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Abstract

Understanding how galaxies form and evolve is at the heart of modern astronomy.

With the advent of large-scale surveys, remarkable progress has been made in the

last few decades as the overall picture has been established. Nevertheless, the

importance of the physical processes behind the phenomena are far from known,

as primarily correlations have been identified rather than the underlying causality.

While simulations are inherently causal by nature, the causal effect itself is intractable

given meaningful complexity. In this thesis, the causal inference framework is applied

to move beyond correlations to causation, in an effort to truly understand the galaxy

formation and evolution process.

First—before inference (i.e., the why)—the equally important task of prediction

(i.e., the what) is tackled as machine learning (ML) is utilised to predict galaxy

properties. Concretely, a novel method based on the random forest (RF) algorithm

is developed to generate joint probability distribution functions (PDFs). As a

demonstration, joint redshift–stellar mass PDFs are estimated, which have many

science applications. Compared to a traditional SED-fitting approach, the ML-based

method has superior performance in terms of accuracy (based on predefined metrics)

and speed (by ∼ 5 orders of magnitude).

Then, combining causal inference and ML, causal ML is applied to infer the

causal effect of environment on galaxies, specifically on their star-formation rate

(SFR). To achieve this, a comprehensive causal model of galaxy formation and

evolution is constructed, and the long-outstanding problem of disentangling nature

and nurture is tackled. The causal effect is found to be negative and substantial, with

environment suppressing the SFR by a factor of ∼ 100. While the overall effect at

z = 0 is negative, in the early Universe, environment is discovered to have a positive

impact, boosting star formation by a factor of ∼ 10 at z ∼ 1 and by even greater
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amounts at higher redshifts.



Impact Statement

Broadly, the work in this thesis contributes to advancing our understanding of galaxy

formation and evolution, with potential applications to other fields. The estimation

of galaxy properties with machine learning (ML) is hugely significant, as traditional

methods are unlikely to scale to the billions of galaxies that will be observed by the

next generation of large-scale surveys, such as Euclid, LSST, and Roman.

Delving deeper, moving beyond point estimates to probability distribution

functions (PDFs) enables more accurate analyses since the latter fully characterise

uncertainties. The joint PDF, in particular, is more informative than the marginal as it

captures any potential correlations between galaxy properties, so their incorporation

could reduce bias. This work directly contributes to the LSST DESC Science

Roadmap (SRM), as estimating joint PDFs of redshift and an ancillary property

is one of its enhanced objectives. Furthermore, methods have been introduced to

validate multivariate PDFs, and they have already been implemented in studies to

validate posterior distributions of the reionisation parameters obtained from the

21-cm power spectrum (Zhao et al., 2022, 2023).

I have developed and published GALPRO—an open-source, state-of-the-art Python

package for estimating multivariate PDFs of galaxy properties. GALPRO is fast and

efficient, able to compute joint PDFs for a million galaxies in just under 6 minutes

with consumer computer hardware. Moreover, it can generate PDFs on the fly once

trained, thus solving the potential challenge of data storage. The package has already

been employed to estimate joint redshift–luminosity and redshift–stellar mass PDFs

in order to estimate the Hubble constant using gravitational waves (Palmese et al.,

2023) and constrain the stellar-to-halo mass relation (SHMR) with galaxy clustering

and weak lensing (Zacharegkas et al., in prep), respectively. Overall, GALPRO will

facilitate galaxy formation and evolution and cosmological studies in the era of “Big
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Data”.

Estimating the causal effect of environment on star-formation rate (SFR) by

tackling the key challenge of disentangling nature and nurture propels the field to a

deeper understanding. With the introduction of a principled framework (to the field)

to infer causality, this work paves the way towards potentially unravelling some of

the biggest mysteries in galaxy formation and evolution, such as: why do galaxies

quench, what is responsible for morphological transformations of galaxies, what is

the impact of supermassive black holes (SMBHs) on their host galaxies, and the

long-outstanding question, which is more important: nature or nurture?

Causality is at the heart of many sciences, so this work has broad applications.

In particular, it is pertinent to dynamical systems with feedback loops (here being

galaxies), and they are ubiquitous. One of the most complex and important is the

Earth’s climate system. The method utilised in this work can be applied to determine,

for example, the anthropogenic activity that most contributes to global warming,

which is critical to tackling climate change.
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Chapter 1

Introduction

Galaxies are islands of stars in the vast and dark cosmic ocean. They are fascinating

entities, exhibiting various colours, sizes, and morphologies, but above all, they are

the fundamental building blocks of the visible Universe.

In the current paradigm, galaxies form and evolve in haloes of dark matter

(White and Rees, 1978; Efstathiou and Silk, 1983; Blumenthal et al., 1984). The

overall scenario is as follows. Quantum fluctuations in the very early Universe

generate density perturbations in the primordial matter density field (Guth and Pi,

1982; Hawking, 1982; Linde, 1982; Starobinsky, 1982; Bardeen et al., 1983). These

initial perturbations grow and evolve under gravitational instability until they reach

over-density, at which point they decouple from the cosmic expansion and collapse to

form dark matter haloes. Baryonic matter falls into the gravitational potential wells

of these haloes and subsequently cools and condenses into a gas cloud. Finally, the

cloud collapses into stars, giving rise to a galaxy. Over time, galaxies grow and evolve

as they accrete new matter from their surroundings and merge with neighbouring

galaxies via their haloes.

This chapter is organised as follows. Section 1.1 briefly overviews the cosmological

framework within which galaxy formation and evolution unfolds. Section 1.2 covers

how the properties of galaxies are derived from their light. Section 1.3 describes the

galaxy population along with a discussion on how galaxies have formed and evolved.

Finally, Section 1.4 provides the outline of this thesis.
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1.1 The Cosmological Framework

Modern cosmology is founded on the cosmological principle, which states that the

Universe is spatially homogeneous (i.e., it looks the same from any location) and

isotropic (i.e., it looks the same in all directions) on large scales, and Einstein’s theory

of general relativity (GR; Einstein 1916), which describes gravity as a geometric

property of spacetime.

1.1.1 The Standard Model of Cosmology

The Universe is composed of three main components: dark energy, dark matter,

and baryonic matter. The nature of dark energy and dark matter is unknown, but

their roles are reasonably well understood. Dark energy is driving the accelerated

cosmic expansion, as inferred from observations of distant Type Ia supernovae (Riess

et al., 1998; Perlmutter et al., 1999). And dark matter is responsible for structure

formation in the Universe. Indirect evidence of this invisible matter has come from

velocity dispersions of galaxy clusters (Oort, 1932; Zwicky, 1933, 1937), rotation

curves of galaxies (Freeman, 1970; Rubin and Ford, 1970), gravitational lensing (see

Massey et al., 2010, for a review), and the cosmic microwave background (CMB).

This leads to the standard model of cosmology—Lambda cold dark matter (ΛCDM).

The cosmological model describes a flat universe of ∼ 68% dark energy (described

by the cosmological constant Λ), ∼ 27% cold dark matter (CDM), and only ∼ 5%

baryonic matter that constitutes the visible Universe (i.e., planets, stars, galaxies,

etc.) (Planck Collaboration et al., 2020).

1.1.2 Friedmann-Lemâıtre-Robertson-Walker Metric

The matter distribution in the Universe governs the geometry of spacetime according

to the Einstein field equations,

Gµν = Rµν −
1

2
gµνR =

8πG

c4
Tµν + Λgµν . (1.1)

On the left-hand side, Gµν is the Einstein tensor, Rµν and R are the Ricci tensor

and Ricci scalar respectively, and gµν is the metric tensor. On the right-hand side,

Tµν is the energy–momentum tensor, and Λ is the cosmological constant.

Assuming the cosmological principle, the exact solution of the Einstein field

equations is the Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric,
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ds2 = c2dt2 − a2(t)

[
dr2

1 − kr2
+ r2(dθ2 + sin2 θdϕ2)

]
, (1.2)

where ds is the spacetime interval, c is the speed of light, dt is the proper time

interval, a(t) is the scale factor, k is the spatial curvature constant, and (r, θ, ϕ) are

comoving coordinates. The scale factor and spatial curvature constants characterise

the expansion (or contraction) and curvature of the Universe, respectively. The scale

factor is 1 at the present time, and the values of −1, 0, +1 for the spatial curvature

constant correspond to open, flat, and closed geometries, respectively.

1.1.3 Friedmann Equations

The expansion of a homogeneous and isotropic universe is described by the Friedmann

equations (Friedmann, 1922). The expansion rate ȧ is given by the Friedmann

equation,

(
ȧ

a

)2

=
8πG

3
ρ− kc2

a2
+

Λc2

3
, (1.3)

and the acceleration of the Universe ä is given by the Friedmann acceleration equation,

ä

a
= −4πG

3

(
ρ+

3P

c2

)
+

Λc2

3
, (1.4)

where G is the gravitational constant, and ρ and P are the energy density and

pressure of the fluid, respectively. The expansion rate divided by the scale factor is

the Hubble parameter,

H(t) =
ȧ(t)

a(t)
. (1.5)

The Hubble parameter at the present time is called the Hubble constant and is

denoted by H0.

The Friedmann equation is usually written in terms of the density parameter,

Ω =
ρ

ρc
, (1.6)

where the critical density,

ρc =
3H2

8πG
, (1.7)
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is the density of a spatially flat universe. The Friedmann equation is then simply:

1 = Ωm + Ωk + ΩΛ, (1.8)

where

Ωm =
8πGρ

3H2
, (1.9)

Ωk =
−kc2

a2H2
, (1.10)

ΩΛ =
Λc2

3H2
, (1.11)

are the matter, spatial curvature, and cosmological constant (or vacuum) densities,

respectively. In terms of the present-day density parameters, the Friedmann equation

is:

H2 = H2
0 (Ωr,0a

−4 + Ωm,0a
−3 + Ωk,0a

−2 + ΩΛ,0), (1.12)

where the additional component Ωr,0 is the radiation density. The values of these

cosmological parameters are: H0 = 67.4 ± 0.5 kms−1Mpc−1, Ωm,0 = 0.315 ± 0.007,

ΩΛ,0 = 0.6847 ± 0.0073, and Ωk,0 = 0.001 ± 0.002 (Planck Collaboration et al., 2020).

The uncertainties are 68% confidence intervals.

1.1.4 Redshift, Distance and Lookback Time

As light travels in an expanding universe, it loses energy and its wavelength increases

and frequency decreases. This phenomenon is called redshift (z) since the light shifts

towards the red end of the spectrum, and it is determined by the ratio of the scale

factors at the time of observation (aobs) and emission (aemit).

1 + z =
λobs
λemit

=
aobs
aemit

, (1.13)

where λobs and λemit are the observed and emitted wavelengths, respectively.

There are two fundamental distance measures in an expanding universe: comov-

ing and proper. The comoving distance is the distance in the comoving reference
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frame. In other words, the comoving distance between two objects moving with the

Hubble flow is constant over time. Conversely, the proper distance is the distance

between two objects at a specific moment in cosmological time, which does change

over time due to the expansion of the Universe.

The light from an object travels on a null geodesic (ds = 0), so the comoving

distance χ from the FLRW metric is:

χ =

∫ tobs

temit

c
dt

a(t)
, (1.14)

where temit and tobs are the times of emission and observation, respectively. The

scale factor converts the comoving distance to the proper distance,

d = a(t)χ. (1.15)

In a spatially flat universe (k = 0), the comoving distance is equal to the radial

comoving distance r.

The comoving and proper distances are not directly observable. However, if the

size or luminosity of an object is known then its distance can be measured. These

objects are called standard rulers and standard candles, respectively. The angular

diameter distance,

dA =
D

θ
=

χ

1 + z
, (1.16)

where D and θ are the physical and angular sizes, respectively. The luminosity

distance,

dL =

√
L

4πF
= χ(1 + z), (1.17)

where L is the luminosity and F is the flux. Combining the previous two equations,

the luminosity distance is related to the angular diameter distance via:

dL = dA(1 + z)2. (1.18)

The different distance measures are only equal to each other in a static universe. At

small redshifts (z ≪ 1), the luminosity distance,
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dL ≃ c

H0

[
z +

1

2
(1 − q0)z

2 + ...

]
, (1.19)

where the deceleration parameter,

q0 = − ä0a0
ȧ20

. (1.20)

To the first-order approximation,

cz = H0dL. (1.21)

When the recessional velocity is much less than the speed of light, the redshift

z ≃ v/c. Thus,

v = H0d. (1.22)

This is Hubble’s law, also known as the Hubble–Lemâıtre law (Lemâıtre, 1927; Hubble,

1929), which states that the recessional velocity of an object is directly proportional

to its distance.

Finally, the time taken for light to travel from an object at redshift z, or the

lookback time,

tL =
1

H0

∫ z

0

dz

(1 + z) E(z)
, (1.23)

where E(z) = H(z)/H0 is the dimensionless Hubble parameter.

The connection between redshift, distance, and lookback time makes redshifts

crucial for both cosmology and galaxy formation and evolution. Distances are

necessary to map the large-scale structure (LSS) of the Universe, which is heavily

dependent on cosmology. Specifically, the spatial distribution of galaxies can constrain

the nature of dark energy via probes such as galaxy cluster counts (Haiman et al.,

2001), weak lensing tomography (Hu, 1999), and baryonic acoustic oscillations

(BAO; Eisenstein 2005). On the other hand, the lookback time is important as it

pinpoints galaxies in time. Due to the timescales involved, it is impossible to witness

the evolution of individual galaxies. However, the finite speed of light provides

an opportunity, as galaxies at larger distances are observed when the Universe
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was younger. In this regard, redshifts are fundamental because by comparing the

properties of the galaxy population at different epochs, it is possible to infer how

galaxies form and evolve.
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1.2 Measuring Galaxy Properties

Galaxies are diverse entities and are thus characterised by a large number of properties,

with stellar mass, star-formation rate (SFR), metallicity, and age being among the

most important. Before describing the galaxy population, this section covers how to

estimate such physical properties and redshift from the light of a galaxy.

1.2.1 Spectral Energy Distribution

Galaxies emit light across the electromagnetic (EM) spectrum, characterised by

the spectral energy distribution (SED), i.e., the energy emitted as a function of

wavelength or frequency. The majority of the stellar population emits in the optical

and near-infrared (NIR), with the exception being young, massive stars that emit

in the near-ultraviolet (NUV). The galactic starlight is processed by the gas and

dust lying between the stars in the interstellar medium (ISM). Specifically, the

gas (primarily atomic hydrogen) absorbs extreme-UV (EUV) photons and emits at

specific wavelengths, producing absorption and emission lines such as the Hα. On the

other hand, the dust radiates in the mid-infrared (MIR) to far-infrared (FIR) range.

Lastly, an active galactic nucleus (AGN) powered by an accreting supermassive black

hole (SMBH) emits in most, if not all, wavebands and produces strong emission lines.

1.2.2 Redshift

From the previous section, redshift is defined as the ratio between the shift in

wavelength and the emitted wavelength.

z =
λobs − λemit

λemit
. (1.24)

The redshift of a galaxy consists of: (i) cosmological redshift due to the expansion

of the Universe, (ii) Doppler redshift due to peculiar motions separate from the

Hubble flow as a result of local gravitational effects, and (iii) gravitational redshift

due to light travelling from a strong to a weak gravitational potential. Of the three,

the cosmological redshift is the most relevant and significant. The Doppler redshift

is only important at low redshifts (z < 0.01) and in rich clusters, which can have

velocity dispersions over 1000 km/s (Girardi et al., 1993). Lastly, the gravitational

redshift is usually negligible. It is important to measure redshifts because they can

be converted into distances to galaxies, for example, through Hubble’s law. The
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caveat is that the redshift must be the cosmological redshift.

1.2.2.1 Spectroscopic Redshifts

Measuring redshifts from SEDs is straightforward as the task reduces to identifying

strong absorption and emission lines in the spectra and determining the shift in

their positions from known rest-frame wavelengths. These so-called spectroscopic

redshifts (spec-z s) are highly accurate with relative errors of less than 0.1% (Mo

et al., 2010). The downside is that long exposures are necessary to achieve a sufficient

signal-to-noise (S/N) ratio, especially for faint galaxies. For this reason, it is not

feasible to obtain redshifts with spectroscopy for anything above tens of millions

of galaxies with the current technology. For example, the ongoing Dark Energy

Spectroscopic Instrument (DESI; DESI Collaboration et al. 2016) will record spectra

of some 30 million galaxies.

1.2.2.2 Photometric Redshifts

The alternative to spec-z s are photometric redshifts (photo-z s), i.e., redshifts es-

timated from photometry. With photometry, the amount of light is measured in

several wavebands rather than at specific wavelengths. This rough sampling of the

underlying SED makes it impossible to pinpoint individual absorption and emission

lines to obtain redshifts, so the photo-z estimation method relies on the detection of

the overall shape and strong broad features such as:

• The Lyman break at 912 Å due to the absorption of photons of wavelengths

shorter than the Lyman limit by neutral atomic hydrogen (HI) gas within the

galaxy or in the intergalactic medium (IGM).

• The Balmer break at 3646 Å due to the absorption of photons more energetic

than the Balmer limit.

• The 4000 Å break due to absorption by ionised metals in stellar atmospheres.

This break is enhanced by a deficiency in young, blue stars (Hamilton, 1985).

The breaks are associated with a rapid rise/drop in light intensity, as can be

observed in Figure 1.1. As a result, they are easy to detect by comparing the

fluxes/magnitudes between two bands, i.e., the colour. Given that the features are

sampled by filters only at specific redshifts, a single colour predicts a galaxy’s redshift
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Figure 1.1: Redshifted rest-frame spectral energy distribution (SED) anticipated from a
galaxy at z = 7, showing the Lyman, Balmer, and 4000 Å breaks. The Lyman
break is sampled by the optical (F775W and F850LP) and near-infrared (NIR)
filters (F105W, F125W and F160W) on-board the Hubble Space Telescope
(HST), while the Balmer and 4000 Å breaks are sampled by infrared (IR) filters
(3.6µm, 4.5µm) on the Spitzer Space Telescope. Reproduced from Dunlop
(2013).

to within a range. The combination of multiple colours narrows this range further

since the multi-dimensional colour space is small at a given redshift.

Photo-z s can be estimated for a large sample because photometry is quicker

to obtain than the spectra of galaxies. Additionally, the method can be extended

to much fainter galaxies. However, photo-z s are less reliable than spec-z s due to

colour–redshift degeneracies (beside filter widths). Indeed, these degeneracies are

broken by the detection of breaks, so the number and type of filters utilised determines

the magnitude of errors. For example, IR filters (JHK) are necessary to bracket

the Balmer break as it moves out of the visible range at z = 1.2 − 2.2. Also, the U

filter is required for galaxies at z ≤ 0.4 because none of the other filters can detect

a strong break. The method is also fundamentally limited because if there are no

breaks in the first place, then the error will always be significant. This is the case for

star-forming galaxies, which lack a pronounced 4000 Å break. Generally, photo-z

errors are in the order of 3 − 10% (Mo et al., 2010). Despite the larger uncertainty,

some analyses such as weak lensing, benefit more from the increased statistical power
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of a larger sample size than from precision (Palmese, 2018). Consequently, the next

generation of surveys, such as Euclid (Laureijs et al., 2011), the Rubin Observatory

Legacy Survey of Space and Time (LSST; LSST Science Collaboration et al. 2009),

and the Nancy Grace Roman Space Telescope (Roman; Spergel et al. 2015), will

primarily be photometric.

There are many approaches to estimating photo-z s, such as colour–colour (Koo,

1985) and colour–redshift (Pello et al., 1996) diagrams, but the most common is SED

fitting or template fitting (Baum, 1962; Puschell et al., 1982; Loh and Spillar, 1986).

The basic idea is to first compute expected colours (or fluxes/magnitudes) at a given

redshift from SED templates (which can be either empirical or theoretical) and then

perform a match to the observed colours (or fluxes/magnitudes) to determine the

best-fit redshift. Since SEDs are shaped by the different physical processes occurring

in galaxies, SED fitting not only provides redshifts but also physical properties. Before

laying out the process in more detail, the next section describes how theoretical

SEDs are created.

1.2.3 Stellar Population Synthesis

Stellar population synthesis (SPS) or evolutionary population synthesis (EPS) (Tins-

ley, 1968, 1972; Searle et al., 1973; Tinsley and Gunn, 1976; Larson and Tinsley,

1978; Bruzual A., 1983) is a method for modelling galaxy SEDs. As the light from a

galaxy is composed of contributions from different components, the basic premise

behind SPS is to model each galaxy component and combine their contributions,

beginning with the primary constituent—the stars.

1.2.3.1 Stars

Broadly speaking, a galaxy is a population of stars ranging from the most common,

low-luminosity, long-lived, dwarf M-types to the less numerous, high-luminosity,

short-lived, massive OB-types. For simplicity, an ensemble of stars of a certain age

and metallicity called a simple stellar population (SSP) is modelled rather than

individual stars. The galaxy spectrum is then the sum of spectra of many SSPs.

There are two methods for constructing SSPs: isochrone synthesis (Chiosi et al.,

1988; Maeder and Meynet, 1988; Charlot and Bruzual A, 1991) and fuel consumption

(Renzini and Buzzoni, 1986; Maraston, 1998). The difference between the two lies in

the integration variable adopted in the post-main sequence (PMS). The isochrone
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synthesis method integrates the spectra of all stars along an isochrone, i.e., a curve on

the Hertzsprung-Russell (HR) diagram representing a population of stars of the same

age but different masses. A potential problem is that the isochrones are calculated at

discrete time steps, so any phases of stellar evolution more rapid than the time step

are poorly represented. To circumvent this issue, isochrones are computed up to the

end of the early asymptotic giant branch (E-AGB), and later rapid stellar phases

like the thermally-pulsating asymptotic giant branch (TP-AGB) are added manually.

On the other hand, the fuel consumption method solves this issue directly by

changing the integration variable above the main sequence turnoff (i.e., a point in

the HR diagram when a star leaves the main sequence) to the so-called fuel, which is

the amount of hydrogen and helium consumed via nuclear burning during a given

PMS phase. This is because the luminosity of PMS stars, which are among the most

luminous, is directly linked to the fuel available at the turnoff mass (Buzzoni, 1989;

Maraston, 1998, 2005).

The spectrum of an SSP at time t and metallicity Z can be written as (Conroy,

2013):

fSSP(t, Z) =

∫ mup

mlo

fstar[Teff(M⋆), log g(M⋆)|t, Z] Φ(M⋆)dM⋆, (1.25)

where M⋆ is the stellar mass at the zero-age main sequence, Φ(M⋆) is the initial

mass function (IMF), and fstar is the stellar spectrum.

• The IMF is the initial distribution of stellar masses of zero-age main sequence

stars. Three known empirical forms are the simple power law (Salpeter, 1955),

broken power law (Kroupa, 2001), and lognormal (Chabrier, 2003). These

IMFs are derived from observations of stars in the solar neighbourhood. There

are also top-heavy and bottom-heavy IMFs, but the most commonly used are

the broken power law and lognormal.

• The isochrones are constructed from stellar evolution tracks computed with

stellar evolution theory. The most widely used stellar evolution tracks and

isochrones are the Padova (Bertelli et al., 1994; Girardi et al., 2000; Marigo

and Girardi, 2007; Marigo et al., 2008), Geneva (Schaller et al., 1992; Lejeune

and Schaerer, 2001), and BaSTI (Pietrinferni et al., 2004, 2006; Cordier et al.,
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2007). The isochrones determine the relation between the effective temperature

Teff and surface gravity g for a given stellar mass M⋆, at time t and metallicity

Z.

• Stellar spectral libraries convert the outputs of stellar evolution into stellar

spectra. There are both theoretical libraries, such as BaSel (Lejeune et al.,

1997, 1998; Westera et al., 2002), and empirical libraries, such as STELIB (Le

Borgne et al., 2003) and MILES (Sánchez-Blázquez et al., 2006; Cenarro et al.,

2007).

1.2.3.2 The Interstellar Medium

The stars are embedded in an interstellar medium (ISM) of gas and dust, which

processes the starlight. Interstellar gas is primarily composed of hydrogen. It is

present in both atomic and molecular forms, but the latter does not contribute

significantly to the overall SED (Young and Scoville, 1991; Hollenbach and Tielens,

1997). Any neutral hydrogen (HI) gas near young, massive OB stars is ionised by

the Lyman continuum photons they emit, and the recombination of this ionised

hydrogen (HII) gas creates various emission lines. As the OB stars have a short

lifespan, these HII regions or emission nebulae are strong indicators of recent star

formation. Furthermore, the flux of hydrogen emission lines is proportional to the

Lyman continuum flux produced by the stars, so they are used to determine the

SFR. The most commonly used is the Hα emission line in the optical range. Also, HI

gas by itself is responsible for the 21-cm radio emission line. The cause is a spin-flip

transition within the atom. Several codes are available that predict the nebular

emission as a function of the physical state of the gas, such as CLOUDY (Ferland

et al., 1998) and MAPPINGSIII (Groves et al., 2004a,b).

Interstellar dust is believed to be produced by AGB stars and injected into

the ISM via stellar winds (Mo et al., 2010). The dust absorbs and scatters galactic

starlight in the IR-UV range, thus causing extinction. The effect of extinction is

interstellar dimming (i.e., galaxies appear dimmer than expected) and interstellar

reddening (i.e., galaxies appear redder than expected) because shorter wavelength

light is absorbed and scattered more easily. The radiation absorbed by the dust is

re-emitted in the MIR and FIR.

It is hard to accurately model the impact of dust on the final spectrum because
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not only does it depend on the star–dust geometry (i.e., the distribution of dust

within the galaxy relative to stars) but also the chemical composition and size of the

dust grains. Furthermore, light can be scattered into the line of sight as well as out

of it. This complexity is usually captured by Calzetti et al. (2000) or Charlot and

Fall (2000) attenuation curves. Lastly, the contribution from an AGN must also be

modelled for active galaxies.

1.2.3.3 Composite Stellar Populations

The final step of SPS modelling to produce SEDs is evolving the galaxies. Specifically,

the stellar population is evolved by specifying a star-formation history (SFH) and

chemical evolution model. Combining all the ingredients results in a composite stellar

population (CSP), as shown in Figure 1.2. The spectrum of a galaxy at time t can

be written as (Conroy, 2013):

fCSP(t) =

∫ t′=t

t′=0

∫ Z=Zmax

Z=0
ψ(t−t′) P (Z, t−t′) fSSP(t′, Z)e−τd(t

′)+ Afdust(t
′, Z) dt′dZ,

(1.26)

where ψ is the SFR, P is the metallicity distribution function, τd is the optical

depth controlling dust attenuation, fdust is the dust emission function, and A is the

normalisation constant. All of the functions are time-dependent and metallicity-

dependent.

An exponentially-declining SFH is widely adopted as given by the exponential

or τ–model (Schmidt, 1959), where ψ(t) ∝ e−t/τ . In recent years, rising SFHs

have been adopted to explain the SEDs of high-redshift galaxies (Maraston et al.,

2010; Papovich et al., 2011), e.g., ψ(t) ∝ tβe−t/τ . The time-dependent metallicity

distribution function is usually a δ-function. In other words, a single metallicity is

assumed for the entire composite population.

Some widely known SPS models are PEGASE (Fioc and Rocca-Volmerange,

1997) and PEGASE-HR (Le Borgne et al., 2004), GRASIL (Silva et al., 1998),

STARBURST99 (Leitherer et al., 1999), GALAXEV (also known as BCO3; Bruzual

and Charlot 2003), M05 (Maraston, 2005), and FSPS (Conroy et al., 2009; Conroy

and Gunn, 2010). In summary, SPS generates SEDs by modelling the components

and physical processes of galaxies. The ultimate goal is then to invert the process
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Figure 1.2: Overview of the stellar population synthesis (SPS) technique. The upper panels
highlight the ingredients necessary for constructing simple stellar populations
(SSPs): an initial mass function (IMF), isochrones, and stellar spectra. The
middle panels highlight the ingredients necessary for constructing composite
stellar populations (CSPs): star formation histories (SFHs), chemical evolution,
SSPs, and a model for dust attenuation and emission. The bottom row shows
the final CSPs both before and after a dust model is applied. Reproduced from
Conroy (2013).
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and derive the physical properties of galaxies from their SEDs.

1.2.4 SED Fitting

SED fitting involves fitting template SEDs to observational data (photometric or

spectroscopic) to estimate redshifts and physical properties of galaxies. The general

procedure is as follows. First, a library of template SEDs is generated. The templates

can be either empirical (Coleman et al., 1980; Kinney et al., 1996; Mannucci et al.,

2001; Assef et al., 2010) or theoretical (Bruzual and Charlot, 2003; Conroy et al.,

2009; Conroy and Gunn, 2010). With the latter, one typically starts from SSPs and

then fits for varying SFHs, metallicities, dust attenuation, etc. Next, the templates

are redshifted and then convolved and integrated with the filter transmission curves

of a particular survey to produce expected fluxes (or magnitudes) at a given redshift.

The observed fluxes O are compared to the expected fluxes E, and the best-fit redshift

and best-fit template are usually found by minimising the chi-square statistic,

χ2 =

N∑
i=1

(
Oi − bEi

σi

)2

, (1.27)

where σi is the error on the observed fluxes in filter i, and b is the scaling factor

between the two sets of data.

The parameters of the best-fitting template can then be used to determine

physical properties. One of the most important is stellar mass, which is computed

by multiplying the observed luminosity L with the stellar mass-to-light ratio M/L.

The M/L ratio is given by (Walcher et al., 2011):

M

Lλ
=

∫
ψ(t) dt∫

Lλ(t) Tλ(t) dt
, (1.28)

where Lλ and Tλ are the luminosity of an SSP and the mean transmission of the

ISM at a given wavelength, respectively.

SFRs can also be estimated with SED fitting. However, high-quality data are

necessary to break the age-dust-metallicity degeneracy; otherwise, the SFRs can

be unreliable. Also, the choice of model priors on the dust model and SFH library

often imposes strong biases. For these reasons, SFRs are more commonly derived

from monochromatic and hybrid indicators (see Kennicutt, 1998; Kennicutt and

Evans, 2012, for reviews). Besides the already mentioned Hα nebular emission line,
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there are many others like the 24µm luminosity, UV luminosity, total IR luminosity,

radio continuum luminosity, and X-ray flux. The various indicators are sensitive to

different SFR timescales.

Examples of well-established SED-fitting codes are LEPHARE (Arnouts et al.,

1999), HYPERZ (Bolzonella et al., 2000), BPZ (Beńıtez, 2000), CIGALE (Burgarella

et al., 2005; Noll et al., 2009; Boquien et al., 2019), ZEBRA (Feldmann et al., 2006),

EAZY (Brammer et al., 2008), FAST (Kriek et al., 2009), and MAGPHYS (da Cunha

et al., 2011).

1.2.5 Uncertainties, PDFs and Big Data

Out of all the physical properties estimated with SED fitting, stellar mass is the most

robust (Papovich et al., 2001; Shapley et al., 2001; Wuyts et al., 2009; Muzzin et al.,

2009; Lee et al., 2009). The M/L ratios for most galaxies with ‘normal’ SEDs are

probably accurate to within ∼ 0.3 dex, assuming a fixed IMF (Conroy, 2013). The

uncertainty is primarily due to incorrect modelling of TP-AGB stars and assumptions

about the SFH (Walcher et al., 2011). Also, the treatment of metallicity (often held

fixed over the SFH) contributes. Between star-forming and quiescent galaxies, stellar

masses of the former are considered to be less accurate. The primary reason is that

young stars can outshine the older stellar population and thus obscure the total

mass.

Ultimately, the accuracy of redshifts and physical properties estimated with

SED fitting depends on the identification of the correct template SED. As such, the

template library must be accurate and complete. However, this is unlikely to be the

case when using empirical or theoretical spectral libraries. Empirical libraries are

constructed from observations of stars in the solar neighbourhood, and as a result,

they are likely incomplete. On the other hand, theoretical libraries are probably

complete but not entirely accurate because while the theory of stellar evolution

is advanced, short-lived and bright stellar phases such as massive stars, TP-AGB

stars, extreme horizontal branch (EHB) stars, and blue stragglers are still not fully

understood (Walcher et al., 2011).

Mismatches can also arise if the multi-dimensional parameter space is not

exhaustively explored when generating templates from SSPs for different combinations

of model parameters. Here, Markov Chain Monte Carlo (MCMC) techniques are
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efficient (Conroy et al., 2009; Acquaviva et al., 2012). Furthermore, the templates

are usually calibrated using galaxies at low redshifts, so there is greater uncertainty

on predictions for galaxies at high redshifts (Carrasco Kind and Brunner, 2013).

Even a valid and representative template set does not guarantee accuracy because

of the intrinsic degeneracies that exist in the colour–redshift and colour–physical

properties spaces. The colour of a galaxy is related to the age and metallicity of its

stellar population. For example, redder galaxies are either older, more metal-rich, or

both. Moreover, a galaxy may appear red even though it is blue in reality because of

dust extinction. This degeneracy in the colour-age-dust-metallicity space means that

two or more templates can match the same input colours.

