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Chapter 1

Introduction

Discovering the underlying oneness in the laws of nature is the goal of physics. Over

the last century we have made progress which was unimaginable even couple of cen-

turies ago. General relativity and quantum mechanics are the two pillars of physics

today. Some form of Kaluza-Klein mechanism sheds light on classical unification of

all forces in terms of geometry. However the gap between unification of various forces

blows up when one tries to embed them in quantum framework. Quantum electrody-

namics is one of the most precise theories, where as quantum chromodynamics and

quantum gravity are filled with many conceptual difficulties.

Holography was discovered as a part of endeavour to solve the mysteries of quan-

tum gravity. Principal of holography asserts that the theory of gravity in the bulk

can be formulated as a dual theory on a manifold with one lesser dimension. Often it

is convenient to think of this manifold as the boundary of the spacetime. In chapter

2 we introduce the basic ideas of holography and explain why and how it is possible

to encode all the information of bulk in one lesser dimension. In this chapter we

focus on the hologarphy in Anti-de-Sitter(AdS) space as it was the first model to be

studied. AdS is a space with constant negative curvature. We mention some of the

prescriptions which map bulk information to the dual theory.

1



Often one has to introduce quantities in calculation which are not observable

in nature. Quantum field theory is generally described in terms of field operators.

These fields are not observable . What we measure is there correlation function. It

is often found that theory based on the observables is often simpler and conceptually

more clear although it may not be intuitive. Arthur Wightman proposed a form of

QFT starting with axioms on correlation functions. These reproduced quantum field

theoretic results. This field of study is known as Axiomatic QFT. It turns out that in

some prescriptions of holography correlation functions are easier to describe than the

fields. So in chapter 3 we describe Axiomatic QFT and some of its important results

and the holographic prescription.

Our universe has positive curvature. Such a space is known as de-Sitter(ds) space.

In chapter 4 our first work on dS holography is presented. After brief introduction of

various coordinate systems of dS, we mention the difficulties of analytically continu-

ing AdS holography to dS. Then we explain our main mathematical tool of integral

transform in section 4.3. Integral transform is nothing but generalization of Radon

transform to curved spaces. Finally we use this machinery to understand holography

in dS space in the large N limit, that is only for the free fields.

In chapter 5 we explore dS holography in the presence of gravity. We find that in

the presence of gravity, boundary does not decouple from the bulk, as a result there

is no well defined holographic map at finite N. We show this using various examples.

We continue exploring dS holography in presence of interaction in chapter 6. As-

suming there exists a dual CFT to interacting bulk theory we calculate Operator

Product Expansions (OPEs) of various operators. We show that such OPEs have

increasingly singular behavior unlike OPEs of usual CFTs. This signals break down

of CFT. This is another strong hint of breakdown of holographic description of dS

space.

In chapter 7, we shift gears from dS space to Minkowski space. Asymptotic sym-

2



metry group of Minkowski space is known as Bondi-Metzner-Sachs (BMS) group. We

review the representations of BMS group discovered by McCarthy. We consider rep-

resentations of various little groups. It is shown that relation between BMS group,

gravitational memory as proposed by Strominger et. al. is evident from the repre-

sentations of BMS group.
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Chapter 2

Anti-de-Sitter/Conformal Field

Theory correspondence

Discovery of holography marks one of the biggest steps in theoretical physics. Almost

all the fields in high energy theory and many fields outside have been effected by

holography. There are excellent resources which give technical details [1, 2, 3, 4] of

holography in details. However for a beginner it is often overwhelming to get an

intuition of it. So before diving into mathematical formula, I will devote the first

subsection in motivating holography. The second and third subsection introduces

quantum field theory in Anti-de-Sitter space and conformal field theory respectively.

Finally in fourth sub-section we present the precise statement of holography.

2.1 Motivation

A quantum theory is fully characterized by symmetry group. Eigenstates of the

maximally commuting operators of the symmetry group are the observables. For

example, symmetry group of Minkowski space is Poincare group. Quantum field

theory of free particles in bulk is labelled by eigenstates of momentum. However, in

reality there is always interaction, for example gravity. Individual momentum of each

4



particle is not conserved due to interaction. Instead of individual particle one observes

sum total of individual particle and the interaction between them. This suggests that

symmetry group in presence of interaction is no more Poincare group. For example,

position of the particle acts as a reference point and breaks translation invariance. It

is still possible to describe the bulk by assuming free particles and interaction between

them. If the interaction is weak one can do calculation which only gives perturbative

power series expansion in coupling constant. The terms of the series, if known, can

sometimes be resummed using various techniques. But even a bigger problem is that

for most of the realistic theories terms beyond certain order are extremely difficult to

calculate. This clearly indicates that there is something missing.

This motivates one to search for another approach which can give non-perturbative

observable from first principal. Here it is important to elaborate more on “non-

perturbative observable” and “first principal”? Although we do not have completely

clear idea about them, we know something. Let us start from what we know. For a

free theory, “first principal” is the symmetry group and “non-perturbative observable”

are the eigenstates of the symmetry group. In presence of gravity (i.e interaction),

symmetry group is not known. Even if it is known for certain cases, like Bondi-

Metzner-Sachs group, it is not clear whether symmetry group is the correct first

principal to start with. Observable is closely related to first principal. It is clear that

individual particles cannot be observables. This suggests that spacetime including

the particles and interactions has to be seen as one whole unit. But how can one

“observe” the whole spacetime. This leads one to consider asymptotic spacetime.

One can think of this as observing the whole spacetime from outside, seeing only its

surface. So the natural choice is to understand theory of the boundary. In other

words the “first principal” is the boundary theory and “non-perturbative observable”

are states of the boundary.

To understand the theory of boundary one again looks at the free bulk theory for

5



which symmetry group is known. It turns out to be easier to start with bulk with

negative curvature called Anti-de-Sitter (AdS) space discussed in details in section

2.2. Symmetry group of d + 1 dimensional AdS space is Lorentz group SO(2, d).

The boundary theory for the free bulk theory must have this symmetry. For a free

two-point functions captures all the information. It turns out that SO(2, d) is also

symmetry group of conformal field theory(CFT) in d-dimension. In CFT, operators

form a complete basis. In other words, product of any two operators can be expanded

as a linear sum of operators in the CFT. This is is called Operator Product Expan-

sion(OPE). Specifying all the operators and OPE uniquely specifies a CFT. We will

explain more about conformal field theory in section 2.3. Hard thing is to describe

interacting bulk theory. When interactions are turned on diagonalizing symmetry

group is not the best strategy because symmetry group is itself not known.

Now comes the interesting part. Although interactions change the bulk symmetry,

boundary theory is still conformally invariant. So boundary symmetry is still known.

What changes in the boundary theory is the OPE structure. This non-trivial map

between between bulk symmetry group and OPE on the boundary, forms the bedrock

of holography. there are srong indications that even when interaction in the bulk are

strong this duality will hold.

2.2 Anti-de-Sitter space (AdS)

Anti-de-Sitter space is maximally symmetric spacetime with constant negative cur-

vature. Commonly used models have lAdS as the radius of curvature of AdS space, 2

time-like dimensions and d space-like dimensions. Then the AdS space is realized on

hyperbolic space

X2
0 +X2

d+1 −X2
1 − ...−X2

d = l2AdS

6



Line element is given by

ds2 = dX2
0 + dX2

d+1 − dX2
1 − ...− dX2

d

Throughout the thesis we will use positive signature for time-like coordinates and

negative signature for space-like coordinates.

2.2.1 Global Coordinates

Using the variables

X0 = l cos τ cosh ρ

Xd+1 = l sin τ cosh ρ

Xi = l sinh ρωi

where 1 ≤ i ≤ d, ωi parametrize the sphere.

ω1 = cos θ1, (2.2.1)

ω2 = sin θ1 cos θ2, (2.2.2)

... (2.2.3)

ωd−1 = sin θ1 · · · sin θd−2 cos θd−1, (2.2.4)

ωd = sin θ1 · · · sin θd−2 sin θd−1, (2.2.5)

where 0 ≤ θi < π for 1 ≤ i < d − 1, but 0 ≤ θd−1 < 2π. Then it is clear that∑d
i=1(ωi)2 = 1, and the metric on Sd−1 is

dΩ2
d−1 =

d∑
i=1

(dωi)2 = dθ2
1 + sin2 θ1dθ

2
2 + · · ·+ sin2 θ1 · · · sin2 θd−2dθ

2
d−1. (2.2.6)
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In this coordinate system line element is given by

ds2 = l2
(
cosh2 ρdτ 2 − dρ2 − sinh2 ρdΩ2

d−1

)
Here τ is periodic with range [0, 2π). To avoid time-like closed loops one relaxes

the range to [0,∞). Using the variable transformation r = l sinh ρ, t = lτ above line

element can be written in another form

ds2 =

(
1 +

r2

l2

)
dt2 −

(
1 +

r2

l2

)−1

dr2 − r2dΩ2
d−1

2.2.2 Poincare coordinates

This is also known as horospherical coordinates. Using the following variables

X0 =
1

2
(z +

1

z
) +

∑
x2
i − t2

2z
(2.2.7)

Xd+1 =
t

z
(2.2.8)

Xi =
xi
z

(2.2.9)

Xd =
1

2
(z − 1

z
)−

∑
x2
i − t2

2z
(2.2.10)

we get

ds2 =
l2

z2

(
dt2 − d−→x 2

d−1 − dz2
)

This is one of the most commonly used coordinate system. In this coordinate

system boundary is at z → 0.
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2.3 Conformal Field Theory (CFT)

In this section we will give a short introduction of the conformal symmetry group.

Under coordinate transformation x→ x′, if the metric transforms like

g′αβ(x′)
∂x′α

∂xµ
∂x′β

∂xν
= Λ(x)gµν(x)

then it is called a conformal transformation. Such mappings leave the angle between

the tangents invariant at any point in manifold while changing their length. Gen-

erators of conformal group consists of translations, rotations, dilations and special

conformal transformations

2.4 AdS/CFT correspondence

To keep the 2discussion simple and put across the main points we will only consider

scalar field. We will follow the review [5] closely. Klein-Gordon equation in Poincare

coordinates of AdS space is given by

z2

L2

(
∂2
z − (d− 1)

∂z
z

+ ∂2
x

)
φ = m2φ (2.4.1)

We can separate the dependence along z coordinate and transverse coordinates.

φ(z, x) = f(z)eikx. Substituting it in the equation (2.4.1) we get

z2f ′′ + (d− 1)zgf ′ −
(
m2L2 + k2z2

)
f = 0

Solution of the above equation which is regular in the interior of the bulk is given

by

fk(z) = ak(kz)
d/2Kν(kz) (2.4.2)

9



where ν =
√

d2

4
+m2L2 and Kν(kz) is modified Bessel function. ak is constant of

integration which turns into creation and annihilation operator on quantization. Near

the boundary z → 0 solution behaves like

f(z) = ak(kz)d/2
[

Γ(ν)

2

(
2

kz

)ν
+

Γ(−ν)

2

(
2

kz

)ν]
= φ0(k)z∆− + φ1(k)z∆+

where

φ0(k) = ak2
ν−1Γ(ν)k∆− φ1(k) = ak2

−(ν+1)Γ(−ν)k∆+

The scaling exponents ∆± are defined as

∆± =
d

2
±
√
d2

4
+m2L2

Finally in position space the solution can be written as

φ(z, x) = φ0(x)z∆− + φ1(x)z∆+ (2.4.3)

where φ0(x), φ1(x) are Fourier transform of φ0(k), φ1(k). Now note that ∆+ >

0,∆− < 0. Solution z∆+ is a normalizable mode and decays close to the boundary.

Other solution z∆− is non-normalizable mode and blows up near boundary. This

allows us to define field on the boundary using the following ansatz

O(k) ≡ φ0(k) = lim
z→0

z−∆−f(z)

This can also be expressed in the position space

O(x) ≡ φ0(x) = lim
z→0

z−∆−φ(z, x) (2.4.4)
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This is one of the ways of stating holography. We have found our first entry of the

AdS/CFT dictionary. O(x) defined in equation (2.4.4) is dual to bulk field (2.4.3).

An important step in the above procedure is to use the non-normalizable mode as

the boundary operator. This mode is otherwise thrown away if one looks only from

the bulk.

Now we will give another prescription for the holography which was historically

developed first. The difference between the two prescription is nicely elaborated in

the paper by Harlow and Stanford [6]. The main idea is that boundary value of the

bulk field acts as a source of operator on the boundary. Idea is to take the partition

function of the bulk and substitute in it boundary value of the bulk field. Then that

becomes generating function of boundary operator.

e
∫
d4xφ0(~x)O(~x)

CFT = Zbulk [φ(~x, z)|z=0 = φ0(~x)]

One gets correlation function by successively differentiating with respect to the bulk

field. We will show this by deriving CFT two point function from the bulk partition

function. We will follow as done in [1, 2, 3, 4]. We have calculated in equation (2.4.2)

φ(z, k) = ak(kz)
d/2Kν(kz)

This blows up at the boundary z → 0. Let us impose the boundary condition

φ(~x, z)|z=0 = φ0(~x) = ei~p.~x.

φ(~x, z) =

∫
ddpak

(kz)d/2Kν(kz)

(kε)d/2Kν(kε)
eipx

Substitute this in the bulk action of massive scalar field in

S =

∫
dd+1x

√
g

[
1

2
(∂φ)2 +

1

2
m2φ2

]
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After doing the integral, we expand in ε and retain only the leading non-analytic

term that gives

O(p)O(q) = ε2(∆−d)(2∆− d)
Γ(d− 1−∆)

Γ(∆− 1)
δd(~p+ ~q)

(
~p

2

)2∆−d

where ∆ = d
2

+
√

d2

4
+m2l2. Fourier transforming to position space we get

O(~x)O(~y) ∝ 1

|~x− ~y|2∆

This is the expected two-point function of a CFT.

The main point to note is that in both the prescriptions we have to give a boundary

condition. This by default removes half the degree of freedom. This does not create

problem in AdS because anyway these non-normalizable modes are not part of inner

product. However we will see that this is not possible in de-Sitter space. That will

invalidate both these prescription. There we will need another prescription which is

independent of boundary condition.
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Chapter 3

Axiomatic Quantum Field Theory

Quantum field theory is most often introduced in textbooks as operator valued fields

which extremizes the action and has appropriate commutation relations. Many diffi-

culties arise from such a description. For example, exact QFT results are not analytic

in a finite neighborhood of zero coupling.

Axiomatic QFT is an attempt to construct QFT based on some rigorous axioms.

Arthur Wightman in 1950s was the first physicist to propose axioms for QFT. These

are known as Wightman Axioms. These axioms define fields as operator valued

distributions on Hilbert space. In this section we will state the axioms. Following

that in section 3.1 we will give some of the relevant theorems following from these

axioms. Wherever possible we will outline the proof of the theorems but will not

prove any of them in details. Proofs are given in the book [7].

Definition: The space S (R4) consists of infinitely differentiable real functions of

four variables, which go to zero at infinite infinitely faster than any power of Euclidean

distance. A tempered distribution is then a continuous linear map, f : S → C.

There are five axioms:

I. Assumptions of relativistic quantum theory: The states of the theory are de-

scribed by unit rays in a separable Hilbert space H. Relativistic transformation law
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of the states is given by a continuous unitary representation of the inhomogenous

SL(2, C):

{a, T} → U (a, T )

where a is translation and T is Lorentz transformation. U(a, 1) being unitary

can be written as U(a, 1) = eiPa where P µ is an unbounded hermitian operator

interpreted as the energy momentum operator of the theory. It satisfies spectral

condition P 0 ≥ 0, P µPµ = m2 ≥ 0. There is an invariant state, |0〉 known as vacuum,

U(a, T )|0〉 = |0〉

unique up to a constant phase factor. This is uniqueness of the vacuum.

II. Domain and continuity of the field: For each test function f ∈ S there exists a

set of operators φ1(f), ..., φn(f) and their adjoints φ∗1(f), ..., φ∗n(f) defined by smeared

field φ(f) =
∫
f(x)φ(x)d4x. These operators are tempered distribution defined on a

domain D of vectors in H. Furthermore D is a linear set containing |0〉. U (a, T ) and

φ(f), φ∗(f) carry vectors in D into vectors in D

U(a, T )D ⊂ D φ(f)D ⊂ D φ∗(f)D ⊂ D

III. Transformation law of the field:

U(a, T )φ(f)U(a, T )−1 = φ(fa,T )

where the test function transforms as the inverse element of the group

fa,T (x) = f
(
T−1(x− a)

)
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IV. Local commutativity: If the support of f and the support of g are spacelike

separated, then one or the other

[φj(f), φk(g)]± = φj(f)φk(g)± φk(g)φj(f) = 0

for al j, k. In terms of unsmeared field this is

[φj(x), φk(y)]± = 0

if x and y are spacelike separated.

There is another necessary assumption to make connection with the scattering

problem.

V. Asymptotic completeness: H = H in = Hout. This states that Hilbert space of

incoming particles is same as Hilbert space of outgoing particles. This is necessary to

describe any kind of collision. But this depends on some prescription for computing

scattering states of elementary systems.

The compatibility of above axioms is seen from the existence of free field theory

which satisfies all the axioms. Although this is a trivial example, it serves as good

starting point. In free field theory number of particles is conserved. So the Hilbert

space separates into different sectors with fixed number of particles

H = ⊕∞n=0H
n

where Hn is the subspace with exactly n particles. A general state can be given

by linear superposition of states from each of the subspace

Φ =
∑
j

αjΦj

Ψ =
∑
k

βkΨk
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where Φj,Ψj ∈ Hj. Their inner product is given by

〈Φ,Ψ〉 =
∑
j

αjβj〈Φj,Ψj〉

. States which satisfy

〈Φ,Φ〉 =
∑
j

αjαj〈Φj,Φj〉 <∞

are the only acceptable states.

3.1 Vacuum expectation value

In this section we will discuss vacuum expectation values also known as Wightman

function.

Gn(x1, ..., xn) = 〈0|φ1(x1)...φn(xn)|0〉

As before we will consider smeared vacuum expectation values.

〈0|φ1(f1)...φn(fn)|0〉 =

∫
dx1...dxn〈0|φ1(x1)...φn(xn)|0〉f(x1....xn)

where f(x1...xn) = f1(x1)...fn(xn). Strictly speaking functions fj is a limit of

sequence of functions fkj ∈ S such that fkj → fj as k → ∞. Wightman function

satisfies following properties which can be proved starting from the axioms given

above. Proofs are given on page 107-110 in the book [7]. We will not give them here.

1. Relativistic transformation Law

Gn(x1, ..., xn) = Gn(Tx1 + a, ..., Txn + a) (3.1.1)
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2. Spectral conditions

Gn (p1, ...pn) = δ
(∑

pi

)
Gn (p1, p1 + p2, ..., p1 + ...pn)

=

∫
ei

∑
pixiGn (x1, ..., xn)

Wightman function can be expressed in terms of relative coordinates ξi = xi−xi+1

Gn (ξi, ..., ξn)

Then the its Fourier transform is given by

Gn(q1, ...qn) =

∫
e
∑
qiξiGn (ξi, ..., ξn)

It has the property that

Gn(q1, ...qn) = 0

if any of the qi lies outside the positive light cone.

3. Hermiticity condition

〈0|φ1(x1)...φn(xn)|0〉 = 〈0|φ∗1(x1)...φ∗n(xn)|0〉 (3.1.2)

4. Local commutativity relations

Gn(xi1 , ..., xin) = (−1)mGn(x1, ..., xn) (3.1.3)

if the differences xi − xj are space-like for all j and k and m is the number of

exchanges of anti-commuting fields necessary to permute i1...in → 1...n.
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5. Positive definite condition:

∑
j,k=0

∫
...

∫
dx1...dxndy1...dynfj (x1, ...xn)Gj+k (x1, .., xj, y1, ...yk) fk (y1, ...yk) ≥ 0(3.1.4)

6. Cluster decomposition Property:

All the properties from 1-4 guarantee that a set of tempered distributions gives

vacuum expectation values except that the vacuum is unique. This condition of cluster

decomposition is necessary for the uniqueness of the vacuum. If a is a space-like vector

, then

G (x1, ..., xj, xj+1 + λa, ..., xn + λa) → G (x1, ...xj)G (xj+1, ..., xn) (3.1.5)

as λ→∞, in the sense of convergence in S.

There is simple argument given by D. Rulle. For large λ it is possible to reorder the

positions inside the Wightman function to G (xj+1 + λa, ..., xn + λa, x1, ..., xj) with a

possible change in sign. This action reverses the sign of momentum conjugate to

xj − xj+1. The change in sign allows one to use spectral condition to prove the

theorem.

Physically cluster decomposition is saying that when two systems are separated by

large space-like separations the interaction between them vanishes. In other words,

sufficiently separated regions behave independently. There are two important points

to note. The above property holds only if the vacuum is pure state. The cluster

decomposition property breaks down if the vacuum is degenerate and we have a

mixed state. This will be important when we discuss CFTs dual to de-Sitter space.

There we find that vacuum expectation value violates cluster decomposition signaling

possible degeneracy of vacuum. Secondly, if the theory has a mass gap M > 0, then

there is a value a0 beyond which the connected correlation function is absolutely

bounded by Ce−Mλ where C is some coefficient. Also if there are zero-mass particles
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in the theory the limit goes as slowly as 1/λ2. This is just the Coulomb force!

3.2 Wightman Reconstruction theorem

One of the holographic prescriptions, known as HKLL prescription, as we will explain

in the next section constructs vacuum expectation value of the bulk using boundary

correlation functions. Wightman reconstruction theorem ensures that the vacuum

expectation values completely characterizes the bulk quantum field theory.

Let Gn, n = 1, 2, ... be a sequence of tempered distributions, where Gn depends

on n four-vector variables x1, ...xn. Suppose Gn satisfies all the 6 properties men-

tioned in the previous section. Then there exists a separable Hlibert space H, a

continuous unitary representation U(a, T ) of Poincare group in H, a unique vacuum

state |0〉, invariant under U(a, T ), and a hermitian scalar field with domain D1 and

representation of Poincare group U(a, T ) such that

〈0|φ(x1)...φ(xn)|0〉 = Gn (x1, ..., xn)

Additionally, any other field theory with these vacuum expectation values is uni-

tary equivalent to this one. In other words, if H1 is a Hilbert space, and (a, T ) →

U1(a, T ) is a continuous unitary representation of Poincare group in it, and |0〉1 is

unique vacuum vector in H1 invariant under U1(a, T ) and φ1(x) is a scalar field with

domain D11with the property

1〈0|φ1(x1)...φ1(xn)|0〉1 = Gn (x1, ..., xn)
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then there exists a unitary transformation V of H onto H1 such that

|0〉1 = V |0〉 U1(a, T ) = V U(a, T )V −1

φ1(h) = V φ(h)V −1 D11 = V D1

The proof of the above theorem is lengthy but elegant. We will reproduce the

proof given in the page 118 of [7].

One begins by explicit construction of Hilbert space H. Consider a vector space H

of all sequences f = (f0, f1, ...) where f0 is a complex constant and fk ∈ S, k = 1, 2, ...

are non-zero except for finite number of them. Then we define various operations on

this vector. Addition and multiplication is defined as

f + g = (f0, f1, ...) + (g0, g1, ...) = (f0 + g0, f1 + g1, ...)

αf = α (f0, f1, ...) = (αf0, αf1, ...)

Scalar product between two vectors is defined by

〈f, g〉 =
∑
j,k=0

∫
...

∫
dx1...dxndy1...dynfj (x1, ...xn)Gj+k (x1, .., xj, y1, ...yk) fk (y1, ...yk)

(3.2.1)

where G0 ≡ 1. This scalar product has the property that

〈f, g〉 = 〈g, f〉

due to hermiticity condition (property 3) of G. Positive definite condition (prop-

erty 5) ensures that ||f ||2 = 〈f, f〉 ≥ 0. Action of U(a, T ) on the vector space is given
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by

U(a, T ) (f0, f1, ...) = (f0, U(a, T )f1, U(a, T )f2, ...) (3.2.2)

where U(a, T )fk(x1, ..., xk) = fk (T−1(x1 − a), ..., T−1(xk − a)).

Now we begin construction of the states. We see that

U(a, T )(1, 0, 0, ...) = (1, 0, 0, ...)

This motivates us to define |0〉 = (1, 0, 0, ...).

Equation 3.1.1 of relativistic transformation property of Wightman function guar-

antees that scalar product equation (3.2.1) is invariant under action of U(a, T ). Using

equation (3.2.2) it is easy to prove

U(a1, T1)U(a2, T2) = U(a1 + T1a2, T1T2)

Now we give a map which takes each test function h to an operator field φ(h)

φ(h) (f0, f1, ...) = (0, h⊗ f0, h⊗ f1, ...) (3.2.3)

where

h⊗ fk (x1, x2, ...) = h(x1)fk (x2, x3, ..., xk+1)

is also a test function. Let us show that φ(h) satisfies the relativistic transforma-
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tion

U(a, T )φ(h) (f0, f1, ...) = U(a, T ) (0, h⊗ f0, h⊗ f1, ...)

=
(
0, h(a,T ) ⊗ f0(a,T ), h(a,T ) ⊗ f1(a,T ), ...

