
4.72.7

Quantum Implementation of the
SAND Algorithm and Its Quantum
Resource Estimation for Brute-
Force Attack

Hongyu Wu, Xiaoning Feng and Jiale Zhang

Article

https://doi.org/10.3390/e26030216

https://www.mdpi.com/journal/entropy
https://www.scopus.com/sourceid/13715
https://www.ncbi.nlm.nih.gov/pubmed/?term=1099-4300
https://www.mdpi.com/journal/entropy/stats
https://www.mdpi.com
https://doi.org/10.3390/e26030216

Citation: Wu, H.; Feng, X.; Zhang, J.

Quantum Implementation of the

SAND Algorithm and Its Quantum

Resource Estimation for Brute-Force

Attack. Entropy 2024, 26, 216. https://

doi.org/10.3390/e26030216

Received: 10 January 2024

Revised: 24 February 2024

Accepted: 26 February 2024

Published: 29 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Quantum Implementation of the SAND Algorithm and Its
Quantum Resource Estimation for Brute-Force Attack

Hongyu Wu 1, Xiaoning Feng 1,* and Jiale Zhang 2

1 College of Computer Science and Technology, Harbin Engineering University, Harbin 150001, China;

b221060008@hrbeu.edu.cn
2 College of Computer Science and Technology, Jilin University, Changchun 130012, China;

jlzhang22@mails.jlu.edu.cn

* Correspondence: fengxiaoning@hrbeu.edu.cn

Abstract: The SAND algorithm is a family of lightweight AND-RX block ciphers released by DCC

in 2022. Our research focuses on assessing the security of SAND with a quantum computation

model. This paper presents the first quantum implementation of SAND (including two versions

of SAND , SAND-64 and SAND-128). Considering the depth-times-width metric, the quantum

circuit implementation of the SAND algorithm demonstrates a relatively lower consumption of

quantum resources than that of the quantum implementations of existing lightweight algorithms. A

generalized Grover-based brute-force attack framework was implemented and employed to perform

attacks on two versions of the SAND algorithm. This framework utilized the g-database algorithm,

which considered different plaintext–ciphertext pairs in a unified manner, reducing quantum resource

consumption. Our findings indicate that the SAND-128 algorithm achieved the NIST security level I,

while the SAND-64 algorithm fell short of meeting the requirements of security level I.

Keywords: grover algorithm; brute-force attack; SAND algorithm; lightweight block cipher

1. Introduction

The advent of quantum computers and quantum algorithms has dramatically changed
the cryptography community. The quantum computation model is expected to bring about
profound alterations in the current landscape of cryptanalysis [1,2]. Due to the emergence of
two pioneering quantum algorithms—the Shor algorithm [3] and Grover algorithm [4]—the
current classical cryptosystem is under threat. An efficient quantum algorithm for solving
the large integer factorization problem was provided by the Shor algorithm, which can
break most currently used public-key systems, such as RSA cryptosystems and elliptic curve
cryptography. As a high-performance quantum search algorithm, the Grover algorithm
can reduce the cost of a brute-force attack on a k-bit key from 2k to 2k/2.

The quantum implementation of classical encryption algorithms and the evaluation of
quantum resources are of great significance. First, quantum implementations of classical
algorithms are beneficial for evaluating the security strength of ciphers in quantum compu-
tation models. In the post-quantum era, the National Institute of Standards and Technology
(NIST) has proposed the use of the cost of brute-force attacks based on a Grover search as an
indicator of the security strength of a cryptographic system [5]. The process of performing
a brute-force attack using the Grover algorithm requires efficient quantum implementa-
tions of classical encryption schemes. Second, the quantum implementation of classical
algorithms is conducive to exploring the security issues of the quantum Internet. One of
the security measures for linking a single quantum computer to the quantum internet is a
quantum implementation of a classical encryption algorithm [6,7]. To sum up the above
two points, it is necessary to design a quantum circuit of classical encryption algorithms.

The T-depth and qubits are frequently considered metrics in quantum resource con-
sumption [8,9]. The T-depth of quantum circuits is a critical metric for circuit reliability,

Entropy 2024, 26, 216. https://doi.org/10.3390/e26030216 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e26030216
https://doi.org/10.3390/e26030216
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://doi.org/10.3390/e26030216
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e26030216?type=check_update&version=1

Entropy 2024, 26, 216 2 of 17

and its reduction leads to effective minimization of noise accumulation, thereby resulting
in improvements of the fault tolerance of the circuits [10,11]. Additionally, the number
of qubits plays a crucial role in the execution time, error rate, and computing power of
a quantum system [12,13]. The consideration of the ’depth-times-width’ metric, wherein
the depth is defined as the T-depth and the width is equivalent to the number of qubits,
captures the comprehensive resource requirements of quantum circuits and offers a more
holistic understanding of a circuit’s resource demands.

Due to the high performance and popularity of the Advanced Encryption Standard
(AES) algorithm [14], the quantum implementation and quantum resource evaluation
of the AES algorithm have received sufficient attention [15–20]. In the post-quantum
cryptography (PQC) standardization process, the NIST defined security categories by
evaluating the difficulty of conducting a brute-force key attack. For a meaningful definition
of the security categories, NIST derives security I∼V from the gate and depth cost estimates
for a brute-force attack on the AES algorithm by Jaques et al. [17].

New lightweight symmetric algorithms are rapidly developing in Internet of Things
(IoT) networks [21]. With the rise of the IoT, lightweight symmetric encryption algorithms
are rapidly gaining prominence [22]. Quantum implementation and quantum evaluation
of lightweight cryptographic encryption algorithms are currently being carried out with
great enthusiasm. Lin et al. and Zou et al. implemented the quantum version of the
Chinese commercial cipher standard, i.e., SM4 [23,24]. Considering metrics such as the
depth-times-width metric, the security of the SM4 algorithm against quantum brute-force
attacks was weaker than that of the AES-128 algorithm. Bathe et al. analyzed the ChaCha
algorithm, which is commonly used in embedded devices, and evaluated the quantum
resources required by the Grover algorithm for ChaCha [25]. Jang et al. simultaneously
considered various lightweight algorithms such as HIGHT, CHAM, LEA, and the NSA-
developed SPECK cipher [26]. The results indicated that CHAM required the least quantum
resources, implying that CHAM’s block cipher was the most vulnerable to attacks [26,27].
The immense enthusiasm for this field motivates us to seek a lightweight cryptographic
algorithm with lower quantum resource requirements and to attain its NIST security rating.

