galaxy Color Distribution: Dependence on Luminosity and
Environment. ApJ, 615(2):L101-L104.

Balogh, M. L., Christlein, D., Zabludoff, A. 1., and Zaritsky, D. (2001). The
Environmental Dependence of the Infrared Luminosity and Stellar Mass Functions.

ApJ, 557(1):117-125.

Balogh, M. L., Morris, S. L., Yee, H. K. C., Carlberg, R. G., and Ellingson, E. (1997).
Star Formation in Cluster Galaxies at 0.2 | Z | 0.55. ApJ, 488(2):L75-L78.

Balogh, M. L., Navarro, J. F., and Morris, S. L. (2000). The Origin of Star Formation
Gradients in Rich Galaxy Clusters. ApJ, 540(1):113-121.

Balogh, M. L., Schade, D., Morris, S. L., Yee, H. K. C., Carlberg, R. G., and
Ellingson, E. (1998). The Dependence of Cluster Galaxy Star Formation Rates on
the Global Environment. ApJ, 504(2):L75-L78.

Bamford, S. P., Nichol, R. C., Baldry, I. K., Land, K., Lintott, C. J., Schawinski,
K., Slosar, A., Szalay, A. S., Thomas, D., Torki, M., Andreescu, D., Edmondson,
E. M., Miller, C. J., Murray, P., Raddick, M. J., and Vandenberg, J. (2009).

Galaxy Zoo: the dependence of morphology and colour on environment®*. MNRAS,

393(4):1324-1352.

Bardeen, J. M., Steinhardt, P. J., and Turner, M. S. (1983). Spontaneous creation of
almost scale-free density perturbations in an inflationary universe. Phys. Rev. D,

28(4):679-693.
Barnes, J. E. (1988). Encounters of Disk/Halo Galaxies. Ap.J, 331:699.

Barnes, J. E. (2002). Formation of gas discs in merging galaxies. MNRAS, 333(3):481—
494.

Baron, D. (2019). Machine Learning in Astronomy: a practical overview. arXiv

e-prints, page arXiv:1904.07248.

Bauer, A. E., Drory, N., Hill, G. J., and Feulner, G. (2005). Specific Star Formation
Rates to Redshift 1.5. ApJ, 621(2):L89-L92.



BIBLIOGRAPHY 193

Baugh, C. M. (2006). A primer on hierarchical galaxy formation: the semi-analytical
approach. Reports on Progress in Physics, 69(12):3101-3156.

Baum, W. A. (1962). Photoelectric Magnitudes and Red-Shifts. In McVittie, G. C.,
editor, Problems of Extra-Galactic Research, volume 15, page 390.

Bell, E. F., Papovich, C., Wolf, C., Le Floc’h, E., Caldwell, J. A. R., Barden, M.,
Egami, E., McIntosh, D. H., Meisenheimer, K., Pérez-Gonzilez, P. G., Rieke, G. H.,
Rieke, M. J., Rigby, J. R., and Rix, H.-W. (2005). Toward an Understanding of
the Rapid Decline of the Cosmic Star Formation Rate. ApJ, 625(1):23-36.

Bell, E. F., Wolf, C., Meisenheimer, K., Rix, H.-W., Borch, A., Dye, S., Kleinheinrich,
M., Wisotzki, L., and McIntosh, D. H. (2004). Nearly 5000 Distant Early-Type
Galaxies in COMBO-17: A Red Sequence and Its Evolution since z~1. ApJ,
608(2):752-767.

Belli, S., Newman, A. B., and Ellis, R. S. (2019). MOSFIRE Spectroscopy of Quiescent
Galaxies at 1.5 | z | 2.5. II. Star Formation Histories and Galaxy Quenching. ApJ,
874(1):17.

Benitez, N. (2000). Bayesian Photometric Redshift Estimation. ApJ, 536(2):571-583.
Benson, A. J. (2010). Galaxy formation theory. Phys. Rep., 495(2-3):33-86.

Benson, A. J. (2012). G ALACTICUS: A semi-analytic model of galaxy formation.
New A, 17(2):175-197.

Benson, A. J., Bower, R. G., Frenk, C. S., and White, S. D. M. (2000). Diffuse X-ray
emission from late-type galaxy haloes. MNRAS, 314(3):557-565.

Bertelli, G., Bressan, A., Chiosi, C., Fagotto, F., and Nasi, E. (1994). Theoretical

isochrones from models with new radiative opacities. A&AS, 106:275-302.

Bertin, E. and Arnouts, S. (1996). SExtractor: Software for source extraction. A&AS,

117:393-404.

Bialas, D., Lisker, T., Olczak, C., Spurzem, R., and Kotulla, R. (2015). On the

occurrence of galaxy harassment. A&A, 576:A103.

Binney, J. (1977). The physics of dissipational galaxy formation. ApJ, 215:483-491.



BIBLIOGRAPHY 194

Blanton, M. R., Eisenstein, D., Hogg, D. W., Schlegel, D. J., and Brinkmann, J.
(2005). Relationship between Environment and the Broadband Optical Properties
of Galaxies in the Sloan Digital Sky Survey. ApJ, 629(1):143-157.

Blanton, M. R., Hogg, D. W., Bahcall, N. A., Baldry, I. K., Brinkmann, J., Csabai, 1.,
Eisenstein, D., Fukugita, M., Gunn, J. E., Ivezi¢, Z., Lamb, D. Q., Lupton, R. H.,
Loveday, J., Munn, J. A., Nichol, R. C., Okamura, S., Schlegel, D. J., Shimasaku,
K., Strauss, M. A., Vogeley, M. S., and Weinberg, D. H. (2003). The Broadband
Optical Properties of Galaxies with Redshifts 0.02jzj0.22. ApJ, 594(1):186-207.

Bluck, A. F. L., Bottrell, C., Teimoorinia, H., Henriques, B. M. B., Mendel, J. T.,
Ellison, S. L., Thanjavur, K., Simard, L., Patton, D. R., Conselice, C. J., Moreno,
J., and Woo, J. (2019). What shapes a galaxy? - unraveling the role of mass,
environment, and star formation in forming galactic structure. MNRAS, 485(1):666—

696.

Bluck, A. F. L., Maiolino, R., Brownson, S., Conselice, C. J., Ellison, S. L., Piotrowska,
J. M., and Thorp, M. D. (2022). The quenching of galaxies, bulges, and disks since
cosmic noon. A machine learning approach for identifying causality in astronomical

data. AE&A, 659:A160.

Bluck, A. F. L., Maiolino, R., Piotrowska, J. M., Trussler, J., Ellison, S. L., Sdnchez,
S. F., Thorp, M. D., Teimoorinia, H., Moreno, J., and Conselice, C. J. (2020a).
How do central and satellite galaxies quench? - Insights from spatially resolved

spectroscopy in the MaNGA survey. MNRAS, 499(1):230-268.

Bluck, A. F. L., Maiolino, R., Sédnchez, S. F., Ellison, S. L., Thorp, M. D., Piotrowska,
J. M., Teimoorinia, H., and Bundy, K. A. (2020b). Are galactic star formation
and quenching governed by local, global, or environmental phenomena? MNRAS,

492(1):96-139.
Blumenthal, G. R., Faber, S. M., Primack, J. R., and Rees, M. J. (1984). Formation

of galaxies and large-scale structure with cold dark matter. Nature, 311:517-525.

Bolzonella, M., Kova¢, K., Pozzetti, L., Zucca, E., Cucciati, O., Lilly, S. J., Peng,
Y., Iovino, A., Zamorani, G., Vergani, D., Tasca, L. A. M., Lamareille, F., Oesch,
P., Caputi, K., Kampczyk, P., Bardelli, S., Maier, C., Abbas, U., Knobel, C.,



BIBLIOGRAPHY 195

Scodeggio, M., Carollo, C. M., Contini, T., Kneib, J. P., Le Fevre, O., Mainieri,
V., Renzini, A., Bongiorno, A., Coppa, G., de la Torre, S., de Ravel, L., Franzetti,
P., Garilli, B., Le Borgne, J. F., Le Brun, V., Mignoli, M., Pell6, R., Perez-
Montero, E., Ricciardelli, E., Silverman, J. D., Tanaka, M., Tresse, L., Bottini, D.,
Cappi, A., Cassata, P., Cimatti, A., Guzzo, L., Koekemoer, A. M., Leauthaud, A.,
Maccagni, D., Marinoni, C., McCracken, H. J., Memeo, P., Meneux, B., Porciani,
C., Scaramella, R., Aussel, H., Capak, P., Halliday, C., Ilbert, O., Kartaltepe, J.,
Salvato, M., Sanders, D., Scarlata, C., Scoville, N., Taniguchi, Y., and Thompson,
D. (2010). Tracking the impact of environment on the galaxy stellar mass function

up to z ~1 in the 10 k zCOSMOS sample. A& A, 524:A76.

Bolzonella, M., Miralles, J. M., and Pellé, R. (2000). Photometric redshifts based on
standard SED fitting procedures. A&A, 363:476-492.

Bond, J. R., Kofman, L., and Pogosyan, D. (1996). How filaments of galaxies are
woven into the cosmic web. Nature, 380(6575):603-606.

Bonjean, V., Aghanim, N.; Salomé, P., Beelen, A., Douspis, M., and Soubrié, E.
(2019). Star formation rates and stellar masses from machine learning. A&A,

622:A137.

Bonnell, I. A., Bate, M. R., Clarke, C. J., and Pringle, J. E. (1997). Accretion and
the stellar mass spectrum in small clusters. MNRAS, 285(1):201-208.

Bonnett, C. (2015). Using neural networks to estimate redshift distributions. An
application to CFHTLenS. MNRAS, 449(1):1043-1056.

Bonnett, C., Troxel, M. A., Hartley, W., Amara, A., Leistedt, B., Becker, M. R.,
Bernstein, G. M., Bridle, S. L., Bruderer, C., Busha, M. T., Carrasco Kind, M.,
Childress, M. J., Castander, F. J., Chang, C., Crocce, M., Davis, T. M., Eifler,
T. F., Frieman, J., Gangkofner, C., Gaztanaga, E., Glazebrook, K., Gruen, D.,
Kacprzak, T., King, A., Kwan, J., Lahav, O., Lewis, G., Lidman, C., Lin, H.,
MacCrann, N., Miquel, R., O’Neill, C. R., Palmese, A., Peiris, H. V., Refregier, A.,
Rozo, E., Rykoff, E. S., Sadeh, 1., Sanchez, C., Sheldon, E., Uddin, S., Wechsler,
R. H., Zuntz, J., Abbott, T., Abdalla, F. B., Allam, S., Armstrong, R., Banerji, M.,
Bauer, A. H., Benoit-Lévy, A., Bertin, E., Brooks, D., Buckley-Geer, E., Burke,



BIBLIOGRAPHY 196

D. L., Capozzi, D., Carnero Rosell, A., Carretero, J., Cunha, C. E., D’Andrea,
C. B., da Costa, L. N., DePoy, D. L., Desai, S., Diehl, H. T., Dietrich, J. P., Doel, P.,
Fausti Neto, A., Fernandez, E., Flaugher, B., Fosalba, P., Gerdes, D. W., Gruend],
R. A., Honscheid, K., Jain, B., James, D. J., Jarvis, M., Kim, A. G., Kuehn, K.,
Kuropatkin, N., Li, T. S., Lima, M., Maia, M. A. G., March, M., Marshall, J. L.,
Martini, P., Melchior, P., Miller, C. J., Neilsen, E., Nichol, R. C., Nord, B., Ogando,
R., Plazas, A. A., Reil, K., Romer, A. K., Roodman, A., Sako, M., Sanchez, E.,
Santiago, B., Smith, R. C., Soares-Santos, M., Sobreira, F., Suchyta, E., Swanson,
M. E. C., Tarle, G., Thaler, J., Thomas, D., Vikram, V., Walker, A. R., and
Dark Energy Survey Collaboration (2016). Redshift distributions of galaxies in
the Dark Energy Survey Science Verification shear catalogue and implications for

weak lensing. Phys. Rev. D, 94(4):042005.

Boquien, M., Burgarella, D., Roehlly, Y., Buat, V., Ciesla, L., Corre, D., Inoue,
A. K., and Salas, H. (2019). CIGALE: a python Code Investigating GALaxy
Emission. A&A, 622:A103.

Bordoloi, R., Lilly, S. J., and Amara, A. (2010). Photo-z performance for precision
cosmology. MNRAS, 406(2):881-895.

Boselli, A. and Gavazzi, G. (2006). Environmental Effects on Late-Type Galaxies in
Nearby Clusters. PASP, 118(842):517-5509.

Boylan-Kolchin, M. (2023). Stress testing ACDM with high-redshift galaxy candidates.
Nature Astronomy, 7:731-735.

Brammer, G. B., van Dokkum, P. G., and Coppi, P. (2008). EAZY: A Fast, Public
Photometric Redshift Code. ApJ, 686(2):1503-1513.

Brammer, G. B., Whitaker, K. E., van Dokkum, P. G., Marchesini, D., Labbé, I.,
Franx, M., Kriek, M., Quadri, R. F., Illingworth, G., Lee, K. S., Muzzin, A., and
Rudnick, G. (2009). The Dead Sequence: A Clear Bimodality in Galaxy Colors
from z = 0 to z = 2.5. ApJ, 706(1):L173-L177.

Breiman, L. (2001). Random forests. Mach. Learn., 45(1):5-32.

Breiman, L., Friedman, J., Stone, C., and Olshen, R. (1984). Classification and

Regression Trees. Taylor & Francis.



BIBLIOGRAPHY 197

Breskvar, M., Kocev, D., and Dzeroski, S. (2018). FEnsembles for multi-target

regression with random output selections. Mach. Learn., 107:1673-1709.

Brinchmann, J., Charlot, S., White, S. D. M., Tremonti, C., Kauffmann, G., Heckman,
T., and Brinkmann, J. (2004). The physical properties of star-forming galaxies in
the low-redshift Universe. MNRAS, 351(4):1151-1179.

Brodersen, K. H., Gallusser, F., Koehler, J., Remy, N., and Scott, S. L. (2015).
Inferring causal impact using Bayesian structural time-series models. arXiv e-prints,

page arXiv:1506.00356.

Brown, M. J. I., Webster, R. L., and Boyle, B. J. (2000). The clustering of colour-
selected galaxies. MNRAS, 317(4):782-794.

Brownson, S., Bluck, A. F. L., Maiolino, R., and Jones, G. C. (2022). What drives
galaxy quenching? A deep connection between galaxy kinematics and quenching

in the local Universe. MNRAS, 511(2):1913-1941.

Bruzual, G. and Charlot, S. (2003). Stellar population synthesis at the resolution of
2003. MNRAS, 344(4):1000-1028.

Bruzual A., G. (1983). Spectral evolution of galaxies. I. Early-type systems. ApdJ,
273:105-127.

Buchner, J., Georgakakis, A., Nandra, K., Hsu, L., Rangel, C., Brightman, M.,
Merloni, A., Salvato, M., Donley, J., and Kocevski, D. (2014). X-ray spectral
modelling of the AGN obscuring region in the CDFS: Bayesian model selection
and catalogue. A&A, 564:A125.

Bundy, K., Ellis, R. S., Conselice, C. J., Taylor, J. E., Cooper, M. C., Willmer, C.
N. A., Weiner, B. J., Coil, A. L., Noeske, K. G., and Eisenhardt, P. R. M. (2006).
The Mass Assembly History of Field Galaxies: Detection of an Evolving Mass
Limit for Star-Forming Galaxies. ApJ, 651(1):120-141.

Burgarella, D., Buat, V., and Iglesias-Paramo, J. (2005). Star formation and dust
attenuation properties in galaxies from a statistical ultraviolet-to-far-infrared

analysis. MNRAS, 360(4):1413-1425.



BIBLIOGRAPHY 198

Burkart, N. and Huber, M. F. (2020). A Survey on the Explainability of Supervised

Machine Learning. arXiv e-prints, page arXiv:2011.07876.

Butcher, H. and Oemler, A., J. (1978). The evolution of galaxies in clusters. I. ISIT
photometry of Cl 002441654 and 3C 295. ApJ, 219:18-30.

Butcher, H. and Oemler, A., J. (1984). The evolution of galaxies in clusters. V. A
study of populations since Z 0.5. ApJ, 285:426-438.

Buzzoni, A. (1989). Evolutionary Population Synthesis in Stellar Systems. I. A
Global Approach. ApJS, 71:817.

Cadiou, C., Pontzen, A., Peiris, H. V., and Lucie-Smith, L. (2021). The causal effect
of environment on halo mass and concentration. MNRAS, 508(1):1189-1194.

Caldwell, N.; Rose, J. A., Franx, M., and Leonardi, A. J. (1996). Spatial Distribution
of the Starbursts in Post-Starburst Coma Cluster Galaxies. AJ, 111:78.

Calzetti, D., Armus, L., Bohlin, R. C., Kinney, A. L., Koornneef, J., and Storchi-
Bergmann, T. (2000). The Dust Content and Opacity of Actively Star-forming
Galaxies. ApJ, 533(2):682-695.

Cannas, M. and Arpino, B. (2019). A comparison of machine learning algorithms
and covariate balance measures for propensity score matching and weighting.

Biometrical Journal, 61(4):1049-1072.

Capak, P., Abraham, R. G., Ellis, R. S., Mobasher, B., Scoville, N., Sheth, K., and
Koekemoer, A. (2007). The Effects of Environment on Morphological Evolution at
0ijzi1.2 in the COSMOS Survey. ApJS, 172(1):284-294.

Capozzi, D., Etherington, J., Thomas, D., Maraston, C., Rykoff, E. S., Sevilla-Noarbe,
1., Bechtol, K., Carrasco Kind, M., Drlica-Wagner, A., Pforr, J., Gschwend, J.,
Carnero Rosell, A., Pellegrini, P., Maia, M. A. G., da Costa, L. N., Benoit-Lévy, A.,
Swanson, M. E. C., Wechsler, R. H., Banerji, M., Papovich, C., Morice-Atkinson,
X., Abdalla, F., Brooks, D., Carretero, J., Cunha, C., D’Andrea, C., Desai, S.,
Diehl, T. H., Evrards, A., Flaugher, B., Fosalba, P., Frieman, J., Garcia-Bellido,
J., Gaztanaga, E., Gerdes, D. W., Gruen, D., Gruendl, R. A., Gutierrez, G.,
Hartley, W. G., James, D., Jeltema, T., Kuehn, K., Kuhlmann, S., Kuropatkin,



BIBLIOGRAPHY 199

N., Lahav, O., Lima, M., Marshall, J. L., Martini, P., Menanteau, F., Miquel,
R., Nord, B., Ogando, R. L. C., Plazas Malagon, A. A., Romer, A. K., Sanchez,
E., Scarpine, V., Schindler, R., Schubnell, M., Smith, M., Soares-Santos, M.,
Sobreira, F., Suchyta, E., and Tarle, G. (2017). Evolution of Galaxy Luminosity
and Stellar-Mass Functions since z = 1 with the Dark Energy Survey Science

Verification Data. arXiv e-prints, page arXiv:1707.09066.

Card, D. and Krueger, A. (1993). Minimum wages and employment: A case study
of the fast food industry in new jersey and pennsylvania. American Economic

Review, 84.

Carliles, S., Budavéri, T., Heinis, S., Priebe, C., and Szalay, A. (2008). Photometric
Redshift Estimation on SDSS Data Using Random Forests. In Argyle, R. W.,
Bunclark, P. S., and Lewis, J. R., editors, Astronomical Data Analysis Software
and Systems XVII, volume 394 of Astronomical Society of the Pacific Conference
Series, page 521.

Carliles, S., Budavari, T., Heinis, S., Priebe, C., and Szalay, A. S. (2010). Random
Forests for Photometric Redshifts. ApJ, 712(1):511-515.

Carlsson, M., Dahl, G. B., Ockert, B., and Rooth, D.-O. (2015). The effect of
schooling on cognitive skills. Review of Economics and Statistics, 97(3):533-547.

Carnall, A. C., McLure, R. J., Dunlop, J. S., and Davé, R. (2018). Inferring the star
formation histories of massive quiescent galaxies with BAGPIPES: evidence for

multiple quenching mechanisms. MNRAS, 480(4):4379-4401.

Carnero, A., Sdnchez, E., Crocce, M., Cabré, A., and Gaztanaga, E. (2012). Clustering
of photometric luminous red galaxies - II. Cosmological implications from the

baryon acoustic scale. MNRAS, 419(2):1689-1694.

Carrasco Kind, M. and Brunner, R. J. (2013). TPZ: photometric redshift PDF's
and ancillary information by using prediction trees and random forests. MNRAS,

432(2):1483-1501.

Carrasco Kind, M. and Brunner, R. J. (2014). SOMz: photometric redshift PDF's
with self-organizing maps and random atlas. MNRAS, 438(4):3409-3421.



BIBLIOGRAPHY 200

Carter, B. J., Fabricant, D. G., Geller, M. J., Kurtz, M. J., and McLean, B. (2001).
Star Formation in a Complete Spectroscopic Survey of Galaxies. ApJ, 559(2):606—
619.

Cassata, P., Guzzo, L., Franceschini, A., Scoville, N., Capak, P., Ellis, R. S., Koeke-
moer, A., McCracken, H. J., Mobasher, B., Renzini, A., Ricciardelli, E., Scodeggio,
M., Taniguchi, Y., and Thompson, D. (2007). The Cosmic Evolution Survey
(COSMOS): The Morphological Content and Environmental Dependence of the
Galaxy Color-Magnitude Relation at z ~0.7. ApJS, 172(1):270-283.

Castellano, M., Fontana, A., Treu, T., Santini, P., Merlin, E., Leethochawalit, N.,
Trenti, M., Vanzella, E., Mestric, U., Bonchi, A., Belfiori, D., Nonino, M., Paris, D.,
Polenta, G., Roberts-Borsani, G., Boyett, K., Bradac¢, M., Calabro, A., Glazebrook,
K., Grillo, C., Mascia, S., Mason, C., Mercurio, A., Morishita, T., Nanayakkara,
T., Pentericci, L., Rosati, P., Vulcani, B., Wang, X., and Yang, L. (2022). Early
Results from GLASS-JWST. III. Galaxy Candidates at z 9-15. ApJ, 938(2):L15.

Cavanagh, M. K., Bekki, K., and Groves, B. A. (2023). The redshift evolution of the
SO fraction for z | 1 in COSMOS. MNRAS, 520(4):5885-5902.

Cenarro, A. J., Peletier, R. F., Sanchez-Blazquez, P., Selam, S. O., Toloba, E.,
Cardiel, N., Falcén-Barroso, J., Gorgas, J., Jiménez-Vicente, J., and Vazdekis, A.
(2007). Medium-resolution Isaac Newton Telescope library of empirical spectra -

II. The stellar atmospheric parameters. MNRAS, 374(2):664-690.

Cengiz, D., Dube, A., Lindner, A., and Zipperer, B. (2019). The effect of minimum

wages on low-wage jobs. The Quarterly Journal of Economics, 134(3):1405-1454.

Cerda, M., Diez-Roux, A. V., Tchetgen, E. T., Gordon-Larsen, P., and Kiefe, C.
(2010). The relationship between neighborhood poverty and alcohol use: estimation

by marginal structural models. Epidemiology (Cambridge, Mass.), 21(4):482.

Chabrier, G. (2003). Galactic Stellar and Substellar Initial Mass Function. PASP,
115(809):763-795.

Chalmers, T. C., Smith Jr, H., Blackburn, B., Silverman, B., Schroeder, B., Reitman,
D., and Ambroz, A. (1981). A method for assessing the quality of a randomized
control trial. Controlled clinical trials, 2(1):31-49.



BIBLIOGRAPHY 201

Chandrasekhar, S. (1943a). Dynamical Friction. I. General Considerations: the
Coefficient of Dynamical Friction. ApJ, 97:255.

Chandrasekhar, S. (1943b). Dynamical Friction. II. The Rate of Escape of Stars from
Clusters and the Evidence for the Operation of Dynamical Friction. ApJ, 97:263.

Chandrasekhar, S. (1943c). Dynamical Friction. III. a More Exact Theory of the
Rate of Escape of Stars from Clusters. Ap.J, 98:54.

Charlot, S. and Bruzual A, G. (1991). Stellar Population Synthesis Revisited. ApJ,
367:126.

Charlot, S. and Fall, S. M. (2000). A Simple Model for the Absorption of Starlight
by Dust in Galaxies. ApJ, 539(2):718-731.

Chartab, N., Mobasher, B., Darvish, B., Finkelstein, S., Guo, Y., Kodra, D., Lee,
K.-S., Newman, J. A., Pacifici, C., Papovich, C., Sattari, Z., Shahidi, A., Dickinson,
M. E., Faber, S. M., Ferguson, H. C., Giavalisco, M., and Jafariyazani, M. (2020).
Large-scale Structures in the CANDELS Fields: The Role of the Environment in
Star Formation Activity. ApJ, 890(1):7.

Chay, K. Y. and Greenstone, M. (2003). The impact of air pollution on infant
mortality: evidence from geographic variation in pollution shocks induced by a

recession. The quarterly journal of economics, 118(3):1121-1167.

Chesnaye, N. C., Stel, V. S., Tripepi, G., Dekker, F. W., Fu, E. L., Zoccali, C., and
Jager, K. J. (2022). An introduction to inverse probability of treatment weighting

in observational research. Clinical Kidney Journal, 15(1):14-20.

Chevallard, J. and Charlot, S. (2016). Modelling and interpreting spectral energy
distributions of galaxies with BEAGLE. MNRAS, 462(2):1415-1443.

Chiosi, C., Bertelli, G., and Bressan, A. (1988). Integrated colours and ages of
LMC clusters : the nature of the bimodal distribution of the (B-V) colours. A&A,
196:84-108.

Cid Fernandes, R., Mateus, A., Sodré, L., Stasinska, G., and Gomes, J. M. (2005).
Semi-empirical analysis of Sloan Digital Sky Survey galaxies - 1. Spectral synthesis

method. MNRAS, 358(2):363-378.



BIBLIOGRAPHY 202

Ciesla, L., Boselli, A., Elbaz, D., Boissier, S., Buat, V., Charmandaris, V., Schreiber,
C., Béthermin, M., Baes, M., Boquien, M., De Looze, 1., Fernandez-Ontiveros,
J. A., Pappalardo, C., Spinoglio, L., and Viaene, S. (2016). The imprint of rapid
star formation quenching on the spectral energy distributions of galaxies. A&A,

585:A43.

Clark, D. and Royer, H. (2013). The effect of education on adult mortality and
health: Evidence from britain. American Economic Review, 103(6):2087-2120.

Clarke, P., Morenoff, J., Debbink, M., Golberstein, E., Elliott, M. R., and Lantz,
P. M. (2014). Cumulative exposure to neighborhood context: consequences for

health transitions over the adult life course. Research on aging, 36(1):115-142.

Cole, S. (1991). Modeling Galaxy Formation in Evolving Dark Matter Halos. ApJ,
367:45.

Cole, S., Aragon-Salamanca, A., Frenk, C. S., Navarro, J. F., and Zepf, S. E. (1994).
A recipe for galaxy formation. MNRAS, 271:781-806.

Cole, S. R. and Herndn, M. A. (2008). Constructing Inverse Probability Weights for
Marginal Structural Models. American Journal of Epidemiology, 168(6):656—664.

Coleman, G. D., Wu, C. C., and Weedman, D. W. (1980). Colors and magnitudes
predicted for high redshift galaxies. ApJS, 43:393-416.

Colless, M., Dalton, G., Maddox, S., Sutherland, W., Norberg, P., Cole, S., Bland-
Hawthorn, J., Bridges, T., Cannon, R., Collins, C., Couch, W., Cross, N., Deeley,
K., De Propris, R., Driver, S. P., Efstathiou, G., Ellis, R. S., Frenk, C. S.,
Glazebrook, K., Jackson, C., Lahav, O., Lewis, I., Lumsden, S., Madgwick, D.,
Peacock, J. A., Peterson, B. A., Price, I., Seaborne, M., and Taylor, K. (2001). The
2dF Galaxy Redshift Survey: spectra and redshifts. MNRAS, 328(4):1039-1063.

Collister, A. A. and Lahav, O. (2004). ANNz: Estimating Photometric Redshifts
Using Artificial Neural Networks. PASP, 116(818):345-351.

Connolly, A. J., Csabai, 1., Szalay, A. S., Koo, D. C., Kron, R. G., and Munn, J. A.
(1995). Slicing Through Multicolor Space: Galaxy Redshifts from Broadband
Photometry. AJ, 110:2655.



BIBLIOGRAPHY 203

Conroy, C. (2013). Modeling the Panchromatic Spectral Energy Distributions of
Galaxies. ARAEA, 51(1):393-455.

Conroy, C. and Gunn, J. E. (2010). The Propagation of Uncertainties in Stellar Pop-
ulation Synthesis Modeling. ITI. Model Calibration, Comparison, and Evaluation.

ApJ, 712(2):833-857.

Conroy, C., Gunn, J. E., and White, M. (2009). The Propagation of Uncertainties in
Stellar Population Synthesis Modeling. I. The Relevance of Uncertain Aspects of
Stellar Evolution and the Initial Mass Function to the Derived Physical Properties
of Galaxies. ApJ, 699(1):486-506.

Cooper, M. C., Newman, J. A., Coil, A. L., Croton, D. J., Gerke, B. F., Yan, R.,
Davis, M., Faber, S. M., Guhathakurta, P., Koo, D. C., Weiner, B. J., and Willmer,
C. N. A. (2007). The DEEP2 galaxy redshift survey: evolution of the colour-density
relation at 0.4 | z | 1.35. MNRAS, 376(4):1445-1459.

Cooper, M. C., Newman, J. A., Weiner, B. J., Yan, R., Willmer, C. N. A., Bundy, K.,
Coil, A. L., Conselice, C. J., Davis, M., Faber, S. M., Gerke, B. F., Guhathakurta,
P., Koo, D. C., and Noeske, K. G. (2008). The DEEP2 Galaxy Redshift Survey:
the role of galaxy environment in the cosmic star formation history. MNRAS,

383(3):1058-1078.

Cordier, D., Pietrinferni, A., Cassisi, S., and Salaris, M. (2007). A Large Stellar
Evolution Database for Population Synthesis Studies. III. Inclusion of the Full
Asymptotic Giant Branch Phase and Web Tools for Stellar Population Analyses.
AJ, 133(2):468-478.

Couch, W. J., Balogh, M. L., Bower, R. G., Smail, I., Glazebrook, K., and Taylor,
M. (2001). A Low Global Star Formation Rate in the Rich Galaxy Cluster AC
114 at z=0.32. ApJ, 549(2):820-831.

Couch, W. J., Barger, A. J., Smail, I., Ellis, R. S., and Sharples, R. M. (1998).
Morphological Studies of the Galaxy Populations in Distant “Butcher-Oemler”
Clusters with the Hubble Space Telescope. II. AC 103, AC 118, and AC 114 at Z
= 0.31. ApJ, 497(1):188-211.



BIBLIOGRAPHY 204

Couch, W. J., Ellis, R. S., Sharples, R. M., and Smail, I. (1994). Morphological
Studies of the Galaxy Populations in Distant “Butcher-Oemler” Clusters with
HST. I. AC 114 at Z = 0.31 and Abell 370 at Z = 0.37. ApJ, 430:121.

Couch, W. J. and Newell, E. B. (1984). Distant clusters of galaxies. I. Uniform
photometry of 14 rich clusters. ApJS, 56:143-192.

Couch, W. J. and Sharples, R. M. (1987). A spectroscopic study of three rich galaxy
clusters at zeta=0.31. MNRAS, 229:423-456.

Cowie, L. L. and Songaila, A. (1977). Thermal evaporation of gas within galaxies by
a hot intergalactic medium. Nature, 266:501-503.

Cowie, L. L., Songaila, A., Hu, E. M., and Cohen, J. G. (1996). New Insight on
Galaxy Formation and Evolution From Keck Spectroscopy of the Hawaii Deep

Fields. AJ, 112:839.

Cox, D. (1958). Planning of Experiments. Wiley Series in Probability and Statistics
- Applied Probability and Statistics Section. Wiley.

Cox, T. J., Dutta, S. N., Di Matteo, T., Hernquist, L., Hopkins, P. F., Robertson,
B., and Springel, V. (2006). The Kinematic Structure of Merger Remnants. ApJ,
650(2):791-811.

Cramér, H. (1928). On the composition of elementary errors. Scand. Actuarial J.,

1928(1):13-74.

Croton, D. J., Farrar, G. R., Norberg, P., Colless, M., Peacock, J. A., Baldry, I. K.,
Baugh, C. M., Bland-Hawthorn, J., Bridges, T., Cannon, R., Cole, S., Collins,
C., Couch, W., Dalton, G., De Propris, R., Driver, S. P., Efstathiou, G., Ellis,
R. S., Frenk, C. S., Glazebrook, K., Jackson, C., Lahav, O., Lewis, I., Lumsden, S.,
Maddox, S., Madgwick, D., Peterson, B. A., Sutherland, W., and Taylor, K. (2005).
The 2dF Galaxy Redshift Survey: luminosity functions by density environment
and galaxy type. MNRAS, 356(3):1155-1167.

Croton, D. J., Springel, V., White, S. D. M., De Lucia, G., Frenk, C. S., Gao, L.,
Jenkins, A., Kauffmann, G., Navarro, J. F., and Yoshida, N. (2006). The many



BIBLIOGRAPHY 205

lives of active galactic nuclei: cooling flows, black holes and the luminosities and

colours of galaxies. MNRAS, 365(1):11-28.