Given the possibility of multi-modal solutions, the standard approach of assuming

Gaussian uncertainties is flawed. Hence, the new generation of SED-fitting codes such

as GALMC (Acquaviva et al., 2011), BAYESed (Han and Han, 2012, 2014, 2019), BEAGLE

(Chevallard and Charlot, 2016), PROSPECTOR (Leja et al., 2017; Johnson et al., 2021),

and BAGPIPES (Carnall et al., 2018) have moved beyond a single-point estimate

and a Gaussian error to output probability distribution functions (PDFs). These

PDFs fully characterise uncertainties, which translates to more accurate analyses.

For example, using PDFs rather than point estimates of redshift has been shown

to improve the accuracy of cosmological measurements (Mandelbaum et al., 2008;

Myers et al., 2009; Sheldon et al., 2012; Carnero et al., 2012; Jee et al., 2013) without

introducing further bias (Bordoloi et al., 2010; Abrahamse et al., 2011). The issue is

that it is not feasible to obtain PDFs for a large number of galaxies. For example,

BAGPIPES takes on average a few minutes to fit each galaxy, making it impractical

to fit modern datasets where sample numbers can exceed hundreds of millions. And

the situation becomes worse now in the era of “Big Data” when surveys such as

Euclid, LSST, and Roman are primed to observe galaxies in the billions. Another

separate but equally important challenge is storing and sharing the PDFs (Rau et al.,

2015). In this thesis, machine learning (ML) is applied to estimate PDFs of galaxy

properties at speed and on the fly, culminating in a highly intuitive and efficient

Python package called GALPRO.
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1.3 The Galaxy Population

This section describes the galaxy population and discusses the implications for how

galaxies have formed and evolved based on the observations. First, the salient

properties of the population are presented. Next, the correlations between galaxy

properties and environment are outlined. Following on, the population as observed

at high redshift and its subsequent evolution is described. Lastly, the nature versus

nurture debate in the context of galaxy formation and evolution is summarised.

1.3.1 Physical Properties

Galaxies are richly diverse, and one of the most striking properties is their shape or

morphology. There are four broad types:

1. Ellipticals (E): ellipsoidal-shaped galaxies with little to no internal structure,

supported by the random motion of their stars. Elliptical galaxies are further

categorised based on their apparent degree of ellipticity, ranging from highly

spherical E0s to flat E7s.

2. Spirals (S): thin, disk-like galaxies with spiral arm structures and a central

bulge, mainly supported by rotation. Spiral galaxies come in two types: normal

(S) and barred (SB). The latter exhibit an elongated bar-like structure in

the central region. Each type is further split into three classes—a, b, and

c—according to the following criteria: the brightness of the central bulge, the

tightness of the spiral arms, and the degree to which the spiral arms are resolved

into stars, HII regions, and ordered dust lanes.

3. Lenticulars (S0): thin, disk-like galaxies with a central bulge like spirals

(though more prominent) but a smooth light distribution and no spiral arms

like ellipticals. An intermediate class between the two types.

4. Irregulars (Irr): galaxies with no defined shape or structure.

The different morphological types are arranged in the famous Hubble sequence

(Hubble, 1936) shown in Figure 1.3, with the ellipticals on the left, lenticulars in

the centre, and spirals on the right. Notably, irregular galaxies are missing in the

original Hubble sequence, but they are now included as they are considered to be

perturbed spiral galaxies (Mo et al., 2010). Ellipticals and lenticulars are referred
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Figure 1.3: Tuning-fork style diagram of the Hubble sequence (Hubble, 1936). The visual
classification scheme designates galaxies into three Hubble types: ellipticals
(E), lenticulars (S0), and spirals (S). The spirals are further separated into
normal (S) and barred (SB). Note that the location of galaxies on the sequence
does not indicate the temporal evolution of galaxies. Reproduced from Hubble
(1936).

to as early-type galaxies, while spirals and irregulars are called late-type galaxies.

Somewhat confusingly, the location of the galaxies on the Hubble sequence and

the nomenclature do not relate to their temporal state. The galaxies are simply

placed in order of structural complexity from left to right, and this is the connotation

behind ‘early’ and ‘late’. In other words, the Hubble sequence is not an evolutionary

sequence of galaxies whereby structurally-simple ellipticals evolve into more complex

spirals over time. In fact, the polar opposite is now believed to be true: galaxies

form disk-like and then transform into elliptical-like over time. Consequently, the

diagram may be read from right to left, with some debate over the placement of S0

galaxies (Kormendy and Bender, 1996).

The galaxy population is bimodal in colour (Strateva et al., 2001; Hogg et al.,

2002, 2004; Blanton et al., 2003; Bell et al., 2004; Baldry et al., 2004b, 2006; Gial-

longo et al., 2005; Weiner et al., 2005; Willmer et al., 2006; Brammer et al., 2009).

Specifically, most galaxies are either blue or red, according to Figure 1.4. In the

colour distribution, there is a broad peak at the blue end of the spectrum and a

narrow peak at the red end, so there are more blue galaxies than red. Furthermore,

the blue galaxies are predominantly faint, while the majority of the red galaxies are

bright, as evident from the colour–magnitude distribution. These two populations are

dubbed the “blue sequence” (also known as the “blue cloud”) and the “red sequence”
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Figure 1.4: Distribution of galaxy colours and colour–magnitude relation of ∼ 365, 000
galaxies in the Sloan Digital Sky Survey (SDSS; York et al. 2000). The colour
distribution is bimodal, with most galaxies being either blue or red. In the
colour–magnitude diagram, the blue galaxies dominate the faint end, while
the red galaxies the bright end. These two populations are dubbed the “blue
sequence” (also known as the “blue cloud”) and the “red sequence”, respectively
(Bell et al., 2004). The sparse population between the two is in the so-called
“green valley” (Wyder et al., 2007; Martin et al., 2007; Salim et al., 2007;
Schiminovich et al., 2007). Reproduced from Mo et al. (2010).

of galaxies, respectively (Bell et al., 2004). There is also a sparse population of

galaxies between the two in the so-called “green valley” (Wyder et al., 2007; Martin

et al., 2007; Salim et al., 2007; Schiminovich et al., 2007).

The morphology of a galaxy is correlated to its colour: early-type galaxies are

redder than late-type galaxies, which are bluer (Humason, 1936; Holmberg, 1958;

de Vaucouleurs, 1961; Roberts and Haynes, 1994). However, this relation is not

perfect as a significant number of dusty red spirals (van den Bergh, 1976; Wolf et al.,

2009; Masters et al., 2010) and blue ellipticals (Schawinski et al., 2009) have also

been observed. Overall, late-type galaxies primarily populate the blue cloud, while

early-type galaxies occupy the red sequence (see Figure 1.5).

The colour of a galaxy is determined by the age and metallicity of its stellar

population. The most important are OB stars because they are very luminous and

thus dominate the total light emitted. These hot, blue stars have a short lifespan,

which means blue galaxies have ongoing or recent star formation, while red galaxies

do not. Nevertheless, dust extinction complicates this basic picture (Whitaker et al.,

2012; Taylor et al., 2015). In general, galaxies are either “star-forming” or “quenched”.
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Figure 1.5: Colour distribution of SDSS galaxies overlaid with early versus late morphology
type. The black triangles and open squares represent early-type and late-type
galaxies, respectively. In the left panel, there are 500 galaxies, which are
classified spectroscopically. In the right panel, there are 287 bright galaxies,
which are classified by visual inspection. Reproduced from Strateva et al.
(2001).

However, whether the SFR distribution is bimodal, like the colour distribution, is

subject to debate (Elbaz et al., 2007; McGee et al., 2011; Feldmann, 2017).

The SFR of star-forming galaxies are tightly correlated with their stellar mass (see

Figure 1.6). This relation is called the star-forming main sequence (MS; Brinchmann

et al. 2004; Salim et al. 2007; Noeske et al. 2007; Daddi et al. 2007), and it exists

at least up to M⋆ ∼ 1010.5M⊙, at which point some observational studies report a

flattening (Whitaker et al., 2014; Lee et al., 2015; Schreiber et al., 2015; Tasca et al.,

2015; Tomczak et al., 2016; Eales et al., 2017; Popesso et al., 2019).

In summary, galaxy properties are correlated with each other, and there are two

distinct populations in the local Universe: one of massive, red, early-type, quiescent

galaxies that constitute the red sequence, and the other of less-massive, blue, late-

type, star-forming galaxies that occupy the blue cloud. The fundamental question is

then: why is the population bimodal?

1.3.2 Environment and Correlations

In a ΛCDM universe, structures form bottom up in a hierarchical manner—starting

with galaxies, which merge over time to form galaxy groups, which in turn merge to

create clusters and superclusters. Hence, at the present time, a significant fraction

of galaxies are located in groups and clusters, consisting of tens and upwards of
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Figure 1.6: The star-formation rate (SFR)–stellar mass (M⋆) relation of SDSS galaxies.
The galaxies separate into star-forming (upper contours) and quenched (lower
contours). The star-forming main sequence (MS) fit to the star-forming galaxies
is from Renzini and Peng (2015) and is shown as a solid magenta line. The
minimum of the bimodal density contours is shown as a dashed magenta line.
The plot is colour coded by the mean logarithmic distance to the MS. The
solid black line indicates the median SFR − M⋆ relationship, which shows
a rapid transition from the star forming to the quenched density peak at
log(M⋆/M⊙) ∼ 10.5. Adapted from Bluck et al. (2020a).

hundreds, respectively (Hubble and Humason, 1931; Shapley, 1933; Zwicky, 1937,

1938, 1952; Abell, 1958, 1965). Conversely, some galaxies are relatively isolated in the

field. These galaxies were either part of fossil groups where all members eventually

merged (Ponman et al., 1994; Jones et al., 2000, 2003) or have been isolated for their

entire lifetime. On the largest scales, galaxies are part of a complex “cosmic web”

(Bond et al., 1996), composed of voids, sheets or walls, filaments, and nodes (see

Figure 1.7). Simply put, galaxies reside in different environments of varying densities.

Significantly, the physical properties of a galaxy are correlated to its environment.
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Figure 1.7: Spatial distribution of ∼ 80, 000 galaxies in the 2dF Galaxy Redshift Survey
(2dFGRS; Colless et al. 2001) in a 4° slice projected onto the redshift/right
ascension plane. The galaxies are not randomly distributed but are part of the
cosmic web (Bond et al., 1996), consisting of voids, sheets or walls, filaments,
and nodes. Reproduced from Peacock et al. (2002).

The morphology–density relation

The different morphological types are unevenly distributed in the Universe. Typically,

early-type galaxies inhabit high-density environments, while late-type galaxies occupy

low-density environments (Hubble and Humason, 1931; Abell, 1965; Oemler, 1974;

Davis and Geller, 1976). According to the morphology–density relation (Dressler,

1980) in Figure 1.8, the fraction of spirals and irregulars decreases smoothly with

increasing environmental density, from ∼ 60% in the highest-density region to

∼ 10% in the lowest-density region of clusters. Meanwhile, the trend is reversed for

ellipticals, which increase from ∼ 10% to ∼ 40%. The portion of lenticulars also

increases, but more modestly, from ∼ 30% to ∼ 50%.

The colour–density relation

Galaxy colour is also correlated with environment: the colour–density relation

(Kodama et al., 2001). As environmental density increases, galaxies tend to become

redder (see Figure 1.9).
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Figure 1.8: The morphology–density relation (Dressler, 1980). The fraction of ellipticals
(E), lenticulars (S0), and spirals (S) and irregulars (Irr) as a function of
environmental density (log of the projected density), in a sample of 55 rich
clusters at z ∼ 0. The fraction of the different morphological types in the field
is also indicated for comparison. The upper panel shows the number of galaxies
in each density bin. Reproduced from Dressler (1980).

The star-formation rate–density relation

Given the causal connection between colour and SFR and the colour–density relation,

the SFR is also correlated with the galaxy environment. The SFR–density relation

(Gómez et al., 2003) in Figure 1.10 shows that SFR decreases with increasing

environmental density. This trend is particularly strong for highly star-forming

galaxies in the 75th percentile of the SFR distribution (i.e., the top of the shaded

area). Furthermore, there seems to be a characteristic density (∼ 1 h−2
75 Mpc−2) at

which the SFR increases (or decreases) rapidly.

In summary, galaxies become redder, form fewer stars, and exhibit more early-

type morphologies as environmental density increases. Essentially, the red sequence

of the galaxy population is mainly located in high-density environments, while the
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Figure 1.9: The colour–density relation (Kodama et al., 2001). The colour (V − I) as a
function of environmental density (10th nearest neighbour density) of galaxies
brighter than I = 23.4 in the rich cluster A851 at z = 0.41. The open circles
and filled triangles show the galaxies brighter or fainter than I = 21.4 (M⋆

v + 2),
respectively. The three red lines represent the loci of the 25th, 50th, and 75th
percentile colours. Reproduced from Kodama et al. (2001).

blue sequence is found in low-density environments. So, is environment the cause of

the bimodal population and are the correlations causal in nature? Also, which of the

relations with environment are truly causal, and which are just a result of correlations

that exist between galaxy properties? For example, Bamford et al. (2009) and Skibba

et al. (2009) disentangled the influence of environment on colour and morphology

and found that the colour–density relation is stronger than the morphology–density

relation, so the latter may arise as a consequence of the former. There is potential

evidence of the correlations being causal from observations of the galaxy population

at high redshift.
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Figure 1.10: The star-formation rate (SFR)–density relation (Gómez et al., 2003). The
SFRs of SDSS galaxies as a function of environmental density (10th nearest
neighbour density). The shaded area represents the distribution of corrected
SFRs (Hopkins et al., 2001). The median is the solid line, and the top and
bottom are the 25th and 75th percentiles, respectively. There is an abrupt
transition in the SFR at surface density ∼ 1 h−2

75 Mpc−2. Reproduced from
Gómez et al. (2003).

1.3.3 High Redshift and Evolution

At high redshift (z ≳ 0.5), the fraction of lenticulars in clusters is significantly lower

compared to the local Universe, while the spiral fraction is higher (Dressler et al.,

1997; Treu et al., 2003; Postman et al., 2005; Guzzo et al., 2007). Tracing the

population over time, the portion of lenticulars has increased gradually while that of

spirals (and irregulars) has decreased, as shown in Figure 1.11 (Fasano et al., 2000;

Smith et al., 2005; Desai et al., 2007; Capak et al., 2007; Just et al., 2010; Cavanagh

et al., 2023). On the other hand, the fraction of ellipticals has remained roughly

constant. This suggests that spiral galaxies are progenitors of lenticular galaxies and

have evolved into the latter over time.

Also in distant clusters, the fraction of blue, star-forming galaxies is higher

than in the local clusters (Butcher and Oemler, 1978; Couch and Newell, 1984): the
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Figure 1.11: The fraction of ellipticals (E), lenticulars (S0), ellipticals and lenticulars (E
+ S0), and spirals and irregulars (Sp + Irr) in clusters over time. The open
and filled circles denote clusters in the ESO Distant Cluster Survey (EDisCS;
White et al. 2005) and Fasano et al. (2000), respectively. Reproduced from
Desai et al. (2007).

Butcher-Oemler effect. As shown in Figure 1.12, the fraction increases with redshift

(Butcher and Oemler, 1984; Aragon-Salamanca et al., 1993; Rakos and Schombert,

1996; Lubin, 1996; Margoniner and de Carvalho, 2000; Margoniner et al., 2001;

Ellingson et al., 2001; Kodama and Bower, 2001; Poggianti et al., 2006; Cucciati

et al., 2006; Cooper et al., 2007). Unsurprisingly, given the correlation between colour,

SFR, and morphology, these galaxies are predominantly spirals (Dressler et al., 1994;

Couch et al., 1994, 1998; Oemler et al., 1997). Furthermore, a significant fraction

have perturbed morphologies, which further supports the case for the morphological

transformation of galaxies.

Lastly, galaxies with strong Balmer lines in absorption but no detectable emission

lines have been observed in distant clusters (Dressler and Gunn, 1983; Couch and

Sharples, 1987). The absence of emission lines means these galaxies have little

to no ongoing star formation, and the presence of strong Balmer absorption lines

indicates an excessive population of A-stars, which implies that they had elevated
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Figure 1.12: The fraction of galaxies with luminosities greater than (MB−5 log h) < −20 in
four rest-frame colour bins as a function of environment (δ on R = 5h−1Mpc)
in four different redshift intervals. The horizontal bars indicate the amplitude
of the bins in δ (i.e., the range spanned by the lower 5% and upper 95%
percentile of the objected contained in each bin), while the vertical error bars
represent a Poissonian 1σ uncertainty. The shaded areas are obtained by
smoothing the red (blue) fraction with an adaptive sliding box containing the
same number of objects in each bin as the point marked explicitly. Reproduced
from Cucciati et al. (2006).

levels of star formation in the past and have recently quenched in the last 1 − 2

Gyrs. These post-starburst (PSB, also known as E+A or K+A; see French, 2021,

for a review) galaxies at high redshift (z > 1) are spheroidally dominated (Whitaker

et al., 2012; Yano et al., 2016; Almaini et al., 2017; Maltby et al., 2018). For all

these reasons, PSBs are likely galaxies transitioning from the blue cloud to the red

sequence (Caldwell et al., 1996; Zabludoff et al., 1996; Norton et al., 2001; Yang

et al., 2004, 2008; Pracy et al., 2009; Zwaan et al., 2013; Yesuf et al., 2014; Wu

et al., 2014; Pattarakijwanich et al., 2016). Note that PSBs have also been found

in the field (Tran et al., 2004), but they are more prevalent in denser environments

(Dressler et al., 1999; Poggianti et al., 2009; Vergani et al., 2010; Muzzin et al., 2012;
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Socolovsky et al., 2018; Paccagnella et al., 2019; Taylor et al., 2023), with some

studies reporting a significant fraction of the galaxy population in clusters (Henry

and Lavery, 1987; Fabricant et al., 1991; Tran et al., 2003, 2007).

In conclusion, galaxies have undergone rapid evolution in dense environments

whereby blue, star-forming, late-type galaxies at high redshifts have transformed

into red-and-dead early-type galaxies at low redshifts. On this basis, environment

does seem responsible for the bimodal population in the local Universe, and if so, the

correlations are causal. However, one has to be careful because the same correlations

between galaxy properties and environment also exist with stellar mass, as massive

galaxies are likely to be early types, red, and quenched (Kauffmann et al., 2004;

Baldry et al., 2006; Fontana et al., 2009; van Dokkum et al., 2009; Peng et al.,

2010; Nayyeri et al., 2014). Furthermore, stellar mass is correlated with environment

(Balogh et al., 2001; Hogg et al., 2003; Mo et al., 2004; Croton et al., 2005; Hoyle et al.,

2005; Blanton et al., 2005). Consequently, are the correlations with environment

mere reflections, and is the observed evolution due to internal processes that scale

with stellar mass rather than external processes associated with environment? This

is the essence of the nature versus nurture debate in the context of galaxy formation

and evolution (Irwin, 1995).

1.3.4 Nature versus Nurture

Galaxies form and evolve as: (i) hot gas cools through radiative cooling, (ii) stars

form out of the cold gas, evolve, and eventually die—in a cycle—enriching the ISM

in the process, and (iii) SMBHs grow via accretion and mergers and their feedback

heats and/or expels the gas. Simultaneously, haloes are accreting matter from their

surroundings and merging with their neighbours. In a nutshell, the formation and

evolution of galaxies depends on both nature and nurture.

The nature of a galaxy can be associated with its halo mass since galaxies form

in dark matter haloes, while nurture is related to its environment. There is complex

interplay between nature and nurture as haloes and their environments interact with

each other through the processes of accretion and mergers and co-evolve over time.

Furthermore, the effects of nature depend on nurture and vice versa, as internal

processes driven by halo mass are affected by environment, and external processes

linked to environment depend on halo mass. In summary, nature and nurture are
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heavily intertwined.

To disentangle nurture from nature, studies have controlled for the stellar mass

(a proxy of halo mass) at a snapshot in time, typically by binning galaxies into fixed

bins of stellar mass. Nevertheless, this has been demonstrated to be insufficient

in disentangling nature and nurture (De Lucia et al., 2012). The problem remains

unsolved and therefore, the individual causal effects of nature and nurture on galaxy

formation and evolution are unknown.

The principal approach to establish causality has been through simulations. Phys-

ical models have been developed and tested by comparing simulations to observations,

leading to insights into the galaxy formation and evolution process. Nonetheless,

the causal effect itself is intractable in a simulation of any meaningful complexity.

A method called genetic modification (GM; Roth et al. 2016) has emerged that

estimates the causal effect through controlled experiments (Cadiou et al., 2021),

mimicking in effect, a randomised control trial (RCT). However, it is limited to a

single object (at a time) and clearly cannot be applied to the real Universe.

In this thesis, the causal inference framework is adopted to infer causality.

Specifically, causal inference is combined with ML, and causal machine learning

(causal ML) is applied to disentangle nature and nurture and estimate the causal

effect of environment on galaxies.
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1.4 Thesis Outline

The outline of this thesis is as follows:

Chapter 2 briefly overviews machine learning (ML) and describes random forests

(RFs), an ensemble learning method based on decision trees (DTs) that is utilised in

this thesis.

Chapter 3 introduces the causal inference framework and core concepts, such as

causal models and causal graphs. Additionally, this chapter presents the emerging

field of causal machine learning (causal ML), which combines causal inference and

ML.

In Chapter 4, ML is applied to estimate galaxy properties. Specifically, a

novel method based on the RF algorithm is developed to estimate joint probability

distribution functions (PDFs). As an example, joint redshift–stellar mass PDFs

are estimated. The outcome of this work is GALPRO—a highly intuitive and efficient

Python package that rapidly generates multivariate PDFs on the fly. Appendix A

provides the documentation for the package.

In Chapter 5, causal ML is applied to disentangle nature and nurture and

estimate the causal effect of environment on star-formation rate (SFR). To achieve

this, the causal inference method, inverse probability weighting (IPW) of marginal

structural models (MSMs), is combined with the RF algorithm.

Finally, Chapter 6 provides a summary of this thesis and discusses potential

future prospects.
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• Mucesh, S., Hartley, W. G., Gilligan-Lee, C. M., & Lahav, O. (in prep).
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S., Ferrero, I., Blazek, J., Jain, B., Crocce, M., DeRose, J., Palmese, A., Seitz,
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Chapter 2

Machine Learning

This Chapter is based on a section in Mucesh et al. (2021): A machine learning

approach to galaxy properties: joint redshift–stellar mass probability distributions

with Random Forest. Monthly Notices of the Royal Astronomical Society, 502(2),

2770-2786. It has been modified and augmented for the thesis.

https://doi.org/10.1093/mnras/stab164
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Machine learning (ML) is concerned with the development of computer algorithms

that can ‘learn’ from data to make predictions or decisions without being explicitly

programmed to do so. It is a subset of the broader field of artificial intelligence (AI).

In general, there are three types of learning paradigms:

• Supervised learning – the training set consists of input features X and target

variables Y . The goal is to learn a mapping X → Y between the two sets of

data. The most common types of supervised learning tasks are classification

and regression.

• Unsupervised learning – the training set consists of input features but no targets.

The goal is to learn some kind of structure of the underlying distribution of data

(e.g., model the distribution itself, identify clusters/modes, identify anomalies,

learn the underlying lower-dimensional manifold where the data live).

• Reinforcement learning – there is no training set. The goal is to interact with

a dynamic environment and learn from feedback to achieve a predefined goal

(e.g., driving a car).

The first application of ML was to teach a computer to play the game of

checkers—Arthur Samuel’s checkers-playing program (Samuel, 1959). Since then,

ML has been applied to solve a wide range of problems across many fields. In

astrophysics, the application of ML began as early as the 1990s with the use of

artificial neural networks (ANNs) for star–galaxy separation (e.g., Odewahn et al.,

1992) and morphological classification of galaxies (e.g., Storrie-Lombardi et al., 1992;

Lahav et al., 1995). With the advent of large-scale surveys such as the Sloan Digital

Sky Survey (SDSS; York et al. 2000) and more recently the Dark Energy Survey (DES;

The Dark Energy Survey Collaboration 2005; The Dark Energy Survey Collaboration

et al. 2016; Lahav et al. 2020), ML algorithms have been widely adopted to cope

with the enormous influx of data and to do novel science (see Baron, 2019; Fluke

and Jacobs, 2020, for recent reviews). This trend is likely to continue with the next

generation of surveys, such as Euclid (Laureijs et al., 2011), the Rubin Observatory

Legacy Survey of Space and Time (LSST; LSST Science Collaboration et al. 2009),

and the Nancy Grace Roman Space Telescope (Roman; Spergel et al. 2015), as

they will produce an order of magnitude more data than the previous. This chapter
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describes decision trees and the ensemble learning method based on them: random

forests.

2.1 Decision Trees

Decision trees (DTs) are a non-parametric supervised learning method. A decision

tree is a type of data structure that allows one to make a decision using a series

of yes-or-no questions. There are many different decision tree algorithms, but the

most notable are ID3 (Quinlan, 1986), C4.5 (Quinlan, 1993), and Classification and

Regression Trees (CART; Breiman et al. 1984). In the following section, the CART

algorithm is explained.

2.1.1 Classification and Regression Trees

CART is a recursive algorithm that splits the data into two groups at each step until

some predefined condition is achieved. The main components of the decision tree are

the root, decision, and leaf nodes. The root node defines the first and optimal split

on the full training dataset. The decision nodes describe the subsequent splits, and

the leaf nodes contain the final groups. An illustration of a decision tree is shown in

Figure 2.1.

The exact process of building a decision tree is as follows. At each step, all

possible splits are evaluated in all dimensions of the input feature space. For

classification, the data are split to best separate different classes, and this is achieved

by maximising the information gain,

IG(D,X) = I(D) − NL

N
I(DL) − NR

N
I(DR), (2.1)

where X is the input feature, D is the parent node containing number of samples

N , and DL and DR are the child nodes containing number of samples NL and NR,

respectively.

There are three commonly used criteria for the impurity I: the Shannon entropy

(also called the information entropy; Shannon 1948),

H = −
K∑
k=1

pk log2(pk), (2.2)
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Figure 2.1: Binary decision tree in a radial layout, spanning out from the root node close to
the centre. The root and decision nodes are represented as circles, and the leaf
nodes are grey triangles. The colour of the root and decision nodes identifies
the unique variable on which data is split. The subpanel shows a zoomed in
region from the tree. Reproduced from Carrasco Kind and Brunner (2013).
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the Gini coefficient (also known as the Gini index or Gini ratio; Gini 1912),

G = 1 −
K∑
k=1

p2k, (2.3)

and the classification error,

CE = 1 − max{pk}, (2.4)

where pk is the proportion of samples of class k in a node. The Shannon entropy

and Gini coefficient are zero when a node is ‘pure’ (i.e., all samples belong to the

same class) and one when the node is ‘balanced’ (i.e., there is an even representation

of all classes).

For regression, the data are split such that the average values of the target

variable are representative of the nodes. Usually, this is accomplished by minimising

the sum of squared errors,

SSE =
1

NL

∑
iϵDL

(ỹi − ȳDL
)2 +

1

NR

∑
iϵDR

(ỹi − ȳDR
)2, (2.5)

where ỹi are the values of the target variable of samples in a node, and ȳDL
and ȳDR

are the node means of the target variable.

Once the decision tree is built (‘trained’), it can be used to make predictions. If

the training data used to build the tree are complete and representative, then a new

datapoint will end up in a leaf node that is representative of itself. The content of

the leaf node can then be used to make a prediction. For classification, the prediction

is the mode, and for regression, it is the mean of the leaf node.

Decision trees are easy to interpret and understand. Their “white box” nature

combined with the simplicity of the algorithm makes it one of the most popular

learning mechanisms. However, there are a few major limitations. Decision trees

are not stable due to the manner in which they are constructed. For example,

two decision trees can predict different outcomes with only a slight variation in the

training data (Gareth et al., 2013). Also, axis-parallel splits may not always effectively

(and efficiently) capture decision boundaries, leading to suboptimal performance.

Furthermore, decision trees are prone to overfitting and thus do not generalise well

to new, unseen data. This problem can be mitigated by reducing the complexity of
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trees with “pruning” (i.e., removing redundant parts of the tree). However, a more

encompassing yet simple solution is to combine multiple decision trees—the basis of

ensemble methods such as random forests.

2.2 Random Forests

Random forests (RFs) are a supervised learning method based on ensemble learning.

The first RF algorithm was proposed by Ho (1995), but the de facto is that of

Breiman (2001). RFs solve many of the issues associated with decision trees by

constructing multiple decision trees and making a few adjustments. For example,

when building the decision trees, only a subset of the training data and features is

used. This technique is called feature bagging and it injects randomness, making

RFs more flexible and better suited to make predictions on data not encountered

before. By using multiple decision trees in combination with feature bagging, RFs

aim to preserve the low bias of a single decision tree whilst simultaneously reducing

variance to successfully navigate the bias-variance tradeoff1. In summary, a RF can

be built using the following process:

1. Create a bootstrapped dataset by sampling randomly from the training data

with replacement.

2. Choose from a random subset of input features to split on at each node when

building a decision tree using the bootstrapped data.

3. Repeat the process to build multiple decision trees, thus creating a ‘forest’.

The process of predicting with a RF is similar to predicting with a single decision

tree. The only difference is that predictions from all the decision trees are aggregated.

For classification, the prediction is the most predicted class, and for regression, it is

the mean of all the values predicted by the decision trees (see Figure 2.2).

1The bias error is an error from erroneous assumptions in the learning process. A high-bias model
is an oversimplified model that fails to capture the true relationship between the input features
and the target variable (underfitting). It performs poorly both on the training and test sets. The
variance is an error from sensitivity to small fluctuations in the training data. A high-variance model
captures noise rather than the underlying patterns (overfitting). Such a model performs well on the
training data but poorly on unseen data because it fails to generalise. Reducing bias often increases
variance and vice versa, i.e., the bias-variance tradeoff. The goal is to strike a balance between the
two.
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Figure 2.2: Overview of the random forest (RF) prediction process. The predictions of all
N decision trees are aggregated in a final result. For classification, the final
prediction is the mode, and for regression, it is the average. Adapted from
https://www.spotfire.com/glossary/what-is-a-random-forest.

https://www.spotfire.com/glossary/what-is-a-random-forest
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2.2.1 Hyperparameters

Hyperparameters are parameters of an ML algorithm that control the learning process

and are specified prior to training. RFs have many hyperparameters, but the most

important are:

• n estimators – the number of decision trees used to build the RF determines

its effectiveness. Each decision tree is built using a subset of training data. As

a result, if the number used is too small, the likelihood of complete coverage of

the training data decreases, resulting in poor performance. The performance

improves as the number of trees increases, but at a cost, the time taken for

training. The key is to find the right balance between performance and training

time because the gains become negligible after a certain point.

• max features – the maximum number of features considered at each step

when building the decision trees controls the correlation between them and,

hence, the flexibility of the RF. Usually,
√
N features are sufficient to build

each decision tree, where N is the total number of input features.

• max depth – the maximum depth defines the number of levels in the decision

tree and thus determines how finely or coarsely the training data are grouped.

A low depth leads to underfitting, while a high depth may cause overfitting. In

essence, the maximum depth provides a stopping criterion for the constituent

decision trees. The minimum number of training samples in a leaf node

(min samples leaf) and the minimum number of training samples in a leaf

node before the data are split (min samples split) also serve the same purpose.

Generally, RFs require very little configuration and work well out of the box.

Besides their ease of use, RFs are efficient, interpretable, and versatile, performing

competitively in many tasks across various fields. Given all these qualities, the

algorithm is utilised in this thesis. In Chapter 4, RF is applied to predict redshifts

and stellar masses of galaxies. While ML can make predictions, it generally cannot

perform inference. This is because ML, broadly, learns the data not the underlying

data-generating process (DGP). In the following chapter, a theoretical framework is

introduced for inferring causality.



Chapter 3

Causal Inference

This Chapter is based on a section in Mucesh et al. (in prep): The Causal

Effect of Environment on Star Formation with Causal Machine Learning. It has been

modified and augmented for the thesis.
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Causal inference is concerned with inferring cause and effect (see Pearl, 2009a, for

an overview). The field is well established, with significant advancements made in

recent decades (see Pearl, 2010, for a review). The goal is to identify and quantify

the causal effect of one thing on another, e.g., a vaccine on a disease. A correlation1

between the vaccine and outcome (disease cured or not) hints at its effectiveness

but does not guarantee it as “correlation does not imply causation”. The observed

correlation can be due to a common cause (Reichenbach, 1956) that causes both the

vaccine and outcome. For example, age is a potential common cause as it typically

influences whether an individual can receive a vaccine and their chance of recovery

from a disease. In the extreme case, there may not be a causal connection between

the vaccine and outcome, and the correlation may be entirely due to age, which would

signify that the vaccine is ineffective. However, if the vaccine has a causal effect on

the outcome, the correlation will be partly due to age and the vaccine. Regardless

of the situation, the measured effectiveness of the vaccine without considering age

will be biased. Herein lies the fundamental difference between statistical and causal

inference: the former ascertains a relationship between two quantities (assuming one

exists), while the latter can establish the causal nature of the relationship. This

chapter describes a mathematical framework of causal inference and key tenets, such

as causal models and causal graphs.