The S-box-based and AND-RX based structures (SAND) algorithm, which has emerged
in recent years, has shown great potential among the new lightweight symmetric algo-
rithms [28]. The SAND algorithm has advantages, including a simplified key schedule
and competitive software performance. The SAND algorithm is often applied to resource-
constrained devices to provide data protection and communication security. Furthermore,
the SAND algorithm can undergo a comprehensive security analysis under classical con-
ditions, such as differential and linear attacks and single-key and related-key scenarios.
However, it is worth noting that there has been no comprehensive security analysis of
SAND in the context of the quantum computation model.

Our Contributions. The main purpose of our research is to determine the security of
the SAND algorithm within the quantum computation model—specifically, a brute-force
attack based on the Grover algorithm. Our contributions are two-fold and can be described
as follows:

1. The quantum implementation of the SAND algorithm. We present the first quantum circuit
implementation of the SAND cryptographic algorithm by optimizing a combination
of Toffoli, CNOT, X, and SWAP gates. The process begins with the design of various
small components of the SAND algorithm, which are then used as a foundation for
designing the round function and key schedule. Subsequently, a quantum implemen-
tation of the SAND algorithm is constructed. A comparison is provided, contrasting
its resource consumption with that of other recently implemented lightweight cryp-
tographic quantum circuits. The analysis, which includes the depth-times-width
indicator, reveals that the resource consumption of quantum circuits for the SAND
cryptographic algorithm is relatively low.

2. Quantum brute-force attack on the SAND algorithm. We created a generalized brute-force
attack framework by introducing the g-database algorithm, which took different

Entropy 2024, 26, 216 3 of 17

plaintext–ciphertext pairs into account in a unified manner and was able to reduce
the consumption of quantum resources (it could reduce the number of qubits and
gate consumption to approximately 1/r of those of the original quantum circuit; r
is the number of different plaintext–ciphertext pairs). Based on the quantum im-
plementation of quantum SAND, the quantum resource cost was estimated within
the generalized brute-force attack framework. It was revealed that the SAND-128
algorithm achieved the NIST security level I, while the SAND-64 algorithm fell short
of meeting the requirements of security level I.

Organization. Section 2 introduces the symbols used in this paper and briefly in-
troduces the Grover algorithm and SAND algorithm. Section 3 provides the quantum
implementation of the SAND algorithm. In Section 4, we establish a generalized brute-force
attack framework based on the Grover algorithm within the quantum computation model
and apply this framework to the SAND algorithm. Section 5 evaluates and compares the
quantum resource consumption of the brute-force attack. Section 6 summarizes the work
of this study.

2. Preliminaries

2.1. Symbol Description

In this section, we introduce the various symbols used in SAND and the quantum
computation operations that are commonly used in this paper.

The main symbols in this paper are shown in Table 1. The following 4 × n/4 two-
dimensional matrix is used to represent the variable x in this paper:

x =







xn−1 · · · x7 x3

xn−2 · · · x6 x2

xn−3 · · · x5 x1

xn−4 · · · x4 x0






=







x{3}
x{2}
x{1}
x{0}






=
[
x[n

4 − 1] · · · x[1] x[0]
]

(1)

Table 1. Symbol table.

Symbol Explain

x = (xn−1, xn−2, . . . , x0) The variable x has a length of n and n mod 4 ≡ 0.
x ∥ y Link variable x and y.

x{i}
The i-th row element of the variable x (0 ≤ i < 4),
i.e., x{3} = (xn−1, . . . , x7, x3), x{2} = (xn−2, . . . , x6, x2),
x{1} = (xn−3, . . . , x5, x1), x{0} = (xn−4, . . . , x4, x0).

x[j]
The j-th nibble of variable x (0 ≤ j < n/4),
i.e., x[n

4 − 1] = (xn−1, xn−2, xn−3, xn−4), . . . ,
x[1] = (x7, x6, x5, x4), x[0] = (x3, x2, x1, x0).

x ≪ s Shift movement operation; x is shifted by s bits to the left.
x ≪ t Rotation operation; x is rotated by t bits to the left.

x ≪n/4 t
Row element x{i} of the variable x rotates t bits to the left,
i.e., x ≪n/4 t = (x{3} ≪ t)||(x{2} ≪ t)||(x{1} ≪

t)||(x{0} ≪ t).
x ⊙ y And operation of variables x and y.
x ⊕ y XOR operation of variables x and y.

Quantum computers use quantum gates to operate on qubits. Figure 1 shows the X
gate, H gate, CNOT gate, and Toffoli gate. The X gate (also known as the NOT gate) inverts
the input qubit. The H gate creates a superposition of states. Suppose that the state of the
input qubit is |x⟩, where x can be 0 or 1; the output qubit is |φ(x)⟩ = 1√

2
(|0⟩+ (−1)x|1⟩)

through the H gate. The two input states of the CNOT gate are called the control qubit
|x⟩ and the target qubit |y⟩. After the CNOT gate, the control qubit remains unchanged,
and the target qubit becomes |x ⊕ y⟩. The Toffoli gate, which can have multiple control
qubits, is used in this study with only two control qubits. After passing through the Toffoli
gate, the control bits remain unchanged, and the target qubit becomes |(x0 ⊙ x1)⊕ y⟩. The

Entropy 2024, 26, 216 4 of 17

SWAP gate can be constructed using three CNOT gates, as illustrated in Figure 2, and the
three representations in the figure are equivalent.

Figure 1. Quantum circuit gates (X gate, CNOT gate, Toffoli gate).

Figure 2. Quantum circuit gate (SWAP gate).

2.2. Grover Algorithm

Given the database f (x) with N entries, the primary key w that makes a data record
of f (w) = 1 is found. The Grover algorithm is a database search algorithm that mainly
provides quadratic acceleration about the above search problem of an unstructured database
f (x). The main procedures of the Grover algorithm are as follows:

1. An equal-weight superposition state H⊗n|0⟩⊗n = 1
2n/2

2n−1

∑
x=0

|x⟩ is prepared.

2. The Grover iteration is repeated κ times, κ ≈ π
4

√
N:

(a) The Uw operator is applied, where Uw = I − 2 |w⟩⟨w|.
(b) The Grover diffusion operator Us is applied; Us = 2 |s⟩⟨s| −I.

3. The result is measured as f (w) with a very high probability.

For sufficiently large N, there is sinθ = 1√
N

≈ θ. So, the number of iterations κ can

also be written as π
4θ . The quantum circuit diagram of the Grover algorithm is shown in

Figure 3.

Figure 3. Quantum circuit diagram of the Grover algorithm.