Cucciati, O., lTovino, A., Marinoni, C., Ilbert, O., Bardelli, S., Franzetti, P., Le Fevre,
O., Pollo, A., Zamorani, G., Cappi, A., Guzzo, L., McCracken, H. J., Meneux,
B., Scaramella, R., Scodeggio, M., Tresse, L., Zucca, E., Bottini, D., Garilli, B.,
Le Brun, V., Maccagni, D., Picat, J. P., Vettolani, G., Zanichelli, A., Adami, C.,
Arnaboldi, M., Arnouts, S., Bolzonella, M., Charlot, S., Ciliegi, P., Contini, T.,
Foucaud, S., Gavignaud, I., Marano, B., Mazure, A., Merighi, R., Paltani, S.,
Pello, R., Pozzetti, L., Radovich, M., Bondi, M., Bongiorno, A., Busarello, G., de
la Torre, S., Gregorini, L., Lamareille, F., Mathez, G., Mellier, Y., Merluzzi, P.,
Ripepi, V., Rizzo, D., Temporin, S., and Vergani, D. (2006). The VIMOS VLT
Deep Survey: the build-up of the colour-density relation. A&A, 458(1):39-52.

da Cunha, E., Charlot, S., Dunne, L., Smith, D., and Rowlands, K. (2011). Magphys:
a publicly available tool to interpret observed galaxy seds. Proceedings of the

International Astronomical Union, 7(5284):292-296.

Daddi, E., Dickinson, M., Morrison, G., Chary, R., Cimatti, A., Elbaz, D., Frayer,
D., Renzini, A., Pope, A., Alexander, D. M., Bauer, F. E., Giavalisco, M., Huynh,
M., Kurk, J., and Mignoli, M. (2007). Multiwavelength Study of Massive Galaxies
at z~2. I. Star Formation and Galaxy Growth. ApJ, 670(1):156-172.

D’Agostino Jr, R. B. (1998). Propensity score methods for bias reduction in the
comparison of a treatment to a non-randomized control group. Statistics in

medicine, 17(19):2265-2281.

Darvish, B., Mobasher, B., Sobral, D., Rettura, A., Scoville, N., Faisst, A., and
Capak, P. (2016). The Effects of the Local Environment and Stellar Mass on
Galaxy Quenching to z ~ 3. ApJ, 825(2):113.

Darvish, B., Mobasher, B., Sobral, D., Scoville, N., and Aragon-Calvo, M. (2015).
A Comparative Study of Density Field Estimation for Galaxies: New Insights
into the Evolution of Galaxies with Environment in COSMOS out to z~3. ApJ,
805(2):121.



BIBLIOGRAPHY 206

Davidzon, 1., Cucciati, O., Bolzonella, M., De Lucia, G., Zamorani, G., Arnouts, S.,
Moutard, T., Ilbert, O., Garilli, B., Scodeggio, M., Guzzo, L., Abbas, U., Adami,
C., Bel, J., Bottini, D., Branchini, E., Cappi, A., Coupon, J., de la Torre, S.,
Di Porto, C., Fritz, A., Franzetti, P., Fumana, M., Granett, B. R., Guennou, L.,
Tovino, A., Krywult, J., Le Brun, V., Le Fevre, O., Maccagni, D., Malek, K.,
Marulli, F., McCracken, H. J., Mellier, Y., Moscardini, L., Polletta, M., Pollo, A.,
Tasca, L. A. M., Tojeiro, R., Vergani, D., and Zanichelli, A. (2016). The VIMOS
Public Extragalactic Redshift Survey (VIPERS). Environmental effects shaping
the galaxy stellar mass function. A&A, 586:A23.

Davis, M., Efstathiou, G., Frenk, C. S., and White, S. D. M. (1985). The evolution
of large-scale structure in a universe dominated by cold dark matter. ApJ, 292:371—

394.

Davis, M., Faber, S. M., Newman, J., Phillips, A. C., Ellis, R. S., Steidel, C. C.,
Conselice, C., Coil, A. L., Finkbeiner, D. P., Koo, D. C., Guhathakurta, P., Weiner,
B., Schiavon, R., Willmer, C., Kaiser, N., Luppino, G. A., Wirth, G., Connolly, A.,
Eisenhardt, P., Cooper, M., and Gerke, B. (2003). Science Objectives and Early
Results of the DEEP2 Redshift Survey. In Guhathakurta, P., editor, Discoveries
and Research Prospects from 6- to 10-Meter-Class Telescopes II, volume 4834 of
Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series,
pages 161-172.

Davis, M. and Geller, M. J. (1976). Galaxy Correlations as a Function of Morpholog-
ical Type. ApJ, 208:13-19.

Dawid, A. P. (1984). Present position and potential developments: Some personal
views: Statistical theory: The prequential approach. J. R. Stat. Soc. A, 147(2):278~
292.

De Lucia, G., Weinmann, S., Poggianti, B. M., Aragén-Salamanca, A., and Zaritsky,
D. (2012). The environmental history of group and cluster galaxies in a A cold

dark matter universe. MNRAS, 423(2):1277-1292.

de Vaucouleurs, G. (1961). Integrated Colors of Bright Galaxies in the u, b, V
System. ApJS, 5:233.



BIBLIOGRAPHY 207

Dekel, A. and Silk, J. (1986). The Origin of Dwarf Galaxies, Cold Dark Matter, and
Biased Galaxy Formation. ApJ, 303:39.

Delli Veneri, M., Cavuoti, S., Brescia, M., Longo, G., and Riccio, G. (2019). Star
formation rates for photometric samples of galaxies using machine learning methods.

MNRAS, 486(1):1377-1391.

Desai, V., Dalcanton, J. J., Aragon-Salamanca, A., Jablonka, P., Poggianti, B.,
Gogarten, S. M., Simard, L., Milvang-Jensen, B., Rudnick, G., Zaritsky, D., Clowe,
D., Halliday, C., Pelld, R., Saglia, R., and White, S. (2007). The Morphological
Content of 10 EDisCS Clusters at 0.5 j z j 0.8. ApJ, 660(2):1151-1164.

DESI Collaboration, Aghamousa, A., Aguilar, J., Ahlen, S., Alam, S., Allen, L. E.,
Allende Prieto, C., Annis, J., Bailey, S., Balland, C., Ballester, O., Baltay, C.,
Beaufore, L., Bebek, C., Beers, T. C., Bell, E. F., Bernal, J. L., Besuner, R., Beutler,
F., Blake, C., Bleuler, H., Blomqvist, M., Blum, R., Bolton, A. S., Briceno, C.,
Brooks, D., Brownstein, J. R., Buckley-Geer, E., Burden, A., Burtin, E., Busca,
N. G., Cahn, R. N., Cai, Y.-C., Cardiel-Sas, L., Carlberg, R. G., Carton, P.-H.,
Casas, R., Castander, F. J., Cervantes-Cota, J. L., Claybaugh, T. M., Close, M.,
Coker, C. T., Cole, S., Comparat, J., Cooper, A. P., Cousinou, M. C., Crocce, M.,
Cuby, J.-G., Cunningham, D. P., Davis, T. M., Dawson, K. S., de la Macorra,
A., De Vicente, J., Delubac, T., Derwent, M., Dey, A., Dhungana, G., Ding, Z.,
Doel, P., Duan, Y. T., Ealet, A., Edelstein, J., Eftekharzadeh, S., Eisenstein, D. J.,
Elliott, A., Escoffier, S., Evatt, M., Fagrelius, P., Fan, X., Fanning, K., Farahi, A.,
Farihi, J., Favole, G., Feng, Y., Fernandez, E., Findlay, J. R., Finkbeiner, D. P.,
Fitzpatrick, M. J., Flaugher, B., Flender, S., Font-Ribera, A., Forero-Romero,
J. E., Fosalba, P., Frenk, C. S., Fumagalli, M., Gaensicke, B. T., Gallo, G., Garcia-
Bellido, J., Gaztanaga, E., Pietro Gentile Fusillo, N., Gerard, T., Gershkovich, I.,
Giannantonio, T., Gillet, D., Gonzalez-de-Rivera, G., Gonzalez-Perez, V., Gott,
S., Graur, O., Gutierrez, G., Guy, J., Habib, S., Heetderks, H., Heetderks, I.,
Heitmann, K., Hellwing, W. A., Herrera, D. A., Ho, S., Holland, S., Honscheid,
K., Huff, E., Hutchinson, T. A., Huterer, D., Hwang, H. S., llla Laguna, J. M.,
Ishikawa, Y., Jacobs, D., Jeffrey, N., Jelinsky, P., Jennings, E., Jiang, L., Jimenez,
J., Johnson, J., Joyce, R., Jullo, E., Juneau, S., Kama, S., Karcher, A., Karkar, S.,



BIBLIOGRAPHY 208

Kehoe, R., Kennamer, N., Kent, S., Kilbinger, M., Kim, A. G., Kirkby, D., Kisner,
T., Kitanidis, E., Kneib, J.-P., Koposov, S., Kovacs, E., Koyama, K., Kremin,
A., Kron, R., Kronig, L., Kueter-Young, A., Lacey, C. G., Lafever, R., Lahav,
O., Lambert, A., Lampton, M., Landriau, M., Lang, D., Lauer, T. R., Le Goff,
J.-M., Le Guillou, L., Le Van Suu, A., Lee, J. H., Lee, S.-J., Leitner, D., Lesser,
M., Levi, M. E., L’Huillier, B., Li, B., Liang, M., Lin, H., Linder, E., Loebman,
S. R., Lukié¢, Z., Ma, J., MacCrann, N., Magneville, C., Makarem, L., Manera, M.,
Manser, C. J., Marshall, R., Martini, P., Massey, R., Matheson, T., McCauley, J.,
McDonald, P., McGreer, I. D., Meisner, A., Metcalfe, N., Miller, T. N., Miquel,
R., Moustakas, J., Myers, A., Naik, M., Newman, J. A., Nichol, R. C., Nicola,
A., Nicolati da Costa, L., Nie, J., Niz, G., Norberg, P., Nord, B., Norman, D.,
Nugent, P., O’Brien, T., Oh, M., Olsen, K. A. G., Padilla, C., Padmanabhan, H.,
Padmanabhan, N., Palanque-Delabrouille, N., Palmese, A., Pappalardo, D., Paris,
1., Park, C., Patej, A., Peacock, J. A., Peiris, H. V., Peng, X., Percival, W. J.,
Perruchot, S., Pieri, M. M., Pogge, R., Pollack, J. E., Poppett, C., Prada, F.,
Prakash, A., Probst, R. G., Rabinowitz, D., Raichoor, A., Ree, C. H., Refregier,
A., Regal, X., Reid, B., Reil, K., Rezaie, M., Rockosi, C. M., Roe, N., Ronayette,
S., Roodman, A., Ross, A. J., Ross, N. P., Rossi, G., Rozo, E., Ruhlmann-Kleider,
V., Rykoff, E. S., Sabiu, C., Samushia, L., Sanchez, E., Sanchez, J., Schlegel,
D. J., Schneider, M., Schubnell, M., Secroun, A., Seljak, U., Seo, H.-J., Serrano,
S., Shafieloo, A., Shan, H., Sharples, R., Sholl, M. J., Shourt, W. V., Silber, J. H.,
Silva, D. R., Sirk, M. M., Slosar, A., Smith, A., Smoot, G. F., Som, D., Song, Y.-S.,
Sprayberry, D., Staten, R., Stefanik, A., Tarle, G., Sien Tie, S., Tinker, J. L.,
Tojeiro, R., Valdes, F., Valenzuela, O., Valluri, M., Vargas-Magana, M., Verde,
L., Walker, A. R., Wang, J., Wang, Y., Weaver, B. A., Weaverdyck, C., Wechsler,
R. H., Weinberg, D. H., White, M., Yang, Q., Yeche, C., Zhang, T., Zhao, G.-B.,
Zheng, Y., Zhou, X., Zhou, Z., Zhu, Y., Zou, H., and Zu, Y. (2016). The DESI
Experiment Part I: Science,Targeting, and Survey Design. arXiv e-prints, page

arXiv:1611.00036.

Desouza, P. N., Dey, S., Mwenda, K. M., Kim, R., Subramanian, S., and Kinney, P. L.
(2022). Robust relationship between ambient air pollution and infant mortality in

india. Science of The Total Environment, 815:152755.



BIBLIOGRAPHY 209

Di Matteo, T., Springel, V., and Hernquist, L. (2005). Energy input from quasars
regulates the growth and activity of black holes and their host galaxies. Nature,

433(7026):604-607.

D’Isanto, A. and Polsterer, K. L. (2018). Photometric redshift estimation via deep
learning. Generalized and pre-classification-less, image based, fully probabilistic

redshifts. A&A, 609:A111.

Do, D. P. (2009). The dynamics of income and neighborhood context for popula-
tion health: do long-term measures of socioeconomic status explain more of the
black/white health disparity than single-point-in-time measures? Social science &

medicine, 68(8):1368-1375.

Do, D. P., Wang, L., and Elliott, M. R. (2013). Investigating the relationship between
neighborhood poverty and mortality risk: a marginal structural modeling approach.

Social Science & Medicine, 91:58-66.

Dobbels, W., Krier, S., Pirson, S., Viaene, S., De Geyter, G., Salim, S., and Baes, M.
(2019). Morphology-assisted galaxy mass-to-light predictions using deep learning.
AEA, 624:A102.

Dolag, K., Borgani, S., Murante, G., and Springel, V. (2009). Substructures in
hydrodynamical cluster simulations. MNRAS, 399(2):497-514.

Doll, R. and Hill, A. B. (1950). Smoking and carcinoma of the lung. British medical
journal, 2(4682):739.

Dominguez, M., Muriel, H., and Lambas, D. G. (2001). Galaxy Morphological
Segregation in Clusters: Local versus Global Conditions. AJ, 121(3):1266-1274.

Donnan, C. T., McLeod, D. J., Dunlop, J. S., McLure, R. J., Carnall, A. C., Begley,
R., Cullen, F., Hamadouche, M. L., Bowler, R. A. A., Magee, D., McCracken,
H. J., Milvang-Jensen, B., Moneti, A., and Targett, T. (2023). The evolution of
the galaxy UV luminosity function at redshifts z ~ 8 — 15 from deep JWST and
ground-based near-infrared imaging. MNRAS, 518(4):6011-6040.

Donnari, M., Pillepich, A., Nelson, D., Vogelsberger, M., Genel, S., Weinberger, R.,

Marinacci, F., Springel, V., and Hernquist, L. (2019). The star formation activity



BIBLIOGRAPHY 210

of NlustrisTNG galaxies: main sequence, UVJ diagram, quenched fractions, and

systematics. MNRAS, 485(4):4817-4840.

Dosilovié, F. K., Bré¢ié, M., and Hlupi¢, N. (2018). Explainable artificial intelligence: A
survey. In 2018 41st International Convention on Information and Communication

Technology, Electronics and Microelectronics (MIPRO), pages 0210-0215.

Dressler, A. (1980). Galaxy morphology in rich clusters: implications for the formation

and evolution of galaxies. ApJ, 236:351-365.

Dressler, A. and Gunn, J. E. (1983). Spectroscopy of galaxies in distant clusters. II.
The population of the 3C 295 cluster. ApJ, 270:7-19.

Dressler, A., Oemler, Augustus, J., Couch, W. J., Smail, I., Ellis, R. S., Barger, A.,
Butcher, H., Poggianti, B. M., and Sharples, R. M. (1997). Evolution since z = 0.5
of the Morphology-Density Relation for Clusters of Galaxies. ApJ, 490(2):577-591.

Dressler, A., Oemler, Augustus, J., Sparks, W. B., and Lucas, R. A. (1994). New
Images of the Distant, Rich Cluster CL 093944713 with WFPC2. ApJ, 435:1.23.

Dressler, A., Smail, 1., Poggianti, B. M., Butcher, H., Couch, W. J., Ellis, R. S., and
Oemler, Augustus, J. (1999). A Spectroscopic Catalog of 10 Distant Rich Clusters
of Galaxies. ApJS, 122(1):51-80.

Drlica-Wagner, A., Sevilla-Noarbe, 1., Rykoff, E. S., Gruendl, R. A., Yanny, B.,
Tucker, D. L., Hoyle, B., Carnero Rosell, A., Bernstein, G. M., Bechtol, K., Becker,
M. R., Benoit-Lévy, A., Bertin, E., Carrasco Kind, M., Davis, C., de Vicente, J.,
Diehl, H. T., Gruen, D., Hartley, W. G., Leistedt, B., Li, T. S., Marshall, J. L.,
Neilsen, E., Rau, M. M., Sheldon, E., Smith, J., Troxel, M. A., Wyatt, S., Zhang,
Y., Abbott, T. M. C., Abdalla, F. B., Allam, S., Banerji, M., Brooks, D., Buckley-
Geer, E., Burke, D. L., Capozzi, D., Carretero, J., Cunha, C. E., D’Andrea, C. B.,
da Costa, L. N., DePoy, D. L., Desai, S., Dietrich, J. P., Doel, P., Evrard, A. E.,
Fausti Neto, A., Flaugher, B., Fosalba, P., Frieman, J., Garcia-Bellido, J., Gerdes,
D. W., Giannantonio, T., Gschwend, J., Gutierrez, G., Honscheid, K., James, D. J.,
Jeltema, T., Kuehn, K., Kuhlmann, S.,; Kuropatkin, N., Lahav, O., Lima, M.,
Lin, H., Maia, M. A. G., Martini, P., McMahon, R. G., Melchior, P., Menanteau,
F., Miquel, R., Nichol, R. C., Ogand o, R. L. C., Plazas, A. A., Romer, A. K.,



BIBLIOGRAPHY 211

Roodman, A., Sanchez, E., Scarpine, V., Schindler, R., Schubnell, M., Smith, M.,
Smith, R. C., Soares-Santos, M., Sobreira, F., Suchyta, E., Tarle, G., Vikram, V.,
Walker, A. R., Wechsler, R. H., Zuntz, J., and DES Collaboration (2018). Dark
Energy Survey Year 1 Results: The Photometric Data Set for Cosmology. ApJS,
235(2):33.

Drory, N. and Alvarez, M. (2008). The Contribution of Star Formation and Merging
to Stellar Mass Buildup in Galaxies. Ap.J, 680(1):41-53.

Dunlop, J. S. (2013). Observing the First Galaxies. In Wiklind, T., Mobasher, B.,
and Bromm, V., editors, The First Galazies, volume 396 of Astrophysics and Space

Science Library, page 223.

Eales, S., de Vis, P., Smith, M. W. L., Appah, K., Ciesla, L., Duffield, C., and
Schofield, S. (2017). The Galaxy End Sequence. MNRAS, 465(3):3125-3133.

Efstathiou, G. and Silk, J. (1983). The Formation of Galaxies. Fund. Cosmic Phys.,
9:1-138.

Einstein, A. (1916). Die Grundlage der allgemeinen Relativitétstheorie. Annalen der
Physik, 354(7):769-822.

Eisenstein, D. J. (2005). Dark Energy and Cosmic Sound. In Wolff, S. C. and Lauer,
T. R., editors, Observing Dark Energy, volume 339 of Astronomical Society of the
Pacific Conference Series, page 187.

Elbaz, D., Daddi, E., Le Borgne, D., Dickinson, M., Alexander, D. M., Chary, R. R.,
Starck, J. L., Brandt, W. N., Kitzbichler, M., MacDonald, E., Nonino, M., Popesso,
P., Stern, D., and Vanzella, E. (2007). The reversal of the star formation-density
relation in the distant universe. A&A, 468(1):33-48.

Ellingson, E., Lin, H., Yee, H. K. C., and Carlberg, R. G. (2001). The Evolution of
Population Gradients in Galaxy Clusters: The Butcher-Oemler Effect and Cluster
Infall. ApJ, 547(2):609-622.

Ellison, S. L., Patton, D. R., Simard, L., and McConnachie, A. W. (2008). Galaxy
Pairs in the Sloan Digital Sky Survey. I. Star Formation, Active Galactic Nucleus
Fraction, and the Mass-Metallicity Relation. AJ, 135(5):1877-1899.



BIBLIOGRAPHY 212

Eriksen, M., Alarcon, A., Gaztanaga, E., Amara, A., Cabayol, L., Carretero, J.,
Castander, F. J., Crocce, M., Delfino, M., De Vicente, J., Fernand ez, E., Fosalba,
P., Garcia-Bellido, J., Hildebrand t, H., Hoekstra, H., Joachimi, B., Norberg, P.,
Miquel, R., Padilla, C., Refregier, A., Sanchez, E., Serrano, S., Sevilla-Noarbe,
I., Tallada, P., Tonello, N., and Tortorelli, L. (2019). The PAU Survey: early
demonstration of photometric redshift performance in the COSMOS field. MNRAS,
484(3):4200-4215.

Fuclid Collaboration, Bisigello, L., Conselice, C. J., Baes, M., Bolzonella, M.,
Brescia, M., Cavuoti, S., Cucciati, O., Humphrey, A., Hunt, L. K., Maraston, C.,
Pozzetti, L., Tortora, C., van Mierlo, S. E., Aghanim, N., Auricchio, N., Baldi, M.,
Bender, R., Bodendorf, C., Bonino, D., Branchini, E., Brinchmann, J., Camera,
S., Capobianco, V., Carbone, C., Carretero, J., Castander, F. J., Castellano, M.,
Cimatti, A., Congedo, G., Conversi, L., Copin, Y., Corcione, L., Courbin, F.,
Cropper, M., Da Silva, A., Degaudenzi, H., Douspis, M., Dubath, F., Duncan,
C. A. J., Dupac, X., Dusini, S., Farrens, S., Ferriol, S., Frailis, M., Franceschi,
E., Franzetti, P., Fumana, M., Garilli, B., Gillard, W., Gillis, B., Giocoli, C.,
Grazian, A., Grupp, F., Guzzo, L., Haugan, S. V. H., Holmes, W., Hormuth, F.,
Hornstrup, A., Jahnke, K., Kiimmel, M., Kermiche, S., Kiessling, A., Kilbinger,
M., Kohley, R., Kunz, M., Kurki-Suonio, H., Ligori, S., Lilje, P. B., Lloro, I.,
Maiorano, E., Mansutti, O., Marggraf, O., Markovic, K., Marulli, F., Massey, R.,
Maurogordato, S., Medinaceli, E., Meneghetti, M., Merlin, E., Meylan, G., Moresco,
M., Moscardini, L., Munari, E., Niemi, S. M., Padilla, C., Paltani, S., Pasian,
F., Pedersen, K., Pettorino, V., Polenta, G., Poncet, M., Popa, L., Raison, F.,
Renzi, A., Rhodes, J., Riccio, G., Rix, H. W., Romelli, E., Roncarelli, M., Rosset,
C., Rossetti, E., Saglia, R., Sapone, D., Sartoris, B., Schneider, P., Scodeggio,
M., Secroun, A., Seidel, G., Sirignano, C., Sirri, G., Stanco, L., Tallada-Crespi,
P., Tavagnacco, D., Taylor, A. N., Tereno, 1., Toledo-Moreo, R., Torradeflot, F.,
Tutusaus, 1., Valentijn, E. A., Valenziano, L., Vassallo, T., Wang, Y., Zacchei,
A., Zamorani, G., Zoubian, J., Andreon, S., Bardelli, S., Boucaud, A., Colodro-
Conde, C., Di Ferdinando, D., Gracia-Carpio, J., Lindholm, V., Maino, D., Mei,
S., Scottez, V., Sureau, F., Tenti, M., Zucca, E., Borlaff, A. S., Ballardini, M.,

Biviano, A., Bozzo, E., Burigana, C., Cabanac, R., Cappi, A., Carvalho, C. S.,



BIBLIOGRAPHY 213

Casas, S., Castignani, G., Cooray, A., Coupon, J., Courtois, H. M., Cuby, J.,
Davini, S., De Lucia, G., Desprez, G., Dole, H., Escartin, J. A., Escoffier, S.,
Farina, M., Fotopoulou, S., Ganga, K., Garcia-Bellido, J., George, K., Giacomini,
F., Gozaliasl, G., Hildebrandt, H., Hook, 1., Huertas-Company, M., Kansal, V.,
Keihanen, E., Kirkpatrick, C. C., Loureiro, A., Macias-Pérez, J. F., Magliocchetti,
M., Mainetti, G., Marcin, S., Martinelli, M., Martinet, N., Metcalf, R. B., Monaco,
P., Morgante, G., Nadathur, S., Nucita, A. A., Patrizii, L., Peel, A., Potter, D.,
Pourtsidou, A., Péntinen, M., Reimberg, P., Sdnchez, A. G., Sakr, Z., Schirmer,
M., Sefusatti, E., Sereno, M., Stadel, J., Teyssier, R., Valieri, C., Valiviita, J.,
and Viel, M. (2023). Euclid preparation - XXIII. Derivation of galaxy physical
properties with deep machine learning using mock fluxes and H-band images.

MNRAS, 520(3):3529-3548.

Euclid Collaboration: Desprez, Desprez, G., Paltani, S., Coupon, J., Almosallam,
1., Alvarez-Ayllon, A., Amaro, V., Brescia, M., Brodwin, M., Cavuoti, S., De
Vicente-Albendea, J., Fotopoulou, S., Hatfield, P. W., Hartley, W. G., Ilbert,
O., Jarvis, M. J., Longo, G., Rau, M. M., Saha, R., Speagle, J. S., Tramacere,
A., Castellano, M., Dubath, F., Galametz, A., Kuemmel, M., Laigle, C., Merlin,
E., Mohr, J. J., Pilo, S., Salvato, M., Andreon, S., Auricchio, N., Baccigalupi,
C., Balaguera-Antolinez, A., Baldi, M., Bardelli, S., Bender, R., Biviano, A.,
Bodendorf, C., Bonino, D., Bozzo, E., Branchini, E., Brinchmann, J., Burigana,
C., Cabanac, R., Camera, S., Capobianco, V., Cappi, A., Carbone, C., Carretero,
J., Carvalho, C. S., Casas, R., Casas, S., Castander, F. J., Castignani, G., Cimatti,
A., Cledassou, R., Colodro-Conde, C., Congedo, G., Conselice, C. J., Conversi, L.,
Copin, Y., Corcione, L., Courtois, H. M., Cuby, J. G., Da Silva, A., de la Torre,
S., Degaudenzi, H., Di Ferdinando, D., Douspis, M., Duncan, C. A. J., Dupac,
X., Ealet, A., Fabbian, G., Fabricius, M., Farrens, S., Ferreira, P. G., Finelli, F.,
Fosalba, P., Fourmanoit, N., Frailis, M., Franceschi, E., Fumana, M., Galeotta, S.,
Garilli, B., Gillard, W., Gillis, B., Giocoli, C., Gozaliasl, G., Gracia-Carpio, J.,
Grupp, F., Guzzo, L., Hailey, M., Haugan, S. V. H., Holmes, W., Hormuth, F.,
Humphrey, A., Jahnke, K., Keihanen, E., Kermiche, S., Kilbinger, M., Kirkpatrick,
C. C., Kitching, T. D., Kohley, R., Kubik, B., Kunz, M., Kurki-Suonio, H., Ligori,
S., Lilje, P. B., Lloro, I., Maino, D., Maiorano, E., Marggraf, O., Markovic, K.,



BIBLIOGRAPHY 214

Martinet, N., Marulli, F., Massey, R., Maturi, M., Mauri, N., Maurogordato, S.,
Medinaceli, E., Mei, S., Meneghetti, M., Benton Metcalf, R., Meylan, G., Moresco,
M., Moscardini, L., Munari, E., Niemi, S., Padilla, C., Pasian, F., Patrizii, L.,
Pettorino, V., Pires, S., Polenta, G., Poncet, M., Popa, L., Potter, D., Pozzetti,
L., Raison, F., Renzi, A., Rhodes, J., Riccio, G., Rossetti, E., Saglia, R., Sapone,
D., Schneider, P., Scottez, V., Secroun, A., Serrano, S., Sirignano, C., Sirri, G.,
Stanco, L., Stern, D., Sureau, F., Tallada Crespi, P., Tavagnacco, D., Taylor, A. N.,
Tenti, M., Tereno, 1., Toledo-Moreo, R., Torradeflot, F., Valenziano, L., Valiviita,
J., Vassallo, T., Viel, M., Wang, Y., Welikala, N., Whittaker, L., Zacchei, A.,
Zamorani, G., Zoubian, J., and Zucca, E. (2020). Euclid preparation. X. The
Euclid photometric-redshift challenge. A¢A, 644:A31.

Everett, S., Yanny, B., Kuropatkin, N., Huff, E. M., Zhang, Y., Myles, J., Masegian,
A., Elvin-Poole, J., Allam, S., Bernstein, G. M., Sevilla-Noarbe, 1., Splettstoesser,
M., Sheldon, E., Jarvis, M., Amon, A., Harrison, I., Choi, A., Hartley, W. G.,
Alarcon, A., Sanchez, C., Gruen, D., Eckert, K., Prat, J., Tabbutt, M., Busti, V.,
Becker, M. R., MacCrann, N.; Diehl, H. T., Tucker, D. L., Bertin, E., Jeltema,
T., Drlica-Wagner, A., Gruendl, R. A., Bechtol, K., Carnero Rosell, A., Abbott,
T. M. C., Aguena, M., Annis, J., Bacon, D., Bhargava, S., Brooks, D., Burke, D. L.,
Carrasco Kind, M., Carretero, J., Castander, F. J., Conselice, C., Costanzi, M., da
Costa, L. N., Pereira, M. E. S., De Vicente, J., DeRose, J., Desai, S., Eifler, T. F.,
Evrard, A. E., Ferrero, 1., Fosalba, P., Frieman, J., Garcia-Bellido, J., Gaztanaga,
E., Gerdes, D. W., Gutierrez, G., Hinton, S. R., Hollowood, D. L., Honscheid, K.,
Huterer, D., James, D. J., Kent, S., Krause, E., Kuehn, K., Lahav, O., Lima, M.,
Lin, H., Maia, M. A. G., Marshall, J. L., Melchior, P., Menanteau, F., Miquel, R.,
Mohr, J. J., Morgan, R., Muir, J., Ogando, R. L. C., Palmese, A., Paz-Chinchén,
F., Plazas, A. A., Rodriguez-Monroy, M., Romer, A. K., Roodman, A., Sanchez,
E., Scarpine, V., Serrano, S., Smith, M., Soares-Santos, M., Suchyta, E., Swanson,
M. E. C., Tarle, G., To, C., Troxel, M. A., Varga, T. N., Weller, J., and Wilkinson,
R. D. (2020). Dark Energy Survey Year 3 Results: Measuring the Survey Transfer

Function with Balrog. arXiv e-prints, page arXiv:2012.12825.

Fabian, A. C. (2012). Observational Evidence of Active Galactic Nuclei Feedback.
ARAEA, 50:455-489.



BIBLIOGRAPHY 215

Fabricant, D. G., McClintock, J. E., and Bautz, M. W. (1991). Galaxy Evolution in
Distant, X-Ray—Selected Clusters of Galaxies. I. CL 1358+6245. ApJ, 381:33.

Fall, S. M. and Efstathiou, G. (1980). Formation and rotation of disc galaxies with
haloes. MNRAS, 193:189-206.

Fang, J. J., Faber, S. M., Koo, D. C., and Dekel, A. (2013). A Link between Star
Formation Quenching and Inner Stellar Mass Density in Sloan Digital Sky Survey
Central Galaxies. ApJ, 776(1):63.

Farouki, R. and Shapiro, S. L. (1981). Computer simulations of environmental
influences on galaxy evolution in dense clusters. II - Rapid tidal encounters. ApJ,

243:32-41.

Fasano, G., Poggianti, B. M., Couch, W. J., Bettoni, D., Kjergaard, P., and Moles,
M. (2000). The Evolution of the Galactic Morphological Types in Clusters. ApJ,
542(2):673-683.

Feldmann, R. (2017). Are star formation rates of galaxies bimodal? MNRAS,
470(1):L59-L63.

Feldmann, R., Carollo, C. M., Porciani, C., Lilly, S. J., Capak, P., Taniguchi, Y., Le
Fevre, O., Renzini, A., Scoville, N., Ajiki, M., Aussel, H., Contini, T., McCracken,
H., Mobasher, B., Murayama, T., Sanders, D., Sasaki, S., Scarlata, C., Scodeggio,
M., Shioya, Y., Silverman, J., Takahashi, M., Thompson, D., and Zamorani,
G. (2006). The Zurich Extragalactic Bayesian Redshift Analyzer and its first
application: COSMOS. MNRAS, 372(2):565-577.

Ferland, G. J., Korista, K. T., Verner, D. A., Ferguson, J. W., Kingdon, J. B., and
Verner, E. M. (1998). CLOUDY 90: Numerical Simulation of Plasmas and Their
Spectra. PASP, 110(749):761-778.

Feroz, F., Hobson, M., Cameron, E., and Pettitt, A. (2019). Importance Nested
Sampling and the MultiNest Algorithm. Open J. Astrophys., 2(1):10.

Feroz, F. and Hobson, M. P. (2008). Multimodal nested sampling: an efficient and
robust alternative to Markov Chain Monte Carlo methods for astronomical data

analyses. MNRAS, 384(2):449-463.



BIBLIOGRAPHY 216

Feroz, F., Hobson, M. P., and Bridges, M. (2009). MultiNest: an efficient and robust
Bayesian inference tool for cosmology and particle physics. MNRAS, 398(4):1601—
1614.

Ferrarese, L. and Merritt, D. (2000). A Fundamental Relation between Supermassive

Black Holes and Their Host Galaxies. ApJ, 539(1):L9-L12.

Feruglio, C., Aussel, H., Le Floc’h, E., Ilbert, O., Salvato, M., Capak, P., Fiore,
F., Kartaltepe, J., Sanders, D., Scoville, N., Koekemoer, A. M., and Ideue, Y.
(2010). Obscured Star Formation and Environment in the COSMOS Field. ApJ,
721(1):607-614.

Feulner, G., Gabasch, A., Salvato, M., Drory, N., Hopp, U., and Bender, R. (2005).
Specific Star Formation Rates to Redshift 5 from the FORS Deep Field and the
GOODS-S Field. ApJ, 633(1):L9-L12.