)
= φ

(
h(a,T )

) (
f0(a,T ), f1(a,T ), ...

)
= φ

(
h(a,T )

)
U(a, T ) (f0, f1, ...)

=⇒ U(a, T )φ(h)U−1(a, T ) = φ
(
h(a,T )

)
These constructions have given us vacuum |0〉, field operators φ(h) and action

of Poincare transformations U(a, T ) on them. |0〉, φ(h) forms a vector space H. To

make it a Hilbert space, we have to do two things. First, we have to remove zero

norm states from H. Second we have to complete the vector space H.

Note that all the zero norm states form a vector space. That is zero norm states

are orthogonal to each other. For example consider two zero norm states f, g, ||f || =

||G|| = 0. Then

0 ≤ |〈f, g〉| ≤ ||f ||||g|| = 0 (3.2.4)

by Schwartz inequality. Thus, if f = (f0, f1, ...) and g = (g0, g1, ...) are zero

norm then f is orthogonal to gand to αf + βg. Now we define equivalence classes of

sequences, f = (f0, f1, ...). Two sequences are equivalent if the differ by a sequence

of zero norm. these equivalence classes form a vector space denoted by H/H0. If

f ∈ F and g ∈ G are two equivalence classes, then αf+βg belongs to the equivalence

classαF +βG . The result does not depend on which representative is chosen because

the set of vectors of zero length is a vector space. The set of sequence of zero norm

is the zero in H/H0 of equivalence classes. Also, if norm of a equivalence class is zero

then it has no elements. That is ||F || = 0 =⇒ F = 0. Finally we define scalar
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product between F,G in H/H0 by 〈F,G〉 = 〈f, g〉. Once again it does not depend on

the choice of representative sequence because a general sequence of F can be written

as f + αh where f ∈ F and ||h|| = 0. Then 〈f + αh, g〉 = 〈f, g〉 + α〈h, g〉 = 〈f, g〉

because of equation (3.2.4).

We also have to that U(a, T ) and φ(h) defined in equations (3.2.2) and (3.2.3) are

mappings of equivalence classes. If f1, f2 ∈ F then

||f1 − f2|| = 0

=⇒ ||U(a, T )f1 − U(a, T )f2|| = ||U(a, T ) (f1 − f2) || = || (f1 − f2) || = 0

=⇒ U(a, T )f1 ∈ F U(a, T )f2 ∈ F

Next if ||f || = 0

0 ≤ ||φ(h)f ||2 = 〈φ(h)f, φ(h)f〉 = 〈f, φ(h)φ(h)f〉 ≤ ||f ||||φ(h)φ(h)f || = 0

This implies ||φ(h)f || = 0. Similarly |0〉 ∈ H/H0 will denote the equivalence class

of (1, 0, 0, ...).

Second requirement to make H/H0 a Hilbert space is completeness. The proof is

parallel to completing rational numbers to real numbers. Hence we will not show it

here. It is given in the book [7].

Some other general theorems can be derived from the above axioms:

1. It is possible to show that there is general symmetry under parity, charge

conjugation (matter-antimatter) and time reversal symmetry.

2. There is relation between spins and statistics. Particles with integer spin

have Bose-Einstein statistics and particles with half-integer spin have Fermi-Dirac

statistics.

3. Above axioms also prove that superluminal communication is not possible.
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3.3 Haag’s theorem

Any discussion of axiomatic quantum field theory is incomplete without Haag’s theo-

rem. In all interacting QFTs, canonical variables are assumed to be unitarily related

to free field theory. That is in any interacting QFT like quantum electrodynaics or

QCD

V (t)φfree(x, t)V (t)−1 = φint(x, t)

Time dependence of the trasnformation operator gives rise to interaction. It was

found that not only there are many inequivalent representations but also φint(x, t) is

free field in disguise. In other words there can be no interaction (φint) in an interaction

picture (V (t)). Precise statement of the Haag’s theorem is following:

Suppose that φ1(x) ∈ H1 is a free hermitian scalar field of mass m > 0 and

φ2(x) ∈ H2 is a local field covariant under the inhomogenous SL(2, C) transformations

U1(a, T ), U2(a, T ) and vacuum |0〉1, |0〉2 respectively. Suppose further that the fields

φ1, φ̇1 and φ2, φ̇2 satisfy the hypotheses

φ2 = V (t)φ1V (t)−1

φ̇2 = V (t)φ̇1V (t)−1

U2(a, T ) = V (t)U1(a, T )V (t)−1

|0〉2 = |0〉1

Then φ2 is a free field of mass m.

Above assumptions are very general. In fact, above result will hold in any theory

where one can define correlation function that is vacuum expectation value. As has

been pointed out by Haag’s in his original paper [8] that the main reason is vacuum

polarization of interacting theory. Any interacting theory polarizes the vacuum. In
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other words, interactions change the vacuum. Hence the vacuum is not unique and

lies inside the renormalized Hilbert space. In that case, it is not possible to define

vacuum expectation values 〈0|φ1(x1)...φn(xn)|0〉 because vacuum is not a fixed state

any more. In fact, it is not clear what should be the observable in such case. In free

field theory vacuum is an additional assumption lying outside the Hilbert space. One

can always find an isomorphic map between the two Hilbert space but that will not

be unitary and physical results will be ambiguous. This theorem goes to the heart of

the problem of quantum gravity on how to include vacuum or the background metric

in the Hilbert space.

3.4 HKLL prescription

We have seen two prescriptions to get boundary operator from the bulk field in

AdS/CFT. One takes the boundary limit of the bulk field and the other takes the

bulk partition function with the boundary value of the field as boundary partition

function with source.

But we are more interested in constructing bulk from the boundary. How do the

bulk degrees of freedom emerge from the boundary theory? That is the main reason

of interest in holography. Specially, one is interested in understanding microscopic

degrees of freedom of horizons. In this section we will discuss how to construct bulk

fields from boundary operators which was developed by Alex Hamilton, Daniel Kabat,

Gilad Lifschytz and David Lowe [9, 10]. This is known as HKLL prescription.

Basic idea is to express a bulk field as CFT operator smeared over the boundary.

φbulk(x) =

∫
bound

K(x, y)O(y)

Kernel K(x, y) is called smearing function. Here we will give the prescription only in

large N limit and large t’Hooft coupling limit. So there is no interaction. Generaliza-
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tion to interacting scenario will be mentioned at the end. We know that scalar field

of mass m, is dual to an operator with weight ∆ = d
2

+
√

d2

4
+m2l2. This hints that

O∆ must reproduce bulk field. Prescription for 3 dimensional AdS is the following

φ(t, x, z) =
∆− 1

π

∫
t′2+y′2<z2

dt′dy′
(
z2 − t′2 − y′2

z

)∆−2

O(t+ t′, x+ iy′) . (3.4.1)

Note that integral is only over a disk on the boundary formed by the space-like

lightcone of the bulk point. One may also note the similarity between the smearing

function and bulk-boundary propagator of Witten. However these are completely

different prescription. Witten’s prescription give the non-normalizable mode of the

bulk field which acts as a source that deforms the CFT. While in this case boundary

operators of non-deformed CFT directly reproduce normalizable modes. Another

important thing to note is that smearing function is not unique. One can smear it over

other spacelike lightcones. One will also see that boundary coordinate is complexified.

This plays an important role in restricting the integral to a finite support.

One way to verify the above formula is to check that it gives correct bulk-boundary

propagator when applied on the boundary two-point function. Boundary two-point

function is given by

〈O(y, t)O(0, 0)〉 =
1

(y2 − t2)∆

Now applying equation (3.4.1) on the first operator we get

〈φ(z, 0, t)O(0, 0)〉 (3.4.2)

=
∆− 1

π

∫
y′2+t′2<z2

dy′dt′
(
z2 − y′2 − t′2

z

)∆−2

〈O(iy′, t+ t′)O(0, 0)〉

=
∆− 1

π
(−1)∆

∫ z

0

dr

∫ 2π

0

dθ

(
z2 − r2

z

)∆−2
r

(r2 + t2 + 2rt cos θ)∆
(3.4.3)

we have set the bulk x = 0 and boundary t′ = r cos θ, y′ = r sin θ. Now one can
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use the result

∫ 2π

0

dθ
1

(r2 + t2 + 2rt cos θ)∆
= 2πt−2∆

2F1

(
∆,∆; 1;

r2

t2

)
(3.4.4)

to do the θ integral. After defining q = r2/Z2 and y = Z2/T 2 we are left with

〈φ(z, 0, t)O(0, 0)〉 =
∆− 1

2πR
(−1)∆ t−2∆z∆

∫ 1

0

dq(1− q)∆−2
2F1 (∆,∆; 1; qy)

=
z∆

2πR

1

(z2 − t2)∆
.

For general x, t one may use Lorentz invariance and analytic continuation. With a

Wightman iε prescription

〈φ(z, x, t)O(0, 0)〉 =
z∆

2πR

1

(z2 + x2 − (t− iε)2)∆
(3.4.5)

This is the correct bulk-boundary propagator. So the HKLL prescription has

passed the first test. Next one would like to reproduce complete bulk propagator.

This is interesting because it will give a way to describe bulk observable purely from

boundary point of view. Although at present we are only discussing large N, but still

this is a step forward in describing deep bulk. This is done on [11].

Now let us discuss some of the physical consequences of the prescription. First

thing to see is whether the conventional wisdom of scale-radius duality holds? It is

easy to see that taking bulk field close to the boundary shrinks the smearing integral

to zero. As a result scale-radius duality is manifest. A bulk point at depth of z gets

smeared over a range of time 2z . This is just the elapsed time between the point on

the boundary which is lightlike to the future of the bulk point at the same value of

φ, and the point on the boundary which is lightlike to the past at the same φ.

Although finite calculations are very difficult, some of the finite N effects can

be understood qualitatively. An important principal in bulk theory is that fields at
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spacelike separation should commute. At large N, this is also reproduced from the

smearing integral because the commutator of boundary operators is a complex number

and not an operator. But this does not hold in finite N. Commutators of boundary

operators are now operators. As a result even space-like separated operators do not

commute in the bulk. Causality is a very important principal of bulk. Only way

to retain causality in holographic theory is by restricting the number of degrees of

freedom in the bulk so that smearing integral is over disjoint regions of the boundary.

So they will trivially commute. This gives a physical principal to count the number of

degrees of freedom of the bulk. Consider two local bulk operators at the same values

of r and t but different φ in equation (3.4.1). Up to 1
N

corrections to the actual size of

the region, these will correspond to boundary operators smeared in t and imaginary y

directions according to (3.4.1). It is thus reasonable to assume that they will commute

even at finite N if the φ separation is big enough. Working at large r, bulk operators

are expected to commute if the separation δφ ≥ 2l
r
. Now consider the set of such

operators at fixed r and t. Operators at smaller values of r and the same t will be

smeared over a larger disk on the boundary, so will not trivially commute with this

set. Then the number of trivially commuting operators that can be localized to a

radius ≤ r, per radian along the boundary, per independent CFT degree of freedom

is r/2R. Heuristically the number of CFT degrees of freedom is given by the central

charge, so the maximum number of commuting operators per radian is of order cr/2R

. We get a very qualitative idea of why the number of freedom is reduced in the bulk.

This indicates that HKLL construction is revealing something deep. The degrees

of freedom on a Cauchy hyper-surface do not commute which breaks the canonical

quantization of gravity.
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Chapter 4

Holographic operator mapping in

dS/CFT and cluster decomposition

The Bekenstein-Hawking entropy [12, 13]

S =
A

4G
,

states that the entropy of any black hole is proportional to its surface area. This law

is widely applicable for various kinds of black hole. This universality suggests that

black holes can be described by microstates. In fact such a description is possible for

any horizon. For example cosmological horizon can also be assigned thermodynamic

description. But de-Sitter horizon and black hole horizon are not exactly on the same

footing. De-Sitter horizon is observer dependent where as black hole horizon is not.

So it is puzzling even to think about the microstates of dS horizon.

The only black hole example [14] where microstates are counted is with the help

of supersymmetry. On the other hand supersymmetry is inconsistent with de-Sitter

isometries. This can be understood using simple arguments. As we will discuss in

detail later, de-Sitter does not admit positive conserved charges. Now if there is

nonzero Hermitian supercharge Q, then it must be positive. Clearly there is no such
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object. This shows that supersymmetry is incompatible with de-Sitter space. In

order to give microscopic description of de-Sitter horizon we must know how to get

away from supersymmetry. Another related problem is absence of concrete examples

from string theory. There are no go theorems which show that string theory solutions

cannot contain dS vacua.

Another issue with dS holography is that dS has two boundaries. Dual theory on

the full boundary will describe the whole of dS. On the other hand an observer can

only observe half of the spacetime. Thus if dual theory on full boundary describes

full spacetime that will go against the spirit of complementarity. There are many

other difference and problems with de-Sitter which we will point out as we go along.

But before we jump to calculations we will introduce de-Sitter space and various

coordinate system in details in the next section. Then in section 4.2 we will discuss

some of the earlier attempts to understand dS holography.

4.1 de-Sitter space

de-Sitter space is a maximally symmetric manifold of constant positive curvature. It

can be realized on a hyperboloid

−X2
0 +X2

1 + · · ·+X2
d = `2 (4.1.1)

Flat metric is given by

ds2 = −dX2
0 + dX2

1 + · · ·+ dX2
d , (4.1.2)

Different coordinate systems give different insight into the manifold. As we saw

in the case of AdS, coordinates on sphere are frequently used. For completeness we
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state here once again.

ω1 = cos θ1, (4.1.3)

ω2 = sin θ1 cos θ2, (4.1.4)

... (4.1.5)

ωd−1 = sin θ1 · · · sin θd−2 cos θd−1, (4.1.6)

ωd = sin θ1 · · · sin θd−2 sin θd−1, (4.1.7)

where 0 ≤ θi < π for 1 ≤ i < d − 1, but 0 ≤ θd−1 < 2π. Then it is clear that∑d
i=1(ωi)2 = 1, and the metric on Sd−1 is

dΩ2
d−1 =

d∑
i=1

(dωi)2 = dθ2
1 + sin2 θ1dθ

2
2 + · · ·+ sin2 θ1 · · · sin2 θd−2dθ

2
d−1. (4.1.8)

4.1.1 Global coordinates

Using the following variables

X0 = sinh τ, (4.1.9)

X i = ωi cosh τ, i = 1, . . . , d, (4.1.10)

where −∞ < τ < ∞ and the ωi are as in (4.1.7). These satisfy equation (4.1.1).

Substituting in (4.1.2) one obtains the line element

ds2 = −dτ 2 + (cosh2 τ)dΩ2
d−1. (4.1.11)

At τ = −∞, τ = ∞, dS is d − 1 infinitely large sphere. It shrinks to miminum

size at τ = 0.

31



4.1.2 Conformal coordinates

These coordinates are related to the global coordinates by

cosh τ =
1

cosT
, (4.1.12)

so that we have −π/2 < T < π/2. The metric in these coordinates takes the form

ds2 =
1

cos2 T
(−dT 2 + dΩ2

d−1). (4.1.13)

Conformal coordinates are useful because they preserve the causal structure of the

spacetime. One can remove any overall factor from the metric while preserving the

light cone structures.

4.1.3 Poincare patch or Horospherical coordinates

(η, yi, i = 1, ..., d− 1). It is possible to foliate the spacetime in the following way

x0 =
1

2
(η − 1

η
)−

∑
y2
i

2η

xi =
yi
η

xd = −1

2
(η +

1

η
) +

∑
y2
i

2η
, (4.1.14)

η is known as conformal time. In these coordinates, line element looks like

ds2 =
1

η2

(
−dη2 + d~y2

)
This is the most commonly used coordinate system to describe holography. This

covers only half of the global coordinate. Past boundary is at η → 0. As one can see,

metric blows up near the boundary.
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4.1.4 Planar coordinates

(t, yi, i = 1, ..., d− 1). This is commonly used coordinate system in cosmology litera-

ture. Using the variable transformation

η = et

the metric takes the form

ds2 = −dt2 + e−2tdyidy
i. (4.1.15)

This depicts exponentially expanding universe. As time goes on spacelike surfaces

expand exponentially. This also covers only half the de-Sitter space.

4.1.5 Static coordinates

(t, r, θa), a = 1, . . . , d− 2. This coordinate system is constructed to have an explicit

timelike Killing symmetry. If we write

X0 =
√

1− r2 sinh t, (4.1.16)

Xa = rωa, a = 1, . . . , d− 1, (4.1.17)

Xd =
√

1− r2 cosh t, (4.1.18)

then the metric takes the form

ds2 = −(1− r2)dt2 +
dr2

1− r2
+ r2dΩ2

d−2. (4.1.19)

In this coordinate system ∂/∂t is a Killing vector and generates the symmetry t →

t + constant. The horizons are at r2 = 1, and the southern causal diamond has

0 ≤ r ≤ 1, with the south pole at r = 0.
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4.2 Analytic continuation to de sitter

In the last section we introduced all the coordinate systems and various insights

that one gets from them. Now we are ready to explore holography in de-Sitter. In

this section we will discuss works done by other people. As with AdS, many of the

general features of holography are visible even in quantum field theory. Witten [15]

and Strominger [16] were the first ones in early 2000s to study dS holography. They

found many features of AdS/CFT to carry over to dS. But they also discovered many

thorny issues which are new to de-Sitter. We will discuss them in this section. That

will set the background to understand the relevance of our work. From now one all

our discussions will be for 3 dimensional de-Sitter. This simplifies the boundary CFT

considerably. Many of the results can be generalized to higher dimensions.

The first thing to check in a holography is the symmetry group. d+1 dimensional

dS has SO(1, d + 1) symmetry group. On the other hand d-dimensional Minkowski

CFT has SO(2, d) symmetry group as we saw in AdS/CFT. Using Wick rotation of

the time-like coordinate to spacelike coordinate it is possible to have d-dimensional

Euclidean CFT which as SO(1, d + 1) symmetry. This change in symmetry group

makes a lot of difference.

Next let us look at massive scalar field. We begin by noting the mode expansion

for a bulk scalar field of mass m [17]

φ(η, y) = c1

∫
d2k

(2π)2

(
akηH

(2)
iµ (|k|η) eik.y + a†kηH

∗(2)
iµ (|k|η) e−ik.y

)
, (4.2.1)

where c1 =
√
π

2
e
πµ
2 , µ =

√
m2l2 − 1, and H

(2)
iµ (|k|η) are Hankel functions of second

kind. The operators ak and a†k are annihilation and creation operators, with the ak

annihilating the Bunch-Davies vacuum, and

[ak, a
†
k′ ] = (2π)2δ(2)(k − k′) .
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Prescription of AdS/CFT suggests that we take the field to the boundary η → 0

and absorb the blowing conformal factor. This prescription worked in AdS/CFT

because the remaining part died away close to the boundary. Let us follow similar

idea in dS. Taking the boundary limit we get

φ(η, y) ∼ Akη
h− +Bkη

h+

where

h± = 1±
√

1−m2l2

AK =
iΓ(iµ)

2
√
π
eπµ/2

(
|k|
2

)−iµ
BK =

iΓ(−iµ)

2
√
π

e−πµ/2
(
|k|
2

)iµ

There are several striking observations that we find here. First note that for

ml < 1, both the exponents are positive. h− < 1 < h+. As a result both the modes

decay close to the boundary. This is in contrast to AdS where one of the modes

grew and the other decayed. As a result there is no clear way to choose one over

the other. In fact both the modes are present in the bulk in contrast to AdS where

non-normalizable modes are thrown away. As a result we are not able to impose any

boundary condition on the modes. In such a case, the second prescription of using

the boundary value of the field as source of boundary operator through the partition

function immediately breaks down. However, as done in [16] one may push the first

prescription. Since the two modes decay at different rate, a natural suggestion is to

consider slowly decaying part as the boundary operator. That is

O(y)bound = lim
η→0

η−h−
(
Akη

h− +Bkη
h+
)

= Ak + lim
η→0

Bkη
2µ
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This does not look satisfactory. It is not clear what to do with the second part

even though on taking the limit it goes away. The same problem persists when we

look at two-point function. Bulk two point function is given by

〈φ(η, y)φ(η′, y′)〉 =
Γ(h+)Γ(h−)

(4π)3/2Γ(3/2)
_2F1

(
h+, h−,

3

2
,
1 + P

2

)

where P = (η−η′)2−(y−y′)2
2ηη′

is the geodesic distance between the two points. As we

take η → 0, η′ → 0 we get

〈φ(η, y)φ(η′, y′)〉 =
c+ (ηη′)h+

|y − y′|2h+
+
c− (ηη′)h−

|y − y′|2h−

One can see CFT two point function emerging. But there are two different weights

corresponding to two different boundary behaviors of the scalar field. This clearly

demonstrates that prescription of AdS/CFT cannot be used.

What can be done now? Remember the fundamental idea of holography is to

map bulk fields to another manifold with conformal symmetry. The physical picture

of taking the boundary limit of bulk field may not always be the correct mapping.

This is the place where integral transform comes into play. As we will show in the

next section integral transform solves the above problems.

4.3 Integral transform

In the section 3.4 a new prescription was given for holography. It gives a way to

reconstruct bulk from the boundary. From the construction it is clear that all these

prescriptions required dual manifold to be boundary of the bulk. The problem with

this map is that it requires taking limit of one of the coordinates of the bulk. Often

there are problems associated with taking limit. For example we saw that boundary

limit of bulk field in dS has two fall offs. In such cases bulk-boundary map is not well
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defined. At a more fundamental level holography must be an invertible map from

bulk to dual manifold. There is no reason or advantage, except as initial motivation,

in thinking of the dual space as boundary.

As far as we know this is the first such approach to holography. In this section

we give a detailed introduction to the maths behind it.

4.3.1 Radon transformation

Consider a sufficiently smooth function f(x) on real affine n−dimensional manifold.

Two most common ways of specifying a function is by giving its values at all the points

in manifold or by giving all the derivatives at a point in the manifold. There is another

way to capture all the information of a function by specifying their integrals over all

possible hyper-surfaces of the manifold. Radon transform in layman’s language is a

map which encodes all the information of the function in terms of its integrals. Most

of this section will closely follow the 1st chapter of 5th volume of the book by Gelfand

[18].

Integral of a function is defined given the volume element of the n-dimensional

real affine oriented space

dx = dx1...dxn

We now want to define the integral of f(x) over the hyperplane whose equation is

〈ξ, x〉 = ξ1x1 + ...+ ξnxn = p

To define the integral we give the volume element on the hyperplane, namely a

differential form of degree n− 1

d〈ξ, x〉.ω = dx1...dxn
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By using δ function we may write the integral as

f̂(ξ, p) =

∫
f(x)δ(p− 〈ξ, x〉)dx (4.3.1)

As we said in the beginning, with any function f(x) we can associate another

function f̂(ξ, p). This is known as Radon transform of f(x).

Convergence of integral sets restriction on the integrand. We assume that f(x)

is infinitely differentiable and it is rapidly decreasing along with all the derivatives.

Then the Radon transform is also infinitely differentiable function of ξ, p.

It might appear that f̂(ξ, p) depends on n + 1 variables where as f(x) only on n

variables. Here we show that it is not correct. One can see from equation (4.3.1) that

f̂(ξ, p) is homogenous function of degree −1 which means that for any real α 6= 0

f̂(αξ, αp) = |α|−1f̂(ξ, p)

This implies that given f̂(ξ, p) for any fixed p and all ξ, say p = 1, f̂(ξ, p) is known

for all values of p. Hence it also depends on n variables.

To see the physical meaning of f̂(ξ, p) imagine f(x) represent the mass density

distribution through out the space. And let M(ξ, p) be the total mass in the region

〈ξ, x〉 < p. Then

M(ξ, p) =
∫
〈ξ,xp f(x)dx =

∫
f(x)θ(p)− 〈ξ, x〉)dx (4.3.2)

where θ(p) is the Heaviside step function. We know that θ′(p) = δ(p). Thus the

derivative of (4.3.2) with respect to p is given by

∂M(ξ, p)

∂p
=

∫
f(x)δ(p− 〈ξ, x〉)dx = f̂(ξ, p)
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Thus we see that if f(x) is the mass density distribution then its Radon transform

is given by

f̂(ξ, p) =
∂M(ξ, p)

∂p

where M(ξ, p) is the mass in the half-space 〈ξ, p〉 < p. For example consider the

constant function f(x) = 1 over a bounded region V . Then the Radon transform of

f(x) is given by

f̂(ξ, p) =
∂V (ξ, p)

∂p

where V (ξ, p) is the volume enclosed by 〈ξ, x〉 < p. Geometrically this gives the

area of intersection of V with 〈ξ, x〉 = p.

Actually Radon transform is related to our old friend Fourier transform

f̃(ξ) =

∫
f(x)ei〈ξ,x〉dx (4.3.3)

Note that exponential on the right side can be written as

ei〈ξ,x〉 =

∫
eipδ(p− 〈ξ, x〉)dp

Substituting in (4.3.3) we get

f̃(ξ) =

∫
f(x)

∫
eipδ(p− 〈ξ, x〉)dpdx

=

∫
f̂(ξ, p)eipdp

Thus Fourier transform is obtained by integrating over the p in the Radon trans-
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form. Also note that

f̃(αξ) =

∫
f̂(αξ, p)eipdp

=

∫ ∞
−∞

f̂(αξ, αp)eiαpd(αp)

=

∫ ∞
−∞

f̂(ξ, p)eiαpdp

In the last step we have used the homogeneity condition f̂(αξ, αp) = |α|−1f̂(ξ, p).