2.3. SAND Algorithm

SAND is a family of AND-recursive exchange (AND-RX) block ciphers with the Feistel
structure, and it includes SAND-64 and SAND-128 versions [28]. They both support 2n
plaintext with a 128-bit key. The basic parameters of SAND-64 and SAND-128 are listed in
Table 2.

Entropy 2024, 26, 216 5 of 17

Table 2. Relevant parameters for SAND-64 and SAND-128 .

SAND Version Block Size 2n Branch Size n Key Size k Rounds R

SAND-64 64 32 128 48
SAND-128 128 64 128 54

The overall structure of SAND is shown in Figure 4. The input plaintext P = (Pl, Pr) is
encrypted by the key K = K3||K2||K1||K0 in SAND-64 or the key K = K1||K0 in SAND-128.
The final output is the ciphertext C = (Cl, Cr). The classical SAND algorithm is mainly
divided into a round function and a key schedule. The round functions of SAND-64 and
SAND-128 can be expressed as follows:

(xr+1, yr+1) = Fskr (xr, yr) =

(

Pn

(

G0

(

C0(xr)
)

⊕ G1

(

C1(xr)
))

⊕ yr ⊕ skr, xr

)

(2)

Figure 4. SAND encryption algorithm.

The tuples of (C0, C1) are the rotation components, and C0(xr) = xr
≪n/4 α,

C1(xr) = xr
≪n/4 β. The tuple of the rotation constants (α, β) is fixed to (0, 1) for all

versions of SAND.

Entropy 2024, 26, 216 6 of 17

G0 and G1 are nonlinear functions. Their input is x{3}||x{2}||x{1}||x{0}, and their
output is y{3}||y{2}||y{1}||y{0}. For G0,

y{0} = x{3} ⊙ x{2} ⊕ x{0}
y{3} = y{0} ⊙ x{1} ⊕ x{3}

y{2} = x{2}
y{1} = x{1}

(3)

As for the function G1, the output is calculated as follows:

y{2} = x{3} ⊙ x{1} ⊕ x{2}
y{1} = y{2} ⊙ x{0} ⊕ x{1}

y{3} = x{3}
y{0} = x{0}

(4)

The Pn box is rearranged for a variable x on 4 rows. For the i-th row input x{i} =
(x n

4 ·i+ n
4 −1, . . . , x n

4 ·i+1, x n
4 ·i), the element of the i-th output row y{i} is defined as follows:

y n
4 ·i+p n

4
(j) = x n

4 ·i+j for 0 ≤ j <
n

4
, 0 ≤ i < 4 (5)

where p8 and p16 are used in SAND-64(P32) and SAND-128(P64). The permutations of p8

and p16 are listed in Table 3 and Table 4, respectively.

Table 3. p8 for SAND-64.

j 0 1 2 3 4 5 6 7

p8(j) 7 4 1 6 3 0 5 2

Table 4. p16 for SAND-128.

j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

p16(j) 14 15 8 9 2 3 12 13 6 7 0 1 10 11 4 5

The initial key bits of SAND-64 and SAND-128 are both 128 bits. The r-th round subkey
skr(0 ≤ r ≤ R) is loaded from K. SAND-64 treats the 128-bit key as K = K3 ∥ K2 ∥ K1 ∥ K0

(four 32-bit words). SAND-128 treats the 128-bit key as K1 ∥ K0 (two 64-bit words). The
equations for the key schedule are:

Ki+4 = (A8)
3(Ki+3)⊕ Ki ⊕ (i + 1) for SAND-64

K j+2 = (A16)
3(K j+1)⊕ K j ⊕ (j + 1) for SAND-128

(6)

where (i + 1, j + 1) is the round constant (RC), and 0 ≤ i < R − 4, 0 ≤ j < R − 2.
A8 and A16 are nibble-oriented functions. The input of A8 is X[7] ∥ · · · X[1] ∥ X[0],

and the output of A8 is X
′
[7] ∥ · · · X

′
[1] ∥ X

′
[0]:

(X[7] ≪ t1)⊕ X[0] ∥ X[7]⊕ (X[7] ≪ t0) ∥ X[6] ∥ X[5] ∥ X[4] ∥ X[3] ∥ X[2] ∥ X[1]

where t0 and t1 are set to 3 and 1, respectively.

The input of A16 is X[15] ∥ · · · X[1] ∥ X[0], and the output of A16 is X
′
[15] ∥ · · · X

′
[1] ∥

X
′
[0]:

(X[15] ≪ t1)⊕ X[0]||X[15]⊕ (X[15] ≪ t0) ∥ X[14] ∥ X[13] ∥ · · · ∥ X[2] ∥ X[1]

where the same settings for t0 and t1 are used as in A8, with t0 being 3 and t1 being 1.

Entropy 2024, 26, 216 7 of 17

3. Quantum Implementation of SAND

3.1. Quantum Implementation of Small Components of SAND

In this subsection, the quantum implementation of the the rotating movement oper-
ation, shift movement operation, nonlinear functions, Pn box, A8, and A16 is introduced.
These small components are necessary for implementing the key schedule and round
function of the SAND algorithm.

Algorithm 1 implements |x{i} ≪ t⟩. A left-rotating t-qubit movement operation
consists of three reverse operators. The reverse operator in Algorithm 2 is written back
to the same qubit. The reverse operator whose input is |x0x1 . . . xn−1xn⟩ requires ⌊n/2⌋
SWAP operations, and the order of the SWAP operations can be changed. A rotating t-qubit
movement operation is performed on each of the rows, and this is implemented in series to
form |x ≪n/4 t⟩.

Algorithm 1 Rotating movement operation

Input: |x0 . . . xn⟩, t
Output: |xt . . . xnx0 . . . xt−1⟩
1: Reverse(|x0, . . . , xt−1⟩)
2: Reverse(|xt, . . . , xn⟩)
3: Reverse(|x0x1 . . . xn⟩)

Algorithm 2 Reverse operator

Input: |x0x1 . . . xn−1xn⟩
Output: |xnxn−1 . . . x1x0⟩
1: SWAP(x0, xn)
2: . . .
3: SWAP(xn/2, xn/2+1)

An n-qubit to n-qubit shift movement operation requires n − 1 SWAP gates, i.e.,
SWAP(x0, x1), SWAP(x1, x2), . . . , SWAP(xn−1, xn). The reset operation, as described for the
INIT gate in Section 3.2, is applied to the last qubit.