Fewell, Z., Hernan, M. A., Wolfe, F., Tilling, K., Choi, H., and Sterne, J. A. (2004).
Controlling for time-dependent confounding using marginal structural models. The

Stata Journal, 4(4):402-420.

Finkelstein, S. L., Bagley, M. B., Arrabal Haro, P., Dickinson, M., Ferguson, H. C.,
Kartaltepe, J. S., Papovich, C., Burgarella, D., Kocevski, D. D., Huertas-Company,
M., Iyer, K. G., Koekemoer, A. M., Larson, R. L., Pérez-Gonzélez, P. G., Rose,
C., Tacchella, S., Wilkins, S. M., Chworowsky, K., Medrano, A., Morales, A. M.,
Somerville, R. S., Yung, L. Y. A., Fontana, A., Giavalisco, M., Grazian, A., Grogin,
N. A., Kewley, L. J., Kirkpatrick, A., Kurczynski, P., Lotz, J. M., Pentericci, L.,
Pirzkal, N., Ravindranath, S., Ryan, R. E., Trump, J. R., Yang, G., Almaini,
O., Amorin, R. O., Annunziatella, M., Backhaus, B. E., Barro, G., Behroozi, P.,
Bell, E. F., Bhatawdekar, R., Bisigello, L., Bromm, V., Buat, V., Buitrago, F.,
Calabro, A., Casey, C. M., Castellano, M., Chavez Ortiz, O. A., Ciesla, L., Cleri,
N. J., Cohen, S. H., Cole, J. W., Cooke, K. C., Cooper, M. C., Cooray, A. R.,
Costantin, L., Cox, I. G., Croton, D., Daddi, E., Davé, R., de La Vega, A., Dekel,
A., Elbaz, D., Estrada-Carpenter, V., Faber, S. M., Fernandez, V., Finkelstein,
K. D., Freundlich, J., Fujimoto, S., Garcia-Arguméanez, A., Gardner, J. P., Gawiser,
E., Gémez-Guijarro, C., Guo, Y., Hamblin, K., Hamilton, T. S., Hathi, N. P.,



BIBLIOGRAPHY 217

Holwerda, B. W., Hirschmann, M., Hutchison, T. A., Jaskot, A. E., Jha, S. W,
Jogee, S., Juneau, S., Jung, I., Kassin, S. A., Bail, A. L., Leung, G. C. K., Lucas,
R. A., Magnelli, B., Mantha, K. B., Matharu, J., McGrath, E. J., McIntosh, D. H.,
Merlin, E., Mobasher, B., Newman, J. A., Nicholls, D. C., Pandya, V., Rafelski,
M., Ronayne, K., Santini, P., Seillé, L.-M., Shah, E. A., Shen, L., Simons, R. C.,
Snyder, G. F., Stanway, E. R., Straughn, A. N., Teplitz, H. I., Vanderhoof, B. N.,
Vega-Ferrero, J., Wang, W., Weiner, B. J., Willmer, C. N. A., Wuyts, S., Zavala,
J. A., and Ceers Team (2022). A Long Time Ago in a Galaxy Far, Far Away: A
Candidate z ~ 12 Galaxy in Early JWST CEERS Imaging. ApJ, 940(2):L55.

Fioc, M. and Rocca-Volmerange, B. (1997). PEGASE: a UV to NIR spectral evolution
model of galaxies. Application to the calibration of bright galaxy counts. A&A,
326:950-962.

Firth, A. E., Lahav, O., and Somerville, R. S. (2003). Estimating photometric
redshifts with artificial neural networks. MNRAS, 339(4):1195-1202.

Flaugher, B., Diehl, H. T., Honscheid, K., Abbott, T. M. C., Alvarez, O., Angstadt,
R., Annis, J. T., Antonik, M., Ballester, O., Beaufore, L., Bernstein, G. M.,
Bernstein, R. A., Bigelow, B., Bonati, M., Boprie, D., Brooks, D., Buckley-Geer,
E. J., Campa, J., Cardiel-Sas, L., Castand er, F. J., Castilla, J., Cease, H., Cela-
Ruiz, J. M., Chappa, S., Chi, E., Cooper, C., da Costa, L. N., Dede, E., Derylo,
G., DePoy, D. L., de Vicente, J., Doel, P., Drlica-Wagner, A., Eiting, J., Elliott,
A. E., Emes, J., Estrada, J., Fausti Neto, A., Finley, D. A., Flores, R., Frieman,
J., Gerdes, D., Gladders, M. D., Gregory, B., Gutierrez, G. R., Hao, J., Holland,
S. E., Holm, S., Huffman, D., Jackson, C., James, D. J., Jonas, M., Karcher, A.,
Karliner, I., Kent, S., Kessler, R., Kozlovsky, M., Kron, R. G., Kubik, D., Kuehn,
K., Kuhlmann, S., Kuk, K., Lahav, O., Lathrop, A., Lee, J., Levi, M. E., Lewis,
P., Li, T. S., Mand richenko, I., Marshall, J. L., Martinez, G., Merritt, K. W.,
Miquel, R., Munoz, F., Neilsen, E. H., Nichol, R. C., Nord, B., Ogando, R., Olsen,
J., Palaio, N., Patton, K., Peoples, J., Plazas, A. A., Rauch, J., Reil, K., Rheault,
J. P., Roe, N. A.) Rogers, H., Roodman, A., Sanchez, E., Scarpine, V., Schindler,
R. H., Schmidt, R., Schmitt, R., Schubnell, M., Schultz, K., Schurter, P., Scott, L.,
Serrano, S., Shaw, T. M., Smith, R. C., Soares-Santos, M., Stefanik, A., Stuermer,



BIBLIOGRAPHY 218

W., Suchyta, E., Sypniewski, A., Tarle, G., Thaler, J., Tighe, R., Tran, C., Tucker,
D., Walker, A. R., Wang, G., Watson, M., Weaverdyck, C., Wester, W., Woods,
R., Yanny, B., and DES Collaboration (2015). The Dark Energy Camera. AJ,
150(5):150.

Fluke, C. J. and Jacobs, C. (2020). Surveying the reach and maturity of machine learn-
ing and artificial intelligence in astronomy. WIRFEs Data Mining and Knowledge
Discovery, 10(2):e1349.

Fontana, A., Santini, P., Grazian, A., Pentericci, L., Fiore, F., Castellano, M.,
Giallongo, E., Menci, N., Salimbeni, S., Cristiani, S., Nonino, M., and Vanzella,
E. (2009). The fraction of quiescent massive galaxies in the early Universe. AéA,
501(1):15-20.

Fontanot, F., De Lucia, G., Monaco, P., Somerville, R. S., and Santini, P. (2009).
The many manifestations of downsizing: hierarchical galaxy formation models

confront observations. MNRAS, 397(4):1776-1790.

Foreman-Mackey, D., Hogg, D. W., Lang, D., and Goodman, J. (2013). emcee: The
MCMC Hammer. PASP, 125(925):306.

Freeman, K. C. (1970). On the Disks of Spiral and SO Galaxies. Ap.J, 160:811.

French, K. D. (2021). Evolution Through the Post-starburst Phase: Using Post-
starburst Galaxies as Laboratories for Understanding the Processes that Drive

Galaxy Evolution. PASP, 133(1025):072001.

Friedmann, A. (1922). Uber die Kriimmung des Raumes. Zeitschrift fur Physik,
10:377-386.

Gao, L., Springel, V., and White, S. D. M. (2005). The age dependence of halo
clustering. MNRAS, 363(1):L66-L70.

Gardner, J. P., Mather, J. C., Clampin, M., Doyon, R., Greenhouse, M. A., Hammel,
H. B., Hutchings, J. B., Jakobsen, P., Lilly, S. J., Long, K. S., Lunine, J. I,
McCaughrean, M. J., Mountain, M., Nella, J., Rieke, G. H., Rieke, M. J., Rix,
H.-W., Smith, E. P., Sonneborn, G., Stiavelli, M., Stockman, H. S., Windhorst,



BIBLIOGRAPHY 219

R. A., and Wright, G. S. (2006). The James Webb Space Telescope. Space Sci. Rev.,
123(4):485-606.

Garduno, L. E., Lara-Lépez, M. A., Lépez-Cruz, O., Hopkins, A. M., Owers, M. S.,
Pimbblet, K. A., and Holwerda, B. W. (2021). Galaxy And Mass Assembly
(GAMA): the interplay between galaxy mass, SFR, and heavy element abundance
in paired galaxy sets. MNRAS, 501(2):2969-2982.

Gareth, J., Daniela, W., Trevor, H., and Robert, T. (2013). An introduction to

statistical learning: with applications in R. Spinger.

Gavazzi, G., Contursi, A., Carrasco, L., Boselli, A., Kennicutt, R., Scodeggio, M.,
and Jaffe, W. (1995). The radio and optical structure of three peculiar galaxies in
A 1367. AEA, 304:325.

Geach, J. E. (2012). Unsupervised self-organized mapping: a versatile empirical
tool for object selection, classification and redshift estimation in large surveys.

MNRAS, 419(3):2633-2645.

Gebhardt, K., Bender, R., Bower, G., Dressler, A., Faber, S. M., Filippenko, A. V.,
Green, R., Grillmair, C., Ho, L. C., Kormendy, J., Lauer, T. R., Magorrian, J.,
Pinkney, J., Richstone, D., and Tremaine, S. (2000). A Relationship between
Nuclear Black Hole Mass and Galaxy Velocity Dispersion. ApJ, 539(1):L13-L16.

Genel, S., Vogelsberger, M., Springel, V., Sijacki, D., Nelson, D., Snyder, G.,
Rodriguez-Gomez, V., Torrey, P., and Hernquist, L. (2014). Introducing the
Ilustris project: the evolution of galaxy populations across cosmic time. MNRAS,

445(1):175-200.

Gerdes, D. W., Sypniewski, A. J., McKay, T. A., Hao, J., Weis, M. R., Wechsler,
R. H., and Busha, M. T. (2010). ArborZ: Photometric Redshifts Using Boosted
Decision Trees. ApJ, 715(2):823-832.

Ghigna, S., Moore, B., Governato, F., Lake, G., Quinn, T., and Stadel, J. (1998).
Dark matter haloes within clusters. MNRAS, 300(1):146-162.

Ghosh, A., Simon, K., and Sommers, B. (2018). The effect of health insurance on



BIBLIOGRAPHY 220

prescription drug use among low-income adults:evidence from recent medicaid

expansions. Journal of Health Economics, 63.

Giallongo, E., Salimbeni, S., Menci, N., Zamorani, G., Fontana, A., Dickinson, M.,
Cristiani, S., and Pozzetti, L. (2005). The B-Band Luminosity Function of Red
and Blue Galaxies up to z = 3.5. ApJ, 622(1):116-128.

Giavalisco, M., Ferguson, H. C., Koekemoer, A. M., Dickinson, M., Alexander, D. M.,
Bauer, F. E., Bergeron, J., Biagetti, C., Brandt, W. N., Casertano, S., Cesarsky,
C., Chatzichristou, E., Conselice, C., Cristiani, S., Da Costa, L., Dahlen, T., de
Mello, D., Eisenhardt, P., Erben, T., Fall, S. M., Fassnacht, C., Fosbury, R.,
Fruchter, A., Gardner, J. P., Grogin, N., Hook, R. N., Hornschemeier, A. E., Idzi,
R., Jogee, S., Kretchmer, C., Laidler, V., Lee, K. S., Livio, M., Lucas, R., Madau,
P., Mobasher, B., Moustakas, L. A., Nonino, M., Padovani, P., Papovich, C., Park,
Y., Ravindranath, S., Renzini, A., Richardson, M., Riess, A., Rosati, P., Schirmer,
M., Schreier, E., Somerville, R. S., Spinrad, H., Stern, D., Stiavelli, M., Strolger,
L., Urry, C. M., Vandame, B., Williams, R., and Wolf, C. (2004). The Great
Observatories Origins Deep Survey: Initial Results from Optical and Near-Infrared

Imaging. ApJ, 600(2):L93-L98.

Gini, C. (1912). Variabilita e mutabilita: contributo allo studio delle distribuzioni e

delle relazioni statistiche.[Fasc. I.]. Tipogr. di P. Cuppini.

Girardi, L., Bressan, A., Bertelli, G., and Chiosi, C. (2000). Evolutionary tracks and
isochrones for low- and intermediate-mass stars: From 0.15 to 7 Mg, and from

Z=0.0004 to 0.03. A&HAS, 141:371-383.

Girardi, M., Biviano, A., Giuricin, G., Mardirossian, F., and Mezzetti, M. (1993).

Velocity Dispersions in Galaxy Clusters. Ap.J, 404:38.

Giuricin, G., Samurovié¢, S., Girardi, M., Mezzetti, M., and Marinoni, C. (2001). The
Redshift-Space Two-Point Correlation Functions of Galaxies and Groups in the

Nearby Optical Galaxy Sample. ApJ, 554(2):857-872.

Glymour, C., Zhang, K., and Spirtes, P. (2019). Review of causal discovery methods

based on graphical models. Frontiers in genetics, 10:524.



BIBLIOGRAPHY 221
Gnedin, O. Y. (2003). Tidal Effects in Clusters of Galaxies. ApJ, 582(1):141-161.

Gneiting, T., Balabdaoui, F., and Raftery, A. (2007). Probabilistic forecasts, calibra-
tion and sharpness. J. R. Stat. Soc. B, 69:243 — 268.

Goémez, P. L., Nichol, R. C., Miller, C. J., Balogh, M. L., Goto, T., Zabludoff, A. I.,
Romer, A. K., Bernardi, M., Sheth, R., Hopkins, A. M., Castander, F. J., Connolly,
A. J., Schneider, D. P., Brinkmann, J., Lamb, D. Q., SubbaRao, M., and York,
D. G. (2003). Galaxy Star Formation as a Function of Environment in the Early
Data Release of the Sloan Digital Sky Survey. ApJ, 584(1):210-227.

Goodman, J. and Weare, J. (2010). Ensemble samplers with affine invariance.

Commun. Appl. Math. Comput. Sci., 5(1):65-80.

Goto, T., Yamauchi, C., Fujita, Y., Okamura, S., Sekiguchi, M., Smail, I., Bernardi,
M., and Gomez, P. L. (2003). The morphology-density relation in the Sloan Digital
Sky Survey. MNRAS, 346(2):601-614.

Gottlober, S., Klypin, A., and Kravtsov, A. V. (2001). Merging History as a Function
of Halo Environment. ApJ, 546(1):223-233.

Goyal, A. and Bengio, Y. (2020). Inductive Biases for Deep Learning of Higher-Level
Cognition. arXiv e-prints, page arXiv:2011.15091.

Groves, B. A., Dopita, M. A., and Sutherland, R. S. (2004a). Dusty, Radiation
Pressure-Dominated Photoionization. I. Model Description, Structure, and Grids.

ApJS, 153(1):9-73.

Groves, B. A., Dopita, M. A., and Sutherland, R. S. (2004b). Dusty, Radiation
Pressure-Dominated Photoionization. II. Multiwavelength Emission Line Diagnos-

tics for Narrow-Line Regions. ApJS, 153(1):75-91.

Griitzbauch, R., Conselice, C. J., Varela, J., Bundy, K., Cooper, M. C., Skibba,
R., and Willmer, C. N. A. (2011). How does galaxy environment matter? The
relationship between galaxy environments, colour and stellar mass at 0.4 j z j 1 in

the Palomar/DEEP2 survey. MNRAS, 411(2):929-946.

Gunn, J. E. and Gott, J. Richard, I. (1972). On the Infall of Matter Into Clusters of
Galaxies and Some Effects on Their Evolution. ApJ, 176:1.



BIBLIOGRAPHY 222

Guth, A. H. and Pi, S. Y. (1982). Fluctuations in the New Inflationary Universe.
Phys. Rev. Lett., 49(15):1110-1113.

Guzzo, L., Cassata, P., Finoguenov, A., Massey, R., Scoville, N. Z., Capak, P.,
Ellis, R. S., Mobasher, B., Taniguchi, Y., Thompson, D., Ajiki, M., Aussel, H.,
Bohringer, H., Brusa, M., Calzetti, D., Comastri, A., Franceschini, A., Hasinger,
G., Kasliwal, M. M., Kitzbichler, M. G., Kneib, J. P., Koekemoer, A., Leauthaud,
A., McCracken, H. J., Murayama, T., Nagao, T., Rhodes, J., Sanders, D. B.,
Sasaki, S., Shioya, Y., Tasca, L., and Taylor, J. E. (2007). The Cosmic Evolution
Survey (COSMOS): A Large-Scale Structure at z=0.73 and the Relation of Galaxy
Morphologies to Local Environment. ApJS, 172(1):254-269.

Guzzo, L., Strauss, M. A., Fisher, K. B., Giovanelli, R., and Haynes, M. P. (1997).
Redshift-Space Distortions and the Real-Space Clustering of Different Galaxy
Types. ApJ, 489(1):37-48.

Haas, M. R., Schaye, J., and Jeeson-Daniel, A. (2012). Disentangling galaxy environ-
ment and host halo mass. MNRAS, 419(3):2133-2146.

Hagedoorn, P. and Helbich, M. (2021). Longitudinal exposure assessments of neigh-
bourhood effects in health research: What can be learned from people’s residential

histories? Health & Place, 68:102543.

Haiman, Z., Mohr, J. J., and Holder, G. P. (2001). Constraints on Cosmological
Parameters from Future Galaxy Cluster Surveys. ApJ, 553(2):545-561.

Hamill, T. (2000). Interpretation of rank histograms for verifying ensemble forecasts.

Monthly Weather Review, 129:550-560.

Hamilton, D. (1985). The spectral evolution of galaxies. I. an observational approach.

ApJ, 297:371-389.

Han, Y. and Han, Z. (2012). Decoding Spectral Energy Distributions of Dust-obscured
Starburst-Active Galactic Nucleus. ApJ, 749(2):123.

Han, Y. and Han, Z. (2014). BayeSED: A General Approach to Fitting the Spectral
Energy Distribution of Galaxies. ApJS, 215(1):2.



BIBLIOGRAPHY 223

Han, Y. and Han, Z. (2019). A Comprehensive Bayesian Discrimination of the Simple
Stellar Population Model, Star Formation History, and Dust Attenuation Law in

the Spectral Energy Distribution Modeling of Galaxies. ApJS, 240(1):3.

Harikane, Y., Ouchi, M., Oguri, M., Ono, Y., Nakajima, K., Isobe, Y., Umeda, H.,
Mawatari, K., and Zhang, Y. (2023). A Comprehensive Study of Galaxies at z 9-16
Found in the Early JWST Data: Ultraviolet Luminosity Functions and Cosmic
Star Formation History at the Pre-reionization Epoch. ApJS, 265(1):5.

Héaring, N. and Rix, H-W. (2004). On the Black Hole Mass-Bulge Mass Relation.
ApJ, 604(2):L89-L92.

Harker, G., Cole, S., Helly, J., Frenk, C., and Jenkins, A. (2006). A marked correlation
function analysis of halo formation times in the Millennium Simulation. MNRAS,

367(3):1039-1049.

Hartley, W. G., Choi, A., Amon, A., Gruendl, R. A., Sheldon, E., Harrison, I.,
Bernstein, G. M., Sevilla-Noarbe, 1., Yanny, B., Eckert, K., Diehl, H. T., Alarcon,
A., Banerji, M., Bechtol, K., Buchs, R., Cantu, S., Conselice, C., Cordero, J.,
Davis, C., Davis, T. M., Dodelson, S., Drlica-Wagner, A., Everett, S., Ferté, A.,
Gruen, D., Honscheid, K., Jarvis, M., Johnson, M. D., Kokron, N., MacCrann, N.,
Myles, J., Pace, A. B., Palmese, A., Paz-Chinchén, F., Pereira, M. E. S., Plazas,
A. A., Prat, J., Rodriguez-Monroy, M., Rykoff, E. S., Samuroff, S., Sanchez, C.,
Secco, L. F., Tarsitano, F., Tong, A., Troxel, M. A., Vasquez, Z., Wang, K., Zhou,
C., Abbott, T. M. C., Aguena, M., Allam, S., Annis, J., Bacon, D., Bertin, E.,
Bhargava, S., Brooks, D., Burke, D. L., Carnero Rosell, A., Carrasco Kind, M.,
Carretero, J., Castander, F. J., Costanzi, M., Crocce, M., da Costa, L. N., De
Vicente, J., DeRose, J., Desai, S., Dietrich, J. P., Eifler, T. F., Elvin-Poole, J.,
Ferrero, 1., Flaugher, B., Fosalba, P., Garcia-Bellido, J., Gaztanaga, E., Gerdes,
D. W., Gschwend, J., Gutierrez, G., Hinton, S. R., Hollowood, D. L., Huterer, D.,
James, D. J., Kent, S., Krause, E., Kuehn, K., Kuropatkin, N., Lahav, O., Lin, H.,
Maia, M. A. G., March, M., Marshall, J. L., Martini, P., Melchior, P., Menanteau,
F., Miquel, R., Mohr, J. J., Morgan, R., Neilsen, E., Ogando, R. L. C., Pandey,
S., Romer, A. K., Roodman, A., Sako, M., Sanchez, E., Scarpine, V., Serrano, S.,
Smith, M., Soares-Santos, M., Suchyta, E., Swanson, M. E. C., Tarle, G., Thomas,



BIBLIOGRAPHY 224

D., To, C., Varga, T. N., Walker, A. R., Wester, W., Wilkinson, R. D., and Zuntz,
J. (2020). Dark Energy Survey Year 3 Results: Deep Field Optical + Near-Infrared

Images and Catalogue. arXiv e-prints, page arXiv:2012.12824.

Hashimoto, Y., Oemler, Augustus, J., Lin, H., and Tucker, D. L. (1998). The Influence
of Environment on the Star Formation Rates of Galaxies. ApJ, 499(2):589-599.

Hatton, S., Devriendt, J. E. G., Ninin, S., Bouchet, F. R., Guiderdoni, B., and Vibert,
D. (2003). GALICS- I. A hybrid N-body/semi-analytic model of hierarchical galaxy
formation. MNRAS, 343(1):75-106.

Hawking, S. W. (1982). The development of irregularities in a single bubble infla-
tionary universe. Physics Letters B, 115(4):295-297.

Hayward, C. C., Torrey, P., Springel, V., Hernquist, L., and Vogelsberger, M.
(2014). Galaxy mergers on a moving mesh: a comparison with smoothed particle

hydrodynamics. MNRAS, 442(3):1992-2016.

Heavens, A., Panter, B., Jimenez, R., and Dunlop, J. (2004). The star-formation
history of the Universe from the stellar populations of nearby galaxies. Nature,

428(6983):625-627.

Heavens, A. F., Jimenez, R., and Lahav, O. (2000). Massive lossless data compression

and multiple parameter estimation from galaxy spectra. MNRAS, 317(4):965-972.

Heckman, T. M., Armus, L., and Miley, G. K. (1990). On the Nature and Implications
of Starburst-driven Galactic Superwinds. ApJS, 74:833.

Heckman, T. M. and Best, P. N. (2014). The Coevolution of Galaxies and Supermas-
sive Black Holes: Insights from Surveys of the Contemporary Universe. ARAEA,
52:589-660.

Henghes, B., Lahav, O., Gerdes, D. W., Lin, H. W., Morgan, R., Abbott, T. M. C.,
Aguena, M., Allam, S., Annis, J., Avila, S., Bertin, E., Brooks, D., Burke, D. L.,
Carnero Rosell, A., Carrasco Kind, M., Carretero, J., Conselice, C., Costanzi, M.,
da Costa, L. N.; De Vicente, J., Desai, S., Diehl, H. T., Doel, P., Everett, S.,
Ferrero, I., Frieman, J., Garcia-Bellido, J., Gaztanaga, E., Gruen, D., Gruendl,

R. A., Gschwend, J., Gutierrez, G., Hartley, W. G., Hinton, S. R., Honscheid, K.,



BIBLIOGRAPHY 225

Hoyle, B., James, D. J., Kuehn, K., Kuropatkin, N., Marshall, J. L., Melchior,
P., Menanteau, F., Miquel, R., Ogando, R. L. C., Palmese, A., Paz-Chinchén, F.,
Plazas, A. A., Romer, A. K., Sanchez, C., Sanchez, E., Scarpine, V., Schubnell,
M., Serrano, S., Smith, M., Soares-Santos, M., Suchyta, E., Tarle, G., To, C.,
Wilkinson, R. D., and DES Collaboration (2021). Machine Learning for Searching
the Dark Energy Survey for Trans-Neptunian Objects. PASP, 133(1019):014501.

Henghes, B., Thiyagalingam, J., Pettitt, C., Hey, T., and Lahav, O. (2022). Deep
learning methods for obtaining photometric redshift estimations from images.

MNRAS, 512(2):1696-1709.

Henriques, B. M. B., White, S. D. M., Thomas, P. A., Angulo, R., Guo, Q., Lemson,
G., Springel, V., and Overzier, R. (2015). Galaxy formation in the Planck cosmology

- I. Matching the observed evolution of star formation rates, colours and stellar

masses. MNRAS, 451(3):2663-2680.

Henry, J. P. and Lavery, R. J. (1987). Multiaperture Spectroscopy of Galaxies in
Abell 370. ApJ, 323:473.

Hermit, S., Santiago, B. X., Lahav, O., Strauss, M. A., Davis, M., Dressler, A.,
and Huchra, J. P. (1996). The two-point correlation function and morphological

segregation in the Optical Redshift Survey. MNRAS, 283(2):709-720.

Hernan, M. and Robins, J. (2023). Causal Inference. Chapman & Hall/CRC

Monographs on Statistics & Applied Probab. Taylor & Francis.

Herndn, M. A. and Robins, J. M. (2006). Estimating causal effects from epidemio-
logical data. Journal of Epidemiology €& Community Health, 60(7):578-586.

Hernquist, L. (1992). Structure of Merger Remnants. I. Bulgeless Progenitors. ApdJ,
400:460.

Hernquist, L. (1993). Structure of Merger Remnants. II. Progenitors with Rotating
Bulges. ApJ, 409:548.

Hirano, K. and Imbens, G. W. (2004). The propensity score with continuous
treatments. Applied Bayesian modeling and causal inference from incomplete-data

perspectives, 226164:73-84.



BIBLIOGRAPHY 226

Ho, T. K. (1995). Random decision forests. In Proceedings of 3rd international

conference on document analysis and recognition, volume 1, pages 278-282. IEEE.

Hoaglin, D. C. and Mosteller, F. (2000). Understanding Robust and Exploratory
Data Analysis. Wiley, New York, 1 edition.

Hogan, R., Fairbairn, M., and Seeburn, N. (2015). GAz: a genetic algorithm for
photometric redshift estimation. MNRAS, 449(2):2040-2046.

Hogg, D. W., Blanton, M., Strateva, 1., Bahcall, N. A., Brinkmann, J., Csabai, I.,
Doi, M., Fukugita, M., Hennessy, G., Ivezi¢, Z., Knapp, G. R., Lamb, D. Q.,
Lupton, R., Munn, J. A., Nichol, R., Schlegel, D. J., Schneider, D. P., and York,
D. G. (2002). The Luminosity Density of Red Galaxies. AJ, 124(2):646-651.

Hogg, D. W., Blanton, M. R., Brinchmann, J., Eisenstein, D. J., Schlegel, D. J.,
Gunn, J. E., McKay, T. A., Rix, H-W., Bahcall, N. A., Brinkmann, J., and
Meiksin, A. (2004). The Dependence on Environment of the Color-Magnitude
Relation of Galaxies. ApJ, 601(1):L29-L32.

Hogg, D. W., Blanton, M. R., Eisenstein, D. J., Gunn, J. E., Schlegel, D. J., Zehavi,
L., Bahcall, N. A., Brinkmann, J., Csabai, 1., Schneider, D. P., et al. (2003). The
overdensities of galaxy environments as a function of luminosity and color. The

Astrophysical Journal, 585(1):L5.

Holland, P. W. (1986). Statistics and causal inference. Journal of the American
statistical Association, 81(396):945-960.

Hollenbach, D. J. and Tielens, A. G. G. M. (1997). Dense Photodissociation Regions
(PDRs). ARA&A, 35:179-216.

Holmberg, E. (1958). A photographic photometry of extragalactic nebulae. Medde-

landen fran Lunds Astronomiska Observatorium Serie II, 136:1.

Hopkins, A. M., Connolly, A. J., Haarsma, D. B., and Cram, L. E. (2001). Toward
a Resolution of the Discrepancy between Different Estimators of Star Formation

Rate. AJ, 122(1):288-296.



BIBLIOGRAPHY 227

Hopkins, P. F., Cox, T. J., Keres, D., and Hernquist, L. (2008a). A Cosmological
Framework for the Co-Evolution of Quasars, Supermassive Black Holes, and

Elliptical Galaxies. II. Formation of Red Ellipticals. ApJS, 175(2):390-422.

Hopkins, P. F., Cox, T. J., Younger, J. D., and Hernquist, L. (2009). How do Disks
Survive Mergers? ApJ, 691(2):1168-1201.

Hopkins, P. F. and Hernquist, L. (2009). A Characteristic Division Between the
Fueling of Quasars and Seyferts: Five Simple Tests. ApJ, 694(1):599-609.

Hopkins, P. F., Hernquist, L., Cox, T. J., Di Matteo, T., Robertson, B., and Springel,
V. (2006). A Unified, Merger-driven Model of the Origin of Starbursts, Quasars,

the Cosmic X-Ray Background, Supermassive Black Holes, and Galaxy Spheroids.
ApJS, 163(1):1-49.

Hopkins, P. F., Hernquist, L., Cox, T. J., and Keres, D. (2008b). A Cosmological
Framework for the Co-Evolution of Quasars, Supermassive Black Holes, and

Elliptical Galaxies. I. Galaxy Mergers and Quasar Activity. ApJS, 175(2):356-389.

Hopkins, P. F., Keres, D., Onorbe, J., Faucher-Giguere, C.-A., Quataert, E., Murray,
N., and Bullock, J. S. (2014). Galaxies on FIRE (Feedback In Realistic Environ-
ments): stellar feedback explains cosmologically inefficient star formation. MNRAS,

445(1):581-603.

Horvitz, D. G. and Thompson, D. J. (1952). A generalization of sampling without
replacement from a finite universe. Journal of the American statistical Association,

47(260):663-685.

Hoyle, B. (2016). Measuring photometric redshifts using galaxy images and Deep
Neural Networks. Astron. Comput., 16:34—40.

Hoyle, F., Rojas, R. R., Vogeley, M. S., and Brinkmann, J. (2005). The Luminosity
Function of Void Galaxies in the Sloan Digital Sky Survey. ApJ, 620(2):618-628.

Hu, W. (1999). Power Spectrum Tomography with Weak Lensing. ApJ, 522(1):L21-
L24.

Hubble, E. (1929). A Relation between Distance and Radial Velocity among Extra-
Galactic Nebulae. Proceedings of the National Academy of Science, 15(3):168-173.



BIBLIOGRAPHY 228

Hubble, E. (1936). The Realm of the Nebule. Memorial lectures. Yale University

Press.

Hubble, E. and Humason, M. L. (1931). The Velocity-Distance Relation among
Extra-Galactic Nebulae. ApJ, 74:43.

Humason, M. L. (1936). The Apparent Radial Velocities of 100 Extra-Galactic
Nebulae. ApJ, 83:10.

Hwang, H. S., Shin, J., and Song, H. (2019). Evolution of star formation rate-density
relation over cosmic time in a simulated universe: the observed reversal reproduced.

MNRAS, 489(1):339-348.
Irwin, J. A. (1995). Galaxies and Their Environments. PASP, 107:715.

Iyer, K. G., Gawiser, E., Faber, S. M., Ferguson, H. C., Kartaltepe, J., Koekemoer,
A. M., Pacifici, C., and Somerville, R. S. (2019). Nonparametric Star Formation
History Reconstruction with Gaussian Processes. I. Counting Major Episodes of

Star Formation. ApJ, 879(2):116.

Jee, M. J., Tyson, J. A., Schneider, M. D., Wittman, D., Schmidt, S., and Hilbert, S.
(2013). Cosmic Shear Results from the Deep Lens Survey. I. Joint Constraints on
Qs and og with a Two-dimensional Analysis. ApJ, 765(1):74.

Ji, Z. and Giavalisco, M. (2022). Reconstructing the Assembly of Massive Galaxies. I.
The Importance of the Progenitor Effect in the Observed Properties of Quiescent
Galaxies at z ~ 2. ApJ, 935(2):120.

Ji, Z. and Giavalisco, M. (2023). Reconstructing the Assembly of Massive Galaxies.
II. Galaxies Develop Massive and Dense Stellar Cores as They Evolve and Head
toward Quiescence at Cosmic Noon. ApJ, 943(1):54.

Jimenez, R., Panter, B., Heavens, A. F., and Verde, L. (2005). Baryonic conversion
tree: the global assembly of stars and dark matter in galaxies from the Sloan

Digital Sky Survey. MNRAS, 356(2):495-501.

Jivraj, S., Murray, E. T., Norman, P., and Nicholas, O. (2019). The impact of life

course exposures to neighbourhood deprivation on health and well-being: a review



BIBLIOGRAPHY 229

of the long-term neighbourhood effects literature. Furopean Journal of Public

Health, 30(5):922-928.

Johnson, B. D., Leja, J., Conroy, C., and Speagle, J. S. (2021). Stellar Population
Inference with Prospector. ApJS, 254(2):22.

Jones, L. R., Ponman, T. J., and Forbes, D. A. (2000). Multiwavelength observations

of an evolved galaxy group: an end-point of galaxy merging? MNRAS, 312(1):139—
150.

Jones, L. R., Ponman, T. J., Horton, A., Babul, A., Ebeling, H., and Burke, D. J.

(2003). The nature and space density of fossil groups of galaxies. MNRAS,
343(2):627-638.