3.1 Causal Models and Graphs

The principal component for any causal inference task is a causal model or structural

causal model (SCM), i.e., a model that describes causal relationships between

variables. Formally, an SCM specifies a set of exogenous, or latent, variables U =

{u1, . . . , un} distributed as P (U), a set of endogenous, or observable, variables

V = {v1, . . . , vm}, a directed acyclic graph (DAG), called the causal structure of

the model, whose nodes are the variables U ∪ V , and a collection of functions

F = {f1, . . . , fn}, such that vi = fi(PAi, ui), for i = 1, . . . , n, where PA denotes

the parent observed nodes of an observed variable (Pearl, 2009b). The collection of

functions and distribution over latent variables induces a distribution over observable

variables: P (V = v) :=
∑

{ui|fi(PAi,ui)= vi} P (ui). We can thus assign uncertainty

1Technically, “correlation” only refers to the degree to which a pair of variables are linearly related.
Consequently, the broader term “association” is used instead to refer to statistical dependence
because it describes any relationship between variables, linear or not.
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Figure 3.1: Causal graph representing the causal relationship between two variables, T
and Y . The direct edge (black arrow) from T to Y implies that T directly
causes Y . The causal association (i.e., the association due to causation) ‘flows’
asymmetrically from T to Y (represented by the blue dashed line arrow), while
association ‘flows’ symmetrically (represented by the red dashed line). The
causal graph is an example of a directed acyclic graph (DAG). A DAG is a
graph that is: (i) directed (i.e., has edges that imply a direction) and (ii) acyclic
(i.e., a variable does not cause itself either directly or through another variable).

over observable variables despite the fact the underlying dynamics are deterministic.

Structural equations (F ) fully capture and mathematically describe a causal

model. However, a graphical representation of a causal model in the form of causal

graphs (also called causal diagrams) is more intuitive for understanding causal

relationships. A causal graph is a probabilistic graphical model and consists of a

collection of nodes and edges that connect the nodes (Wright, 1921). The nodes

represent variables, while the edges communicate the causes of the variables. Figure

3.1 shows the fundamental causal graph between two variables, T and Y . The direct

edge (black arrow) from T to Y implies that T directly causes Y . The causal graph is

an example of a DAG because it is: (i) directed (i.e., has edges that imply a direction)

and (ii) acyclic (i.e., a variable does not cause itself either directly or through another

variable).

DAGs make it easy to deduce if two variables share a causal or non-causal

relationship. More importantly, they allow one to effortlessly conclude if association is

causation with a few basic rules. For example, causal association (i.e., the association

due to causation) can be imagined as ‘flowing’ asymmetrically along directed paths

(a sequence of adjacent nodes with direct edges all in the same direction), while
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association ‘flowing’ symmetrically along directed paths. In the DAG in Figure

3.1, the causal association flows in one direction from T to Y along the direct path

(as shown by the blue dashed line arrow). However, the association flows in both

directions along the same path (as shown by the red dashed line). Hence, association

alone does not provide any information on the direction of causality. It does not

distinguish between the following possible causal relationships between the two

variables:

1. T causes Y (direct causation)

2. Y causes T (reverse causation)

3. T and Y share a common cause (common causation)

4. T and Y cause each other (cyclic causation)

Furthermore, it is also possible that T and Y are not related at all, and the

association is spurious. Consequently, association does not imply causation. Never-

theless, the DAG in this instance conveys that all association is causal as there is

only a solitary direct path between T and Y . If the DAG represents the true causal

model of the vaccine–disease example, where T is the vaccine and Y is the outcome,

the observed correlation does imply causation. The following section describes a

framework for reasoning and quantifying causality.

3.2 Causal Framework

The Rubin causal model (Holland, 1986), also known as the Neyman–Rubin causal

model (Neyman, 1923; Rubin 1974), is a mathematical framework of causal inference

based on the idea of potential outcomes (see Yao et al., 2020, for a recent review).

The framework is inspired by how humans reason about causality. We compare

an outcome Y given an action T with the outcome under no action. If there is a

difference in the two outcomes, we reason that the action has had a causal effect on

the outcome. The individual causal effect (ICE) on a unit i,

τi = Yi(1) − Yi(0), (3.1)

where Yi(1) and Yi(0) are the two potential outcomes under action and no action,

respectively. It is impossible to know both potential outcomes given that the two
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potential realities, the one in which the action takes place and the other in which it

does not, cannot be observed simultaneously. The potential outcome that is observed

is “factual”, whereas the unobserved potential outcome is “counterfactual”. This

dilemma is the “fundamental problem of causal inference” (Holland, 1986). The

impossible nature of the task is the reason why causality is such a challenging subject

to tackle. Nevertheless, it is possible to estimate rather than compute causal effects.

Generally, it is difficult to accurately estimate unit-level causal effects, but it is

feasible to reliably estimate an average of the causal effect within a population—the

average causal effect (ACE; Holland 1986),

τ = E[τi] = E[Yi(1) − Yi(0)] = E[Yi(1)] − E[Yi(0)]. (3.2)

We make the reader aware of the terminology we use throughout this thesis: the

action T is the quantity we are interested in measuring the causal effect of, and the

outcome Y is the quantity we want to measure the causal effect on. Furthermore,

the action is sometimes referred to as an intervention, an exposure, or a treatment,

depending on the scientific nature of the study. We will refer to the action as the

treatment from hereon.

3.3 Causal Assumptions

Causal inference necessitates the following assumptions:

1. Exchangeability – the potential outcomes are independent of the treatment.

Y (t) ⊥⊥ T (3.3)

2. Positivity – the probability of receiving treatment is greater than zero but less

than one.

0 < P (T ) < 1 (3.4)

3. Consistency – the treatment is well-defined such that the observed outcome is

equal to the potential outcome under treatment.

Y = Y (t) (3.5)
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4. No interference – the potential outcome of a unit only depends on its treatment

and not on the treatment of other units (Cox, 1958).

Yi = Yi(ti) (3.6)

The exchangeability assumption states that potential outcomes must be inde-

pendent of the treatment. In other words, it must be possible to exchange treatment

groups without changing their potential outcomes. To understand why the assump-

tion is essential, consider the aforementioned vaccine–disease example, with age as a

common cause. If age influences who receives the vaccine, then the treatment and

control groups are not exchangeable because their age distributions are dissimilar.

And if age also impacts one’s ability to recover from the disease, then the causal

effect estimated using the groups is biased as it is an admixture of the causal effects

of the vaccine and age. Exchangeability ensures that the causal effect is bias-free

because if the treatment groups are similar in all of their characteristics except for

the treatment, then any outstanding causal effect must be the result of the treatment

only.

Positivity states that there must be a non-zero probability of receiving any

treatment. This assumption is important because its violation leads to undefined

causal effects. For example, consider the situation where everyone or no one receives

the vaccine. In such a scenario, the causal effect of the vaccine would be mathemat-

ically impossible to estimate because the counterfactual would always be missing.

Intuitively, causal effects are only meaningful if the outcome under “treatment” is

contrasted to the outcome under “no treatment” within the potential outcomes

framework of causal inference.

Consistency states that the observed outcome must equal the potential outcome

under treatment. When this assumption is not met, the causal effect is inconclusive.

Following the vaccine–disease example, there must be only one version of the vaccine

if the goal is to estimate its efficacy. If multiple versions exist and they are labelled

as the treatment, then the causal effect will be a mixture of the individual causal

effects of the different vaccines. Furthermore, if the temperature of the vaccine affects

the outcome, then all individuals must receive the vaccine at the same temperature.

Simply put, the treatment must be well-defined.
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Lastly, the no interference assumption states that the potential outcome of a

unit must only depend on its treatment. Violation of this assumption makes the

causal effect of treatment ill-defined in the strict sense because the treatment is now

an admixture of multiple units’ treatment and must be redefined. This situation is

common in many real-world cases and is referred to as spillover effects. For example,

the likelihood of contracting COVID-19 depends not only on one’s immunity to the

disease but also on the immunity within the population.

The consistency and no interference assumptions are sometimes grouped into

the so-called stable unit treatment value assumption (SUTVA; Rubin 1980) because

their violation results in ill-defined causal effects. If all of the above assumptions are

met, the ACE is identifiable and is the statistical quantity,

τ = E[Y (1)] − E[Y (0)] = E[Y |T = 1] − E[Y |T = 0]. (3.7)

3.4 Biases and Adjustments

The gold standard for causal inference is a randomised control trial (RCT; Chalmers

et al. 1981). A well-conducted RCT always outputs a true measure of the ACE

because the causal assumptions are met by construction. However, it is not always

possible to perform RCTs because they can be unethical, infeasible, or outright

impossible. More often than not, only observational data is available that is prone

to many biases, unlike experimental data. The biases violate the causal assumptions

and distort the true causal effect. Here, causal graphs truly come into their own as

they make it easy to identify such biases and adjust for them such that the causal

assumptions hold, resulting in valid estimates of the causal effect. There are many

different types of biases, but the primary two are confounding bias and selection (or

collider) bias.

3.4.1 Confounding Bias

Confounding bias arises in the presence of a common cause or confounder X that

causes both the treatment and the outcome, as illustrated in Figure 3.2. Unlike

the DAG in Figure 3.1, there are two paths for association to flow between T and

Y : (i) the direct path between T and Y and (ii) the backdoor path linking T and

Y via X. The causal association flows through the former, and the non-causal
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(a) Before conditioning (b) After conditioning

Figure 3.2: Illustration of confounding bias. DAGs representing the causal relationships
between treatment T , outcome Y , and their common cause or confounder X.
(a) There are two paths for association to flow between T and Y : (i) the direct
path between T and Y and (ii) the backdoor path linking T and Y via X. The
causal association (depicted with the blue dashed line arrow) flows through
the former, while the non-causal confounding association (depicted with the
red dashed line arrow) flows through the latter. The admixture of the causal
and non-causal associations means association is not causation. (b) The act of
conditioning on X (visualised with the greyed-out node) blocks the non-causal
confounding association from flowing via the backdoor path.

confounding association flows through the latter. The amalgam of causal and non-

causal associations means association is not causation, and the causal effect is biased.

Specifically, the causal effect is an admixture of the causal effects of the treatment

and confounder. Intuitively, if age influences the treatment and outcome in the

aforementioned vaccine–disease example, then it is difficult to separate the causal

effect that age has on the outcome from the causal effect of the treatment. In terms of

the causal assumptions, the presence of confounders violates exchangeability because

the treatment is not independent.

In experimental data, confounding is not an issue as RCTs remove its effect

via randomisation of the treatment. In DAGs, treatment randomisation translates

to removing the direct edge from X to T , making T independent, so confounding

association cannot flow via the backdoor path as it does not exist. As a result,

association is causation because exchangeability holds, and the causal effect does

not suffer from confounding bias. In contrast, confounding is a major issue in

observational data because, by its nature, the treatment is not randomised beforehand
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via experimentation. The goal with observational data is not to solve the issue

directly but rather to negate it by adjusting the data such that the estimates of

causal effects are bias-free. The first step is to modify the causal assumptions to be

appropriate for observational data. For example, conditional exchangeability must

hold for observational data, as the prevalence of confounders will always violate

exchangeability. Conditional exchangeability states that potential outcomes are

independent of the treatment given confounders.

Y (t) ⊥⊥ T |X. (3.8)

Visually, conditioning on a confounder blocks the non-causal confounding association

from flowing from T to Y via the backdoor path, as shown in Figure 3.2b, leaving

only the causal association. Also, as exchangeability and confounding are intertwined

concepts, the conditional exchangeability assumption is sometimes referred to as

unconfoundedness. An alteration of the positivity assumption is also necessary to

account for confounding. Following on from the original definition, the conditional

probability of receiving treatment given confounders must be greater than zero and

less than one.

0 < P (T |X) < 1. (3.9)

Given the prior consistency and no interference assumptions, in addition to conditional

exchageability and positivity, the ACE

τ = E[Y (1)] − E[Y (0)] = EX[E[Y |T = 1, X] − E[Y |T = 0, X]]. (3.10)

This is known as the adjustment formula because adjustments are made post-data

generation to infer true, unbiased causal effects.

3.4.2 Selection Bias

While confounding bias persists when there is a lack of adjustment of a common cause,

selection bias occurs precisely due to adjustment of a common effect X, as illustrated

in Figure 3.3. A common effect is a variable that is caused by both the treatment

and the outcome. As previously, there is a direct path and a backdoor path between

T and Y for association to flow. The causal association flows through the former as
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(a) Before conditioning (b) After conditioning

Figure 3.3: Illustration of selection (or collider) bias. DAGs representing the causal relation-
ships between treatment T , outcome Y , and their common effect or collider X.
(a) Similar to Figure 3.2, there is a direct path and a backdoor path between T
and Y for association to flow. As before, the causal association (depicted with
the blue dashed line arrow) flows through the former. However, the non-causal
association (depicted with the red dashed line arrow) cannot flow through the
latter as it is now blocked because of the collider. (b) The act of conditioning
on X (visualised with the greyed-out node) unblocks the previously blocked
backdoor path, allowing once again the non-causal association to flow. As
a result, association is not causation as it is once again an admixture of the
causal and non-causal associations.

before, but the non-causal association does not flow through the latter as it is now

a blocked path. The flow of association from T and Y ‘collides’ on X, as shown in

Figure 3.3a. Hence, X is also referred to as a collider. In this scenario, association is

causation, and the causal effect is not biased. By incorrectly conditioning on X, the

backdoor path is unblocked, allowing the non-causal association to flow as shown in

Figure 3.3b, which ultimately induces selection bias.

Continuing the vaccine–disease example: assume the vaccine has side effects and

can cause hospitalisations in rare cases. The disease can also cause hospitalisations

by deteriorating the health of individuals. Figure 3.3 represents this exact situation,

where hospitalisation X is the common effect of the vaccine T and disease Y .

Conditioning on X by selecting only the hospitalised patients induces a non-causal

association between the vaccine and disease. Specifically, a positive association

between the vaccine and disease would be observed as the hospitalised population is

more likely to be vaccinated or have the disease than the general population. The
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conclusion that one would draw from the selected data is that the vaccine causes

the disease, which would be detrimental as it would dissuade people from receiving

the vaccine. In terms of the causal assumptions, conditioning or selecting on the

common effect also violates exchangeability.

3.5 Causal Machine Learning

Causal machine learning (Causal ML) is an emerging field that combines causal

inference and machine learning (ML) to leverage the benefits of one for the other

(see Kaddour et al., 2022, for a review).

Causal Inference for Machine Learning

Although ML has been successful in a wide range of applications and transformed

many fields, there are some major limitations. Traditional ML suffers from:

1. Generalisability – ML algorithms rely on training and testing data being

identically and independently distributed (i.i.d.). When the i.i.d. assumption

does not hold under distributional shifts—a highly likely occurrence in real-

world scenarios—the performance drops drastically. Simply put, ML algorithms

fail to generalise to out-of-distribution (OOD) data (see Shen et al., 2021, for a

recent survey).

2. Interpretability – defined as the ability to understand how an ML model makes

its decisions (Lipton, 2016). Thus, an interpretable model is one that can be

easily understood by humans and readily explained in terms of its underlying

logic or rules. ML, and especially deep learning (DL) models, are complex and

difficult to interpret. Furthermore, there is a tradeoff between accuracy and

interpretability (Kuhn et al., 2013). ML algorithms like linear regression are

highly interpretable but often do not achieve outstanding accuracy. Conversely,

artificial neural networks (ANNs) generally have great accuracy but are less

interpretable.

3. Explainability – defined as the ability to explain why an ML model made its

particular decision (Miller, 2017). An explainable model is one that can provide

human-understandable explanations for its predictions, which is the goal of

explainable AI (XAI; see Došilović et al., 2018; Verma et al., 2020; Karimi

et al., 2020; Burkart and Huber, 2020, for surveys).
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4. Bias and Fairness – bias can be introduced at various stages of the ML pipeline,

from data collection and preprocessing to the selection of the model and its

hyperparameters. A biased ML model is unfair if its decisions discriminate

against an individual or group based on their inherent or acquired characteristics

(see Mehrabi et al., 2019, for a recent survey).

Many of the shortcomings are believed to stem from ML being correlation-based

rather than causal-based. For example, explainability is an inherently causal problem

as it is concerned with the question of why. As such, incorporating causality into

ML algorithms is argued to be the solution (Pearl, 2019; Ahmed et al., 2020; Goyal

and Bengio, 2020; Schölkopf et al., 2021).

Machine Learning for Causal Inference

There are two common causal inference tasks: (i) causal effect estimation (i.e.,

estimating the causal effect of a treatment on an outcome) and (ii) causal discovery

(i.e., identifying the causal relationships between variables to determine the underlying

causal model). ML can aid in both with:

1. Improved modelling of non-linear relationships – ML algorithms can model

non-linear relationships, making it possible to capture more complex causal

relationships in the data.

2. Better handling of high-dimensional data – ML techniques can handle high-

dimensional data, making it possible to estimate causal effects in settings where

traditional causal inference methods may struggle.

Traditional ML algorithms redesigned for causal inference include causal k-

nearest neighbours (CkNNs; Zhou and Kosorok 2017), causal forests (CRFs; Wager

and Athey 2015; Athey et al. 2016), and causal artificial neural networks (CANNs;

Shi et al. 2019; Xia et al. 2021). Note, these causal ML algorithms do not perform

causal effect estimation and causal discovery on their own. In Chapter 5, causal

inference and ML is combined to infer the causal effect of environment on SFR. ML

is utilised solely for estimation, and the causal inference framework to infer causality.

Specifically, the standard RF algorithm is combined with the causal inference method,

inverse probability weighting (IPW) of marginal structural models (MSMs).



Chapter 4

Galaxy Properties with Machine

Learning

This Chapter is based on Mucesh et al. (2021): A machine learning approach to

galaxy properties: joint redshift–stellar mass probability distributions with Random

Forest. Monthly Notices of the Royal Astronomical Society, 502(2), 2770-2786.

https://doi.org/10.1093/mnras/stab164
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We demonstrate that highly accurate joint redshift–stellar mass probability distri-

bution functions (PDFs) can be obtained using the random forest (RF) machine

learning (ML) algorithm, even with few photometric bands available. As an example,

we use the Dark Energy Survey (DES), combined with the COSMOS2015 catalogue

for redshifts and stellar masses. We build two ML models: one containing deep

photometry in the griz bands, and the second reflecting the photometric scatter

present in the main DES survey, with carefully constructed representative training

data in each case. We validate our joint PDFs for 10, 699 test galaxies by utilising

the copula probability integral transform and the Kendall distribution function, and

their univariate counterparts to validate the marginals. Benchmarked against a basic

set-up of the SED-fitting code BAGPIPES, our ML-based method outperforms SED

fitting on all of our predefined performance metrics. In addition to accuracy, the RF

is extremely fast, able to compute joint PDFs for a million galaxies in just under 6

minutes with consumer computer hardware. Such speed enables PDFs to be derived

in real-time within analysis codes, solving potential storage issues. As part of this

work, we have developed GALPRO1—a highly intuitive and efficient Python package to

rapidly generate multivariate PDFs on the fly. GALPRO is documented and available

for researchers to use in their cosmological and galaxy evolution studies.

1https://galpro.readthedocs.io/

https://galpro.readthedocs.io/
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4.1 Introduction

The next generation of photometric surveys, such as the Rubin Observatory Legacy

Survey of Space and Time (LSST; LSST Science Collaboration et al. 2009) and

Euclid (Laureijs et al., 2011), will observe billions of galaxies. The sheer amount

of data generated will enable studies ranging from the cosmic large-scale structure

(LSS) to the formation and evolution of galaxies to be conducted in unprecedented

detail, ultimately leading to a transformation in our understanding of the Universe.

However, one of the key challenges will be developing algorithms that can quickly

and reliably extract physical properties and redshifts of galaxies.

The success of many scientific analyses critically hinges on redshift measurements.

For example, redshifts are required in weak lensing tomography (Hu, 1999); one of

the primary probes to unveil the nature of dark energy. As a result, a large number

of methods now exist to estimate redshifts from photometric data, i.e., photo-z s (see

Salvato et al., 2019, for a review). In general, they are either physically-motivated or

data-driven.

SED-fitting methods fall into the former category as they require prior knowledge

in the form of SED templates. These templates are fit to the observed fluxes, and

photo-z s are usually determined using chi-square minimisation (e.g., Bolzonella et al.,

2000). Baum (1962) originally applied SED fitting to estimate photo-z s of elliptical

galaxies. Since then, a plethora of codes have been developed for the task, such as

LEPHARE (Arnouts et al., 1999), HYPERZ (Bolzonella et al., 2000), BPZ (Beńıtez, 2000),

ZEBRA (Feldmann et al., 2006), EAZY (Brammer et al., 2008), and BCNZ2 (Eriksen

et al., 2019).

The fundamental principle behind data-driven methods is to learn a mapping

between photometry and redshift using training data. Connolly et al. (1995) used a

polynomial function for the mapping. However, since the new millennium, machine

learning (ML) methods have become popular as they are able to learn more complex

mappings. Once trained, ML algorithms can make predictions on ‘new’ galaxies.

As with SED fitting, a large number of ML algorithms have been used to predict

photo-z s. These include artificial neural networks (ANNs; Firth et al. 2003; Collister

and Lahav 2004; Sadeh et al. 2016), support vector machines (SVMs; Wadadekar

2005), self-organizing maps (SOMs; Geach 2012; Way and Klose 2012; Carrasco Kind
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and Brunner 2014), Gaussian processes (GPs; Way and Srivastava 2006), genetic

algorithms (GAs; Hogan et al. 2015), k-nearest neighbours (kNNs; Ball et al. 2007),

boosted decision trees (BDTs; Gerdes et al. 2010), random forests (RFs; Carliles

et al. 2008, 2010; Carrasco Kind and Brunner 2013; Rau et al. 2015), and sparse

Gaussian framework (Almosallam et al., 2016). Furthermore, deep learning (DL)

methods have also been implemented (Hoyle, 2016; D’Isanto and Polsterer, 2018;

Pasquet et al., 2019).

Galaxies are described by a wide range of physical properties, with stellar

mass, star-formation rate, age, and metallicity being among the most important.

SED-fitting codes such as FAST (Kriek et al., 2009), CIGALE (Burgarella et al., 2005;

Noll et al., 2009; Boquien et al., 2019), MAGPHYS (da Cunha et al., 2011), and

BMASTELLARMASSES (Palmese et al., 2020a) have been specifically designed to output

these quantities. Meanwhile, the application of ML in this field has been fairly

limited, but literature has now begun to emerge (Acquaviva, 2016; Stensbo-Smidt

et al., 2016; Bonjean et al., 2019; Delli Veneri et al., 2019).

While single-value (point) estimates are useful, probability distribution functions

(PDFs) have become increasingly important in recent years as a full characterisation

of the uncertainties, beyond a point estimate and an error bar, is required for

accurate analyses. This has been particularly true in the role of redshifts for weak

lensing cosmology (e.g., Bonnett et al., 2016), where it has been shown that using

distributions instead of point estimates can improve the accuracy of cosmological

measurements (Mandelbaum et al., 2008; Myers et al., 2009). It is possible to extract

redshift PDFs using both SED fitting and ML methods. However, ML methods have

recently grown in use due to their efficiency. For example, packages such as ArborZ

(Gerdes et al., 2010), TPZ (Carrasco Kind and Brunner, 2013), SOMz (Carrasco Kind

and Brunner, 2014), SkyNet (Bonnett, 2015), and ANNz2 (Sadeh et al., 2016) all have

foundations in ML. To reach a consensus on the best algorithm in terms of PDF

accuracy, Schmidt et al. (2020) and Euclid Collaboration: Desprez et al. (2020) have

compared a dozen or more popular algorithms from both approaches.

The redshift and physical properties of a galaxy, measured via modelling its pho-

tometry, are correlated, and thus should be described with a multivariate distribution.

The commonly used marginal distributions in redshift, stellar mass, etc., constitute a
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loss of information and could potentially introduce biases into a scientific analysis as

a result. Consequently, a new class of SED-fitting codes has come to the fore, such as

BAYESed (Han and Han, 2012, 2014, 2019), BEAGLE (Chevallard and Charlot, 2016),

and BAGPIPES (Carnall et al., 2018). They utilise Bayesian statistical techniques

such as Markov chain Monte Carlo (Goodman and Weare, 2010; Foreman-Mackey

et al., 2013) and nested sampling algorithms (Skilling, 2006; Feroz and Hobson, 2008;

Feroz et al., 2009, 2019) to generate multivariate posterior distributions of the most

important properties. By estimating redshift and physical properties simultaneously,

they allow for any uncertainties on redshift to propagate to the statistical constraints

on physical properties, whilst accounting for any potential correlations (Chevallard

and Charlot, 2016). The only drawback is that it is not feasible to obtain these

distributions for a large number of galaxies. For example, BAGPIPES takes on average

a few minutes to fit each galaxy, making it prohibitively expensive to fit modern

datasets where sample numbers can exceed hundreds of millions, let alone upcoming

surveys where the numbers will exceed a billion. Moreover, the results of the fit to

each galaxy must somehow be stored in a way that is accessible to scientific analysis

routines.

Based on the speed and competitive performance of ML algorithms when used

to estimate photo-z s, it is possible that an ML approach to the problem could

be promising. With this in mind, we take a significant step towards realising the

ultimate goal of extracting full posterior distributions of galaxy properties using

ML by first focusing on 2D posterior distributions of redshift and stellar mass. We

choose these properties as they are two of the most important and accurate to predict

(Walcher et al., 2011; Conroy, 2013). Furthermore, joint PDFs are straightforward

to visualise and thus ideal for uncovering any hidden correlations or degeneracies

that exist between the properties.

Joint redshift–stellar mass PDFs have many potential science applications, such

as determining the evolution of the stellar mass function (SMF; e.g., Papovich

et al., 2003; Mortlock et al., 2015; Capozzi et al., 2017), the cross-correlation function

between galaxies and galaxy groups (Yang et al., 2005), understanding the connection

between stellar mass and dark matter in galaxy clusters (Palmese et al., 2016, 2020a),

and the stellar-to-halo mass relation (SHMR; see Wechsler and Tinker, 2018, for
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an overview). However, their storage remains a potential issue. Unless there is a

revolution in data storage, it will not be feasible to store a large number of multivariate

PDFs. To solve this dilemma, we have developed GALPRO—a highly intuitive and

efficient Python package for rapid, on-the-fly generation of n-dimensional PDFs.

GALPRO is documented and available for fellow researchers to use in their analyses at

https://galpro.readthedocs.io/.

An interesting application of GALPRO could be to generate joint red-

shift–luminosity PDFs for measurements of the Hubble constant from gravitational

wave events that lack an electromagnetic counterpart (Schutz 1986; Palmese et al.

2019; Soares-Santos and Palmese et al., 2019). The use of full redshift PDFs rather

than point estimates is very important for standard siren measurements (Palmese

et al., 2020b), and the inclusion of joint redshift–luminosity PDFs allows one to

correctly define the selection function of the galaxy sample at the same time.

The outline of this chapter is as follows. In Section 4.2, we outline the method

we use to extract point estimates and marginal and joint posterior probability

distributions of redshift and stellar mass using the RF algorithm. In Section 4.3, we

describe the preprocessing steps we perform to construct the necessary datasets. In

Section 4.4, we describe the different RF models we train and explain the motivation

behind them. We compare, discuss, and validate our results in Section 4.5, and place

them into a familiar context via a comparison to those achieved by BAGPIPES in

Section 4.6. Finally, we summarise this work in Section 4.7.

4.2 Method

The RF algorithm has previously been utilised to extract point estimates (Carliles

et al., 2008, 2010) and PDFs (Carrasco Kind and Brunner, 2013) of redshift. Recently,

Bonjean et al. (2019) used the algorithm to predict stellar masses and star-formation

rates of galaxies. They built a single model to predict both target variables simul-

taneously. The process of building decision trees to achieve this is conceptually

similar to building them to predict one target variable. The only difference is that

at each step, to decide the best split, the average loss function for two or more

variables is minimised. In Equation 2.5, ỹi, and ȳDL
and ȳDR

, are now vectors of

target variables and the means, respectively. As this loss function is scale-dependent,

the target variables must be transformed to place them on scales with similar ranges.

https://galpro.readthedocs.io/
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Otherwise, the variance of one will dominate, resulting in the algorithm expending

more effort in getting one target variable correct at the expense of others (Breskvar

et al., 2018). Once trained, the leaf nodes in the decision trees contain values of the

target variables.

We apply this methodology to predict redshift and stellar mass simultaneously,

thus preserving any correlation between the properties. As both variables are

continuous, we use regression trees to build the forest. However, it is entirely possible

to use classification trees as shown by Gerdes et al. (2010) and Carrasco Kind and

Brunner (2013). Another motivation for using regression trees is that they are

generally faster to train and better suited to non-uniform data. To summarise the

process,

• Galaxies cluster together in n-dimensional space if they have comparable values

of input features.

• The algorithm identifies these clusters by minimising the loss function (Equation

2.5), with redshift and stellar mass being the target variables.

• These clusters end up in the leaf nodes of the decision trees. In the end, the

leaf nodes contain redshifts and stellar masses of similar galaxies.

We extract point estimates of redshift and stellar mass by running a ‘new’ galaxy

down all the decision trees and using the mean of all the predicted values. To build

marginal posterior distributions, we aggregate the values of redshift and stellar mass

in the leaf nodes across all the decision trees, respectively. Finally, we combine the

aggregated values to build joint posterior distributions. We would like to point out

that our method is flexible and can be adapted to generate joint PDFs of any other

combination of properties. However, we chose redshift and stellar mass as they are

two of the most important and accurate properties to predict. Furthermore, the

method is flexible and can be applied to generate n-dimensional PDFs. We describe

the implementation of the RF in this work and the input features in Section 4.4.

4.3 Data

We use data from two different surveys to train and test our RF models. These

are the Dark Energy Survey (DES; The Dark Energy Survey Collaboration 2005;
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The Dark Energy Survey Collaboration et al. 2016; Lahav et al. 2020) and the

Cosmological Evolution Survey (COSMOS; Scoville et al. 2007).

4.3.1 Cosmological Evolution Survey

The COSMOS observed a 2 deg2 equatorial field in the entire spectral range from

radio to X-ray with both ground and space-based telescopes, collecting photometric

and spectroscopic data. In this field, ∼ 2 million galaxies were detected, spanning

75% of the age of the Universe (Scoville et al., 2007).

We use the COSMOS2015 (Laigle et al., 2016) catalogue from the field for

its photo-z s and stellar masses. Usually, to train an ML algorithm to predict

photo-z s, spectroscopic redshifts (spec-z s) are used. However, the photo-z s in this

catalogue have been shown to be precise and accurate. Compared to photo-z s from

surveys such as DES and the Sloan Digital Sky Survey (SDSS; York et al. 2000),

the COSMOS photo-z s have been computed using more than 30 bands spanning

a huge portion of the electromagnetic spectrum, as opposed to four or five optical

bands. The most precise photo-z s have been estimated for very bright, low redshift,

star-forming galaxies, with a normalized median absolute deviation (NMAD; Hoaglin

and Mosteller 2000) of 0.007, of which 0.5% are catastrophic outliers (i.e., objects with

|zphot − zspec|/(1 + zspec) > 0.15). Furthermore, in the deepest regions of the survey,

90% of galaxies with stellar mass greater than 1010M⊙ at z = 4 have been detected

(Laigle et al., 2016). The high photo-z precision and the overall completeness of the

survey in stellar mass makes this an exemplary dataset to use in this work.

4.3.2 Dark Energy Survey

The DES is a visible and near-infrared survey that has imaged ∼ 5100 deg2 of the

South Galactic Cap ten times in grizY photometric bands using the Dark Energy

Camera (DECam; Flaugher et al. 2015) over a span of six years, starting in 2013. It

is expected to have generated ∼ 310 million galaxies with photo-z s, once all the data

has been processed. In addition, the survey targeted a set of four fields with a total

of ten DECam pointings over 27 deg2 for supernova (SN) science. This SN survey

had an approximately weekly cadence and thus many more epochs per pointing than

the main survey (Neilsen et al., 2019). We use two datasets from the DES survey,

which are discussed in the following sections.
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4.3.2.1 DES Deep Fields

As part of the DES Year 3 (Y3) cosmology analysis, observations from the SN

survey were combined with community data, additional DES exposures (particularly

in u-band) and coincident near-infrared data to form the DES Deep Fields (DF)

catalogue (Hartley and Choi et al., 2020). The principal aims of the DF project are

to improve calibration of redshift distributions in the main survey and to act as a

prior on the population of full multicolour images for Balrog (discussed in the next

section), to better understand the systematics and selection function of the wide-field

(WF) survey. These goals rely on the fact that the DF represents a statistically

complete, yet effectively noiseless, population of the galaxies that are found in the

WF survey. Other motives include conducting galaxy evolution studies, science with

the faintest possible sources, and the properties of the host galaxies of transient

events.