According to Equations (3) and (4), the Toffoli gate is used to implement G0 and G1,
as shown in Figure 5. Naturally, the object of the AND operation in the SAND algorithm
is mapped to the control circuit of the Toffoli gate. The object of the XOR operation in the
SAND algorithm is mapped to the target circuit.

Figure 5. Quantum circuit diagram of G0, G1.

p8 and p16 are obtained through an optimization design, as shown in Table 5. We used
7 SWAP gates and 14 SWAP gates, respectively, to implement the p8 and p16 gates. The Pn

boxes of SAND-64 and SAND-128 were implemented with p8 or p16, respectively.

Entropy 2024, 26, 216 8 of 17

Table 5. Implementation of p8 and p16.

Type Sequence SWAP Sequence SWAP Sequence SWAP

p8

1 x0, x7 4 x0, x4 7 x0, x5

2 x0, x2 5 x0, x3

3 x0, x1 6 x0, x6

p16

1 x0, x14 6 x0, x12 11 x1, x9

2 x0, x4 7 x0, x10 12 x1, x7

3 x0, x2 8 x1, x15 13 x1, x13

4 x0, x8 9 x1, x5 14 x1, x11

5 x0, x6 10 x1, x3

The implementations of the rotating movement operation and shift movement opera-
tion were embedded into the implementations of A8 and A16, with the only difference being
in the input qubits. The implementation of A8, A16 is depicted in Figure 6. Although an
additional nibble qubit was added, A8 and A16 did not add a large number of qubits due
to qubit reuse technology [29,30]. The colons in the figure are all operations that modify
the qubit index, which is not counted as a resource in most cases.

Figure 6. The quantum circuit diagram of A8, A16.

3.2. Quantum Implementation of SAND’s Round Function

The key of each round was set to ski, 0 ≤ i ≤ R − 1, temporarily ignoring the key
schedule part. Auxiliary qubits were introduced to hold a copy of the state of xr. An
INIT gate was concurrently required to restore an unknown state to the |00 . . . 0⟩ state.
The implementation of the INIT gate involved using the X gate to modify the measured
unknown state to obtain |00 . . . 0⟩. Subsequently, |00 . . . 0⟩ was incorporated into the
original quantum circuit (The INIT gate corresponds to Qiskit’s Reset() operation, ensuring
that the qubit is reset to a known initial state. In this circuit, it is used to reset qubits to
their ground state |0⟩). Moreover, the inverse transformation of C1 and G1 was used to
obtain the intermediate state yi, 1 ≤ i ≤ R. As C1 and G1 only used basic circuit gates,
the inverse transformation of C1 and G1 needed to exist. The quantum circuit diagram of
the two-round SAND round function is shown in Figure 7.

Figure 7. The quantum circuit diagram of the round function R1R2 of two-round SAND.

Entropy 2024, 26, 216 9 of 17

The round function of each round was transformed as follows:

xi+1 = Pn

(
G0(C0(xi))⊕ G1(C1(xi))

)
⊕ yi ⊕ ski

yi+1 = C1†(G†
1(G1(C1(xi))))

xi+1 = CNOT(xi+1, INIT(yi))

3.3. Quantum Implementation of the Key Schedule

According to Equation (6) of the key schedule and the output forms of A8 and A16,
the quantum circuit diagrams for the first round of the key schedule for SAND-64 and
SAND-128 are shown in Figure 8. In this diagram, (ix, iy) are represented as (3,4) for

SAND-64 and (1,2) for SAND-128. The fundamental concept was the incorporation of kimin

as the update component in the key schedule for each round.

Figure 8. Quantum circuit diagrams of the key schedules of SAND-64 and SAND-128.

To achieve RC, 6 qubits were necessary. A 6-bit auxiliary bit was sufficient for both
SAND versions because of 26

> 54. The initial state of the auxiliary qubits was |1⟩. These
qubits went through X gates to facilitate an increment in the quantum state (+ 1 operations)
in each round, resulting in RC through R + 1 operations. Specifically, SAND-64 required 94
X gates, while SAND-128 necessitated 104 X gates in the 6-qubit configuration.

3.4. Quantum Implementation of SAND

The round function Ri and key schedule Kχ of SAND were combined as a subgate in
SAND as a whole. We implemented SAND as a reversible circuit because reversibility was
necessary for the cipher to be useful as a subroutine in the Grover search. With the circuits
developed for the round function and key schedule, the circuit for full-round SAND could
be constructed. The initial state was designated as (K0, x0, y0), and the state propagated
through i rounds as (K1, x1, y1), (K2, x2, y2), . . . , (Ki, xi, yi), 0 ≤ i < R − 1. The quantum
circuit diagram of the implementation is shown in Figure 9.

Figure 9. Quantum circuit diagram of SAND.

4. Generalized Brute-Force Attack Framework Based on the Grover Algorithm

In this section, we describe the application of the Grover algorithm to brute-force
attacks, and we establish a generalized brute-force attack framework for SAND under
known plaintext attacks. SA represents the entire SAND encryption algorithm; let (Pi, Ci)
be multiple sets of plaintext–ciphertext pairs. Each pair of plaintext units Pi is assigned

Entropy 2024, 26, 216 10 of 17

a key K in SA, which is encrypted as Ci, namely, Ci = SA(Pi, K). When the number
of plaintext–ciphertext pairs is only 1, there are multiple keys K satisfying the SAND
encryption algorithm, namely,

C1 = SA(P1, K0); C1 = SA(P1, K1); . . .

So, in practice, brute-force attacks consider multiple plaintext–ciphertext pairs. Let r = 2ρ

plaintext–ciphertext pairs be sufficient to successfully extract a unique K. Given a key that
has a number of possible entries N = 2n, in order to find a unique key K, the Uw operator
(in the Grover algorithm) is defined as

f (K) = 1 iff Ci = SA(Pi, K), 1 ≤ i ≤ 2ρ; 0, otherwise.

Uw|K⟩ = (−1) f (K)|K⟩
(7)

Brute-force attacks usually require 2∼4 plaintext–ciphertext pairs [15,17,23]. r can be
determined through the key size k and branch size n, i.e., r ≥ ⌈k/n⌉ [17]. So, r must be at
least (2, 4) for SAND-128 and SAND-64. In the Uw operator of the Grover algorithm, 2r
SA instances are required for parallel testing of a brute-force attack. Next, we detail the
brute-force attack framework.

The main purpose of the g-database algorithm is to obtain corresponding superposition
states of ciphertexts with plaintexts. In order to obtain the superposition of ciphertexts,
we incorporate the g-database algorithm from [31] into the brute-force attack framework.
Querying the entire codebook in the g-database algorithm appears redundant for the stated
purposes, as the entire codebook is not required to determine a key. We made appropriate
modifications to the g-database algorithm and embedded it into our circuit. For the specific
g-database algorithm, see Algorithm 3.