Juneau, S., Glazebrook, K., Crampton, D., McCarthy, P. J., Savaglio, S., Abraham,
R., Carlberg, R. G., Chen, H.-W., Le Borgne, D., Marzke, R. O., Roth, K.,
Jorgensen, 1., Hook, I., and Murowinski, R. (2005). Cosmic Star Formation History
and Its Dependence on Galaxy Stellar Mass. ApJ, 619(2):L135-L138.

Just, D. W., Zaritsky, D., Sand, D. J., Desai, V., and Rudnick, G. (2010). The
Environmental Dependence of the Evolving SO Fraction. ApJ, 711(1):192-200.

Kaddour, J., Lynch, A., Liu, Q., Kusner, M. J., and Silva, R. (2022). Causal Machine
Learning: A Survey and Open Problems. arXiv e-prints, page arXiv:2206.15475.

Kam, C. D. and Palmer, C. L. (2008). Reconsidering the effects of education on
political participation. The Journal of Politics, 70(3):612-631.

Kampakoglou, M. and Benson, A. J. (2007). Tidal mass loss from collisionless
systems. MNRAS, 374(3):775-786.

Kampczyk, P., Lilly, S. J., Carollo, C. M., Scarlata, C., Feldmann, R., Koekemoer, A.,
Leauthaud, A., Sargent, M. T., Taniguchi, Y., and Capak, P. (2007). Simulating the
Cosmos: The Fraction of Merging Galaxies at High Redshift. ApJS, 172(1):329-340.

Kang, X., Jing, Y. P., Mo, H. J., and Borner, G. (2005). Semianalytical Model of
Galaxy Formation with High-Resolution N-Body Simulations. ApJ, 631(1):21-40.



BIBLIOGRAPHY 230

Karimi, A.-H., Barthe, G., Scholkopf, B., and Valera, 1. (2020). A survey of
algorithmic recourse: definitions, formulations, solutions, and prospects. arXiv

e-prints, page arXiv:2010.04050.

Kartaltepe, J. S., Sanders, D. B., Scoville, N. Z., Calzetti, D., Capak, P., Koekemoer,
A., Mobasher, B., Murayama, T., Salvato, M., Sasaki, S. S., and Taniguchi, Y.

(2007). Evolution of the Frequency of Luminous (;=L*y ) Close Galaxy Pairs at z
i 1.2 in the COSMOS Field. ApJS, 172(1):320-328.

Kauffmann, G., Colberg, J. M., Diaferio, A., and White, S. D. M. (1999). Clustering
of galaxies in a hierarchical universe - 1. Methods and results at z=0. MNRAS,

303(1):188-206.

Kauffmann, G., Heckman, T. M., Tremonti, C., Brinchmann, J., Charlot, S., White,
S. D. M., Ridgway, S. E., Brinkmann, J., Fukugita, M., Hall, P. B., Ivezi¢, Z.,
Richards, G. T., and Schneider, D. P. (2003a). The host galaxies of active galactic
nuclei. MNRAS, 346(4):1055-1077.

Kauffmann, G., Heckman, T. M., White, S. D. M., Charlot, S., Tremonti, C., Peng,
E. W., Seibert, M., Brinkmann, J., Nichol, R. C., SubbaRao, M., and York, D.
(2003b). The dependence of star formation history and internal structure on stellar

mass for 10° low-redshift galaxies. MNRAS, 341(1):54-69.

Kauffmann, G., White, S. D. M., and Guiderdoni, B. (1993). The formation and
evolution of galaxies within merging dark matter haloes. MNRAS, 264:201-218.

Kauffmann, G., White, S. D. M., Heckman, T. M., Ménard, B., Brinchmann,
J., Charlot, S., Tremonti, C., and Brinkmann, J. (2004). The environmental
dependence of the relations between stellar mass, structure, star formation and

nuclear activity in galaxies. MNRAS, 353(3):713-731.

Kawinwanichakij, L., Papovich, C., Quadri, R. F., Glazebrook, K., Kacprzak, G. G.,
Allen, R. J., Bell, E. F., Croton, D. J., Dekel, A., Ferguson, H. C., Forrest, B.,
Grogin, N. A., Guo, Y., Kocevski, D. D., Koekemoer, A. M., Labbé, 1., Lucas,
R. A., Nanayakkara, T., Spitler, L. R., Straatman, C. M. S., Tran, K.-V. H.,
Tomczak, A., and van Dokkum, P. (2017). Effect of Local Environment and Stellar
Mass on Galaxy Quenching and Morphology at 0.5 j z | 2.0. ApJ, 847(2):134.



BIBLIOGRAPHY 231

Kendall, M. G. (1938). A NEW MEASURE OF RANK CORRELATION. Biometrika,
30(1-2):81-93.

Kennicutt, Robert C., J. (1998). Star Formation in Galaxies Along the Hubble
Sequence. ARAEA, 36:189-232.

Kennicutt, R. C. and Evans, N. J. (2012). Star Formation in the Milky Way and
Nearby Galaxies. ARAEA, 50:531-608.

Kinney, A. L., Calzetti, D., Bohlin, R. C., McQuade, K., Storchi-Bergmann, T.,
and Schmitt, H. R. (1996). Template Ultraviolet to Near-Infrared Spectra of

Star-forming Galaxies and Their Application to K-Corrections. ApJ, 467:38.

Kloek, T. and Van Dijk, H. K. (1978). Bayesian estimates of equation system
parameters: an application of integration by monte carlo. Econometrica: Journal

of the Econometric Society, pages 1-19.

Knobel, C., Lilly, S. J., Woo, J., and Kova¢, K. (2015). Quenching of Star Formation
in Sloan Digital Sky Survey Groups: Centrals, Satellites, and Galactic Conformity.
ApJ, 800(1):24.

Kodama, T. and Bower, R. G. (2001). Reconstructing the history of star formation
in rich cluster cores. MNRAS, 321(1):18-36.

Kodama, T., Smail, I., Nakata, F., Okamura, S., and Bower, R. G. (2001). The
Transformation of Galaxies within the Large-Scale Structure around a z=0.41

Cluster. ApJ, 562(1):L9-L13.

Kodama, T., Yamada, T., Akiyama, M., Aoki, K., Doi, M., Furusawa, H., Fuse,
T., Imanishi, M., Ishida, C., Iye, M., Kajisawa, M., Karoji, H., Kobayashi, N.,
Komiyama, Y., Kosugi, G., Maeda, Y., Miyazaki, S., Mizumoto, Y., Morokuma,
T., Nakata, F., Noumaru, J., Ogasawara, R., Ouchi, M., Sasaki, T., Sekiguchi, K.,
Shimasaku, K., Simpson, C., Takata, T., Tanaka, 1., Ueda, Y., Yasuda, N., and
Yoshida, M. (2004). Down-sizing in galaxy formation at z~1 in the Subaru/XMM-
Newton Deep Survey (SXDS). MNRAS, 350(3):1005-1014.

Koleva, M., Prugniel, P., Bouchard, A., and Wu, Y. (2009). ULySS: a full spectrum
fitting package. A€6A, 501(3):1269-1279.



BIBLIOGRAPHY 232

Koo, D. C. (1985). Optical multicolors : a poor person’s Z machine for galaxies. A/J,
90:418-440.

Kormendy, J. and Bender, R. (1996). A Proposed Revision of the Hubble Sequence
for Elliptical Galaxies. ApJ, 464:1.119.

Kormendy, J. and Ho, L. C. (2013). Coevolution (Or Not) of Supermassive Black
Holes and Host Galaxies. ARAEA, 51(1):511-653.

Kormendy, J. and Kennicutt, Robert C., J. (2004). Secular Evolution and the
Formation of Pseudobulges in Disk Galaxies. ARA&A, 42(1):603-683.

Kormendy, J. and Richstone, D. (1995). Inward Bound—The Search For Supermassive
Black Holes In Galactic Nuclei. ARA&A, 33:581.

Kovac, K., Lilly, S. J., Knobel, C., Bschorr, T. J., Peng, Y., Carollo, C. M., Contini,
T., Kneib, J. P., Le Févre, O., Mainieri, V., Renzini, A., Scodeggio, M., Zamorani,
G., Bardelli, S., Bolzonella, M., Bongiorno, A., Caputi, K., Cucciati, O., de la Torre,
S., de Ravel, L., Franzetti, P., Garilli, B., Iovino, A., Kampczyk, P., Lamareille,
F., Le Borgne, J. F., Le Brun, V., Maier, C., Mignoli, M., Oesch, P., Pello, R.,
Montero, E. P., Presotto, V., Silverman, J., Tanaka, M., Tasca, L., Tresse, L.,
Vergani, D., Zucca, E., Aussel, H., Koekemoer, A. M., Le Floc’h, E., Moresco, M.,
and Pozzetti, L. (2014). zCOSMOS 20k: satellite galaxies are the main drivers
of environmental effects in the galaxy population at least to z ~ 0.7. MNRAS,
438(1):717-738.

Kriek, M., van Dokkum, P. G., Labbé, 1., Franx, M., Illingworth, G. D., Marchesini,
D., and Quadri, R. F. (2009). An Ultra-Deep Near-Infrared Spectrum of a Compact
Quiescent Galaxy at z = 2.2. ApJ, 700(1):221-231.

Kroupa, P. (2001). On the variation of the initial mass function. MNRAS, 322(2):231—
246.

Kroupa, P. and Boily, C. M. (2002). On the mass function of star clusters. MNRAS,
336(4):1188-1194.

Krumholz, M. R., McKee, C. F., and Klein, R. I. (2005). Stars Form By Gravitational

Collapse, Not Competitive Accretion. arXiv e-prints, pages astro—ph/0510412.



BIBLIOGRAPHY 233

Kuhn, M., Johnson, K., et al. (2013). Applied predictive modeling, volume 26.

Springer.

Kullback, S. and Leibler, R. A. (1951). On information and sufficiency. Ann. Math.
Stat., 22(1):79-86.

Labbé, 1., van Dokkum, P., Nelson, E., Bezanson, R., Suess, K. A., Leja, J., Brammer,
G., Whitaker, K., Mathews, E., Stefanon, M., and Wang, B. (2023). A population of
red candidate massive galaxies 600 Myr after the Big Bang. Nature, 616(7956):266—
269.

Lacey, C. and Silk, J. (1991). Tidally Triggered Galaxy Formation. I. Evolution of
the Galaxy Luminosity Function. ApJ, 381:14.

Lahav, O., Calder, L., Mayers, J., and Frieman, J. (2020). The Dark Energy Survey:

The Story of a Cosmological Experiment. World Scientific Press, Singapore.

Lahav, O., Naim, A., Buta, R. J., Corwin, H. G., de Vaucouleurs, G., Dressler, A.,
Huchra, J. P., van den Bergh, S., Raychaudhury, S., Sodre, L., J., and Storrie-
Lombardi, M. C. (1995). Galaxies, Human Eyes, and Artificial Neural Networks.
Science, 267(5199):859-862.

Laigle, C., McCracken, H. J., Ilbert, O., Hsieh, B. C., Davidzon, L., Capak, P.,
Hasinger, G., Silverman, J. D., Pichon, C., Coupon, J., Aussel, H., Le Borgne,
D., Caputi, K., Cassata, P., Chang, Y. Y., Civano, F., Dunlop, J., Fynbo, J.,
Kartaltepe, J. S., Koekemoer, A., Le Fevre, O., Le Floc’h, E., Leauthaud, A., Lilly,
S., Lin, L., Marchesi, S., Milvang-Jensen, B., Salvato, M., Sanders, D. B., Scoville,
N., Smolcic, V., Stockmann, M., Taniguchi, Y., Tasca, L., Toft, S., Vaccari, M.,
and Zabl, J. (2016). The COSMOS2015 Catalog: Exploring the 1 &lt; z &lt; 6
Universe with Half a Million Galaxies. ApJS, 224(2):24.

Larson, R. B. (1974). Effects of supernovae on the early evolution of galaxies. MNRAS,
169:229-246.

Larson, R. B. and Tinsley, B. M. (1978). Star formation rates in normal and peculiar

galaxies. ApJ, 219:46-59.



BIBLIOGRAPHY 234

Larson, R. B., Tinsley, B. M., and Caldwell, C. N. (1980). The evolution of disk
galaxies and the origin of SO galaxies. ApJ, 237:692-707.

Laureijs, R., Amiaux, J., Arduini, S., Augueres, J. L., Brinchmann, J., Cole, R.,
Cropper, M., Dabin, C., Duvet, L., Ealet, A., Garilli, B., Gondoin, P., Guzzo,
L., Hoar, J., Hoekstra, H., Holmes, R., Kitching, T., Maciaszek, T., Mellier, Y.,
Pasian, F., Percival, W., Rhodes, J., Saavedra Criado, G., Sauvage, M., Scaramella,
R., Valenziano, L., Warren, S., Bender, R., Castander, F., Cimatti, A., Le Fevre,
0., Kurki-Suonio, H., Levi, M., Lilje, P., Meylan, G., Nichol, R., Pedersen, K.,
Popa, V., Rebolo Lopez, R., Rix, H. W., Rottgering, H., Zeilinger, W., Grupp, F.,
Hudelot, P., Massey, R., Meneghetti, M., Miller, L., Paltani, S., Paulin-Henriksson,
S., Pires, S., Saxton, C., Schrabback, T., Seidel, G., Walsh, J., Aghanim, N.,
Amendola, L., Bartlett, J., Baccigalupi, C., Beaulieu, J. P., Benabed, K., Cuby,
J. G., Elbaz, D., Fosalba, P., Gavazzi, G., Helmi, A., Hook, L., Irwin, M., Kneib,
J. P., Kunz, M., Mannucci, F., Moscardini, L., Tao, C., Teyssier, R., Weller, J.,
Zamorani, G., Zapatero Osorio, M. R., Boulade, O., Foumond, J. J., Di Giorgio,
A., Guttridge, P., James, A., Kemp, M., Martignac, J., Spencer, A., Walton, D.,
Bliimchen, T., Bonoli, C., Bortoletto, F., Cerna, C., Corcione, L., Fabron, C.,
Jahnke, K., Ligori, S., Madrid, F., Martin, L., Morgante, G., Pamplona, T., Prieto,
E., Riva, M., Toledo, R., Trifoglio, M., Zerbi, F., Abdalla, F., Douspis, M., Grenet,
C., Borgani, S., Bouwens, R., Courbin, F., Delouis, J. M., Dubath, P., Fontana, A.,
Frailis, M., Grazian, A., Koppenhéfer, J., Mansutti, O., Melchior, M., Mignoli, M.,
Mohr, J., Neissner, C., Noddle, K., Poncet, M., Scodeggio, M., Serrano, S., Shane,
N., Starck, J. L., Surace, C., Taylor, A., Verdoes-Kleijn, G., Vuerli, C., Williams,
O. R., Zacchei, A., Altieri, B., Escudero Sanz, 1., Kohley, R., Oosterbroek, T.,
Astier, P., Bacon, D., Bardelli, S., Baugh, C., Bellagamba, F., Benoist, C., Bianchi,
D., Biviano, A., Branchini, E., Carbone, C., Cardone, V., Clements, D., Colombi,
S., Conselice, C., Cresci, G., Deacon, N., Dunlop, J., Fedeli, C., Fontanot, F.,
Franzetti, P., Giocoli, C., Garcia-Bellido, J., Gow, J., Heavens, A., Hewett, P.,
Heymans, C., Holland, A., Huang, Z., Ilbert, O., Joachimi, B., Jennins, E., Kerins,
E., Kiessling, A., Kirk, D., Kotak, R., Krause, O., Lahav, O., van Leeuwen, F.,
Lesgourgues, J., Lombardi, M., Magliocchetti, M., Maguire, K., Majerotto, E.,
Maoli, R., Marulli, F., Maurogordato, S., McCracken, H., McLure, R., Melchiorri,



BIBLIOGRAPHY 235

A., Merson, A., Moresco, M., Nonino, M., Norberg, P., Peacock, J., Pello, R.,
Penny, M., Pettorino, V., Di Porto, C., Pozzetti, L., Quercellini, C., Radovich,
M., Rassat, A., Roche, N., Ronayette, S., Rossetti, E., Sartoris, B., Schneider,
P., Semboloni, E., Serjeant, S., Simpson, F., Skordis, C., Smadja, G., Smartt, S.,
Spano, P., Spiro, S., Sullivan, M., Tilquin, A., Trotta, R., Verde, L., Wang, Y.,
Williger, G., Zhao, G., Zoubian, J., and Zucca, E. (2011). Euclid Definition Study
Report. arXiv e-prints, page arXiv:1110.3193.

Le Borgne, D., Rocca-Volmerange, B., Prugniel, P., Lancon, A., Fioc, M., and
Soubiran, C. (2004). Evolutionary synthesis of galaxies at high spectral resolution

with the code PEGASE-HR. Metallicity and age tracers. A&A, 425:881-897.

Le Borgne, J. F., Bruzual, G., Pell6, R., Lancon, A., Rocca-Volmerange, B., Sanahuja,
B., Schaerer, D., Soubiran, C., and Vilchez-Gémez, R. (2003). STELIB: A library
of stellar spectra at R ~2000. AéA, 402:433-442.

Le Fevre, O., Abraham, R., Lilly, S. J., Ellis, R. S., Brinchmann, J., Schade,
D., Tresse, L., Colless, M., Crampton, D., Glazebrook, K., Hammer, F., and
Broadhurst, T. (2000). Hubble Space Telescope imaging of the CFRS and LDSS

redshift surveys - IV. Influence of mergers in the evolution of faint field galaxies

from z~1. MNRAS, 311(3):565-575.

Lee, B., Giavalisco, M., Whitaker, K., Williams, C. C., Ferguson, H. C., Acquaviva,
V., Koekemoer, A. M., Straughn, A. N., Guo, Y., Kartaltepe, J. S., Lotz, J.,
Pacifici, C., Croton, D. J., Somerville, R. S., and Lu, Y. (2018). The Intrinsic
Characteristics of Galaxies on the SFR-M . Plane at 1.2 j z j 4: 1. The Correlation
between Stellar Age, Central Density, and Position Relative to the Main Sequence.

ApJ, 853(2):131.

Lee, B. K., Lessler, J., and Stuart, E. A. (2010). Improving propensity score weighting

using machine learning. Statistics in medicine, 29(3):337-346.

Lee, N., Sanders, D. B., Casey, C. M., Toft, S., Scoville, N. Z., Hung, C.-L., Le Floc’h,
E., Ilbert, O., Zahid, H. J., Aussel, H., Capak, P., Kartaltepe, J. S., Kewley, L. J.,
Li, Y., Schawinski, K., Sheth, K., and Xiao, Q. (2015). A Turnover in the Galaxy



BIBLIOGRAPHY 236

Main Sequence of Star Formation at M , ~10'0 M o for Redshifts z j 1.3. ApJ,
801(2):80.

Lee, S.-K., Idzi, R., Ferguson, H. C., Somerville, R. S., Wiklind, T., and Giavalisco,
M. (2009). Biases and Uncertainties in Physical Parameter Estimates of Lyman

Break Galaxies from Broadband Photometry. ApJS, 184(1):100-132.

Leitherer, C., Schaerer, D., Goldader, J. D., Delgado, R. M. G., Robert, C., Kune,
D. F., de Mello, D. F., Devost, D., and Heckman, T. M. (1999). Starburst99:
Synthesis Models for Galaxies with Active Star Formation. ApJS, 123(1):3-40.

Leja, J., Johnson, B. D., Conroy, C., van Dokkum, P. G., and Byler, N. (2017).
Deriving Physical Properties from Broadband Photometry with Prospector: De-
scription of the Model and a Demonstration of its Accuracy Using 129 Galaxies in

the Local Universe. ApJ, 837(2):170.

Lejeune, T., Cuisinier, F., and Buser, R. (1997). Standard stellar library for evolu-
tionary synthesis. I. Calibration of theoretical spectra. A&AS, 125:229-246.

Lejeune, T., Cuisinier, F., and Buser, R. (1998). A standard stellar library for
evolutionary synthesis. II. The M dwarf extension. A&AS, 130:65-75.

Lejeune, T. and Schaerer, D. (2001). Database of Geneva stellar evolution tracks and
isochrones for (UBV) ;(RI)c JHKLL’M, HST-WFPC2, Geneva and Washington
photometric systems. A&A, 366:538-546.

Lemaitre, G. (1927). Un Univers homogene de masse constante et de rayon croissant
rendant compte de la vitesse radiale des nébuleuses extra-galactiques. Annales de

la Sociéeacute;téeacute; Scientifique de Bruzelles, 47:49-59.

Lemaux, B. C., Cucciati, O., Le Fevre, O., Zamorani, G., Lubin, L. M., Hathi, N.,
Ilbert, O., Pelliccia, D., Amorin, R., Bardelli, S., Cassata, P., Gal, R. R., Garilli,
B., Guaita, L., Giavalisco, M., Hung, D., Koekemoer, A., Maccagni, D., Pentericci,
L., Ribeiro, B., Schaerer, D., Shah, E., Shen, L., Staab, P., Talia, M., Thomas,
R., Tomczak, A. R., Tresse, L., Vanzella, E., Vergani, D., and Zucca, E. (2022).
The VIMOS Ultra Deep Survey: The reversal of the star-formation rate — density
relation at 2 [z | 5. AEA, 662:A33.



BIBLIOGRAPHY 237

Lewis, 1., Balogh, M., De Propris, R., Couch, W., Bower, R., Offer, A., Bland-
Hawthorn, J., Baldry, I. K., Baugh, C., Bridges, T., Cannon, R., Cole, S., Colless,
M., Collins, C., Cross, N., Dalton, G., Driver, S. P., Efstathiou, G., Ellis, R. S.,
Frenk, C. S., Glazebrook, K., Hawkins, E., Jackson, C., Lahav, O., Lumsden, S.,
Maddox, S., Madgwick, D., Norberg, P., Peacock, J. A., Percival, W., Peterson,
B. A., Sutherland, W., and Taylor, K. (2002). The 2dF Galaxy Redshift Survey: the
environmental dependence of galaxy star formation rates near clusters. MNRAS,

334(3):673-683.

Li, S., Okereke, O. I., Chang, S.-C., Kawachi, 1., and VanderWeele, T. J. (2016).
Religious service attendance and lower depression among women—a prospective

cohort study. Annals of Behavioral Medicine, 50(6):876-884.

Lilly, S. J., Le Fevre, O., Renzini, A., Zamorani, G., Scodeggio, M., Contini, T.,
Carollo, C. M., Hasinger, G., Kneib, J. P., Iovino, A., Le Brun, V., Maier, C.,
Mainieri, V., Mignoli, M., Silverman, J., Tasca, L. A. M., Bolzonella, M., Bongiorno,
A., Bottini, D., Capak, P., Caputi, K., Cimatti, A., Cucciati, O., Daddi, E.,
Feldmann, R., Franzetti, P., Garilli, B., Guzzo, L., Ilbert, O., Kampczyk, P.,
Kovac, K., Lamareille, F., Leauthaud, A., Le Borgne, J. F., McCracken, H. J.,
Marinoni, C., Pello, R., Ricciardelli, E., Scarlata, C., Vergani, D., Sanders, D. B.,
Schinnerer, E., Scoville, N., Taniguchi, Y., Arnouts, S., Aussel, H., Bardelli, S.,
Brusa, M., Cappi, A., Ciliegi, P., Finoguenov, A., Foucaud, S., Franceschini,
A., Halliday, C., Impey, C., Knobel, C., Koekemoer, A., Kurk, J., Maccagni,
D., Maddox, S., Marano, B., Marconi, G., Meneux, B., Mobasher, B., Moreau,
C., Peacock, J. A., Porciani, C., Pozzetti, L., Scaramella, R., Schiminovich, D.,
Shopbell, P., Smail, I., Thompson, D., Tresse, L., Vettolani, G., Zanichelli, A., and
Zucca, E. (2007). zCOSMOS: A Large VLT /VIMOS Redshift Survey Covering 0 j
z i 3 in the COSMOS Field. ApJS, 172(1):70-85.

Lim, B. (2018). Forecasting treatment responses over time using recurrent marginal

structural networks. Advances in neural information processing systems, 31.

Lin, L., Jian, H.-Y., Foucaud, S., Norberg, P., Bower, R. G., Cole, S., Arnalte-Mur,
P., Chen, C.-W., Coupon, J., Hsieh, B.-C., Heinis, S., Phleps, S., Chen, W.-P.,
Lee, C.-H., Burgett, W., Chambers, K. C., Denneau, L., Draper, P., Flewelling,



BIBLIOGRAPHY 238

H., Hodapp, K. W., Huber, M. E., Kaiser, N., Kudritzki, R. P., Magnier, E. A.,
Metcalfe, N., Price, P. A., Tonry, J. L., Wainscoat, R. J., and Waters, C. (2014).
The Pan-STARRS1 Medium-Deep Survey: The Role of Galaxy Group Environment
in the Star Formation Rate versus Stellar Mass Relation and Quiescent Fraction

out to z ~0.8. ApJ, 782(1):33.

Linde, A. D. (1982). A new inflationary universe scenario: A possible solution of
the horizon, flatness, homogeneity, isotropy and primordial monopole problems.

Physics Letters B, 108(6):389-393.

Lipton, Z. C. (2016). The Mythos of Model Interpretability. arXiv e-prints, page
arXiv:1606.03490.

Lochner, M., McEwen, J. D., Peiris, H. V., Lahav, O., and Winter, M. K. (2016).
Photometric Supernova Classification with Machine Learning. ApJS, 225(2):31.

Loh, E. D. and Spillar, E. J. (1986). Photometric Redshifts of Galaxies. ApJ, 303:154.

Lotz, J. M., Jonsson, P., Cox, T. J., Croton, D., Primack, J. R., Somerville, R. S.,
and Stewart, K. (2011). The Major and Minor Galaxy Merger Rates at z | 1.5.
Apd, 742(2):103.

Lovell, C. C., Harrison, 1., Harikane, Y., Tacchella, S., and Wilkins, S. M. (2023).
Extreme value statistics of the halo and stellar mass distributions at high redshift:

are JWST results in tension with ACDM? MNRAS, 518(2):2511-2520.

LSST Science Collaboration, Abell, P. A., Allison, J., Anderson, S. F., Andrew, J. R.,
Angel, J. R. P., Armus, L., Arnett, D., Asztalos, S. J., Axelrod, T. S., Bailey, S.,
Ballantyne, D. R., Bankert, J. R., Barkhouse, W. A., Barr, J. D., Barrientos, L. F.,
Barth, A. J., Bartlett, J. G., Becker, A. C., Becla, J., Beers, T. C., Bernstein,
J. P., Biswas, R., Blanton, M. R., Bloom, J. S., Bochanski, J. J., Boeshaar, P.,
Borne, K. D., Bradac, M., Brandt, W. N., Bridge, C. R., Brown, M. E., Brunner,
R. J., Bullock, J. S., Burgasser, A. J., Burge, J. H., Burke, D. L., Cargile, P. A,
Chand rasekharan, S., Chartas, G., Chesley, S. R., Chu, Y.-H., Cinabro, D., Claire,
M. W., Claver, C. F., Clowe, D., Connolly, A. J., Cook, K. H., Cooke, J., Cooray,
A., Covey, K. R., Culliton, C. S., de Jong, R., de Vries, W. H., Debattista, V. P.,
Delgado, F., Dell’Antonio, I. P., Dhital, S., Di Stefano, R., Dickinson, M., Dilday,



BIBLIOGRAPHY 239

B., Djorgovski, S. G., Dobler, G., Donalek, C., Dubois-Felsmann, G., Durech, J.,
Eliasdottir, A., Eracleous, M., Eyer, L., Falco, E. E., Fan, X., Fassnacht, C. D.,
Ferguson, H. C., Fernandez, Y. R., Fields, B. D., Finkbeiner, D., Figueroa, E. E.,
Fox, D. B., Francke, H., Frank, J. S.; Frieman, J., Fromenteau, S., Furqan, M.,
Galaz, G., Gal-Yam, A., Garnavich, P., Gawiser, E., Geary, J., Gee, P., Gibson,
R. R., Gilmore, K., Grace, E. A., Green, R. F., Gressler, W. J., Grillmair, C. J.,
Habib, S., Haggerty, J. S., Hamuy, M., Harris, A. W., Hawley, S. L., Heavens,
A. F., Hebb, L., Henry, T. J., Hileman, E., Hilton, E. J., Hoadley, K., Holberg,
J. B., Holman, M. J., Howell, S. B., Infante, L., Ivezic, Z., Jacoby, S. H., Jain, B.,
R, Jedicke, Jee, M. J., Garrett Jernigan, J., Jha, S. W., Johnston, K. V., Jones,
R. L., Juric, M., Kaasalainen, M., Styliani, Kafka, Kahn, S. M., Kaib, N. A
Kalirai, J., Kantor, J., Kasliwal, M. M., Keeton, C. R., Kessler, R., Knezevic, Z.,
Kowalski, A., Krabbendam, V. L., Krughoff, K. S., Kulkarni, S., Kuhlman, S.,
Lacy, M., Lepine, S., Liang, M., Lien, A., Lira, P., Long, K. S., Lorenz, S., Lotz,
J. M., Lupton, R. H., Lutz, J., Macri, L. M., Mahabal, A. A., Mandelbaum, R.,
Marshall, P., May, M., McGehee, P. M., Meadows, B. T., Meert, A., Milani, A.,
Miller, C. J., Miller, M., Mills, D., Minniti, D., Monet, D., Mukadam, A. S., Nakar,
E., Neill, D. R., Newman, J. A., Nikolaev, S., Nordby, M., O’Connor, P., Oguri,
M., Oliver, J., Olivier, S. S., Olsen, J. K., Olsen, K., Olszewski, E. W., Oluseyi,
H., Padilla, N. D., Parker, A., Pepper, J., Peterson, J. R., Petry, C., Pinto, P. A.,
Pizagno, J. L., Popescu, B., Prsa, A., Radcka, V., Raddick, M. J., Rasmussen,
A., Rau, A., Rho, J., Rhoads, J. E., Richards, G. T., Ridgway, S. T., Robertson,
B. E., Roskar, R., Saha, A., Sarajedini, A., Scannapieco, E., Schalk, T., Schindler,
R., Schmidt, S., Schmidt, S., Schneider, D. P., Schumacher, G., Scranton, R.,
Sebag, J., Seppala, L. G., Shemmer, O., Simon, J. D., Sivertz, M., Smith, H. A.,
Allyn Smith, J., Smith, N., Spitz, A. H., Stanford, A., Stassun, K. G., Strader, J.,
Strauss, M. A., Stubbs, C. W., Sweeney, D. W., Szalay, A., Szkody, P., Takada,
M., Thorman, P., Trilling, D. E., Trimble, V., Tyson, A., Van Berg, R., Vand
en Berk, D., VanderPlas, J., Verde, L., Vrsnak, B., Walkowicz, L. M., Wand elt,
B. D., Wang, S., Wang, Y., Warner, M., Wechsler, R. H., West, A. A., Wiecha,
O., Williams, B. F., Willman, B., Wittman, D., Wolff, S. C., Wood-Vasey, W. M.,
Wozniak, P., Young, P., Zentner, A., and Zhan, H. (2009). LSST Science Book,



BIBLIOGRAPHY 240

Version 2.0. arXiv e-prints, page arXiv:0912.0201.

Lu, Y., Mo, H. J., Weinberg, M. D., and Katz, N. (2011). A Bayesian approach to
the semi-analytic model of galaxy formation: methodology. MNRAS, 416(3):1949—
1964.

Lubin, L. M. (1996). The Palomar Distant Cluster Survey. III. The Colors of the
Cluster Galaxy. AJ, 112:23.

Lupton, R. H., Gunn, J. E.; and Szalay, A. S. (1999). A Modified Magnitude
System that Produces Well-Behaved Magnitudes, Colors, and Errors Even for Low
Signal-to-Noise Ratio Measurements. AJ, 118(3):1406-1410.

MacArthur, L. A., Gonzalez, J. J., and Courteau, S. (2009). Stellar population and
kinematic profiles in spiral bulges and discs: population synthesis of integrated

spectra. MNRAS, 395(1):28-63.

Maeder, A. and Meynet, G. (1988). Tables of evolutionary star modles from 0.85 to
120 solar mass with overshooting and mass loss. A&AS, 76:411-425.

Magorrian, J., Tremaine, S., Richstone, D., Bender, R., Bower, G., Dressler, A.,
Faber, S. M., Gebhardt, K., Green, R., Grillmair, C., Kormendy, J., and Lauer,
T. (1998). The Demography of Massive Dark Objects in Galaxy Centers. AJ,
115(6):2285-2305.

Maltby, D. T., Almaini, O., Wild, V., Hatch, N. A., Hartley, W. G., Simpson,
C., Rowlands, K., and Socolovsky, M. (2018). The structure of post-starburst
galaxies at 0.5 j z j 2: evidence for two distinct quenching routes at different epochs.

MNRAS, 480(1):381-401.

Mandelbaum, R., Seljak, U., Hirata, C. M., Bardelli, S., Bolzonella, M., Bongiorno,
A., Carollo, M., Contini, T., Cunha, C. E., Garilli, B., Iovino, A., Kampczyk, P.,
Kneib, J. P., Knobel, C., Koo, D. C., Lamareille, F., Le Fevre, O., Le Borgne, J. F.,
Lilly, S. J., Maier, C., Mainieri, V., Mignoli, M., Newman, J. A., Oesch, P. A.,
Perez-Montero, E., Ricciardelli, E., Scodeggio, M., Silverman, J., and Tasca, L.
(2008). Precision photometric redshift calibration for galaxy-galaxy weak lensing.

MNRAS, 386(2):781-806.



BIBLIOGRAPHY 241

Mannucci, F., Basile, F., Poggianti, B. M., Cimatti, A., Daddi, E., Pozzetti, L., and
Vanzi, L. (2001). Near-infrared template spectra of normal galaxies: k-corrections,

galaxy models and stellar populations. MNRAS, 326(2):745-758.