The Y3 DF catalogue consists of data from three SN fields plus the COSMOS

field, with a total coverage of 5.88 deg2 and photometry of over 1.7 million objects

(after masking for image defects) in DECam ugriz and VIRCam JHK bands. We

combine the deep (∼ 1.25 mag fainter than the WF data) and precise griz photometry

in this catalogue with the accurate redshifts and stellar masses from the COSMOS2015

catalogue to produce a baseline DF dataset. Specifically, we utilise the bulge+disc

model-fit magnitudes computed using the Multi-Object Fitting (Drlica-Wagner et al.,

2018) algorithm.

Our goal is to produce valid posterior PDFs of galaxies in the main DES survey,

and to achieve this, we require a suitable dataset with which to train a RF model.

The photometric errors in the DF dataset would not reflect those in the WF and

so would lead to biased results if used directly as training data. Furthermore, the

COSMOS field does not overlap the main survey area and the redshifts and stellar

masses that could be derived from model fitting to the four-band WF data are grossly

imprecise compared to those in the COSMOS2015 catalogue. In essence, we require

a catalogue of DF galaxies that emulate galaxies in the WF to overcome these issues,

and for this, we take advantage of the Balrog algorithm.
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4.3.2.2 Balrog

Balrog is a Python package designed for the purpose of measuring the selection

function of imaging surveys (Suchyta et al., 2016; Everett et al., 2020). The process

by which it achieves this is as follows. A realistic ensemble of fake stars and galaxies

is generated using GALSIM (Rowe et al., 2015), including survey characteristics

appropriate to their intended sky location, e.g., seeing FWHM. The fake objects

are then embedded into real survey images, thus inheriting many of their properties.

Finally, the objects are detected and measured using SExtractor (Bertin and Arnouts,

1996) in the same way as the original survey images. The output catalogue comprises a

Monte Carlo sampling of the selection function and measurement biases and naturally

accounts for systematic effects arising from the photometric pipeline, detector defects,

seeing, and other sources of observational systematic errors.

The Balrog process requires a prior population of galaxies from which to draw

objects. The DES Y3 Balrog catalogue (Everett et al., 2020) was produced by

injecting model fits of galaxies drawn randomly from the Y3 DF catalogue into DES

Y3 single-epoch images and then measuring their properties. This catalogue contains

true and measured griz photometry of nearly 4 million objects, and it provides us

with ready-made emulated galaxies that reflect our target WF dataset, the DES Y3

GOLD (Sevilla-Noarbe et al., 2020). By combining the Y3 Balrog catalogue with

COSMOS2015, we obtain a dataset that closely matches and is representative of

the WF data, capturing many of the details of the objects’ noise properties, but

with the addition of accurate redshifts and stellar masses. From the catalogue, we

use composite model magnitudes in this work. In the next section, we outline the

preprocessing steps we perform to create the DF and WF datasets.

4.3.3 Preprocessing

To construct the DF dataset, we first cross-match galaxies in the Y3 DF and

COSMOS2015 catalogues using TOPCAT (Taylor, 2005), with a matching radius of

1 arcsec. This serves the dual purpose of enabling the use of accurate photo-z s

(PHOTOZ) and stellar masses (MASS BEST) in our analysis and removing galaxies in all

the other fields besides the COSMOS field. Next, we discard stars, as well as galaxies

with unreliable or missing redshift and stellar mass, by ensuring 0 < z < 9.99. We

produce a magnitude-limited sample by selecting galaxies with i < 23.5. These
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cuts automatically remove saturated objects and bad areas. We discover that there

are some faint galaxies with close to zero or even negative fluxes in the grz bands,

resulting in their magnitudes being undefined. To solve this issue, we convert all

galaxy fluxes into “asinh” magnitudes or “luptitudes” (Lupton et al., 1999), defined

as

µ = µ0 − a sinh−1

(
f

2b

)
, (4.1)

where µ0 = m0 − 2.5 log b, a = 2.5 log e, f is the flux, b is an arbitrary softening

parameter, and m0 is the magnitude zero point. The authors state that the optimal

value of b =
√
aσ, where σ is the standard deviation of the flux. We set the value

of σ to be the median of the standard deviations. Additionally, we transform flux

errors into luptitude errors using

σµ =
aσ

2b
. (4.2)

Luptitudes behave like magnitudes for bright photometry and like fluxes for faint

photometry, with the turning point in the behaviour determined by the softening

parameter. By converting to luptitudes, we avoid introducing an additional selection

effect by not discarding galaxies with negative fluxes.

To produce the WF dataset, we start anew and match “WF” galaxies in the Y3

Balrog catalogue to their counterparts in the Y3 DF using the ID column. Next, we

cross-match the galaxies in the intermediate catalogue to the COSMOS2015 catalogue.

There are multiple scattered WF copies of each DF galaxy in the Balrog catalogue to

efficiently sample the DES selection function, and to preserve this, we keep all of the

copies. This is an important aspect of our set-up, as it captures the selection function

through the galaxy detection probability as a function of true photometry and light

profile, as well as the asymmetric scatter between photometry and galaxy properties

(redshift and stellar mass) that it induces. We remove any galaxies with erroneous

flux measurements by selecting all galaxies with MEAS CM FLAG = 0 (Everett et al.,

2020). Finally, we repeat all the aforementioned cuts and steps used in constructing

the DF dataset, the only difference being that on this occasion, we apply the i-band

cut to the magnitudes of WF galaxies. Thus, we have augmented a completely
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Figure 4.1: Marginal and joint distributions of redshifts and stellar masses of galaxies in
the DF dataset and the distributions of griz luptitudes. The colours in the
joint distribution indicate the density of points. The DF dataset is created by
cross-matching galaxies in the DES Y3 Deep Fields (DF) and the COSMOS2015
catalogues. All galaxies with unreliable or missing redshift and stellar mass
are discarded from the dataset, and a magnitude-limited sample is produced
by selecting galaxies with i < 23.5. The griz luptitudes in the dataset are
computed from fluxes in the Y3 DF catalogue, while the redshifts and stellar
masses are from the COSMOS2015 catalogue.

realistic target dataset which effectively replicates the systematics in the WF survey

without compromising on the accuracy of redshifts and stellar masses.

After all the preprocessing steps, there are 53, 491 galaxies in the DF dataset and

393, 276 galaxies in the WF dataset. Each dataset contains the following information:

griz luptitudes and luptitude errors, photo-z s, and stellar masses. Additionally, we

compute all the relevant lupticolours, and the associated errors using the standard

error propagation formula:

σc =
√
σ2µ1

+ σ2µ2
, (4.3)

where σµ1 and σµ2 are the errors on the luptitudes, and σc is the error on the

computed lupticolour. Figure 4.1 shows the marginal and the joint distribution of

redshifts and stellar masses of galaxies in the DF dataset, and the distributions of

griz luptitudes. The average redshift and stellar mass is approximately 0.7 and
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5 × 109M⊙, respectively. For the sake of brevity, we do not show a similar figure for

the WF dataset as the distributions are broadly similar.

We perform an 80 : 20 split on the DF and WF datasets to create their training

and testing datasets, respectively. As there are multiple copies of each galaxy in the

WF dataset, we ensure that there is no admixture of unique galaxies in its training

and testing datasets. In other words, unique galaxies that exist in the training

dataset do not appear in the testing dataset, and vice versa. As a consequence,

there are 314, 196 and 79, 080 galaxies in the WF training and testing datasets,

respectively. Lastly, we randomly sample 10, 699 galaxies without replacement from

the WF testing dataset to construct its final version. We do this to ensure that the

number of galaxies in both the DF and WF testing datasets matches, thus enabling

us to make a fair comparison when testing our RF models.

The training datasets represent prior information that the RF models utilise in

order to make predictions on the test datasets. As a result, one must construct a suit-

able and representative training dataset (as we have done) when using outputs from

an ML model in their scientific analysis. In the next section, we describe the different

RF models, explain the motivation behind them, and detail the implementation of

the RF algorithm we use in this work.

4.4 Models and Implementation

We train and test two different RF models, with redshift and stellar mass as the

target variables and the following as input features:

• griz luptitudes

• griz luptitude errors

• g − r, r − i, and i− z lupticolours, and their associated errors

We build the first model using the DF dataset and refer to it as DES-DF from

here onwards. The high-precision photometry of DF galaxies combined with the

accurate redshifts and stellar masses allows us to establish the baseline performance.

We build the second model to produce valid posterior PDFs of galaxies in our target

dataset (the DES Y3 GOLD) by training on the WF dataset. We refer to this model

as DES-WF.
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To train and test our RF models, we use the implementation of the algorithm

in the Python ML package scikit-learn (Pedregosa et al., 2011). In particular, we

use the RANDOMFORESTREGRESSOR module from the package, which allows us to do

regression. Before training, we do not perform feature scaling as the RF algorithm is

invariant under monotonic transformations. Furthermore, we do not scale the target

variables because redshift and stellar mass (in the logarithmic form) have similar

ranges. Besides, scikit-learn automatically normalises the variances of individual

target variables so that they contribute equally to the loss function.

As previously discussed in Section 2.2, RF has hyperparameters that can be

tuned to increase the performance of a model. Therefore, we tune our RF models

before training using a combination of random search and grid search, adopting k-fold

cross-validation (specifically, 3-fold). We first set up a wide grid of hyperparameters

and run the models using 100 different combinations. Next, we use a grid search

around the best hyperparameters found in the previous searches. After tuning, we

find that the performance of the models, in terms of the root-mean-square error

(RMSE), only improves by 1−2%. In principle, one could use metrics associated with

the validity of PDFs (described in Sections 4.5.2.1 and 4.5.3.1). However, we opted

for the simple RMSE as we do not believe that there exists a single metric that can

fully characterise the performance of a model. Given the insignificant improvements

in the performance of our models, we ultimately resorted to using the following

default scikit-learn hyperparameters for training both models:

• n estimators: 100

• max features: auto

• max depth: none

• min samples leaf: 1

• min samples split: 2

• max leaf nodes: none

• min impurity decrease: 0.0

• min impurity split: none
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• min weight fraction leaf: 0.0

With these hyperparameters, the decision trees are fully grown until the training

data can no longer be split. We set max features to auto instead of
√
N , where N

is the total number of input features, to ensure that our models have sufficient prior

information, given that we are using a limited number of photometric bands to begin

with. We train and test both models on a 13” Macbook Pro (2.4 GHz Intel Core i5,

16GB LPDDR3) using GALPRO, and it takes less than 1 and 5 minutes respectively,

to generate PDFs for 10, 699 galaxies. In the next section, we compare, discuss, and

validate the point estimates and marginal and joint posterior PDFs of redshift and

stellar mass of test galaxies estimated from the trained models.

4.5 Results and Discussion

4.5.1 Point Estimates

We extract point estimates by averaging predictions from all the decision trees in a

given RF model. In order to quantify how the models are performing, we use the

NMAD metric for redshift and stellar mass. The NMAD is defined as:

σNMAD = 1.4826 × median | ŷi − ỹi |, (4.4)

where ŷi and ỹi are the predicted and true values of redshift and stellar mass of

galaxies, respectively. For redshift, the bias ŷ − ỹ is divided by 1 + ỹ.

Figure 4.2 shows the redshifts and stellar masses of test galaxies versus the

predictions made by DES-DF and DES-WF. Most of the data points lie close to the

diagonal, which indicates that the predicted redshifts and stellar masses are accurate.

However, there are outliers at low and high redshifts and low stellar masses. There

is a lack of training data available in these regions, as can be observed in Figure 4.1.

Given the strong correlation between the accuracy of a RF model and the abundance

of training data, these outliers are to be expected.

Moreover, the degradation in performance could be due to degeneracies that

exist in the colour–redshift space. For example, at z < 0.2, there is a lack of strong

spectral features that can be detected in the griz bands. Using the u-band can break

the degeneracies. However, we do not use it as an input feature as the band is not

available in the DES data. Furthermore, in the redshift range, 1.2 < z < 2.2, there is
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Figure 4.2: ‘True’ redshifts and stellar masses of test galaxies versus the predictions made by
the DES-DF and DES-WF models. The colours indicate the density of points.
The normalized median absolute deviation (NMAD; Hoaglin and Mosteller
2000) metric values are stated for redshift and stellar mass, respectively. For
redshift, the bias ŷ − ỹ is divided by 1 + ỹ in Equation 4.4.

a lack of strong spectral features in the visible bands (Bolzonella et al., 2000). These

degeneracies can lead to incorrect clustering of training galaxies and thus inaccurate

point predictions.

Comparing the two models, the point-estimate performance of DES-DF is better

than DES-WF, with σNMAD of 0.04 and 0.15 dex for redshift and stellar mass,

respectively. There is a visible increase in the scatter in the DES-WF plots, and

this is reflected in the values of the performance metric doubling for redshift to 0.08

and increasing by ∼ 73% to 0.26 dex for stellar mass. This drop in performance is

primarily due to the degraded photometric precision, which makes it difficult for the

RF to cluster galaxies, resulting in imprecise predictions. Nevertheless, DES-WF

still performs well for a significant portion of test galaxies, as can be observed. On a

related note, we also explored the impact on the performance when predicting one

versus two variables. We built two models each using the DF and WF datasets to

predict redshift and stellar mass separately and found that there was an insignificant
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improvement in the performance, with σNMAD decreasing by 0.001 − 0.002.

4.5.2 Marginal Probability Distributions

The point estimates we extracted are not perfect. In general, inaccuracies can arise

from:

• Incomplete and incorrect information – the information provided to an ML

algorithm may not be sufficient to learn the perfect mapping between the

input features and target variables. For example, to estimate redshifts to a

high degree of accuracy, spectroscopic data are required. However, we use

photometric data that only provides a rough sampling of the underlying SED.

Furthermore, the data used for training and testing have to be accurate. In

our case, the redshifts and stellar masses we use to train our RF models

may contain some errors. They have been estimated using the SED-fitting

code LEPHARE, which utilises template SEDs, and they may not be a perfect

representation of the true SED. Therefore, the mappings learnt by the RFs

may not be entirely accurate, and this could lead to the observed errors in the

estimates. Furthermore, we predict redshifts and stellar masses using four-band

photometry, while those in the COSMOS2015 catalogue are computed using

more than 30 bands. Consequently, there will be subtle differences between

our predictions and the ‘truth’.

• Unrepresentative and incomplete training data – the lack of representative and

complete training data can also lead to errors. In our case, the training data are

highly likely to be representative. However, in some regions, the data are sparse

and therefore do not provide a complete sampling of the target population.

For example, at low and high redshifts, the number of galaxies available for

training reduces dramatically, as can be observed in Figure 4.1, and this causes

the performance of the algorithm to suffer. Furthermore, the effect of sample

variance from the small COSMOS area can lead to some incompleteness.

• ML algorithms and hyperparameters – different ML algorithms learn using

different methods. As a result, predictions on the same datapoint can be

slightly different. Furthermore, the hyperparameters can also have an effect, as

discussed in Section 2.2. However, the performance of ML algorithms suitable
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for a specific problem generally converges given sufficient and good quality

training data.

In order to characterise uncertainties associated with our point estimates, we

extract marginal posterior distributions of redshift and stellar mass. We do this by

aggregating the redshift and stellar mass values in the leaf nodes of the decision

trees in a RF that are representative of the test galaxy in question. We extract the

distributions from the trained models and validate them using several techniques

and metrics described in the next section.

4.5.2.1 Marginal PDFs Validation

Unlike point estimates, it is not possible to validate individual redshift and stellar

mass PDFs as the true distributions are not available. Consequently, we aim to

determine the validity of the marginal PDFs as a whole. We use the framework

developed by Gneiting et al. (2007), which is founded on the paradigm of maximising

the sharpness of the predictive distributions subject to calibration. Sharpness refers

to the concentration of predictive distributions and is a property of the distributions

only. The authors describe calibration as the statistical consistency between the

distributions and the truth. We refer to this as validation as it better captures

the essence of use in our context. However, for consistency, we will use the former

when describing the authors’ work. In this work, we focus on calibration to validate

the marginal PDFs produced by our models, rather than sharpness, as the latter is

useful when ranking competing calibrated methods. Furthermore, as demonstrated

by Bordoloi et al. (2010), one could use the framework to empirically recalibrate

marginal PDFs. However, this can be challenging and could potentially result in

unforeseen issues.

Gneiting et al. (2007) introduce three modes of calibration: probabilistic,

marginal, and exceedance. The first two modes are the most important, and they can

be empirically assessed. As a result, we focus on them to determine if the marginal

PDFs produced by our models are valid and exclude exceedance calibration in our

analysis. Probabilistic calibration can be assessed using the probability integral

transform (PIT; Rosenblatt 1952). It is the cumulative distribution function (CDF)

evaluated at its true redshift or stellar mass:
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PIT =

∫ ỹ

−∞
f(y)dy, (4.5)

where ỹ is the true redshift or stellar mass, and f(y) is the marginal PDF. If the

marginal PDFs are probabilistically calibrated, then the true redshifts and stellar

masses should be random draws from their respective distributions. This statement

is equivalent to requiring that the CDF evaluated at the true redshift should not

have a preferred value. In this case, for an ensemble of galaxies, the distribution of

PIT values should follow the standard uniform distribution (U(0, 1); Dawid 1984),

i.e., one percent of galaxies should have their spec-z s found within the first percentile

of their CDFs, and so on. Deviations from uniformity can be interpreted as follows.

If the marginal PDFs are overly broad, then fewer objects will have true redshifts

in the tails of their PDF, instead being closer to 0.5, and the PIT distribution will

be convex-shaped. Conversely, if they are overly narrow, then the PIT distribution

will be concave-shaped. Finally, if the PIT distribution has a gradient, then this

means that the marginal PDFs are biased. In the past, the PIT distribution has

been utilised to determine the validity of redshift PDFs (e.g., Bordoloi et al., 2010;

Polsterer et al., 2016; Tanaka et al., 2018; Schmidt et al., 2020; Euclid Collaboration:

Desprez et al., 2020).

The uniformity of the PIT distribution is a necessary condition for marginal

PDFs to be valid. However, Hamill (2000) has shown that uniformity can also

arise from biased distributions. Therefore, probabilistic calibration may not be

sufficient in some cases, and marginal calibration may be required to reach a concrete

conclusion. Marginal calibration is associated with the equality of the predicted and

true distributions of redshift and stellar mass. Specifically, the average predictive

CDF (F̂I) is compared to the true empirical CDF (G̃I).

F̂I(y) =
1

N

N∑
i=1

Fi(y), (4.6)

G̃I(y) =
1

N

N∑
i=1

1{ỹi ≤ y}, (4.7)

where N is the number of test galaxies, Fi is the predicted CDF, ỹi is the true

redshift or stellar mass of a galaxy, and 1 is the indicator function, defined as:
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1{ỹi ≤ y} =


1 if True

0 if False

. (4.8)

If the PDFs are marginally calibrated, then the average predictive CDF should equal

the true empirical CDF. To assess probabilistic calibration, we check the uniformity

of the PIT distributions visually and use quantile–quantile (Q–Q) plots to highlight

deviations. In a Q–Q plot, the quantiles of one distribution are plotted against the

quantiles of another distribution. In our case, these are the PIT and U(0, 1). If the

two distributions are identical, then the quantiles match and lie along the diagonal.

Furthermore, we use several metrics to quantitatively determine the uniformity of

the PIT distributions (Schmidt et al., 2020), such as the Kullback–Leibler (KL;

Kullback and Leibler 1951) divergence, Kolmogorov–Smirnov (KS; Shiryayev 1992)

test, and Cramér-von Mises (CvM; Cramér 1928) test. All of these metrics measure

the similarity between two distributions in different ways. The KL divergence is

defined by the following integral:

KL =

∫ ∞

−∞
p(x) log(

p(x)

q(x)
)dx, (4.9)

where p(x) and q(x) are the reference (U(0, 1)) and target (PIT) PDFs, respec-

tively. The KS test is a non-parametric test and is the maximum distance between

the empirical distribution function (Fn(x)) and the CDF (F (x)) of the reference

distribution.

KS = supx|Fn(x) − F (x)|, (4.10)

where supx is the supremum of the set of distances. The CvM is an alternative to

KS test and is more sensitive to the edges of a distribution.

CvM =

∫ ∞

−∞
(Fn(x) − F (x))2dF (x). (4.11)

A value of zero for the different metrics indicates that there is a perfect match

between the two distributions.

Figure 4.3 shows the redshift and stellar mass PIT distributions and Q–Q plots

for the models. The black-dashed line represents the quantiles of U(0, 1), and the
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quantiles of the PIT distributions are shown using the solid blue curves. The values

of the metrics, along with the percentage of catastrophic outliers, are also indicated.

We define a catastrophic outlier to be any galaxy for which the true value of redshift

or stellar mass is completely outside the support of its marginal PDF.

Visually, the PIT distributions of DES-DF and DES-WF appear to be uniform,

and this is reinforced by the quantiles of the PIT distributions lying close to the

diagonal in the Q–Q plots, if not on it. Consequently, at first glance, both models

seem to be performing equally well. However, on closer inspection, subtle differences

can be observed in the PIT distributions. The PIT distributions of DES-DF are

more uniform compared to those of DES-WF, and the main difference arises at the

edges. Specifically, the PIT distributions of DES-WF are slightly concave-shaped, as

indicated by the minor deviations in the Q–Q plots at the extremes and quantitatively

confirmed by the significantly larger CvM criterion values. Hence, the marginal

PDFs produced by DES-WF are somewhat overly narrow or underdispersed. Taking

into account the degraded photometry, DES-WF is still performing admirably, with

only small increases in the number of catastrophic outliers compared to DES-DF.

Overall, both models are producing probabilistically calibrated marginal PDFs and

performing at an unprecedented level.

To assess marginal calibration, we plot the difference between the average

predictive and true empirical CDFs of redshift and stellar mass at regular intervals

in their respective ranges. If the PDFs are marginally calibrated, then only minor

fluctuations about the zero line are expected. Figure 4.4 shows the redshift and

stellar mass marginal calibration for the models. There are negligible fluctuations

about the zero line, with maximum deviations of ∼ 0.005. Therefore, both models

are producing marginally calibrated redshift and stellar mass PDFs, with DES-DF

performing marginally better with a smaller average deviation compared to DES-

WF. To summarise, the marginal PDFs are both probabilistically and marginally

calibrated, thus giving us confidence that they are valid. Finally, in the next section,

we analyse and perform validation checks of the joint redshift–stellar mass posterior

distributions.
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Figure 4.3: Redshift and stellar mass PIT distributions for the DES-DF and DES-WF
models. These distributions are used to assess the probabilistic calibration of
marginal PDFs of test galaxies produced by the models. They are overlaid
with Q–Q plots to highlight deviations from uniformity. The black-dashed
and solid blue lines represent the quantiles of U(0, 1) and PIT distributions,
respectively. The percentage of catastrophic outliers along with the values of
the Kullback–Leibler (KL) divergence, Kolmogorov–Smirnov (KS) test, and
Cramér-von Mises (CvM) metrics are also stated to quantify uniformity of the
PIT distributions. We define a catastrophic outlier to be any galaxy with a
redshift or stellar mass completely outside the support of its marginal PDF.

Figure 4.4: The difference between the average predictive CDF (F̂I) and the true empirical
CDF (G̃I) of redshift and stellar mass plotted at different intervals in their
respective ranges. These diagnostic plots are used to assess the marginal
calibration of marginal PDFs of test galaxies produced by the DES-DF and
DES-WF models.
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4.5.3 Joint Probability Distributions

In general, a joint PDF encompasses more information than its marginals. Therefore,

we extract joint redshift–stellar mass PDFs of test galaxies from DES-DF and DES-

WF. We build the distributions by combining the aggregated values of redshift and

stellar mass in the leaf nodes across all the decision trees. Figure 4.5 shows some

examples of the joint PDFs of the same test galaxies produced by the models. The

gold and white stars alongside the dashed lines indicate the ‘true’ and predicted

redshifts and stellar masses, respectively. We remind the reader that the predicted

redshifts and stellar masses are computed by averaging the predictions from all the

decision trees in a RF. Visually, the joint PDFs of the same test galaxy look alike

and occupy similar regions of the redshift–stellar mass space. However, the joint

PDFs produced by DES-WF are more spread out compared to the ones produced by

DES-DF, or in other words, the probability is more dispersed. This is a reflection of

the degraded photometry in the WF dataset. Overall, we do not expect the joint

PDFs of the same galaxy to resemble each other perfectly as both models have been

trained using different datasets.

4.5.3.1 Joint PDFs Validation

It is more challenging to validate joint PDFs compared to marginal PDFs as the

relatively straightforward methods adopted to validate the latter are no longer

applicable. As a result, we use the multivariate extensions of probabilistic and

marginal calibration developed by Ziegel and Gneiting (2014) to validate joint PDFs

in our case. These are probabilistic copula calibration and Kendall calibration,

respectively. Probabilistic copula calibration can be empirically assessed by using

the copula probability integral transform,

copPIT = KH(H(ỹ)), (4.12)

where H(ỹ) is the joint CDF evaluated at the true redshift and stellar mass, and

KH is the Kendall distribution function, defined as:

KH(w) = P (H(y) ≤ w), (4.13)

where H(y) is the predicted joint CDF and w ∈ [0, 1]. Simply put, the Kendall
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Figure 4.5: Examples of joint redshift–stellar mass PDFs produced by the DES-DF and
DES-WF models of the same test galaxies (in rows). The gold and white stars
alongside the dashed lines represent the ‘true’ and predicted redshifts and
stellar masses of the galaxies, respectively. The predicted redshifts and stellar
masses are computed by averaging the predictions from all the decision trees in
the individual RFs. The green circles indicate the values of redshift and stellar
mass in the leaf nodes that are representative of the test galaxies.
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distribution function is the CDF of H(y). For marginal PDFs, it corresponds to the

standard uniform distribution, and the copPIT coincides with the PIT. To assess

Kendall calibration, we compare what we refer to as the “average Kendall distribution

function” (K̂HI
) to the empirical CDF of the predicted joint CDFs evaluated at the

true redshifts and stellar masses (J̃I):

K̂HI
(w) =

1

N

N∑
i=1

KHi(w), (4.14)

J̃I(w) =
1

N

N∑
i=1

1{Hi(ỹi) ≤ w}. (4.15)

Probabilistic copula calibration and Kendall calibration can be interpreted in

the same manner as their univariate counterparts. As such, probabilistic copula

calibration ascertains if the true redshifts and stellar masses of galaxies are random

draws from their corresponding joint PDFs, as they should be. If this is the case,

then for an ensemble, the copPIT distribution is uniform, and the joint PDFs are

probabilistically copula calibrated. On the other hand, Kendall calibration probes

how well the dependence structure between redshift and stellar mass is predicted on

average, and can be understood as marginal calibration of the Kendall distribution.

If K̂HI
is comparable to J̃I , then the joint PDFs are Kendall calibrated. Once again,

if both modes of calibration are satisfied, then we can claim with some conviction

that the joint PDFs are valid overall. Furthermore, we would like to point out that

while we use probabilistic copula calibration and Kendall calibration to validate our

joint redshift–stellar mass PDFs, they can be applied to validate higher dimensional

PDFs also.

Figure 4.6 shows the copPIT distributions for the DES-DF and DES-WF models.

The distributions are uniform with minor deviations, which are more prominent for

DES-WF. Overall, both models are performing well with no substantial differentiation

and producing joint PDFs that are probabilistically copula calibrated. Furthermore,

in comparison to the PIT distributions in Figure 4.3, the copPIT distributions

of DES-WF are somewhat less uniform, as primarily reflected by the large CvM

value. Hence, the marginal PDFs produced by the model are better probabilistically

calibrated than the joint PDFs.
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Figure 4.6: copPIT distributions for the DES-DF and DES-WF models. They are overlaid
with Q–Q plots to aid in visually assessing the probabilistic copula calibration
of joint redshift–stellar mass PDFs of test galaxies. The black-dashed and
solid blue lines represent the quantiles of U(0, 1) and copPIT distributions,
respectively. The percentage of catastrophic outliers along with the values of
the Kullback–Leibler (KL) divergence, Kolmogorov–Smirnov (KS) test, and
Cramér-von Mises (CvM) metrics is also stated to quantify uniformity of the
copPIT distributions. We define a catastrophic outlier to be any galaxy that
is completely outside the support of its marginal PDFs. Probabilistic copula
calibration is the multivariate analogue of probabilistic calibration.

Figure 4.7: The difference between the “average Kendall distribution function” (K̂HI
) and

the empirical CDF of the predicted joint CDFs evaluated at the ‘true’ redshifts
and stellar masses (J̃I), plotted at regular intervals in the probability space
w ∈ [0, 1]. This diagnostic plot is used to assess the Kendall calibration of the
joint PDFs produced by the DES-DF and DES-WF models. Kendall calibration
is the multivariate analogue of marginal calibration.
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Figure 4.7 shows the difference between K̂HI
and J̃I at regular intervals in

the probability space w. For DES-WF, the fluctuations about the zero line are

smaller compared to those for DES-DF, thus indicating that the joint PDFs produced

by the former are better Kendall calibrated. We believe that DES-WF is better

capturing the redshift–stellar mass dependence structure as it is trained using the

WF dataset that contains multiple scattered copies of the same DF galaxies, resulting

in better incorporation of photometric errors present in the data into the model.

Collectively, the joint PDFs are less marginal/Kendall calibrated compared to the

marginal PDFs as the deviations are larger in magnitude. However, we hypothesise

that the deviations in the Kendall calibration are not significant given the complex

nature of joint PDFs, and to prove this, we compare our results to those achieved by

the SED-fitting code BAGPIPES in the next section.

4.6 Comparison: ML versus SED Fitting

The different diagnostic plots and the metrics we utilise to validate the marginal

and joint PDFs produced by our RF models are difficult to fully appreciate without

familiar context. Consequently, we utilise Bayesian Analysis of Galaxies for Physical

Inference and Parameter EStimation, or BAGPIPES (Carnall et al., 2018), to bench-

mark our results. BAGPIPES is a Python package that uses MultiNest (Feroz and

Hobson, 2008; Feroz et al., 2009, 2019) nested sampling algorithm, accessed through

the PyMultiNest interface (Buchner et al., 2014), to model the emission from galaxies

and to fit these models to any combinations of spectroscopic and photometric data

in order to output multivariate posterior distributions of parameters such as redshift

and stellar mass, hence making it ideal for comparison.

The photometry in the COSMOS2015 and DES Y3 DF catalogues have been

calibrated independently of one another. So, although we can expect them to be

broadly consistent, it is possible that small differences in absolute calibration between

the two remain. Even minor offsets in the calibration baseline may have a significant

impact on the stellar mass posterior PDFs produced using BAGPIPES with respect

to COSMOS2015, and perhaps also some subtle effects in redshift. Accordingly,

validation of the PDFs using the point predictions in the catalogue would not be

appropriate. To solve this dilemma, we run BAGPIPES on Subaru V , r, i+, and z + +

bands’ photometry from the catalogue in place of the DES DF griz bands. We
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specifically choose these bands in order to imitate the DES bands as far as possible

and therefore allow for an adequate comparison between the SED-fitting method and

our ML-based method. Although this does not match exactly the degradation in

the information provided to the RF, it is nevertheless very similar as we measure

PDFs using four optical bands instead of the 30-plus bands available in the catalogue.

Importantly, however, we avoid introducing any possible systematic effects that could

arise from inter-dataset calibration differences.

The model SED templates used by Laigle et al. (2016) cannot be exactly

reproduced in BAGPIPES. It is important for the validity of our comparison that

the four-band PDFs and the truth values are constructed under the same set of

model assumptions. Therefore, we produce a new set of truth values using the 22

COSMOS bands (including the four aforementioned) listed in Table 4.1. In both

the four-band and 22-band runs, we employ the same physical information about

the model as outlined in Table 4.2. These choices were made to closely mimic the

set-up adopted by Laigle et al. (2016) to compute the redshifts and stellar masses

in the COSMOS2015 catalogue, so that we can make a fair comparison. There are,

however, slight differences that we cannot negate, and as such, a direct comparison

is not possible. Nevertheless, they are mostly similar, and the aggregate metric

results should be comparable. We compute total COSMOS flux and flux errors

from those measured in a 3 arcsec diameter aperture, correct for photometric and

systematic offsets, and foreground galaxy extinction before initiating the runs. We

define the true values of redshift and stellar mass from the 22-band run to be the

mean predictions for each galaxy. Finally, we extract marginal and joint PDFs of

redshift and stellar mass from the four-band run and validate them using these

new ‘truth’ values. We utilise a total of 14 nodes for both runs, with each node

consisting of 12 Xeon X5660 cores and 16GB of random-access memory (RAM). The

runs take approximately 900 and 1, 400 hours to generate PDFs for 10, 699 galaxies,

respectively. Naturally, we only run BAGPIPES on test galaxies in the DF dataset.