Algorithm 3 Modified g-database algorithm.

Input: |0⟩⊗N |0⟩⊗N , classical query access to g
Output: The g-database

|rg⟩ = |x⟩|g(x)⟩
1: H-gate operations are performed on ρ qubits (not necessarily continuous) for the front

|0⟩⊗N .
|x⟩|0⟩⊗N

2: For each x ∈ {0, 1}N , 2ρ classical queries g(x) are performed, and then the g(x) unitary
operator is applied in the second register.

3: Return |x⟩|g(x)⟩ ▷ Return the g-database |rg⟩

The foundational logic of the g-database algorithm involves classical querying of all
instances of g(x) and the subsequent application of the resulting g(x) unitary operator
to the state |x⟩|0⟩, effectively establishing g(x) on the second register. Our main change
is as follows: The plaintext state is specified in the first step (one of the forms created
is |x⟩ = . . . |H⟩ . . . |0⟩ . . .

︸ ︷︷ ︸

ρ |H⟩ states

). We only need to accurately classically query g(x) 2ρ times,

and then we can apply the resulting unitary g(x) operator to |x⟩|0⟩, which forms |g(x)⟩
on the second register. The usage of quantum resources is reduced by transforming the
original querying of the SA quantum circuit into classical queries.

Figure 10 shows the important Uw operator in the Grover algorithm. For the initial

state |0′⟩, the ciphertext superposition state |C′
1⟩ is obtained using the g-database algorithm.

Then, the state |C′
1⟩ is compared with |C1⟩, which is obtained through the SA circuit. If

the ciphertext states are consistent, the target quantum qubit will be flipped (The state
distinction principle [32] is a technique widely used in quantum signature schemes [33,34].
Quantum superposition states can be compared, and it can be determined whether the

Entropy 2024, 26, 216 11 of 17

key is correct.). Specifically, if |C′
1⟩ = |C1⟩, the quantum comparator outputs 1, and the

output will be flipped; otherwise, the quantum comparator outputs 0 or the output is
unchanged (the principle of state distinguishing asserts that if two unknown states are
identical, measuring a result of ’0’ becomes impossible).

Regarding the Grover algorithm, it is commonly stated that it necessitates approxi-
mately π

4

√
N iterations. This does not mean that queries of the g-database algorithm (which

corresponds to the classical SAND algorithm) need to be performed in every iteration. This
is because the g-database algorithm can be consolidated into a single-g-database unitary
matrix. We can store the queried data in a data table and generate a unitary matrix based
on this data table for each iteration. This framework can reduce the number of qubits and
gate consumption to approximately 1/r of the original circuit.

This brute-force attack framework can be seen as a generalization of a previously
proposed brute-force attack framework. Specifically, when the g-database unitary matrix
transforms into the r − 1 SA unitary matrix, our framework is identical to the previous
attack framework. Note that the quantum resource consumption of the g-database unitary
matrix is less than that of the SA circuit. This conclusion is based on an intuitive assumption
that the greater the power of a unitary matrix, the more quantum resources it requires.
In terms of the power of unitary matrices, the SA matrix can encrypt the plaintext state
x ∈ {0, 1}n into a ciphertext state for all inputs. On the other hand, the g-database unitary
matrix can only encrypt a subset of the plaintext states into ciphertext states.

Figure 10. Uw operator of the Grover algorithm for brute-force attacks on SAND. The EM model [35]

and the form of the g − database unitary matrix are used to represent Uw.

In the Q1 model, the attacker is allowed to make classical queries to the encryption
oracle but has access to a quantum computer for making offline computations. In the Q2
model, besides having access to a quantum computer, the attacker is allowed to make
superposition queries to the oracle. The way of realizing cryptographic protocols (the
SAND algorithm) by using quantum resources so that they can be quantum superposition
queries with the Grover algorithm belongs to the Q2 model.

5. Attack Analysis and Evaluation

Quantum circuit depth is determined by the number of quantum gates in a column,
which consists of basic or physical gates (such as Clifford gates and T gates) or combina-
tional gates (such as Toffoli gates). Researchers have explored techniques for decomposing
Toffoli gates [36,37]. Specifically, their goal was to optimize the arrangement of T gates and
Clifford gates, resulting in maximum T-gate parallelism to reduce the depth of T gates.

We performed the decomposition of Toffoli gates to the Clifford+T level. A Toffoli
gate was decomposed into 7 T gates and 8 Clifford gates (6 CNOT gates and 2 H gates),
with the T-depth being 4 and the full depth (total depth) being 8 according to the method
presented in [37]. Based on [37], the depth of a series of circuits was optimized using Qiskit,
ensuring that it was less than or equal to the sum of the individual depths and T-depths

Entropy 2024, 26, 216 12 of 17

(Qiskit allows us to automatically compute circuit depth by moving gates around through
a circuit if the qubits that they act on were previously idle. This means that the depth of
two circuits applied in series may be less than the sum of the individual depths of each
circuit.). The optimized G0 and G1 of SAND-64 are shown in Appendix A.

We first calculated the quantum resources required for each round of the SAND
algorithm. As illustrated in Figure 2, the SWAP gate was decomposed into a sequence of
three CNOT gates for the purpose of resource estimation. This approach differed from the
methodologies adopted in [17,24,25,27], where SWAP gates were not typically accounted
for as separate resources. While this strategy did indeed increase the overall depth and the
quantum gate count of the circuit, it significantly enhanced the transparency and accuracy
of quantum resource estimation. The implementation of the INIT gate involved the µ/2
gate, where µ denotes the number of qubits on which the INIT gate acted.

Through the quantum resource consumption of each component shown in Table 6,
the quantum resource consumption of one round of the SAND algorithm could be ob-
tained. The round function required 3n qubits, and the key schedule needed k + 10 qubits
(four qubits to implement An/4 and six qubits to implement the round constant). Table 7
illustrates the quantum resources consumed by each round of the SAND algorithm.

Table 6. The consumption of components of the SAND algorithm.

Stages Component Number CNOT H X T T-Depth

Round
function

C1 2 (84, 180) 3 - - - -

G1 2 (96, 192) (32, 64) - (112, 224) (4, 8)

G0 1 (96, 192) (32, 64) - (112, 224) (6, 12)

Pn 1 (84, 168) - - - -

CNOTS 1 4 (32, 64) - - - -

INIT 1 - - (16, 32) - -

Key
schedule

An/4 6 (48, 48) - - - -

RC 2 1 - - (94, 104) - -

CNOTS 1 N/A (38, 70) - - - -
1 The CNOT gates establish connections between different components. 2 The consumption of the round constant

for all rounds. 3 The data in the table represent the quantum resource consumption for SAND-64 and SAND-128.