Mansournia, M. A., Danaei, G., Forouzanfar, M. H., Mahmoodi, M., Jamali, M.,
Mansournia, N., and Mohammad, K. (2012). Effect of physical activity on func-
tional performance and knee pain in patients with osteoarthritis: analysis with

marginal structural models. Epidemiology, pages 631-640.

Maraston, C. (1998). Evolutionary synthesis of stellar populations: a modular tool.

MNRAS, 300(3):872-892.

Maraston, C. (2005). Evolutionary population synthesis: models, analysis of the
ingredients and application to high-z galaxies. MNRAS, 362(3):799-825.

Maraston, C., Pforr, J., Renzini, A., Daddi, E., Dickinson, M., Cimatti, A., and
Tonini, C. (2010). Star formation rates and masses of z ~2 galaxies from multicolour

photometry. MNRAS, 407(2):830-845.

Margoniner, V. E. and de Carvalho, R. R. (2000). Photometric Properties of 48
Clusters of Galaxies. I. The Butcher-Oemler Effect. A.J, 119(4):1562-1578.

Margoniner, V. E., de Carvalho, R. R., Gal, R. R., and Djorgovski, S. G. (2001).
The Butcher-Oemler Effect in 295 Clusters: Strong Redshift Evolution and Cluster
Richness Dependence. ApJ, 548(2):L143-1146.

Marigo, P. and Girardi, L. (2007). Evolution of asymptotic giant branch stars. I.
Updated synthetic TP-AGB models and their basic calibration. A&A, 469(1):239-
263.

Marigo, P., Girardi, L., Bressan, A., Groenewegen, M. A. T., Silva, L., and Granato,
G. L. (2008). Evolution of asymptotic giant branch stars. II. Optical to far-infrared
isochrones with improved TP-AGB models. A¢A, 482(3):883-905.

Marinacci, F., Vogelsberger, M., Pakmor, R., Torrey, P., Springel, V., Hernquist,
L., Nelson, D., Weinberger, R., Pillepich, A., Naiman, J., and Genel, S. (2018).
First results from the IlustrisTNG simulations: radio haloes and magnetic fields.

MNRAS, 480(4):5113-51309.



BIBLIOGRAPHY 242

Martin, C. L. (1999). Properties of Galactic Outflows: Measurements of the Feedback
from Star Formation. ApJ, 513(1):156-160.

Martin, D. C., Wyder, T. K., Schiminovich, D., Barlow, T. A., Forster, K., Friedman,
P. G., Morrissey, P., Neff, S. G., Seibert, M., Small, T., Welsh, B. Y., Bianchi, L.,
Donas, J., Heckman, T. M., Lee, Y.-W., Madore, B. F., Milliard, B., Rich, R. M.,
Szalay, A. S., and Yi, S. K. (2007). The UV-Optical Galaxy Color-Magnitude
Diagram. III. Constraints on Evolution from the Blue to the Red Sequence. ApJS,
173(2):342-356.

Martinez, H. J. and Muriel, H. (2006). Groups of galaxies: relationship between
environment and galaxy properties. MNRAS, 370(2):1003-1007.

Massey, R., Kitching, T., and Richard, J. (2010). The dark matter of gravitational

lensing. Reports on Progress in Physics, 73(8):086901.

Masters, K. L., Mosleh, M., Romer, A. K., Nichol, R. C., Bamford, S. P., Schawinski,
K., Lintott, C. J., Andreescu, D., Campbell, H. C., Crowcroft, B., Doyle, I.,
Edmondson, E. M., Murray, P., Raddick, M. J., Slosar, A., Szalay, A. S., and
Vandenberg, J. (2010). Galaxy Zoo: passive red spirals. MNRAS, 405(2):783-799.

Mastropietro, C., Moore, B., Mayer, L., Debattista, V. P., Piffaretti, R., and Stadel,
J. (2005). Morphological evolution of discs in clusters. MNRAS, 364(2):607-619.

Maulbetsch, C., Avila-Reese, V., Colin, P., Gottlober, S., Khalatyan, A., and
Steinmetz, M. (2007). The Dependence of the Mass Assembly History of Cold
Dark Matter Halos on Environment. ApJ, 654(1):53-65.

McCaffrey, D. F., Ridgeway, G., and Morral, A. R. (2004). Propensity score estimation
with boosted regression for evaluating causal effects in observational studies.

Psychological methods, 9(4):403.

McGaugh, S. S. and de Blok, W. J. G. (1997). Gas Mass Fractions and the Evolution
of Spiral Galaxies. ApJ, 481(2):689-702.

McGee, S. L., Balogh, M. L., Wilman, D. J., Bower, R. G., Mulchaey, J. S., Parker,
L. C., and Oemler, A. (2011). The Dawn of the Red: star formation histories of
group galaxies over the past 5 billion years. MNRAS, 413(2):996-1012.



BIBLIOGRAPHY 243

McGibbon, R. J. and Khochfar, S. (2022). Multi-epoch machine learning 1: Unravel-
ling nature versus nurture for galaxy formation. MNRAS, 513(4):5423-5437.

Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., and Galstyan, A. (2019).
A Survey on Bias and Fairness in Machine Learning. arXiv e-prints, page

arXiv:1908.09635.

Mihos, J. C. and Hernquist, L. (1994). Ultraluminous Starbursts in Major Mergers.
ApJ, 431:1.9.

Mihos, J. C. and Hernquist, L. (1996). Gasdynamics and Starbursts in Major Mergers.
AplJ, 464:641.

Miller, T. (2017). Explanation in Artificial Intelligence: Insights from the Social

Sciences. arXiv e-prints, page arXiv:1706.07269.

Mo, H., van den Bosch, F., and White, S. (2010). Galazy Formation and Evolution.

Galaxy Formation and Evolution. Cambridge University Press.

Mo, H. J., Mao, S., and White, S. D. M. (1998). The formation of galactic discs.
MNRAS, 295(2):319-336.

Mo, H. J., Yang, X., van den Bosch, F. C.; and Jing, Y. P. (2004). The dependence
of the galaxy luminosity function on large-scale environment. MNRAS, 349(1):205—
212.

Moore, B., Katz, N., Lake, G., Dressler, A., and Oemler, A. (1996). Galaxy
harassment and the evolution of clusters of galaxies. Nature, 379(6566):613-616.

Moore, B., Lake, G., and Katz, N. (1998). Morphological Transformation from
Galaxy Harassment. ApJ, 495(1):139-151.

Moore, B., Lake, G., Quinn, T., and Stadel, J. (1999). On the survival and destruction
of spiral galaxies in clusters. MNRAS, 304(3):465-474.

Moraffah, R., Sheth, P., Karami, M., Bhattacharya, A., Wang, Q., Tahir, A., Raglin,
A., and Liu, H. (2021). Causal Inference for Time series Analysis: Problems,
Methods and Evaluation. arXiv e-prints, page arXiv:2102.05829.



BIBLIOGRAPHY 244

Morgan, W. W. (1961). The classification of clusters of galaxies. Proceedings of the
National Academy of Sciences, 47(7):905-906.

Mortimer, K. M., Neugebauer, R., Van Der Laan, M., and Tager, I. B. (2005). An
application of model-fitting procedures for marginal structural models. American

Journal of Epidemiology, 162(4):382-388.

Mortlock, A., Conselice, C. J., Bluck, A. F. L., Bauer, A. E., Griitzbauch, R.,
Buitrago, F., and Ownsworth, J. (2011). A deep probe of the galaxy stellar mass
functions at z~ 1-3 with the GOODS NICMOS Survey. MNRAS, 413(4):2845-2859.

Mortlock, A., Conselice, C. J., Hartley, W. G., Duncan, K., Lani, C., Ownsworth,
J. R., Almaini, O., Wel, A. v. d., Huang, K.-H., Ashby, M. L. N., Willner, S. P.,
Fontana, A., Dekel, A., Koekemoer, A. M., Ferguson, H. C., Faber, S. M., Grogin,
N. A., and Kocevski, D. D. (2015). Deconstructing the galaxy stellar mass function
with UKIDSS and CANDELS: the impact of colour, structure and environment.
MNRAS, 447(1):2-24.

Mucesh, S., Hartley, W. G., Palmese, A., Lahav, O., Whiteway, L., Bluck, A. F. L.,
Alarcon, A., Amon, A., Bechtol, K., Bernstein, G. M., Carnero Rosell, A., Carrasco
Kind, M., Choi, A., Eckert, K., Everett, S., Gruen, D., Gruendl, R. A., Harrison,
1., Huff, E. M., Kuropatkin, N., Sevilla-Noarbe, 1., Sheldon, E., Yanny, B., Aguena,
M., Allam, S., Bacon, D., Bertin, E., Bhargava, S., Brooks, D., Carretero, J.,
Castander, F. J., Conselice, C., Costanzi, M., Crocce, M., da Costa, L. N., Pereira,
M. E. S., De Vicente, J., Desai, S., Diehl, H. T., Drlica-Wagner, A., Evrard, A. E.,
Ferrero, 1., Flaugher, B., Fosalba, P., Frieman, J., Garcia-Bellido, J., Gaztanaga,
E., Gerdes, D. W., Gschwend, J., Gutierrez, G., Hinton, S. R., Hollowood, D. L.,
Honscheid, K., James, D. J., Kuehn, K., Lima, M., Lin, H., Maia, M. A. G.,
Melchior, P., Menanteau, F., Miquel, R., Morgan, R., Paz-Chinchén, F., Plazas,
A. A., Sanchez, E., Scarpine, V., Schubnell, M., Serrano, S., Smith, M., Suchyta,
E., Tarle, G., Thomas, D., To, C., Varga, T. N., Wilkinson, R. D., and DES
Collaboration (2021). A machine learning approach to galaxy properties: joint
redshift-stellar mass probability distributions with Random Forest. MNRAS,
502(2):2770-2786.



BIBLIOGRAPHY 245

Muldrew, S. I., Croton, D. J., Skibba, R. A., Pearce, F. R., Ann, H. B., Baldry, I. K.,
Brough, S., Choi, Y.-Y., Conselice, C. J., Cowan, N. B., Gallazzi, A., Gray, M. E.,
Griitzbauch, R., Li, I. H., Park, C., Pilipenko, S. V., Podgorzec, B. J., Robotham,
A. S. G., Wilman, D. J., Yang, X., Zhang, Y., and Zibetti, S. (2012). Measures of
galaxy environment - I. What is ’environment’? MNRAS, 419(3):2670-2682.

Muzzin, A., Marchesini, D., van Dokkum, P. G., Labbé, 1., Kriek, M., and Franx,
M. (2009). A Near-Infrared Spectroscopic Survey of K-Selected Galaxies at z~2.3:
Comparison of Stellar Population Synthesis Codes and Constraints from the

Rest-Frame NIR. ApJ, 701(2):1839-1864.

Muzzin, A., Wilson, G., Yee, H. K. C., Gilbank, D., Hoekstra, H., Demarco, R.,
Balogh, M., van Dokkum, P., Franx, M., Ellingson, E., Hicks, A., Nantais, J.,
Noble, A., Lacy, M., Lidman, C., Rettura, A., Surace, J., and Webb, T. (2012).
The Gemini Cluster Astrophysics Spectroscopic Survey (GCLASS): The Role of
Environment and Self-regulation in Galaxy Evolution at z ~1. ApJ, 746(2):188.

Myers, A. D., White, M., and Ball, N. M. (2009). Incorporating photometric redshift
probability density information into real-space clustering measurements. MNRAS,

399(4):2279-2287.

Naidu, R. P., Oesch, P. A., van Dokkum, P., Nelson, E. J., Suess, K. A., Brammer,
G., Whitaker, K. E., Illingworth, G., Bouwens, R., Tacchella, S., Matthee, J.,
Allen, N., Bezanson, R., Conroy, C., Labbe, L., Leja, J., Leonova, E., Magee, D.,
Price, S. H., Setton, D. J., Strait, V., Stefanon, M., Toft, S., Weaver, J. R., and
Weibel, A. (2022). Two Remarkably Luminous Galaxy Candidates at z ~ 10-12
Revealed by JWST. ApJ, 940(1):L14.

Naiman, J. P., Pillepich, A., Springel, V., Ramirez-Ruiz, E., Torrey, P., Vogelsberger,
M., Pakmor, R., Nelson, D., Marinacci, F., Hernquist, L., Weinberger, R., and
Genel, S. (2018). First results from the IllustrisTNG simulations: a tale of two
elements - chemical evolution of magnesium and europium. MNRAS, 477(1):1206—

1224.

Naimi, A. I., Cole, S. R., and Kennedy, E. H. (2017). An introduction to g methods.

International journal of epidemiology, 46(2):756—762.



BIBLIOGRAPHY 246

Nandi, A., Glymour, M., Kawachi, I., and VanderWeele, T. (2012). Using marginal
structural models to estimate the direct effect of fadverse childhood social conditions
on onset of heart disease, diabetes, and stroke. Epidemiology (Cambridge, Mass.),

23:223-32.

Nayyeri, H., Mobasher, B., Hemmati, S., De Barros, S., Ferguson, H. C., Wiklind,
T., Dahlen, T., Dickinson, M., Giavalisco, M., Fontana, A., Ashby, M., Barro, G.,
Guo, Y., Hathi, N. P., Kassin, S., Koekemoer, A., Willner, S., Dunlop, J. S., Paris,
D., and Targett, T. A. (2014). A Study of Massive and Evolved Galaxies at High
Redshift. ApJ, 794(1):68.

Neilsen, Eric H., J., Annis, J. T., Diehl, H. T., Swanson, M. E. C., D’Andrea,
C., Kent, S., and Drlica-Wagner, A. (2019). Dark Energy Survey’s Observation
Strategy, Tactics, and Exposure Scheduler. arXiv e-prints, page arXiv:1912.06254.

Nelan, J. E., Smith, R. J., Hudson, M. J., Wegner, G. A., Lucey, J. R., Moore, S.
A. W., Quinney, S. J., and Suntzeff, N. B. (2005). NOAO Fundamental Plane
Survey. II. Age and Metallicity along the Red Sequence from Line-Strength Data.
AplJ, 632(1):137-156.

Nelson, D., Pillepich, A., Springel, V., Weinberger, R., Hernquist, L., Pakmor,
R., Genel, S., Torrey, P., Vogelsberger, M., Kauffmann, G., Marinacci, F., and
Naiman, J. (2018). First results from the IllustrisTNG simulations: the galaxy
colour bimodality. MNRAS, 475(1):624-647.

Nelson, D., Springel, V., Pillepich, A., Rodriguez-Gomez, V., Torrey, P., Genel, S.,
Vogelsberger, M., Pakmor, R., Marinacci, F., Weinberger, R., Kelley, L., Lovell,
M., Diemer, B., and Hernquist, L. (2019). The IllustrisTNG simulations: public

data release. Computational Astrophysics and Cosmology, 6(1):2.

Newman, J. A., Cooper, M. C., Davis, M., Faber, S. M., Coil, A. L., Guhathakurta,
P., Koo, D. C., Phillips, A. C., Conroy, C., Dutton, A. A., Finkbeiner, D. P., Gerke,
B. F., Rosario, D. J., Weiner, B. J., Willmer, C. N. A., Yan, R., Harker, J. J.,
Kassin, S. A., Konidaris, N. P., Lai, K., Madgwick, D. S., Noeske, K. G., Wirth,
G. D., Connolly, A. J., Kaiser, N., Kirby, E. N., Lemaux, B. C., Lin, L., Lotz,
J. M., Luppino, G. A., Marinoni, C., Matthews, D. J., Metevier, A., and Schiavon,



BIBLIOGRAPHY 247

R. P. (2013). The DEEP2 Galaxy Redshift Survey: Design, Observations, Data
Reduction, and Redshifts. ApJS, 208(1):5.

Noeske, K. G., Weiner, B. J., Faber, S. M., Papovich, C., Koo, D. C., Somerville,
R. S., Bundy, K., Conselice, C. J., Newman, J. A., Schiminovich, D., Le Floc’h,
E., Coil, A. L., Rieke, G. H., Lotz, J. M., Primack, J. R., Barmby, P., Cooper,
M. C., Davis, M., Ellis, R. S., Fazio, G. G., Guhathakurta, P., Huang, J., Kassin,
S. A., Martin, D. C., Phillips, A. C., Rich, R. M., Small, T. A., Willmer, C. N. A.,
and Wilson, G. (2007). Star Formation in AEGIS Field Galaxies since z=1.1: The
Dominance of Gradually Declining Star Formation, and the Main Sequence of

Star-forming Galaxies. ApJ, 660(1):L43-L46.

Noll, S., Burgarella, D., Giovannoli, E., Buat, V., Marcillac, D., and Munoz-Mateos,
J. C. (2009). Analysis of galaxy spectral energy distributions from far-UV to far-IR
with CIGALE: studying a SINGS test sample. A&A, 507(3):1793-1813.

Norton, S. A., Gebhardt, K., Zabludoff, A. I., and Zaritsky, D. (2001). The Spa-
tial Distribution and Kinematics of Stellar Populations in E+A Galaxies. ApJ,
557(1):150-164.

Nulsen, P. E. J. (1982). Transport processes and the stripping of cluster galaxies.
MNRAS, 198:1007-1016.

Ocvirk, P., Pichon, C., Langon, A., and Thiébaut, E. (2006). STECMAP: STEllar
Content from high-resolution galactic spectra via Maximum A Posteriori. MNRAS,

365(1):46-73.

Odewahn, S. C., Stockwell, E. B., Pennington, R. L., Humphreys, R. M., and Zumach,
W. A. (1992). Automated Star/Galaxy Discrimination With Neural Networks. AJ,
103:318.

Oemler, Augustus, J. (1974). The Systematic Properties of Clusters of Galaxies.
Photometry of 15 Clusters. ApJ, 194:1-20.

Oemler, Augustus, J., Dressler, A., and Butcher, H. R. (1997). The Morphology of
Distant Cluster Galaxies. II. HST Observations of Four Rich Clusters at z ~= 0.4.
Apd, 474(2):561-575.



BIBLIOGRAPHY 248

Oort, J. H. (1932). The force exerted by the stellar system in the direction perpendicu-
lar to the galactic plane and some related problems. Bull. Astron. Inst. Netherlands,

6:249.

Paccagnella, A., Vulcani, B., Poggianti, B. M., Moretti, A., Fritz, J., Gullieuszik, M.,
and Fasano, G. (2019). The strong correlation between post-starburst fraction and

environment. MNRAS, 482(1):881-894.

Pacifici, C., Kassin, S. A., Weiner, B. J., Holden, B., Gardner, J. P., Faber, S. M.,
Ferguson, H. C., Koo, D. C., Primack, J. R., Bell, E. F., Dekel, A., Gawiser, E.,
Giavalisco, M., Rafelski, M., Simons, R. C., Barro, G., Croton, D. J., Davé, R.,
Fontana, A., Grogin, N. A., Koekemoer, A. M., Lee, S.-K., Salmon, B., Somerville,
R., and Behroozi, P. (2016). The Evolution of Star Formation Histories of Quiescent

Galaxies. ApJ, 832(1):79.

Palmese, A. (2018). Unveiling the unseen with the Dark Energy Survey: gravitational
waves and dark matter. PhD thesis, UCL (University College London).

Palmese, A., Annis, J., Burgad, J., Farahi, A., Soares-Santos, M., Welch, B., da
Silva Pereira, M., Lin, H., Bhargava, S., Hollowood, D. L., Wilkinson, R., Giles,
P., Jeltema, T., Romer, A. K., Evrard, A. E., Hilton, M., Vergara Cervantes,
C., Bermeo, A., Mayers, J., DeRose, J., Gruen, D., Hartley, W. G., Lahav, O.,
Leistedt, B., McClintock, T., Rozo, E., Rykoff, E. S., Varga, T. N., Wechsler, R. H.,
Zhang, Y., Avila, S., Brooks, D., Buckley-Geer, E., Burke, D. L., Carnero Rosell,
A., Carrasco Kind, M., Carretero, J., Castander, F. J., Collins, C., da Costa,
L. N., Desai, S., De Vicente, J., Diehl, H. T., Dietrich, J. P., Doel, P., Flaugher,
B., Fosalba, P., Frieman, J., Garcia-Bellido, J., Gerdes, D. W., Gruendl, R. A.,
Gschwend, J., Gutierrez, G., Honscheid, K., James, D. J., Krause, E., Kuehn, K.,
Kuropatkin, N., Liddle, A., Lima, M., Maia, M. A. G., Mann, R. G., Marshall,
J. L., Menanteau, F., Miquel, R., Ogand o, R. L. C., Plazas, A. A., Roodman,
A., Rooney, P., Sahlen, M., Sanchez, E., Scarpine, V., Schubnell, M., Serrano, S.,
Sevilla-Noarbe, 1., Sobreira, F., Stott, J., Suchyta, E., Swanson, M. E. C., Tarle, G.,
Thomas, D., Tucker, D. L., Viana, P. T. P., Vikram, V., Walker, A. R., and DES
Collaboration (2020a). Stellar mass as a galaxy cluster mass proxy: application to

the Dark Energy Survey redMaPPer clusters. MNRAS, 493(4):4591-4606.



BIBLIOGRAPHY 249

Palmese, A., Bom, C. R., Mucesh, S., and Hartley, W. G. (2023). A Standard Siren
Measurement of the Hubble Constant Using Gravitational-wave Events from the
First Three LIGO/Virgo Observing Runs and the DESI Legacy Survey. ApJ,
943(1):56.

Palmese, A., deVicente, J., Pereira, M. E. S., Annis, J., Hartley, W., Herner, K.,
Soares-Santos, M., et al. (2020b). A Statistical Standard Siren Measurement of
the Hubble Constant from the LIGO/Virgo Gravitational Wave Compact Object
Merger GW190814 and Dark Energy Survey Galaxies. ApJ, 900(2):L33.

Palmese, A., Graur, O., Annis, J. T., BenZvi, S., Di Valentino, E., Garcia-Bellido,
J., Gontcho, S. G. A., Keeley, R., Kim, A., Lahav, O., Nissanke, S., Paterson, K.,
Sako, M., Shafieloo, A., and Tsai, Y.-D. (2019). Gravitational wave cosmology

and astrophysics with large spectroscopic galaxy surveys. BAAS, 51(3):310.

Palmese, A., Lahav, O., Banerji, M., Gruen, D., Jouvel, S., Melchior, P., Aleksi¢,
J., Annis, J., Diehl, H. T., Hartley, W. G., Jeltema, T., Romer, A. K., Rozo,
E., Rykoff, E. S., Seitz, S., Suchyta, E., Zhang, Y., Abbott, T. M. C., Abdalla,
F. B., Allam, S., Benoit-Lévy, A., Bertin, E., Brooks, D., Buckley-Geer, E., Burke,
D. L., Capozzi, D., Carnero Rosell, A., Carrasco Kind, M., Carretero, J., Crocce,
M., Cunha, C. E., D’Andrea, C. B., da Costa, L. N., Desai, S., Dietrich, J. P.,
Doel, P., Estrada, J., Evrard, A. E., Flaugher, B., Frieman, J., Gerdes, D. W.,
Goldstein, D. A., Gruendl, R. A., Gutierrez, G., Honscheid, K., James, D. J.,
Kuehn, K., Kuropatkin, N.; Li, T. S., Lima, M., Maia, M. A. G., Marshall, J. L.,
Miller, C. J., Miquel, R., Nord, B., Ogando, R., Plazas, A. A., Roodman, A.,
Sanchez, E., Scarpine, V., Sevilla-Noarbe, 1., Smith, R. C., Soares-Santos, M.,
Sobreira, F., Swanson, M. E. C., Tarle, G., Thomas, D., Tucker, D., and Vikram,
V. (2016). Comparing Dark Energy Survey and HST-CLASH observations of the
galaxy cluster RXC J2248.7-4431: implications for stellar mass versus dark matter.
MNRAS, 463(2):1486-1499.

Papovich, C., Dickinson, M., and Ferguson, H. C. (2001). The Stellar Populations
and Evolution of Lyman Break Galaxies. ApJ, 559(2):620-653.

Papovich, C., Dickinson, M., and Ferguson, H. C. (2003). Stellar Masses of High-



BIBLIOGRAPHY 250

Redshift Galaxies. In Bender, R. and Renzini, A., editors, The Mass of Galaxies
at Low and High Redshift, page 296. Springer Berlin, Heidelberg.

Papovich, C., Finkelstein, S. L., Ferguson, H. C., Lotz, J. M., and Giavalisco, M.
(2011). The rising star formation histories of distant galaxies and implications for

gas accretion with time. MNRAS, 412(2):1123-1136.

Pasquali, A., van den Bosch, F. C., Mo, H. J., Yang, X., and Somerville, R. (2009).
The rise and fall of galaxy activity in dark matter haloes. MNRAS, 394(1):38-50.

Pasquet, J., Bertin, E., Treyer, M., Arnouts, S., and Fouchez, D. (2019). Photometric

redshifts from SDSS images using a convolutional neural network. A&A, 621:A26.

Patel, S. G., Holden, B. P., Kelson, D. D., Illingworth, G. D., and Franx, M. (2009).
The Dependence of Star Formation Rates on Stellar Mass and Environment at z

-0.8. ApJ, 705(1):L67-L70.

Pattarakijwanich, P., Strauss, M. A., Ho, S., and Ross, N. P. (2016). The Evolution
of Post-starburst Galaxies from z ~1 to the Present. ApJ, 833(1):19.

Peacock, J. A., 2dF Galaxy Redshift Survey Team, Colless, M., Baldry, I., Baugh,
C., Bland-Hawthorn, J., Bridges, T., Cannon, R., Cole, S., Collins, C., Couch,
W., Dalton, G., De Propris, R., Driver, S., Efstathiou, G., Ellis, R., Frenk, C.,
Glazebrook, K., Jackson, C., sLahav, O., Lewis, I., Lumsden, S., Maddox, S.,
Madgwick, D., Norberg, P., Percival, W., Peterson, B., Sutherland, W., and Taylor,
K. (2002). Studying Large-scale Structure with the 2dF Galaxy Redshift Survey.
In Metcalfe, N. and Shanks, T., editors, A New Era in Cosmology, volume 283 of

Astronomical Society of the Pacific Conference Series, page 19.

Pearl, J. (2009a). Causal inference in statistics: An overview. Statistics Surveys,

3(none):96 — 146.
Pearl, J. (2009b). Causality. Cambridge university press.

Pearl, J. (2010). The foundations of causal inference. Sociological Methodology,
40(1):75-149.

Pearl, J. (2019). The seven tools of causal inference, with reflections on machine

learning. Communications of the ACM, 62(3):54-60.



BIBLIOGRAPHY 251

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn:

Machine learning in Python. Journal of Machine Learning Research, 12:2825-2830.

Pello, R., Miralles, J. M., Le Borgne, J. F., Picat, J. P., Soucail, G., and Bruzual, G.
(1996). Identification of a high redshift cluster. in the field of Q23454007 through
deep BRIJK’ photometry. A& A, 314:73-86.

Peng, Y.-j., Lilly, S. J., Kova¢, K., Bolzonella, M., Pozzetti, L., Renzini, A., Zamorani,
G., Ilbert, O., Knobel, C., Iovino, A., Maier, C., Cucciati, O., Tasca, L., Carollo,
C. M., Silverman, J., Kampczyk, P., de Ravel, L., Sanders, D., Scoville, N., Contini,
T., Mainieri, V., Scodeggio, M., Kneib, J.-P., Le Fevre, O., Bardelli, S., Bongiorno,
A., Caputi, K., Coppa, G., de la Torre, S., Franzetti, P., Garilli, B., Lamareille,
F., Le Borgne, J.-F., Le Brun, V., Mignoli, M., Perez Montero, E., Pello, R.,
Ricciardelli, E., Tanaka, M., Tresse, L., Vergani, D., Welikala, N., Zucca, E.,
Oesch, P., Abbas, U., Barnes, L., Bordoloi, R., Bottini, D., Cappi, A., Cassata, P.,
Cimatti, A., Fumana, M., Hasinger, G., Koekemoer, A., Leauthaud, A., Maccagni,
D., Marinoni, C., McCracken, H., Memeo, P., Meneux, B., Nair, P., Porciani,
C., Presotto, V., and Scaramella, R. (2010). Mass and Environment as Drivers
of Galaxy Evolution in SDSS and zCOSMOS and the Origin of the Schechter
Function. ApJ, 721(1):193-221.

Perlmutter, S., Aldering, G., Goldhaber, G., Knop, R. A., Nugent, P., Castro, P. G.,
Deustua, S., Fabbro, S., Goobar, A., Groom, D. E., Hook, I. M., Kim, A. G.,
Kim, M. Y., Lee, J. C., Nunes, N. J., Pain, R., Pennypacker, C. R., Quimby,
R., Lidman, C., Ellis, R. S., Irwin, M., McMahon, R. G., Ruiz-Lapuente, P.,
Walton, N., Schaefer, B., Boyle, B. J., Filippenko, A. V., Matheson, T., Fruchter,
A. S., Panagia, N., Newberg, H. J. M., Couch, W. J., and Project, T. S. C. (1999).
Measurements of 2 and A from 42 High-Redshift Supernovae. ApJ, 517(2):565-586.

Pietrinferni, A., Cassisi, S., Salaris, M., and Castelli, F. (2004). A Large Stellar
Evolution Database for Population Synthesis Studies. I. Scaled Solar Models and
Isochrones. ApJ, 612(1):168-190.



BIBLIOGRAPHY 252

Pietrinferni, A., Cassisi, S., Salaris, M., and Castelli, F. (2006). A Large Stellar
Evolution Database for Population Synthesis Studies. II. Stellar Models and
Isochrones for an a-enhanced Metal Distribution. ApJ, 642(2):797-812.

Pillepich, A., Nelson, D., Hernquist, L., Springel, V., Pakmor, R., Torrey, P.,
Weinberger, R., Genel, S., Naiman, J. P., Marinacci, F., and Vogelsberger, M.
(2018a). First results from the IllustrisTNG simulations: the stellar mass content

of groups and clusters of galaxies. MNRAS, 475(1):648-675.

Pillepich, A., Springel, V., Nelson, D., Genel, S., Naiman, J., Pakmor, R., Hernquist,
L., Torrey, P., Vogelsberger, M., Weinberger, R., and Marinacci, F. (2018b).
Simulating galaxy formation with the IllustrisTNG model. MNRAS, 473(3):4077—
4106.

Pimbblet, K. A., Smail, I., Kodama, T., Couch, W. J., Edge, A. C., Zabludoff,
A. 1., and O’Hely, E. (2002). The Las Campanas/AAT Rich Cluster Survey - II.
The environmental dependence of galaxy colours in clusters at z~0.1. MNRAS,

331(2):333-350.

Piotrowska, J. M., Bluck, A. F. L., Maiolino, R., and Peng, Y. (2022). On the
quenching of star formation in observed and simulated central galaxies: evidence

for the role of integrated AGN feedback. MNRAS, 512(1):1052-1090.

Planck Collaboration, Ade, P. A. R., Aghanim, N., Arnaud, M., Ashdown, M.,
Aumont, J., Baccigalupi, C., Banday, A. J., Barreiro, R. B., Bartlett, J. G.,
Bartolo, N., Battaner, E., Battye, R., Benabed, K., Benoit, A., Benoit-Lévy, A.,
Bernard, J. P., Bersanelli, M., Bielewicz, P., Bock, J. J., Bonaldi, A., Bonavera,
L., Bond, J. R., Borrill, J., Bouchet, F. R., Boulanger, F., Bucher, M., Burigana,
C., Butler, R. C., Calabrese, E., Cardoso, J. F., Catalano, A., Challinor, A.,
Chamballu, A., Chary, R. R., Chiang, H. C., Chluba, J., Christensen, P. R.,
Church, S., Clements, D. L., Colombi, S., Colombo, L. P. L., Combet, C., Coulais,
A., Crill, B. P., Curto, A., Cuttaia, F., Danese, L., Davies, R. D., Davis, R. J., de
Bernardis, P., de Rosa, A., de Zotti, G., Delabrouille, J., Désert, F. X., Di Valentino,
E., Dickinson, C., Diego, J. M., Dolag, K., Dole, H., Donzelli, S., Doré, O., Douspis,
M., Ducout, A., Dunkley, J., Dupac, X., Efstathiou, G., Elsner, F., Enfilin, T. A.,



BIBLIOGRAPHY 253

Eriksen, H. K., Farhang, M., Fergusson, J., Finelli, F., Forni, O., Frailis, M., Fraisse,
A. A., Franceschi, E., Frejsel, A., Galeotta, S., Galli, S., Ganga, K., Gauthier, C.,
Gerbino, M., Ghosh, T., Giard, M., Giraud-Héraud, Y., Giusarma, E., Gjerlgw,
E., Gonzéalez-Nuevo, J., Gérski, K. M., Gratton, S., Gregorio, A., Gruppuso,
A., Gudmundsson, J. E., Hamann, J., Hansen, F. K., Hanson, D., Harrison,
D. L., Helou, G., Henrot-Versillé, S., Hernandez-Monteagudo, C., Herranz, D.,
Hildebrandt, S. R., Hivon, E., Hobson, M., Holmes, W. A., Hornstrup, A., Hovest,
W., Huang, Z., Huffenberger, K. M., Hurier, G., Jaffe, A. H., Jaffe, T. R., Jones,
W. C., Juvela, M., Keihénen, E., Keskitalo, R., Kisner, T. S., Kneissl, R., Knoche,
J., Knox, L., Kunz, M., Kurki-Suonio, H., Lagache, G., Lahteenméki, A., Lamarre,
J. M., Lasenby, A., Lattanzi, M., Lawrence, C. R., Leahy, J. P., Leonardi, R.,
Lesgourgues, J., Levrier, F., Lewis, A., Liguori, M., Lilje, P. B., Linden-Vgrnle,
M., Lépez-Caniego, M., Lubin, P. M., Macias-Pérez, J. F., Maggio, G., Maino, D.,
Mandolesi, N., Mangilli, A., Marchini, A., Maris, M., Martin, P. G., Martinelli,
M., Martinez-Gonzélez, E., Masi, S., Matarrese, S., McGehee, P., Meinhold, P. R.,
Melchiorri, A., Melin, J. B., Mendes, L., Mennella, A., Migliaccio, M., Millea,
M., Mitra, S., Miville-Deschénes, M. A., Moneti, A., Montier, L., Morgante, G.,
Mortlock, D., Moss, A., Munshi, D., Murphy, J. A., Naselsky, P., Nati, F., Natoli,
P., Netterfield, C. B., Ngrgaard-Nielsen, H. U., Noviello, F., Novikov, D., Novikov,
1., Oxborrow, C. A., Paci, F., Pagano, L., Pajot, F., Paladini, R., Paoletti, D.,
Partridge, B., Pasian, F., Patanchon, G., Pearson, T. J., Perdereau, O., Perotto,
L., Perrotta, F., Pettorino, V., Piacentini, F., Piat, M., Pierpaoli, E., Pietrobon,
D., Plaszczynski, S., Pointecouteau, E., Polenta, G., Popa, L., Pratt, G. W,
Prézeau, G., Prunet, S., Puget, J. L., Rachen, J. P., Reach, W. T., Rebolo, R.,
Reinecke, M., Remazeilles, M., Renault, C., Renzi, A., Ristorcelli, I., Rocha, G.,
Rosset, C., Rossetti, M., Roudier, G., Rouillé d’Orfeuil, B., Rowan-Robinson, M.,
Rubifio-Martin, J. A., Rusholme, B., Said, N., Salvatelli, V., Salvati, L., Sandri, M.,
Santos, D., Savelainen, M., Savini, G., Scott, D., Seiffert, M. D., Serra, P., Shellard,
E. P. S., Spencer, L. D., Spinelli, M., Stolyarov, V., Stompor, R., Sudiwala, R.,
Sunyaev, R., Sutton, D., Suur-Uski, A. S., Sygnet, J. F., Tauber, J. A., Terenzi,
L., Toffolatti, L., Tomasi, M., Tristram, M., Trombetti, T., Tucci, M., Tuovinen,
J., Tiirler, M., Umana, G., Valenziano, L., Valiviita, J., Van Tent, F., Vielva, P.,



BIBLIOGRAPHY 254

Villa, F., Wade, L. A., Wandelt, B. D., Wehus, 1. K., White, M., White, S. D. M.,
Wilkinson, A., Yvon, D., Zacchei, A., and Zonca, A. (2016). Planck 2015 results.
XIII. Cosmological parameters. A€éA, 594:A13.