In other words, Fourier transform in n dimension is given by Radon transform fol-

lowed by one dimensional Fourier transform. Integral transform is nothing but gen-

eralization of Radon transform to curved spaces. In fact it is an advantage of Radon

transform that it can be easily generalized. However the second step necessary to con-

vert it to Fourier transform is not so easy to generalize. That is why study of Radon

transform is important. Actually, analog of second step is related to representations

of groups.

4.3.2 Inverse Radon transform

As with any map, usefulness is in being able to invert the map to get the final results

in the original space. Here we discuss the inverse map of Radon transform. We want

to invert equation (4.3.1) to get a formula of f(x) in terms of f̂(ξ, p). We will just

state the formula without giving any proof. One can look in [18] volume 5, chapter 1

for the proof.

Let us differentiate f̂(ξ, p) (n−1) times with respect to p where n is the dimension

of the space.

ψ(ξ, p) = f̂n−1
p (ξ, p) ≡ ∂n−1f̂(ξ, p)

∂pn

It is intuitively clear that value of the function at x can be decoded only by
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analyzing all the f̂(ξ, p) passing through x. Indeed we do something very similar.

We average ψ(ξ, p) over all the hyperplanes passing through the point x to get f(x).

Average is taken over a surface Γ enclosing the point ξ = 0 and with respect to the

measure

ω(ξ) =
n∑
k=1

(−1)k−1ξkdξ1...dξk−1dξk+1...dξn

It turns out that the inversion depends on whether the space is odd or even

dimension. For odd dimension the inversion formula is given by

f(x) =
π

(2π)n
(−1)

n−1
2

∫
Γ

f̂n−1
p (ξ, 〈ξ, x〉)ω(ξ)

Inversion formula for even dimension is given by

f(x) =
(n− 1)!

(2π)n
(−1)

n
2

∫
Γ

[
f̂p(ξ, p)(p− 〈ξ, x〉)( − n)dp

]
ω(ξ)

At the end we will give an example verifying the above formula. We will take a

function, perform Radon transform on it and then Inverse Radon transform to get

back the original function. Consider the following function f(x) in odd dimension n

f(x) = e−x
2
1−...−x2n = e−|x|

2

Radon transform is given by

f̂(ξ, p) =

∫
e−|x|

2

δ(p− 〈ξ, x〉)dx
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Rotating the coordinate system such that 〈ξ, x〉 = |ξ|x1 we get

f̂(ξ, p) =

∫
e−|x|

2

δ(p− |ξ|x1)dx

=
π
n−1
2

|ξ|
e−p

2/|ξ|2

This is the Radon transform. Now we wish to do inverse Radon transform. Let

us choose n = 3.

f̂ 2
p (ξ, p) = =

2π

|ξ|3
e−p

2/|ξ|2
(

2p2

|ξ|2
− 1

)

Substitute p = 〈ξ, x〉 = |ξ||x| cos θ where θ is the angle between ξ and x. Let Γ be

a unit sphere around the origin. Then ω(ξ) = sin θdθdφ

f(x) =
π

(2π)3
(−1)

∫
Γ

f̂ 2
p (ξ, (ξ, x))ω(ξ)

=
π

(2π)3
(−1)

∫
|ξ|=1

2π

|ξ|3
e−|x|

2 cos2 θ
(
2|x|2 cos2 θ − 1

)
sin θdθdφ

= e−|x|
2

Thus we get back the original function. This verifies that the inversion formula

is working correctly. Note that f̂(ξ, p) and f(x) both depend on n variables. This is

not surprising because they capture same amount of information.

4.3.3 Integral transform

Having discussed Radon transform and its inverse, now we are ready to generalize

the concept to curved spaces. Generalization of Radon transform to curved spaces

is called Integral transform. Discussions in this chapter will mostly follow chapter V

of volume 5 of [18]. First thing needed to define integral transform is the concept

of hypersurfaces in curved spaces. What is the generalization of hyper-planes in
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Euclidean space to curved spaces? Discussion of various hyper-surfaces will form

the first part of this subsection. As we go on, we will also give formulas of integral

transform and inverse integral transform for each hyper-surfaces. Our discussion will

focus on spaces of positive curvature also known as de-Sitter spaces. We will not go

into the discussion Lobachevskian space that is space of constant negative curvature

also known as Anti-de Sitter space.

In this section we will introduce some notation, broadly following the integral

geometry approach of [19] in imaginary Lobachevskian space, also known as elliptic

de Sitter spacetime [20, 21]. Elliptic de Sitter is simply global de Sitter modulo the

antipodal map. Our main focus will be global de Sitter. In some ways elliptic de

Sitter is simpler because there is a single connected boundary at infinity, while in

global de Sitter there are two disconnected boundaries, one in the distant past, and

one in the distant future. We will find in global de Sitter a CFT may be defined

on either boundary, and for the sake of definiteness we choose the past boundary.

Our formulas will be explicitly written for the case of three-dimensional de Sitter

spacetime, but the results generalize immediately to higher dimensions.

The de-Sitter space can be realized on a hyperboloid embedded in four-dimensional

Minkowski spacetime

x2
0 − x2

1 − x2
2 − x2

3 = −R2 , (4.3.4)

where R is some positive constant. The geodesic distance r between any two points

cosh2 kr =
〈x, y〉2

〈x, x〉 〈y, y〉
, (4.3.5)

where

〈x, y〉 = x0y0 − x1y1 − x2y2 − x3y3 ,

is the inner product of two vectors and k = 1
R
is another positive constant.
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The family of points satisfying 〈x, x〉 = −R2 with antipodal points (x ∼ −x)

identified is called imaginary Lobachevskian space or elliptic de Sitter spacetime.

Without the identification we have ordinary global de Sitter spacetime. The distance

r can be real and non-negative (if 1 ≤ cosh kr ≤ ∞) or imaginary in the interval

[0, πi
2k

] (if 0 ≤ cosh kr ≤ 1). From now onwards any point on the light cone in the

embedding space will be denoted by ξ, that is [ξ, ξ] = 0. In the next subsections we

will discuss complete set of hyper-surfaces of de-Sitter space. Also we will set R = 1.

4.3.3.1 Isotropic lines

Isotropic line is the set of points of the form x = sa+tb where a and b are fixed vectors

on the de-Sitter space and s, t vary to generate the line. Since basis vectors lie on dS

they satisfy 〈a, a〉 = 〈b, b〉 = −1. An isotropic line is defined to be set of points such

that distance between any two of them vanishes that is r = 0. Since a and b lie on

the line, distance between them must also vanish. That is 〈a, b〉 = cosh kr = 1. Thus

ξ = b− a is a point on light cone. Also

〈x, x〉 = −1

=⇒ 〈sa+ tξ, sa+ tξ〉 = −1

=⇒ s = 1

So isotropic line is

x = a+ tξ

〈a, a〉 = −1 〈a, ξ〉 = 〈ξ, ξ〉 = 0

ξ is called the direction vector of isotropic line and lies on the light cone. a lies

on the tangent plane to the cone because 〈a, ξ〉 = 0. Thus isotropic lines are two
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dimensional planes tangent to the light cone.

4.3.3.2 Horospheres

Now let us consider some surfaces in de Sitter with particularly simple transformation

properties under the isometry group. The equation describing a sphere of radius r

with center at a is given by

〈x, a〉 2 = c 〈a, a〉 〈x, x〉 .

where c = cosh2 kr. If c > 1 =⇒ r > 0, c = 1 =⇒ r = 0 and c < 1 =⇒ r is

imaginary. Note that sphere with vanishing radius r = 0 are the set of points whose

distance from a vanishes. This is nothing but the surface generated by isotropic lies

passing through a. Such a surface is also known as isotropic cone of dS space.

Consider taking the center to the infinity while ensuring that the sphere passes

through a fixed point b. The surface obtained in this way is called a horosphere. In

this limit, the product c 〈a, a〉 is fixed to some constant c1 to obtain the surface

〈x, ξ〉 2 = c1 〈x, x〉 . (4.3.6)

When c1 < 0 this is called a horosphere of the first kind. It is possible to normalize

c1 = −1 by normalizing ξ. If we set R = 1, so that 〈x, x〉 = −1 then the horospheres

of the first kind look like

| 〈x, ξ〉 | = 1 . (4.3.7)

Thus a horosphere of the first kind may be specified by choosing a point ξ on the

positive cone, 〈ξ, ξ〉 = 0 , ξ0 > 0.

When c1 = 0 one gets a horosphere of the second kind
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〈x, ξ〉 = 0 . (4.3.8)

In this paper, our focus will be on the horospheres of the first kind, which will corre-

spond to principal series representations of the de Sitter group [19]. We will consider

the horospheres of the second kind in future work, which correspond to the discrete

series representations.

Note that the horospheres of the first kind go over to themselves under the action

of hyperbolic rotation. Same for horospheres of second kind.

4.3.3.3 Integral transform and inverse integral transform

Now we will formally state the integral transform and its inverse in de-sitter space.

We will not give any proof of the formula however will highlight some of the technical

points of the proof.

Let f(x) be an infinitely differentiable function of bounded support on a de-Sitter

space 〈x, x〉 = −1. We form the integrals of this function over the horospheres of the

first kind and over the isotropic lines; these integrals are defined in the following way.

The integral over the horosphere of the first kind whose equation is |x, ξ| = 1 is

h(ξ) =

∫
f(x)δ(|〈x, ξ〉| − 1)dx (4.3.9)

, where 〈ξ, ξ〉 = 0, ξ0 > 0; the integral over the isotropic line x = b+ tξ is

ϕ(ξ, b) =

∫ ∞
−∞

f(b+ tξ)dt (4.3.10)

, where 〈b, b〉 = −1, 〈b, ξ〉 = 〈ξ, ξ〉 = 0, b0 = 0.

Then the value of f(x) at any point aof the de-Sitter space is given in terms of
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h(ξ) and ϕ(ξ, b) by the inversion formula

f(a) = −(4π)−2

∫
h(ξ)δ′′(|〈a, ξ〉| − 1)dξ (4.3.11)

+(2π)−2

∫ π

0

cot2 θdθ

∫
Γ

ϕ(ξ, θ)dω (4.3.12)

where dξ = |ξ0|−1dξ1dξ2dξ3 is the invariant measure on the 〈ξ, ξ〉 = 0 null cone.

ϕ(ξ, θ) denotes the value of ϕ(ξ, b) for an isotropic line x = b + tξ lying in the

〈a, x〉 = cos θ plane (that is 〈a, b〉 = cos θ). Γ is any surface on the 〈ξ, ξ〉 = 0null cone

that intersects all the generators of the cone, the measure dω is defined by

dω = |ξ0|−1 (ξ1dξ2dξ3 − ξ2dξ1dξ3 + ξ3dξ1dξ2)

h(ξ) satisfy following symmetry relation H(a, t) = H(a, t−1) where

H(a, t) =

∫
h(ξ)δ(|[a, ξ]| − t)dξ

This will be used in section 4.6 to simplify transform. The other symmetry relation

is

∫
Γ

ϕ(ξ, θ)δ([a, ξ])dω =

∫
Γ

ϕ(ξ, π − θ)δ([a, ξ])dω

In the rest of the thesis we will be interested only in the integral transform of the

first kind. Reason being that integral transforms are closely related to representations

of symmetry group. Horospheres of first kind are related to principal series represen-

tations and horospheres of second kind are related to discrete series representations of

de-Sitter group. These representations will be defined later, they represent different

mass ranges of quantum fields in dS. Since we are only interested in understanding the

principal series representation in our first paper [22] we will analyze only equations
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(4.3.9) and (4.3.11) in the rest of the paper.

Although the integral transform as stated above requires the function in dS to

have bounded support, we know that free fields in dS do not have bounded support.

As we will see in this work, unbounded support results in poles in equation (4.5.9).

Applying LSZ prescription relates the weights of the boundary operators to mass of

the bulk field.

4.3.4 Integral transform and representations of group

At the end of the day we want to understand representations of the dS isometry

group. Often it is difficult to understand representations of f(x) in original space

X. In such circumstances each f(x) over X is mapped to objects f̂(y) over Y such

that representations of f̂(y) is comparatively easier. The map is constructed to be

invertible so that after understanding the representations, one can go back to original

spaceX. Integral geometry is one such tool which greatly simplifies the representation

theory of group. As we will now show horospheres have simple group theoretical

understanding.

Consider a point x0 in homogenous space X. Let g be the transformations which

take the point x0 to x. Transformations h which carry x0 to x0 are called stability

subgroup of x0. Then the transformations hg, also maps x0 to x. These are all the

transformations that map x0 to x. Set of such transformation is a right coset of the

stability subgroup of x0. Thus there is one to one mapping between points of the

homogenous space and and the right cosets of the stability subgroup with respect to

x0.

Let us now consider examples of spaces homogenous with respect to Lorentz group.

These spaces are invariant under the motion of Lorentz group. Consider the two
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dimensional complex plane (z1, z2) modulo origin (0, 0). Elements of Lorentz group

g =

 α β

γ δ

 , αβ − γδ = 1

act on the complex plane as

(z1, z2) → (αz1 + γz2, βz1 + δz2)

This is called complex affine plane. To find stability subgroup of complex affine

plane let us choose the point (0, 1). Transformations that leave this point fixed are

g =

 1 ζ

0 1


Now let us consider a model of dS space (imaginary Lobachevskian space) given

by set of all positive definite hermitian matrices in two dimensions

h =

 x0 − x3 x2 − ix1

x2 + ix1 x0 + x3


x2

0 − x2
1 − x2

2 − x2
3 = −1

Under the action of Lorentz group the matrices transform as

h′ = g ∗ hg

Now lets choose the fixed matrix to be

σ =

 −1 0

0 1


49



Stability subgroup of σ are matrices g which satisfy

g ∗ σg = ±σ

Such matrices are of the form α β

β̄ ᾱ

 ,
 β α

−ᾱ −β̄

 , |α|2 − |β|2 = 1

We will now give a group theoretic definition of horosphere and show that it

coincides with the geometrical definition of the horosphere. The advantage is that

this definition is applicable for all homogenous spaces whereas geometrical picture

though more intuitive has to be derived separately for each space. Definition is the

following.

A horosphere in a spaceX, homogenous under the group of complex two-dimensional

unimodular matrices (that is Lorentz group) is the orbit of any point x ∈ X under

the subgroup Z of the matrices

 1 ζ

0 1


or under any subgroup conjugate to it.

This implies that horospheres have a stationary subgroup Z or some conjugate

subgroup and its structure is isomorphic to complex affine line. Thus a horosphere ω

consists of all points of the form xg−1ζg given by some point x ∈ X, some element g

of the Lorentz group and where ζ runs over Z.

To explicitly see the geometrical picture, let us consider the Hermitian matrix
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model of de-Sitter space. Horosphere ω consists of matrices of the form

x =

 1 0

ζ̄ 1


 h11 h12

h21 h22


 1 ζ

0 1


For all such transformation x11 = h11 = C 6= 0 is unchanged. This equation

can also be written for the model 〈x, x〉 = −1. Then h11 = x0 − x3 = C. That is

〈x, ξ〉 = C where ξ = (1, 0, 0, 1) lies on the null cone. Thus 〈x, ξ〉 = C is the equation

of horosphere. This gives the horospheres of the first kind.

If h11 = C = 0. Then

 1 0

ζ̄ 1


 0 h12

h21 h22


 1 ζ

0 1

 =

 0 x12

x21 x22


Thus we see x11 = 0, x12 = C where |C| = 1. Thus x2 − ix1 = C = C1 − iC2.

Thus the horosphere is given by x0 = x3, x1 = C1, x2 = C2, C
2
1 + C2

2 = 1. This is

nothing but isotropic line in deSitter space. This shows that horospheres of de-Sitter

decompose into two classes. One given by horospheres of the first kind which will

correspond to principal series representations. Second given by horospheres of the

second kind, isotropic lines, which will correspond to discrete series representations.

4.4 Integral transform in de-Sitter space

There has been a lot of progress in understanding this correspondence between bulk

quantum theory in anti-de Sitter spacetime and boundary conformal field theory [1].

One expects these ideas to carry over in some form to the cases of asymptotically flat

spacetime and asymptotically de Sitter spacetime. In these cases the situation is much

less clear, and our aim in the present work is to carefully set up the bulk/boundary

correspondence in the de Sitter case. This will allow us to draw some interesting
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conclusions about the structure of the novel conformal field theories that must appear

in this case, and their ultimate consistency.

Various different formulations of dS/CFT has been proposed, following Stro-

minger’s initial work [16]. Some formulations simply extend the AdS/CFT corre-

spondence to the dS space via analytic continuation, which has been successful for

massless fields (and possibly sub-Hubble mass fields) and the massless higher spin

gravity theories [23]. Our goal in the present work is to investigate the situation for

generic fields with masses larger than the Hubble scale, which are related by analytic

continuation to tachyonic fields in anti-de Sitter spacetime. New methods must be

developed to treat this case. It is worth noting that in the CFT these fields will cor-

respond to quasi-primary fields with complex conformal weights. Nevertheless, these

form unitary representations of the global conformal group [24, 25, 26, 27], opening

the door to possibility that an entirely new class of conformal field theories might be

defined based on these representations.

One of the key mysteries in the dS/CFT correspondence is the origin of bulk time,

since the dual CFT is a purely Euclidean theory. In the AdS/CFT correspondence

this is not an issue because the bulk time is parallel to the boundary time and the

CFT lives in a spacetime with Lorentzian signature. As a result, it becomes more

interesting to see how unitarity and time ordering in the bulk theory emerges from

the Euclidean CFT, and we will obtain partial results in this direction.

The paper is organized as follows. We begin by presenting an analog of the LSZ

construction [28] for quantum fields in de Sitter spacetime, which provides a clear

definition of correlators in the boundary CFT. This step is necessary because the

representations of the conformal group in question, the principal series, are not com-

monly studied in the context of conformal field theory. The construction is inspired

by the integral geometry approach of Gelfand [19], and many of the results detailed

there carry over to the present case. For the most part, our focus will be on three-
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dimensional de Sitter spacetime, though many of the ideas carry over to the higher

dimensional case.

We then consider the inverse map, reconstructing bulk field operators in terms

of the CFT data. At leading order (essentially the free level from the viewpoint of

quantum field theory in the bulk) we construct bulk creation and annihilation field

operators using operators in the CFT. Bulk operator ordering in correlators can be

accomplished by adopting an iε-prescription, complexifying the radial direction in the

CFT. This is sufficient to recover the bulk Wightman two-point correlation function,

with the correct Hadamard singularity at light-like separations. This approach may

also be used to build higher point correlators, for bulk theories with perturbative

expansions, by using the creation and annihilation operators to reproduce the Wick

expansion. However a completely general nonperturbative understanding of the bulk

operator ordering, and hence the origin of bulk time, is elusive.

The construction we describe allows one to define a CFT from some set of bulk

correlators in de Sitter spacetime. We may then proceed to analyze the basic consis-

tency of the resulting CFT, to check whether it satisfies the basic axioms expected of

a Euclidean quantum field theory. These are known as the Osterwalder-Schrader ax-

ioms [29, 30]. One of these axioms is the Euclidean version of cluster decomposition,

which requires correlators to factorize in the limit of large separations. We find this

fails in the case of the principal series, if, for example, operators of the form L1L̄1O∆

are considered, where L1 and L̄1 are conformal generators that raise the weight by

1, and O∆ is a quasi-primary operator with weight ∆. Note in ordinary CFTs with

O∆ a primary field with positive conformal weight, the combination L1O∆ would

vanish. The operator L1L̄1O∆ will be dual to a graviton plus a massive matter field

insertion. The failure of cluster decomposition signals that the vacuum of the CFT is

not unique, i.e. there can be many excitations in the bulk that give rise to nontrivial

operators on the boundary satisfying L0 = L̄0 = 0. This follows from the lack of a
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positive energy theorem in the bulk theory [31],1. We note this does not immediately

imply infrared divergences in the bulk theory. In fact, the classical stability of de

Sitter spacetime for pure gravity or massless conformal matter coupled to gravity has

been demonstrated [33, 34, 35]. Most likely, this result should be interpreted as an

incompleteness in the CFT dual to an interacting theory in de Sitter spacetime, a

point we hope to return to in future work.

A related construction of bulk operators from boundary operators in dS/CFT

has been considered in [36, 37]. There are numerous differences in the details and

conclusions with the present work.

4.5 Boundary CFT operators

It is useful to begin by reviewing the decomposition of some general bounded, nor-

malizable function on de Sitter into components that transform as unitary irreducible

representations of the conformal group [19]. For every f(x) one constructs the integral

transform

h(ω) =

∫
ω

f(x)dσ , (4.5.1)

and dσ is an invariant measure, and the integral is over a horosphere of first kind ω.

We require that these integrals are invariant under hyperbolic rotation.

∫
ω

f(xg)dσ =

∫
ωg

f(x)dσg =

∫
ω

f(x)dσ

Let the equation of a horosphere be | 〈x, ξ〉 | = 1. Equation (4.5.1) can also be written

as
1There is a positive energy theorem for the global timelike conformal Killing vector of de Sitter

[32], but it is not clear if this is well-defined on the conformal compactification of de Sitter. So its
relation to the dual CFT is not currently understood.
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h(ξ) =

∫
f(x)δ (| 〈x, ξ〉 | − 1) dx , (4.5.2)

where dx is the invariant measure on the de Sitter spacetime. This above map is

nothing but a generalization of the Fourier transform, which takes a function defined

on the horosphere to a function defined on the light cone labelled by ξ. As we will

see, ξ can be used to parametrize the boundary at past infinity in de Sitter. Note that

f(x) and (ξ) both are function of 3 variables. This guarantees that no information

is lost and h(ξ) can be inverted back to f(x). Then we do Fourier transform in λ

coordinate

Now consider functions h(ξ) over the positive sheet of the light cone where ξ0 > 0.

These functions may be decomposed into components with well-defined conformal

weights by Fourier transforming

F (ξ; ρ) =

∫ ∞
0

h(tξ)t−iρdt , (4.5.3)

where the complex conformal weight ∆ is related to the real parameter ρ via iρ =

1−∆. Let us note that inserting (4.5.2) into (4.5.3) we have

F (ξ; ρ) =

∫ ∞
0

dt

∫
dxf(x)δ (|〈x, tξ〉| − 1) t−iρ .

Performing the integral over t we arrive at

F (ξ; ρ) =

∫
dxf(x) |〈x, ξ〉|−∆ . (4.5.4)

Again let us count the number of variables. F (ξ; ρ) depends on 2- ξ coordinates

and ρ. So total 3 variables. This again ensures that h(ξ; ρ) can be inverted to get

back f(x).

Generalizing f to some bulk correlator of some scalar field of mass m, our goal
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Figure 4.5.1: Penrose diagram for de-Sitter space. The vertical dashed line is the
South pole. The left and right edges are North pole which are identified with each
other. Horizontal dashed lines are constant η slices. The figure shows the calculation
of bulk field from boundary operator in the past boundary. The boundary operator
is smeared over the whole boundary. There is branch cut in the smearing function
for r > η. Continuing r and η to the complex plane via an iε prescription selects
the branch yielding a Bunch-Davies/Euclidean vacuum positive or negative frequency
mode.

will then be to view the analog of F as a boundary correlator. A key difference with

the work of Gelfand is that we must give up the condition of normalizability (in the

sense that
∫
|f(x)|2dx is finite). As we will see, this the de Sitter isometry covariant

component of (4.5.2) will correspond to the residue of a pole in ρ2 −m2 reminiscent

of the LSZ reduction formula in flat spacetime [28].

4.5.1 Flat slicing

Horospheres of the first kind are diffeomorphic to flat spatial slices in de Sitter. It

therefore will be convenient to express the general coordinate invariant expression

(4.5.4) on flat slices. See [38] for some related work in the context of four-dimensional
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de Sitter. Setting R = 1, the 3-dimensional de Sitter hyperboloid can be parameter-

ized by the coordinates (η, y1, y2) via

x0 =
1

2
(η − 1

η
)−

∑
y2
i

2η

x1 =
y1

η

x2 =
y2

η

x3 = −1

2
(η +

1

η
) +

∑
y2
i

2η
,

yielding the de Sitter metric with a flat spatial slicing and conformal time η

ds2 =
dη2

η2
− 1

η2

(
dy2

1 + dy2
2

)
.

The volume measure is

dx =
1

η3
dηdy1dy2 . (4.5.5)

A point on a light cone may be parameterized by

ξ = kλ(1 + z2, 2z1, 2z2, 1− z2) , (4.5.6)

where z2 = z2
1 + z2

2 . The coordinates z1, z2 label a point on the boundary at past

infinity in de Sitter. In these coordinates we have

〈x, ξ〉 = λη

(
1− (y1 + z1)2

η2
− (y2 + z2)2

η2

)
.