Table 7. The consumption of a round of the SAND algorithm.

Cipher
Round Function Key Schedule

#Clifford #T #T-Depth #Qubit #Clifford #T #T-Depth #Qubit

SAND-64 780 336 14 96 326 + η1
1 N/A N/A 138

SAND-128 1584 672 28 192 358 + η2
1 N/A N/A 138

1 (η1, η2) is the Clifford gate in SAND-64 and SAND-128 for obtaining the round constant for every round function.

The quantum resources for each round of the SAND algorithm were multiplied by R
to yield an estimation of the quantum resources consumed for a single encryption by the
SAND algorithm. The full depth of the SAND algorithm was

(4n + D(Pn) + D(G0))R (8)

where D(Pn) is the full depth of Pn, and D(G0) is the full depth of G0. Specifically, D(Pn)
and D(G0) were (84, 168) and (16, 32) in SAND-64 and SAND-128.

In our study, we undertook a comparison of the implementation of our quantum
algorithm with other lightweight quantum cryptography implementations, as shown in
Table 8. For certain studies, which are listed in Table 8, we performed a recalculation by
implementing the decomposition of the Toffoli gate. Additionally, the depth-times-width

Entropy 2024, 26, 216 13 of 17

value, which is denoted as D·W in the table, was computed. This value was determined by
multiplying the T-gate depth (T-depth) by the number of qubits (width). The comparison
revealed that SAND-64 exhibited the lowest depth-times-width value (154, 560) compared
to the other lightweight ciphers. This indicated that the quantum circuit calculation cost
associated with the SAND cipher algorithm was relatively low.

The number of qubits required in this brute-force attack was Qb + 4n + 1, where Qb

is the number of qubits required for the quantum implementation of SAND (the original
Grover-based brute-force attack circuit requires rQb + 1 qubits). There were (937, 661)
qubits required in SAND-64 and SAND-128 for the original attack framework, while
fewer (363, 587) qubits were required in SAND-64 and SAND-128 for a generalized brute-
force attack.

Table 8. Quantum consumption of the SAND algorithm compared with that of other lightweight algorithms.

Cipher Version #Clifford #T #Full-Depth #T-Depth #Qubit D·W

SAND
SAND-64 57,600 16,128 10,944 672 234 154,560

SAND-128 110,484 36,288 24,624 1512 330 492,912

CHACHA [25]
CHACHA-12 141,344 90,272 27,439 11,904 1024 12,189,696

CHACHA-20 228,640 145,824 45,359 19,840 1024 20,316,160

DEFAULT [38]
DEFAULT2022 75,371 57,344 2291 1024 256 262,144

DEFAULT2021 89,975 62,720 2497 1120 640 716,800

SM4 (Stand-alone) [24] 378,204 49,152 Not reported 455 1464 666,120

CHAM-64/128 (FSE) [27] 36,920 16,240 17,031 9280 195 1,809,600

SPECK-64/128 [39] 39,664 22,631 13,365 6588 194 1,278,072

LowMC-L1/Regular [39] 500,674 4200 4708 240 3200 768,000

Many works have assumed that T gates constitute the main cost ([15–17,25]), and T
gates are exceptionally expensive for surface code [40]. It was assumed that the quantum
implementation cost of Clifford gates was negligible in comparison with that of T gates in
the dimension of 2k/2.

In κ iterations, the cost of implementing Uw was considered. The consumption of
the diffusion operator and the g − database unitary and state distinctions were ignored,
and two SA instances are required. For this part of the calculation, the data in Table 8 could
be used. The required number of T gates was

⌈π

4
264⌉ · 2 · ∆T (9)

The required full depth was

⌈π

4
264⌉ · 2 · ∆Full (10)

where (∆T , ∆Full) in SAND-64 was (16128, 10944), while the value in SAND-128 was
(36288, 24624). The gates required for SAND-64 were ⌈π

4 264⌉ · 2 · 16128 ≈ 278.628, while the
gates required for SAND-128 were ⌈π

4 264⌉ · 2 · 36288 ≈ 279.798. The full depth required for
SAND-64 was ⌈π

4 264⌉ · 2 · 10944 ≈ 278.069, while the full depth required for SAND-128 was
⌈π

4 264⌉ · 2 · 24624 ≈ 279.239.
The NIST defined the post-quantum security level according to the relative resource

cost of quantum attacks that violate the security of AES-128, AES-192, and AES-256 [5]. The
costs for security levels I, III, and V are estimated, respectively, as 2157, 2221, and 2285 compu-
tational resources (computational resources are calculated using gates multiplied by depth).
The cost of the Grover-based brute-force attack on SAND-64 was 278.628 × 278.069 ≈ 2156.697,
and that for SAND-128 was 279.798 × 279.239 ≈ 2159.037. The SAND-128 algorithm success-
fully achieved the NIST security level I (2159.037

> 2157). In contrast, the SAND-64 algorithm
fell short of meeting the requirements of security level I (2156.919

< 2157).
The specific statistics are shown in Table 9.

Entropy 2024, 26, 216 14 of 17

Table 9. Cost estimates of brute-force attack using the Grover algorithm for SAND.

Version Gates Depth Cost NIST Security

SAND-64 78.628 78.069 156.697 Not achieved

SAND-128 79.798 79.239 159.037 level I

These values are represented on the log scale.

6. Conclusions

This study provides a detailed quantum implementation of a lightweight block ci-
pher SAND algorithm and describes the application of the Grover algorithm to the SAND
algorithm under a generalized brute-force attack. Compared with other lightweight crypto-
graphic quantum circuit implementations, the proposed quantum circuit implementation of
SAND has relatively low quantum resource consumption for the depth-times-width metric.
Regarding the security levels specified by the NIST, the SAND-128 algorithm achieved the
NIST security level I, while the SAND-64 algorithm fell short of meeting the requirements of
security level I. Our future work will concentrate on developing more optimized quantum
circuit designs to minimize quantum resource usage for the SAND algorithm.