Planck Collaboration, Aghanim, N., Akrami, Y., Ashdown, M., Aumont, J., Bac-
cigalupi, C., Ballardini, M., Banday, A. J., Barreiro, R. B., Bartolo, N., Basak,
S., Battye, R., Benabed, K., Bernard, J. P., Bersanelli, M., Bielewicz, P., Bock,
J. J., Bond, J. R., Borrill, J., Bouchet, F. R., Boulanger, F., Bucher, M., Burig-
ana, C., Butler, R. C., Calabrese, E., Cardoso, J. F., Carron, J., Challinor, A.,
Chiang, H. C., Chluba, J., Colombo, L. P. L., Combet, C., Contreras, D., Crill,
B. P., Cuttaia, F., de Bernardis, P., de Zotti, G., Delabrouille, J., Delouis, J. M.,
Di Valentino, E., Diego, J. M., Doré, O., Douspis, M., Ducout, A., Dupac, X.,
Dusini, S., Efstathiou, G., Elsner, F., Enflin, T. A., Eriksen, H. K., Fantaye, Y.,
Farhang, M., Fergusson, J., Fernandez-Cobos, R., Finelli, F., Forastieri, F., Frailis,
M., Fraisse, A. A., Franceschi, E., Frolov, A., Galeotta, S., Galli, S., Ganga, K.,
Génova-Santos, R. T., Gerbino, M., Ghosh, T., Gonzédlez-Nuevo, J., Gérski, K. M.,
Gratton, S., Gruppuso, A., Gudmundsson, J. E., Hamann, J., Handley, W., Hansen,
F. K., Herranz, D., Hildebrandt, S. R., Hivon, E., Huang, Z., Jaffe, A. H., Jones,
W. C., Karakci, A., Keihénen, E., Keskitalo, R., Kiiveri, K., Kim, J., Kisner, T. S.,
Knox, L., Krachmalnicoff, N., Kunz, M., Kurki-Suonio, H., Lagache, G., Lamarre,
J. M., Lasenby, A., Lattanzi, M., Lawrence, C. R., Le Jeune, M., Lemos, P., Les-
gourgues, J., Levrier, F., Lewis, A., Liguori, M., Lilje, P. B., Lilley, M., Lindholm,
V., Lopez-Caniego, M., Lubin, P. M., Ma, Y. Z., Macias-Pérez, J. F., Maggio, G.,
Maino, D., Mandolesi, N., Mangilli, A., Marcos-Caballero, A., Maris, M., Martin,
P. G., Martinelli, M., Martinez-Gonzalez, E., Matarrese, S., Mauri, N., McEwen,
J. D., Meinhold, P. R., Melchiorri, A., Mennella, A., Migliaccio, M., Millea, M.,
Mitra, S., Miville-Deschénes, M. A., Molinari, D., Montier, L., Morgante, G., Moss,
A., Natoli, P., Ngrgaard-Nielsen, H. U., Pagano, L., Paoletti, D., Partridge, B.,
Patanchon, G., Peiris, H. V., Perrotta, F., Pettorino, V., Piacentini, F., Polastri,
L., Polenta, G., Puget, J. L., Rachen, J. P., Reinecke, M., Remagzeilles, M., Renzi,
A., Rocha, G., Rosset, C., Roudier, G., Rubino-Martin, J. A., Ruiz-Granados, B.,
Salvati, L., Sandri, M., Savelainen, M., Scott, D., Shellard, E. P. S., Sirignano, C.,

Sirri, G., Spencer, L. D., Sunyaev, R., Suur-Uski, A. S., Tauber, J. A., Tavagnacco,



BIBLIOGRAPHY 255

D., Tenti, M., Toffolatti, L., Tomasi, M., Trombetti, T., Valenziano, L., Valiviita,
J., Van Tent, B., Vibert, L., Vielva, P., Villa, F., Vittorio, N., Wandelt, B. D.,
Wehus, 1. K., White, M., White, S. D. M., Zacchei, A., and Zonca, A. (2020).
Planck 2018 results. VI. Cosmological parameters. A€A, 641:A6.

Poggianti, B. M., Aragén-Salamanca, A., Zaritsky, D., De Lucia, G., Milvang-Jensen,
B., Desai, V., Jablonka, P., Halliday, C., Rudnick, G., Varela, J., Bamford, S.,
Best, P., Clowe, D., Noll, S., Saglia, R., Pellé, R., Simard, L., von der Linden, A.,
and White, S. (2009). The Environments of Starburst and Post-Starburst Galaxies
at z = 0.4-0.8. ApJ, 693(1):112-131.

Poggianti, B. M., Smail, 1., Dressler, A., Couch, W. J., Barger, A. J., Butcher, H.,
Ellis, R. S., and Oemler, Augustus, J. (1999). The Star Formation Histories of
Galaxies in Distant Clusters. ApJ, 518(2):576-593.

Poggianti, B. M., von der Linden, A., De Lucia, G., Desai, V., Simard, L., Halliday,
C., Aragén-Salamanca, A., Bower, R., Varela, J., Best, P., Clowe, D. I., Dalcanton,
J., Jablonka, P., Milvang-Jensen, B., Pello, R., Rudnick, G., Saglia, R., White, S.
D. M., and Zaritsky, D. (2006). The Evolution of the Star Formation Activity in
Galaxies and Its Dependence on Environment. ApJ, 642(1):188-215.

Polsterer, K. L., D’Isanto, A., and Gieseke, F. (2016). Uncertain Photometric
Redshifts. arXiv e-prints, page arXiv:1608.08016.

Ponman, T. J., Allan, D. J., Jones, L. R., Merrifield, M., McHardy, I. M., Lehto, H. J.,
and Luppino, G. A. (1994). A possible fossil galaxy group. Nature, 369(6480):462—
464.

Pontzen, A., Tremmel, M., Roth, N., Peiris, H. V., Saintonge, A., Volonteri, M.,
Quinn, T., and Governato, F. (2017). How to quench a galaxy. MNRAS, 465(1):547—
558.

Popesso, P., Concas, A., Morselli, L., Schreiber, C., Rodighiero, G., Cresci, G., Belli,
S., Erfanianfar, G., Mancini, C., Inami, H., Dickinson, M., Ilbert, O., Pannella,
M., and Elbaz, D. (2019). The main sequence of star-forming galaxies - I. The
local relation and its bending. MNRAS, 483(3):3213-3226.



BIBLIOGRAPHY 256

Popesso, P., Rodighiero, G., Saintonge, A., Santini, P., Grazian, A., Lutz, D., Brusa,
M., Altieri, B., Andreani, P., Aussel, H., Berta, S., Bongiovanni, A., Cava, A.,
Cepa, J., Cimatti, A., Daddi, E., Dominguez, H., Elbaz, D., Forster Schreiber, N.,
Genzel, R., Gruppioni, C., Magdis, G., Maiolino, R., Magnelli, B., Nordon, R.,
Pérez Garcia, A. M., Poglitsch, A., Pozzi, F., Riguccini, L., Sanchez-Portal, M.,
Shao, L., Sturm, E., Tacconi, L., Valtchanov, 1., Wieprecht, E., and Wetzstein,
M. (2011). The effect of environment on star forming galaxies at redshift. I. First

insight from PACS. A&A, 532:A145.

Postman, M., Franx, M., Cross, N. J. G., Holden, B., Ford, H. C., lllingworth, G. D.,
Goto, T., Demarco, R., Rosati, P., Blakeslee, J. P.; Tran, K. V., Benitez, N.,
Clampin, M., Hartig, G. F., Homeier, N., Ardila, D. R., Bartko, F., Bouwens,
R. J., Bradley, L. D., Broadhurst, T. J., Brown, R. A., Burrows, C. J., Cheng,
E. S., Feldman, P. D.,; Golimowski, D. A., Gronwall, C., Infante, L., Kimble, R. A.,
Krist, J. E., Lesser, M. P., Martel, A. R., Mei, S., Menanteau, F., Meurer, G. R.,
Miley, G. K., Motta, V., Sirianni, M., Sparks, W. B., Tran, H. D., Tsvetanov, Z. 1.,
White, R. L., and Zheng, W. (2005). The Morphology-Density Relation in z ~1
Clusters. ApJ, 623(2):721-741.

Postman, M. and Geller, M. J. (1984). The morphology-density relation - The group
connection. ApJ, 281:95-99.

Postman, M., Lubin, L. M., and Oke, J. B. (2001). A Study of Nine High-Redshift
Clusters of Galaxies. IV. Photometry and Spectra of Clusters 1324+3011 and
1604+4321. AJ, 122(3):1125-1150.

Pracy, M. B., Kuntschner, H., Couch, W. J., Blake, C., Bekki, K., and Briggs, F.
(2009). The kinematics and spatial distribution of stellar populations in E4+A
galaxies. MNRAS, 396(3):1349-1369.

Puschell, J. J., Owen, F. N., and Laing, R. A. (1982). Near-infrared photometry of
distant radio galaxies - Spectral flux distributions and redshift estimates. ApJ,

257:L57-L61.

Quadri, R. F., Williams, R. J., Franx, M., and Hildebrandt, H. (2012). Tracing the
Star-formation-Density Relation to z ~2. ApJ, 744(2):88.



BIBLIOGRAPHY 257

Quinlan, J. R. (1986). Induction of decision trees. Machine learning, 1:81-106.
Quinlan, J. R. (1993). C4. 5: Programs for Machine Learning. Morgan Kaufmann.

Rakos, K. and Schombert, J. (1996). Color Evolution from z=0 to z=1. arXiv

e-prints, pages astro—ph/9603058.

Rau, M. M., Seitz, S., Brimioulle, F., Frank, E., Friedrich, O., Gruen, D., and Hoyle,
B. (2015). Accurate photometric redshift probability density estimation - method
comparison and application. MNRAS, 452(4):3710-3725.

Rees, M. J. and Ostriker, J. P. (1977). Cooling, dynamics and fragmentation of
massive gas clouds: clues to the masses and radii of galaxies and clusters. MNRAS,

179:541-559.
Reichenbach, H. (1956). The Direction of Time. Mineola, N.Y.: Dover Publications.

Renzini, A. (2006). Stellar Population Diagnostics of Elliptical Galaxy Formation.
ARAEA, 44(1):141-192.

Renzini, A. and Buzzoni, A. (1986). Global properties of stellar populations and
the spectral evolution of galaxies. In Chiosi, C. and Renzini, A., editors, Spectral
Evolution of Galaxies, volume 122 of Astrophysics and Space Science Library, pages

195-231.

Renzini, A. and Peng, Y.-j. (2015). An Objective Definition for the Main Sequence
of Star-forming Galaxies. ApJ, 801(2):L29.

Richens, J. G., Lee, C. M., and Johri, S. (2020). Improving the accuracy of medical

diagnosis with causal machine learning. Nature communications, 11(1):1-9.

Riess, A. G., Filippenko, A. V., Challis, P., Clocchiatti, A., Diercks, A., Garnavich,
P. M., Gilliland, R. L., Hogan, C. J., Jha, S., Kirshner, R. P., Leibundgut, B.,
Phillips, M. M., Reiss, D., Schmidt, B. P., Schommer, R. A., Smith, R. C.,
Spyromilio, J., Stubbs, C., Suntzeff, N. B., and Tonry, J. (1998). Observational Ev-
idence from Supernovae for an Accelerating Universe and a Cosmological Constant.

AJ, 116(3):1009-1038.



BIBLIOGRAPHY 258

Rines, K., Geller, M. J., Kurtz, M. J., and Diaferio, A. (2005). CAIRNS: The Cluster
and Infall Region Nearby Survey. III. Environmental Dependence of Ha Properties

of Galaxies. AJ, 130(4):1482-1501.

Roberts, M. S. and Haynes, M. P. (1994). Physical Parameters along the Hubble
Sequence. ARA&A, 32:115-152.

Robertson, B. E. (2022). Galaxy Formation and Reionization: Key Unknowns
and Expected Breakthroughs by the James Webb Space Telescope. ARAEA,
60:121-158.

Robertson, B. E., Banerji, M., Brough, S., Davies, R. L., Ferguson, H. C., Hausen,
R., Kaviraj, S., Newman, J. A., Schmidt, S. J., Tyson, J. A., and Wechsler, R. H.
(2019). Galaxy formation and evolution science in the era of the Large Synoptic

Survey Telescope. Nature Reviews Physics, 1(7):450-462.

Robins, J. (1986). A new approach to causal inference in mortality studies with a
sustained exposure period—application to control of the healthy worker survivor

effect. Mathematical modelling, 7(9-12):1393-1512.

Robins, J. M. (1994). Correcting for non-compliance in randomized trials using
structural nested mean models. Communications in Statistics-Theory and methods,

23(8):2379-2412.

Robins, J. M. (1999). Association, causation, and marginal structural models.

Synthese, 121(1/2):151-179.

Robins, J. M., Hernan, M. A., and Brumback, B. (2000). Marginal structural models

and causal inference in epidemiology.

Rodighiero, G., Bisigello, L., Iani, E., Marasco, A., Grazian, A., Sinigaglia, F.,
Cassata, P., and Gruppioni, C. (2023). JWST unveils heavily obscured (active and
passive) sources up to z 13. MNRAS, 518(1):L19-124.

Rodriguez-Gomesz, V., Genel, S., Vogelsberger, M., Sijacki, D., Pillepich, A., Sales,
L. V., Torrey, P., Snyder, G., Nelson, D., Springel, V., Ma, C.-P., and Hernquist,
L. (2015). The merger rate of galaxies in the Illustris simulation: a comparison

with observations and semi-empirical models. MNRAS, 449(1):49-64.



BIBLIOGRAPHY 259

Rosenbaum, P. R. and Rubin, D. B. (1983). The central role of the propensity score

in observational studies for causal effects. Biometrika, 70(1):41-55.

Rosenblatt, M. (1952). Remarks on a multivariate transformation. Ann. Math.

Statist., 23(3):470-472.

Roth, N., Pontzen, A., and Peiris, H. V. (2016). Genetically modified haloes: towards
controlled experiments in ACDM galaxy formation. MNRAS, 455(1):974-986.

Rowe, B. T. P., Jarvis, M., Mandelbaum, R., Bernstein, G. M., Bosch, J., Simet, M.,
Meyers, J. E., Kacprzak, T., Nakajima, R., Zuntz, J., Miyatake, H., Dietrich, J. P.,
Armstrong, R., Melchior, P., and Gill, M. S. S. (2015). GALSIM: The modular
galaxy image simulation toolkit. Astron. Comput., 10:121-150.

Rubin, D. B. (1974). Estimating causal effects of treatments in randomized and

nonrandomized studies. Journal of educational Psychology, 66(5):688.

Rubin, D. B. (1980). Randomization analysis of experimental data: The fisher
randomization test comment. Journal of the American statistical association,

75(371):591-593.

Rubin, V. C. and Ford, W. Kent, J. (1970). Rotation of the Andromeda Nebula
from a Spectroscopic Survey of Emission Regions. ApJ, 159:379.

Runge, J., Bathiany, S., Bollt, E., Camps-Valls, G., Coumou, D., Deyle, E., Glymour,
C., Kretschmer, M., Mahecha, M. D., Munoz-Mari, J., van Nes, E. H., Peters,
J., Quax, R., Reichstein, M., Scheffer, M., Scholkopf, B., Spirtes, P., Sugihara,
G., Sun, J., Zhang, K., and Zscheischler, J. (2019). Inferring causation from time

series in Earth system sciences. Nature Communications, 10:2553.

Runge, J., Gerhardus, A., Varando, G., Eyring, V., and Camps-Valls, G. (2023).
Causal inference for time series. Nature Reviews Earth & Environment, 4(7):487—

505.

Sadeh, I., Abdalla, F. B., and Lahav, O. (2016). ANNz2: Photometric Redshift and
Probability Distribution Function Estimation using Machine Learning. PASP,
128(968):104502.



BIBLIOGRAPHY 260

Salim, S., Rich, R. M., Charlot, S., Brinchmann, J., Johnson, B. D., Schiminovich,
D., Seibert, M., Mallery, R., Heckman, T. M., Forster, K., Friedman, P. G., Martin,
D. C., Morrissey, P., Neff, S. G., Small, T., Wyder, T. K., Bianchi, L., Donas, J.,
Lee, Y.-W., Madore, B. F., Milliard, B., Szalay, A. S., Welsh, B. Y., and Yi, S. K.
(2007). UV Star Formation Rates in the Local Universe. ApJS, 173(2):267-292.

Salpeter, E. E. (1955). The Luminosity Function and Stellar Evolution. ApJ, 121:161.

Salvato, M., Ilbert, O., and Hoyle, B. (2019). The many flavours of photometric
redshifts. Nat. Astron., 3:212-222.

Samuel, A. L. (1959). Some studies in machine learning using the game of checkers.

IBM Journal of Research and Development, 3(3):210-229.

Sanchez, P., Voisey, J. P., Xia, T., Watson, H. I., O'Neil, A. Q., and Tsaftaris, S. A.
(2022). Causal machine learning for healthcare and precision medicine. Royal

Society Open Science, 9(8):220638.

Sanchez-Blazquez, P., Peletier, R. F., Jiménez-Vicente, J., Cardiel, N., Cenarro,
A. J., Falcén-Barroso, J., Gorgas, J., Selam, S., and Vazdekis, A. (2006). Medium-
resolution Isaac Newton Telescope library of empirical spectra. MNRAS, 371(2):703—
718.

Sanders, D. B., Soifer, B. T., Elias, J. H., Madore, B. F., Matthews, K., Neugebauer,
G., and Scoville, N. Z. (1988). Ultraluminous Infrared Galaxies and the Origin of
Quasars. ApJ, 325:74.

Santiago, B. X. and Strauss, M. A. (1992). Large-Scale Morphological Segregation
in the Center for Astrophysics Redshift Survey. ApJ, 387:9.

Santos, J. S., Altieri, B., Valtchanov, I., Nastasi, A., Bohringer, H., Cresci, G., Elbaz,
D., Fassbender, R., Rosati, P., Tozzi, P., and Verdugo, M. (2015). The reversal
of the SF-density relation in a massive, X-ray-selected galaxy cluster at z = 1.58:

results from Herschel. MNRAS, 447:L65-L69.

Sarpa, E., Longobardi, A., Kraljic, K., Veropalumbo, A., and Schimd, C. (2022).
Tracing the environmental history of observed galaxies via extended fast action

minimization method. MNRAS, 516(1):231-244.



BIBLIOGRAPHY 261

Scannapieco, C., Tissera, P. B., White, S. D. M., and Springel, V. (2008). Effects of
supernova feedback on the formation of galaxy discs. MNRAS, 389(3):1137-1149.

Schaller, G., Schaerer, D., Meynet, G., and Maeder, A. (1992). New Grids of Stellar
Models from 0.8-SOLAR-MASS to 120-SOLAR-MASSES at Z=0.020 and Z=0.001.
AEAS, 96:269.

Schawinski, K., Virani, S., Simmons, B., Urry, C. M., Treister, E., Kaviraj, S., and
Kushkuley, B. (2009). Do Moderate-Luminosity Active Galactic Nuclei Suppress
Star Formation? ApJ, 692(1):L19-L23.

Schiminovich, D., Wyder, T. K., Martin, D. C., Johnson, B. D., Salim, S., Seibert,
M., Treyer, M. A., Budavari, T., Hoopes, C., Zamojski, M., Barlow, T. A., Forster,
K. G., Friedman, P. G., Morrissey, P., Neff, S. G., Small, T. A., Bianchi, L., Donas,
J., Heckman, T. M., Lee, Y.-W., Madore, B. F., Milliard, B., Rich, R. M., Szalay,
A.S., Welsh, B. Y., and Yi, S. (2007). The UV-Optical Color Magnitude Diagram.
I1. Physical Properties and Morphological Evolution On and Off of a Star-forming
Sequence. ApJS, 173(2):315-341.

Schmidt, M. (1959). The Rate of Star Formation. ApJ, 129:243.

Schmidt, S. J., Malz, A. 1., Soo, J. Y. H., Almosallam, I. A., Brescia, M., Cavuoti, S.,
Cohen-Tanugi, J., Connolly, A. J., DeRose, J., Freeman, P. E., Graham, M. L., Iyer,
K. G., Jarvis, M. J., Kalmbach, J. B., Kovacs, E., Lee, A. B., Longo, G., Morrison,
C. B., Newman, J. A., Nourbakhsh, E., Nuss, E., Pospisil, T., Tranin, H., Wechsler,
R. H., Zhou, R., Izbicki, R., and (The LSST Dark Energy Science Collaboration)
(2020). Evaluation of probabilistic photometric redshift estimation approaches
for The Rubin Observatory Legacy Survey of Space and Time (LSST). MNRAS,
499(2):1587-1606.

Scholkopf, B., Hogg, D. W., Wang, D., Foreman-Mackey, D., Janzing, D., Simon-
Gabriel, C.-J., and Peters, J. (2015). Removing systematic errors for exoplanet

search via latent causes. arXiv e-prints, page arXiv:1505.03036.

Scholkopf, B., Locatello, F., Bauer, S., Ke, N. R., Kalchbrenner, N., Goyal, A., and
Bengio, Y. (2021). Towards Causal Representation Learning. arXiv e-prints, page
arXiv:2102.11107.



BIBLIOGRAPHY 262

Schreiber, C., Pannella, M., Elbaz, D., Béthermin, M., Inami, H., Dickinson, M.,
Magnelli, B., Wang, T., Aussel, H., Daddi, E., Juneau, S., Shu, X., Sargent, M. T.,
Buat, V., Faber, S. M., Ferguson, H. C., Giavalisco, M., Koekemoer, A. M., Magdis,
G., Morrison, G. E., Papovich, C., Santini, P., and Scott, D. (2015). The Herschel
view of the dominant mode of galaxy growth from z = 4 to the present day. A&A,
575:A74.

Schuldt, S., Suyu, S. H., Caniameras, R., Taubenberger, S., Meinhardt, T., Leal-Taixé,
L., and Hsieh, B. C. (2021). Photometric redshift estimation with a convolutional
neural network: NetZ. A&A, 651:A55.

Schutz, B. F. (1986). Determining the Hubble constant from gravitational wave

observations. Nature, 323:310.

Scott, S. L. and Varian, H. R. (2014). Predicting the present with bayesian structural
time series. International Journal of Mathematical Modelling and Numerical

Optimisation, 5(1-2):4-23.

Scott, S. L. and Varian, H. R. (2015). Bayesian variable selection for nowcasting
economic time series. In Economic analysis of the digital economy, pages 119-135.

University of Chicago Press.

Scoville, N., Arnouts, S., Aussel, H., Benson, A., Bongiorno, A., Bundy, K., Calvo,
M. A. A., Capak, P., Carollo, M., Civano, F., Dunlop, J., Elvis, M., Faisst, A.,
Finoguenov, A., Fu, H., Giavalisco, M., Guo, Q., Ilbert, O., Iovino, A., Kajisawa,
M., Kartaltepe, J., Leauthaud, A., Le Fevre, O., LeFloch, E., Lilly, S. J., Liu,
C. T. C., Manohar, S., Massey, R., Masters, D., McCracken, H. J., Mobasher, B.,
Peng, Y. J., Renzini, A., Rhodes, J., Salvato, M., Sanders, D. B., Sarvestani, B. D.,
Scarlata, C., Schinnerer, E., Sheth, K., Shopbell, P. L., Smol¢i¢, V., Taniguchi,
Y., Taylor, J. E., White, S. D. M., and Yan, L. (2013). Evolution of Galaxies and
Their Environments at z = 0.1-3 in COSMOS. ApJS, 206(1):3.

Scoville, N., Aussel, H., Brusa, M., Capak, P., Carollo, C. M., Elvis, M., Giavalisco,
M., Guzzo, L., Hasinger, G., Impey, C., Kneib, J. P., LeFevre, O., Lilly, S. J.,
Mobasher, B., Renzini, A., Rich, R. M., Sanders, D. B., Schinnerer, E., Schminovich,



BIBLIOGRAPHY 263

D., Shopbell, P., Taniguchi, Y., and Tyson, N. D. (2007). The Cosmic Evolution
Survey (COSMOS): Overview. ApJS, 172(1):1-8.

Searle, L., Sargent, W. L. W., and Bagnuolo, W. G. (1973). The History of Star
Formation and the Colors of Late-Type Galaxies. ApJ, 179:427-438.

Setoguchi, S., Schneeweiss, S., Brookhart, M. A., Glynn, R. J., and Cook, E. F.
(2008). Evaluating uses of data mining techniques in propensity score estimation:

a simulation study. Pharmacoepidemiology and drug safety, 17(6):546-555.

Sevilla-Noarbe, 1., Bechtol, K., Carrasco Kind, M., Carnero Rosell, A., Becker, M. R.,
Drlica-Wagner, A., Gruendl, R. A., Rykoff, E. S., Sheldon, E., Yanny, B., Alarcon,
A., Allam, S., Amon, A., Benoit-Lévy, A., Bernstein, G. M., Bertin, E., Burke,
D. L., Carretero, J., Choi, A., Diehl, H. T., Everett, S., Flaugher, B., Gaztanaga,
E., Gschwend, J., Harrison, 1., Hartley, W. G., Hoyle, B., Jarvis, M., Johnson,
M. D., Kessler, R., Kron, R., Kuropatkin, N., Leistedt, B., Li, T. S., Menanteau,
F., Morganson, E.; Ogando, R. L. C., Palmese, A., Paz-Chinchén, F., Pieres,
A., Pond, C., Rodriguez-Monroy, M., Allyn-Smith, J., Stringer, K. M., Troxel,
M. A., Tucker, D. L., de Vicente, J., Wester, W., Zhang, Y., Abbott, T. M. C.,
Aguena, M., Annis, J., Avila, S., Bhargava, S., Bridle, S. L., Brooks, D., Brout, D.,
Castander, F. J., Cawthon, R., Chang, C., Conselice, C., Costanzi, M., Crocce, M.,
da Costa, L. N., Pereira, M. E. E., Davis, T. M., Desai, S., Dietrich, J. P., Doel,
P., Eckert, K., Evrard, A. E., Ferrero, 1., Fosalba, P., Garcia-Bellido, J., Gerdes,
D. W., Giannantonio, T., Gruen, D., Gutierrez, G., Hinton, S. R., Hollowood, D. L.,
Honscheid, K., Huff, E. M., Huterer, D., James, D. J., Jeltema, T., Kuehn, K.,
Lahav, O., Lidman, C., Lima, M., Lin, H., Maia, M. A. G., Marshall, J. L., Martini,
P., Melchior, P., Miquel, R., Mohr, J. J., Morgan, R., Neilsen, E., Plazas, A. A.,
Romer, A. K., Roodman, A., Sanchez, E., Scarpine, V., Schubnell, M., Serrano, S.,
Smith, M., Suchyta, E., Tarle, G., Thomas, D., To, C., Varga, T. N., Wechsler,
R. H., Weller, J., and Wilkinson, R. D. (2020). Dark Energy Survey Year 3 Results:

Photometric Data Set for Cosmology. arXiv e-prints, page arXiv:2011.03407.

Shannon, C. E. (1948). A mathematical theory of communication. The Bell System
Technical Journal, 27(3):379-423.



BIBLIOGRAPHY 264

Shapley, A. E., Steidel, C. C., Adelberger, K. L., Dickinson, M., Giavalisco, M., and
Pettini, M. (2001). The Rest-Frame Optical Properties of z~=3 Galaxies. ApJ,
562(1):95-123.

Shapley, H. (1933). Luminosity Distribution and Average Density of Matter in
Twenty-Five Groups of Galaxies. Proceedings of the National Academy of Science,
19(6):591-596.

Sheldon, E. S., Cunha, C. E., Mandelbaum, R., Brinkmann, J., and Weaver, B. A.
(2012). Photometric Redshift Probability Distributions for Galaxies in the SDSS
DRS. ApJS, 201(2):32.

Shen, Z., Liu, J., He, Y., Zhang, X., Xu, R., Yu, H., and Cui, P. (2021). Towards Out-
Of-Distribution Generalization: A Survey. arXiv e-prints, page arXiv:2108.13624.

Sheth, K., Vogel, S. N., Regan, M. W., Thornley, M. D., and Teuben, P. J. (2005).
Secular Evolution via Bar-driven Gas Inflow: Results from BIMA SONG. ApJ,
632(1):217-226.

Sheth, R. K. and Tormen, G. (2004). On the environmental dependence of halo
formation. MNRAS, 350(4):1385-1390.

Shi, C., Blei, D. M., and Veitch, V. (2019). Adapting Neural Networks for the

Estimation of Treatment Effects. arXiv e-prints, page arXiv:1906.02120.

Shiryayev, A. N. (1992). 15. On The Empirical Determination of A Distribution

Law, pages 139-146. Springer, Dordrecht.

Silk, J. (1977). On the fragmentation of cosmic gas clouds. I. The formation of
galaxies and the first generation of stars. ApJ, 211:638-648.

Silk, J. and Rees, M. J. (1998). Quasars and galaxy formation. AéA, 331:L1-1L4.

Silva, L., Granato, G. L., Bressan, A., and Danese, L. (1998). Modeling the Effects
of Dust on Galactic Spectral Energy Distributions from the Ultraviolet to the
Millimeter Band. ApJ, 509(1):103-117.

Skibba, R. A., Bamford, S. P., Nichol, R. C., Lintott, C. J., Andreescu, D., Ed-
mondson, E. M., Murray, P., Raddick, M. J., Schawinski, K., Slosar, A., Szalay,



BIBLIOGRAPHY 265

A. S., Thomas, D., and Vandenberg, J. (2009). Galaxy Zoo: disentangling the
environmental dependence of morphology and colour. MNRAS, 399(2):966-982.

Skilling, J. (2006). Nested sampling for general bayesian computation. Bayesian
Anal., 1(4):833-859.

Smethurst, R. J., Lintott, C. J., Bamford, S. P., Hart, R. E., Kruk, S. J., Masters,
K. L., Nichol, R. C., and Simmons, B. D. (2017). Galaxy Zoo: the interplay of
quenching mechanisms in the group environmenty. MNRAS, 469(3):3670-3687.

Smith, G. P., Treu, T., Ellis, R. S., Moran, S. M., and Dressler, A. (2005). Evolution
since z = 1 of the Morphology-Density Relation for Galaxies. ApJ, 620(1):78-87.

Smith, R., Davies, J. I., and Nelson, A. H. (2010). How effective is harassment on
infalling late-type dwarfs? MNRAS, 405(3):1723-1735.

Smith, R., Sanchez-Janssen, R., Beasley, M. A.; Candlish, G. N., Gibson, B. K., Puzia,
T. H., Janz, J., Knebe, A., Aguerri, J. A. L., Lisker, T., Hensler, G., Fellhauer, M.,
Ferrarese, L., and Yi, S. K. (2015). The sensitivity of harassment to orbit: mass
loss from early-type dwarfs in galaxy clusters. MNRAS, 454(3):2502-2516.

Snyder, G. F., Cox, T. J., Hayward, C. C., Hernquist, L., and Jonsson, P. (2011).
K+A Galaxies as the Aftermath of Gas-rich Mergers: Simulating the Evolution of

Galaxies as Seen by Spectroscopic Surveys. ApJ, 741(2):77.