SED fitting with four bands is known to be difficult due to degeneracies in the

parameter space (see Renzini, 2006, for a review). To compensate, authors sometimes

restrict the parameter space, for example, by neglecting dust extinction to improve

results (e.g., Capozzi et al., 2017), and this amounts to a hard prior in the galaxy
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Instrument/Telescope (Survey) Band

UltraVista Y, J, H, Ks

CFHT u

Subaru B, V, r, i+, z++,
IA427, IA464, IA484, IA505
IA527, IA574, IA624, IA479
IA709, IA738, IA767, IA827

Table 4.1: List of 22 COSMOS bands used to build a ‘truth’ catalogue to validate the
marginal and the joint PDFs of redshift and stellar mass produced by BAGPIPES

using the four-band (V , r, i+, and z + +) Subaru photometry.

Free parameter Prior Limits Fixed parameter Value

AV Uniform [0, 4] log10(U) -3
log10(M⋆/M⊙) Uniform [4, 13] aBC 0.01 Gyr

z Uniform [0, 10] ϵ 3
τ Uniform [0.3, 10] SPS models Bruzual and Charlot (2003)

Z/Z⊙ Uniform [0, 2.5] IMF Kroupa and Boily (2002)

Table 4.2: Fixed and fitted parameters with their associated priors for the delayed expo-
nentially declining (τ−2te−t/τ ) star-formation history (SFH) model used in the
BAGPIPES runs. The model is not readily available in BAGPIPES, so we lightly
modify the code to meet our requirements. We adopt the Calzetti et al. (2000)
attenuation curve, stellar population synthesis (SPS) models of Bruzual and
Charlot (2003), and a Kroupa and Boily (2002) initial mass function (IMF). AV

is the attenuation in the V-band, τ is the star formation time-scale, Z is the
metallicity, U is the ionisation parameter, aBC is the lifetime of HII regions, and
ϵ is a constant that controls the extra attenuation towards them.
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population. By design, RF includes an implicit prior built from the training data.

We approximate the effect of this prior by applying a 2D population prior formed

from the redshifts and stellar masses in the ‘truth’ catalogue to the PDFs estimated

by BAGPIPES using the four-band photometry. To apply the prior, we fit a kernel

density estimate (KDE) to the ‘true’ redshifts and stellar masses. We use 1% of the

total number of point predictions to fit this prior, which equates to ∼ 200, 000 data

points. Next, we compute the prior probability density at each redshift–stellar mass

sample point output by the BAGPIPES nested sampling (with four-band photometry).

We produce a smoothed posterior of these points, weighted by the prior probability,

via another KDE. Finally, we draw 1000 importance samples from this smoothed

posterior. We repeat this process for all the galaxies.

We explored the possibility of applying a full 6D prior because, in principle,

it should further improve the results. However, doing so caused a large number of

galaxies to become catastrophic outliers. It is beyond the scope of this work to go

through the painstaking process of carefully optimising a high-dimensional prior,

as we simply want a comparison that assists the reader’s intuition in interpreting

the result from our RF models. Nevertheless, we still had a considerable percentage

(6 − 7%) of catastrophic outliers even with our 2D prior. These outliers can skew

the performance in terms of the metrics we have chosen and can often be treated

separately in scientific analyses. Hence, we remove these outliers and then perform

the different calibration checks to better gauge the performance of the population at

large.

Figure 4.8 shows the PIT and the copPIT distributions alongside the marginal

and Kendall calibration plots from the analysis, and for comparison, they are overlaid

with results from the DES-DF model, labelled as GALPRO. The PIT distributions are

not uniform and indicate biased marginal PDFs for the galaxy population, which

correlates well with the marginal calibration plots that have large fluctuations about

the zero line. Nevertheless, the marginal redshift PIT distribution is competitive

with SED-fitting approaches used in code comparison works, e.g., Schmidt et al.

(2020, Figure 2) and Euclid Collaboration: Desprez et al. (2020, Figure 7). However,

these studies use deeper data than in this work. Unsurprisingly, a small number

of joint PDFs are also biased, as reflected by the non-uniform copPIT distribution.
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Figure 4.8: Comparison diagnostic plots for benchmarking the performance of GALPRO on
test galaxies in the DF dataset against that of BAGPIPES on a comparable
dataset, which is composed of the same galaxies but with Subaru photometry
in four bands (V , r, i+, and z + +) from the COSMOS2015 catalogue. The
marginal and joint PDFs of redshift and stellar mass produced by BAGPIPES

are validated using a ‘truth’ catalogue constructed by running BAGPIPES on
photometry in 22 COSMOS bands listed in Table 4.1.
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Despite the biased PDFs, BAGPIPES does manage to capture the dependence structure

between redshift and stellar mass on a similar level to that achieved by the RF. On the

whole, RF outperforms BAGPIPES on the metrics we have considered in our analysis.

Having said that, it should be possible for BAGPIPES to match the performance of

the RF through judicious use of priors and great care in photometric calibration. A

great advantage of the RF is that the large effort that would be required to do so is

not necessary. An implicit prior is automatically applied, transferring information

from the rich training dataset to our target data.

To summarise, we have benchmarked the performance of GALPRO against

BAGPIPES, and by doing so, we have been able to place our results into context. We

have found that our ML-based method performs better in every aspect compared to

a SED-fitting method that employs a fairly standard set-up. Thus, we have confi-

dence that our models are producing valid marginal and joint posterior probability

distributions, based on the different calibration modes and metrics we have employed

in our analysis.

4.7 Conclusions

The emergence of SED-fitting methods with the capability of generating multivariate

PDFs of redshift and physical properties of galaxies represents a paradigm shift.

These PDFs account for potential correlations between different galaxy properties

and fully characterise uncertainties associated with point estimates of the quantities.

However, with their potential benefits, comes the task of generating them quickly,

which is difficult given their complexity. For example, the SED-fitting code BAGPIPES

takes a few minutes to fit each galaxy. While this may not seem significant, the

amount of time required to generate them for hundreds of thousands of galaxies, let

alone the billions that will be observed with the upcoming photometric surveys such

as LSST and Euclid, quickly becomes impractical. Coupled with the difficulty of

storing such PDFs, a solution that enables on-the-fly production at speed is greatly

desirable.

In this work, we tackle the problem by using an ML-based approach. We

introduce a novel method based on the RF algorithm to generate joint PDFs. As an

example, we generate PDFs for the probability space in redshift and stellar mass,

as they are two of the most important to accurately predict. Our method can
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be generalised to extract n-dimensional PDFs. However, we focus on this specific

two-dimensional space as it is easy to visualise and exhibits well-known correlations

between the properties.

To demonstrate the method, we train two RF models to produce joint PDFs of

galaxies in the DES DF and the main WF DES survey, respectively. We separately

combine the COSMOS2015 catalogue, with the DES Y3 DF and the Y3 Balrog

to construct the necessary datasets, which contain 53, 941 and 393, 276 galaxies,

respectively. From the trained models, we extract point estimates and marginal and

joint PDFs of 10, 699 test galaxies. We then proceed to determine the validity of both

sets of PDFs, and for this, we utilise the notions of probabilistic copula calibration

and Kendall calibration to validate the joint PDFs, and their univariate counterparts

to validate the marginals. We highlight in particular the advantage of incorporating

realistic photometric errors into the RF on Kendall calibration. We benchmark

our results against those achieved by BAGPIPES, adopting a basic set-up and simple

population-derived prior in redshift and stellar mass, to provide some context to

the metric values and guide our intuition. We find that our ML-based method is

producing valid PDFs with only small calibration errors and performs at a superior

level on every metric we consider in our analysis compared to BAGPIPES. Despite the

success of our method, SED-fitting approaches such as BAGPIPES undoubtedly still

have a vital role to play in building the training samples for ML-based codes.

To conclude, joint redshift–stellar mass PDFs have many potential science

applications, from determining the evolution of the SMF to constraining the SHMR.

Consequently, we have developed GALPRO, a highly intuitive and efficient Python

package for rapidly generating n-dimensional PDFs on the fly, thus solving the

potential issue of storage. We have trained and tested our RF models using GALPRO

on a 13” Macbook Pro (2.4 GHz Intel Core i5, 16GB LPDDR3) and found that, at

best, it takes on average a few milliseconds to generate a PDF. Thus, GALPRO can

potentially offer a 100, 000x reduction in run time compared to packages based on

SED-fitting methods, making it ideal for the impending era of “Big Data”. Of course,

one must ensure that the training dataset is representative and suitable for their

scientific analysis to fully reap the benefits of GALPRO.



Chapter 5

The Causal Effect of Environment on

Galaxies with Causal Machine Learning

This Chapter is based on Mucesh et al. (in prep): The Causal Effect of

Environment on Star Formation with Causal Machine Learning.
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The formation and evolution of galaxies is a consequence of both their nature and

nurture. The two components are heavily intertwined, as nature influences nurture

and vice versa in a feedback loop as the galaxies and their environments co-evolve

over time. This muddling of causality combined with the lack of knowledge of the

evolutionary history of galaxies has hindered progress and restricted observational

studies to imply a galaxy–environment causal connection without the causal effect.

We aim to make progress with the emerging field of causal machine learning

(causal ML). In this work, we establish the causal nature of the star-formation rate

(SFR)–density relation in the IllustrisTNG simulations, specifically the TNG100-1

run. We construct a comprehensive causal model of galaxy formation and evolution

and employ the g-method, inverse probability weighting (IPW) of marginal structural

models (MSMs; Section 5.4), to disentangle nature and nurture. We apply the

random forest (RF) algorithm in a two-step estimation process to determine the

overall causal effect of environment on the SFR at z = 0. Additionally, we estimate

the causal effect at different redshifts going back to z ∼ 3 (with a baseline at z ∼ 6)

to understand how the role of environment has changed over time.

We find the causal effect is negative and substantial, with environment suppress-

ing the SFR by a factor of ∼ 100. While the environment has a negative impact on

star formation at low-to-intermediate redshifts (z ≲ 1), at high redshifts (z ≳ 1),

the role is reversed as it has a positive impact and boosts the SFR. Furthermore,

we reveal that: (i) nature plays a significant role since ignoring its effect results

in the causal effect in the densest environment being underestimated by a factor

of ∼ 6, (ii) controlling for the stellar mass at a snapshot in time (as is common

in the literature) is not only insufficient but actually has an adverse effect. The

negative effect at low-to-intermediate redshifts is overestimated, while the positive

effect at high redshifts is underestimated, by up to a factor ≳ 10 at specific densities,

though (iii) stellar mass is an adequate proxy of the effects of nature. The results

are supported by diagnostic tests, which indicate that our causal model is valid and

the causal assumptions might be satisfied.
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5.1 Introduction

Galaxies are diverse entities, with no two being completely alike. However, the

population naturally separates into two distinct, broad classes: the red sequence of

massive, red, early-type, quiescent galaxies, and the blue sequence of less-massive,

blue, late-type, star-forming galaxies. In the local Universe, the bimodal population

is unevenly distributed, with the red sequence mainly found in groups and clusters

and the blue sequence located in relative isolation in the field. In other words, galaxy

properties are correlated with environment. The fundamental question is then: are

the correlations causal?

The well-established morphology–density (Dressler, 1980), colour–density (Ko-

dama et al., 2001), and star-formation rate (SFR)–density (Gómez et al., 2003)

relations reveal that as environmental density increases, there is a shift from late-type

to early-type morphologies (Hubble and Humason, 1931; Zwicky, 1937; Morgan,

1961; Abell, 1965; Oemler, 1974; Davis and Geller, 1976; Postman and Geller, 1984;

Whitmore and Gilmore, 1991; Santiago and Strauss, 1992; Whitmore et al., 1993;

Hermit et al., 1996; Guzzo et al., 1997; Domı́nguez et al., 2001; Giuricin et al.,

2001; Treu et al., 2003; Goto et al., 2003), an increase in the fraction of red galaxies

(Willmer et al., 1998; Brown et al., 2000; Pimbblet et al., 2002; Zehavi et al., 2002;

Hogg et al., 2004; Blanton et al., 2005; Mart́ınez and Muriel, 2006), and a decline in

the star-formation activity of galaxies (Balogh et al., 1997, 1998; Hashimoto et al.,

1998; Poggianti et al., 1999; Balogh et al., 2000; Couch et al., 2001; Postman et al.,

2001; Carter et al., 2001; Lewis et al., 2002; Balogh et al., 2004a; Tanaka et al.,

2004; Rines et al., 2005), respectively. The correlations may be causal, but one

has to be careful as “correlation does not imply causation”. Notably, stellar mass

is strongly correlated with most galaxy properties (McGaugh and de Blok, 1997;

Blanton et al., 2003; Kauffmann et al., 2003b,a; Baldry et al., 2004b; Hogg et al.,

2004) and environment (Balogh et al., 2001; Hogg et al., 2003; Mo et al., 2004; Croton

et al., 2005; Hoyle et al., 2005; Blanton et al., 2005). Consequently, are the observed

correlations due to internal processes that scale with stellar mass rather than external

processes associated with environment? This is the essence of the nature versus

nurture debate.

Galaxy formation and evolution is conceivably a result of both nature and nurture.
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Typically, analyses have attempted to isolate the effect of nature by controlling for

stellar mass. A common approach has been to bin galaxies into fixed bins of stellar

mass before drawing conclusions from the residual trends. Most studies have found

that galaxy properties still depend on environment (Kauffmann et al., 2004; Balogh

et al., 2004b; Baldry et al., 2004a, 2006; Weinmann et al., 2006; Bamford et al., 2009;

Skibba et al., 2009). Overall, there is little doubt that environment plays a role in

shaping the evolution of a galaxy. But the magnitude of the role is still up for debate

(Pasquali et al., 2009; Thomas et al., 2010; Grützbauch et al., 2011).

There is uncertainty on whether controlling stellar mass is sufficient to disentangle

the roles of nature and nurture (De Lucia et al., 2012). Furthermore, it is still unclear

whether the nature versus nurture debate is sensible in the first place. In biology and

many other fields, there is consensus that nature influences nurture and vice versa in

a feedback loop. This is arguably true for galaxy evolution as well, as galaxies and

their environments interact with each other over time. In this instance, the notion of

separating the influence of nature and nurture is muddled and ill-defined.

There is some evidence to suggest that the effects of stellar mass and environment

are separable (Peng et al., 2010; Quadri et al., 2012; Kovač et al., 2014). Peng et al.

(2010) concluded that there are two processes associated with stellar mass and

environment that play a major role in quenching galaxies independently of each other,

which they termed “mass quenching” and “environmental quenching”, respectively.

Simply put, massive galaxies become quiescent independent of their environment,

and galaxies located in high-density regions quench independently of their stellar

mass. Given the strong possibility of a causal connection between stellar mass and

environment (Bolzonella et al., 2010; De Lucia et al., 2012; Mortlock et al., 2015;

Darvish et al., 2015; Davidzon et al., 2016), and contradictory studies (Lin et al.,

2014; Knobel et al., 2015; Darvish et al., 2016; Kawinwanichakij et al., 2017), the

result is puzzling and requires further exploration.

As galaxies and their environments co-evolve over time, consideration of their

histories is likely paramount to infer causality. Yet, observational studies in the

past have been confined to a sole snapshot in time, predominantly focused on the

local Universe due to the limitations of the then-available surveys. The advent of

deep surveys, such as COMBO-17 (Wolf et al., 2003), Great Observatories Origins
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Deep Survey (GOODS; Giavalisco et al. 2004), Deep Extragalactic Evolutionary

Probe (DEEP; Vogt et al. 2005) and DEEP2 Galaxy Redshift Survey (DEEP2;

Davis et al. 2003; Newman et al. 2013), and Cosmic Evolution Survey (COSMOS;

Scoville et al. 2007) and zCOSMOS (Lilly et al., 2007), has enabled studies to utilise

multiple snapshots over time. However, they still suffer from being unable to trace

the evolution of an individual galaxy, thereby weakening any evidence of causality

(VanderWeele et al., 2016).

In summary, we believe the lack of a theoretical framework to think and reason

about causal questions, combined with the limitations of observational data, has

hindered progress in the field. The studies have been largely statistical in nature, so

they have hinted towards causality but without mathematical conviction. We aim to

make progress by: (i) adopting the causal inference framework to comprehend and

solve the discussed problems and (ii) using simulations to trace both the evolution of

the galaxy population and individual galaxies over time.

Causal inference methods have been applied to answer crucial questions in various

fields, such as economics (Angrist and Krueger, 1991; Card and Krueger, 1993; Cengiz

et al., 2019), political science (Kam and Palmer, 2008), education (Angrist and Lavy,

1999; Carlsson et al., 2015), policy (Ghosh et al., 2018), public health (Doll and

Hill, 1950; Chay and Greenstone, 2003; Clark and Royer, 2013; Desouza et al., 2022),

and more recently, astronomy (Schölkopf et al., 2015; Wang et al., 2016). Despite

their success, the methods do not scale to handle high-dimensional and unstructured

data and non-linear relationships. Conversely, these are the strengths of machine

learning (ML) methods. ML has proliferated in most fields, including astrophysics

(see Baron, 2019; Fluke and Jacobs, 2020, for recent reviews). And in recent years,

ML algorithms have even been utilised for causal insights into galaxy formation and

evolution by determining the predictive power (Teimoorinia et al., 2016; Bluck et al.,

2019, 2020a,b, 2022; Brownson et al., 2022; Piotrowska et al., 2022; McGibbon and

Khochfar, 2022). For example, Bluck et al. (2022) estimated feature importances

with the random forest (RF; Breiman 2001) algorithm and demonstrated that it is

capable of identifying causal from non-causal parameters (known from simulations).

Nonetheless, the predictive power of a variable does not translate to the causal effect

and cannot guarantee causality because ML is fundamentally correlation-based. The
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missing ingredient is causal inference.

Causal machine learning (Causal ML) aims to empower causal inference with

powerful ML techniques and ML with causal reasoning (see Kaddour et al., 2022, for

a review). The field is still in its infancy but is developing rapidly and has already

shown some promising results (Richens et al., 2020). In this chapter, we apply causal

ML to disentangle the roles of nature and nurture and establish the causal nature of

the SFR–density relation. We estimate the causal effect of environment on the SFR

at z = 0 to determine the overall impact and at different redshifts out to z ∼ 3 to

determine how the role of environment has changed over cosmic time. Furthermore,

we answer the fundamental questions:

1. Is stellar mass an adequate proxy of the effects of nature?

2. Does controlling for the stellar mass at a snapshot in time disentangle the

effects of nature and nurture?

3. Is nature important in the nature–nurture debate? Specifically, is galaxy

formation and evolution top-down determined by environment with no reverse

influence of nature?

The outline of this chapter is as follows. In Section 5.2, we construct a compre-

hensive causal model of galaxy formation and evolution. In Section 5.3, we detail the

preprocessing steps we follow to prepare the galaxy sample we use in our analysis.

In Section 5.4, we describe the causal inference method we employ to disentangle

nature and nurture and estimate the causal effect of environment on SFR. In Section

5.5, we outline the overall two-step ML estimation process we apply to estimate the

causal effects. In Section 5.6, we validate our results by performing diagnostic tests

to ascertain whether the causal assumptions are satisfied and our causal model is

correct. In Section 5.7, we discuss and interpret the results, and place them into

a wider context via a model comparison. Finally, we summarise this chapter and

discuss potential future work in Section 5.8.
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5.2 Causal Model of Galaxy Formation and Evolution

Our goal is to estimate the causal effect of environment on SFR. Given that per-

forming an RCT on the Universe is impossible, we must infer the causal effect from

observational data1. As detailed in Chapter 3, observational data suffers from many

biases, which make any direct inference invalid. Causal inference from observational

data necessitates identifying and nullifying the biases with expert knowledge and a

priori assumptions about the data-generating process (DGP) in the form of causal

models. Consequently, we construct a causal model of galaxy formation and evolution.

We assume the cold dark matter (CDM) paradigm, in which galaxies form and

evolve hierarchically in dark matter haloes (White and Rees, 1978; Efstathiou and

Silk, 1983; Blumenthal et al., 1984). To build our causal model, we review established

theories of galaxy formation and evolution, and in particular ideas from semi-analytic

modelling (SAM; White and Frenk 1991; Cole 1991; Kauffmann et al. 1993; Cole

et al. 1994; Kauffmann et al. 1999; Somerville and Primack 1999; Springel et al. 2001;

Hatton et al. 2003; Springel et al. 2005; Kang et al. 2005; Lu et al. 2011; Benson 2012;

Henriques et al. 2015; also see Baugh 2006; Benson 2010, for reviews), and express

them as causal graphs. We carefully consider all the relevant physical processes and

assemble the causal model step-by-step with mini causal models before connecting

all the pieces.

We note that a method called genetic modification (GM; Roth et al. 2016) has

emerged that can determine the causal effect in simulations. Based on performing

controlled experiments, it mimics in effect an RCT and has been applied to estimate

the causal effect of environment (Cadiou et al., 2021). While the approach is promising,

it is limited to a single object (at a time) and, more importantly, cannot be applied

to the real Universe. Also, while we build the causal model, it is conceivable to infer

it—the aim of causal discovery. However, identifying causality is not our goal, but

rather the question this thesis attempts to address is: given our knowledge of galaxy

formation and evolution, how can we estimate the causal effect?

We adopt a straightforward naming convention in the causal model: any variables

associated with the halo and galaxy are preceded by them, respectively. Furthermore,

halo refers to the dark matter halo that hosts a galaxy, and host halo refers to the

1Observational data here refers to data not acquired through experimentation.
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parent dark matter halo that hosts other haloes. As such, halo refers to both distinct

haloes and subhaloes. In the following section, we describe the galaxy formation

process. Figure 5.1 shows the mini causal models of the different stages of galaxy

formation and standard physical processes occurring in galaxies.

5.2.1 Galaxy Formation

In the very early Universe, quantum fluctuations of the scalar field drive inflation and

generate density perturbations in the initial matter density field, sowing the seeds for

galaxy formation (Guth and Pi, 1982; Hawking, 1982; Linde, 1982; Starobinsky, 1982;

Bardeen et al., 1983). The small perturbations evolve under gravitational instability

as regions of space with above-average density attract matter and become denser

over time. Conversely, regions of space with below-average density lose matter and

become rarefied over time. The outcome is the amplification of the initial density

contrast.

Once a region reaches over-density (δρ/ρ ∼ 1), it breaks away from the cosmo-

logical expansion and collapses to form a dark matter halo (Mo et al., 2010). The

primordial haloes are small as perturbations on the smallest scales collapse first

(Benson, 2010). The mass and environment of the dark matter halo are a product of

the evolution of the initial matter density field, or more specifically, the amplitude

and pattern of the initial density perturbations, respectively. In the causal model,

we loosely label this as “initial conditions”: the ‘cause’ of the initial haloes and their

environment (Figure 5.1–1). Given that galaxies form in dark matter haloes, we

associate nature with halo mass, and nurture to environment.

The ordinary baryonic matter falls into the gravitational potential well of the

dark matter halo and is shock-heated to the haloes’ virial temperature to produce

a hot gas halo that is supported against further collapse by the pressure of the

gas. Thus, halo gas mass and temperature depend on halo mass (Figure 5.1–2,3).

Subsequently, the hot gas can cool through various mechanisms (Kauffmann et al.,

1993), which removes the pressure support and causes the gas to sink to the centre

of the gravitational potential well (Silk, 1977; Rees and Ostriker, 1977; Binney, 1977;

White and Frenk, 1991; Cole, 1991; Lacey and Silk, 1991). If the angular momentum

is conserved during the cooling process, the gas spins up as it flows inwards and

forms a rotationally supported disc (Fall and Efstathiou, 1980; Mo et al., 1998).
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Primarily, two factors determine the mass of cold gas in the disc: (i) the cooling

rate (i.e., the mass of gas cooled per unit time) and (ii) the free-fall time (i.e., the

time taken for the cooled gas to transfer from the halo to the disc) (Figure 5.1–6).

The cooling rate depends on the metallicity, temperature, and density of the halo gas

(Figure 5.1–4). Specifically, the temperature and density determine the ionisation

state and collision rate, respectively. The free-fall time depends on the halo mass

and radius (Figure 5.1–5).

As the gas accumulates, its self-gravity dominates over that of the dark mat-

ter—and it collapses. The exact process of star formation from a self-gravitating gas

cloud is unknown, but there are two theories. In the bottom-up theory, low-mass

stellar cores acquire gas from the cloud in a competitive accretion process (Bonnell

et al., 1997), while in the top-down theory, the gas cloud simply fragments and

the sub-clouds collapse to form stars (Krumholz et al., 2005). Independent of the

exact model, the star-formation rate (SFR) depends on the local density of cold gas

(Schmidt, 1959; Kennicutt, 1998) (Figure 5.1–7,8). This is the standard paradigm of

galaxy formation.

We remark that halo accretion also depends on environment, and generally,

the halo and forming galaxy are subject to external processes (discussed in Section

5.2.2.2). Thus, galaxy formation depends not only on nature but also nurture.
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5.2.2 Galaxy Evolution

In this section, we describe the internal and external processes that shape the

evolution of galaxies. We do not attempt to model the different processes in detail

or as accurately as possible because our goal is to estimate the overall causal effect

of environment rather than of individual processes. Instead, we focus on conveying

how the processes are related to halo mass and environment and their impact on

galaxy properties, especially SFR. Figures 5.2 and 5.3 show the mini causal models

of internal and external processes related to galaxy evolution, respectively.

5.2.2.1 Internal Processes

As stars form, the stellar mass of a galaxy increases, and the amount of cold gas

available for future star formation decreases by construction (Figure 5.2–1). The

consequence of the feedback loop between galaxy gas mass and SFR is that without

further accretion of gas, a galaxy will eventually die as it exhausts its cold gas and

star formation ceases.

Besides the natural evolution, feedback from massive stars can actively shape

a galaxy’s evolution and accelerate its demise. The most massive stars explode

in a supernova at the end of their lives, and the resulting feedback (Larson, 1974;

Dekel and Silk, 1986) can both positively and negatively affect SFR (see Hopkins

et al., 2014, for an overview). For example, supernova-driven galactic winds heat

the interstellar medium (ISM) and eject cold gas from the disc back to the halo,

or in the extreme case, out of the halo altogether, thus suppressing star formation

(Heckman et al., 1990; Martin, 1999; Scannapieco et al., 2008). Conversely, the blast

waves may compress the cold gas to temporarily boost star formation. Supernovae

(SNe) feedback also ejects material, which enriches the halo and galaxy gases. A

more metal-rich halo gas increases the cooling rate (or shortens the cooling time),

which may ultimately lead to increased star formation (Figure 5.2–3).

Supermassive black holes (SMBHs) are also important in the evolution of a

galaxy because they are responsible for AGN feedback (Dekel and Silk, 1986). There

are two main modes of AGN feedback: the quasar mode and the radio mode. In the

quasar mode, a SMBH grows via accretion of cold gas and mergers with other SMBHs

(in galaxy mergers). In the radio mode, SMBHs accrete gas directly from the halo

and release a vast amount of energy, heating the halo gas and suppressing cooling
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(Croton et al., 2006) (Figure 5.2–6,8). In both modes, AGN feedback negatively

impacts star-formation activity by diminishing the cold gas. Nevertheless, like SNe

feedback, there are mechanisms whereby AGN feedback can boost SFR (see Fabian,

2012; Heckman and Best, 2014, for recent reviews). In the causal model, AGN

feedback represents only the ‘output’ processes.

SNe feedback depends on the initial mass function (IMF) and the SFR (Figure

5.2–2). The IMF dictates the overall fraction of stars that end up as supernovae,

while the SFR determines the overall number. On the other hand, the picture for

AGN feedback is far less clear as it depends on how, when, and where SMBHs form.

Nevertheless, AGN feedback must scale with the mass of the SMBH (Soltan, 1982;

Silk and Rees, 1998) (Figure 5.2–7), which depends on accretion and merger rates,

but the reverse is true for the former as well, so there is a feedback loop (Figure

5.2–4). The accretion rate depends on halo and galaxy gas masses (Figure 5.2–6),

while the merger rate is broadly determined by the number of galaxy mergers (Figure

5.2–5), which as will be discussed in detail in the following section, depends on halo

mass and environment. In summary, there is believed to be a causal connection

between AGN feedback and star-formation activity.

Overall, there are feedback cycles between halo and galaxy gases, SFR, and

feedback. For example, an increase in cold galaxy gas from enhanced cooling of hot

halo gas boosts star formation. A fraction of the stars born explode in a supernova,

determined by the IMF, and the resulting feedback expels and/or heats the cold gas

in the galaxy, transferring it back to the halo, which in turn reduces star formation.

We emphasise that while the feedback theories discussed are likely to resemble reality,

the fact is that the precise mechanisms are unknown. Furthermore, it is still unclear

how SMBHs form in the first place.

In the following section, we describe the external environmental processes that

shape a galaxy’s evolution (see Boselli and Gavazzi, 2006, for a review). There are

many definitions of environment, but ultimately one means the mass density field.

Thus, we bear this in mind to derive the causal model.
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5.2.2.2 External Processes

Many processes associated with environment influence galaxies, but two of the most

fundamental are accretion and mergers. The halo accretion and merger rates depend

on halo mass and environment. For example, a massive halo is able to accrete more

matter, but environment also plays a role since it determines the amount available

for accretion. Also, a massive halo in a dense environment has to compete with

neighbouring haloes to attract matter. Accretion changes halo mass and environment

(assuming the local mass density field), so there is a feedback loop. Undoubtedly, a

feedback loop also exists between halo mass, environment, and mergers. However,

unlike accretion, mergers may not affect halo mass depending on the merger type

(clarified below). In summary, halo mass (i.e., nature) and environment (i.e., nurture)

influence each other via accretion and mergers in a feedback loop. In this context,

we define the nature versus nurture debate in this thesis (Figure 5.3–1).

Mergers are broadly categorised into two types: major and minor. A major

merger occurs when the progenitors are of similar masses, and in such a merger, the

progenitor haloes and galaxies merge violently to form a more massive halo with a

new galaxy residing at its centre. If the progenitors are disc galaxies with a mass ratio

1 : 1, then the post-merger remnant resembles an elliptical (Toomre and Toomre,

1972; Toomre, 1977; Hernquist, 1992, 1993; Barnes, 1988, 2002; Cox et al., 2006).

Later on, if the shock-heated and ejected gas from outflows cools with significant

angular momentum, a disc forms, and then the post-merger remnant resembles an

early-type spiral galaxy with a disc-bulge system (Hopkins et al., 2009; Sparre and

Springel, 2016; Pontzen et al., 2017). A galaxy merger is a cause of morphological

transformation (Figure 5.3–2).

A period of star formation activity follows a major merger if the progenitor

galaxies contain large quantities of cold gas. In the short term, the influx of cold gas

and/or an increase in the galaxy gas density due to interactions between galaxies

trigger starbursts (Mihos and Hernquist, 1994, 1996; Hopkins et al., 2006, 2008b,a;

Snyder et al., 2011; Hayward et al., 2014; Sparre and Springel, 2016). Also, the

halo gas shock-heated during the merger has the opportunity to cool, leading to

star formation in the long term. However, AGN feedback can prevent this from

happening (Sanders et al., 1988; Di Matteo et al., 2005; Hopkins and Hernquist, 2009;
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Treister et al., 2012). If the progenitor galaxies harbour SMBHs, they may merge in

the process. Additionally, the same influx of gas that fuels star formation can feed

the SMBH. The subsequent growth of the SMBH from the merger and accretion can

consume any leftover halo and galaxy gases (in a feedback loop) and suppress the

halo gas from cooling, resulting in a galaxy devoid of star formation (Figure 5.3–2).

A minor merger occurs when the progenitors are of dissimilar masses, and in

such a merger, the smaller galaxy is ‘absorbed’ by the larger galaxy. In our causal

model, we have defined two types of mergers: “halo mergers” and “galaxy mergers”.

As the names suggest, a halo merger refers to the merger of haloes, while a galaxy

merger refers to the merger of galaxies. As such, major and minor mergers are

halo mergers followed by galaxy mergers in our causal model (Figure 5.3–1). We

distinguish minor mergers into “minor halo mergers” and “minor galaxy mergers”.

In a minor halo merger, the haloes ‘merge’ as the smaller halo orbits within the

larger halo, but the galaxies may or may not. Accordingly, we refer to it as a halo

merger, but not exclusively. As in simulations, we model the halo merger with the

following perspective: the smaller and larger subhaloes occupy a common host halo

that is a sum of its parts. In other words, the progenitor haloes retain their identity

unless a galaxy merger follows a halo merger. Consequently, we continue referring to

progenitor haloes (and the associated variables) post-merger as haloes rather than

subhaloes of the host halo in the causal model.

Halo mergers are responsible for the formation of groups and clusters. In such

environments, the central galaxy is the most massive and located near the centre,

while the satellite galaxies orbit around it. Central galaxies reside deep in the

gravitational potential well of the host halo, while satellite galaxies reside further

out at different depths and distances. As a result, the environmental effect on these

galaxies is asymmetrical as satellites experience most of the processes and not centrals.

Satellite galaxies in these dense environments are subject to different processes that

are either a consequence of, or scale with, the host halo mass.