Author Contributions: Conceptualization, H.W. and X.F.; methodology, H.W.; validation, X.F.,

H.W. and J.Z.; investigation, H.W.; data curation, X.F.; writing—original draft preparation, H.W.;

writing—review and editing, H.W. and J.Z.; visualization, H.W.; supervision, X.F.; funding acquisi-

tion, X.F. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (Nos. 51979048).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

The following abbreviations are used in this manuscript:

DCC Designs, Codes, and Cryptography

NIST National Institute of Standards and Technology

PQC Post-Quantum Cryptography

AES Advanced Encryption Standard

S-box Substitution Box

AND-RX AND-Recursive exchange

SAND S-box-based and AND-RX-based structures

Entropy 2024, 26, 216 15 of 17

Appendix A

Figure A1. Implementation of quantum circuits of G0 in SAND-64.

Figure A2. Implementation of quantum circuits of G1 in SAND-64.

References

1. Mosca, M. Cybersecurity in an era with quantum computers: Will we be ready? IEEE Secur. Priv. 2018, 16, 38–41. [CrossRef]

2. Schrottenloher, A. Quantum Algorithms for Cryptanalysis and Quantum-Safe Symmetric Cryptography. Ph.D. Thesis, Sorbonne

Université, Paris, France, 2021.

3. Shor, P.W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 1999,

41, 303–332. [CrossRef]

4. Grover, L.K. A fast quantum mechanical algorithm for database search. In Proceedings of the Twenty-Eighth Annual ACM

Symposium on Theory of Computing, Philadelphia, PA, USA, 22–24 May 1996; pp. 212–219.

5. NIST. Call for Additional Digital Signature Schemes for the Post-Quantum Cryptography Standardization Process 2022. Available

online: https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf (accessed

on 15 October 2022).

6. Caleffi, M.; Chandra, D.; Cuomo, D.; Hassanpour, S.; Cacciapuoti, A.S. The rise of the quantum internet. Computer 2020, 53, 67–72.

[CrossRef]

7. Lloyd, S.; Shapiro, J.H.; Wong, F.N.; Kumar, P.; Shahriar, S.M.; Yuen, H.P. Infrastructure for the quantum Internet. ACM

SIGCOMM Comput. Commun. Rev. 2004, 34, 9–20. [CrossRef]

8. Thapliyal, H.; Muñoz-Coreas, E.; Khalus, V. Quantum circuit designs of carry lookahead adder optimized for T-count T-depth

and qubits. Sustain. Comput. Inform. Syst. 2021, 29, 100457. [CrossRef]

9. Park, J.J.; Baek, K.; Kim, M.; Nha, H.; Kim, J.; Bang, J. T-depth-optimized quantum search with quantum data-access machine.

Quantum Sci. Technol. 2023, 9, 015011. [CrossRef]

10. Larasati, H.T.; Putranto, D.S.C.; Wardhani, R.W.; Park, J.; Kim, H. Depth Optimization of FLT-Based Quantum Inversion Circuit.

IEEE Access 2023, 11, 54910–54927. [CrossRef]

http://doi.org/10.1109/MSP.2018.3761723
http://dx.doi.org/10.1137/S0036144598347011
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf
http://dx.doi.org/10.1109/MC.2020.2984871
http://dx.doi.org/10.1145/1039111.1039118
http://dx.doi.org/10.1016/j.suscom.2020.100457
http://dx.doi.org/10.1088/2058-9565/ad04e5
http://dx.doi.org/10.1109/ACCESS.2023.3280632

Entropy 2024, 26, 216 16 of 17

11. López, L.O.; Orts, F.; Ortega, G.; González-Ruiz, V.; Garzón, E.M. Fault-tolerant quantum algorithm for dual-threshold image

segmentation. J. Supercomput. 2023, 79, 12549–12562. [CrossRef]

12. Qin, D.; Chen, Y.; Li, Y. Error statistics and scalability of quantum error mitigation formulas. NPJ Quantum Inf. 2023, 9, 35.

[CrossRef]

13. DeCross, M.; Chertkov, E.; Kohagen, M.; Foss-Feig, M. Qubit-reuse compilation with mid-circuit measurement and reset. Phys.

Rev. X 2023, 13, 041057. [CrossRef]

14. Osvik, D.A.; Bos, J.W.; Stefan, D.; Canright, D. Fast software AES encryption. In Proceedings of the International Workshop on Fast

Software Encryption; Springer: Berlin/Heidelberg, Germany, 2010; pp. 75–93.

15. Grassl, M.; Langenberg, B.; Roetteler, M.; Steinwandt, R. Applying Grover’s algorithm to AES: Quantum resource estimates.

In Proceedings of the International Workshop on Post-Quantum Cryptography; Springer: Berlin/Heidelberg, Germany, 2016; pp. 29–43.

16. Almazrooie, M.; Samsudin, A.; Abdullah, R.; Mutter, K.N. Quantum reversible circuit of AES-128. Quantum Inf. Process. 2018,

17, 112. [CrossRef]

17. Jaques, S.; Naehrig, M.; Roetteler, M.; Virdia, F. Implementing Grover oracles for quantum key search on AES and LowMC.

In Proceedings of the Advances in Cryptology–EUROCRYPT 2020: 39th Annual International Conference on the Theory and

Applications of Cryptographic Techniques, Zagreb, Croatia, 10–14 May 2020; Proceedings, Part II 30; Springer: Berlin/Heidelberg,

Germany, 2020; pp. 280–310.

18. Zou, J.; Wei, Z.; Sun, S.; Liu, X.; Wu, W. Quantum circuit implementations of AES with fewer qubits. In Proceedings of the

International Conference on the Theory and Application of Cryptology and Information Security; Springer: Berlin/Heidelberg, Germany,

2020; pp. 697–726.

19. Huang, Z.; Sun, S. Synthesizing quantum circuits of AES with lower t-depth and less qubits. In Proceedings of the International

Conference on the Theory and Application of Cryptology and Information Security; Springer: Berlin/Heidelberg, Germany, 2022;

pp. 614–644.

20. Luo, Q.B.; Yang, G.W.; Li, X.Y.; Li, Q. Quantum reversible circuits for multiplicative inverse. EPJ Quantum Technol. 2022, 9, 24.

[CrossRef]

21. Rajesh, S.; Paul, V.; Menon, V.G.; Khosravi, M.R. A secure and efficient lightweight symmetric encryption scheme for transfer of

text files between embedded IoT devices. Symmetry 2019, 11, 293. [CrossRef]

22. Singh, S.; Sharma, P.K.; Moon, S.Y.; Park, J.H. Advanced lightweight encryption algorithms for IoT devices: Survey, challenges

and solutions. J. Ambient. Intell. Humaniz. Comput. 2017, 1–18. [CrossRef]

23. LIN, D.; XIANG, Z.; ZHANG, R.; ZHANG, S.; ZENG, X. Quantum implementation of SM4. J. Cryptologic Res. 2021, 8, 999–1018.