We will also need the measure on the cone

dξ =
dξ1dξ2dξ3

ξ0

,
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and the measure on the boundary at infinity

dω = d2z .

4.5.2 Transform from bulk to boundary

Our aim is to use the transform of Gelfand [19] as a guide to constructing the trans-

form for the class of functions that appear in correlation functions of quantum fields in

de Sitter. In particular, these functions do not satisfy the compact support condition

used in Gelfand’s inversion theorem. This will lead us to build an analog of the flat-

spacetime LSZ reduction formula for de Sitter spacetime, requiring some important

differences with Gelfand’s construction.

We begin by noting the mode expansion for a bulk scalar field of mass m [17]

φ(η, y) = c1

∫
d2k

(2π)2

(
akηH

(2)
iµ (|k|η) eik.y + a†kηH

∗(2)
iµ (|k|η) e−ik.y

)
, (4.5.7)

where c1 =
√
π

2
e
πµ
2 , µ =

√
m2 − 1, and H

(2)
iµ (|k|η) are Hankel functions of second

kind. The operators ak and a†k are annihilation and creation operators, with the ak

annihilating the Bunch-Davies vacuum, and

[ak, a
†
k′ ] = (2π)2δ(2)(k − k′) .

To construct the boundary operator, we perform the following integral over region

I of figure 4.5.1,

Φ∆(z) = c1

∫
d2k

(2π)2
(akηH

(2)
iµ (|k|η)eik.y + a†kηH

∗(2)
iµ (|k|η)e−ik.y)(

1− (y1 + z1)2

η2
− (y2 + z2)2

η2

)−∆

η−(3+∆)dηd2y . (4.5.8)

58



We define the cut in the x−∆ factor as

x−∆ = |x|−∆e−i∆ arg x ,

where arg x ∈ (−π, π]. Note this choice of phase differs from the expression (4.5.4)

and will be related to the choice of the Bunch-Davies/Euclidean vacuum for the free

theory. Other phase conventions can lead to the more general α-vacua [39] which are

thought to be unphysical [40].

At the level of the bulk correlators, the operator ordering is determined by con-

tinuing the bulk time η → η ± iε. This then yields the distinctive signature of the

Hadamard singularity of the two-point correlator in the light-like limit, which in turn

matches the short-distance singularities of flat-spacetime [41]. This continuation de-

termines the branch of the cut in (4.5.8), and as we will see projects onto the ak or

the a†k terms dependent on the sign. Therefore we define P∆ and P †∆ as follows

P∆(z) = Φ∆(z) , η → η + iε

P †∆(z) = Φ∆(z) , η → η − iε

with ε > 0. Performing the integrals we then get

P∆(z) = d(∆)
1

(∆− 1)2 + µ2

∫
d2k

(2π)2
ak|k|−1+∆eik·z (4.5.9)

P †∆(z) = d̃(∆)
1

(∆− 1)2 + µ2

∫
d2k

(2π)2
a†k|k|

−1+∆e−ik·z ,

where

d(∆) = i22−∆e−iπ∆/2
√
πΓ(1−∆) sin (π∆)

d̃(∆) = −i22−∆eiπ∆/2
√
πΓ (1−∆) sin (π∆)
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We note the prefactors of the boundary operators have poles when ∆ = 1 ± iµ,

reminiscent of the poles arising in momentum space when one performs the LSZ

reduction in flat spacetime, which yields the S-matrix. In the same way, we find

by taking the residues of these poles, we are able to define conformally covariant

operators on the boundary

O∆(z) = d(∆)
i

2(∆− 1)

∫
d2k

(2π)2
ak|k|−1+∆eik·z , (4.5.10)

where now ∆ = 1 − iµ. The other pole yields the operator O2−∆(z). As we will

see there is an equivalence between these two operators, since either may be used to

reconstruct the bulk annihilation mode. A similar relation is found in the work of

Gelfand. For the principal series, the representations corresponding to ∆ and 2−∆

are equivalent, so the minimal spectrum of representations corresponds to µ > 0. The

formulas carry over straightforwardly to the operators O†∆ and O†2−∆ . The pole at

∆ = 1+iµ, determines the value of ∆. In general integral transform, ρ is a continuous

coordinate taking values from (−∞,∞). But for bulk fields, obeying Klein-Gordon

equation, ρ is restricted to just one value ρ = µ =
√
m2 − 1. It is at this point that

one dimension is restricted to a particular value. With ρ fixed, Φ∆(z) which was a

function of d variables (λ, zi) is now just function of d−1 variables (zi). This happens

only because of properties of φ(x) which obeys KG equation. This would not be true

for any arbitrary function f(x) in the bulk.

Using this construction, we may then build the boundary two-point correlators

from the bulk Wightman function by plugging into (4.5.8). The bulk Wightman

function is [41]

GE(x, x′) =
Γ(∆)Γ(2−∆)

(4π)3/2Γ
(

3
2

) 2F1

(
∆, 2−∆;

3

2
;
1 + 〈x, x′〉

2

)
, (4.5.11)

where x and x′ are complexified to give the correct iε prescription near the light-like
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singularity. This may also be written in terms of the integral over mode functions as

GE(x, x′) = c2
1

∫
d2k

(2π)2
ηH

(2)
iµ (|k|η) η′H

(2)∗
iµ (|k|η′) eik.(y−y′) .

Performing the bulk to boundary transform on each mode function, and taking

residues yields the non-vanishing two-point correlators

〈
O∆(z)O†∆(0)

〉
= −π sin (π∆)

(∆− 1)2

1

|z|2∆〈
O2−∆(z)O†2−∆(0)

〉
=

π sin (π∆)

(∆− 1)2

1

|z|2(2−∆)
.

It is helpful to recall that scalings and translations fix the form of the correlator, but

only covariance under inversions gives the requirement that each operator in the two-

point function have the same conformal weight. Potential off-diagonal contributions

vanish as required when the integrals (4.5.8) are performed.

The operators O∆, etc. are quasi-primary operators, in the sense that they trans-

form under SL(2, C) transformations

z → αz + β

γz + δ
, αδ − βγ = 1

O∆(z) → |γz + δ|−2∆O∆

(
αz + β

γz + δ

)
.

Note, however, that in the principal series, they are not annihilated by the positive

weight generators of SL(2, C). Thus L1O∆ 6= 0 and L̄1O∆ 6= 0 so that the operators

are not primary operators. The only representations of the conformal group that

behave as the usual CFT primary operators are the discrete series.

The appearance of O∆ and O†∆ as separate operators in the CFT is somewhat

unusual. The Hermitian conjugation is not the natural one typically used in conformal

field theory, but rather refers to bulk Hermitian conjugation with respect to the Klein-
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Gordon inner product. Likewise, it is with respect to this bulk inner product, the one

typically used in quantum field theory in curved spacetime, that the representations

are unitary.

Having performed this construction for a single set of de Sitter mode functions, and

the two-point function, one can try to generalize to higher point functions. As is clear

from the above discussion, the residue of the integral transform (4.5.8) essentially picks

off a free ingoing or outgoing mode, depending on the branch of the integrand the iε

term picks. Therefore, if the bulk quantum field theory satisfies cluster decomposition,

one may apply the transform to a multi-point correlation function to define a de Sitter

version of the S-matrix, in analogy with the LSZ reduction formula. The resulting

S-matrix should transform covariantly under global conformal transformations. As

we will see shortly, the existence of this S-matrix will hinge on this assumption of

cluster decomposition.

4.6 Reconstructing the Bulk

It is helpful to again recall the integral geometry construction of [19]. Having con-

structed the boundary function h(ξ), the bulk function is reconstructed by the inverse

transform

f(x) = − 1

16π2

∫
δ′′ (|[x, ξ]| − 1)h(ξ)dξ , (4.6.1)

where the measure dξ is described in more detail in [19]. This can also be written as

f(x) = − 1

16π2

∫ ∞
0

δ′′(t− 1)H(x, t)dt = − 1

16π2
H ′′t (x, 1) , (4.6.2)

where

H(x, t) =

∫
h(ξ)δ (|[x, ξ]| − t) dξ .
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Now consider functions h(ξ) over the positive sheet of the light cone. These

functions may be decomposed into components with well-defined conformal weights

by Fourier transforming

F (ξ; ρ) =

∫ ∞
0

h(tξ)t−iρdt , (4.6.3)

where the complex conformal weight ∆ is related to the real parameter ρ via iρ =

1−∆. The inverse Fourier transform becomes

h(ξ) =
1

8π

∫ ∞
−∞

F (ξ; ρ)dρ . (4.6.4)

Using equation (4.6.3) and (4.6.4) we get

f(x) = − 1

2(4π)3

∫ ∞
−∞

∫
F (ξ; ρ)δ′′ (|[x, ξ]| − 1) dξdρ . (4.6.5)

This can be written in the form

f(x) =
1

4(8π)3

∫ ∞
−∞

dρ ρ(ρ+ 4i)

∫
Γ

dω F (ξ; ρ) |[x, ξ]| −iρ−1 , (4.6.6)

where dω is a measure on the boundary at infinity, obtained by modding out the

overall scale from dξ. The surface Γ is an arbitrary surface on the light-cone that

intersects each of its generators, and dω is defined by dξ = dωdP where P (ξ) = 1 is

the equation of Γ. Thus we get a function in the bulk by applying the inverse integral

transform to functions on the boundary transforming with well-defined conformal

weights. Finally, a symmetry of this integral relates the integral over ρ from −∞, 0

to the range 0,∞, allowing the range to be collapsed to one copy of each irreducible

principal series representation ρ = 0 · · ·∞.
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4.6.1 Bulk operators

Again we will need to generalize these methods to the distributions encountered in

quantum field theory. Our goal is to reconstruct the bulk field, at the free level (4.5.7)

using only the covariant boundary operators (4.5.10). For simplicity we assume only

a single mass field with mass m is present. Generalization to the quasi-free case,

where a superposition of masses is present is straightforward. The inverse transform

of O∆ , in the flat-slicing, is

φ−(η, y) = −(∆− 1)2

2π2
(cotπ∆ + i)

∫
d2z

(
η2 − z2

η

)∆−2

O∆(z + y) .

The continuation of η → η − iε defines the branch of the integrand. Likewise we

define

φ+(η, y) =
(∆− 1)2

2π2
(cotπ∆− i)

∫
d2z

(
η2 − z2

η

)∆−2

O†∆(z + y) ,

where now η → η+ iε. Inserting the expression (4.5.10) and performing the integrals,

one recovers (4.5.7) with φ = φ+ + φ−.

The same method may be used to reconstruct the bulk Wightman function in the

Bunch-Davies/Euclidean vacuum

〈φ (η1, y1)φ (η2, y2)〉 = −(∆− 1)4

4π4
csc2 (π∆)

∫
d2z1

(
η2

1 − z2
1

η1

)∆−2 ∫
d2z2

(
η2

2 − z2
2

η2

)∆−2

×
〈
O∆(z1 + y1)O†∆(z2 + y2)

〉
,

where on the right-hand-side a CFT correlator appears, while on the left, a bulk

Wightman function appears. In this formula, it is understood that η1 → η1 − iε

and η2 → η2 + iε. Likewise the boundary radial directions must be continued in the

same way, which regulates the singularity in the integrand when points coincide. We

emphasize this reproduces the full bulk Wightman function for general points in the
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bulk of de Sitter (4.5.11).

This construction allows us to build field operators at arbitrary bulk points in de

Sitter yielding important insight into how the de Sitter time arises from the purely

Euclidean CFT. Likewise, the Euclidean CFT does not have a natural operator or-

dering. In the bulk, this arises from the complexification of the radial direction in the

CFT, combined with the branch choices in the smearing functions. This allows us to

build ingoing or outgoing modes in the bulk. For a bulk theory with some perturba-

tive expansion, this approach is sufficient to reconstruct the bulk correlators from the

boundary correlators, by reconstructing the Wick expansion of the bulk correlators,

using the building blocks we have presented.

4.7 Euclidean axioms

For a well-defined set of bulk correlators, we can use the prescription of section 4.5 to

define a conformally covariant set of boundary correlators. These then may be viewed

as a definition of some Euclidean conformal field theory that includes quasi-primary

operators corresponding to the principal series.

The basic axioms of Euclidean quantum field theory were formulated long-ago

by Ostwerwalder and Schraeder. One of the most elementary axioms needed for a

consistent Euclidean theory is that of cluster decomposition, namely

lim
r→∞
〈φ(r)φ′(0)〉 = 〈φ(r)|0〉 〈0|φ′(0)〉 ,

so that correlators factorize when groups of insertions are separated by long distance.

This is the Euclidean analog of uniqueness of the vacuum state in Lorentzian signa-

ture. It is straightforward to see this can never be the case for a CFT that contains
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operators based on the principal series. Consider the CFT correlator

〈(
L1L̄1

)nO∆(z)
(
L1L̄1

)nO†∆〉 ∝ 1

|z|2∆−4n
.

This grows with distance for n > 0, violating cluster decomposition. If instead one

had a typical CFT, and O was a primary operator, one would have the identity

LnO = 0 for n > 1, avoiding this problem.

We interpret the results of this paper as a proof by contradiction that nontrivial

CFTs based on the principal series cannot exist. Nevertheless, this result has impor-

tant implications for theories in the bulk. In analogy with AdS/CFT, we can interpret

the operator
(
L1L̄1

)
O∆(z) as dual to a composite of a bulk graviton and a scalar

matter field. This violation of cluster decomposition on the boundary arises because

the bulk theory has no positive energy theorem [31]. The Killing vector associated

with L0 + L̄0 is not globally timelike. There are therefore many bulk excitations sat-

isfying L0 = L̄0 = 0 at the boundary, which will appear as intermediate states when

one tries to factorize a CFT correlator.

We conclude then that the Euclidean CFT associated with a free massive scalar

in de Sitter violates the basic axioms of Euclidean quantum field theory. We take this

as a sign that the holographic dual is incomplete as a CFT, and we hope to return

to a more constructive approach to building the correct holographic dual in future

work.
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Chapter 5

de Sitter gravity/Euclidean conformal

gravity correspondence

There has been much success in describing gravity in Anti-de-Sitter spacetime using

a holographic description on the boundary at infinity. In the holographic description,

a conformal field theory (CFT) lives on the boundary. This marks a major step in

quantizing gravity in asymptotically anti-de-Sitter spacetime. However according to

experimental observation, our universe has positive cosmological constant. Thus it is

interesting to consider a holographic description of gravity in the de-Sitter spacetime.

One way of approaching this problem is to analytically continue the AdS/CFT

correspondence to dS/CFT correspondence [16]. There are many successes in this

approach but there are many conceptual difficulties as well. In this paper we will try to

clarify some of these difficulties. In the paper [22], we constructed a mapping between

bulk field operators and boundary operators. As we saw in that paper, the boundary

CFT has operators which violate cluster decomposition. Cluster decomposition is one

of the basic assumptions of any interacting quantum field theory [29, 30].

To set the stage for understanding the problem in de Sitter spacetime, be begin

by considering the well-understood problem in anti de Sitter spacetime. In that case,
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there is a positive energy theorem [31, 42] and the unitary representations of the

conformal group SO(d− 1, 2) that appear are lowest weight. Moreover the boundary

conditions on conformal infinity I that preserve conformal flatness are compatible

with the unitarity bound of [42]. In particular, with these boundary conditions, one

obtains a complete set of modes for fluctuations around the anti-de Sitter background.

For de Sitter spacetime there is no global positive energy theorem [31] and the

unitary representations of the conformal group SO(d, 1) corresponding to ordinary

massive and massless fields are neither highest nor lowest weight, but are rather the

principal series and the complementary series, which are unbounded. This leads to

the problem of cluster decomposition violation in the boundary theory, noted in [22].

In the case of de Sitter, a complete set of modes (for the graviton) leads to config-

urations with a nontrivial conformal class at conformal infinity I. Thus one cannot

impose boundary conditions to maintain conformal flatness, without truncating the

linearized spectrum of the theory [43, 44]. Therefore to describe a quantum theory

with the full set of modes in a de Sitter background, the holographic description

must accommodate a path integral over boundary metrics. The boundary theory will

be invariant under the asymptotic symmetry group of the de Sitter spacetime that

preserves this more general set of asymptotic boundary conditions. In this case, the

asymptotic symmetry group is not just the conformal group, corresponding to isome-

tries of de Sitter, but is rather the full group of diffeomorphisms of I. This leads us

to conjecture the holographic dual will be a theory of conformal gravity theory living

at I.

At first sight, this might seem a step backward, since theories of conformal gravity

seem difficult to quantize [45]. Nevertheless, there are examples where progress has

been made. For three dimensional pure conformal gravity, a Chern-Simons gauge

formulation is available [46]. For conformal gravity arising in string theory, a twistor

string formulation has been found [47]. So there is hope that the rather different
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conformal gravity theories considered here can be successfully quantized.

Having found a path integral over conformal classes of metric on I is needed to

provide a holographic description of gravity in de Sitter, it is then natural to ask

whether one must include a sum over topologies of I as well. In the case of anti-

de Sitter, this question was addressed in [48]. There it was found that if I has

positive curvature, it must be connected and cannot contain nontrivial topology, such

as wormholes. This result is important for the basic consistency of AdS/CFT.

Some related questions have been considered in the context of dS/CFT in [49, 50].

However there it quickly becomes clear that ordinary matter will lead to nontrivial

topology for I in four-dimensional de Sitter since a black hole already changes the

topology from S3 for empty de Sitter to S2 × R for a black hole. Recall in AdS, the

topology of I remains S2 ×R for empty AdS, or the AdS Schwarzschild black hole.

One can gain a more detailed understanding of this topology change in the case of

three-dimensional de Sitter. As an example, we consider the solution for multi-black

holes in three-dimensional de Sitter spacetime [51]. We show I can be mapped from

a multi-sheeted sphere to a single cover with punctures. The resulting holographic

dual is a theory of two-dimensional gravity, identical to a worldsheet string theory.

At least in this example, there is a natural moduli space corresponding to a sum of

worldsheet topologies. It remains an interesting open question whether such a sum

over topologies can be defined in the higher dimensional case.

5.1 Asymptotic symmetry group

To specify the asymptotic structure of a spacetime we attempt to construct a set

of boundary conditions that capture a wide-class of physically interesting solutions.

The Penrose conformal compactification of the geometry provides an enormous sim-

plification in treating these asymptotic boundary conditions, because solutions may
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more easily be studied on the compact unphysical spacetime (related by a Weyl trans-

formation to the physical spacetime) where the group of diffeomorphisms is clearly

defined [52].

If one considers linearized perturbations around de Sitter, the conformal group

should have a well-defined action. In this limit, one can consider the perturbation

on top of the fixed de Sitter background, which has as an isometry group SO(d, 1).

These isometries induce a SO(d, 1) global conformal transformation on I.

5.1.1 Four dimensions

At first sight, the situation for nonlinear solutions appears much less clear. We will

restrict our discussion to four-dimensional de Sitter, and discuss the very special fea-

tures of three dimensions later. As mentioned in the introduction, already black holes

will tend to change the very topology of I and it is not clear if any precise asymptotic

conditions can be formulated. Ashtekar et al. [43, 44] deal with this by focussing

on isolated gravitating systems in de Sitter. Our approach will take a different view-

point, and allow for arbitrary boundary metrics that respect the asymptotic de Sitter

metric conditions locally

ds2 = R2
dSη
−2
(
−dη2 + (δij + hij)dx

idxj
)

(5.1.1)

where we can perform a power series expansion of hij as

hij(η, x) = h(0)ij(x) + η2h(2)ij(x) + η3h(3)ij(x) +O(η4) (5.1.2)

following [53]. For now we will take I to have topology of the 3-sphere, thus we are

considering globally asymptotically de Sitter spacetimes. We will consider more gen-

eral topologies later in the paper. As we will see later, typical matter configurations

only yield a single regular asymptotic region, so we take I to refer to either I+ or I−
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but not a disconnected union of the two.

One can largely separate the issue of topology change by first restricting con-

siderations to theories of gravity with conformally coupled matter. There powerful

nonlinear stability theorems have been proven by Friedrich [35]. In particular, for an

open set of initial data, it has been shown that a past asymptotic de Sitter space-

time can smoothly evolve to a future asymptotic de Sitter spacetime. The solutions

obtained involve a metric at I in a nontrivial conformal class. These correspond to

the usual long wavelength gravitons of the theory of inflation, which freeze out when

stretched past the horizon scale. They induce a nontrivial Cotton tensor on I.

As pointed out in [43, 44], demanding conformal flatness of the boundary projects

out these graviton modes from de Sitter. Therefore if the holographic theory of de

Sitter gravity was simply a conformal field theory, living on a background with a fixed

conformal structure, the CFT would not be able to reproduce the full set of graviton

modes. One may of course perturbatively correct for this by introducing sources on

the boundary, however then one must specify a path integral measure for such sources

in order to reproduce bulk observables, such as in-in correlators.

Let us try to establish the gauge symmetries of the boundary theory. If we consider

general asymptotic boundary conditions of the form (5.1.1) the asymptotic symmetry

group is much larger than the global conformal group. Instead, it consists of the full

group of diffeomorphisms of I. As we will see later, we can reconstruct part of the

action of the holographic dual by considering the boundary action of the bulk theory,

evaluated on solutions of the equation of motion. This boundary action then inherits

the gauge symmetry of the bulk, associated with diffeomorphisms of I.

The construction of the boundary theory is predicated on the Penrose compacti-

fication of the bulk spacetime. This is achieved by performing a general Weyl trans-

formation of the bulk metric g(unphys)µ,ν = Ω2(η, x)g(phys)µ,ν for some choice of smooth

function Ω that vanishes on I, but with non-vanishing normal derivative. Again,
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by reconstructing part of the action of the holographic dual involving the boundary

metric, one sees the boundary theory must inherit this Weyl invariance as a gauge

symmetry. We conclude then that the boundary theory must be a theory of Euclidean

conformal gravity.

In many ways, this is not a new statement. It has been advocated that the

dS/CFT correspondence be viewed as a computation of a wavefunction via a CFT

partition function

Ψ(h) = ZCFT [h] (5.1.3)

where h denotes the boundary metric. Our point is simply to compute bulk observ-

ables, one must make the further step of computing

〈0|O(x1)O(x2)|0〉 =

∫
DhΨ∗(h)OCFT (x1)OCFT (x2)Ψ(h) =

∫
DhZ∗CFT [h]OCFT (x1)OCFT (x2)ZCFT [h]

with some a priori unknown measure Dh, and some de Sitter spacetime operators O.

Here the vacuum state |0〉 is to be understood as an interacting generalization of the

Bunch-Davies vacuum. The operators OCFT are the dual CFT operators. For matter

fields in a fixed de Sitter background, these can be constructed [22]. To formulate

a complete holographic description, one instead must build the integration measure

into the theory. This gives rise to our conjecture that dS gravity is dual to a theory

of conformal gravity on I. In that case, the relevant correlator would be

〈0|O(x1)O(x2)|0〉 = 〈Ocgrav(x1)Ocgrav(x2)〉 (5.1.4)

where the left-hand side is an in-in correlator in the bulk theory, and the right-hand

side represents the map of these observables into the conformal gravity theory. The

next goal is to try to specify as much as possible, this conformal gravity theory. If

this can be established, it will then be necessary to revisit the boundary to bulk

operator mapping after properly understanding the gauge invariant observables of
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the conformal gravity theory. In its current formulation [22], the mapping would only

make sense for small perturbations around some classical background.

5.1.2 Quadratic action for holographic theory: 4d de Sitter

In general to build operators in the boundary theory from those in the bulk, one

must use the integral transform method described in [22], and its generalizations.

This can be viewed as an analog of the LSZ transform in constructing the S-matrix

in asymptotically flat spacetime.

In anti-de Sitter spacetime, one has a much easier task, because the bulk to

boundary mapping is much simpler, since the physical fields of interest have simple

power law falloff, dependent on their masses. So while one must perform an integral

transform to construct quasi-local bulk fields from boundary operators, the inverse

operation reduces to taking a residue in the limit that the bulk operator approaches

infinity.

Nevertheless, if we focus on the gravitational field, and massless minimally coupled

scalars, for example, the results of AdS may be continued to de Sitter. This is the

approach followed in [54, 55]. See also [6] for related discussion of these issues. Here

let us generalize this to a massive scalar in de Sitter, with action

Smat =

∫
dηd3x

1

2

√
−detg

(
−gµν∂µφ∂νφ−m2φ2 − ξRφ2

)
. (5.1.5)

In empty de Sitter, with metric (5.1.1) the solution of the equation of motion may be

decomposed into the Bunch-Davies [24, 56] mode functions

uk =
1

25/2π
η3/2H(2)

µ (−kη)eik·x
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where

µ2 =
9

4
− 12

(
m2

R
+ ξ

)
.

