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Abstract. The nonlinear integral equation has been widely studied and has become the heart of 

the matter in many scientific and engineering fields, such as seismology, optical fiber evolution, 

radio astronomy, and hadron physics with Quantum Chromodynamics. The Dyson-Schwinger 

Equations (DSEs) approach provides an essential nonperturbative approach to investigating the 

properties of hadrons and hot/dense quark matter. Mathematically, the Dyson-Schwinger 

Equations are a group of coupled nonlinear integral equations of quark propagators, gluon 

propagators, ghost propagators, and various vertices. On account of the non-linearity and 

singularity of the coupled equations, it is almost impossible to solve the DSEs analytically. One 

has to resort to the numerical solution of the equations, in which efficient fast algorithms are key 

points in practice. In this work, two improvements for numerically solving the nonlinear and 

singular integral equation for quark propagator in a vacuum are proposed. One is a modified 

interpolation method for unknown functions in the integral with high degrees of freedom. The 

other is the parallelization on CPUs with OpenMP in GCC Comparing the CPU times with 

different algorithms, our results indicate that our proposed methods can greatly improve the 

efficiency and reduce the computation time of the CPU. 

Keywords: Dyson-Schwinger Equations, Nonlinear Integral Equation, OpenMP 

1. Introduction 

The Dyson-Schwinger Equations (DSEs) of Quantum Chromodynamics (QCD) are mathematically 

nonlinear and singular integral equations. They are an infinite set of coupled equations about quark 

propagators, gluon propagators, ghost propagators, and various vertex functions. They provide a 
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successful description of hadrons in vacuum and phase transitions in a hot or dense medium [1-2]. In 

literature phenomenological models with effective gluon and vertex input are adopted to truncate the 

coupled equations. Requirement on computing power increases quickly when equations for gluons and 

vertexes are included or finite temperature and density effects are included. Therefore, it is imperative 

to come up with more efficient methods for improving computational efficiency. 

The DSEs are nonlinear and singular integral equations with high degrees of freedom. Therefore, the 

numerical solutions are difficult to obtain. The equations are normally formed as [3-4]: 

𝑢(𝑥) = 𝑓1(𝑥) + ∫[𝐾1(𝑥, 𝑡)𝐹11(𝑢(𝑡), 𝜈(𝑥)) + 𝐾̅1(𝑥, 𝑡)𝐹12(𝑢(𝑡), 𝜈(𝑥))]𝑑𝑡, 

𝜈(𝑥) = 𝑓1(𝑥) + ∫[𝐾1(𝑥, 𝑡)𝐹21(𝑢(𝑡), 𝜈(𝑥)) + 𝐾̅1(𝑥, 𝑡)𝐹22(𝑢(𝑡), 𝜈(𝑥))]𝑑𝑡, 

 

where Fij(u(x),u(t)(i ,j= 1, 2) are composite functions nonlinearly dependent on functions u(x) and u(t), 

the kernels K1 and K2 are the nonsingular kernels, while the kernels 𝐾̅1 and 𝐾̅2 are the singular kernels 

given by 

𝐾̅1,2 = 1/(𝑥 − 𝑡)𝛼 

The integral will be singular when the denominator in the right hand of Eq. (2) becomes zero at one 

or more points in integration. In our previous work [5-6], the integral is approximated as discretized 

summation with Gauss-Legendre integral formula. The numerical results of the integral equation can be 

obtained by a common iterative method with given initial test functions for u(x) and v(x). Specifically, 

the numerical computation method introduces the recurrence relation: 

𝑢0(𝑥) = 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦 𝑟𝑒𝑎𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

𝜈0(𝑥) = 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦 𝑟𝑒𝑎𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

 