A satellite galaxy experiences dynamical friction (Chandrasekhar, 1943a,b,c)

as it orbits within its host halo. The drag slows down the satellite, which causes it

to spiral inwards and eventually merge with the central galaxy in a process called

galactic cannibalism. The magnitude of dynamical friction depends on the satellite’s
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halo mass and environment. For example, a satellite is subject to greater dynamical

friction if it is more massive and occupies a larger host halo. Galactic cannibalism is

the predominant environmental process that affects central galaxies (Figure 5.3–3).

Another critical process linked to environment is ram-pressure stripping (RPS;

Gunn and Gott 1972). As a satellite travels through the hot intergalactic medium

(IGM) of groups and clusters, its relatively cold halo and galaxy gases encounter

a hydrodynamical drag force due to the relative motion of the two fluids. If the

drag force exceeds the satellites’ restoring force, its cold gas is ablated. Accordingly,

while environment causes RPS (assuming the amount and temperature of hot gas

correlates), its extent also depends on halo mass. Evidently, the depletion of gas

(hot and cold) negatively impacts the SFR, and a decline in star formation affects

the visual morphology of the galaxy. More specifically, a satellite galaxy that is

initially spiral may resemble a lenticular (S0) galaxy. Nonetheless, there is doubt

whether the effects of RPS are negative and/or permanent. For example, there is

evidence that any gas not stripped may be compressed by RPS to cause an increase

in star formation activity in the disc (Dressler and Gunn, 1983; Gavazzi et al., 1995).

Additionally, the stripped gas may remain bound, to later fall back and induce

starbursts (Vollmer et al., 2001). In retrospect, RPS is likely to be only partially

responsible for the morphology–density and SFR–density relations (Abadi et al.,

1999) (Figure 5.3–4).

Groups and clusters comprise tens and upwards of hundreds of galaxies respec-

tively, so gravitational interactions are a common occurrence. In group environments,

a satellite galaxy experiences tidal forces from other galaxies. The tidal interactions

can remove its cold and hot gases, stars, and dark matter via tidal stripping (Moore

et al., 1999). As was the case with RPS, the effectiveness of tidal stripping depends

on environment (the number of interactions is related to the density) and halo mass.

Note that there is a feedback loop between tidal stripping and halo mass, so the

process becomes more effective over time (Kampakoglou and Benson, 2007) (Figure

5.3–5).

In cluster environments, satellite galaxies are typically not subject to tidal

stripping and mergers (not resulting from dynamical friction) because strong gravita-

tional interactions are infrequent due to their high velocities (Ghigna et al., 1998).
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Instead, they are subject to multiple, weak interactions, and the cumulative effect

of such interactions is called galaxy harassment (Farouki and Shapiro, 1981; Moore

et al., 1996). The high-speed encounters can impulsively heat the disc of a satellite

galaxy, which pushes its stars onto elliptical orbits, and the disc transforms into a

spheroidal component, thus altering its morphology (Moore et al., 1998; Gnedin,

2003; Mastropietro et al., 2005; Aguerri and González-Garćıa, 2009). At its extreme,

the stars can become completely unbound, which decreases the galaxy’s stellar mass

(Smith et al., 2010, 2015; Bialas et al., 2015). The heating of the disc naturally

impacts the SFR as it affects the density of the cold gas (via a change in the galaxy

gas mass and/or radius). Galaxy harassment scales with the number and strength of

interactions, which depends on environment, and resistance to its effects depends on

halo mass, like tidal stripping (Figure 5.3–6).

The hot halo surrounding a galaxy is in constant flux as the gas condenses to

form stars, and the subsequent feedback returns the cold gas back to the halo. Simply

put, the hot gas acts as a reservoir for future star formation. The combination of

RPS and tidal stripping can annihilate this reservoir, and without further accretion in

a dense environment, a satellite galaxy eventually stops forming stars as it exhausts

its fuel. This process is called strangulation (Larson et al., 1980; Benson et al., 2000).

We do not have a specific node for it in our causal model because it is not a process

in and of itself and is already captured by the existing variables. Also, we do not

have nodes for thermal evaporation (Cowie and Songaila, 1977) and viscous stripping

(Nulsen, 1982) because they are variants of RPS. Furthermore, whilst important,

variables such as colour, stellar metallicity, and luminosity are not included as they

are not the subject of this study.

Finally, we have not precisely defined or modelled morphology and related

processes because our target is the SFR–density relation. Nonetheless, internal

dynamical effects can change the morphology of galaxies, a well-known example

being the bar instability. A thin disc with high surface density is susceptible to a

non-axisymmetric instability, which creates a bar-like structure. Bars can funnel gas

to the central region of a galaxy (Athanassoula, 1992), which can fuel AGNs and

star formation (Zurita et al., 2004; Sheth et al., 2005). The bar may also buckle

to produce a “pseudobulge” (see Kormendy and Kennicutt, 2004, for a review),
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which can prevent the disc from collapsing and forming stars (Fang et al., 2013).

Additionally, there is a strong connection between bulges and SMBHs (Kormendy

and Richstone 1995; Magorrian et al. 1998; Ferrarese and Merritt 2000; Gebhardt

et al. 2000; Häring and Rix 2004; also see Kormendy and Ho 2013, for a review).

Thus, morphology can directly and indirectly influence SFR (and vice versa). Still,

detailed modelling of morphology is unnecessary to estimate the SFR–density relation

because it is not a confounding factor given that it does not also impact environment.

In fact, controlling for morphology may induce selection bias (Figure 3.3) since it is

a common effect of environment and SFR.

The key findings are: (i) galaxy formation and evolution depends on nature and

nurture, (ii) nature (i.e., halo mass) and nurture (i.e., environment) influence each

other through accretion and mergers, and (iii) internal processes associated with

nature also depend on nurture, and external processes associated with nurture also

depend on nature, as both halo mass and environment determine their impact on

galaxies. In conclusion, nature and nurture are heavily intertwined. In Section 5.4,

we describe a causal inference method to disentangle the causal effects of nature and

nurture. And to do so, we first unravel the feedback loops between them over time

in the causal model.
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5.2.3 Causal DAG and Effects

Figure 5.4 shows the causal model of galaxy formation and evolution in its entirety

with all the mini causal models and variables connected. The causal model is complex

and richly interconnected with multiple interactions and feedback loops between

the variables. The presence of feedback loops blurs the notion of causality. If two

variables cause each other in a cycle, then what is the causal effect of one thing on

another? Alternatively, the flow of causal association is symmetric along bidirected

edges, so the causal effect is undefined. Fundamentally, the fuzziness emerges due

to a lack of a causal arrow of time, i.e., a cause precedes its effect. Technically,

the causal graph is a directed cyclic graph (DCG) because it does not satisfy the

“variable does not cause itself” criterion. We transform the DCG into a DAG by

unravelling the feedback loops over time to make it easy to interpret and estimate

causal effects.

5.2.3.1 Causal DAG

We aim to estimate the causal effect of environment on SFR. Assuming the causal

model is representative of the DGP, we identify potential biases that may distort the

causal effect. Upon careful inspection, we find that halo mass is the fundamental

confounder as it causes the treatment (i.e., environment) and outcome (i.e., SFR)

through various processes. We focus only on these quantities of interest and unravel

the feedback loops between them to construct a DAG of the causal model, as shown

in Figure 5.5. In the DAG, H, E, and SFR denote halo mass, environment, and

SFR respectively, and the subscripts indicate time, increasing from left to right (with

zero marking the present). The causal model refers to the DAG from hereon unless

otherwise specified.

The initial haloes and their environments emerge from the initial conditions in

the early Universe. Subsequently, they interact and co-evolve over time in a feedback

loop, influencing galaxies in the process via various mechanisms. The structure of

the causal model is as follows:

Ek → SFRk Environment affects the SFR as: (i) tidal stripping and RPS deplete the

fuel necessary for star formation by annihilating the cold galaxy and hot halo

gases and (ii) galaxy harassment impacts the galaxy gas density by impulsively

heating the cold gas.
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Figure 5.5: Directed acyclic graph (DAG) of the causal model of galaxy formation and
evolution (Figure 5.4). It is constructed from carefully tracing the causal chains
and unravelling the feedback loops between halo mass (H), environment (E),
and star-formation rate (SFR). The subscripts indicate time, increasing from
left to right (with zero marking the present). The DAG is the causal model
unless otherwise specified.

Hk → SFRk Halo mass dictates the amount and density of the cold gas for star

formation as it indirectly influences the cooling rate and free-fall time via the

halo gas temperature and density. Furthermore, it determines the susceptibility

of a galaxy to environmental processes, which affects the SFR (see above).

SFRk → SFRk+1 Intrinsically, the act of forming stars consumes gas, thus impacting

the future SFR. Additionally, feedback as a consequence of star formation

actively affects the SFR through the expulsion of hot halo and cold galaxy

gases and suppression of the cooling process.

Hk−1, Ek−1 → Hk, Ek Halo mass and environment are determined by the halo accre-

tion and merger rates, which ultimately depend on the previous halo mass and

environment. Also, environmental processes such as tidal stripping affect the

halo mass.

Hk−1, Ek−1 → SFRk Accretion and mergers alter many halo and galaxy properties

besides halo mass, which all converge on the SFR. In other words, there is a

direct lagged effect of the previous halo mass and environment on the current

SFR.

There are many causal effects in the causal model. Then, what is the causal

effect of environment on SFR? We provide an explicit definition.
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5.2.3.2 Causal Effects

Environment affects galaxies over a period of time, so it is a time-varying treatment

rather than a time-fixed treatment. Concretely, a time-fixed treatment takes place

at a single point in time, while a time-varying treatment occurs at multiple points in

time. The causal effect of a time-varying treatment is not uniquely defined (Hernan

and Robins, 2023). We define two types of causal effects:

1. The marginal causal effect is the effect of a single treatment Tk on outcome Yk.

2. The joint causal effect is the effect of multiple treatments or treatment history

T̄k on outcome Yk, where T̄k = [T0, T1, ..., Tk].

The marginal and joint causal effects of environment on SFR provide different

insights. The marginal effect of Ek represents the short-term impact of environment,

while the joint effect of Ēk, captures the long-term impact on SFR. We estimate the

joint effect as we are interested in the overall impact and refer to it as the causal

effect. Although, we also determine the marginal effect for comparison. We define

the environmental history,

Ēj =
1

N

j∑
k=0

Ek, (5.1)

where N is the number of treatments and j = k (see Hagedoorn and Helbich, 2021, for

more complex characterisations). Note that j is used instead of k for mathematical

correctness in this equation and where necessary, but not in text for consistency. The

joint effect of Ēk represents the impact of average environment, which we de facto

mean by the causal effect of environment.

We highlight that while our goal is simply to determine the causal effect of

environment, there are many other causal questions one could investigate as there

are at least 2k possible treatment histories to contrast and thus 2k−1 causal effects

to estimate at time point k (for a binary treatment). For example, what is the

causal effect of occupying a moderately dense environment throughout time versus

a late infall into a high-density environment? In practice, data is limited, and the

number of histories observed is far less than the total, so specific questions require

careful consideration of the causal assumptions. In Section 5.4, we explain the causal
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inference method we apply to estimate both types of causal effects. Before that, we

describe the data we use in the next section.

5.3 Data

According to the causal model and method (as will become apparent in the next

section), we require the evolutionary history of galaxies to disentangle nature and

nurture. Such data is not readily available observationally, so we rely on simulations,

which enable the tracing of galaxies over time using merger trees. In particular, we

utilise the IllustrisTNG simulations (Pillepich et al., 2018a; Springel et al., 2018;

Nelson et al., 2018; Naiman et al., 2018; Marinacci et al., 2018; Nelson et al., 2019).

5.3.1 IllustrisTNG

IllustrisTNG (hereafter TNG) is a suite of cosmological, gravo-magnetohydrodynamical

(MHD) simulations run with the moving-mesh code AREPO (Springel, 2010). TNG

adopts a flat ΛCDM cosmology with Planck Collaboration et al. (2016) cosmolog-

ical parameters (ΩΛ,0 = 0.6911,Ωm,0 = 0.3089,Ωb,0 = 0.0486, σ8 = 0.8159, ns =

0.9667, and h = 0.6774). The simulations start at z = 127 from initial conditions

created with the Zeldovich approximation (Zel’dovich, 1970) and the N-GenIC code

(Springel, 2015). There are 100 snapshots of each simulation, approximately equally

spaced in cosmic time from z ∼ 20 to the present day z = 0.

TNG is the next-generation follow-up to the original Illustris simulation (Vogels-

berger et al., 2014b,a; Genel et al., 2014) and improves upon its predecessor in many

aspects. It incorporates a comprehensive physical model (Weinberger et al., 2017;

Pillepich et al., 2018b) to simulate the formation and evolution of galaxies within the

CDM paradigm, built upon the original model (Vogelsberger et al., 2013; Torrey et al.,

2014). The model includes prescriptions of various astrophysical processes, such as

star formation, stellar evolution, chemical enrichment, primordial and metal-line

gas cooling, stellar feedback-driven galactic outflows, and SMBH formation, growth,

and feedback (Pillepich et al., 2018a). Furthermore, the model has been tuned or

calibrated to reproduce key observational results at z = 0, such as the galaxy stellar

mass function and the stellar-to-halo mass relations, the total gas mass content

within the virial radius of massive groups, and the stellar mass–stellar size and the

BH–galaxy mass relations. Additionally, the overall shape of the cosmic SFR density
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at z ≲ 10 has also been preserved (Nelson et al., 2019).

Haloes and galaxies are identified in the simulations in a two-step process. A

friends-of-friend (FoF) algorithm (Davis et al., 1985) connects dark matter particles

separated by less than 0.2 times the mean interparticle distance to construct a FoF

halo. The SUBFIND code (Springel et al., 2001; Dolag et al., 2009) detects subhaloes

within each FoF halo by identifying gravitationally bound substructures using all the

particle types. Subhaloes may be dark or contain a luminous galaxy. A FoF halo can

contain zero, one, or more than one subhalo. A FoF halo with one subhalo is simply

a halo, while one with two or more subhaloes is a host halo. The most massive

subhalo in a host halo is the central subhalo; the rest are satellite subhaloes. In

postprocessing, merger trees are generated by linking the FoF haloes and subhaloes

over time using LHALOTREE (Springel et al., 2005) and SUBLINK (Rodriguez-Gomez

et al., 2015).

There are three flagship simulations: TNG50, TNG100, and TNG300, corre-

sponding to the rough side lengths of the simulation boxes in comoving Mpc. The

different simulations enable the exploration of various aspects of galaxy formation.

The largest volume simulation, TNG300, enables analyses of galaxy clustering, for

example. At the other end of the spectrum, TNG50 allows examinations of the

structural properties of galaxies in finer detail because the mass resolution is a few

hundred times better than the TNG300 simulation (Nelson et al., 2019). We use

the TNG100 simulation, which represents a good trade-off between volume and

resolution, particularly for intermediate mass haloes. Specifically, we utilise the

highest-resolution run of the simulation, TNG100-1. The simulation is initialised

with 18203 dark matter and gas particles of mass resolutions 5.1 × 105M⊙ and

9.4 × 105M⊙, respectively.

5.3.2 The Galaxy Sample

We require the evolutionary history of galaxies for our analysis. First, we select a

sample of galaxies to trace over time as follows. We start with the group catalogue

at z = 0, which contains 6291349 FoF haloes and 4371211 subhaloes. We match

each subhalo to its FoF halo using the SubhaloGrNr field, which results in 3430706

FoF haloes (i.e., more than half of FoF haloes do not have any subhaloes). There

are some subhaloes of non-cosmological origin, which means they have not formed
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due to the process of structure formation and collapse and are likely fragments or

clumps rather than bonafide galaxies (Nelson et al., 2019). We discard these objects

by setting SubhaloFlag = 1. Finally, we remove any subhaloes with no detectable

dark matter and retain all galaxies with stellar mass M⋆ > 109M⊙, resulting in 20935

galaxies. We chose the relatively high stellar mass cut because it corresponds to

well-resolved galaxies with at least 1000 star particles (Donnari et al., 2019), but

more importantly, to trace galaxies further back in time.

There is a possibility that applying the stellar mass cut introduces selection bias

since stellar mass may be a common effect of both environment and SFR. One can

interpret this as survivor bias (a form of selection bias) since we are selecting galaxies

that made it to the stellar mass at the ‘end’ of the galaxy formation and evolution

process. In the model, there is a causal connection between SFR and stellar mass, as

well as environment and stellar mass, but significantly only the former is direct, while

the latter is indirect through SFR. There is a ‘direct’ connection via harassment and

tidal stripping between environment and stellar mass, but it is likely to be weak

in comparison and not universal. Consequently, we reason that selecting galaxies

based on their stellar mass at z = 0 does not bias our analysis. Indeed, preliminary

tests supported this, as different stellar mass cuts were applied, and it was found

that while the amplitude of the SFR–density relation changed, the shape did not. In

other words, the causal effect remained unmodified. Another potential source of bias

is that haloes form earlier in denser environments (Gottlöber et al., 2001; Sheth and

Tormen, 2004; Gao et al., 2005; Harker et al., 2006; Maulbetsch et al., 2007), and

thus galaxies within them have had more time to evolve. This assembly bias can

explain the observed phenomenon of “downsizing” (Cowie et al., 1996), i.e., massive

galaxies form early and rapidly, while low-mass galaxies form later and over a more

extended timescale (see Fontanot et al., 2009, for a detailed discussion). We assume

that selecting galaxies above a relatively high stellar mass means the formation times

are similar.

We track the selected galaxies back in time with SUBLINK merger trees. The

merger tree of a subhalo can have many branches if its progenitors have undergone

mergers. We follow the main progenitor branch (MPB), which traces the most

massive progenitor at each point in time. For the analysis, we use 11 approximately
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equally-spaced snapshots in cosmic time from z ∼ 6 to z = 0 (i.e., snapshots

13, 25, 35, 43, 51, 59, 67, 75, 83, 91, and 99). We decided upon z ∼ 6 as the baseline

because it was the furthest we could trace most galaxies back in time. The average

timespan between each snapshot is ∼ 1.3 Gyr. After all the preprocessing steps, the

galaxy sample contains 18629 galaxies.

5.3.2.1 Environment and Measurement Choices

There are different measures available of halo and galaxy properties. In our analysis,

we use the quantities derived by summing all particles/cells bound to a subhalo

associated with the particular property. The choice of measure does not impact our

results because our questions are causal rather than statistical in nature. For the

same reason, we stick with instantaneous SFRs measured in the simulations instead

of using time-averaged SFRs that better match SFRs estimated observationally

with various tracers. Due to the finite numerical resolution of the simulation, the

instantaneous SFRs of galaxies are unresolvable if they are below the minimum value

of log(SFR) ∼ −4 for TNG100 (Donnari et al., 2019). The SFRs of such galaxies are

labelled zero, which could cause numerical issues when estimating the causal effect.

Following Donnari et al. (2019), we resolve the problem by randomly assigning an

SFR value between −4 and −5.

There are many definitions of environment in the literature (see Muldrew et al.,

2012, for a review), but the most popular are nearest-neighbour-based and fixed-

aperture-based measures. The former best probe the ‘local environment’, while the

latter the ‘large-scale environment’. Simply put, there is no universal definition of

environment, and the most suitable method is scale dependent (Muldrew et al., 2012).

As we are interested in the impact of the local environment, our environment proxy

is the Nth nearest neighbour density,

log(ΣN ) =
N

(4π/3)r3N
, (5.2)

where rN is the three-dimensional (3D) distance to the Nth nearest neighbour

from the galaxy in question. Specifically, we compute densities at the 10th nearest

neighbour, which is a popular choice in the literature (Lewis et al., 2002; Pimbblet

et al., 2002; Cassata et al., 2007; Sobral et al., 2011). We note that a rough analysis

was performed with a range of nearest neighbours from N = 3 − 64. Below N ≤ 7,
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the SFR–density relation was found to be noisy and flat, and thereafter, it became

more stable and negative with increasing N . These preliminary results indicate that

the causal effect of environment varies at different scales. Most subhaloes in the

simulation are small and dark (i.e., do not possess any galaxies), so considering the

entire population would result in a noisy density measure. For a more informative

estimate, we remove such subhaloes by applying the same cuts as when selecting the

galaxy sample, but we do not apply the stellar mass cut at 109M⊙. Instead, we drop

subhaloes with no detectable stars.

We considered using host halo mass as a proxy since many environmental

processes are either a consequence of it or scale with it. Ultimately, we opted against

it because it is not a fine-grained measure of environment and its effects. Galaxies in

a group or cluster are not in the same environment because they reside at different

depths in the gravitational potential well of the host halo. Consequently, they are

subject to varying degrees of environmental effects, and the effects are asymmetrical,

as satellites experience most of the environmental processes and not centrals (as

explained in Section 5.2.2.2). Precisely, the treatment is not well defined with host

halo mass and thus the consistency assumption is violated. Furthermore, there are

conceptual and practical issues with using host halo mass as an environmental proxy.

The host halo mass of a central galaxy is approximately equal to its subhalo mass,

and they are equivalent for an isolated galaxy (i.e., a galaxy that is not part of a

group or cluster). So, the environment would be undefined for isolated galaxies, and

for both, the line between nature and nurture would be blurred.

Following our naming convention, FoF haloes and subhaloes are host haloes

and haloes in our causal model respectively, so we refer to them and the associated

properties accordingly from here onwards. Figure 5.6 shows the relationships between

fundamental halo and galaxy properties such as host halo mass, halo mass, stellar

mass, and SFR, as well as the average environmental density of the galaxy sample at

z = 0. A clear positive correlation can be observed between host halo mass and the

10th nearest neighbour density, which suggests that the latter is a suitable measure

of environment, at least to the first order (see Haas et al., 2012, for a comparison

between different environment measures and host halo mass). As expected, the SFR

overall decreases with increasing environmental density.
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Figure 5.6: Distributions of fundamental halo and galaxy properties, such as host halo
mass, halo mass, stellar mass, and star-formation rate (SFR), as well as the
average environmental density (10th nearest neighbour density), of the galaxy
sample at z = 0.
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Figure 5.7: Evolutionary history of a galaxy (following the main progenitor branch) in
terms of its host halo mass, halo mass, stellar mass, star-formation rate (SFR),
and environmental density (10th nearest neighbour density), from z ∼ 6 to
z = 0. The various histories are min-max normalised to allow for comparison
on the same scale.

Figure 5.7 shows the evolutionary history of a galaxy in terms of the aforemen-

tioned properties from z ∼ 6 to z = 0. The various histories have been min-max

normalised to allow for comparison on the same scale. Between z ∼ 6 and z ∼ 2,

the galaxies’ halo mass and stellar mass increase sharply, with a peak in the SFR at

z ∼ 3. Soon after, the halo mass and SFR start to decline rapidly, and the stellar

mass plateaus. In other words, star formation is effectively shutdown. We believe

the cause is a halo merger because there is a significant jump in the host halo mass.

Specifically, the merger cuts off the supply of fresh fuel, and environmental processes

possibly strip the remaining halo and galaxy gases.
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5.4 Method

There are many causal inference methods to infer causal effects from observational

data. Fundamentally, they exploit one of two approaches to adjust for biases,

specifically confounding bias. The first approach is to block the backdoor path

between the treatment and outcome by conditioning on the confounder (as described

in Section 3.4.1). The act of conditioning stops the flow of non-causal confounding

association via the confounder (Figure 3.2b), which means that all association is

causal and the causal effect is unbiased. We refer to this as the conditional approach.

The second approach is to remove the backdoor path entirely by making the treatment

independent of the confounder, as achieved experimentally with RCTs. Visually, this

translates to no direct edge (i.e., arrow) from the confounder to the treatment in the

DAG. By removing the backdoor path, confounding bias is eliminated altogether. We

refer to this as the marginal approach. For time-fixed treatments, both approaches

produce unbiased causal effects. However, for time-varying treatments, only the

marginal approach performs well. Specifically, the conditional approach cannot

estimate valid joint causal effects, but the marginal approach can estimate both the

marginal and joint causal effects of time-varying treatments.

Consider the marginal effect of E0 on SFR0 in the causal model in Figure 5.5.

There are two confounders, H1 and E1, as they directly cause the treatment E0, and

directly and indirectly (via SFR1 and H0) cause the outcome SFR0. To estimate

the causal effect of the ‘current’ environment on the ‘current’ SFR, it is essential to

adjust for the confounders, i.e., the ‘previous’ halo mass and environment. Intuitively,

if the previous halo mass and environment affect the current SFR, then it is necessary

to negate their roles to determine only the impact of the current environment. Both

conditional and marginal approaches can appropriately adjust for the confounding

bias to estimate the marginal effect.

Now consider the joint effect of E0, E1, and E2 on SFR0. Once again, H1 is

a confounder of the causal effect of E0 on SFR0. However, unlike before, H1 is

now also a mediator as it lies on the causal pathway of the causal effect of E2 on

SFR0. This scenario is problematic for conditional approaches because conditioning

on the confounder to eliminate confounding bias will block some of the causal effect

of the previous environment on the current SFR and introduce over-adjustment bias.
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Simply put, the causal effect of environment on the SFR would be underestimated.

It is possible to either estimate the unbiased causal effect of the current environment

or the previous environment on the current SFR, but not both simultaneously. On

the other hand, marginal approaches do not suffer from the same conundrum and

can estimate the joint effect.

Generally, conditional approaches fail in estimating unbiased joint causal effects

of time-varying treatments when there is: (i) a time-varying confounder that causes

the outcome and subsequent treatment and (ii) the time-varying confounder itself

is affected by the previous treatment, i.e., there is treatment-confounder feedback.

The causal model satisfies both conditions: Hk is a time-varying confounder since it

causes outcome SFRk and the subsequent treatment Ek+1, and there is treatment-

confounder feedback as Hk is affected by the previous treatment Ek−1, i.e., the

previous environment affects the current halo mass which then affects the subsequent

environment in a cycle. Consequently, we adopt a marginal approach to infer the

causal effect of environment.

In summary, estimating the causal effect of environment is difficult due to the

interdependence of nature and nurture. The causal effects of nature and nurture are

intertwined as the causal effect of environment partially flows through halo mass and

vice versa. As a result, it is challenging to isolate the effect of one from the other

without introducing bias. Conditional approaches cannot adequately separate the

causal effects even if given all the necessary data. So, the challenge is not only of

data but also methodological. In this section, we present a method for disentangling

nature and nurture to estimate the causal effect of environment.

There are three different methods to estimate causal effects of time-varying

treatments in the presence of time-varying confounding and treatment-confounder

feedback: (i) the g-computation algorithm formula (g-formula; Robins 1986), (ii)

g-estimation of structural nested models (SNMs; Robins 1994; see Vansteelandt and

Joffe 2015, for an overview), and (iii) inverse probability weighting (IPW) of marginal

structural models (MSMs; Robins et al. 2000). These are collectively referred to as

Robins’ generalised methods (g-methods; see Naimi et al., 2017, for an overview).

We utilise IPW of MSMs to estimate the marginal and joint causal effects

of environment on SFR. The method has been applied to conceptually similar
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problems in other fields, e.g., to study the effects of methotrexate on mortality among

people with rheumatoid arthritis (Fewell et al., 2004), asthma rescue medication on

pulmonary function (Mortimer et al., 2005), neighbourhood poverty on alcohol use

(Cerdá et al., 2010), physical activity on knee pain in patients with osteoarthritis

(Mansournia et al., 2012), adverse childhood social conditions on chronic diseases

(Nandi et al., 2012), and religious service attendance on depression (Li et al., 2016).

Before we describe the method, we introduce its key component—the propensity

score.

5.4.1 Propensity Scores

The propensity score (PS; Rosenbaum and Rubin 1983) is the conditional probability

of treatment given covariates X,

e(x) = p(t|x) = P (T = 1|X = x). (5.3)

An extension of the propensity score to continuous treatments is the generalized

propensity score (GPS; Hirano and Imbens 2004),

e(t, x) = f(t|x), (5.4)

where f(t|x) is the conditional probability density function (PDF). For conciseness,

we refer to the GPS as simply the propensity score from hereon. Furthermore, we

denote p(t|x) as f(t|x) in the equations even when the treatment is binary because

the concept is the same. A propensity score close to zero or one means there is a low

or high probability of receiving the specific treatment given covariates, respectively.

Essentially, the propensity score represents the dependence of treatment on covariates.

As treatment dependence correlates with confounding bias when the covariates are

confounders, the propensity score can adjust for confounding to estimate causal

effects. There are four known techniques to adjust using the propensity score (see

D’Agostino Jr, 1998; Austin, 2011, for overviews):

1. Matching – units from the treatment group are matched to their counterparts

in the control group based on their propensity scores. This process makes the

treatment and control groups comparable in terms of their covariate distribu-

tions, which ultimately means they are exchangeable. As explained in more
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detail in Section 3.3, exchangeability ensures no confounding.

2. Stratification – the population is divided into distinct strata or subgroups based

on the propensity score. This negates any confounding effect because within

each stratum the level of confounding is similar.

3. Covariate adjustment – the propensity score is included along with the treat-

ment as a covariate in a model to predict the outcome.

4. IPW – units are weighted according to their propensity score. We discuss how

this eliminates confounding bias in the following section.

Previous studies have employed matching, stratification, and covariate adjust-

ment to eliminate confounding bias, but just not with the propensity score. For

example, the common approach of binning galaxies according to their stellar mass

is a form of stratification. Also, galaxies have been matched on redshift and stellar

mass when creating treatment and control groups (Ellison et al., 2008; Smethurst

et al., 2017; Garduño et al., 2021; Sotillo-Ramos et al., 2021), and stellar mass has

been included as a variable in models (Teimoorinia et al., 2016; Bluck et al., 2019,

2020a,b, 2022; Brownson et al., 2022; Piotrowska et al., 2022). We use the IPW

approach (see Chesnaye et al., 2022, for an overview) as the other techniques are

either unable or unsuitable to estimate the causal effect of environment. Stratification

and covariate adjustment are conditional approaches (Williamson and Ravani, 2017)

and thus cannot estimate the joint effect, and there is no clear strategy with matching

(Thoemmes and Ong, 2016).

5.4.2 Inverse Probability Weighting

In this section, we first describe the IPW method for time-fixed treatments and then

extend it to time-varying treatments.

5.4.2.1 Time-fixed Treatments

IPW is a statistical technique that adjusts for confounding bias by weighting each

unit with the inverse of their probability of receiving treatment, i.e., the propensity

score.

w(t) =
1

f(t|x)
. (5.5)
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Intuitively, the propensity score quantifies the magnitude of confounding bias, so

weighting each unit with its propensity score directly negates the influence of con-

founders. Specifically, the method works as follows: a unit with a high propensity

score implies the treatment it received is likely given the confounders. In other words,

the influence of the confounders is significant, so the unit is down-weighted to reduce

its impact. Conversely, a unit with a low propensity score implies that the treatment

it received is unlikely given the confounders. Crucially, such a unit is a counterfactual

of units that received a different treatment, and thus it is up-weighted because it

holds valuable information. In a sense, IPW is comparable to the technique of

importance sampling (Kloek and Van Dijk, 1978). Overall, assigning weights to each

unit creates a pseudo-population in which treatment is independent of confounders,

and thus IPW is a marginal approach.

Units with specific characteristics that predispose them to a particular treat-

ment, or from the alternative viewpoint, units subject to a treatment confined to

a subpopulation, will have propensity scores close to zero or one because of the

strong causal association between the covariates and treatment. Consequently, a

disproportionately small fraction of units can dominate and drastically skew the

causal effect. A simple solution is to truncate or trim the extreme weights from the

analysis, typically at the 1st and 99th percentiles. Though this can introduce its own

unknown bias (Cole and Hernán, 2008). A better approach is to stabilise the weights

with the marginal probability of treatment f(t) such that,

w(t) =
f(t)

f(t|x)
. (5.6)

Besides counteracting the effect of extreme weights, stabilised weights generally

reduce the variance of causal effect estimates (Robins et al., 2000). Furthermore,

when the treatment is continuous, unstabilised weights are not an option as they

have infinite variance (Robins et al., 2000). For binary or discrete treatments,

E[Y (t)] = E
[
1(T = t)Y

f(T = t|X)

]
, (5.7)

where 1 is an indicator function that is 1 if T = t and 0 otherwise. Thus, the ACE

of a binary treatment,
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τ = E[Y (1) − Y (0)] = E
[
1(T = 1)Y

f(T = 1|X)

]
− E

[
1(T = 0)Y

f(T = 0|X)

]
. (5.8)

Using the Horvitz-Thompson estimator (Horvitz and Thompson, 1952),

τ̂ =
1

N

N∑
i=1

(
1(Ti = 1)Yi

ê(Xi)
− 1(Ti = 0)Yi

1 − ê(Xi)

)
, (5.9)

where N is the number of units. Therefore, ACEs of binary treatments can be

directly estimated using the weights. However, this is not the case for continuous

treatments as the estimand (Equation 5.7) is biased for E[Y (t)] and is not valid

(Hernan and Robins, 2023). For continuous treatments, a model that describes the

causal relationship between the treatment and outcome is necessary. One such class

of causal models are MSMs. A MSM is a model for the potential outcome under

treatment, for example,

E[Y (t)] = β0 + β1t. (5.10)

Unlike ‘regular’ models, MSMs consider the expected outcome under different treat-

ments, which is not observable due to the “fundamental problem of causal inference”.