Let us for the moment take µ to be real, corresponding to the so-called complementary

series representations of the conformal group. Note we will work with the future half

of the slicing, so −∞ < η < 0. We wish to compute the on-shell action, which reduces

to a boundary term as η → 0−. We take a solution with some fixed behavior on some

late-time slice η = ηc

φ(η, x) =
η3/2H

(2)
µ (−kη)

η
3/2
c H

(2)
µ (−kηc)

f~ke
i~k·~x

and substitute into (5.1.5) to obtain

iSmat = iR2
dS

∫
d3x

1

2η2
φ∂ηφ|η=ηc

= iR2
dS

∫
d3k

2 (2π)3f~kf−~k
1

4η3
c

(
3− 2µ−

2ηckH
(2)
µ−1(−kηc)

H
(2)
µ (−kηc)

)
. (5.1.6)

When µ is half-integer, this expression may be expanded near η → 0− (i.e. I+)

and interpreted as a series of counter-terms that must be subtracted to yield a finite

boundary action. For example, the massless minimally coupled scalar corresponds to

m = 0, ξ = 0 giving µ = 3/2 and

iSmat = R2
dS

∫
d3k

2 (2π)3f~kf−~k

(
ik2

2ηc
− k3

2

)

as ηc → 0. The imaginary divergent term might then be subtracted with a local∫
d3x(∂φ)2 counterterm. The finite piece yields the expected boundary propagator

of a quasi-primary field with conformal weight ∆ = 3 = 3
2

+ µ. The boundary action

for the scalar field then has the following form, which is non-analytic in momenta

Sboundary = R2
dS

∫
d3x

1

2
φ (�)3/2 φ .
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Another simple example is the massless conformally coupled scalar, with m =

0, ξ = 1/6 which gives µ = 1/2 and

iSmat = R2
dS

∫
d3k

2 (2π)3f~kf−~k

(
i

2η3
c

− k

2η2
c

)

which has a vanishing finite boundary action after subtracting the divergent coun-

terterms. We will comment on this and the case of more general mass in a moment.

In a transverse traceless gauge, the action for metric fluctuations matches that

of the massless minimally coupled scalar with a different normalization, giving the

boundary action

Sgrav,boundary =
R2
dS

64πG

∫
d3xhTTij (�)3/2 hijTT .

As noted in [54] this gives a negative contribution to the 2-point function of the

boundary stress energy tensor proportional to the central charge.

So far we have seen the boundary counter-term approach seems to work well for the

metric and massless minimally coupled scalar matter. As noted in [22] this approach of

extracting boundary operators for more general matter in de Sitter, by simply taking

asymptotic limits of the fields, fails in general. If one were to evaluate (5.1.6) one

would get oscillating cutoff (i.e. ηc) dependent expressions1. The correct approach is

to apply an analog of the LSZ reduction formula of asymptotically flat spacetime, by

performing an integral transform on the bulk fields to obtain a boundary expression

that transforms covariantly under the conformal group [22]. For scalar fields, this

gives

Smatter,boundary = R2
dS

∫
d3x

1

2
φ (�)µ φ

1These oscillations play an important role in the minisuperspace approach to solving the Wheeler-
DeWitt equation [57]. Our philosophy in this section is to use the form of the square of this
wavefunction to guess the form of the conformal gravity action living on I. The duality proposed in
(5.1.4) then makes no reference to the phase of this wavefunction.
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for µ > 0 real, corresponding to the complementary series of the conformal group and

Smatter,boundary = R2
dS

∫
d3x

1

2

(
φ (�)µ φ+ φ∗ (�)−µ φ∗

)
for µ imaginary, corresponding to the principal series of the conformal group.

In the above, we have derived the quadratic terms that appear in the conformal

gravity theory coupled to matter. Already we see the conformal gravity theory seems

to be of a new kind, due to the non-polynomial nature of its derivatives appearing in

the quadratic term. The theory appears to be free of ghosts, at least in the case when

the matter is restricted so µ > 0. At least at bulk tree-level, one should be able to

recover the higher order terms in the holographic Lagrangian. The classical stability

of de Sitter would seem to indicate this procedure should be completely well-defined.

An easy generalization of the above is to break parity in the bulk by adding an∫
RR term, which corresponds to adding a Chern-Simons gravity term to the bound-

ary. This yields the boundary Lagrangian for the well-studied case of topologically

massive gravity [58], which is invariant under Weyl and diffeomorphism symmetries.

As has been emphasized in [22] the boundary theory violates cluster decomposi-

tion, which is one of the central axioms of Euclidean quantum field theory [29, 30]. It

will be very interesting to construct interacting holographic duals. In the free limit,

examples have been constructed in the context of higher spin gravity in de Sitter [23].

5.1.3 Three dimensions

The case of three-dimensional de Sitter is special, because then I is two-dimensional,

and always locally conformally flat. In this case, the expansion of the metric (5.1.1)

takes the form

hij = h(0)ij + η2h(2)ij +O(η3) .
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We can nevertheless follow the strategy described above to compute the boundary

term arising from the on-shell bulk action. Now we will find the boundary counter-

term action

iSgrav =
i

16πG3

∫
d2x2

√
−detg − 1

2
log (−ηc)

√
deth(0)R(0) .

The anomalous contribution proportional to log ηc must be cancelled for the theory

to be conformally invariant. One way to approach the problem is to couple the

boundary theory to a Liouville field theory with central charge adjusted so that a

Weyl transformation, shifting ηc → αηc is compensated by the anomaly term coming

from the Liouville theory. This renders the boundary theory diffeomorphism invariant

and Weyl invariant.

In this way, the boundary theory takes the form of the Polyakov string. The

central charge induced by the gravitational contribution to the conformal anomaly is

c = −3RdS

2G3

. (5.1.7)

For the theory to be Weyl invariant at the quantum level, this central charge must be

cancelled by that of the Liouville field, leading to a boundary theory with vanishing

conformal anomaly.

In the usual conformal gauge of string theory, for fixed boundary topology, the

theory reduces to an ordinary conformal field theory (coupled to the Liouville field)

and the details of conformal gravity may be forgotten. Moreover in string theory there

is a well-defined path integral involving sums over nontrivial worldsheet topologies.

Each topology is equipped with a well-defined moduli space. We expect this sum

over topologies is important to properly understand the holographic theory describing

quantum gravity in de Sitter, a question we turn to in the next section.
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5.2 Topology change

It is important for the consistency of AdS/CFT that there are strong restrictions on

the topology of the bulk geometry M given the boundary. For example, Witten and

Yau [48] showed that the boundary must be connected, and that the bulk Euclidean

geometry satisfies Hn(M,Z) = 0 if the boundary has positive scalar curvature.

Similar topological restrictions have been explored in the context of four-dimensional

asymptotically de Sitter spacetimes in [49, 50]. For example, if I+ has infinite funda-

mental group, then one has the rather strong result if matter obeys the null energy

condition, there is no regular I−. Similarly if I+ has positive first Betti number, then

the bulk is past null geodesically incomplete. Nevertheless, there are many examples

where at least I+ is well-defined. The case we will be most interested in is the case

where I+ is a sphere with punctures. Isolated gravitating systems in de Sitter can

reach I+ where they appear as punctures. In the work of [43, 44] the focus is on a

single isolated gravitating system. Since here we are interested in building a holo-

graphic dual applicable to cosmology, we will be most interested in is the case where

I+ is a sphere with multiple punctures.

If we wish to accommodate such isolated gravitating systems in the dual conformal

gravity theory living on I+, we must therefore include a sum over topologies of the

boundary. In the case of three-dimensional Euclidean geometries, it is not clear

whether a path integral of conformal gravity over such a space can be defined. Though

it nevertheless appears to be a simpler problem than the original proposals for four-

dimensional Euclidean quantum gravity as a path integral over geometries.

In the case of three-dimensional asymptotically de Sitter geometries things are

much simpler. Again, I+ is always conformally flat, but one nevertheless must deal

with this sum over topologies. The sum over the moduli space of compact Riemann

surfaces (including punctures), is well-understood in the context of string theory and

leads to a complete proposal for the path integral of the conformal gravity theory.

78



That is, if we are given a Lagrangian for a CFT with central charge (5.1.7), we can

couple it to conformal gravity by performing a Weyl rescaling, and add in the Liouville

sector to cancel the overall conformal anomaly. One can then fix conformal gauge,

and treat the theory as one would with any worldsheet string theory.

In the remainder of this section, we consider an example of a multi-black hole

solution in three-dimensional asymptotically de Sitter spacetime [51]. If the above

proposal is correct, it should be possible to view I+ as a 2-sphere with punctures.

However the original work [51] expressed the Cauchy slices as a multiple cover of a

sphere with only two punctures at the north and south poles. In the following, we

construct the covering space and show it is a single cover of a sphere with multiple

non-degenerate punctures.

5.2.1 Example: multi-black hole solution in dS3

Deser and Jackiw have found the metric of 2+1 dimensional gravity asymptotically

de-Sitter spacetime [51] in the presence of N stationary massive particles. It is given

by

ds2 = M2(r)dt2 + f(r)dzdz∗

f(z) =
ε

λV (z)V ∗(z∗) cosh2 (
√
ε (ζ − ζ0))

M(z) = ε tanh
(√

ε (ζ − ζ0)
)

V (z) = c−1

N∏
n=1

(z − zn)

ζ(z) =
1

2

(∫
dz

V (z)
+

∫
dz∗

V ∗(z∗)

)
= ln

(∏
n

|z − zn|cn
)

cn =
∏
n′ 6=n

c

zn − zn′
N∑
n=1

cn = 0 . (5.2.1)
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Here λ > 0 is the cosmological constant. The first equation gives the metric in

complex plane in terms of f(z),M(z). V (z) is the master function in terms of which

the solution is given. zn are the punctures in the complex plane where particles are

inserted and c is a free parameter. We demand that cn be real for single valuedness

of the solution. The coordinate transformation

sinω =
1

cosh (
√
ε(ζ − ζ0))

φ =
ε

2i

(∫
dz

V (z)
−
∫

dz∗

V ∗(z∗)

)
(5.2.2)

takes us to the familiar static coordinates

ds2 = − cos2 ωdt2 + λ−1
(
dω2 + sin2 ωdφ2

)
. (5.2.3)

Note that all the particles are located at sinω = 0 so that ω = 0, π. The further coor-

dinate change
√
λR = sinω takes us to the static Schwarzschild-de-Sitter coordinates

ds2 = −(1− λR2)dt2 + (1− λR2)−1dR2 +R2dφ2

which covers the full space, but the range of φ goes from [0, 2παn) at the location

of nth particle where αn =
√
εcn = 1 − 4Gmn. This is the familiar conical deficit of

3-dimensional gravity. Locally the metric is same as pure de-Sitter and has constant

curvature.

Now we will investigate the geometry. First we will consider 3-particle case before

generalizing to the N particle case. Uniqueness of the solution requires that the 3

particles are all in a line and cn sum to zero. Let us take c = 1, z1 = −3, z2 = 1, z3 = 2.
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Then let us choose

c1 =
1

(z1 − z2) (z1 − z3)
=

1

20

c2 = −1

4

c3 =
1

5

c1 + c2 + c2 = 0 .

Thus this configuration satisfies all the constraints. Now let us look at the functions

that determine the geometry

V (z) = (z + 3)(z − 1)(z − 2)

1

V (z)
=

1

20(z + 3)
− 1

4(z − 1)
+

1

5(z − 2)

ζ =
1

2

(∫
dz

V (z)
+

∫
dz∗

V ∗(z∗)

)
=

1

20
ln

(
|z + 3||z − 2|4

|z − 1|5

)
.

At z = −3, 2, ζ = −∞ and at z = 1, ζ = ∞. In z coordinates, we have punctures

at 3 points. We now want to understand the picture in the ω, φ coordinates using

(5.2.2)..

The points z = −3, 1, 2 correspond to sinω = 0 =⇒ ω = 0, π. Thus two of the

particles are at south pole and one at north pole. But then it is not immediately

clear whether the particles at the south pole are overlapping or they are multiple

disconnected sheets or they are sphere connected at some points etc. To understand

the topology, we first note that we can have a path between any two particles without

crossing the other particle. This implies that the sheets are connected. Secondly, the

distance between any two particles is non-zero.

To see this we note that constant ω corresponds to constant |z+3||z−2|4
|z−1|5 curves in

the complex plane.

1. |z+3||z−2|4
|z−1|5 = ±∞ would correspond to north and south pole ω = 0, π.
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Figure 5.2.1: Contour plot of e20ζ = |z+3||z−2|4
|z−1|5 in the complex z-plane.

2. |z+3||z−2|4
|z−1|5 = 1 corresponds to the equator ω = π/2.

First we note that at z = −3, 2, |z+3||z−2|4
|z−1|5 = 0 < 1 and at z = 1, |z+3||z−2|4

|z−1|5 =∞ > 1.

Thus we are sure that |z+3||z−2|4
|z−1|5 = 1 contour will pass between (−3 and 1) and also

between (1 and 2). We can verify it by plotting the contours as shown in Figure

(5.2.1).

The plot clearly shows that from z = −3 to z = 2 we have to cross |z+3||z−2|4
|z−1|5 = 1

contour at least twice. That is we have to cross equator at least twice. To go from

z = −3, 2 to z = 1 we have to cross |z+3||z−2|4
|z−1|5 = 1 contour or the equator at least

once. Thus we are getting a picture where we have two spheres. The south pole of

one sphere corresponds to z = −3 and the south pole of other sphere correspond

to z = 2. The north pole of both the spheres correspond to z = 1. This means

the two spheres have common northern hemispheres (ζ > 0) and separate southern

hemispheres (ζ < 0).

How does this all look in the ω, φ coordinate? First let us look at the contours
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Figure 5.2.2: 3D plot of e20ζ after the transformation z → 1
z′

+ 1 in z’ plane. This
shows that the topology of boundary is a pair of pants.

for ζ > 0 =⇒ ω < π/2. These curves are connected and close around z = 1. As we

move along each contour φ ranges from [0, α12π) where 1 − α1 is the conical deficit

of the particle at z = 1. For convenience let us mark the point A as φ = 0. Then

as we move along the curve we reach B(φ = α1π/2), C(φ = α1π), D(φ = 3α1π/2)

and when we come back to A, φ changes by α12π. These points are shown in figure

(5.2.1). This is true for all the contours ω < π/2. For ω = π/2, contour splits at

C,D → ∞. Topologically one then has a sphere with 3 punctures, also know as the

pants diagram. To see that explicitly, we do the transformation z → 1
z′

+ 1. This

sends z = 1,∞ to z′ = ∞, 0 respectively. The new function that determines the

geometry is shown in Figure (5.2.2).

Generalizing toN particles this will beN punctures on the Riemann sphere. Single

valuedness of the solution requires that all the punctures (position of the particles) lie

on a line. Without loss of generality we can take this line to be real axis. Mass defects

are given by absolute value of the cn, which should sum to 0. We can choose c = 1 in

the solution (5.2.1). and take the positions zn such that they satisfy
∑
cn = 0. Then

the solution is given by (5.2.1). Let us label the positions such that z1 > z2 > ... >
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zN−1 > zN . Then

c1 =
1

(z1 − z2)(z1 − z3)...(z1 − zN)
> 0

c2 =
1

(z2 − z1)(z2 − z3)...(z2 − zN)
< 0

c3 > 0

...

c2m+1 > 0, c2m < 0. Thus we see from equation (5.2.1) that ζ(z2m+1) = −∞, ζ(z2m) =

∞. This solution in z coordinate is transformed to the de-Sitter like metric (5.2.3)

using (5.2.2). We see that at z = zn =⇒ ω = 0, π. That is particles are either at

the south or north pole, corresponding to a multi-sheeted sphere with 2 punctures.

To see the geometry more clearly we look at the equator that is ω = π/2 =⇒

sinω = 1 =⇒ ζ(z) = ζ0 contours. Let us check these contours generate the Riemann

sphere with N punctures.

Since this is a compact manifold, all the contours must be closed. The punctures

live at |ζ(zn)| = ∞. So none of the contours with finite value of ζ0, end at the

punctures. The second observation is that the ζ(z) = 0 contour continuously extends

to z = ∞. Thus all the contours with ζ(z) = 0 are connected at z = ∞. A third

observation is that ζ(z2m+1) = −∞, ζ(z2m) =∞. That is ζ(z) at successive punctures

are of opposite sign. Thus, ζ(z) = 0 contour separates any two successive punctures.

Thus there are N − 1 ζ(z) = 0 contours joined at z =∞. These contours divide the

Riemann sphere into N segments. Each segment contains exactly one puncture, and

we have mapped the geometry to a single-cover of the N -punctured sphere.
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5.3 Conclusion

We have conjectured the holographic dual of an asymptotically de Sitter spacetime in

d+1-dimensions is a d-dimensional theory of Euclidean conformal gravity living on I.

Various quadratic terms in the action of the conformal gravity have been constructed,

which indicate the boundary metric becomes a dynamical variable. This then forces

one to consider whether the path integral over the boundary metric includes a sum

over topologies.

This is a sharp departure from the simplicity of the conformal field theory/anti-de

Sitter correspondence, where we have many examples of suitable large N conformal

field theories and the boundary metric is not dynamical. In the case of de Sitter,

we instead get holographic theories that violate the usual axioms of Euclidean field

theory [22] and examples are hard to come by. The massless higher spin theories

have provided some examples where these issues can be explored in detail [23, 59].

Optimistically one might hope that the new feature of coupling to conformal gravity

solves some of these problems. More pessimistically it suggests that the natural UV

completion of de Sitter gravity may not be some lower dimensional holographic the-

ory, but is rather to be understood as an unstable background in some larger complete

theory [60, 61].
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Chapter 6

dS/CFT and the operator product

expansion

The success of the anti-de Sitter/conformal field theory correspondence (AdS/CFT)

has inspired applications to de Sitter spacetime (dS) [16]. This leads one to try to find

conformal field theories of relevance to this correspondence which appear to exhibit

novel properties, and many have questioned whether such theories can be defined at

all.

In the context of AdS/CFT detailed dictionaries relating the bulk and boundary

variables [1] were found at the free level. These ideas were generalized to a preci-

sion boundary/bulk correspondence, order by order in a 1/N expansion in HKLL

[9, 10, 60, 62]. Our present goal is to attempt to extend such ideas to the dS/CFT

correspondence.

However, it has been difficult to produce examples in Minkowski space and De-

Sitter space because of various issues. Instability of string theory in de-Sitter back-

ground [63], and the compact spacelike boundary has made holography challenging

in de-Sitter [15]. We have discussed many of these problems, in our previous papers

[22, 64]. There we have shown how to extend the HKLL dictionary to dS space for the
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case of non-interacting bulk theory. Many people have contributed in understanding

dS-holography including higher-spin holography for dS[16, 23, 59, 65, 66, 6, 37, 41,

36, 32, 67].

In section 6.1 we introduce principal series and discrete series representation and

give a short description of the earlier work in maths literature. Then we show how

the generators act on the bulk fields. We derive the bulk fields by solving the appro-

priate wave equation. Section 6.2, is devoted to the massless scalar field. We find

that modes of the massless scalar include both the discrete series and a limit of the

complementary series, which is an indecomposable representation of the conformal

group. This work makes contact with recent work by Ashtekar et al. [43, 44] on the

asymptotic boundary conditions in de Sitter spacetime. In particular the discrete

series modes carry vanishing energy, while the indecomposable mode can carry en-

ergy, but changes the conformal structure of the boundary. Both sets of operators

are needed in the CFT to reproduce a complete set of bulk modes.

It is the main goal of the present paper to construct the operator product ex-

pansion in the conformal field theory for operators dual to massive modes in the

bulk. As is usual in conformal field theory, the two and three-point functions of

quasi-primary operators are determined by conformal invariance. However when we

explore the implications of this for the operator product expansion, some surprising

results emerge, including the fact that the expansion involves terms with arbitrar-

ily rapid short distance singularities determined by a seemingly infinite number of

free parameters. This is in constrast to the more ordinary CFTs appearing in the

AdS/CFT correspondence, where the most singular terms in the operator product

expansion are determined by the weights of the operators, and conformal invariance

implies a single parameter determines the full set of descendent couplings via confor-

mal partial waves. This leads us to conclude that such conformal field theories do not

exist in the space of ordinary renormalizable quantum field theories, but rather share
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many of the features of non-renormalizable field theories. For concreteness, many

of our results are stated for three-dimensional de Sitter spacetime. However since

we only use the global conformal group, the results are easily generalized to higher

dimensions.

6.1 Principal and Discrete series representations of

bulk states.

The isometries of 3-dimensional dS form the group SO(1, 3). This spacetime may be

viewed as a hyperboloid embedded in 4-dimensional Minkowski spacetime. The gen-

erators are given by Ji, Ki for i = 1, 2, 3. Ji are the generators of rotation mixing three

spacelike embedding dimensions. Ki are the generators of boost mixing three space-

like dimension with the timelike dimension. There are various Cartan sub-algebras of

SO(1, 3). Depending on which Cartan subgroup we choose, we get a different basis

for the representations. One can choose SO(3) = {Ji} as the Cartan subgroup. Most

papers in 1950-70 by Naimark, Tagirov, Chernikov, Raczka et al[24, 25, 68, 69, 70]

do that. So mode functions were labelled by quantum numbers l,m (Eigenvalue of

{J2, J3} respectively). SO(3) (compact group) has only finite dimensional represen-

tations l = 0, 1
2
, 1, 3

2
, 2, ...,m = −l,−l + 1, ..., l. So range of m is bounded for a given

l.

On the CFT side, states are usually chosen as eigenstates of the SU(1, 1) Car-

tan sub-group. So it is useful to write the bulk generators SO(1, 3) as SUL(1, 1) ⊗

SUR(1, 1). (Just like SL(2, C) ∼= SU(1, 1) ⊗ SU(1, 1).) Combine the generators in

the following way

K1L =
1

2
(−K1 + iJ1) K2L = 1

2
(−K2 + iJ2) JL =

1

2
(J3 + iK3)

K1R =
1

2
(K1 + iJ1) K2R = 1

2
(K2 + iJ2) JR =

1

2
(J3 − iK3) .
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Then

[JL(R), K1L(R)] = iK2L(R)

[JL(R), K2L(R)] = −iK1L(R)

[K1L(R), K2L(R)] = −iJL(R) .

Left and right sectors commute. We can also form the raising and lowering operators

K±L(R) = K1L(R) ± iK2L(R).

[JR, K±R] = ±K±R [JL, K±L] = ±K±L .

Thus {JL(R), K±L(R)} form SUL(R)(1, 1) group.

Now let us discuss unitary irreducible representations of SU(1, 1). States are

labelled by eigenvalues of {CL = J2
L −K2

1L −K2
2L, JL, JR}

CL|h, l〉 = h(h− 1)|h, l〉

JL|h, l〉 = l|h, l〉 .

Irreducible representations split into discrete series and continuous series (principal

and complementary series) [68, 69, 71, 72, 73, 74, 75, 76, 77]. In the discrete series

h = n/2, n ∈ N . l = h, h + 1, ... for positive discrete series D+(lowest weight) and

l = −h,−h − 1, ... for negative discrete series D−(highest weight). For continuous

series h = 1
2
− iρ, 0 < ρ <∞ and l = 0,±1,±2, ... or l = ±1

2
,±3

2
, ... corresponding to

C0
ρ or C1/2

ρ respectively.

Similarly, SUR(1, 1) sector can be constructed. For scalar fields hL = hR = h.
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Casimir of SO(1, 3) is then given by

C = CL + CR

= 2h(h− 1) .

For the discrete series

C = −1

2
n(2− n), n ∈ N .

For the continuous series

C = 2ρ2 − 1

2
, 0 < ρ <∞ .

As we will see, some modes of the massless scalar correspond to the n = 2 discrete

series. There l = ±1,±2, ... for D± respectively.

6.1.1 Action of the generators on the states

Let us write below action of all the generators on the state |h, l, r〉

JR|h, l, r〉 = r|h, l, r〉 (6.1.1)

JL|h, l, r〉 = l|h, l, r〉 (6.1.2)

CL|h, l, r〉 = h (h− 1) |h, l, r〉

CR|h, l, r〉 = h (h− 1) |h, l, r〉

C|h, l, r〉 = (CL + CR) |h, l, r〉 = 2h (h− 1) |h, l, r〉 (6.1.3)

K±L|h, l, r〉 = i (± (h− 1)− l) |jL, l ± 1, r〉 (6.1.4)

K±R|h, l, r〉 = i (∓ (h− 1)− r) |jL, l, r ± 1〉 . (6.1.5)
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Figure 6.1.1: Weight space diagram for principal series. x-y axes are the l, r values.
Solid dots represent states for all l, r ∈ Z. These states have both growing and
decaying modes. K±L shift the states right and left respectively. Similarly K±R shift
the states up and down respectively.

For a scalar field of mass m, 4h (h− 1) = m2 =⇒ h± = 1
2
±
√

1
4
− m2

4
and l(r) =

0,±1,±2, ... or l(r) = ±1
2
,±3

2
, .... The principal series corresponds to m > 1 and the

complementary series corresponds to 1 > m > 0. A component of the massless scalar

behaves like a discrete series with h = 1. Figure 6.1.1 and 6.1.2 show the weight

space diagram for principal series and discrete series. Similar weight space diagrams

for representation in Anti-de Sitter space was given by Dusedau and Freedman[78].

6.1.2 States in coordinate space

Now we know how the generators act on the states. To explore bulk-boundary cor-

respondence, we want to see how the states behave close to the boundary. It is

convenient to transform to a basis of eigenstates in coordinate space.