Soares-Santos, M., Palmese, A., Hartley, W., Annis, J., Garcia-Bellido, J., Lahav,
0., Doctor, Z., Fishbach, M., Holz, D. E., Lin, H., Pereira, M. E. S., Garcia, A.,
Herner, K., Kessler, R., Peiris, H. V., Sako, M., Allam, S., Brout, D., Carnero
Rosell, A., Chen, H. Y., Conselice, C., deRose, J., deVicente, J., Diehl, H. T., Gill,
M. S. S., Gschwend, J., Sevilla-Noarbe, I., Tucker, D. L., Wechsler, R., Berger,
E., Cowperthwaite, P. S., Metzger, B. D., Williams, P. K. G., Abbott, T. M. C.,
Abdalla, F. B., Avila, S., Bechtol, K., Bertin, E., Brooks, D., Buckley-Geer, E.,
Burke, D. L., Carrasco Kind, M., Carretero, J., Castander, F. J., Crocce, M.,
Cunha, C. E., D’Andrea, C. B., da Costa, L. N., Davis, C., Desai, S., Doel, P.,
Drlica-Wagner, A., Eifler, T. F., Evrard, A. E., Flaugher, B., Fosalba, P., Frieman,
J., Gaztanaga, E., Gerdes, D. W., Gruen, D., Gruendl, R. A., Gutierrez, G.,
Hollowood, D. L., Hoyle, B., James, D. J., Jeltema, T., Kuehn, K., Kuropatkin, N.,



BIBLIOGRAPHY 266

Li, T. S., Lima, M., Maia, M. A. G., Marshall, J. L., Menanteau, F., Miquel, R.,
Neilsen, E., Ogando, R. L. C., Plazas, A. A., Romer, A. K., Roodman, A., Sanchez,
E., Scarpine, V., Schindler, R., Schubnell, M., Serrano, S., Smith, M., Smith, R. C.,
Sobreira, F., Suchyta, E., Swanson, M. E. C., Tarle, G., Thomas, R. C., Walker,
A. R., Wester, W., Zuntz, J., DES Collaboration, Abbott, B. P., Abbott, R.,
Abbott, T. D., Abraham, S., Acernese, F., Ackley, K., Adams, C., Adhikari, R. X.,
Adya, V. B., Affeldt, C., Agathos, M., Agatsuma, K., Aggarwal, N., Aguiar, O. D.,
Aiello, L., Ain, A., Ajith, P.; Allen, G., Allocca, A., Aloy, M. A., Altin, P. A.,
Amato, A., Ananyeva, A., Anderson, S. B., Anderson, W. G., Angelova, S. V.,
Appert, S., Arai, K., Araya, M. C., Areeda, J. S., Arene, M., Ascenzi, S., Ashton,
G., Aston, S. M., Astone, P., Aubin, F., Aufmuth, P., AultONeal, K., Austin,
C., Avendano, V., Avila-Alvarez, A., Babak, S., Bacon, P., Badaracco, F., Bader,
M. K. M., Bae, S., Baker, P. T., Baldaccini, F., Ballardin, G., Ballmer, S. W.,
Banagiri, S., Barayoga, J. C., Barclay, S. E., Barish, B. C., Barker, D., Barkett, K.,
Barnum, S., Barone, F., Barr, B., Barsotti, L., Barsuglia, M., Barta, D., Bartlett,
J., Bartos, 1., Bassiri, R., Basti, A., Bawaj, M., Bayley, J. C., Bazzan, M., Bécsy,
B., Bejger, M., Bell, A. S., Beniwal, D., Bergmann, G., Bernuzzi, S., Bero, J. J.,
Berry, C. P. L., Bersanetti, D., Bertolini, A., Betzwieser, J., Bhandare, R., Bidler,
J., Bilenko, I. A. Bilgili, S. A., Billingsley, G., Birch, J., Birney, R., Birnholtz, O.,
Biscans, S., Biscoveanu, S., Bisht, A., Bitossi, M., Blackburn, J. K., Blair, C. D.,
Blair, D. G., Blair, R. M., Bloemen, S., Bode, N., Boer, M., Boetzel, Y., Bogaert,
G., Bondu, F., Bonilla, E., Bonnand, R., Booker, P., Boom, B. A., Booth, C. D.,
Bork, R., Boschi, V., Bose, S., Bossie, K., Bossilkov, V., Bosveld, J., Bouffanais,
Y., Bozzi, A., Bradaschia, C., Brady, P. R., Bramley, A., Branchesi, M., Brau,
J. E., Briant, T., Briggs, J. H., Brighenti, F., Brillet, A., Brinkmann, M., Brockill,
P., Brooks, A. F., Brown, D. D., Brunett, S., Buikema, A., Bulik, T., Bulten,
H. J., Buonanno, A., Buskulic, D., Buy, C., Byer, R. L., Cabero, M., Cadonati,
L., Cagnoli, G., Cahillane, C., Calderén Bustillo, J., Callister, T. A., Calloni,
E., Camp, J. B., Campbell, W. A., Cannon, K. C., Cao, H., Cao, J., Capocasa,
E., Carbognani, F., Caride, S., Carney, M. F., Carullo, G., Casanueva Diaz, J.,
Casentini, C., Caudill, S., Cavaglia, M., Cavalieri, R., Cella, G., Cerd4-Duran,
P., Cerretani, G., Cesarini, E., Chaibi, O., Chakravarti, K., Chamberlin, S. J.,



BIBLIOGRAPHY 267

Chan, M., Chao, S., Charlton, P., Chase, E. A., Chassande-Mottin, E., Chatterjee,
D., Chaturvedi, M., Chatziioannou, K., Cheeseboro, B. D., Chen, X., Chen, Y.,
Cheng, H. P., Cheong, C. K., Chia, H. Y., Chincarini, A., Chiummo, A., Cho, G.,
Cho, H. S., Cho, M., Christensen, N., Chu, Q., Chua, S., Chung, K. W., Chung,
S., Ciani, G., Ciobanu, A. A., Ciolfi, R., Cipriano, F., Cirone, A., Clara, F., Clark,
J. A., Clearwater, P., Cleva, F., Cocchieri, C., Coccia, E., Cohadon, P. F., Colgan,
R., Colleoni, M., Collette, C. G., Collins, C., Cominsky, L. R., Constancio, M., J.,
Conti, L., Cooper, S. J., Corban, P., Corbitt, T. R., Cordero-Carrién, I., Corley,
K. R., Cornish, N., Corsi, A., Cortese, S., Costa, C. A., Cotesta, R., Coughlin,
M. W., Coughlin, S. B., Coulon, J. P., Countryman, S. T., Couvares, P., Covas,
P. B., Cowan, E. E., Coward, D. M., Cowart, M. J., Coyne, D. C., Coyne, R.,
Creighton, J. D. E., Creighton, T. D., Cripe, J., Croquette, M., Crowder, S. G.,
Cullen, T. J., Cumming, A., Cunningham, L., Cuoco, E., Dal Canton, T., Déalya,
G., Danilishin, S. L., D’Antonio, S., Danzmann, K., Dasgupta, A., Da Silva Costa,
C. F., Datrier, L. E. H., Dattilo, V., Dave, 1., Davis, D., Daw, E. J., DeBra, D.,
Deenadayalan, M., Degallaix, J., De Laurentis, M., Deléglise, S., Del Pozzo, W.,
DeMarchi, L. M., Demos, N., Dent, T., De Pietri, R., Derby, J., De Rosa, R.,
De Rossi, C., DeSalvo, R., de Varona, O., Dhurandhar, S., Diaz, M. C., Dietrich,
T., Di Fiore, L., Di Giovanni, M., Di Girolamo, T., Di Lieto, A., Ding, B., Di
Pace, S., Di Palma, 1., Di Renzo, F., Dmitriev, A., Donovan, F., Dooley, K. L.,
Doravari, S., Dorrington, I., Downes, T. P., Drago, M., Driggers, J. C., Du, Z.,
Dupej, P., Dwyer, S. E., Easter, P. J., Edo, T. B., Edwards, M. C., Effler, A.,
Ehrens, P.; Eichholz, J., Eikenberry, S. S., Eisenmann, M., Eisenstein, R. A.,
Estelles, H., Estevez, D., Etienne, Z. B., Etzel, T., Evans, M., Evans, T. M.,
Fafone, V., Fair, H., Fairhurst, S., Fan, X., Farinon, S., Farr, B., Farr, W. M.,
Fauchon-Jones, E. J., Favata, M., Fays, M., Fazio, M., Fee, C., Feicht, J., Fejer,
M. M., Feng, F., Fernandez-Galiana, A., Ferrante, 1., Ferreira, E. C., Ferreira,
T. A., Ferrini, F., Fidecaro, F., Fiori, 1., Fiorucci, D., Fisher, R. P., Fishner,
J. M., Fitz-Axen, M., Flaminio, R., Fletcher, M., Flynn, E., Fong, H., Font, J. A,
Forsyth, P. W. F., Fournier, J. D., Frasca, S., Frasconi, F., Frei, Z., Freise, A.,
Frey, R., Fritschel, P., Frolov, V. V., Fulda, P., Fyffe, M., Gabbard, H. A., Gadre,
B. U., Gaebel, S. M., Gair, J. R., Gammaitoni, L., Ganija, M. R., Gaonkar, S. G.,



BIBLIOGRAPHY 268

Garcia, A., Garcia-Quirés, C., Garufi, F., Gateley, B., Gaudio, S., Gaur, G.,
Gayathri, V., Gemme, G., Genin, E., Gennai, A., George, D., George, J., Gergely,
L., Germain, V., Ghonge, S., Ghosh, A., Ghosh, A., Ghosh, S., Giacomazzo, B.,
Giaime, J. A., Giardina, K. D., Giazotto, A., Gill, K., Giordano, G., Glover, L.,
Godwin, P., Goetz, E., Goetz, R., Goncharov, B., Gonzalez, G., Gonzalez Castro,
J. M., Gopakumar, A., Gorodetsky, M. L., Gossan, S. E., Gosselin, M., Gouaty,
R., Grado, A., Graef, C., Granata, M., Grant, A., Gras, S., Grassia, P., Gray, C.,
Gray, R., Greco, G., Green, A. C., Green, R., Gretarsson, E. M., Groot, P., Grote,
H., Grunewald, S., Guidi, G. M., Gulati, H. K., Guo, Y., Gupta, A., Gupta, M. K.,
Gustafson, E. K., Gustafson, R., Haegel, L., Halim, O., Hall, B. R., Hall, E. D.,
Hamilton, E. Z., Hammond, G., Haney, M., Hanke, M. M., Hanks, J., Hanna, C.,
Hannuksela, O. A., Hanson, J., Hardwick, T., Haris, K., Harms, J., Harry, G. M.,
Harry, I. W., Haster, C. J., Haughian, K., Hayes, F. J., Healy, J., Heidmann, A.,
Heintze, M. C., Heitmann, H., Hemming, G., Hendry, M., Heng, 1. S., Hennig,
J., Heptonstall, A. W., Hernandez Vivanco, F., Heurs, M., Hild, S., Hinderer, T.,
Hoak, D., Hochheim, S., Hofman, D., Holgado, A. M., Holland, N. A., Holt, K.,
Hopkins, P., Horst, C., Hough, J., Howell, E. J., Hoy, C. G., Hreibi, A., Huerta,
E. A., Hughey, B., Hulko, M., Husa, S., Huttner, S. H., Huynh-Dinh, T., Idzkowski,
B., Iess, A., Ingram, C., Inta, R., Intini, G., Irwin, B., Isa, H. N., Isac, J. M.,
Isi, M., Iyer, B. R., Izumi, K., Jacqmin, T., Jadhav, S. J.; Jani, K., Janthalur,
N. N., Jaranowski, P., Jenkins, A. C., Jiang, J., Johnson, D. S., Jones, A. W.,
Jones, D. 1., Jones, R., Jonker, R. J. G., Ju, L., Junker, J., Kalaghatgi, C. V.,
Kalogera, V., Kamai, B., Kandhasamy, S., Kang, G., Kanner, J. B., Kapadia,
S. J., Karki, S., Karvinen, K. S., Kashyap, R., Kasprzack, M., Katsanevas, S.,
Katsavounidis, E., Katzman, W., Kaufer, S., Kawabe, K., Keerthana, N. V.,
Kéfélian, F., Keitel, D., Kennedy, R., Key, J. S., Khalili, F. Y., Khan, H., Khan,
I., Khan, S., Khan, Z., Khazanov, E. A., Khursheed, M., Kijbunchoo, N., Kim, C.,
Kim, J. C., Kim, K., Kim, W., Kim, W. S., Kim, Y. M., Kimball, C., King, E. J.,
King, P. J., Kinley-Hanlon, M., Kirchhoff, R., Kissel, J. S., Kleybolte, L., Klika,
J. H., Klimenko, S., Knowles, T. D., Koch, P., Koehlenbeck, S. M., Koekoek, G.,
Koley, S., Kondrashov, V., Kontos, A., Koper, N., Korobko, M., Korth, W. Z.,
Kowalska, 1., Kozak, D. B., Kringel, V., Krishnendu, N.; Krélak, A., Kuehn, G.,



BIBLIOGRAPHY 269

Kumar, A., Kumar, P., Kumar, R., Kumar, S., Kuo, L., Kutynia, A., Kwang, S.,
Lackey, B. D., Lai, K. H., Lam, T. L., Landry, M., Lane, B. B., Lang, R. N.,
Lange, J., Lantz, B., Lanza, R. K., Lasky, P. D., Laxen, M., Lazzarini, A., Lazzaro,
C., Leaci, P., Leavey, S., Lecoeuche, Y. K., Lee, C. H., Lee, H. K., Lee, H. M.,
Lee, H. W., Lee, J., Lee, K., Lehmann, J., Lenon, A., Letendre, N., Levin, Y., Li,
J., Li, K. J. L., Li, T. G. F., Li, X., Lin, F., Linde, F., Linker, S. D., Littenberg,
T. B., Liu, J., Liu, X., Lo, R. K. L., Lockerbie, N. A., London, L. T., Longo,
A., Lorenzini, M., Loriette, V., Lormand, M., Losurdo, G., Lough, J. D., Lousto,
C. O., Lovelace, G., Lower, M. E., Liick, H., Lumaca, D., Lundgren, A. P., Lynch,
R., Ma, Y., Macas, R., Macfoy, S., Maclnnis, M., Macleod, D. M., Macquet, A.,
Magana Hernandez, 1., Magana-Sandoval, F., Magana Zertuche, L., Magee, R. M.,
Majorana, E., Maksimovic, 1., Malik, A., Man, N., Mandic, V., Mangano, V.,
Mansell, G. L., Manske, M., Mantovani, M., Marchesoni, F., Marion, F., Mérka, S.,
Marka, Z., Markakis, C., Markosyan, A. S., Markowitz, A., Maros, E., Marquina,
A., Marsat, S., Martelli, F., Martin, I. W., Martin, R. M., Martynov, D. V., Mason,
K., Massera, E., Masserot, A., Massinger, T. J., Masso-Reid, M., Mastrogiovanni,
S., Matas, A., Matichard, F., Matone, L., Mavalvala, N., Mazumder, N., McCann,
J. J., McCarthy, R., McClelland, D. E., McCormick, S., McCuller, L., McGuire,
S. C., Mclver, J., McManus, D. J., McRae, T., McWilliams, S. T., Meacher, D.,
Meadors, G. D., Mehmet, M., Mehta, A. K., Meidam, J., Melatos, A., Mendell, G.,
Mercer, R. A., Mereni, L., Merilh, E. L., Merzougui, M., Meshkov, S., Messenger,
C., Messick, C., Metzdorff, R., Meyers, P. M., Miao, H., Michel, C., Middleton,
H., Mikhailov, E. E., Milano, L., Miller, A. L., Miller, A., Millhouse, M., Mills,
J. C., Milovich-Goff, M. C., Minazzoli, O., Minenkov, Y., Mishkin, A., Mishra,
C., Mistry, T., Mitra, S., Mitrofanov, V. P., Mitselmakher, G., Mittleman, R.,
Mo, G., Moffa, D., Mogushi, K., Mohapatra, S. R. P., Montani, M., Moore, C. J.,
Moraru, D., Moreno, G., Morisaki, S., Mours, B., Mow-Lowry, C. M., Mukherjee,
A., Mukherjee, D., Mukherjee, S., Mukund, N., Mullavey, A., Munch, J., Muniz,
E. A., Muratore, M., Murray, P. G., Nardecchia, I., Naticchioni, L., Nayak, R. K.,
Neilson, J., Nelemans, G., Nelson, T. J. N., Nery, M., Neunzert, A., Ng, K. Y.,
Ng, S., Nguyen, P., Nichols, D., Nissanke, S., Nocera, F., North, C., Nuttall, L. K.,
Obergaulinger, M., Oberling, J., O’Brien, B. D., O’Dea, G. D., Ogin, G. H., Oh,



BIBLIOGRAPHY 270

J. J., Oh, S. H., Ohme, F., Ohta, H., Okada, M. A., Oliver, M., Oppermann, P.,
Oram, R. J., O'Reilly, B., Ormiston, R. G., Ortega, L. F., O’Shaughnessy, R.,
Ossokine, S., Ottaway, D. J., Overmier, H., Owen, B. J., Pace, A. E., Pagano, G.,
Page, M. A., Pai, A., Pai, S. A., Palamos, J. R., Palashov, O., Palomba, C., Pal-
Singh, A., Pan, H-W., Pang, B., Pang, P. T. H., Pankow, C., Pannarale, F., Pant,
B. C., Paoletti, F., Paoli, A., Parida, A., Parker, W., Pascucci, D., Pasqualetti, A.,
Passaquieti, R., Passuello, D., Patil, M., Patricelli, B., Pearlstone, B. L., Pedersen,
C., Pedraza, M., Pedurand, R., Pele, A., Penn, S., Perez, C. J., Perreca, A.,
Pfeiffer, H. P., Phelps, M., Phukon, K. S., Piccinni, O. J., Pichot, M., Piergiovanni,
F., Pillant, G., Pinard, L., Pirello, M., Pitkin, M., Poggiani, R., Pong, D. Y. T.,
Ponrathnam, S., Popolizio, P., Porter, E. K., Powell, J., Prajapati, A. K., Prasad,
J., Prasai, K., Prasanna, R., Pratten, G., Prestegard, T., Privitera, S., Prodi,
G. A., Prokhorov, L. G., Puncken, O., Punturo, M., Puppo, P., Plrrer, M., Qi, H.,
Quetschke, V., Quinonez, P. J., Quintero, E. A., Quitzow-James, R., Radkins, H.,
Radulescu, N., Raffai, P., Raja, S., Rajan, C., Rajbhandari, B., Rakhmanov, M.,
Ramirez, K. E., Ramos-Buades, A., Rana, J., Rao, K., Rapagnani, P., Raymond,
V., Razzano, M., Read, J., Regimbau, T., Rei, L., Reid, S., Reitze, D. H., Ren,
W., Ricci, F., Richardson, C. J., Richardson, J. W., Ricker, P. M., Riles, K., Rizzo,
M., Robertson, N. A., Robie, R., Rocchi, A., Rolland, L., Rollins, J. G., Roma,
V. J., Romanelli, M., Romano, R., Romel, C. L., Romie, J. H., Rose, K., Rosinska,
D., Rosofsky, S. G., Ross, M. P., Rowan, S., Ridiger, A., Ruggi, P., Rutins, G.,
Ryan, K., Sachdev, S., Sadecki, T., Sakellariadou, M., Salconi, L., Saleem, M.,
Samajdar, A., Sammut, L., Sanchez, E. J., Sanchez, L. E., Sanchis-Gual, N.,
Sandberg, V., Sanders, J. R., Santiago, K. A., Sarin, N., Sassolas, B., Saulson,
P. R., Sauter, O., Savage, R. L., Schale, P., Scheel, M., Scheuer, J., Schmidt, P.,
Schnabel, R., Schofield, R. M. S., Schonbeck, A., Schreiber, E., Schulte, B. W.,
Schutz, B. F., Schwalbe, S. G., Scott, J., Scott, S. M., Seidel, E., Sellers, D.,
Sengupta, A. S., Sennett, N., Sentenac, D., Sequino, V., Sergeev, A., Shaddock,
D. A., Shaffer, T., Shahriar, M. S., Shaner, M. B., Shao, L., Sharma, P., Shawhan,
P., Shen, H., Shink, R., Shoemaker, D. H., Shoemaker, D. M., ShyamSundar,
S., Siellez, K., Sieniawska, M., Sigg, D., Silva, A. D., Singer, L. P., Singh, N.,
Singhal, A., Sintes, A. M., Sitmukhambetov, S., Skliris, V., Slagmolen, B. J. J.,



BIBLIOGRAPHY 271

Slaven-Blair, T. J., Smith, J. R., Smith, R. J. E., Somala, S., Son, E. J., Sorazu,
B., Sorrentino, F., Souradeep, T., Sowell, E., Spencer, A. P., Srivastava, A. K.,
Srivastava, V., Staats, K., Stachie, C., Standke, M., Steer, D. A., Steinke, M.,
Steinlechner, J., Steinlechner, S., Steinmeyer, D., Stevenson, S. P., Stocks, D.,
Stone, R., Stops, D. J., Strain, K. A., Stratta, G., Strigin, S. E., Strunk, A.,
Sturani, R., Stuver, A. L., Sudhir, V., Summerscales, T. Z., Sun, L., Sunil, S.,
Sur, A., Suresh, J., Sutton, P. J., Swinkels, B. L., Szczepaniczyk, M. J., Tacca,
M., Tait, S. C., Talbot, C., Talukder, D., Tanner, D. B., Tdpai, M., Taracchini,
A., Tasson, J. D., Taylor, R., Thies, F., Thomas, M., Thomas, P., Thondapu,
S. R., Thorne, K. A., Thrane, E., Tiwari, S., Tiwari, S., Tiwari, V., Toland, K.,
Tonelli, M., Tornasi, Z., Torres-Forné, A., Torrie, C. 1., Téyra, D., Travasso, F.,
Traylor, G., Tringali, M. C., Trovato, A., Trozzo, L., Trudeau, R., Tsang, K. W.,
Tse, M., Tso, R., Tsukada, L., Tsuna, D., Tuyenbayev, D., Ueno, K., Ugolini,
D., Unnikrishnan, C. S., Urban, A. L., Usman, S. A., Vahlbruch, H., Vajente, G.,
Valdes, G., van Bakel, N., van Beuzekom, M., van den Brand, J. F. J., Van Den
Broeck, C., Vander-Hyde, D. C., van Heijningen, J. V., van der Schaaf, L., van
Veggel, A. A., Vardaro, M., Varma, V., Vass, S., Vasuth, M., Vecchio, A., Vedovato,
G., Veitch, J., Veitch, P. J., Venkateswara, K., Venugopalan, G., Verkindt, D.,
Vetrano, F., Viceré, A., Viets, A. D., Vine, D. J., Vinet, J. Y., Vitale, S., Vo,
T., Vocca, H., Vorvick, C., Vyatchanin, S. P., Wade, A. R., Wade, L. E., Wade,
M., Walet, R., Walker, M., Wallace, L., Walsh, S., Wang, G., Wang, H., Wang,
J. Z., Wang, W. H., Wang, Y. F., Ward, R. L., Warden, Z. A., Warner, J., Was,
M., Watchi, J., Weaver, B., Wei, L. W., Weinert, M., Weinstein, A. J., Weiss,
R., Wellmann, F., Wen, L., Wessel, E. K., Weflels, P., Westhouse, J. W., Wette,
K., Whelan, J. T., Whiting, B. F., Whittle, C., Wilken, D. M., Williams, D.,
Williamson, A. R., Willis, J. L., Willke, B., Wimmer, M. H., Winkler, W., Wipf,
C. C., Wittel, H., Woan, G., Woehler, J., Wofford, J. K., Worden, J., Wright, J. L.,
Wu, D. S., Wysocki, D. M., Xiao, L., Yamamoto, H., Yancey, C. C., Yang, L.,
Yap, M. J., Yazback, M., Yeeles, D. W., Yu, H., Yu, H., Yuen, S. H. R., Yvert, M.,
Zadrozny, A. K., Zanolin, M., Zelenova, T., Zendri, J. P., Zevin, M., Zhang, J.,
Zhang, L., Zhang, T., Zhao, C., Zhou, M., Zhou, Z., Zhu, X. J., Zimmerman, A.,
Zucker, M. E., Zweizig, J., LIGO Scientific Collaboration, and Virgo Collaboration



BIBLIOGRAPHY 272

(2019). First Measurement of the Hubble Constant from a Dark Standard Siren
using the Dark Energy Survey Galaxies and the LIGO/Virgo Binary-Black-hole
Merger GW170814. ApJ, 876(1):L7.

Sobral, D., Best, P. N., Smail, I., Geach, J. E., Cirasuolo, M., Garn, T., and Dalton,
G. B. (2011). The dependence of star formation activity on environment and

stellar mass at z~ 1 from the HiZELS-Ha survey. MNRAS, 411(1):675-692.

Socolovsky, M., Almaini, O., Hatch, N. A., Wild, V., Maltby, D. T., Hartley, W. G.,
and Simpson, C. (2018). The enhancement of rapidly quenched galaxies in distant
clusters at 0.5 j z | 1.0. MNRAS, 476(1):1242-1257.

Soltan, A. (1982). Masses of quasars. MNRAS, 200:115-122.

Somerville, R. S. and Primack, J. R. (1999). Semi-analytic modelling of galaxy
formation: the local Universe. MNRAS, 310(4):1087-1110.

Sotillo-Ramos, D., Lara-Lépez, M. A., Pérez-Garcia, A. M., Pérez-Martinez, R., Hop-
kins, A. M., Holwerda, B. W., Liske, J., Lopez-Sanchez, A. R., Owers, M. S., and
Pimbblet, K. A. (2021). Galaxy and mass assembly (GAMA): The environmental
impact on SFR and metallicity in galaxy groups. MNRAS, 508(2):1817-1830.

Sparre, M. and Springel, V. (2016). Zooming in on major mergers: dense, starbursting

gas in cosmological simulations. MNRAS, 462(3):2418-2430.

Spergel, D., Gehrels, N., Baltay, C., Bennett, D., Breckinridge, J., Donahue, M.,
Dressler, A., Gaudi, B. S., Greene, T., Guyon, O., Hirata, C., Kalirai, J., Kasdin,
N. J., Macintosh, B., Moos, W., Perlmutter, S., Postman, M., Rauscher, B.,
Rhodes, J., Wang, Y., Weinberg, D., Benford, D., Hudson, M., Jeong, W. S.,
Mellier, Y., Traub, W., Yamada, T., Capak, P., Colbert, J., Masters, D., Penny,
M., Savransky, D., Stern, D., Zimmerman, N., Barry, R., Bartusek, L., Carpenter,
K., Cheng, E., Content, D., Dekens, F., Demers, R., Grady, K., Jackson, C.,
Kuan, G., Kruk, J., Melton, M., Nemati, B., Parvin, B., Poberezhskiy, 1., Peddie,
C., Ruffa, J., Wallace, J. K., Whipple, A., Wollack, E., and Zhao, F. (2015).
Wide-Field InfrarRed Survey Telescope-Astrophysics Focused Telescope Assets
WFIRST-AFTA 2015 Report. arXiv e-prints, page arXiv:1503.03757.



BIBLIOGRAPHY 273

Splawa-Neyman, J., Dabrowska, D. M., and Speed, T. P. (1990). On the Application
of Probability Theory to Agricultural Experiments. Essay on Principles. Section 9.
Statistical Science, 5(4):465 — 472.

Springel, V. (2010). E pur si muove: Galilean-invariant cosmological hydrodynamical

simulations on a moving mesh. MNRAS, 401(2):791-851.

Springel, V. (2015). N-GenIC: Cosmological structure initial conditions. Astrophysics
Source Code Library, record ascl:1502.003.

Springel, V., Pakmor, R., Pillepich, A., Weinberger, R., Nelson, D., Hernquist, L.,
Vogelsberger, M., Genel, S., Torrey, P., Marinacci, F., and Naiman, J. (2018). First
results from the IlustrisTNG simulations: matter and galaxy clustering. MNRAS,
475(1):676-698.

Springel, V., White, S. D. M., Jenkins, A., Frenk, C. S., Yoshida, N., Gao, L.,
Navarro, J., Thacker, R., Croton, D., Helly, J., Peacock, J. A., Cole, S., Thomas,
P., Couchman, H., Evrard, A., Colberg, J., and Pearce, F. (2005). Simulations of the
formation, evolution and clustering of galaxies and quasars. Nature, 435(7042):629—

636.

Springel, V., White, S. D. M., Tormen, G., and Kauffmann, G. (2001). Populating a
cluster of galaxies - I. Results at [formmu2|z=0. MNRAS, 328(3):726-750.

Starobinsky, A. A. (1982). Dynamics of phase transition in the new inflationary
universe scenario and generation of perturbations. Physics Letters B, 117(3-4):175—

178.

Stensbo-Smidt, K., Gieseke, F., Igel, C., Zirm, A., and Steenstrup Pedersen, K.
(2016). Sacrificing information for the greater good: how to select photometric

bands for optimal accuracy. MNRAS, 464(3):2577-2596.

Stips, A., Macias, D., Coughlan, C., Garcia-Gorriz, E., and Liang, X. S. (2016).
On the causal structure between co2 and global temperature. Scientific reports,

6(1):21691.

Storrie-Lombardi, M. C., Lahav, O., Sodré, L., J., and Storrie-Lombardi, L. J. (1992).



BIBLIOGRAPHY 274

Morphological Classification of galaxies by Artificial Neural Networks. MNRAS,
259(1):8P-12P.

Strateva, 1., Ivezi¢, Z., Knapp, G. R., Narayanan, V. K., Strauss, M. A., Gunn,
J. E., Lupton, R. H., Schlegel, D., Bahcall, N. A., Brinkmann, J., Brunner, R. J.,
Budavari, T., Csabai, 1., Castander, F. J., Doi, M., Fukugita, M., Gyoéry, Z.,
Hamabe, M., Hennessy, G., Ichikawa, T., Kunszt, P. Z., Lamb, D. Q., McKay,
T. A., Okamura, S., Racusin, J., Sekiguchi, M., Schneider, D. P., Shimasaku, K.,
and York, D. (2001). Color Separation of Galaxy Types in the Sloan Digital Sky
Survey Imaging Data. AJ, 122(4):1861-1874.

Suchyta, E., Huff, E. M., Aleksié, J., Melchior, P., Jouvel, S., MacCrann, N., Ross,
A. J., Crocce, M., Gaztanaga, E., Honscheid, K., Leistedt, B., Peiris, H. V., Rykoff,
E. S., Sheldon, E., Abbott, T., Abdalla, F. B., Allam, S., Banerji, M., Benoit-Lévy,
A., Bertin, E., Brooks, D., Burke, D. L., Carnero Rosell, A., Carrasco Kind, M.,
Carretero, J., Cunha, C. E., D’Andrea, C. B., da Costa, L. N., DePoy, D. L.,
Desai, S., Diehl, H. T., Dietrich, J. P., Doel, P., Eifler, T. F., Estrada, J., Evrard,
A. E., Flaugher, B., Fosalba, P., Frieman, J., Gerdes, D. W., Gruen, D., Gruend],
R. A., James, D. J., Jarvis, M., Kuehn, K., Kuropatkin, N., Lahav, O., Lima, M.,
Maia, M. A. G., March, M., Marshall, J. L., Miller, C. J., Miquel, R., Neilsen, E.,
Nichol, R. C., Nord, B., Ogando, R., Percival, W. J., Reil, K., Roodman, A., Sako,
M., Sanchez, E., Scarpine, V., Sevilla-Noarbe, I., Smith, R. C., Soares-Santos, M.,
Sobreira, F., Swanson, M. E. C., Tarle, G., Thaler, J., Thomas, D., Vikram, V.,
Walker, A. R., Wechsler, R. H., Zhang, Y., and DES Collaboration (2016). No
galaxy left behind: accurate measurements with the faintest objects in the Dark

Energy Survey. MNRAS, 457(1):786-808.

Sugihara, G., May, R., Ye, H., Hsieh, C.-h., Deyle, E., Fogarty, M., and Munch, S.
(2012). Detecting causality in complex ecosystems. science, 338(6106):496-500.

Tanaka, M., Coupon, J., Hsieh, B.-C., Mineo, S., Nishizawa, A. J., Speagle, J.,
Furusawa, H., Miyazaki, S., and Murayama, H. (2018). Photometric redshifts for

Hyper Suprime-Cam Subaru Strategic Program Data Release 1. PASJ, 70:S9.

Tanaka, M., Goto, T., Okamura, S., Shimasaku, K., and Brinkmann, J. (2004).

The Environmental Dependence of Galaxy Properties in the Local Universe:



BIBLIOGRAPHY 275

Dependences on Luminosity, Local Density, and System Richness. AJ, 128(6):2677—
2695.

Tasca, L. A. M., Le Fevre, O., Hathi, N. P., Schaerer, D., Ilbert, O., Zamorani, G.,
Lemaux, B. C., Cassata, P., Garilli, B., Le Brun, V., Maccagni, D., Pentericci,
L., Thomas, R., Vanzella, E., Zucca, E., Amorin, R., Bardelli, S., Cassara, L. P.,
Castellano, M., Cimatti, A., Cucciati, O., Durkalec, A., Fontana, A., Giavalisco,
M., Grazian, A., Paltani, S., Ribeiro, B., Scodeggio, M., Sommariva, V., Talia,
M., Tresse, L., Vergani, D., Capak, P., Charlot, S., Contini, T., de la Torre,
S., Dunlop, J., Fotopoulou, S., Koekemoer, A., Lopez-Sanjuan, C., Mellier, Y.,
Pforr, J., Salvato, M., Scoville, N., Taniguchi, Y., and Wang, P. W. (2015). The
evolving star formation rate: M, relation and sSFR since z ~ 5 from the VUDS

spectroscopic survey. A&A, 581:A54.