Nonetheless, it is possible to reliably estimate MSMs with IPW adjustment because

if the causal assumptions are met, the MSM is equal to:

E[Y |T ] = β0 + β1T. (5.11)

The parameters of MSMs have causal interpretations. For example, β1 represents

the ACE in the case of binary treatments. To summarise, weights are applied to fit

a MSM to estimate ACEs of continuous treatments (and also binary treatments).

As there are an infinite number of values when a variable is continuous, the goal

with continuous treatments is to estimate the causal dose-response curve (CDRC),

µ(t) = E[Y (t)], rather than a single causal effect τ .

The weights in their current form are valid for causal effects of time-fixed

treatments and marginal causal effects of time-varying treatments but may not

sufficiently adjust to estimate joint causal effects of time-varying treatments. Thus,

we describe the extension of the method to joint effects in the following section.
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5.4.2.2 Time-varying Treatments

Time-varying treatments affected by time-varying confounders necessitate adjust-

ments to eliminate confounding bias as before. However, unlike time-fixed treatments,

simply adjusting for all the confounders together in the presence of treatment-

confounder feedback fails when the goal is to estimate the joint effect. Suppose we

adjust for halo masses Hk since it is the time-varying confounder in the causal model.

Accordingly, there are no direct paths from Hk to time-varying treatments Ek, so

there is no confounding bias. But, since the same paths constitute causal pathways

of Ek to outcomes SFRk, the joint effect now suffers from over-adjustment bias.

This scenario is exactly the same as encountered with conditional approaches where

the joint effect is biased whether one adjusts for confounders or not. The solution to

the dilemma is simple: adjust for biases step-by-step rather than all at once.

With joint effects, the idea is to repeat the IPW process to adjust for biases

at each time point. The exact method is as follows: estimate weights for each time

point and then multiply them together to construct a final weight. This strategy

eliminates confounding bias without introducing over-adjustment bias, so there is

no overall bias. The method creates pseudo-populations at each time point, so the

principle is the same as with time-fixed treatments. The general form of stabilised

weights at time point k(= j) (Robins et al., 2000),

wj =

j∏
k=0

f(Tk|T̄k−1)

f(Tk|T̄k−1, X̄k)
, (5.12)

where Tk is the treatment at time point k, T̄k−1 is the treatment history up until the

time point, and X̄k is the confounder history to the time point. The numerator is the

conditional PDF of the current treatment given the previous treatment history, and

the denominator is the conditional PDF of the current treatment given previous treat-

ment and confounder histories. Compared to the weights for time-fixed treatments,

the treatment history is conditioned on because time-varying treatments can be,

and are, confounders if the previous treatments influence the current treatment and

outcome from the perspective of a point in time. As before, the weights are applied

to fit a MSM to estimate joint causal effects of interest. We apply the methodology to

estimate the causal effect of environment. The key takeaway is that simply adjusting

for the halo mass and environmental histories is insufficient to disentangle nature
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and nurture.

In summary, IPW of MSMs consists of: (i) estimating weights to adjust for

biases and (ii) fitting a MSM using the weights to estimate causal effects. Weights

can be estimated directly from data if the treatment and confounders are binary

or categorical variables and there are a limited number of them. In our case,

environment and halo mass are inherently continuous variables, and we suffer from

the curse of dimensionality with 11 total snapshots, so direct estimation is not feasible.

Additionally, we cannot fit a parametric MSM to estimate causal effects since the

causal relationship between environment and SFR is unknown. For both stages,

we apply ML to estimate the marginal and joint causal effects of environment. We

describe the ML algorithm we employ and the estimation process in the next section.

5.5 Estimation

Machine learning (ML) has revolutionised most fields, including astrophysics (see

Baron, 2019; Fluke and Jacobs, 2020, for recent reviews). Significantly, in recent years,

ML has been applied for causal insights into galaxy formation and evolution. Many

studies have estimated the predictive power in an attempt to determine the primary

factors in galaxy quenching (Teimoorinia et al., 2016; Bluck et al., 2019, 2020a,b, 2022;

Brownson et al., 2022; Piotrowska et al., 2022). Moreover, McGibbon and Khochfar

(2022) explored the importance of nature versus nurture. They incorporated the

evolutionary histories of galaxies from the TNG simulations (similar to this analysis)

and predicted galaxy properties with halo properties as inputs. Based on the feature

importance being higher at later rather than earlier cosmic times, they concluded

that nurture plays a more important role than nature. Nonetheless, predictive power

does not necessarily imply causation due to the possibility of confounding factors, for

example. If the confounders are input, ML can account for their influence by covariate

adjustment to output predictive power with causal implications. At the same time,

the predictive power can easily be biased if one is not careful and simply includes all

variables assuming that ML will automatically make the necessary adjustments. For

example, if a collider is present the predictive power would suffer from selection bias.

In our case, if we input the halo mass and environmental histories and estimate the

causal effect of environment, it would be biased because of the conditional approach.

Overall, ML on its own cannot infer causality because it is correlation-based.
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Causal machine learning (Causal ML) seeks to integrate causal reasoning into

ML to move from correlations to causation (see Kaddour et al., 2022, for a review).

The aim is to improve both causal inference with ML and ML with causal inference.

The field is being pioneered but has already had successes, e.g., in improving the

accuracy of medical diagnosis (Richens et al. 2020; also see Sanchez et al. 2022, for

a review of causal ML for healthcare). We combine ML and causal inference to

estimate the causal effect of environment on SFR. ML allows us to handle the high-

dimensional data and model the potentially non-linear relationships between halo

mass, environment, and SFR, and causal inference provides a theoretical framework to

infer causality. Specifically, we follow the IPW method and utilise ML for estimation.

In this regard, various ML algorithms have been applied to estimate propensity

scores (see Setoguchi et al., 2008; Lee et al., 2010; Westreich et al., 2010; Cannas and

Arpino, 2019, for comparisons), including a boosting algorithm based on decision

trees (McCaffrey et al., 2004; Zhu et al., 2015). Furthermore, a recurrent neural

network (RNN) architecture based on the method has been proposed that forecasts

treatment responses over time (Lim, 2018). We employ the random forest (RF;

Breiman 2001) as it has been shown to perform the best (out of the algorithms

compared) in estimating propensity scores (Cannas and Arpino, 2019).

RF is an ML algorithm for regression, classification, and other tasks. It is

an ensemble learning method as it leverages a multitude of decision trees to make

predictions. Each decision tree is built by recursively dissecting the feature space to

cluster data with similar target values until some predefined threshold. This process

creates a mapping from input features to target variables, which enables predictions

on new data after training. The algorithm is versatile and has been applied to

solve a wide range of problems. In astrophysics, RFs have been utilised to predict

photometric redshifts (photo-z s) and physical properties of galaxies (Carliles et al.,

2008, 2010; Bonjean et al., 2019; Mucesh et al., 2021), classify supernovae (Lochner

et al., 2016), and detect trans-Neptunian objects (Henghes et al., 2021), for example.

Furthermore, the ML method has been used by most of the aforementioned galaxy

quenching studies (Bluck et al., 2020a,b, 2022; Brownson et al., 2022; Piotrowska

et al., 2022).
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5.5.1 Overview

Estimation of causal effects using IPW of MSMs requires: (i) weights and (ii) a MSM.

We utilise the RF algorithm for both tasks and define two types of models:

• Weighting model – the input features and target variable are the confounders

and treatment, respectively. The model output is the expectation of treatment

given confounders, E[T |X].

• Outcome model – the input feature and target variable are the treatment and

outcome, respectively. The model output is the expectation of outcome given

treatment, E[Y |T ].

As the names suggest, the weighting and outcome models estimate weights and

MSMs, respectively. We devise the following multi-step estimation process:

1. Train a weighting model.

2. Predict the treatment of each unit with the weighting model to estimate the

propensity score.

3. Repeat the above steps, but now to estimate the numerator.

4. Construct weights.

5. Train an outcome model with each unit weighted.

6. Predict treatment outcomes with the outcome model to estimate causal effects.

5.5.2 Application

In the causal model, the previous halo mass Hk−1 and environment Ek−1 affect the

current environment Ek and star-formation rate SFRk. Therefore, it is necessary

to adjust for them at each time point to eliminate confounding bias. We go a step

beyond and adjust for the entire previous halo mass and environmental histories

(H̄k−1 and Ēk−1) as a precautionary measure to account for any direct lagged effects

of halo mass and environment that may hypothetically exist from further back in

time. Taking everything into consideration leads us to the weights,

wj =

j∏
k=0

f(Ek|Ēk−1)

f(Ek|Ēk−1, H̄k−1)
. (5.13)
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The only difference compared to the general form (Equation 5.12) is in the denomina-

tor, where X̄k (H̄k) is replaced with X̄k−1 (H̄k−1) because halo mass does not affect

environment in the same time point. The numerator is the conditional PDF of the

current environment given the previous environmental history, and the denominator

is the conditional PDF of the current environment given the previous environmental

and halo mass histories.

We estimate the propensity score (i.e., the denominator) as follows. We train

a weighting model with the previous halo mass and environmental histories as the

inputs and the current environment as the target. Once trained, we predict the

current environment with the model, which is the E[Ek|Ēk−1, H̄k−1]. Subsequently,

we construct a normal distribution with the mean set to the prediction and the

standard deviation equal to that of the residuals. Finally, we evaluate the density

function at the true value.

We estimate the numerator following the same process. In the weighting model,

we input the previous environmental history, with the target once again the current

environment. The model output is the E[Ek|Ēk−1]. We train separate weighting

models to estimate the weights at each time point. The exception being z ∼ 6 because

there is no prior confounding by default as it is the baseline snapshot. The weights

at the redshift are equal to one. We note that we have assumed the conditional

PDFs follow the normal distribution to estimate the densities. Also, we trained and

predicted on the same dataset because our goal is inference, not prediction.

Finally, we construct the weights as appropriate and incorporate them in outcome

models to estimate the marginal and joint causal effects of environment. For the joint

effect, we multiply the weights and use the final product weight. For the marginal

effect, we simply apply the time-point weight. As our environment proxy, the 10th

nearest neighbour density, is a continuous variable, we estimate CDRCs rather than

single causal effects. For this, we define a grid of 21 treatment values between the 1st

and 99th percentiles of the treatment distribution and predict with outcome models.

As discussed in Section 5.2.3.2, the marginal effect of environment represents the

short-term impact, while the joint effect represents the long-term impact. As per the

defined environmental history Ēk (Equation 5.1), the joint effect is the impact of the

average environment, which we de facto mean by the causal effect of environment.
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First, we focus on z = 0 to understand the final outcome of the galaxy formation

and evolution process. We estimate the joint causal effect of environment on the

SFR at z = 0 to determine the overall impact. We train an outcome model with the

average environment Ē0 and the star-formation rate SFR0 at z = 0 as the input

and target, respectively. Once trained, we predict the final SFR at different average

environments to estimate the CDRC. The weights applied are the product of weights

at all redshifts, and the model prediction is the E[SFR0|Ē0]. Following the same

process, we estimate the marginal causal effect of environment on the SFR at z = 0

to understand the most recent impact. In the outcome model, we input the final

environment E0, with the target once again the final star-formation rate SFR0. The

weights applied are simply the weights at z = 0, and the model prediction is the

E[SFR0|E0].

Next, we extend our analysis to all the redshifts to determine how the role of

environment has changed over time. We bootstrapped the entire estimation process

to obtain confidence intervals around the CDRCs. This resulted in weighting models

predicting a few extreme weights, probably due to the limited sample size. Given

that they could drastically skew the causal effect, we trimmed the weights at the 1st

and 99th percentiles. 1000 bootstrap samples were used.

We utilised the scikit-learn (Pedregosa et al., 2011) ML Python package

to train the RF models, specifically the RANDOMFORESTREGRESSOR module. In re-

gards to hyperparameter tuning, we kept the defaults and only coarsely tuned

min samples leaf, which is the minimum number of samples in a leaf node. Our

primary motivation was to best reduce the noise in the CDRCs due to: (i) the

non-linear nature of RF and (ii) extrapolation beyond the training data. We found

that the combination of 5 and 200 for the weighting and outcome models performed

the best out of a limited parameter space, respectively. Consequently, we trained all

the models with the aforementioned values. Before presenting and discussing the

results in Section 5.7, we verify their validity in the next section by qualitatively and

quantitatively checking whether the causal assumptions are met.
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5.6 Validation

The validity of any causal inference depends on the satisfaction of the key causal as-

sumptions described in Section 3.3, which are exchangeability, positivity, consistency,

and no interference.

The exchangeability assumption states that potential outcomes must be inde-

pendent of the treatment. In other words, it must be possible to swap treatment

groups without changing their potential outcomes. To achieve exchangeability, it is

necessary to adjust for any confounders, and thus we adjusted for halo mass, the

time-varying confounder in the causal model. Whether or not the assumption is

satisfied is untestable due to the possibility of unobserved confounders, which by

definition are not known. Here, sensitivity analysis is invaluable because it allows one

to determine the magnitude of impact on the results in the presence of unobserved

confounding (Robins, 1999). However, we do not perform any such analysis as we

have considered many known aspects of galaxy formation and evolution to construct

the causal model, which shows no other confounders besides halo mass that causally

affect both environment and SFR.

Positivity states that there must be a non-zero probability of receiving any

treatment. In the context of this study, galaxies of all halo masses (or stellar

masses, due to their correlation) must have some probability of occupying different

environments to reliably estimate the causal effect of environment at any particular

density. This is reasonably true according to the halo/stellar mass–environment

distribution in Figure 5.6, which shows a relatively uniform halo/stellar mass coverage

at different environmental densities. Though, in the lowest-density environments,

there is a lack of the least and the most massive haloes. To alleviate this positivity

violation, we have defined the treatment grid between the 1st and 99th percentiles of

the environmental density distribution, so environments at both extremes are not

considered.

Consistency states that the observed outcome must equal the potential outcome

under treatment. In other words, the treatment must be well-defined. The treatment

in our case is the environment, which has no universal definition, and this opens up

the possibility of violating the assumption. We employ the 10th nearest neighbour

density, and as long as the proxy consistently measures the environmental density in
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varied environments and the effect of environment is similar at a particular density,

we satisfy the consistency assumption.

Lastly, the no interference assumption states that the potential outcome of a

unit must only depend on its treatment. This assumption is irrelevant in our case

because galaxies in close proximity are roughly in the same environment, so they

are subject to the same treatment. We are concerned about neighbourhood-level

no interference (VanderWeele, 2008), which means that a galaxy’s SFR must only

depend on its environment and not the neighbouring environment. It is hard to

imagine a physical mechanism that would result in the above being untrue, so we

are reasonably confident that the no interference assumption holds. In summary, we

believe the consistency and no interference assumptions hold. In the following section,

we quantitatively verify exchangeability (assuming no unmeasured confounders) and

positivity.

5.6.1 Diagnostic Tests

The critical component of our causal analysis is the weights, which we utilise to

capture and adjust biases via the IPW method to estimate MSMs. Their validity

directly translates to unbiased causal effects, which means they can provide clues on

the satisfaction of the causal assumptions. As a result, we perform diagnostic tests

on them to check exchangeability and positivity. We highlight that we conduct the

tests on the weights estimated from the non-bootstrapped analysis.

The goal of IPW is to create a pseudo-population in which the treatment

is independent, and this produces exchangeability as the treatment groups are

comparable in terms of their covariate distributions when the treatment does not

depend on anything. We assess the covariate balance using the correlation-based

method of Zhu et al. (2015) to determine exchangeability. The basic premise is to

determine the correlation between the confounders and treatment in the pseudo-

population, and if it is minimal, then the treatment is independent, there is no

confounding, and exchangeability is achieved. The exact procedure is as follows:

1. Sample data with replacement from the original dataset according to the

weights wi.

2. Compute the correlation coefficient ρm between confounder Xm and treatment

T in the weighted sample.
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3. Repeat the above steps N times and calculate the average correlation coefficient

ρ̄m.

4. Finally, average the absolute values of all the average correlation coefficients to

compute the average absolute correlation coefficient AACC.

We assess the covariate balance at each time point because, if achieved, the joint

effects are valid along with the marginal effects. Accordingly, the data is sampled per

the time-point weights, not the final product weights. For consistency, the correlation

coefficients are computed with the previous environments Ēk−1 and halo masses H̄k−1

even though the confounders of the current environment Ek and star-formation rate

SFRk may only be the prior environment Ek−1 and halo mass Hk−1. Specifically,

Kendall’s tau coefficient (Kendall, 1938) is estimated because the halo mass and

environment distributions are not normal, and the relationship between them is

non-linear (as can be observed in Figure 5.6). In total, 1000 bootstrap samples are

generated to calculate the average correlation coefficients.

Figure 5.8 shows the AACC at the different redshifts in the original population

before weighting and in the pseudo-population after weighting. Zhu et al. (2015)

claim that there is minimal confounding when AACC < 0.1, medium confounding

when 0.1 < AACC < 0.3, and large confounding when AACC > 0.55. However,

these limits are based on heuristics, and there is no theoretical AACC value for

exchangeability. In this case, the relative change in the AACC is more important

than the absolute value. As observed, there is a clear decrease in the AACC post

weighting across all the redshifts, which indicates that IPW has reduced confounding

and improved exchangeability.

The mean of the stabilised weights is expected to be one because the size of the

pseudo-population equals that of the original population (Hernán and Robins, 2006).

Crucially, significant deviations indicate misspecification of the weighting model,

violation of positivity, or both (Cole and Hernán, 2008). However, as is the case with

the AACC, there is no reference value. Figure 5.9 shows the weight distributions

at the different redshifts. The means are close to one, so the causal model seems to

be valid, and positivity is not violated. Based on the reasoning and diagnostics, the

causal assumptions seem to have been met or at least not grossly violated (although

it cannot be definitively proven). Thus, the results can be considered valid.
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Figure 5.8: Average absolute correlation coefficients (AACC) at different redshifts in
the original population before weighting and in the pseudo-population after
weighting.
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Figure 5.9: Weight distributions at different redshifts, assuming the causal model. The
black and blue dashed lines indicate the reference mean (1) and the mean of
the distribution (stated), respectively.
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5.7 Results and Discussion

In this section, we first discuss the overall causal effect of environment, contrasting

the marginal and joint causal effects. Next, we describe how the role of environment

has changed over time. Finally, we compare different causal models to our causal

model.

5.7.1 Overall Causal Effect of Environment

Figure 5.10 shows the CDRCs of the marginal and joint causal effects of environment

on the SFR (i.e., causal SFR–density relations) at z = 0. The CDRC denotes the

average response in the population if all units were subject to treatment T = t. By

comparing any two points on the curve, one can determine the mean change in the

outcome if all units received, for example, treatment T = ta instead of T = tb. This

difference in outcome is the ACE τ . The CDRC of the marginal effect represents the

average SFR of galaxies if they inhabited the specific environment at z = 0, and the

CDRC of the joint effect represents the average SFR of galaxies if they inhabited, on

average, the specific environment over time. The bottom panel shows the ACEs of

different density environments (comparing to the lowest-density environment).

Focusing on the joint effect (i.e., the causal effect), the CDRC is relatively flat and

the causal effect of environment is negligible up to log(Σ10) ∼ 1. Subsequently, the

CDRC trends downwards and the causal effect of environment becomes negative as

the average SFR decreases with increasing environmental density until log(Σ10) ∼ 2.5,

at which point there is a reversal as the average SFR rises overall. In summary,

environment does not influence the SFR at low densities, but at intermediate-to-high

densities, it has a negative effect. On the other hand, at the highest densities, the

causal effect of environment is positive (explained in Section 5.7.3). Furthermore,

there is a characteristic density (log(Σ10) ∼ 1) beyond which environment starts

playing a role. We believe this may be physical, as not only has it previously been

evidenced by Lewis et al. (2002) and Gómez et al. (2003), but they also reported

the same characteristic density (albeit projected 2D). The density probably marks a

transition from the field to group environment. In short, the overall causal effect is

negative and substantial, with environment maximally suppressing the average SFR

by a factor of ∼ 100.

Comparing the marginal and joint effects, the CDRCs are broadly similar in



5.7. Results and Discussion 163

Figure 5.10: Causal dose-response curves (CDRCs) of the marginal and joint causal effects
of environment on the SFR (i.e., causal SFR–density relations) at z = 0.
The bottom panel shows the average causal effects τ of different density
environments (comparing to the lowest-density environment). The shaded
regions represent the 68% confidence interval, estimated with bootstrapping.
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terms of the overall trend. However, they diverge in absolute values, especially after

the characteristic density. Specifically, the marginal effect predicts a higher average

SFR than the joint effect across most of the domain. There are two important

implications given the above: (i) the SFR does not only depend on the current

environment but also the previous environments, i.e., there is a long-term effect of

environment, and thus (ii) the marginal effect is a biased estimator of the overall

causal effect of environment. Neighbourhood effect studies (Do, 2009; Do et al., 2013;

Clarke et al., 2014; Yang and South, 2018) have also evidenced the same in their

context (see Jivraj et al., 2019, for a recent review). In conclusion, snapshot studies

are insufficient to estimate the causal effect of environment. And longitudinal studies

that employ snapshot environment as a measure rather than the environmental

history (in some form) will estimate a biased causal effect. Consequently, we focus

on the joint effect from hereon, referring to it as the causal effect.

5.7.2 Role of Environment over Time

Figure 5.11 shows the CDRCs of the causal effects of environment on the SFR

at z = 0 and at different redshifts going back to z ∼ 3. The causal effect is

the most substantial at z = 0 and weaker in the recent past, implying that the

impact of environment accumulates over time. The negative trend largely flatlines at

z = 0.7—and surprisingly—reverses at z = 0.95. At and beyond this redshift, the

average SFR increases with increasing environmental density, so the causal effect

of environment on the SFR is positive. Furthermore, the effect is significant and

becomes stronger with redshift, from a factor of ∼ 10 to over 100.

The downtrend observed at low redshifts is consistent with previous studies,

but the uptrend at high redshifts is unexpected given the consensus: environment

negatively affects star formation. Despite this, studies have been inconsistent in

their findings, and there is an active debate on whether the SFR–density relation, as

observed in the local Universe, exists at intermediate (z ∼ 1) to high redshifts (z > 1).

Some studies have found that the relation persists in the early Universe (Patel et al.,

2009; Muzzin et al., 2012; Quadri et al., 2012; Chartab et al., 2020), others have

evidenced a flattening (Feruglio et al., 2010; Grützbauch et al., 2011; Scoville et al.,

2013; Ziparo et al., 2014; Darvish et al., 2016), while others yet have noted a reversal

(Elbaz et al., 2007; Cooper et al., 2008; Tran et al., 2010; Popesso et al., 2011; Santos
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Figure 5.11: Causal dose-response curves (CDRCs) of the causal effects of environment on
the SFR (i.e., causal SFR–density relations) at z = 0 and at different redshifts
going back to z ∼ 3. The bottom panel of z = 0 shows the average causal
effects τ of different density environments (comparing to the lowest-density
environment). The shaded regions represent the 68% confidence interval,
estimated with bootstrapping.
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et al., 2015; Lemaux et al., 2022). The lack of consistency between the studies is due

to a multitude of reasons, beginning with the ambiguity around the SFR–density

relation itself. The term is loosely used in the literature and is polysemous, as studies

have analysed the specific star-formation rate (sSFR)–density, colour–density, and

star-forming/quiescent fraction–density relations under the SFR–density relation

moniker. These quantities, while related, are fundamentally different and cannot be

compared. Another point for contention is the data or lack thereof. Deep surveys

observe a small patch of the sky, so the studies are susceptible to cosmic variance.

Lastly, since there is no universal definition of environment (Muldrew et al., 2012),

the choice of measure is possibly responsible for part of the disagreements.

It is difficult to draw parallels to the literature for all the aforementioned reasons,

but the most critical aspect is that the analyses have been largely statistical in nature.

In summary, studies have attempted to adjust for confounding by investigating sSFR

instead of SFR and/or binning the relation into fixed bins of stellar mass, which is

only correct if stellar mass is a true confounder. Furthermore, they have focused on

snapshots of galaxies with no knowledge of their evolutionary histories due to the

restrictions of observational data. As a result, they have been unable to disentangle

the causal effects of nature and nurture by unravelling the feedback loops present in

the causal model. Regardless, both observational (Elbaz et al., 2007; Lemaux et al.,

2022) and simulation studies (Tonnesen and Cen, 2014; Hwang et al., 2019) have

found SFR–density reversals (albeit at a weaker level) independent of the stellar

mass correlation, thus supporting a positive impact of environment. Additionally,

Hwang et al. (2019) and Lemaux et al. (2022) observed the uptrend strengthening

with redshift, as we do here. The consistency of our results, with Hwang et al. (2019)

in particular, given that they also used the TNG simulations (though the larger

volume TNG300 instead of TNG100), is strong evidence for the reliability of our

study.

Assuming our results are genuine, a possible explanation for the positive causal

effect of environment in the early Universe is that denser environments have a larger

reservoir of material. As a result, galaxies in such environments are able to accrete

more matter, which assuming gas cooling translates to enhanced star formation.

While this is true for high-density environments in the late Universe as well, the
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difference is that in the early Universe there is limited competition between haloes

and thus accretion is more unrestricted because the density is not too high. The

lower density also means that the negative environmental processes have yet to affect

galaxies, which in addition to the above, can explain the positive causal effect.

Another potential cause is major mergers, which are more likely at high redshifts

(Le Fèvre et al., 2000; Kampczyk et al., 2007; Kartaltepe et al., 2007; Lotz et al.,

2011) in dense regions when the velocities are not too large. An influx of cold gas

in a gas-rich galaxy merger can trigger starbursts. It is a different fact that such

mergers can accelerate the evolution of a galaxy and quench it altogether, so the

causal effect of environment in the long term is still negative, as observed at z = 0.

We iterate that the positive trend is not just a consequence of massive galaxies in

denser environments. Given that haloes form earlier in denser regions (i.e., assembly

bias), a significant positive causal effect of environment on SFR in the early Universe

followed by a downturn later on, is consistent with and explains galaxy downsizing.

That is, massive galaxies form earlier and at an accelerated rate, while low-mass

galaxies form later and more slowly (Cowie et al., 1996; Heavens et al., 2004; Kodama

et al., 2004; Jimenez et al., 2005; Juneau et al., 2005; Thomas et al., 2005; Bauer

et al., 2005; Bell et al., 2005; Nelan et al., 2005; Feulner et al., 2005; Bundy et al.,

2006; Drory and Alvarez, 2008; Vergani et al., 2008; Mortlock et al., 2011).

In the following section, we place our results into a wider context by comparing

our causal model to others. We answer the following critical questions: (i) is nature

important in the nature versus nurture debate? Specifically, is galaxy formation

and evolution top-down dominated by environment with no reverse influence of

halo mass? (ii) is controlling for the stellar mass at a snapshot in time sufficient

to estimate the causal effect of environment? and (iii) is stellar mass an adequate

proxy of nature? In other words, can stellar mass be substituted for halo mass in

the causal model to estimate the causal effect?
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5.7.3 Model Comparison

We first consider the possibility of no confounders. In our causal model, halo mass

is the sole confounder as it causes environment and SFR. However, this may be

time-dependent and scale-dependent as it is likely that in the late Universe and on

the largest scales, environment completely dominates the evolution of a galaxy and

halo mass has no reverse influence on environment, so it ceases to be a confounder.

In this scenario, the raw correlation between environment and SFR is the unbiased

causal effect of environment. Consequently, the first step of the estimation process

is skipped as no bias adjustment is necessary and unweighted outcome models are

directly trained to learn the SFR–density relation. As before, an outcome model is

trained for each time point with environment Ēk and star-formation rate SFRk as

the input and target, respectively. We refer to the model as the näıve model.

Next, we mimic previous studies—that is—we adjust for stellar mass at a snap-

shot in time to estimate the causal effect of environment. The method supposes the

causal model illustrated in Figure 5.12, in which stellar mass (M⋆) is the confounder.

Obviously, stellar mass does not cause environment and SFR, and hence the model is

implicit in the literature. Furthermore, the model fails to capture dynamic systems

with feedback loops that galaxies ultimately are. Nonetheless, the model/approach

is still adopted, in part because of the shortcomings of observational data where the

halo mass information and evolutionary history of galaxies are not readily available.

Controlling for the stellar mass at a snapshot in time represents the only practical

option (given that it correlates with halo mass) to disentangle nature from nurture,

even though it has been demonstrated by De Lucia et al. (2012) that this is not

sufficient. We refer to the model as the traditional model.

We implement the model following the same estimation process. In the weighting

models, the input is the stellar mass, and the target is the current environment. We

highlight that we only input the current stellar mass and not the stellar mass history

into the models, unlike in the causal model case, where we had input both the halo

mass and environmental histories. The weighting models are then used to estimate

the conditional densities f(E|M⋆). The marginal densities f(E) are determined via

kernel density estimation (KDE), and no further models are trained. Finally, the

weights are constructed with both densities and incorporated into outcome models.
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Figure 5.12: The causal model assumed implicitly in the literature to estimate the effect
of environment. We refer to it as the traditional model.

The time-point weights are not multiplied together to form the final product weights,

but rather they are applied separately to replicate the previous analyses. We train

two outcome models, one with the snapshot environment and the other with the

average environment, for a like-to-like comparison with the previous studies and

consistency with our results, respectively. For brevity, we refer to the causal effect

estimated with the former as the marginal and the latter as the joint effect, even

though it is technically neither.

Finally, we redo the analysis assuming our causal model, but on this occasion,

we input stellar mass as the time-varying confounder instead of halo mass in the

weighting models (labelled as “causal model (stellar mass)”). Our goal is to answer

the question: is stellar mass a suitable proxy of nature (halo mass) given a valid

causal model and method to disentangle nature and nurture. This is important

because halo mass (not host halo mass) is challenging to infer observationally. Figure

5.13 shows the CDRCs of the causal effects of environment on the SFR at z = 0 and

at different redshifts going back to z ∼ 3, of the different causal models. The bottom

panel of z = 0 shows the difference in the average SFRs between the different causal

models and the causal model (labelled as “causal model (halo mass)”).

5.7.3.1 Causal versus Näıve Model

At z ∼ 3, the CDRCs of the näıve and causal models are largely similar, which implies

halo mass has minimal influence on environment (assuming it impacts the SFR).
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This is not surprising because at this redshift, haloes are mostly isolated and yet to

majorly influence the environment a galaxy inhabits. There is a slight deviation after

log(Σ10) ∼ 2, so halo mass does have an impact in the denser regions, essentially

supporting the former. Over time, the curves diverge further as the impact of halo

mass accumulates. At z = 0, there is a factor of ∼ 6 difference in the average SFR in

the densest environment between the two models.

Up to log(Σ10) ∼ 2 at z = 0, the CDRC of the näıve model is above the causal

model’s, which signifies that halo mass has a positive effect on the SFR because, post

adjustment, the average SFR is lower. The probable explanation is that at low-to-

intermediate densities, a larger halo is able to accrete more gas from its surroundings,

which up to a certain extent, translates to enhanced star formation if the hot gas

can effectively cool. Between log(Σ10) ∼ 2 − 2.5, there is no discernible difference

between the two models, so halo mass has no effect on environment. In the host halo

mass–environment distribution in Figure 5.6, log(Σ10) ≳ 2 in average density probably

corresponds to large group and cluster host haloes, where environment is indeed

believed to dictate galaxy evolution. Ultimately, the causal effect of environment is

the largest in this density regime.

Beyond log(Σ10) ∼ 2.5, there is no consistent pattern. To begin with, the CDRC

of the näıve model is below the causal model’s, so halo mass has a negative impact on

the SFR. However, just before log(Σ10) ∼ 3, the curves flip, and halo mass resumes

its positive effect. We do not think this is physical and believe the fluctuation is

just a manifestation of galaxies switching from centrals to satellites when a smaller

group merges with a larger group. Halo mass is considered to influence centrals

more than satellites, so when galaxies switch from the former to the latter, its effect

also changes. And since the causal effect is of the average environment over time,

the effect of halo mass is observed to be inconsistent. Surprisingly, the causal effect

of environment is less negative as the average SFR, on the whole, increases with

environmental density. However, we do not think galaxies are actually less affected

in the highest-density environments. We argue that the result is because of the

asymmetry of the environmental effects on centrals versus satellites, whereby the

former is not subject to most of the environmental processes. As for the uptick itself,

the cause is likely galactic cannibalism since it is one of the few known processes that
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Figure 5.13: Causal dose-response curves (CDRCs) of the causal effects of environment on
the SFR (i.e., causal SFR–density relations) at z = 0 and at different redshifts
going back to z ∼ 3, of the näıve, traditional, and causal models (with stellar
mass and halo mass as the confounder, respectively). The bottom panel of
z = 0 shows the difference in the average SFRs between the different causal
models and the causal model (i.e., causal model (halo mass)). The shaded
regions represent the 68% confidence interval, estimated with bootstrapping.
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is understood to affect central galaxies in dense cluster environments and one that

can boost the SFR. All things considered, the next step is to split the causal effect

of environment on centrals and satellites. When the causal effect of a treatment is

modified by a variable V (central or satellite), it is referred to as effect modification,

and IPW of MSMs can be adapted to estimate the separate effects. We do not

explore this in this thesis and leave it for future work.