De Sitter space can be described by the flat slicing coordinates η, z, z̄

ds2 =
1

η2

(
−dη2 + dzdz̄

)
.
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Figure 6.1.2: Weight space diagram for discrete series x-y axes are the l, r values. Solid
dots represent states for all non zero l, r ∈ Z. These states contain only decaying
modes. K±L shift the states right and left respectively. K±L annihilates l = ∓1
states respectively. Similarly K±R shift the states up and down respectively. K±R
annihilates r = ∓1 states respectively.

There are many nice reviews of de-Sitter space [41]. z is complexified spacelike coor-

dinate. η is timelike coordinate. De-Sitter has boundary at future and past infinity

η → 0. Bulk isometry generators are

JL = z∂z +
η

2
∂η , K+L = i (z2∂z + η2∂z̄ + zη∂η) , K−L = −i∂z

JR = −z̄∂z̄ −
η

2
∂η , K−R = −i (z̄2∂z̄ + η2∂z + z̄η∂η) , K+R = i∂z̄ .

Note that if we put η → 0 and η∂η → 2h as we approach the boundary then

JL → −L0 K+L → −iL1 K−L → iL−1

JR → L̄0 K+R → −iL̄−1 K−R → iL̄1

as shown in the appendix. Casimir operator is given by

C = CL + CR .
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Simultaneous eigenstates of JL, JR, C with eigenvalues l, r, m2

4
(m is mass) respec-

tively, form the principal series representation. Solving the differential equations

(6.1.1), (6.1.2) and (6.1.3) we get

φl,r(z, z̄, η) =(z
z̄

) l+r
2
ηl−r

[
A1i

−l−r
(
zz̄

η2

)− l+r
2

2F1

(
1− 2l −

√
1−m2

2
,
1− 2l +

√
1−m2

2
, 1− l − r, zz̄

η2

)
+A2i

l+r

(
zz̄

η2

) l+r
2

2F1

(
1 + 2r −

√
1−m2

2
,
1 + 2r +

√
1−m2

2
, 1 + l + r,

zz̄

η2

)]
(6.1.6)

Near the boundary (η → 0) it behaves like

φl,r(z, z̄, η → 0) =
(z
z̄

) l+r
2
ηl−r

[
A1i

−l−r
(
zz̄

η2

)− l+r
2

(
a1

(
η2

zz̄

)−l+h−
+ a2

(
η2

zz̄

)−l+h+)

+A2i
l+r

(
zz̄

η2

) l+r
2

(
a1

(
η2

zz̄

)r+h−
+ a2

(
η2

zz̄

)r+h+)]
= b−η

2h−

(
1

zh−−lz̄h−+r

)
+ b+η

2h+

(
1

zh+−lz̄h++r

)
= b−η

2h−Ol,r,h−(z, z̄) + b+η
2h+Ol,r,h+(z, z̄)

where b± are some constants and h± = 1±
√

1−m2

2
. Here −∞ ≤ l, r ≤ ∞. Another

important thing to note is that φl,r ∼ zlz̄r (power law).

φl,r(z, z̄, η → 0) =

(
b−

(
η2

zz̄

)h−
+ b+

(
η2

zz̄

)h+)
zlz̄−r .

For principal series h−, h+ are complex conjugate of each other. So the modes

oscillate close to the boundary. For complementary series h− < 0 < h+ and real.

So half of the modes grow
(
η2h−

)
and other half of the modes decay

(
η2h+

)
near the

boundary. They are respectively called growing and decaying mode.
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6.2 Massless scalar field

Now we are going to look into the massless case. There are two ways that represen-

tations contribute to the massless scalar.

6.2.1 Limit of complementary series

One is the m→ 0 limit of equation (6.1.6). This is the limit of complementary series

representation.

φl,r(z, z̄, η) =
(z
z̄

) l+r
2
ηl−r

[
A1i

−l−r
(
zz̄

η2

)− l+r
2

2F1

(
−l, 1− l, 1− l − r, zz̄

η2

)
+A2i

l+r

(
zz̄

η2

) l+r
2

2F1

(
r, 1 + r, 1 + l + r,

zz̄

η2

)]
. (6.2.1)

Close to the boundary it goes like

φl,r(z, z̄, η → 0) =

(
b− + b+

η2

zz̄

)
zlz̄−r .

Note that, it has both the decaying mode and the constant mode.

6.2.2 Discrete series

Second is the Discrete series representation. There are two ways of deriving discrete

series. Let us first see how it is derived in earlier math papers [68, 25, 24]. First

find the eigenstates of �|l,m〉 = −m2|l,m〉 in the |l,m〉 basis (eigenstate of {J2, J3}).

� is second order differential equation and we get two independent solutions. Then

choose only the decaying modes. This removes half of the solutions. This condition

results in discrete eigenvalues (−m2) of �. Hence the representation is called Discrete

series. Note that this is in agreement with the previous section where we said that

for massless discrete series h = 1.
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Now let us derive the discrete series in another way. Diagonalize the Hilbert space

in the eigenstates of JL, JR. In addition to equations (6.1.1), (6.1.2) and (6.1.3)(with

h = 1) states have to satisfy equations

CL|1, l, r〉 = 0

CR|1, l, r〉 = 0

K±L|1,∓1, r〉 = 0 (6.2.2)

K±R|1, l,∓1〉 = 0 . (6.2.3)

There are four sectors as shown in figure 6.1.2. DmLmR where l(r) = −1 is the

lowest weight and l(r) = 1 is the highest weight state. Thus(6.2.2) and (6.2.3). In

this basis, highest and lowest weight states are manifest. This is over-constrained set

of equations. Equation (6.2.2) and (6.2.3) are first order differential equation which

has only one solution. As a result, half of the general solution of equation (6.1.3)

is removed. We find that eigenstates decay near boundary. To see this consider the

following states

φD−1,r(z, z̄, η) = A

(
z

η

)r−1(
zz̄

η
− η
)−1−r

φD1,r(z, z̄, η) = Az̄−
r+1
2 η2

φDl,1(z, z̄, η) = A

(
z̄

η

)−l−1(
zz̄

η
− η
)−1+l

φDl,−1(z, z̄, η) = Az
l−1
2 η2 .

Note that close to boundary all the above solutions go like η2. All other states can

be obtained by acting with K±L, K±R. Since K±L, K±R do not decrease the power

of η, all the states will have same η dependence. Hence all the modes of the discrete

series decay near the boundary. This also shows that h = 1. This suggests that these

states are a linear combination of states found in the previous approach.
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So either imposing regularity of the modes in the |m, l〉 basis is equivalent to

requiring the existence of a highest weight state in |1, l, r〉 basis. It removes the half

of the modes which stay constant near the boundary. On the other hand, the limit

of the complementary series has both growing and decaying modes.

6.2.3 Discrete series cannot carry energy in dS.

Now that we have understood discrete series and limit of complementary series in

more detail, what are the physical consequences? Does graviton belong to discrete

series or complementary series? Ashtekar et al., in a series of papers [43, 44], has

shown that gravity waves in de-Sitter cannot carry energy if the constant modes of

the gravitons are removed. In light of this,

1. If the gravitons are described by discrete series then the constant modes are

absent. Then gravity waves cannot carry energy.

2. If we want graviton modes to carry energy and a complete set of modes, the

gravitons must contain modes from the limit of complementary series.

6.2.4 Indecomposiblity of limit of complementary series

In this section we will show that limit of complementary series is indecomposible.

A representation is indecomposible[79] if it cannot be separated into two or more

irreducible representations. We have already shown that decaying modes form the

irreducible discrete series representation. Then the question is: Does the remaining

constant mode also form irreducible representation?

To establish this we show that constant modes turn into decaying modes under
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the action of generators. Schematically,

K|decay〉 → |decay〉

K|constant〉ml 6=0 → |constant〉

K|constant〉ml=0 → |decay〉

where K is some ladder operator. Equation (6.2.1) is the general solution of the

massless scalar field. Schematically the two independent solutions are

φl,r(z, z̄, η → 0) =

(
b− + b+

η2

zz̄

)
zlz̄−r

=

(
b−|constant〉+ b+

|decay〉
zz̄

)
zlz̄−r

|decay〉η→0 = η2

|constant〉η→0 = 1

where b−, b+ are some constants. |decay〉 modes form the irreducible discrete series.

They are either highest or lowest weight representations. This we have discussed in

previous section.

To understand the issue let us see the general | − 1, l = 0, r〉 mode

φ0,r(z, z̄, η) =
(z
z̄

) r
2
η−r
[
A1i

−r
(
zz̄

η2

)− r
2

2F1

(
0, 1, 1− r, zz̄

η2

)
+A2i

r

(
zz̄

η2

) r
2

2F1

(
r, 1 + r, 1 + r,

zz̄

η2

)]
= A1i

−rz̄−r + A2i
r

(
z

η2

)r (
1− zz̄

η2

)−r
.
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Figure 6.2.1: Weight space diagram for limit of complementary series. x-y axes are
the l, r values. Solid dots represent states for all non-zero l, r ∈ Z. These states have
both constant and decaying modes. Empty dots for l = 0 or r = 0 represent states
which have only constant modes. K±L shift the states right and left respectively.K±L
acting on constant modes of l = 0 states, convert them to decaying modes. Similarly
K±R shift the states up and down respectively. K±R acting on constant modes of
r = 0 states, convert them to decaying modes.

We see that there is only a constant part. Now let us apply K−L, K+L

K−L|0, r〉 = A2ri
−1+rz−1+rη2r

(
1− zz̄

η2

)−r−1

= | − 1, r〉decay

K+L|0, r〉 = A1ri
−1−rz̄−1−rη2 = |1, r〉decay .

Thus we get only the decaying modes. This shows that the growing modes convert

into decaying modes and proves that limit of complementary series is indecomposible

representation. Figure 6.2.1 gives the weight space diagram for the limit of comple-

mentary series to illustrate this point.
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6.3 Transformation from conformal basis to momen-

tum basis

In this section we derive the transformation from a momentum basis (eigenstate of

L−1 operator) to the l, r basis (eigenstates of L0, L̄0 operator with eigenvalue l, r re-

spectively. ). One reason to do it is that the scalar field in the bulk is generally

written in momentum basis but boundary operators are generally expressed in l, r

basis. Subsection (6.3.1) gives in detail the calculations for principal series. In sub-

section (6.3.2) we summarize the main results and compare the differences between

the two representations.

6.3.1 Principal series

Momentum basis are eigenstates of L−1 = −∂z, L̄−1 = −∂z̄. l, r basis are eigenstate

of L0 = − (z∂z + h) , L̄0 = −
(
z̄∂z̄ + h̄

)
respectively. We want to find the coefficients

ck,l,r of the relation

|k, k̄〉 =
∑

ck,l,r|l, r〉 (6.3.1)

Our approach is similar to what Lindbad et al do in section (4A) of [71]. From

commutation relation [Ln, φl] = ((h− 1)n− l)φn+l we get

L0|l, r〉 = −l|l, r〉 (6.3.2)

L1|l, r〉 = (h− 1− l) |l + 1, r〉 (6.3.3)

L−1|l, r〉 = (1− h− l) |l − 1, r〉 (6.3.4)

L−1|k, k̄〉 =

(
ik̄

2

)
|k, k̄〉 . (6.3.5)
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To find ck,l,r we act with L−1 on both the side of equation (6.3.1)

L−1|k, k̄〉 =
∑

ck,l,rL−1|l, r〉(
ik̄

2

)
〈l′, r′|k, k̄〉 =

∑
ck,l,r(−l + 1− h)〈l′, r′|l − 1, r〉(

ik̄

2

)
ck,l′,r′ = ck,l′+1,r′(−l′ − h) .

Solving the recurrence relation we get

ck,l,r = ck,l−1,r

(
−ik̄

2

)
1

(h+ l − 1)

ck,l,r =

(
−ik̄

2

)l
h!

(h+ l − 1)!
ck,0,r

=

(
−ik̄

2

)l
Γ(h+ 1)

Γ(h+ l)
ck,0,r

=

(
−ik̄

2

)l
sin πh

π
(−1)lΓ(h+ 1)Γ(1− h− l)ck,0,r .

Similarly one can derive ck,0,r by the action of L̄−1. Finally one gets

ck,l,r =

(
ik

2

)r (
ik̄

2

)l(
sinπh

π

)2

Γ(h+ 1)2Γ(1− h− l)Γ(1− h− r)ck,0,0 .

We choose normalization ck,0,0 = π2

(sinπh)2(−2i)2h+1Γ(h+1)2|ik/2| . Plugging this back

into equation (6.3.1) we get

|k, k̄〉 =
∑(

ik

2

)r−1/2(
ik̄

2

)l−1/2

(−2i)−2h−1Γ(1− h− l)Γ(1− h− r)|l, r〉

(6.3.6)
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We can now invert equation (6.3.6).

|l, r〉 =
1

(2πi)2

∮
dkdk̄

(
ik

2

)−r−1/2(
ik̄

2

)−l−1/2
(−2)2h+1

Γ(1− h− l)Γ(1− h− r)
|k, k̄〉

(6.3.7)

One can check that this is consistent with equation (6.3.6). To see that start with

the RHS of the above equation, substitute |k, k̄〉 from equation (6.3.6) and we get the

LHS of above equation

1

(2πi)2

∮
dkdk̄

(
ik

2

)−r′−1/2(
ik̄

2

)−l′−1/2
(−2i)2h−1

Γ(1− h− l′)Γ(1− h− r′)
|k, k̄〉

=
∑
l.r

1

(2πi)2

∮
dkdk̄

(
ik

2

)−r′+r−1(
ik̄

2

)−l′+l−1 −Γ(1− h− l)Γ(1− h− r)
4Γ(1− h− l′)Γ(1− h− r′)

|l, r〉

=
∑
l.r

δll′δrr′
Γ(1− h− l)Γ(1− h− r)
Γ(1− h− l′)Γ(1− h− r′)

|l, r〉

= |l′, r′〉 .

Now we know the basis transformations each way |k, k̄〉 ↔ |l, r〉, we can write this

as a boundary operator/state correspondence as follows

O(z, z̄)|0〉 = |z, z̄〉 =
∑
l,r

1

zh+lz̄h+r
|l, r〉

O(z, z̄)|0〉 = |z, z̄〉 =

∮
dkdk̄

(2πi)2
e
i
2(kz̄+k̄z)|k|2h−1|k, k̄〉 .

So RHS of the above two equations must be equal. That is

∑
l,r

1

zh+rz̄h+l
|l, r〉 =

∮
dkdk̄

(2πi)2
e
i
2(kz̄+k̄z)|k|2h−1|k, k̄〉 . (6.3.8)
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To verify that, substitute |l, r〉 from equation (6.3.7) in LHS to get the RHS.

|z, z̄〉 =
∑
l,r

1

zh+lz̄h+r
|l, r〉

=
1

(2πi)2

∮
dkdk̄

∑
l,r

(
ikz̄

2

)−r−1/2(
ik̄z

2

)−l−1/2
(−2i)2h−1

Γ(1− h− l)Γ(1− h− r)
|k, k̄〉

=
1

(2πi)2

∮
dkdk̄|k|2h−1

(∑
l,r

(
ikz̄

2

)−h−r (
ik̄z

2

)−h−l
1

Γ(1− h− l)Γ(1− h− r)

)
|k, k̄〉

=
1

(2πi)2

∮
dkdk̄|k|2h−1e

i
2(kz̄+k̄z)|k, k̄〉 .

Here we have used the identity

ez =
∑
n∈Z

zh+n

Γ(h+ n+ 1)
.

When h is integer, 1
Γ(h+n+1)

= 0 for n < −h. Thus

ez =
∑
n≥−h

zh+n

Γ(h+ n+ 1)

=
∑
m≥0

zm

Γ(m+ 1)

coincides with the usual definition of exponential function. When h is non integer,

negative powers of z appear in the sum. Each such term diverges at the the origin

but the sum is finite.

6.3.2 Summary

The boundary operator/state correspondence is

O(z, z̄)|0〉 =


∑

l,r≤0
1

zlz̄r
|l − h, r − h〉 HighestWeight∑

l,r
1

zh+lz̄h+r
|l, r〉 Principal Series
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Transforming to the momentum basis we get

O(z, z̄)|0〉 =
1

(2πi)2

∮
dkdk̄|k|2h−1e

i
2(kz̄+k̄z)|k, k̄〉 .

We can also transform back. As we have already stated in subsection (6.3.1), the key

identity is

ez =
∑
n∈Z

zh+n

Γ(h+ n+ 1)
=
∑
m≥0

zm

Γ(m+ 1)

where h is integer.

In the momentum basis, the expansion

O(z, z̄)|0〉 =

∮
dkdk̄

(2πi)2
e
i
2(kz̄+k̄z)|k|2h−1|k, k̄〉

takes the same form for both the highest weight and principal series representation. So

any two or three-point correlation function in the momentum or position basis is going

to have the same scaling form for principal series and highest weight representation

since the form is fixed by conformal symmetry. For example,

〈O(z)O(w)〉principal-series =
1

(z − w)2h

〈O(z)O(w)〉highest-weight =
1

(z − w)2h

where h is the weight of operator. It is real for highest weight rep but complex for

principal series. Now consider the following 2-point function 〈
∮
wk+hφ(w)

∮
zkφ(z)〉

(h is the weight of the operator). For highest weight representation

〈
∮
wk+hφH(w)

∮
zkφH(z)〉 = 0 (for k ∈ Z+)
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because
∮
zkφH(z)|0〉 = 0 for k ∈ Z+.

For principal series representation it gives

〈
∮
wk+hφNH(w)

∮
zkφNH(z)〉

= 〈
∑

−∞<m<∞

∮
wk−mdwφm

∑
−∞<n<∞

∮
zk−n−hdzφn〉

= 〈φk+1

∑
−∞<n<∞

rk−n−h+1
(
e2πi(k−n−h+1) − 1

)
i(k − n− h+ 1)

φn〉

=
i
(
e−2πhi − 1

)
hrh

where r is the radius of the circular loop around the origin. So we have constructed an

observable which vanishes for highest weight CFT but does not vanish for non-highest

weight CFT.

Another way to distinguish them is to compute the correlation function in l, r

basis

〈(L0O(l, r)) (L0O(l, r))〉principal-series = 〈l, r|L†0L0|l.r〉 = l2

〈(L0O(l, r)) (L0O(l, r))〉highest-weight = 〈l − h, r − h|L†0L0|l − h.r − h〉 = (l − h)2 .

For principal series, we get integer squared and is independent of the weight. Whereas

for highest weight, it is non-integer and depends on the weight of the operator.

6.4 OPE of principal series operators

In this section we derive operator product expansion (OPE) for the principal series.

First we will review the calculation for highest weight CFT from [80]. Then we will

extend the derivation for principal series with suitable modification.
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6.4.1 Highest weight OPE

Start with an ansatz

O1(z)O2(0) =
∑
k≥0

βkz
∆3−∆1−∆2+k

(
∂

∂ζ

)k
O3(ζ)|ζ→0 . (6.4.1)

Then using symmetry we can determine the coefficients. Commute left side with L1.

Using the relation

[L1, O∆(z)] =

[
z2 ∂

∂z
+ 2∆z

]
O∆(z)

we get

[L1, O1(z)O2(0)] =

[
z2 ∂

∂z
+ 2∆1z

]
O1(z)O2(0) .

Substituting the ansatz from equation (6.4.1) in the right side we get

[L1, O1(z)O2(0)] =
∑
k≥0

βkz
∆3−∆1−∆2+k+1 (∆3 + ∆1 −∆2 + k)

(
∂

∂ζ

)k
O(ζ)|ζ→0

(6.4.2)

Now commuting L1 with the right side of equation (6.4.1) we get

∑
k≥0

βkz
∆3−∆1−∆2+k

(
∂

∂ζ

)k
[L1, O(ζ)] |ζ→0 =

∑
k≥0

βkz
∆3−∆1−∆2+k

(
∂

∂ζ

)k (
ζ2 ∂

∂ζ
+ 2ζ∆3

)
O(ζ)|ζ→0 (6.4.3)

We can now match the coefficient of power series of equations (6.4.2) and (6.4.3).

Let us set ∆1 = ∆2 for simplicity. As an example, let us match the coefficient of
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z∆3−∆1−∆2+1

β0
Γ (∆3 + ∆1 −∆2 + 1)

Γ (∆3 + ∆1 −∆2)
O(ζ)|ζ→0 = β1

(
∂

∂ζ

)(
ζ2 ∂

∂ζ
+ 2ζ∆3

)
O(ζ)|ζ→0

β0∆3O(ζ)|ζ→0 = β1

(
2∆3 + 2ζ

∂

∂ζ
+ ζ2

(
∂

∂ζ

)2
)
O(ζ)|ζ→0

(6.4.4)

For highest weight O(ζ)|ζ→0 is finite and ζ ∂
∂ζ
O(ζ)|ζ→0 = 0. Thus we get

β1 =
β0

2
.

Similarly matching all the terms, we get

O1(z)O2(0) = β123

∑
z∆3−2∆1

1F1

(
∆3, 2∆3, z

∂

∂ζ

)
O3(ζ)|ζ→0 . (6.4.5)

The above equality can also be derived, starting from the 3 point function

〈O(z1)O(z2 → 0)O(z3)〉 = β123
zh1 (z3−z1)hzh3

= β123z
−h
1

(
1 + h

z1

z3

+ ...

)
1

z2h
3

.(6.4.6)

6.4.2 Principal series

For the principal series the OPE will take the form

O1(z)O2(0) =
∑

k>0 β−kz
∆3−∆1−∆2−k (L1)k O3(ζ)|ζ→0+

∑
k≥0

βkz
∆3−∆1−∆2+k (L−1)k O3(ζ)|ζ→0

(6.4.7)

Here we have also added terms with L1O because for principal series L1O 6= 0 in

general. Again we commute with L1 to determine βk. Commuting the left side of
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equation (6.4.7) we get

[L1, O1(z)O2(0)] =∑
k>0

βkz
∆3−∆1−∆2+k

(
z (∆3 + ∆1 −∆2 + k) (L−1)k +

(
ζ2 ∂

∂ζ
+ 2∆2ζ

)
(L−1)k

)
O(ζ) .

Commuting the right side of equation (6.4.7) we get

[L1, O1(z)O2(0)] =
∑
k>0

βkz
∆3−∆1−∆2+k

[
L1, (L−1)k O(ζ)

]
.

Equating the above two equations gives

βk+1

(
Lk+1
−1

(
ζ2 ∂

∂ζ
+ 2∆3ζ

)
−
(
ζ2 ∂

∂ζ
+ 2∆2ζ

)
(L−1)k+1

)
O(ζ)

= βk (∆3 + ∆1 −∆2 + k) (L−1)k O(ζ) . (6.4.8)

Similarly, to determine β−k we can commute both sides with L−1

[L−1, O1(z)O2(0)] =
∑
k>0

β−kz
∆3−∆1−∆2−k−1

(
(∆3 −∆1 −∆2 − k) (L1)k + z (L1)k L−1

)
O(ζ) .

Commuting the right side of equation (6.4.7) we get

[L−1, O1(z)O2(0)] =
∑
k<0

β−kz
∆3−∆1−∆2−k

[
L−1, (L1)k O(ζ)

]
.

Equating the two sides we get

β−k−1

[
L−1, L

k+1
1

]
O(ζ)|ζ→0 = β−k (∆3 −∆1 −∆2 − k) (L1)k O(ζ) . (6.4.9)
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Simplifying equation (6.4.8) gives

βk+1

(
2 (k + 1 + ∆3 −∆2) ζ

(
∂

∂ζ

)k+1

+ (k + 1) (k + 2∆3)

(
∂

∂ζ

)k)
O(ζ)

= βk (∆3 + ∆1 −∆2 + k)

(
∂

∂ζ

)k
O(ζ) . (6.4.10)

An important thing to note is that recursion relations explicitly depend on O(ζ).

Now we substitute the expansion

O3(ζ) =
∑
j

O3j

ζh+j

and compare the coefficient of same power of ζ, we get

βk+1 = βk
(∆3 + ∆1 −∆2 + k)

(2 (k + 1 + ∆3 −∆2) (−h− j − k) + (k + 1) (k + 2∆3))
.

We find that βk depends on j. This suggests that we must start with an OPE of the

form

O1(z)O2(ζ) =
∑
j

(∑
k>0

β−k,jz
∆3−∆1−∆2−k (L1)k

O3j

ζj
+
∑
k>0

βk,jz
∆3−∆1−∆2+k (L−1)k

O3j

ζj

)
(6.4.11)

Then going through the above derivation we get

βk+1,j = −βk,j
(∆3 + ∆1 −∆2 + k)

(k −K+) (k −K−)

β−k−1,j = β−k,j
(∆3 −∆1 −∆2 − k)

(k + 2∆3 + 2j + 2h)(k + 1)
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where

K± =
1

2

(
1 + 2 (∆2 − j − h)±

√
(1 + ∆2)2 + 4 (2∆3 − j − h) (1− j − h)

)
.

Calculations are shown in the appendix.