24. Zou, J.; Li, L.; Wei, Z.; Luo, Y.; Liu, Q.; Wu, W. New quantum circuit implementations of SM4 and SM3. Quantum Inf. Process.

2022, 21, 181. [CrossRef]

25. Bathe, B.; Anand, R.; Dutta, S. Evaluation of Grover’s algorithm toward quantum cryptanalysis on ChaCha. Quantum Inf. Process.

2021, 20, 394. [CrossRef]

26. Jang, K.; Choi, S.; Kwon, H.; Kim, H.; Park, J.; Seo, H. Grover on Korean block ciphers. Appl. Sci. 2020, 10, 6407. [CrossRef]

27. Yang, Y.; Jang, K.; Baksi, A.; Seo, H. Optimized implementation and analysis of cham in quantum computing. Appl. Sci. 2023,

13, 5156. [CrossRef]

28. Chen, S.; Fan, Y.; Sun, L.; Fu, Y.; Zhou, H.; Li, Y.; Wang, M.; Wang, W.; Guo, C. SAND: An AND-RX Feistel lightweight block

cipher supporting S-box-based security evaluations. Des. Codes Cryptogr. 2022, 90, 155–198. [CrossRef]

29. Pan, S.J.; Wan, L.C.; Liu, H.L.; Wang, Q.L.; Qin, S.J.; Wen, Q.Y.; Gao, F. Improved quantum algorithm for A-optimal projection.

Phys. Rev. A 2020, 102, 052402. [CrossRef]

30. Foss-Feig, M.; Hayes, D.; Dreiling, J.M.; Figgatt, C.; Gaebler, J.P.; Moses, S.A.; Pino, J.M.; Potter, A.C. Holographic quantum

algorithms for simulating correlated spin systems. Phys. Rev. Res. 2021, 3, 033002. [CrossRef]

31. Bonnetain, X.; Hosoyamada, A.; Naya-Plasencia, M.; Sasaki, Y.; Schrottenloher, A. Quantum attacks without superposition queries:

The offline Simon’s algorithm. In Proceedings of the Advances in Cryptology–ASIACRYPT 2019: 25th International Conference

on the Theory and Application of Cryptology and Information Security, Kobe, Japan, 8–12 December 2019; Proceedings, Part I;

Springer: Berlin/Heidelberg, Germany, 2019; pp. 552–583.

32. Buhrman, H.; Cleve, R.; Watrous, J.; De Wolf, R. Quantum fingerprinting. Phys. Rev. Lett. 2001, 87, 167902. [CrossRef]

33. Lu, D.; Li, Z.; Yu, J.; Han, Z. A verifiable arbitrated quantum signature scheme based on controlled quantum teleportation.

Entropy 2022, 24, 111. [CrossRef]

34. Chen, F.L.; Wang, Z.H.; Hu, Y.M. A new quantum blind signature scheme with BB84-state. Entropy 2019, 21, 336. [CrossRef]

35. Carstens, T.V.; Ebrahimi, E.; Tabia, G.N.; Unruh, D. Relationships between quantum IND-CPA notions. In Proceedings of the

Theory of Cryptography: 19th International Conference, TCC 2021, Raleigh, NC, USA, 8–11 November 2021; Proceedings, Part I;

Springer: Berlin/Heidelberg, Germany, 2021; pp. 240–272.

36. Selinger, P. Quantum circuits of T-depth one. Phys. Rev. A 2013, 87, 042302. [CrossRef]

37. Amy, M.; Maslov, D.; Mosca, M.; Roetteler, M. A meet-in-the-middle algorithm for fast synthesis of depth-optimal quantum

circuits. IEEE Trans.-Comput.-Aided Des. Integr. Circuits Syst. 2013, 32, 818–830. [CrossRef]

38. Jang, K.; Baksi, A.; Breier, J.; Seo, H.; Chattopadhyay, A. Quantum implementation and analysis of default. Cryptogr. Commun.

2023, 1–17. [CrossRef]

http://dx.doi.org/10.1007/s11227-023-05148-9
http://dx.doi.org/10.1038/s41534-023-00707-7
http://dx.doi.org/10.1103/PhysRevX.13.041057
http://dx.doi.org/10.1007/s11128-018-1864-3
http://dx.doi.org/10.1140/epjqt/s40507-022-00144-z
http://dx.doi.org/10.3390/sym11020293
http://dx.doi.org/10.1007/s12652-017-0494-4
http://dx.doi.org/10.1007/s11128-022-03518-5
http://dx.doi.org/10.1007/s11128-021-03322-7
http://dx.doi.org/10.3390/app10186407
http://dx.doi.org/10.3390/app13085156
http://dx.doi.org/10.1007/s10623-021-00970-9
http://dx.doi.org/10.1103/PhysRevA.102.052402
http://dx.doi.org/10.1103/PhysRevResearch.3.033002
http://dx.doi.org/10.1103/PhysRevLett.87.167902
http://dx.doi.org/10.3390/e24010111
http://dx.doi.org/10.3390/e21040336
http://dx.doi.org/10.1103/PhysRevA.87.042302
http://dx.doi.org/10.1109/TCAD.2013.2244643
http://dx.doi.org/10.1007/s12095-023-00666-y

Entropy 2024, 26, 216 17 of 17

39. Jang, K.; Baksi, A.; Kim, H.; Seo, H.; Chattopadhyay, A. Improved quantum analysis of SPECK and lowmc. In Proceedings of the

International Conference on Cryptology in India; Springer: Berlin/Heidelberg, Germany, 2022; pp. 517–540.

40. Fowler, A.G.; Mariantoni, M.; Martinis, J.M.; Cleland, A.N. Surface codes: Towards practical large-scale quantum computation.

Phys. Rev. A 2012, 86, 032324. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1103/PhysRevA.86.032324

	Introduction
	Preliminaries
	 Symbol Description
	Grover Algorithm
	SAND Algorithm

	Quantum Implementation of SAND
	Quantum Implementation of Small Components of SAND
	Quantum Implementation of SAND's Round Function
	Quantum Implementation of the Key Schedule
	Quantum Implementation of SAND

	Generalized Brute-Force Attack Framework Based on the Grover Algorithm
	Attack Analysis and Evaluation
	Conclusions
	Appendix Implementation of quantum circuits of G0 and G1 in SAND-64 in Qiskit
	References