In conclusion, nature is important and galaxy formation and evolution is not

top-down determined by environment. The environment affects halo mass, but halo

mass influences the environment of a galaxy as well. Ignoring the role of nature by

not adjusting for halo mass leads to the causal effect in the densest environment

being underestimated by a factor of ∼ 6. The next step is to estimate the causal

effect of halo mass on SFR to answer the long-outstanding question: which is more

important, nature or nurture? This can be achieved by repeating the analysis but

now with halo mass as the treatment and environment as the confounder.

5.7.3.2 Causal versus Traditional Model

As expected, the traditional model predicts a negative causal effect of environment at

low-to-intermediate redshifts. However, unlike many previous studies, the negative

trend does not flatten at high redshifts. Instead, it reverses analogous to the causal

model, and the causal effect of environment becomes positive. For a like-to-like

comparison, Figure 5.14 shows the marginal causal effects. While the uptrend is

certainly weaker than the joint causal effect, it is still present nonetheless, especially at

z = 1.82 and z ∼ 3. The results further confirm that the positive trend observed with

the causal model is not simply due to massive galaxies in denser environments that

form more stars because we adjust for this fact by controlling for stellar mass with

the traditional model. As explained in the previous section, the positive causal effect

at high redshifts may be a consequence of the early Universe not being dense enough

for the negative environmental processes whilst simultaneously being conducive to

the positive processes such as halo accretion and (major) mergers. For a definitive

answer, the causal effect of individual environmental processes must be estimated.

The critical work has been done with the construction of a comprehensive causal

model (Figure 5.4). Using this model, we can extend our analysis to estimate the

causal effects of different processes (see Smethurst et al., 2017, for work in this
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direction).

Comparing the traditional to causal model, the former overestimates the negative

causal effect of environment at low-to-intermediate redshifts and underestimates the

positive causal effect at high redshifts by up to a factor ≳ 10 at specific densities. At

z = 0, the CDRC of the traditional model is largely identical to the näıve model’s

except in the high-density regime, so adjusting for the stellar mass at the redshift

has mostly had no effect. It has not eliminated the confounding bias and is therefore

insufficient to estimate the causal effect of environment. In fact, the traditional

model deviates further from the assumed truth (i.e., the causal model) than the

näıve model, so adjusting for the stellar mass at a snapshot in time actually has an

adverse effect. The failure of the traditional model is hinted by the skewed weight

distributions in Figure 5.15, with means farther from one compared to the causal

model’s (Figure 5.9).

5.7.3.3 Causal Model: Halo versus Stellar Mass

While there are differences at specific densities, the CDRCs of causal model (halo

mass) and causal model (stellar mass) are similar overall. Consequently, stellar mass

is an adequate proxy of halo mass and thus nature. This finding is highly significant

because unlike halo mass (not host halo mass), stellar mass can be readily inferred

observationally, and the ultimate goal of this study is to estimate the causal effect

of environment on galaxies in the real Universe. Evidently, the lack of evolutionary

histories of galaxies, or more specifically, the halo/stellar mass and environmental

histories is a major hurdle. On this front, star-formation histories (and thus stellar

mass histories) can be recovered by modelling and fitting spectral energy distributions

(see Conroy, 2013, for a recent review), both in parametric (Maraston et al., 2010;

Papovich et al., 2011; Ciesla et al., 2016; Lee et al., 2018; Carnall et al., 2018) and

non-parametric forms (Heavens et al., 2000; Cid Fernandes et al., 2005; Ocvirk et al.,

2006; Tojeiro et al., 2007; Koleva et al., 2009; MacArthur et al., 2009; Pacifici et al.,

2016; Leja et al., 2017; Belli et al., 2019; Iyer et al., 2019; Johnson et al., 2021; Ji and

Giavalisco, 2022, 2023). And recently, Sarpa et al. (2022) employed the extended

Fast Action Minimization (eFAM) method to reconstruct the environmental history

of galaxies. Consequently, it is feasible to estimate the real causal effect (on star

formation at least).
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Figure 5.14: Causal dose-response curves (CDRCs) of the marginal causal effects of en-
vironment on the SFR (i.e., causal SFR–density relations) at z = 0 and at
different redshifts going back to z ∼ 3, assuming the traditional model. The
bottom panel of z = 0 shows the average causal effects τ of different density
environments (comparing to the lowest-density environment). The shaded
regions represent the 68% confidence interval, estimated with bootstrapping.
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Figure 5.15: Weight distributions at different redshifts, assuming the traditional model.
The black and blue dashed lines indicate the reference mean (1) and the mean
of the distribution (stated), respectively.
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5.8 Conclusions

In this chapter, we tackle the challenging problem of disentangling nature and nurture

to estimate the causal effect of environment on star-formation rate (SFR). We develop

a comprehensive causal model of galaxy formation and evolution and apply causal

machine learning (causal ML) by combining the causal inference framework with

ML. Specifically, we employ the g-method, inverse probability weighting (IPW) of

marginal structural models (MSMs), and the random forest (RF) algorithm. We

devise and implement an overall two-step estimation process on the IllustrisTNG

simulations, specifically the TNG100-1 run. The dataset consists of 18629 galaxies

traced over cosmic time with merger trees from z ∼ 6 to the present day z = 0, and

our environment proxy is the 3D 10th nearest neighbour density. We estimate the

causal effect at z = 0 to determine the overall impact and at different redshifts going

back to z ∼ 3 to understand the role of environment over time. Also, we compare

our causal model to others to place our results into a wider context and answer some

fundamental questions.

The causal effect is found to be negative and substantial, with environment

suppressing the SFR by a factor of ∼ 100. Furthermore, we discover that:

1. There is a characteristic density, log(Σ10) ∼ 1, at which environment starts

playing a role. This ‘break’ in the SFR–density relation has been previously

evidenced by Lewis et al. (2002) and Gómez et al. (2003), who in fact reported

the same value (albeit in projected 2D density). We believe the density marks

a transition from the field to group environment.

2. The causal effect is not the strongest in the densest environments (log(Σ10) ≳

2.5) as the average SFR, overall, increases with environmental density. We

argue the reason is the asymmetry of the environmental effects on centrals and

satellites (with the former not subject to most of the environmental processes)

rather than galaxies being inherently less affected at the highest densities.

Specifically, the density regime primarily probes cluster environments where

central galaxies are likely cannibalising their satellites, and hence the SFR is

mildly boosted and the causal effect appears to be weaker. All things considered,

the separate causal effects of environment on centrals and satellites must be

estimated. We note this is feasible with the causal inference method we have
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utilised, IPW of MSMs.

3. While the environment negatively affects the SFR at low-to-intermediate red-

shifts (z ≲ 1), at high redshifts (z ≳ 1), it has a positive impact as the

average SFR increases with environmental density. Furthermore, the causal

is significant, with environment boosting star formation by a factor of ∼ 10

at z ∼ 1 and by even greater amounts at higher redshifts. The result goes

against the general consensus, but some recent studies, both observational

(Lemaux et al., 2022) and simulation (Hwang et al., 2019), have hinted towards

a positive environmental effect at high redshifts (albeit at a weaker level), as the

SFR–density relation has been found to reverse even after adjusting for stellar

mass. Moreover, they also observed the SFR enhancement increasing with

redshift. The fact that our findings are consistent with Hwang et al. (2019),

who also employed the IllustrisTNG simulations (though the larger volume

TNG300 instead of TNG100), instils confidence in the reliability of our study.

The simplest explanation for the positive causal effect is that the early Universe

is not sufficiently dense for the negative environmental processes whilst being

favourable to the positive processes. Specifically, we think halo accretion and

major mergers are responsible for the boosted SFR in denser environments,

with the former being the primary cause. Nonetheless, for a definitive answer,

the causal effect of individual environmental processes must be estimated. Our

work can be extended to achieve this. We iterate that the positive trend is not

just due to massive galaxies in denser environments that form more stars.

4. Nature (associated with halo mass) is important in the nature–nurture debate.

Specifically, galaxy formation and evolution is not top-down determined by

environment as the environment affects halo mass, but halo mass also influences

the environment of a galaxy as well. Ignoring the role of nature leads to the

causal effect in the densest environment being underestimated by a factor of

∼ 6. At low-to-intermediate densities (log(Σ10) ≲ 2), halo mass has a positive

impact on the SFR. But at high densities (log(Σ10) ≳ 2− 2.5), it has negligible

influence as the environment dominates galaxy evolution, which aligns with

the general belief. Although at the highest densities (log(Σ10) ≳ 2.5), the role

of halo mass is inconclusive. We attribute this to central galaxies becoming
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satellites as part of mergers. As before, the solution is to distinguish between

the two in the analysis and estimate the separate causal effects on both.

5. Controlling for the stellar mass at a snapshot in time, as is common in the

literature, does not disentangle nature and nurture (in agreement with De

Lucia et al. 2012). Not only is it insufficient to estimate the causal effect of

environment, but it actually has an adverse effect. The causal effect is biased as

it is overestimated at low-to-intermediate redshifts and underestimated at high

redshifts, by up to a factor ≳ 10 at specific densities. We remark the causal

effect at high redshifts is still positive, though reduced in magnitude. Overall,

snapshot studies are inadequate, and the evolutionary history of galaxies is

required.

6. Nevertheless, stellar mass is a sufficient proxy of the effects of nature (i.e., halo

mass), assuming our causal model is valid and given stellar mass history and

method to disentangle nature and nurture.

Our results can be relied upon because the diagnostic tests we perform suggest

that the causal assumptions are met (or at least not outright violated) and our causal

model is valid—the basis of causal inference.

By moving beyond correlations to causal effects, this work represents a significant

leap towards truly understanding how galaxies form and evolve. We have laid the

foundations in this thesis by estimating the causal effect of environment on SFR, and

now one can expand further to answer fundamental questions, such as what drives

galaxy quenching, are environmental processes responsible for the morphological

transformations of galaxies, what is the impact of supermassive black holes (SMBHs)

on their host galaxies, and above all, which is more important: nature or nurture? The

stumbling block, observationally, is the lack of evolutionary histories of galaxies, which

are critical to disentangling nature and nurture. Here, spectral energy distribution

(SED) fitting can recover the star-formation history (SFH), and recently, a back-in-

time reconstruction technique was shown to reconstruct the environmental history of

galaxies (Sarpa et al., 2022). Thus, with additional effort and further advancements,

our work can be applied to the real Universe. Alternatively, our work can be viewed

as an approach to interpret and tune simulations, which are an indispensable tool for
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testing our theories of galaxy formation and evolution. The timing is opportune as

the James Webb Space Telescope (JSWT; Gardner et al. 2006), Euclid (Laureijs et al.,

2011), the Rubin Observatory Legacy Survey of Space and Time (LSST; LSST Science

Collaboration et al. 2009), and the Nancy Grace Roman Space Telescope (Roman;

Spergel et al. 2015) are set to revolutionise our understanding (see Robertson et al.,

2019; Robertson, 2022, for reviews). For example, the discovery of candidate massive

galaxies at high redshifts (Castellano et al., 2022; Naidu et al., 2022; Finkelstein et al.,

2022; Adams et al., 2023; Rodighiero et al., 2023; Atek et al., 2023; Donnan et al.,

2023; Harikane et al., 2023; Labbé et al., 2023), if confirmed, may have ramifications

for galaxy formation models and/or cosmology (Lovell et al., 2023; Boylan-Kolchin,

2023).



Chapter 6

Conclusions

How galaxies have formed and evolved is one of the biggest mysteries in modern

astronomy. In the last few decades, tremendous progress has been made as the overall

picture has been pieced together. Having said that, the importance of the physical

processes responsible for the observed phenomena are not fully known, as establishing

causality has been challenging. The primary approach has been through simulations:

by developing and simulating physical models and then comparing the outcome to

observations, causal insights have been made. Nonetheless, the causal effect itself is

intractable in a simulation of any meaningful complexity. In this thesis, the causal

inference framework has been applied to move beyond correlations to causation, in

an effort to truly understand the galaxy formation and evolution process.
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6.1 Summary

Before inference (i.e., the why), the task of prediction (i.e., the what) is tackled

because to understand galaxy formation and evolution, galaxy properties are required

first. In this thesis, a novel machine learning (ML) approach is developed based on

the random forest (RF) algorithm to generate joint probability distribution functions

(PDFs) of galaxy properties. As an example, the method is applied to estimate

highly important joint redshift–stellar mass PDFs, which showed unprecedented levels

of calibration in diagnostic tests. Benchmarked against a traditional SED-fitting

approach, the ML-based method demonstrates superior performance in terms of both

accuracy (based on predefined metrics) and speed (by ∼ 5 orders of magnitude).

This work culminated in GALPRO—a Python package capable of estimating

multivariate PDFs of galaxy properties (Appendix A). GALPRO generates PDFs quickly

and efficiently, for example, it estimated joint redshift–stellar mass PDFs of a million

galaxies in just under 6 minutes on consumer computer hardware. Furthermore, it

can generate PDFs on the fly. The speed combined with the on-the-fly ability means

GALPRO will facilitate galaxy formation and evolution and cosmological studies in

the era of “Big Data”. The package has already been employed to estimate joint

redshift–luminosity and redshift–stellar mass PDFs to determine the Hubble constant

from gravitational waves (Palmese et al., 2023) and constrain the stellar-to-halo mass

relation (SHMR) with galaxy clustering and weak lensing (Zacharegkas et al., in

prep), respectively.

Next, the causal inference framework is combined with ML, and causal ML

is applied to infer the causal effect of environment on star-formation rate (SFR).

To achieve this, a comprehensive causal model of galaxy formation and evolution

is constructed from established theories, and using the g-method, inverse probabil-

ity weighting (IPW) of marginal structural models (MSMs), the long-outstanding

problem of disentangling nature (i.e., internal processes) and nurture (i.e., external

processes) is tackled. Utilising the RF in an overall two-step estimation process, the

causal effect at z ∼ 0 is estimated to determine the overall impact and at different

redshifts going back to z ∼ 3 (with a baseline at z ∼ 6) to understand how the role

of environment has evolved over time.
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The causal effect is found to be negative and substantial, with environment

suppressing the SFR by a factor of ∼ 100. However, while the overall effect is negative,

it is discovered that in the early Universe (z ≳ 1), environment had a positive impact.

Furthermore, the causal effect is significant, with environment boosting the SFR by

a factor of ∼ 10 at z ∼ 1 and by even greater amounts at higher redshifts. Again,

this is independent of the fact of massive galaxies inhabiting denser environments

that form more stars. The causes are likely halo accretion and major mergers, with

the former being the primary. Given haloes forming earlier in denser regions (i.e.,

assembly bias), a substantial positive causal effect of environment on SFR in the

early Universe, followed by a negative impact in the late Universe, is consistent with

and explains the observed galaxy “downsizing”. Other key results include:

1. Nature (associated with halo mass) is important in the nature–nurture debate,

and galaxy formation and evolution is not top-down determined by environment.

Specifically, the environment affects halo mass, but halo mass also influences

the environment of a galaxy as well. Ignoring the role of nature leads to the

causal effect in the densest environment being underestimated by a factor of

∼ 6.

2. Controlling for the stellar mass at a snapshot in time, as is common in the

literature, does not disentangle nature and nurture. Overall, snapshot studies

are inadequate, and the evolutionary history of galaxies is required.

3. However, stellar mass is an adequate proxy of the effects of nature, assuming the

causal model is valid and given stellar mass history and method to disentangle

nature and nurture.

With the introduction of a theoretical framework (to the field) to infer causality

and a potential solution to the challenging nature–nurture problem, this work paves

the way towards potentially unravelling some of the biggest mysteries in galaxy

formation and evolution, such as: why do galaxies quench, what is responsible for

morphological transformations of galaxies, what is the impact of supermassive black

holes (SMBHs) on their host galaxies, and the age-old question, which is more

important: nature or nurture?
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6.2 Future Prospects

Galaxy Properties from Images

In this thesis, magnitudes and colours (along with errors) are input into ML to predict

galaxy properties (i.e., redshift and stellar mass). A natural extension of this work

would be to train a deep learning (DL) algorithm directly on photometric images to

estimate the properties. Images contain information that is simply not captured by

integrated quantities, such as morphology, size, surface brightness, disk inclination

and, if present, colour gradients and companions. This additional information, if

important, can improve the prediction accuracy. Furthermore, with images as inputs,

no prior belief is imposed through feature selection. On the other hand, compared to

‘traditional’ ML, DL methods are generally less interpretable, explainable, and more

computationally expensive.

Research has already been conducted in this direction as studies have estimated

redshifts (Hoyle, 2016; Schuldt et al., 2021; Henghes et al., 2022), physical properties

(Dobbels et al., 2019; Wu and Boada, 2019; Wu, 2020), and both (Euclid Collabora-

tion et al., 2023). Furthermore, PDFs of redshift have also been estimated (D’Isanto

and Polsterer, 2018; Pasquet et al., 2019). The proposed work would push beyond

by estimating multivariate PDFs of redshift and physical properties.

Temporal-based Causal Inference

In order to estimate the causal effect of environment on SFR, a causal model was

constructed from established galaxy formation and evolution theories and assumed.

As such, the validity of the effect depends on the model being accurate, which

does appear to be the case according to diagnostic tests. Regardless, a ‘model-free’

approach would be incredibly valuable. Besides a causal effect free from potential

biases due to gaps in our knowledge, by imposing no prior beliefs, the door is left

open to new discoveries. Here, it is feasible to not only estimate the causal effect but

also learn the causal model itself from time series data (see Moraffah et al., 2021;

Runge et al., 2023, for reviews), based on temporal order as a constraint, i.e., a cause

precedes its effect in time.
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1. Model-Free Causal Effects

Galaxies form and evolve over a vast period of time. However, the impact of

environment may occur in a relatively short timescale (Darvish et al., 2016), possibly

in a “once-only” process (Peng et al., 2010), e.g., when a galaxy falls into a group

or cluster. In this instance, the treatment is time-invariant, and a method called

Difference-in-Differences (DiD) can be applied to estimate the causal effect of

environment. The basic idea would be to create treatment and control groups of

galaxies, define a treatment point (e.g., an average point in time at which galaxies in

the treatment group enter a ‘dense’ environment), and then compare the outcome of

interest (e.g., SFR) of the two groups before and after to estimate the causal effect.

A generalisation of DiD is Bayesian Structural Time Series (BSTS; Scott and Var-

ian 2014, 2015), which can explicitly model the counterfactual (Brodersen et al., 2015).

2. Causal Discovery of Galaxy Formation and Evolution

As mentioned, although very difficult, it is possible to learn the causal structure—a

task called causal discovery (see Glymour et al., 2019; Zanga et al., 2022, for reviews).

In other words, one may be able to infer the causal model of galaxy formation and

evolution. Causal discovery is still in development but has already been successfully

applied in many fields, such as Earth system science (see Runge et al., 2019, for a

review). For example, causal discovery algorithms correctly identified the causal

relationship between greenhouse gases and global warming (Stips et al., 2016) and

discovered that sea surface temperature is a common driver of both sardine and

anchovy abundances (Sugihara et al., 2012). To begin with, one could attempt to

recover the physical models in simulations.



Appendix A

GALPRO

GALPRO1 is a novel Python machine learning (ML) code based on the random forest

(RF) algorithm for estimating multivariate posterior probability distribution func-

tions (PDFs) of galaxy properties (e.g., redshift, stellar mass, star-formation rate,

metallicity).

It is hosted on PyPI and can be installed using:

pip install galpro

GALPRO is built on top of other excellent Python packages such as:

• scikit-learn: for implementing the random forest algorithm.

• joblib: for saving and loading a trained random forest model.

• h5py: for reading and writing PDFs to disk.

To become familiar with the package, we recommend going through the example

Ipython notebooks. For ease of use, GALPRO is built around a single core class Model.

1https://github.com/smucesh/galpro

https://github.com/smucesh/galpro/tree/master/examples
https://github.com/smucesh/galpro
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A.1 Training Model

To train a random forest model, the training and testing datasets are required. The

model must be given a unique name using model name. Besides this, there are other

optional parameters, such as target features and save model, for passing in a list

of all the target features and saving the model, respectively:

import galpro as gp

target_features = [‘$z$’, ‘$\log(M_{\star} / M_{\odot})$’]

model = gp.Model(model_name=‘model’,

x_train=x_train,

y_train=y_train,

x_test=x_test,

y_test=y_test,

target_features=target_features,

save_model=True)

If the model is saved, it will be located in the directory /galpro/model name/

as a .sav file. The Model class can also be used to load a previously trained model

by specifying its name via model name. Once a new model has been trained or a

previously trained model has been loaded, it can be utilised.

A.2 Testing Model

The trained model can be used to generate point predictions and posterior PDFs

using:

point_estimates = model.point_estimate(save_estimate=True,

make_plots=True)

posteriors = model.posterior(save_posteriors=True,

make_plots=True,

on_the_fly=False)

The point estimate function will return an array of point estimates. The

posterior function will return an h5 file object containing posteriors, which can be
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accessed using test object numbers as keys. If the point predictions and PDFs are

saved, they will be stored as .h5 (Hierarchical Data Format) files in the subdirectories

/galpro/model name/point estimates/ and /galpro/model name/posteriors/,

respectively. The plots will be saved in the /plots/ folder.

A.3 On-the-fly PDFs

GALPRO has the ability to generate PDFs on the fly, thus eliminating the problem of

storage. It can be easily incorporated into research codes with the following:

posterior = model.posterior(save_posteriors=False,

make_plots=False,

on_the_fly=True)

for sample in range(no_samples):

sample_posterior = next(posterior)

In this instance, the on the fly parameter is set to True. By calling

next(posterior), the function will return posterior PDFs of test objects one

at a time. Naturally, the other parameters are set to False, and the following

functionalities are not available if generating PDFs in this mode.

A.4 Validating Model

The posterior PDFs generated by the trained model can be validated using:

validation = model.validate(save_validation=True,

make_plots=True)

Marginal PDFs are validated using the framework developed by Gneiting et

al. (2007), and multivariate PDFs are validated using the multivariate extension

of the framework developed by Ziegel and Gneiting. (2014). A brief introduction

to the methods can be found in our paper (Mucesh et al. 2021). The function will

return a .h5 file object, and the different modes of validation can be accessed using

the keys: pits, coppits, marginal calibration, and kendall calibration. The

validation is stored in the subdirectory /galpro/model name/validation/.

https://hal.archives-ouvertes.fr/file/index/docid/363242/filename/jrssb1b.pdf
https://hal.archives-ouvertes.fr/file/index/docid/363242/filename/jrssb1b.pdf
https://projecteuclid.org/download/pdfview_1/euclid.ejs/1418313582
https://doi.org/10.1093/mnras/stab164


A.5. Plotting 188

A.5 Plotting

GALPRO can generate various plots:

model.plot.scatter() # Creates scatter plots of point predictions.

model.plot.marginal() # Creates marginal PDF plots.

model.plot.joint_pdf() # Creates joint PDF plots.

model.plot.corner() # Creates a corner style plot for multivariate PDFs.

model.plot.pit() # Plots the probability integral transform (PIT) distribution.

model.plot.coppit() # Plots the copula probability integral transform (copPIT) distribution.

model.marginal_calibration() # Plots the marginal calibration.

model.kendall_calibration() # Plots the kendall calibration.

These plotting functions can take in two optional parameters, which are show

and save. By default, these are set to False and True, respectively. All plots are

saved in the /plots/ folder in the respective subdirectories. The same plots can

also be created by setting make plots=True, when running model.point estimate,

model.posterior, or model.validate. Additionally, these functions can also be

used to recreate the different plots, given that the model and the necessary .h5 files

have been saved in the previous run.

A.6 Configuration

The hyperparameters associated with the random forest algorithm are defined in the

conf.py file. We expect the default hyperparameters to work well in most situations.

However, if the user wishes to tune the hyperparameter to their liking, they can do

so by modifying their values in the configuration file before loading the package. The

plotting aesthetics are also defined in the same configuration file. The user can tweak

them to their preference by stating the matplotlib or seaborn settings accordingly.
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and Szalay, A. S. (2004b). Quantifying the Bimodal Color-Magnitude Distribution

of Galaxies. ApJ, 600(2):681–694.

Ball, N. M., Brunner, R. J., Myers, A. D., Strand, N. E., Alberts, S. L., Tcheng, D.,
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Framework for the Co-Evolution of Quasars, Supermassive Black Holes, and

Elliptical Galaxies. I. Galaxy Mergers and Quasar Activity. ApJS, 175(2):356–389.
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Lilly, S. J., Maier, C., Mainieri, V., Mignoli, M., Newman, J. A., Oesch, P. A.,

Perez-Montero, E., Ricciardelli, E., Scodeggio, M., Silverman, J., and Tasca, L.

(2008). Precision photometric redshift calibration for galaxy-galaxy weak lensing.

MNRAS, 386(2):781–806.



BIBLIOGRAPHY 241

Mannucci, F., Basile, F., Poggianti, B. M., Cimatti, A., Daddi, E., Pozzetti, L., and

Vanzi, L. (2001). Near-infrared template spectra of normal galaxies: k-corrections,

galaxy models and stellar populations. MNRAS, 326(2):745–758.

Mansournia, M. A., Danaei, G., Forouzanfar, M. H., Mahmoodi, M., Jamali, M.,

Mansournia, N., and Mohammad, K. (2012). Effect of physical activity on func-

tional performance and knee pain in patients with osteoarthritis: analysis with

marginal structural models. Epidemiology, pages 631–640.

Maraston, C. (1998). Evolutionary synthesis of stellar populations: a modular tool.

MNRAS, 300(3):872–892.

Maraston, C. (2005). Evolutionary population synthesis: models, analysis of the

ingredients and application to high-z galaxies. MNRAS, 362(3):799–825.

Maraston, C., Pforr, J., Renzini, A., Daddi, E., Dickinson, M., Cimatti, A., and

Tonini, C. (2010). Star formation rates and masses of z ˜2 galaxies from multicolour

photometry. MNRAS, 407(2):830–845.

Margoniner, V. E. and de Carvalho, R. R. (2000). Photometric Properties of 48

Clusters of Galaxies. I. The Butcher-Oemler Effect. AJ, 119(4):1562–1578.

Margoniner, V. E., de Carvalho, R. R., Gal, R. R., and Djorgovski, S. G. (2001).

The Butcher-Oemler Effect in 295 Clusters: Strong Redshift Evolution and Cluster

Richness Dependence. ApJ, 548(2):L143–L146.

Marigo, P. and Girardi, L. (2007). Evolution of asymptotic giant branch stars. I.

Updated synthetic TP-AGB models and their basic calibration. A&A, 469(1):239–

263.

Marigo, P., Girardi, L., Bressan, A., Groenewegen, M. A. T., Silva, L., and Granato,

G. L. (2008). Evolution of asymptotic giant branch stars. II. Optical to far-infrared

isochrones with improved TP-AGB models. A&A, 482(3):883–905.

Marinacci, F., Vogelsberger, M., Pakmor, R., Torrey, P., Springel, V., Hernquist,

L., Nelson, D., Weinberger, R., Pillepich, A., Naiman, J., and Genel, S. (2018).

First results from the IllustrisTNG simulations: radio haloes and magnetic fields.

MNRAS, 480(4):5113–5139.



BIBLIOGRAPHY 242

Martin, C. L. (1999). Properties of Galactic Outflows: Measurements of the Feedback

from Star Formation. ApJ, 513(1):156–160.

Martin, D. C., Wyder, T. K., Schiminovich, D., Barlow, T. A., Forster, K., Friedman,

P. G., Morrissey, P., Neff, S. G., Seibert, M., Small, T., Welsh, B. Y., Bianchi, L.,

Donas, J., Heckman, T. M., Lee, Y.-W., Madore, B. F., Milliard, B., Rich, R. M.,

Szalay, A. S., and Yi, S. K. (2007). The UV-Optical Galaxy Color-Magnitude

Diagram. III. Constraints on Evolution from the Blue to the Red Sequence. ApJS,

173(2):342–356.

Mart́ınez, H. J. and Muriel, H. (2006). Groups of galaxies: relationship between

environment and galaxy properties. MNRAS, 370(2):1003–1007.

Massey, R., Kitching, T., and Richard, J. (2010). The dark matter of gravitational

lensing. Reports on Progress in Physics, 73(8):086901.

Masters, K. L., Mosleh, M., Romer, A. K., Nichol, R. C., Bamford, S. P., Schawinski,

K., Lintott, C. J., Andreescu, D., Campbell, H. C., Crowcroft, B., Doyle, I.,

Edmondson, E. M., Murray, P., Raddick, M. J., Slosar, A., Szalay, A. S., and

Vandenberg, J. (2010). Galaxy Zoo: passive red spirals. MNRAS, 405(2):783–799.

Mastropietro, C., Moore, B., Mayer, L., Debattista, V. P., Piffaretti, R., and Stadel,

J. (2005). Morphological evolution of discs in clusters. MNRAS, 364(2):607–619.
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Content from high-resolution galactic spectra via Maximum A Posteriori. MNRAS,

365(1):46–73.

Odewahn, S. C., Stockwell, E. B., Pennington, R. L., Humphreys, R. M., and Zumach,

W. A. (1992). Automated Star/Galaxy Discrimination With Neural Networks. AJ,

103:318.

Oemler, Augustus, J. (1974). The Systematic Properties of Clusters of Galaxies.

Photometry of 15 Clusters. ApJ, 194:1–20.

Oemler, Augustus, J., Dressler, A., and Butcher, H. R. (1997). The Morphology of

Distant Cluster Galaxies. II. HST Observations of Four Rich Clusters at z ˜= 0.4.

ApJ, 474(2):561–575.



BIBLIOGRAPHY 248

Oort, J. H. (1932). The force exerted by the stellar system in the direction perpendicu-

lar to the galactic plane and some related problems. Bull. Astron. Inst. Netherlands,

6:249.

Paccagnella, A., Vulcani, B., Poggianti, B. M., Moretti, A., Fritz, J., Gullieuszik, M.,

and Fasano, G. (2019). The strong correlation between post-starburst fraction and

environment. MNRAS, 482(1):881–894.

Pacifici, C., Kassin, S. A., Weiner, B. J., Holden, B., Gardner, J. P., Faber, S. M.,

Ferguson, H. C., Koo, D. C., Primack, J. R., Bell, E. F., Dekel, A., Gawiser, E.,

Giavalisco, M., Rafelski, M., Simons, R. C., Barro, G., Croton, D. J., Davé, R.,
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A. J., Falcón-Barroso, J., Gorgas, J., Selam, S., and Vazdekis, A. (2006). Medium-

resolution Isaac Newton Telescope library of empirical spectra. MNRAS, 371(2):703–

718.

Sanders, D. B., Soifer, B. T., Elias, J. H., Madore, B. F., Matthews, K., Neugebauer,

G., and Scoville, N. Z. (1988). Ultraluminous Infrared Galaxies and the Origin of

Quasars. ApJ, 325:74.

Santiago, B. X. and Strauss, M. A. (1992). Large-Scale Morphological Segregation

in the Center for Astrophysics Redshift Survey. ApJ, 387:9.

Santos, J. S., Altieri, B., Valtchanov, I., Nastasi, A., Bohringer, H., Cresci, G., Elbaz,

D., Fassbender, R., Rosati, P., Tozzi, P., and Verdugo, M. (2015). The reversal

of the SF-density relation in a massive, X-ray-selected galaxy cluster at z = 1.58:

results from Herschel. MNRAS, 447:L65–L69.

Sarpa, E., Longobardi, A., Kraljic, K., Veropalumbo, A., and Schimd, C. (2022).

Tracing the environmental history of observed galaxies via extended fast action

minimization method. MNRAS, 516(1):231–244.



BIBLIOGRAPHY 261

Scannapieco, C., Tissera, P. B., White, S. D. M., and Springel, V. (2008). Effects of

supernova feedback on the formation of galaxy discs. MNRAS, 389(3):1137–1149.

Schaller, G., Schaerer, D., Meynet, G., and Maeder, A. (1992). New Grids of Stellar

Models from 0.8-SOLAR-MASS to 120-SOLAR-MASSES at Z=0.020 and Z=0.001.

A&AS, 96:269.

Schawinski, K., Virani, S., Simmons, B., Urry, C. M., Treister, E., Kaviraj, S., and

Kushkuley, B. (2009). Do Moderate-Luminosity Active Galactic Nuclei Suppress

Star Formation? ApJ, 692(1):L19–L23.

Schiminovich, D., Wyder, T. K., Martin, D. C., Johnson, B. D., Salim, S., Seibert,
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G., Danilishin, S. L., D’Antonio, S., Danzmann, K., Dasgupta, A., Da Silva Costa,

C. F., Datrier, L. E. H., Dattilo, V., Dave, I., Davis, D., Daw, E. J., DeBra, D.,

Deenadayalan, M., Degallaix, J., De Laurentis, M., Deléglise, S., Del Pozzo, W.,
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