Then equation (6.4.11) can be written in terms of hypergeometric functions

O1(z)O2(ζ) =∑
j

z∆3−∆1−∆2β0,j

(
1F1

(
∆1 + ∆2 −∆3; 2∆3 + 2j + 2h;−1

z

(
ζ2 ∂

∂ζ
+ 2∆3ζ

))
O3j

ζh+j

+ 2F2

(
∆3 + ∆1 −∆2, 1;K+, K−;−z ∂

∂ζ

)
O3j

ζh+j

)
.

This is the conformal partial wave expansion for the principal series.

Using equation (6.3.8), we can show that above equation is equivalent to three

point function

〈O(z1)O(z2 → 0)O(z3)〉 =
β123

zh1 (z3 − z1)h zh3

given β0,j = β123.

The main conclusion is that there are infinitely many singular terms coming from

terms like Lk1O in the OPE. The OPE therefore has an essential singularity, unlike

any known conformal field theory that may be viewed as arising from a renormaliz-

able field theory. This puts the set of interacting conformal field theories based on

representations containing the principal series well outside the class of conventional

quantum field theories. The OPE also depends on an infinite number of parameters

that are free at this level of analysis, compared to the single parameter one normally

encounters in CFT. If these CFTs of relevance for de Sitter space exist, it seems

they have more in common with non-renormalizable theories, than with conventional
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CFTs.

Finally we note all the conclusions of the present section carry over to the com-

plementary series, provided we take h in the appropriate range 1 > h > 1/2.

6.5 Conclusion

de-Sitter holography implies that bulk and boundary states should be in principal,

complementary, discrete series and indecomposible representations. Some of the de-

tails of these representations were studied from the conformal field theory perspec-

tive. In particular, we analyzed the implications of global conformal invariance for

the operator product expansion. Because the weights of the principal and comple-

mentary series are unbounded, there end up being infinitely many singular terms

in the operator product expansion. Nevertheless, this is compatible with the usual

simplifications of the two and three-point functions of quasi-primary operators. The

essential singularity present in these operator product expansions is not reproducible

from conventional quantum field theories.
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Chapter 7

BMS symmetry, soft particles and

memory

One of the first breakthroughs in laying the foundation for an understanding of holog-

raphy in Minkowski space was the work of Bondi-Metzner-Sachs [81, 82]. It revealed

that asymptotic symmetry group of Minkowski space is a group of large diffeomor-

phisms called the BMS group. Representations of the Poincare group [83] have played

an important role in classifying elementary particles by their mass and spin. That

motivates understanding the representations of the BMS group and its connection

to elementary particles. In the 1970s McCarthy studied the positive energy unitary

irreducible representations of BMS group [84, 85, 86, 87, 88, 89]. But after this initial

work, the subject has received little attention. The physical interpretation of the

representations was not entirely clear at the time. In this work, we study from a

physical viewpoint most of the interesting representations with the aim of identifying

the interesting representations needed to construct a holographic dual. These include

massive and massless particles and also soft particles with vanishing four-momentum.

We find that in addition to zero momentum limit of massless particles there are many

new soft modes predicted by BMS group which are related to gravitational memory
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[90, 91].

Recently, Strominger et. al. have discovered a relation between the BMS group,

soft theorems and the memory effect [92, 93, 94]. They related supertranslations to

memory effect [94] which led them to propose that black hole carries soft hair [95].

In this work we show that supertranslation charges indeed retain information about

the initial states via a straightforward group theory construction. We consider a case

where two particles collide and move away in different directions. Conservation of

momenta (including supermomenta) reveals that final state has information about

soft particles that stores information about the initial state. Another interesting

discussion of the memory effect in electromagnetism appears in [96, 97].

The BMS charge algebra has been studied in [98, 99, 100, 101] and BMS represen-

tations in three dimensions have been explored in the following papers [102, 103, 104,

105]. Relation of BMS group to soft theorems has also been explored [106]. Other

recent papers on the BMS group include a realization [107, 108] on a scalar field, and

more generally relation between the BMS group and elementary particles[109]. The

connection between BMS group and non-relativistic conformal group, also known as

Galilean group [110, 111, 112, 113] has also been explored. The BMS group has also

been realized as a conformal extension of the Carroll group [114, 115]. Interestingly,

contrary to most of the literature Bousso and Porrati argue that soft modes do not

constrain hard scattering problem [116, 117].

In the present work we begin by reviewing the BMS group and establishing nota-

tion. We then revisit some of the most relevant results from McCarthy’s classification

of unitary irreducible representations of the BMS group and connect the Bondi mass

aspect to the function space on which BMS is realized. We try to highlight only the

physically important representations and find all the massive and massless represen-

tations that appear in the usual Wigner classification of the Poincare group, as well

as extra representations with differing supermomenta structures. The group invari-
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ant norms associated with these families of representations are constructed, which is

an essential step in any attempt at capturing the bulk dynamics via a holographic

description. We then consider tensor products/scattering of these states which allows

us to explore the extent to which gravitational memory allows the initial state to be

reconstructed from a final state. We conclude with some comments on the relevance

of the results to general gravitational S-matrix theories in asymptotically flat space-

time such as string theory, and the prospects for developing holographic models with

BMS as a fundamental symmetry group.

7.1 Representations of the BMS group

Asymptotic flatness requires that the Weyl tensor of the metric must fall off like

O (r−3) for large r [82] (for a recent review see [118]) which allows the choice of the

following asymptotically flat coordinates at leading order at large r

ds2 = −du2 − 2dudr + 2r2γzz̄dzdz̄ + 2
mB(u, z, z̄)

r
du2 + rCzzdz

2

+DzCzzdudz̄ + c.c+ ... (7.1.1)

The function mB(u, z, z̄) is called the Bondi mass aspect and the other coefficients

are functions only of u, z and z̄. The covariant derivative Dz is defined with respect

to the metric on the unit sphere γzz̄ = 2
(1+zz̄)2

. In the next subsection we give a

brief introduction of the BMS group. Then we show that the invariant mass function

introduced in [87] and the Bondi mass aspect are to be identified.

In this section, we will do warm up exercise to understand McCarthy’s construc-

tion, focussing on his first paper. We summarize his paper mostly reproducing im-

potant calculations and conclusions. The reason we elaborate his earlier method is

because it gives a nice playground to showcase some of the salient features of repre-

sentations of BMS group.
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The group of diffeomorphisms which preserve the form of the metric (7.1.1) is

called the BMS group. It is given by

B = AnG

where G = SL(2,C) and A is the abelian group of pointwise addition of square

integrable functions on a 2-sphere [89]. Scalar product into A is defined by

〈α, β〉 =

∫
S2

α(x)β(x)dµ(x)

where dµ = 1
4π

sin θdθdφ = 1
2πi

dzdz̄
(1+|z|2)2

is the usual area measure on S2. This

gives Hilbert space structure to A which is an Abelian topological group. Then one

defines a semi-direct product between A and group G of 2X2 complex matrices of

unit determinants.

B = AnG

Elements

 α β

γ δ

 of G act on elements of A in the following way

T (g)α(z, z̄) = Kg(z, z̄)α(zg, z̄g) (7.1.2)

where z is the complex coordinate on S2 and

zg =
az + c

cz + d

Kg(z, z̄) =
|az + c|2 + |bz + d|2

1 + |z|2
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α(z, z̄) being functions on sphere can be expanded in terms of spherical harmonics

α(θ, φ) =
∞∑
l=0

l∑
m=−l

αlmPlm(θ, φ)

Now A can be written as direct sum of subspaces V and Σ called translation and

super-translation respectively

A ≈ V ⊕ Σ

V : v(θ, φ) =
1∑
l=0

l∑
m=−l

αlmPlm(θ, φ) = a0 + a1 sin θ cosφ+ a2 sin θ sinφ+ a3 cos θ

Σ : σ(θ, φ) =
∞∑
l=2

l∑
m=−l

αlmPlm(θ, φ)

Similarly one defines the dual group A′ of A consisting of square integrable func-

tion φ(θ, φ) defined on sphere S2. They can also be expanded in terms of spherical

harmonics

φ(θ, φ) =
∞∑
l=0

l∑
m=−l

plmPlm(θ, φ)

It can also be written as a direct sum of subspace V 0 and Σ0 called momentum

and super-momenta respectively.

φ(θ, φ) = p0 + p1 sin θ cosφ+ p2 sin θ sinφ+ p3 cos θ +
∞∑
l=2

l∑
m=−l

plmPlm(θ, φ)

A′ ≈ V 0 ⊕ Σ0

Using equation (7.1.2) we will determine the action of Lorentz generators on

φ(θ, φ). Consider

〈gφ, α〉 =

∫
φ(z, z̄)(g−1α)(z, z̄)dµ(z, z̄) =

∫
φ(z, z̄)Kg−1(z, z̄)α(zg−1, ¯zg−1)dµ(z, z̄)
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Using the formula

dµ(z, z̄) = K2
g (z, z̄)dµ(zg, z̄g)

we get

〈gφ, α〉 =

∫
K−3
g (z, z̄)φ(zg, z̄g)α(z, z̄)dµ(z, z̄)

This gives

gφ(z, z̄) = K−3
g (z, z̄)φ(zg, z̄g)

Now we are ready to discuss little groups of BMS group. If we recollect Wigner’s

work on representations of Poincare group basically has three steps. First, find out

all the possible orbits inside Poincare group. In Poincare group, orbits are completely

classified p.p = m2, p0 and spin, where m is the mass and p0 is the energy. Once

the orbits are classified, next find the corresponding little groups. Third and final

step is to find all the irreducible representations of the little group. Representations

of BMS group also has three steps but they are slightly in different order. The

reason for this difference is that finding orbits of A′, which is infinite dimensional, is

very difficult. Orbits are homogenous spaces of G and we have shown in subsection

4.3.4 that homogeneous spaces can be identified with the coset spaces of the group

under certain conditions [119]. These conditions are satisfied in these cases. If M

is a homogenous space of G and point p ∈ M is fixed under the motion of largest

subgroup Gp. Then there is one-one mapping between M and G/Gp. Conversely if

L is a subgroup of G, then G/L is a homogenous space of G under the usual action

of G on cosets. So the homogenous spaces of G can be classified by finding the non-

conjugate subgroups of G. This gives the following prescription to find the orbits and
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little group:

1. Determine all non-conjugate subgroups L ⊂ G .

2. For each subgroup L ⊂ G, find the orbit φ ∈ A′ invariant under L. We will call

φ invariant function.

3. Identify L with the little group of φ associated with the orbit Gφ ≈ G/L.

As one notices, we find sub-group first and then its orbit, unlike Poincare case where

we find orbits first and then its little groups. Apart from that all the steps are similar.

All the connected subgroups of G are already found by Shaw 1970 [120]. So the first

step is already done. Now we move to the second step. Not all the subgroups will

have non-trivial invariant function. Our goal is to find those connected subgroups

which have non-trivial invariant function and the corresponding invariant function.

We will show that any subgroup which has the boost generator M03 = σ3
2

= 1/2 0

0 −1/2

 (this is boost along z-axis) cannot have non-trivial invariant function.

Corresponding finite generator is

gt =

 et/2 0

0 e−t/2


Its action on φ is given by equation (7.1.2). Invariance condition is

φ(z, z̄) = gtφ(z, z̄) =

(
e−t + et|z|2

1 + |z|2

)−3

φ(etz, etz̄)
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Redefining z = es+iψ and substituting t = −s we get

φ(s, ψ) =

(
es + es

1 + e2s

)−3

φ(eiψ, e−iψ)

=⇒ φ(s, ψ) = cosh3 sφ(0, ψ)

= cosh3 sξ(ψ)

where ξ(ψ) is any function. Integration measure is given by

dµ(s, ψ) =
1

(e−s + es)2dsdψ

Only square integrable functions are admissible in A. But we find that

∫
φ2dµ =

∫ ∞
0

∫ 2π

0

cosh3 sξ(ψ)
1

(e−s + es)2dsdψ

diverges for non-zero ξ(ψ). Thus φ(s, ψ) = cosh3 sξ(ψ) does not belong to A. Similar

calculation shows that any subgroup with any of the boost generators cannot have

non-trivial invariant function.

Now let us check for rotation generator. Consider generator of rotation along z

axis M12.

gt =

 eit/2 0

0 e−it/2


For φ(z, z̄) to be fixed under M12 it has to satisfy condition

φ(z, z̄) = gtφ(z, z̄) = φ(eitz, e−itz̄)
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Using the polar coordinates z = reit the above condition gives

φ(r, t) = φ(r, 2t)

=⇒ φ(r, t) = φ(r, 0) ≡ ξ(r)

Integration measure is given by

dµ =
rdrdt

(1 + r2)2

Clearly there are many nontrivial functions ξ(r) which are square integrable

∫
ξ2(r)

rdrdt

(1 + r2)2 < ∞

Thus we conclude that sub-groups consisting of generators of rotation but not of

boost have non-trivial invariant function. There are three such connected sub-groups

1. Z2. Invariant function φ(z, z̄). Coset space G/Z2.

2. Γ = {M12}. Invariant function φ(|z|). Coset space G/Γ.

3. SU(2) = {M12,M23,M31}. Invariant function φ = K(constant). Coset space

G/SU(2).

One can see that the above invariant function crucially depends on what topology we

impose on A. Here we chose square integrable functions. One of the important little

groups that is missing is ∆, the little group of massless particles. In the next section

we will see that weakening the topology to Nuclear topology allows one to have more

general non-trivial invariant functions. This will then include ∆ and many other little

groups.

119



7.2 BMS group in Nuclear topology

As mentioned at the end of precious section, square integrable functions on sphere is

not the best choice. From this section on-wards we follow the definition of [87] and

take these to be C∞ which implies that the representation of G on A is equivalent to

the operator representation of G on the space D(2,2) [18]. This is known as Nuclear

topology.

The space D(2,2) consists of pair of functions ξ(z) and ξ̂(z) on the complex plane,

which may be thought of as functions on patches centered at the north and south

poles of the sphere respectively. These functions are C∞ everywhere except at the

origin and are related by the overlap condition

ξ̂(z) = |z|2ξ(z−1)

The action of SL(2,C) element

 α β

γ δ

 is given by

gξ(z) = |α + γz|2ξ
(
β + δz

α + γz

)
(7.2.1)

gξ̂(z) = |β + δz|2ξ̂
(
α + γz

β + δz

)

We see that it is more appropriate to view the functions as quasi primary fields.

We will be mostly interested in the dual space of A. As we will see this corresponds

most directly to the class of functions mB(u, z, z̄) that appear for some fixed value

of u. The dual space corresponds to the space D(−2,−2) in the notation of [18] and,

as we will see, is a space of distributions with a class of allowed singularities. It is

specified again by a pair of functions satisfying the matching condition

φ̂(z) = |z|−6φ(z−1) (7.2.2)
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The action of G is given by

gφ(z) = |α + γz|−6φ

(
β + δz

α + γz

)
(7.2.3)

gφ̂(z) = |β + δz|−6φ̂

(
α + γz

β + δz

)

Representations of BMS group are labelled by infinite number of charges called super-

momenta in addition to four-momenta. Together they are denoted by (p00, p11, p1−1, p10, {plm}).

We will call this generalized momentum or just momenta. Four-momenta are related

by (E = p00, px + ipy = p11, px − ipy = p1−1, pz = p10). One can read off plm from the

function φ(θ, φ) by expanding in terms of spherical harmonics Plm

φ (θ, φ) =
∞∑
l=0

l∑
m=−l

plm cos6 θ

2
Plm (θ, φ) (7.2.4)

The 4-momentum associated with the functions φ(z) may also be extracted via the

projector Π expressed as the integral

Πφ(z′) =
i

π

∫
dzdz̄(z − z′)(z̄ − z̄′)φ(z) (7.2.5)

=
i

π

(
(p0 + p3) + (p0 − p3)z′z̄′ − (p1 − ip2)z′ − (p1 + ip2)z̄′

)
which is a polynomial of weight 2 in z′, with coefficients corresponding to the 4-

momenta [87] pµ. For this to be well-defined, the regulator as |z| → ∞ implicit in the

definition of the D(−2,−2) distributions must be taken into account. This can therefore

be rewritten in terms of convergent integrals as

Πφ(z′) =
i

π

∫
|z|<1

dzdz̄
(

(z − z′)(z̄ − z̄′)φ(z) + (1− zz′)(1− z̄z̄′)φ̂(z)
)

(7.2.6)

The higher order terms in φ(z) are labelled by the supermomenta. The supermomenta

form a G invariant subspace, implying that an irreducible representation of the BMS
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group describes states with the same mass (i.e. 4-momentum squared). Equation

(7.2.5) matches equation 72 in [82] which gives the Bondi 4-momentum in terms of

an integral of the Bondi mass aspect mB(u, z, z̄). Thus we may identify φ(z) with mB

up to a rescaling factor, and the derived 4-momenta behave as expected under G.

In turn, this provides a more physical justification for the choice of the space

of functions D(−2,−2). This space of distributions yield 4-momenta corresponding to

finite center of mass energies, as well as finite supermomenta, and prescribed fall-off

conditions [18] that guarantee integrals such as (7.2.5) are well-defined.

7.2.1 Little groups

As with Wigner’s classification of the irreducible representations of the Poincare

group, the first step in understanding representations is to understand little groups.

One may then construct the irreducible representations via the method of induced

representations [83, 121], lifting representations of the subgroup to representations of

the group.

In Wigner’s classification, one identifies classes of four-momenta invariant under

Poincare subgroups. For BMS the goal is to find functions φ(z) invariant under the

little groups of BMS. McCarthy give a detailed list of most of the little groups [87].

Here we discuss some of them in detail. We want to find functions which are invariant

under (7.2.3) of subgroups. These solutions will not contain the singular distributions

like δ functions and its derivatives. So we add to these solutions, singular distributions

satisfying appropriate differential equation. We show the calculations explicitly for

some of the little groups.
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7.2.1.1 SU(2)

The first important little group is SU(2). Generators of SU(2) are well known Pauli

matrices. We shall check for σ1, σ2, σ3 separately. First let us look at Σ3 =

 ω 0

0 ω̄

.
This is same as Γ. Which says that φ, φ̂ must be function of |z|.

For Σ1 = eitσ1 = cos t+ i sin tσ1. For small t, Σ1 =

 1 it

it 1

. we get

|1 + itz|−6φ

(
it+ z

1 + itz

)
= φ(z)

|1 + itz|−6φ̂

(
it+ z

1 + itz

)
= φ̂(z)

Only function which satisfies the above equation is

φ(z) = φ̂(z) = m
(
1 + |z|2

)−3 (7.2.7)

For consistency one can also check that above functions are invariant under Σ2 =

eitσ2 = cos t + i sin tσ2. For small t, Σ2 =

 1 t

−t 1

. φ, φ̂ does not diverge for any

value of z. So there is no singular distribution. One can verify that this represents a
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particle of mass m at rest

πφ =
2

π

∫
|z|<1

[
(z − z′)(z̄ − z̄′)φ(z) + (1− zz′) (1− z̄z̄′) φ̂(z)

]
dzdz̄

=
2

π

∫
|z|<1

[
(1 + |z′|2)|z|2 − (z′ + z̄′)z + (z′ + z̄′)z̄ + (1 + |z′|2)

]
m
(
1 + |z|2

)−3
dzdz̄

=
2

π

∫ [
(1 + |z′|2)r2 − (z′ + z̄′)reiθ + (z′ + z̄′)re−iθ + (1 + |z′|2)

]
m
(
1 + r2

)−3
rdrdθ

=
2

π

∫ [
(1 + |z′|2)r2 + (1 + |z′|2)

]
m
(
1 + r2

)−3
rdrdθ

=
2

π

∫
(1 + |z′|2)m

(
1 + r2

)−2
rdrdθ

= m(1 + |z′|2)

Comparing this with equation (7.2.5) we get p0 = m, p1 = p2 = p3 = 0. This shows

that mass of the particle is m. One can check that the 4-momentum (p0, p1, p2, p3)

indeed transforms correctly under the action of Lorentz generators (7.2.3). As an

example, let us look at the action of boost gt =

 et/2 0

0 e−t/2

. Acting on (7.2.7)

gφ(z) = me−3t
(
1 + |z|2e−2t

)−3
= m

(
e−t|z|2 + et

)−3 (7.2.8)

First half of the integral (7.2.6) gives

2

π

∫
|z|<1

(z − z′)(z̄ − z̄′)gφ(z)rdrdθ

= 2

∫
|z|<1

(r2 + |z′|2)e−3tm
(
1 + e−2tr2

)−3
dr2

= 2

∫
x<1

(x+ |z′|2)e3t mx−3

(1 + e2t/x)3dx

= 2

∫ 1

∞
(1 + |z′|2y)e3t my2

(1 + e2ty)3

−dy
y2

= 2

∫ ∞
1

(1 + |z′|2y)e3t m

(1 + e2ty)3dy

124



Second half of the integral (7.2.6) gives

1

π

∫
r2<1

(
1 + r2|z′|2

)
e3tm

(
1 + e2tr2

)−3
dr2dθ

= 2

∫ 1

0

(
1 + y|z′|2

)
e3t m

(1 + e2ty)3dy

So

πφ = 2

∫ ∞
0

(
1 + y|z′|2

) e3tm

(1 + e2ty)3dy

= 2

∫ ∞
0

(
e3tm

(1 + e2ty)3 + |z′|2 e−3tm

(1 + e−2ty)3

)
dy

= m
(
et + |z′|2e−t

)
which leads via (7.2.5) to p0 = m cosh t and p3 = m sinh t as expected for a boost.

Also note that the super-momenta get populated by the action of the boost due

to the higher order terms present in (7.2.8) beyond order 2. Thus the simplest rep-

resentation of BMS is that of a massive particle, matching what one expects of the

Poincare group, but the representation traces out an orbit in the infinite dimensional

space of supermomenta as one acts with Lorentz generators.

The representations of the little group may also carry spin ` which is half-integer.

As shown in [84] this yields a single spin ` representation of the Poincare subgroup

of BMS.

7.2.1.2 ∆

The second important little group is

∆ =

 ω β

0 ω̄



125



, in the notation of [87], or more commonly the Euclidean group in two dimensions

E(2). It yields usual massless particles, and as above, Lorentz transformation fill out

an orbit in supermomentum space. Using equation (7.2.3) we get

φ

(
ω̄z + β

ω

)
= φ(z)

φ̂

(
ωz

βz + ω̄

)
= |βz + ω̄|6φ̂(z) (7.2.9)

Looking at the first equation for β = 0 implies that φ must be function of |z| = r.

Then for ω = 1 and β = ib (same as Λ done in the paper) we deduce that φ must

be function of z + z̄ = r cos θ. Only function which satisfies these two conditions is

constant function. Together with equation (7.2.2) we get

φ(z) = K

φ̂(z) = K|z|−6

The invariance condition has no singular points. The general solution for φ̂ is thus

above function plus any linear combination of δ function and its derivative satisfying

the appropriate differential equation coming from (7.2.9). Second equation of (7.2.9)

can be written as

φ̂(z) = |1 + ωibz|−6φ̂
(
ω2z (1− ωibz)

)
(7.2.10)

≈ (1 + ibz)−3 (1− ibz̄)−3 φ̂
(
z + 2iδz − ibz2

)
≈ φ̂(z) + 2iδ (z∂z − z̄∂z̄) φ̂(z) + ib

(
z2∂z + 3z − z̄2∂z̄ − 3z̄

)
φ̂(z)
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Solution of this gives the invariant functions

φ(z) = K

φ̂(z) = K|z|−6 + A
∂2

∂z2

∂2

∂z̄2
δ(z) + Cδ(z) (7.2.11)

Note here δ(z) ≡ δ(Rez)δ(Imz), and likewise we suppress the z̄ dependence of φ,φ̂.

Here A and C are real. This clearly illustrates the need for the D(−2,−2) space of gen-

eralized functions to correctly accommodate massless particles. These representations

were not present in the earlier studies [86, 85, 84]. To evaluate four momentum on

such a representation one must use the formula (7.2.6) to properly regulate the oth-

erwise divergent expression (7.2.5). Finite 4-momenta are obtained provided K = 0.

In this case, C is proportional to the light-like 4-momentum.

The spin of these representations has been studied in [87] and as expected one

gets either a chiral massless representation with a single Poincare spin s = 0, 1/2, · · · .

Alternatively one may get one of the massless continuous spin representations of

Wigner’s classification, whose physical significance remains unclear.

7.2.1.3 SL(2, C)

In general one may take the entire group of Lorentz transformations to be a little

group, in which case the invariant functions take the form

φ(z) = φ̂(z) = 0

which implies vanishing of the 4-momentum and of all the supermomentum. Nev-

ertheless, one may pick a unitary representation of the little group and lift it to a

representation of BMS. It is natural to think of such representations as arising from

a unitary irreducible representation corresponding to a massive (or massless) field

on an internal three-dimensional de Sitter spacetime dS3 [122]. Such representations
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are infinite-dimensional. In any case, the situation here is unchanged from the usual

Poincare group. The standard procedure is to throw out all but the trivial repre-

sentation, leaving the Poincare invariant vacuum as the unique state with vanishing

4-momentum. Lifting to BMS, we obtain a unique state with vanishing 4-momentum

and supermomentum. Since the other infinite-dimensional families of states are not

generated from tensor products of the other states we will consider with the vacuum,

we can safely ignore these exotic infinite dimensional representations with vanishing

momentum.