Taylor, E., Almaini, O., Merrifield, M., Maltby, D., Wild, V., Hartley, W. G., and
Rowlands, K. (2023). The role of mass and environment in the build-up of the
quenched galaxy population since cosmic noon. MNRAS, 522(2):2297-2306.

Taylor, E. N., Hopkins, A. M., Baldry, I. K., Bland-Hawthorn, J., Brown, M. J. L.,
Colless, M., Driver, S., Norberg, P., Robotham, A. S. G., Alpaslan, M., Brough,
S., Cluver, M. E., Gunawardhana, M., Kelvin, L. S., Liske, J., Conselice, C. J.,
Croom, S., Foster, C., Jarrett, T. H., Lara-Lopez, M., and Loveday, J. (2015).
Galaxy And Mass Assembly (GAMA): deconstructing bimodality - I. Red ones
and blue ones. MNRAS, 446(2):2144-2185.

Taylor, M. B. (2005). TOPCAT &amp; STIL: Starlink Table/VOTable Processing
Software. In Shopbell, P., Britton, M., and Ebert, R., editors, Astronomical Data
Analysis Software and Systems XIV, volume 347 of ASP Conf. Ser., page 29.

Teimoorinia, H., Bluck, A. F. L., and Ellison, S. L. (2016). An artificial neural
network approach for ranking quenching parameters in central galaxies. MNRAS,

457(2):2086-2106.

The Dark Energy Survey Collaboration (2005). The Dark Energy Survey. arXiv
e-prints, pages astro—ph/0510346.



BIBLIOGRAPHY 276

The Dark Energy Survey Collaboration, Abbott, T., Abdalla, F. B.; Aleksi¢, J.,
Allam, S., Amara, A., Bacon, D., Balbinot, E., Banerji, M., Bechtol, K., Benoit-
Lévy, A., Bernstein, G. M., Bertin, E., Blazek, J., Bonnett, C., Bridle, S., Brooks,
D., Brunner, R. J., Buckley-Geer, E., Burke, D. L., Caminha, G. B., Capozzi,
D., Carlsen, J., Carnero-Rosell, A., Carollo, M., Carrasco-Kind, M., Carretero,
J., Castander, F. J., Clerkin, L., Collett, T., Conselice, C., Crocce, M., Cunha,
C. E., D’Andrea, C. B., da Costa, L. N., Davis, T. M., Desai, S., Diehl, H. T.,
Dietrich, J. P., Dodelson, S., Doel, P., Drlica-Wagner, A., Estrada, J., Etherington,
J., Evrard, A. E., Fabbri, J., Finley, D. A., Flaugher, B., Foley, R. J., Fosalba, P.,
Frieman, J., Garcia-Bellido, J., Gaztanaga, E., Gerdes, D. W., Giannantonio, T.,
Goldstein, D. A., Gruen, D., Gruendl, R. A., Guarnieri, P., Gutierrez, G., Hartley,
W., Honscheid, K., Jain, B., James, D. J., Jeltema, T., Jouvel, S., Kessler, R., King,
A., Kirk, D., Kron, R., Kuehn, K., Kuropatkin, N., Lahav, O., Li, T. S., Lima,
M., Lin, H., Maia, M. A. G., Makler, M., Manera, M., Maraston, C., Marshall,
J. L., Martini, P., McMahon, R. G., Melchior, P., Merson, A., Miller, C. J., Miquel,
R., Mohr, J. J., Morice-Atkinson, X., Naidoo, K., Neilsen, E., Nichol, R. C.,
Nord, B., Ogando, R., Ostrovski, F., Palmese, A., Papadopoulos, A., Peiris, H. V.,
Peoples, J., Percival, W. J., Plazas, A. A., Reed, S. L., Refregier, A., Romer, A. K.,
Roodman, A., Ross, A., Rozo, E., Rykoff, E. S., Sadeh, I., Sako, M., Sanchez, C.,
Sanchez, E., Santiago, B., Scarpine, V., Schubnell, M., Sevilla-Noarbe, I., Sheldon,
E., Smith, M., Smith, R. C., Soares-Santos, M., Sobreira, F., Soumagnac, M.,
Suchyta, E., Sullivan, M., Swanson, M., Tarle, G., Thaler, J., Thomas, D., Thomas,
R. C., Tucker, D., Vieira, J. D., Vikram, V., Walker, A. R., Wechsler, R. H., Weller,
J., Wester, W., Whiteway, L., Wilcox, H., Yanny, B., Zhang, Y., and Zuntz, J.
(2016). The Dark Energy Survey: more than dark energy - an overview. MNRAS,
460(2):1270-1299.

Thoemmes, F. and Ong, A. D. (2016). A primer on inverse probability of treatment
weighting and marginal structural models. Emerging Adulthood, 4(1):40-59.

Thomas, D., Maraston, C., Bender, R., and Mendes de Oliveira, C. (2005). The
Epochs of Early-Type Galaxy Formation as a Function of Environment. ApJ,
621(2):673-694.



BIBLIOGRAPHY 277

Thomas, D., Maraston, C., Schawinski, K., Sarzi, M., and Silk, J. (2010). Environment
and self-regulation in galaxy formation. MNRAS, 404(4):1775-1789.

Tinsley, B. M. (1968). Evolution of the Stars and Gas in Galaxies. ApJ, 151:547.
Tinsley, B. M. (1972). Galactic Evolution. A&A, 20:383.

Tinsley, B. M. and Gunn, J. E. (1976). Evolutionary synthesis of the stellar population
in elliptical galaxies. I. Ingredients, broad-band colors, and infrared features. ApJ,

203:52-62.

Tojeiro, R., Heavens, A. F., Jimenez, R., and Panter, B. (2007). Recovering galaxy
star formation and metallicity histories from spectra using VESPA. MNRAS,
381(3):1252-1266.

Tomczak, A. R., Quadri, R. F., Tran, K.-V. H., Labbé, 1., Straatman, C. M. S.,
Papovich, C., Glazebrook, K., Allen, R., Brammer, G. B., Cowley, M., Dickinson,
M., Elbaz, D., Inami, H., Kacprzak, G. G., Morrison, G. E., Nanayakkara, T.,
Persson, S. E., Rees, G. A., Salmon, B., Schreiber, C., Spitler, L. R., and Whitaker,
K. E. (2016). The SFR-M* Relation and Empirical Star-Formation Histories from
ZFOURGE* at 0.5 | z | 4. ApJ, 817(2):118.

Tonnesen, S. and Cen, R. (2014). On the Reversal of Star formation Rate-Density
Relation at z = 1: Insights from Simulations. ApJ, 788(2):133.

Toomre, A. (1977). Mergers and Some Consequences. In Tinsley, B. M. and Larson,
Richard B. Gehret, D. C., editors, Evolution of Galaxies and Stellar Populations,

page 401.
Toomre, A. and Toomre, J. (1972). Galactic Bridges and Tails. ApJ, 178:623-666.

Torrey, P., Vogelsberger, M., Genel, S., Sijacki, D., Springel, V., and Hernquist,
L. (2014). A model for cosmological simulations of galaxy formation physics:

multi-epoch validation. MNRAS, 438(3):1985-2004.

Tran, K.-V. H., Franx, M., Illingworth, G., Kelson, D. D., and van Dokkum, P.
(2003). The Nature of E4+A Galaxies in Intermediate-Redshift Clusters. ApJ,
599(2):865-885.



BIBLIOGRAPHY 278

Tran, K.-V. H., Franx, M., Illingworth, G. D., van Dokkum, P., Kelson, D. D.,
Blakeslee, J. P., and Postman, M. (2007). A Keck Spectroscopic Survey of MS
1054-03 (z = 0.83): Forming the Red Sequence. ApJ, 661(2):750-767.

Tran, K.-V. H., Franx, M., lllingworth, G. D., van Dokkum, P., Kelson, D. D., and
Magee, D. (2004). Field E+A Galaxies at Intermediate Redshifts (0.3 jz j1). ApJ,
609(2):683-691.

Tran, K.-V. H., Papovich, C., Saintonge, A., Brodwin, M., Dunlop, J. S., Farrah, D.,
Finkelstein, K. D., Finkelstein, S. L., Lotz, J., McLure, R. J., Momcheva, 1., and
Willmer, C. N. A. (2010). Reversal of Fortune: Confirmation of an Increasing Star
Formation-Density Relation in a Cluster at z = 1.62. ApJ, 719(2):L126-L129.

Treister, E., Schawinski, K., Urry, C. M., and Simmons, B. D. (2012). Major Galaxy
Mergers Only Trigger the Most Luminous Active Galactic Nuclei. ApJ, 758(2):L39.

Treu, T., Ellis, R. S., Kneib, J.-P., Dressler, A., Smail, I., Czoske, O., Oemler, A.,
and Natarajan, P. (2003). A Wide-Field Hubble Space Telescope Study of the
Cluster Cl 0024+16 at z = 0.4. I. Morphological Distributions to 5 Mpc Radius.
AplJ, 591(1):53-78.

van den Bergh, S. (1976). A new classification system for galaxies. ApJ, 206:883-887.

van Dokkum, P. G., Kriek, M., and Franx, M. (2009). A high stellar velocity

dispersion for a compact massive galaxy at z=2.2. Nature, 460:717.

VanderWeele, T. J. (2008). Ignorability and stability assumptions in neighborhood
effects research. Statistics in Medicine, 27(11):1934-1943.

VanderWeele, T. J., Jackson, J. W., and Li, S. (2016). Causal inference and
longitudinal data: a case study of religion and mental health. Social psychiatry

and psychiatric epidemiology, 51(11):1457-1466.

Vansteelandt, S. and Joffe, M. (2015). Structural Nested Models and G-estimation:
The Partially Realized Promise. arXiv e-prints, page arXiv:1503.01589.

Vergani, D., Scodeggio, M., Pozzetti, L., Tovino, A., Franzetti, P., Garilli, B.,

Zamorani, G., Maccagni, D., Lamareille, F., Le Fevre, O., Charlot, S., Contini,



BIBLIOGRAPHY 279

T., Guzzo, L., Bottini, D., Le Brun, V., Picat, J. P., Scaramella, R., Tresse, L.,
Vettolani, G., Zanichelli, A., Adami, C., Arnouts, S., Bardelli, S., Bolzonella, M.,
Cappi, A., Ciliegi, P., Foucaud, S., Gavignaud, I., Ilbert, O., McCracken, H. J.,
Marano, B., Marinoni, C., Mazure, A., Meneux, B., Merighi, R., Paltani, S., Pello,
R., Pollo, A., Radovich, M., Zucca, E., Bondi, M., Bongiorno, A., Brinchmann,
J., Cucciati, O., de la Torre, S., Gregorini, L., Perez-Montero, E., Mellier, Y.,
Merluzzi, P., and Temporin, S. (2008). The VIMOS VLT Deep Survey. Tracing
the galaxy stellar mass assembly history over the last 8 Gyr. A&A, 487(1):89-101.

Vergani, D., Zamorani, G., Lilly, S., Lamareille, F., Halliday, C., Scodeggio, M.,
Vignali, C., Ciliegi, P., Bolzonella, M., Bondi, M., Kova¢, K., Knobel, C., Zucca,
E., Caputi, K., Pozzetti, L., Bardelli, S., Mignoli, M., Iovino, A., Carollo, C. M.,
Contini, T., Kneib, J. P., Le Fevre, O., Mainieri, V., Renzini, A., Bongiorno, A.,
Coppa, G., Cucciati, O., de la Torre, S., de Ravel, L., Franzetti, P., Garilli, B.,
Kampczyk, P., Le Borgne, J. F., Le Brun, V., Maier, C., Pello, R., Peng, Y., Perez
Montero, E., Ricciardelli, E., Silverman, J. D., Tanaka, M., Tasca, L., Tresse, L.,
Abbas, U., Bottini, D., Cappi, A., Cassata, P., Cimatti, A., Guzzo, L., Koekemoer,
A. M., Leauthaud, A., Maccagni, D., Marinoni, C., McCracken, H. J., Memeo,
P., Meneux, B., Oesch, P., Porciani, C., Scaramella, R., Capak, P., Sanders, D.,
Scoville, N., and Taniguchi, Y. (2010). K+a galaxies in the zCOSMOS survey .
Physical properties of systems in their post-starburst phase. A&A, 509:A42.

Verma, S., Boonsanong, V., Hoang, M., Hines, K. E., Dickerson, J. P., and Shah,
C. (2020). Counterfactual Explanations and Algorithmic Recourses for Machine
Learning: A Review. arXiv e-prints, page arXiv:2010.10596.

Vogelsberger, M., Genel, S., Sijacki, D., Torrey, P., Springel, V., and Hernquist, L.
(2013). A model for cosmological simulations of galaxy formation physics. MNRAS,
436(4):3031-3067.

Vogelsberger, M., Genel, S., Springel, V., Torrey, P., Sijacki, D., Xu, D., Snyder, G.,
Bird, S., Nelson, D., and Hernquist, L. (2014a). Properties of galaxies reproduced
by a hydrodynamic simulation. Nature, 509(7499):177-182.

Vogelsberger, M., Genel, S., Springel, V., Torrey, P., Sijacki, D., Xu, D., Snyder,
G., Nelson, D., and Hernquist, L. (2014b). Introducing the Illustris Project:



BIBLIOGRAPHY 280

simulating the coevolution of dark and visible matter in the Universe. MNRAS,

444(2):1518-1547.

Vogt, N. P., Koo, D. C., Phillips, A. C., Wu, K., Faber, S. M., Willmer, C. N. A.,
Simard, L., Weiner, B. J., Illingworth, G. D., Gebhardt, K., Gronwall, C., Guzmaén,
R., Im, M., Sarajedini, V., Groth, E. J., Rhodes, J., Brunner, R., Connolly, A.,
Szalay, A., Kron, R., and Blandford, R. (2005). The DEEP Groth Strip Survey. I.
The Sample. ApJS, 159(1):41-59.

Vollmer, B., Cayatte, V., Balkowski, C., and Duschl, W. J. (2001). Ram Pressure
Stripping and Galaxy Orbits: The Case of the Virgo Cluster. ApJ, 561(2):708-726.

Wadadekar, Y. (2005). Estimating photometric redshifts using support vector
machines. PASP, 117(827):79-85.

Wager, S. and Athey, S. (2015). Estimation and Inference of Heterogeneous Treatment

Effects using Random Forests. arXiv e-prints, page arXiv:1510.04342.

Walcher, J., Groves, B., Budavari, T., and Dale, D. (2011). Fitting the integrated

spectral energy distributions of galaxies. Apé&SS, 331:1-52.

Wang, D., Hogg, D. W., Foreman-Mackey, D., and Scholkopf, B. (2016). A Causal,
Data-driven Approach to Modeling the Kepler Data. PASP, 128(967):094503.

Way, M. J. and Klose, C. D. (2012). Can Self-Organizing Maps Accurately Predict
Photometric Redshifts? PASP, 124(913):274.

Way, M. J. and Srivastava, A. N. (2006). Novel Methods for Predicting Photometric
Redshifts from Broadband Photometry Using Virtual Sensors. ApJ, 647(1):102-115.

Wechsler, R. H. and Tinker, J. L. (2018). The Connection Between Galaxies and
Their Dark Matter Halos. ARA&A, 56:435-487.

Weinberger, R., Springel, V., Hernquist, L., Pillepich, A., Marinacci, F., Pakmor,
R., Nelson, D., Genel, S., Vogelsberger, M., Naiman, J., and Torrey, P. (2017).
Simulating galaxy formation with black hole driven thermal and kinetic feedback.

MNRAS, 465(3):3291-3308.



BIBLIOGRAPHY 281

Weiner, B. J., Phillips, A. C., Faber, S. M., Willmer, C. N. A., Vogt, N. P., Simard,
L., Gebhardt, K., Im, M., Koo, D. C., Sarajedini, V. L., Wu, K. L., Forbes, D. A.,
Gronwall, C., Groth, E. J., Illingworth, G. D., Kron, R. G., Rhodes, J., Szalay,
A. S., and Takamiya, M. (2005). The DEEP Groth Strip Galaxy Redshift Survey.
ITI. Redshift Catalog and Properties of Galaxies. ApJ, 620(2):595-617.

Weinmann, S. M., van den Bosch, F. C., Yang, X., and Mo, H. J. (2006). Properties
of galaxy groups in the Sloan Digital Sky Survey - I. The dependence of colour,
star formation and morphology on halo mass. MNRAS, 366(1):2-28.

Westera, P., Lejeune, T., Buser, R., Cuisinier, F., and Bruzual, G. (2002). A
standard stellar library for evolutionary synthesis. III. Metallicity calibration.

AEA, 381:524-538.

Westreich, D., Lessler, J., and Funk, M. J. (2010). Propensity score estimation:
machine learning and classification methods as alternatives to logistic regression.

Journal of clinical epidemiology, 63(8):826.

Whitaker, K. E., Franx, M., Leja, J., van Dokkum, P. G., Henry, A., Skelton, R. E.,
Fumagalli, M., Momcheva, I. G., Brammer, G. B., Labbé, 1., Nelson, E. J., and
Rigby, J. R. (2014). Constraining the Low-mass Slope of the Star Formation
Sequence at 0.5 | z | 2.5. ApJ, 795(2):104.

Whitaker, K. E., van Dokkum, P. G., Brammer, G., and Franx, M. (2012). The Star
Formation Mass Sequence Out to z = 2.5. ApJ, 754(2):1L29.

White, S. D. M., Clowe, D. 1., Simard, L., Rudnick, G., De Lucia, G., Aragdn-
Salamanca, A., Bender, R., Best, P., Bremer, M., Charlot, S., Dalcanton, J.,
Dantel, M., Desai, V., Fort, B., Halliday, C., Jablonka, P., Kauffmann, G., Mellier,
Y., Milvang-Jensen, B., Pelld, R., Poggianti, B., Poirier, S., Rottgering, H., Saglia,
R., Schneider, P., and Zaritsky, D. (2005). EDisCS - the ESO distant cluster
survey. Sample definition and optical photometry. A&A, 444(2):365-379.

White, S. D. M. and Frenk, C. S. (1991). Galaxy Formation through Hierarchical
Clustering. ApJ, 379:52.

White, S. D. M. and Rees, M. J. (1978). Core condensation in heavy halos: a
two-stage theory for galaxy formation and clustering. MNRAS, 183:341-358.



BIBLIOGRAPHY 282

Whitmore, B. C. and Gilmore, D. M. (1991). On the Interpretation of the Morphology-
Density Relation for Galaxies in Clusters. ApJ, 367:64.

Whitmore, B. C., Gilmore, D. M., and Jones, C. (1993). What Determines the
Morphological Fractions in Clusters of Galaxies? ApJ, 407:489.

Williamson, T. and Ravani, P. (2017). Marginal structural models in clinical research:
when and how to use them? Nephrology Dialysis Transplantation, 32(suppl_2):ii84—
ii90.

Willmer, C. N. A.; da Costa, L. N., and Pellegrini, P. S. (1998). Southern Sky
Redshift Survey: Clustering of Local Galaxies. AJ, 115(3):869-884.

Willmer, C. N. A., Faber, S. M., Koo, D. C., Weiner, B. J., Newman, J. A., Coil,
A. L., Connolly, A. J., Conroy, C., Cooper, M. C., Davis, M., Finkbeiner, D. P.,
Gerke, B. F., Guhathakurta, P., Harker, J., Kaiser, N., Kassin, S., Konidaris, N. P.,
Lin, L., Luppino, G., Madgwick, D. S., Noeske, K. G., Phillips, A. C., and Yan, R.
(2006). The Deep Evolutionary Exploratory Probe 2 Galaxy Redshift Survey: The
Galaxy Luminosity Function to z~1. ApJ, 647(2):853-873.

Wolf, C., Aragén-Salamanca, A., Balogh, M., Barden, M., Bell, E. F., Gray, M. E.,
Peng, C. Y., Bacon, D., Barazza, F. D., Bohm, A.,; Caldwell, J. A. R., Gallazzi,
A., HauBler, B., Heymans, C., Jahnke, K., Jogee, S., van Kampen, E., Lane, K.,
MclIntosh, D. H., Meisenheimer, K., Papovich, C., Sanchez, S. F., Taylor, A.,
Wisotzki, L., and Zheng, X. (2009). The STAGES view of red spirals and dusty red
galaxies: mass-dependent quenching of star formation in cluster infall. MNRAS,

393(4):1302-1323.

Wolf, C., Meisenheimer, K., Rix, H. W., Borch, A., Dye, S., and Kleinheinrich, M.
(2003). The COMBO-17 survey: Evolution of the galaxy luminosity function from
25 000 galaxies with 0.2j z j1.2. A&A, 401:73-98.

Wright, S. (1921). Correlation and causation. Journal of agricultural research,

20(7):557-585.

Wu, J. F. (2020). Connecting Optical Morphology, Environment, and H I Mass
Fraction for Low-redshift Galaxies Using Deep Learning. ApJ, 900(2):142.



BIBLIOGRAPHY 283

Wu, J. F. and Boada, S. (2019). Using convolutional neural networks to predict
galaxy metallicity from three-colour images. MNRAS, 484(4):4683-4694.

Wu, P.-F., Gal, R. R., Lemaux, B. C., Kocevski, D. D., Lubin, L. M., Rumbaugh, N.,
and Squires, G. K. (2014). Star Formation Quenching in High-redshift Large-scale
Structure: Post-starburst Galaxies in the Cl 1604 Supercluster at z ~0.9. ApJ,
792(1):16.

Wuyts, S., Franx, M., Cox, T. J., Hernquist, L., Hopkins, P. F., Robertson, B. E.,
and van Dokkum, P. G. (2009). Recovering Stellar Population Properties and
Redshifts from Broadband Photometry of Simulated Galaxies: Lessons for SED
Modeling. ApJ, 696(1):348-369.

Wyder, T. K., Martin, D. C., Schiminovich, D., Seibert, M., Budavari, T., Treyer,
M. A., Barlow, T. A., Forster, K., Friedman, P. G., Morrissey, P., Neff, S. G., Small,
T., Bianchi, L., Donas, J., Heckman, T. M., Lee, Y.-W., Madore, B. F., Milliard,
B., Rich, R. M., Szalay, A. S., Welsh, B. Y., and Yi, S. K. (2007). The UV-Optical
Galaxy Color-Magnitude Diagram. I. Basic Properties. ApJS, 173(2):293-314.

Xia, K., Lee, K.-Z., Bengio, Y., and Bareinboim, E. (2021). The Causal-Neural
Connection: Expressiveness, Learnability, and Inference. arXiv e-prints, page

arXiv:2107.00793.

Yang, T.-C. and South, S. J. (2018). Neighborhood effects on body mass: temporal

and spatial dimensions. Social science € medicine, 217:45-54.

Yang, X., Mo, H. J., van den Bosch, F. C., Weinmann, S. M., Li, C., and Jing, Y. P.
(2005). The cross-correlation between galaxies and groups: probing the galaxy

distribution in and around dark matter haloes. MNRAS, 362(2):711-726.

Yang, Y., Zabludoff, A. 1., Zaritsky, D., Lauer, T. R., and Mihos, J. C. (2004). E+A
Galaxies and the Formation of Early-Type Galaxies at z~0. ApJ, 607(1):258-273.

Yang, Y., Zabludoff, A. I., Zaritsky, D., and Mihos, J. C. (2008). The Detailed
Evolution of E+A Galaxies into Early Types. ApJ, 688(2):945-971.

Yano, M., Kriek, M., van der Wel, A., and Whitaker, K. E. (2016). The Relation



BIBLIOGRAPHY 284

between Galaxy Structure and Spectral Type: Implications for the Buildup of the
Quiescent Galaxy Population at 0.5 | z | 2.0. ApJ, 817(2):L21.

Yao, L., Chu, Z., Li, S., Li, Y., Gao, J., and Zhang, A. (2020). A Survey on Causal

Inference. arXiv e-prints, page arXiv:2002.02770.

Yesuf, H. M., Faber, S. M., Trump, J. R., Koo, D. C., Fang, J. J., Liu, F. S., Wild,
V., and Hayward, C. C. (2014). From Starburst to Quiescence: Testing Active
Galactic Nucleus feedback in Rapidly Quenching Post-starburst Galaxies. ApJ,
792(2):84.

York, D. G., Adelman, J., Anderson, John E., J., Anderson, S. F., Annis, J., Bahcall,
N. A., Bakken, J. A., Barkhouser, R., Bastian, S., Berman, E., Boroski, W. N.,
Bracker, S., Briegel, C., Briggs, J. W., Brinkmann, J., Brunner, R., Burles, S.,
Carey, L., Carr, M. A., Castander, F. J., Chen, B., Colestock, P. L., Connolly,
A. J., Crocker, J. H., Csabai, 1., Czarapata, P. C., Davis, J. E., Doi, M., Dombeck,
T., Eisenstein, D., Ellman, N., Elms, B. R., Evans, M. L., Fan, X., Federwitz, G. R.,
Fiscelli, L., Friedman, S., Frieman, J. A., Fukugita, M., Gillespie, B., Gunn, J. E.,
Gurbani, V. K., de Haas, E., Haldeman, M., Harris, F. H., Hayes, J., Heckman,
T. M., Hennessy, G. S., Hindsley, R. B., Holm, S., Holmgren, D. J., Huang, C.-h.,
Hull, C., Husby, D., Ichikawa, S.-I., Ichikawa, T., Ivezi¢, Z., Kent, S., Kim, R.
S. J., Kinney, E., Klaene, M., Kleinman, A. N., Kleinman, S., Knapp, G. R.,
Korienek, J., Kron, R. G., Kunszt, P. Z., Lamb, D. Q., Lee, B., Leger, R. F.,
Limmongkol, S., Lindenmeyer, C., Long, D. C., Loomis, C., Loveday, J., Lucinio,
R., Lupton, R. H., MacKinnon, B., Mannery, E. J., Mantsch, P. M., Margon, B.,
McGehee, P., McKay, T. A., Meiksin, A., Merelli, A., Monet, D. G., Munn, J. A.,
Narayanan, V. K., Nash, T., Neilsen, E., Neswold, R., Newberg, H. J., Nichol,
R. C., Nicinski, T., Nonino, M., Okada, N., Okamura, S., Ostriker, J. P., Owen,
R., Pauls, A. G., Peoples, J., Peterson, R. L., Petravick, D., Pier, J. R., Pope,
A., Pordes, R., Prosapio, A., Rechenmacher, R., Quinn, T. R., Richards, G. T.,
Richmond, M. W., Rivetta, C. H., Rockosi, C. M., Ruthmansdorfer, K., Sandford,
D., Schlegel, D. J., Schneider, D. P., Sekiguchi, M., Sergey, G., Shimasaku, K.,
Siegmund, W. A., Smee, S., Smith, J. A., Snedden, S., Stone, R., Stoughton, C.,
Strauss, M. A., Stubbs, C., SubbaRao, M., Szalay, A. S., Szapudi, I., Szokoly,



BIBLIOGRAPHY 285

G. P., Thakar, A. R., Tremonti, C., Tucker, D. L., Uomoto, A., Vanden Berk, D.,
Vogeley, M. S., Waddell, P., Wang, S.-i., Watanabe, M., Weinberg, D. H., Yanny,
B., Yasuda, N., and SDSS Collaboration (2000). The Sloan Digital Sky Survey:
Technical Summary. AJ, 120(3):1579-1587.

Young, J. S. and Scoville, N. Z. (1991). Molecular gas in galaxies. ARAEA, 29:581—
625.

Zabludoff, A. 1., Zaritsky, D., Lin, H., Tucker, D., Hashimoto, Y., Shectman, S. A.,
Oemler, A., and Kirshner, R. P. (1996). The Environment of “E4+A” Galaxies.
ApJ, 466:104.

Zanga, A., Ozkirimli, E., and Stella, F. (2022). A survey on causal discovery: theory

and practice. International Journal of Approximate Reasoning, 151:101-129.

Zehavi, 1., Blanton, M. R., Frieman, J. A., Weinberg, D. H., Mo, H. J., Strauss,
M. A., Anderson, S. F., Annis, J., Bahcall, N. A., Bernardi, M., Briggs, J. W.,
Brinkmann, J., Burles, S., Carey, L., Castander, F. J., Connolly, A. J., Csabali, 1.,
Dalcanton, J. J., Dodelson, S., Doi, M., Eisenstein, D., Evans, M. L., Finkbeiner,
D. P., Friedman, S., Fukugita, M., Gunn, J. E., Hennessy, G. S., Hindsley, R. B.,
Ivezié, Z., Kent, S., Knapp, G. R., Kron, R., Kunszt, P., Lamb, D. Q., Leger, R. F.,
Long, D. C., Loveday, J., Lupton, R. H., McKay, T., Meiksin, A., Merrelli, A.,
Munn, J. A., Narayanan, V., Newcomb, M., Nichol, R. C., Owen, R., Peoples, J.,
Pope, A., Rockosi, C. M., Schlegel, D., Schneider, D. P., Scoccimarro, R., Sheth,
R. K., Siegmund, W., Smee, S., Snir, Y., Stebbins, A., Stoughton, C., SubbaRao,
M., Szalay, A. S., Szapudi, I., Tegmark, M., Tucker, D. L., Uomoto, A., Vanden
Berk, D., Vogeley, M. S., Waddell, P., Yanny, B., and York, D. G. (2002). Galaxy
Clustering in Early Sloan Digital Sky Survey Redshift Data. ApJ, 571(1):172-190.

Zel'dovich, Y. B. (1970). Gravitational instability: An approximate theory for large
density perturbations. A&A, 5:84-89.

Zhao, X., Mao, Y., and Wandelt, B. D. (2022). Implicit Likelihood Inference of

Reionization Parameters from the 21 cm Power Spectrum. ApJ, 933(2):236.

Zhao, X., Mao, Y., Zuo, S., and Wandelt, B. D. (2023). Simulation-based Inference

of Reionization Parameters from 3D Tomographic 21 cm Light-cone Images — II:



BIBLIOGRAPHY 286

Application of Solid Harmonic Wavelet Scattering Transform. arXiv e-prints, page

arXiv:2310.17602.

Zhou, X. and Kosorok, M. R. (2017). Causal nearest neighbor rules for optimal

treatment regimes. arXiv e-prints, page arXiv:1711.08451.

Zhu, Y., Coffman, D. L., and Ghosh, D. (2015). A boosting algorithm for estimating
generalized propensity scores with continuous treatments. Journal of causal

inference, 3(1):25-40.

Ziegel, J. F. and Gneiting, T. (2014). Copula calibration. Flectron. J. Statist.,
8(2):2619-2638.

Ziparo, F., Popesso, P., Finoguenov, A., Biviano, A., Wuyts, S., Wilman, D., Salvato,
M., Tanaka, M., Nandra, K., Lutz, D., Elbaz, D., Dickinson, M., Altieri, B., Aussel,
H., Berta, S., Cimatti, A., Fadda, D., Genzel, R., Le Floc’h, E., Magnelli, B.,
Nordon, R., Poglitsch, A., Pozzi, F., Portal, M. S., Tacconi, L., Bauer, F. E.,
Brandt, W. N., Cappelluti, N., Cooper, M. C., and Mulchaey, J. S. (2014). Reversal
or no reversal: the evolution of the star formation rate-density relation up to z ~

1.6. MNRAS, 437(1):458-474.

Zurita, A., Relano, M., Beckman, J. E., and Knapen, J. H. (2004). Ionized gas
kinematics and massive star formation in NGC 1530. A&A, 413:73-89.

Zwaan, M. A., Kuntschner, H., Pracy, M. B., and Couch, W. J. (2013). The cold
gas content of post-starburst galaxies. MNRAS, 432(1):492-499.

Zwicky, F. (1933). Die Rotverschiebung von extragalaktischen Nebeln. Helvetica
Physica Acta, 6:110-127.

Zwicky, F. (1937). On the Masses of Nebulae and of Clusters of Nebulae. ApJ,
86:217.

Zwicky, F. (1938). On the Clustering of Nebulae. PASP, 50(296):218-220.

Zwicky, F. (1952). Dispersion in the Large-Scale Distribution of Galaxies. PASP,
64(380):247.



	Introduction
	The Cosmological Framework
	The Standard Model of Cosmology
	Friedmann-Lemaître-Robertson-Walker Metric
	Friedmann Equations
	Redshift, Distance and Lookback Time

	Measuring Galaxy Properties
	Spectral Energy Distribution
	Redshift
	Stellar Population Synthesis
	SED Fitting
	Uncertainties, PDFs and Big Data

	The Galaxy Population
	Physical Properties
	Environment and Correlations
	High Redshift and Evolution
	Nature versus Nurture

	Thesis Outline

	Machine Learning
	Decision Trees
	Classification and Regression Trees

	Random Forests
	Hyperparameters


	Causal Inference
	Causal Models and Graphs
	Causal Framework
	Causal Assumptions
	Biases and Adjustments
	Confounding Bias
	Selection Bias

	Causal Machine Learning

	Galaxy Properties with Machine Learning
	Introduction
	Method
	Data
	Cosmological Evolution Survey
	Dark Energy Survey
	Preprocessing

	Models and Implementation
	Results and Discussion
	Point Estimates
	Marginal Probability Distributions
	Joint Probability Distributions

	Comparison: ML versus SED Fitting
	Conclusions

	The Causal Effect of Environment on Galaxies with Causal Machine Learning
	Introduction
	Causal Model of Galaxy Formation and Evolution
	Galaxy Formation
	Galaxy Evolution
	Causal DAG and Effects

	Data
	IllustrisTNG
	The Galaxy Sample

	Method
	Propensity Scores
	Inverse Probability Weighting

	Estimation
	Overview
	Application

	Validation
	Diagnostic Tests

	Results and Discussion
	Overall Causal Effect of Environment
	Role of Environment over Time
	Model Comparison

	Conclusions

	Conclusions
	Summary
	Future Prospects

	Appendices
	GALPRO
	Training Model
	Testing Model
	On-the-fly PDFs
	Validating Model
	Plotting
	Configuration