7.2.1.4 SL(2, R)

The situation is more interesting for this maximal little group. In this case the

invariant functions take the form

φ(z) = K

(
z − z̄
i

)−3

+ Aδ2

(
z − z̄
i

)
φ̂(z) = K

(
z̄ − z
i

)−3

+ Aδ2

(
z̄ − z
i

)
(7.2.12)

where K and A are real parameters. For the Poincare group, this little group would

usually give rise to the tachyonic representations where pµpµ < 0. Here the nuclear

topology restricts the class of distributions to those with vanishing 4-momentum when

inserted into (7.2.6). Nevertheless, the higher order terms present in the invariant

functions generate a nontrivial orbit corresponding to nonvanishing supermomentum.

As with the case of SL(2, C) one can assign such representations a nontrivial repre-

sentation of the little group. In this case it would correspond to a massive or massless

field on an internal two-dimensional de Sitter spacetime, which has the isometry group

SL(2, R). However again such representations are infinite dimensional, and will not

arise from tensor products of the elementary representations we will consider. These

representations arise already in Wigner’s classification of the representations of the
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Poincare group, and are likewise not thought to be physically relevant, because one

can construct self-consistent theories where they do not appear.

An exception is the trivial representation of the little group SL(2, R). Under

the usual Poincare classification, these would be invariant under a larger little group

SL(2, C) and so would be equivalent to the SL(2, C) invariant vacuum state. However

under BMS such modes carry nontrivial supermomentum. This leads to a class of

“soft modes” which in general will be produced in the scattering of particle-like states,

and are in general necessary to enforce conservation of supermomentum.

7.2.1.5 Γ

For the Poincare group, the maximal little groups exhaust the set of little groups.

However for BMS it is also necessary to consider the group Γ which is a subgroup of

all the above little groups corresponding to rotations in a plane

 ω 0

0 ω̄

 with ω

a complex number of unit modulus. While the 4-momenta invariant with respect to

this little group are actually invariant under a larger little group, this is no longer the

case when the supermomenta are included. Using equation (7.2.3) we get

φ
( ω̄z
ω

)
= φ

(
ω̄2z
)

= |ω|6φ(z) = φ(z)

φ̂
(ωz
ω̄

)
= φ̂

(
ω2z
)

= |ω̄|6φ̂(z) = φ̂(z)

Above conditions imply that φ, φ̂ must be function of |z|. Secondly, φ̂(z) =

|z|−6φ(z). Thus we get

φ(z) = β(r) (7.2.13)

φ̂(z) = r−6β
(
r−1
)

(7.2.14)

Now we have to check if there is any singular distribution solution possible. Gen-
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eral solution of φ̂ must satisfy

(z∂z − z̄∂z̄) f = 0

Using the results z∂zδµ,ν = −(µ+1)δµ,ν and z̄∂z̄δµ,ν = −(ν+1)δµ,ν we get following

solutions

φ(z) = β(r)

φ̂(z) = r−6β
(
r−1
)

+ Aδ2,2 + Cδ (7.2.15)

where z = reiφ with φ = [0, 2π) and r ≥ 0. Here β is any distribution of radial

coordinate such that φ, φ̂ are well defined distribution in radial coordinate satisfying

the conditions above. The 4-momenta corresponding to these representations may

have m2 = 0, m2 > 0 or m2 < 0. Enhancing the little group to SU(2) restricts

invariant function to (7.2.7) which is a special case of above invariant function.

For m2 > 0 the representation corresponds [84] to an infinite tower of Poincare

spins labelled by some integer/half-integer j with the tower corresponding to all spins

s = j, j + 1, · · · .

For m2 = 0 and m2 < 0 the Poincare representations are more exotic, with

integrals over continuous spins needed to generate the BMS representation.

7.2.1.6 Λ

Invariant functions under this group is given in [86]. We are reproducing it here for

the sake of completeness. Orbits in Λ little group are nothing but functions invariant

under the motion generated by linear combination of following rotation generators

1

2
(M23 + iM31) =

1

2
(σ1 + iσ2) =

 0 1

0 0


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Corresponding finite operator is

Λ = eib
1
2

(σ1+iσ2) =

 1 ib

0 1


The invariance conditions are

φ(z + ib) = φ(z)

φ̂

(
z

ibz + 1

)
= |ibz + 1|6φ̂(z) (7.2.16)

This is a special case ω = 1 of ∆ little group. Solutions satisfying above conditions

and (7.2.2) are

φ(z) = β(z + z̄)

φ̂(z) = |z|−6β(z−1 + z̄−1)

The invariance condition (7.2.16) has no singular points. Thus β is any distri-

bution such that φ, φ̂ are well defined. The general solution for φ̂ is the above one

plus any linear combination of δfunction and its derivatives satisfying the differential

equation coming from (7.2.16). Second equation (7.2.16) can be written as which can

also be found by substituting ω = 1 in equation (7.2.10)

φ̂(z) = |1 + ibz|−6φ̂ (z (1− ibz))

≈ (1 + ibz)−3 (1− ibz̄)−3 φ̂
(
z − ibz2

)
≈ φ̂(z) + ib

(
z2∂z + 3z − z̄2∂z̄ − 3z̄

)
φ̂(z)
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Solution of this gives the invariant functions

φ(z) = β(z + z̄)

φ̂(z) = |z|−6β(z−1 + z̄−1) + A
∂2

∂z2

∂2

∂z̄2
δ(z, z̄) +B

∂2

∂z2
δ(z, z̄) + B̄

∂2

∂z̄2
δ(z, z̄) + Cδ(z, z̄)

(7.2.17)

A,C are real and B is complex.

7.2.1.7 Indecomposable

In the present work we are restricting our consideration to unitary irreducible repre-

sentations of the BMS group. It is possible this is too restrictive a class of representa-

tions to build a useful holographic description of asymptotically flat space. Because

the BMS group is non-compact, representations that may be decomposed into irre-

ducible representations are actually rather special, and more generally one should

consider indecomposable representations. As far as we are aware, the classification of

such representations for non-compact groups is still relatively undeveloped.

7.2.1.8 Non-connected subgroups

There are a variety of non-connected little groups that can appear as subgroups of

the BMS group [87]. For simplicity we do not consider these in the present work.

7.3 Invariant norms and Holography

One of the main motivations for considering the irreducible representations of the

BMS group, is to get a better understanding of the basic ingredients needed to build

a holographic description of the theory on null infinity I. The same considerations

also apply when considering the allowed set of asymptotic states in an S-matrix

description of a gravitational theory. At large N holography amounts to change of
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basis between momentum basis and conformal basis. This is done by smearing the

field using a conformally invariant kernel over the whole space, as shown in our earlier

works on de-Sitter holography [22]. Only difference in the case of Minkowski space

is the integration measure. As such, we now turn our attention to defining BMS

invariant norms for the representations of interest, and see that these may be realized

as integrals on I.

In the general case the norm is defined using the group invariant measure on the

coset space G/H where G = SL(2, C) and H is the little group [86]

∫
f(g)dµ(g) =

∫
G/H

(∫
H

f(gh)dµ(h)

)
dµG/H .

7.3.1 SU(2) and ∆

It is perhaps simplest to begin in momentum space. As we have seen for the SU(2)

little group, we have representations of BMS that essentially coincide with ordinary

massive particle representations of the Poincare group. The same is true for massless

particles and the little group ∆. Consider wavefunction in momentum space ψ(p).

Transformation of ψ(p) under the action of BMS group is given in section 3 of [85].

Wigner has given the invariant norm for these two subgroups as

(ψ1, ψ2) =

∫ ∞
0

ψ1(p)ψ2(p)
dp1dp2dp3

p4

. (7.3.1)

As we see, this integral may be viewed as an on-shell integral in the bulk p2
4 =

m2 +
∑

i p
2
i , or as an off-shell integral over the holographic boundary I.

7.3.2 SL(2, R)

Again the little group is three-dimensional, but now the invariant norm can be inter-

preted as an integral over three-dimensional de Sitter spacetime which corresponds
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to the coset SL(2, C)/SL(2, R)

(ψ1, ψ2) =

∫ ∞
∑
i
p2i=1

ψ1(p)ψ2(p)
dp1dp2dp3√∑

i p
2
i − 1

(7.3.2)

7.3.3 Γ

Since Γ is only one-dimensional the coset space will be five-dimensional and may be

written as an integral over on-shell 4-momenta (p2
4 =

∑
i p

2
i +m2) supplemented by a

pair of angles

(ψ1, ψ2) =

∫ ∞
0

ψ1(p, θ)ψ2(p, θ)
dp1dp2dp3dθ1dθ2

p4

(7.3.3)

which may be interpreted as an integral over I and two internal degrees of freedom

θ.

7.3.4 Λ

Here instead of three rotation generators M12,M23,M31, we will choose the following

linear combinations M12,
1
2

(M23 + iM31) , 1
2

(M23 − iM31).

M12 = σ3 =

 1 0

0 −1


1

2
(M23 + iM31) =

1

2
(σ1 + iσ2) =

 0 1

0 0


1

2
(M23 − iM31) =

1

2
(σ1 − iσ2) =

 0 0

1 0


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Corresponding finite operators are

Σ3 = eiθ3σ3 =

 eiθ3 0

0 e−iθ3


L+ = eib

1
2

(σ1+iσ2) =

 1 ib

0 1


L− = eic

1
2

(σ1−iσ2) =

 1 0

ic 1


Boost generators stay as it is. So the coordinates are θ3, b, c and three for boost

p1, p2p3. Then

dµ(g) = dbdcdθ3
dp1dp2dp3

p4

Note that Λ subgroup contains operators exactly of the form L+. So

dµ(Λ) = db

=⇒ dµG/Λ = dcdθ3
dp1dp2dp3

p4

So invariant norm is

(ψ1, ψ2) =

∫
ψ1(p, c, θ3)ψ2(p, c, θ3)dcdθ3

dp1dp2dp3

p4

which may be interpreted as an integral over I and c, θ3.
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Figure 7.4.1: The figure depicts two particles of massM moving in opposite directions
forming a bound state.

7.4 Scattering examples

By taking tensor products of the above representations of BMS we can gain insight

into how the symmetry constrains the scattering of particle-like representations and

study what BMS representations appear when ordinary particles undergo scattering.

7.4.1 Particles forming bound state

Consider a representation of the SU(2) little group corresponding to two particles

with mass M . One is moving in angular direction (θ, φ) = (α, β) and the other in

the opposite direction (α− π, β). After sometime they collide and form a bound

state as shown in figure(7.4.1) The mass aspect functions of a particle can be found

by boosting (7.2.7) along z-axis and then rotating by α around y-axis followed by
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rotation around z-axis by β. That is

φ+α = gαφz+

where

φ+α(θ, φ) =

 cos α
2

sin α
2

− sin α
2

cos α
2

φz+ = φz+

(
z cos α

2
− sin α

2

z sin α
2

+ cos α
2

)
=

et| z cos α
2
−sin α

2

z sin α
2

+cos α
2
|2 + e−t

1 + | z cos α
2
−sin α

2

z sin α
2

+cos α
2
|2

−3

M

=
M

(cosh t− sinh t cos θ cosα− sinh t sin θ cosφ sinα)3

and rotating by β around z-axis gives

φ+α,β(θ, φ) =
M

(cosh t− sinh t cos θ cosα− sinh t sin θ cos (φ+ β) sinα)3(7.4.1)

Now consider a particle moving in opposite direction. That is angular coordinates

(α− π, β).

φ−α,β(θ, φ) =
M

(cosh t+ sinh t cos θ cosα + sinh t sin θ cos (φ+ β) sinα)3(7.4.2)

At large N, mass aspect function of the whole system is given by the sum of mass

aspect functions of individual particles

φα,β(θ, φ) = φ+α,β(θ, φ) + φ−α,β(θ, φ)

=
M

(cosh t− sinh t cos θ cosα− sinh t sin θ cos (φ+ β) sinα)3

+
M

(cosh t+ sinh t cos θ cosα + sinh t sin θ cos (φ+ β) sinα)3(7.4.3)

Since two particles are moving in opposite directions, in no frame will both the par-

ticles be at rest together. Neither boosts nor rotations can transform the above
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function into a constant. The 4-momenta may be evaluated using (7.2.5) and are

given by p0 = 2M cosh t, p1 = p2 = p3 = 0. The higher momenta corresponding to

supermomenta are nontrivial, and are functions of α, β. Performing a rotation of

−β around z-axis followed by −α around y-axis transforms (7.4.3) to a function of

cos θ only. This implies the function is invariant under Γ little group and no bigger

subgroup of Lorentz group.

This construction also provides insight into the invariant norm for the Γ repre-

sentations (7.3.3). While boosts fill out three dimensions of the associated states

as usual, one needs an extra integral over the angular directions corresponding to

(α, β) to generate the complete set of associated states, yielding the five-dimensional

integral in (7.3.3).

So we come to an interesting conclusion. The mass aspect functions of Γ can be

viewed as sum of mass aspect functions of SU(2). In other words, the tensor product

of two massive irreducible, unitary representations of BMS can be decomposed as a

direct sum of irreducible representations, one of which is specified by a supermomen-

tum orbit whose little group is G. One may perform essentially the same computation

for the massless representations associated with the little group ∆ replacing those of

SU(2). BMS representation of the final system retains memory about the direction of

the incoming particles. In this case of two-body scattering, the supermomenta allow

all the information about the initial state of the system to be retrieved from the final

bound state. This is in line with the soft hair proposal of Strominger et al [95].

7.4.2 Soft modes in scattering

Extending the above considerations, we now consider 2 → 2 scattering. Consider

an initial state φz, and the final state φx and soft modes. Figure (7.4.2) shows the
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process.

φinitial(θ, φ) = φz(θ, φ) = (2M, 0, 0, 0, {pl,m}z)

=
M

(cosh t− sinh t cos θ)3 +
M

(cosh t+ sinh t cos θ)3 ∈ Γ

Final state contains two massive particles moving along the x-axis

φx(θ, φ) =
M

(cosh t− sinh t sin θ cosφ)3 +
M

(cosh t+ sinh t sin θ cosφ)3 (7.4.4)

and soft modes. Soft mode can be found by conservation of supermomenta. The

initial mass aspect should match the final mass aspect

φinitial = φfinal

=⇒ φz(θ, φ) = φx(θ, φ) + φsoft

=⇒ (2M, 0, 0, 0, {pl,m}z) = (2M, 0, 0, 0, {plm}x) + (0, 0, 0, 0, {plm}z − {plm}x)

=⇒ φsoft = (0, 0, 0, 0, {plm}z − {plm}x) (7.4.5)

In this case, while the outgoing massive particles transform under the standard

SU(2) little groups, there is an additional soft mode with vanishing 4-momentum

but non–vanishing supermomentum. In this case the soft mode transforms under the

Γ little group and represents the gravitational memory effect.

7.5 Conclusion

Many of the results we have discussed appear in McCarthy’s original works but have

been passed over in much of the subsequent literature, and our goal was to cast the

most relevant selection of these results in a modern context, where they may be of use

to researchers attempting holographic formulations of asymptotically flat spacetime,
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Figure 7.4.2: The left figure represent two particle of mass m moving along z-axis.
They collide and move out along x-axis. The figure on the right represents the final
state. Subtracting blue patch from the red patch on the celestial sphere gives the soft
mode in the final state.

or simply trying to understand gravitational memory from the perspective of the

BMS group. We started with a brief introduction to the BMS group and identified 4-

momenta and the supermomenta. Representations of ∆, SU(2) represent massless and

massive particles respectively corresponding directly to Wigner’s original classification

of the Poincare group. Then we derive the invariant measure and invariant norm for

some of the little groups. This revealed that invariant norm of little groups other

than SU(2),∆ involves integrating over a larger phase space. Specifically for Γ one

encounters integrals over 5 dimensions. Starting with a representative state of Γ,

both rotation and boosts are required to traverse complete orbit inside Γ. This

implies that rotations produce states which cannot be obtained just by boosts. This

is related to the fact that representations of Γ can be expressed as bound state of rep

of SU(2),∆. To explore this point we considered two particles moving in opposite

directions forming a bound state. Momenta of final state depend on the direction

of initial particles. In other words, BMS representations store not just the total 4-

momenta of the system but also retain information about the individual 4-momenta
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of the initial state. This is in contrast to Poincare representations where the final

state just depends on total energy.

These results should have important implications for any S−matrix theory of grav-

ity in asymptotically flat spacetime. In string theory, for example, these S−matrix

elements are built using vertex operators corresponding to representations of the

Poincare group. For such a description to be consistent it is implicit that the scatter-

ing states of such particles form a complete set. According to our analysis of the BMS

group, that is not the case. For example, there exist unitary irreducible representa-

tions of the BMS group with vanishing 4-momenta but non-vanishing supermomenta

that are not limits of massless particles (with non-vanishing light-like 4-momentum)

such as the soft mode representations of the SL(2, R) little group that we discussed.

One also has irreducible representations of the little group Γ that can also generate

soft modes with vanishing 4-momenta, but non-vanishing supermomenta. On the

other hand, it is clear there is a unique vacuum state, the trivial representation of

the BMS group, which is of course invariant under all the asymptotic symmetries.

There has been some preliminary discussion of some of these issues in the bosonic

string [123] but we believe the present results warrant further study of the spectrum

of string theory to obtain a more complete understanding of the soft modes.

From the perspective of holography the present work shows what irreducible rep-

resentations of the BMS group are needed to formulate the elementary ingredients of

such a description. There is some commonality with the AdS/CFT approach, namely

a holographic “operator” transforming as an irreducible representation of BMS in

one-to-one correspondence with bulk fields with fixed mass and spin. Such oper-

ators naturally live in a three-dimensional space according to the norms described

in section 7.3. However the existence of the more exotic representations discussed

above suggest this picture in not complete in the case of BMS. For example if rep-

resentations of the little group Γ must be introduced as elementary operators in the
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holographic description, they naturally live in a five-dimensional space. Furthermore

the operators corresponding to the SL(2, R) representations will serve to generate

states with nontrivial supermomenta, with no cost in 4-momentum. These represen-

tations appear to live in an auxiliary three-dimensional de Sitter spacetime. From

the usual perspective, this would imply the vacuum is highly degenerate, making it

difficult to construct a reasonable interacting theory based on such operators at the

quantum level. In any case, we hope the present work goes some way to highlighting

the obstacles that need to be addressed in formulating holography in asymptotically

flat spacetime.

Over the past few years many extensions of BMS group have been discovered.

For example, BMS algebra is extended to full Virasoro algebra. This introduces

superrotation. It is also possible to consider central extension of Virasoro algebra

[99]. It would be very interesting to understand representations of extended BMS

group. However, at present physical interpretations of representation of even the

BMS group is not fully understood. So in this work we have mainly focussed on

representations of BMS group. We hope to come back to representations of BMS

group in future.
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Chapter 8

Conclusion

We started with a brief introduction of AdS/CFT holography in chapter 2. Then in

chapter 3 we reviewed Axiomatic QFT. Wightman reconstruction theorem forms the

bedrock of our work on de-Sitter holography.

In chapter 4, we described holography in dS space using integral transform. We

gave necessary introduction to integral transform in section 4.3. Using integral trans-

form it was shown to be possible to give well defined bulk-boundary map for dS space

at least in the large N limit. However, we also found that boundary correlators violate

cluster decomposition, signalling breakdown of CFT once interactions are included.

To explore dS holography in the presence of interaction we considered some simple

examples in chapter 5. We looked at multi-black hole solutions in 3 dimensional dS

space. It was clearly seen that boundary does not decouple from the bulk. Bulk and

boundary have to be seen together. This led us to conjecture that conformal gravity

is a better candidate to describe quantum gravity in dS.

We continued our exploration of interacting bulk theory in chapter 6. In dS

space fields are represented by Principal series and Discrete series representations.

We computed their boundary OPEs which were found to have essential singularities.

This implied that CFT dual to dS bulk is not well defined.
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In chapter 7 we changed track to Minkowski space holography. Our main focus

was to understand representations of BMS group which were already discovered by

McCarthy in 1972. We reviewed the little group construction of BMS group. Then

we explicitly considered some of the interesting little groups. Soft particles were

naturally found emerge from the representations. Some of the scattering examples

showed that conservation of super-momentum has lot of similarity to gravitational

memory effects.

Holography is essentially a map from bulk theory to another manifold. Group

theory is expected to play an important role in understanding such a map. We hope

that insights obtained from this work will shed some light on holography in dS and

Minkowski space. There are many possible directions that can be explored in future.

There is lot more to be understood in representations of BMS group and how to

apply integral transform to Minkowski space. One can also explore quantum gravity

in dS space by studying conformal gravity theory with dS solutions. Lately BMS

groups has been extended to full Virasoro algebra. Understanding representations of

superrotations can be another exciting future project.
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Chapter 9

Appendix

9.1 Bulk isometries

Bulk SO(3, 1) isometries can be expressed in terms of embedding coordinates XA =

(Y1, Y2, Z, T )

zAB = i (XB∂A −XA∂B) (9.1.1)

where de Sitter spacetime is the hyperboloid

R2 = Y 2
1 + Y 2

2 + Z2 − T 2 .

Poincare coordinates (y1, y2, η) are given by

T =
R

2
(η − 1

η
)− 1

2Rη
(y2

1 + y2
2)

Y1 =
y1

η

Y2 =
y2

η

Z =
R

2
(η +

1

η
)− 1

2Rη
(y2

1 + y2
2) .
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With inverse relations

η =

√
Y 2

1 + Y 2
2 + Z2 − T 2

Z − T

y1 =
Y1

Z − T

y2 =
Y2

Z − T
.

Equation (9.1.1) in R, η, y1, y2 coordinates becomes

J3 ≡ JY1Y2 = i (y2∂y1 − y1∂y2)

J2 ≡ JZY1 = −i
(

1 + y2
1 − y2

2 + η2

2
∂y1 + y1y2∂y2 + y1η∂η

)
−J1 ≡ JZY2 = −i

(
1− y2

1 + y2
2 + η2

2
∂y2 + y1y2∂y1 + y2η∂η

)
K1 ≡ KY1T = −i

(
−1 + y2

1 − y2
2 + η2

2
∂y1 + y1y2∂y2 + y1η∂η

)
K2 ≡ KY2T = −i

(
−1− y2

1 + y2
2 + η2

2
∂y2 + y1y2∂y1 + y2η∂η

)
K3 ≡ KZT = −i (y1∂y1 + y2∂y2 + η∂η) .

We can go to the complex coordinate z = y1 + iy2 and define

JL = z∂z +
η

2
∂η , K+L = i (z2∂z + η2∂z̄ + zη∂η) , K−L = −i∂z

JR = −z̄∂z̄ −
η

2
∂η , K−R = −i (z̄2∂z̄ + η2∂z + z̄η∂η) , K+R = i∂z̄ .

We see that they take very simple form in Poincare coordinates compared to spherical

coordinates.
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9.2 OPE calculation for principal series

Calculation of βk,j is same as in equation (6.4.10).

βk+1,j

(
2 (k + 1 + ∆3 −∆2) ζ

(
∂

∂ζ

)k+1

+ (k + 1) (k + 2∆3)

(
∂

∂ζ

)k)
ζ−h−j

= βk,j (∆3 + ∆1 −∆2 + k)

(
∂

∂ζ

)k
ζ−h−j

=⇒ βk+1,j2 (k + 1 + ∆3 −∆2) (−h− j)...(−h− j − k) +

βk+1,j (k + 1) (k + 2∆3) (−h− j)...(−h− j − k + 1)ζ−h−j−k

= βk,j (∆3 + ∆1 −∆2 + k) (−h− j)...(−h− j − k + 1)ζ−h−j−k

=⇒ βk+1,j (2 (k + 1 + ∆3 −∆2) (−j − h− k) + (k + 1) (k + 2∆3)) ζ−h−j−k

= βk,j (∆3 + ∆1 −∆2 + k) ζ−h−j−k

=⇒ βk+1,j

= −βk,j
(∆3 + ∆1 −∆2 + k)

(k −K+) (k −K−)

where

K± =
1

2

(
1 + 2 (∆2 − j − h)±

√
(1 + ∆2)2 + 4 (2∆3 − j − h) (1− j − h)

)
.
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Calculation of β−k,j is

β−k−1,j

[
L−1, L

k+1
1

]
ζ−h−j

= β−k,j (∆3 −∆1 −∆2 − k) (L1)k ζ−h−j

=⇒ β−k−1,j (2∆3 + k − h− j − 1) ... (2∆3 − h− j − 1) (−h− j)

−β−k−1,j (2∆3 + k − h− j) ... (2∆3 − h− j) (k − h− j + 1) ζ−h−j+k

= β−k,j (∆3 −∆1 −∆2 − k) (2∆3 + k − 1− h− j) ... (2∆3 − h− j) ζ−h−j+k

=⇒ β−k−1,j ((2∆3 − h− j − 1) (−h− j)− (2∆3 + k − h− j) (k − h− j + 1)) ζ−h−j+k

= β−k,j (∆3 −∆1 −∆2 − k) ζ−h−j+k

=⇒ β−k−1,j

= β−k,j
(∆3 −∆1 −∆2 − k)

(k + 2∆3 + 2j + 2h)(k + 1)
.
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