𝑢𝑛+1(𝑥) = 𝑓1(𝑥) + ∫[𝐾1(𝑥, 𝑡)𝐹11(𝑢𝑛(𝑡), 𝜈𝑛(𝑥)) + 𝐾̅1(𝑥, 𝑡)𝐹12(𝑢𝑛(𝑡), 𝜈𝑛(𝑥))]𝑑𝑡, 

𝜈𝑛+1(𝑥) = 𝑓1(𝑥) + ∫[𝐾1(𝑥, 𝑡)𝐹11(𝑢𝑛(𝑡), 𝜈𝑛(𝑥)) + 𝐾̅1(𝑥, 𝑡)𝐹12(𝑢𝑛(𝑡), 𝜈𝑛(𝑥))]𝑑𝑡, 

 

Consequently, the solution are obtained as the convergent values of the sequences 

𝑢(𝑥) = 𝑙𝑖𝑚
𝑛→∞

𝑢𝑛 (𝑥) 

𝜈(𝑥) = 𝑙𝑖𝑚
𝑛→∞

𝜈𝑛 (𝑥) 

Note that the singular kernels 𝐾̅1 and 𝐾̅2 make it difficult to integrate numerically. To avoid the 

singularity, the integral nodes ti need to be different from x, and the values of the functions 𝑢(𝑡) 

and 𝑣(𝑡) need to be interpolated with high precision from u(x) and v(x). In the traditional interpolation 

process [7], such as Newton interpolation, and spline interpolation, the step to find the location of t in 

the discrete sequence x  cost a lot of CPU time. 

In the following, we intend to optimize and speed up the numerical calculation with two algorithm 

improvements. One is to modify the interpolation method, and the other is to paralyze our code with 

OpenMP in GCC. OpenMP has been very successful in exploiting structured parallelism in applications 

[8-9]. Particularly article [10] introduced the fundamental design of the OpenMP specification v2.5 in 

GCC. The implementation supports all the programming languages (C, C++, and Fortran), and it is 

(1) 

(2) 

(3) 

(4) 

(5) 
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generally available on any platform that supports Portable Operating System Interface (POSIX) threads. 

This paper is organized as follows. In section 2, we briefly introduce the truncation scheme of DSE 

for quark propagator in vacuum. In section 3, we describe our modified algorithms to solve the nonlinear 

and singular integral equations. In section 4, we compare the numerical results, especially the cost CPU 

time with different algorithms. In section 5, a short summary and outlook are given. 

2. Quark’s Dyson-Schwinger Equation with BC Vertex in Vacuum 

In the four-dimensional momentum (p) space, the Dyson-Schwinger equation for quark propagator in 

vacuum can be given as:  

𝑆(𝑝)−1 = 𝑍2(𝑖𝛾 ∙ 𝑝̃ + 𝑚𝑞) + 𝑍1𝑔2(𝜇) ∫
𝑑4𝑞

(2𝜋)4
× 𝐷𝜌𝜎(𝑘)

𝜆𝑎

2
𝛾𝜌𝑆(𝑞)𝛤𝜎

𝑎(𝑞, 𝑝), 

where the 𝐷𝜌𝜎(𝑘 = 𝑝 − 𝑞)  represents the full gluon propagator, 𝛤𝜎
𝑎(𝑞, 𝑝)  represents the dressed 

quark-gluon vertex. 𝑍1  is the renormalization constant for the quark-gluon vertex, while 𝑍2  is the 

quark wave-function renormalization constant, 𝜇  is the renormalization point. Normally, the quark 

propagator can be decomposed into two scalar functions 𝐴(𝑝2) 𝑎𝑛𝑑 𝐵(𝑝2):  

𝑆−1(𝑝) = 𝑖𝛾 ∙ 𝑝𝐴(𝑝2) + 𝐵(𝑝2) 

With the model inputs of the gluon propagator and the effective quark-gluon vertex [6, 11], equation 

(6) can be solved within the simplest truncation scheme. In vacuum, the models are usually taken as 

𝑍1𝑔2𝐷𝜌𝜎(𝑘)𝛤𝜎
𝑎(𝑞, 𝑝) = 𝜍(𝑘2)𝐷𝜌𝜎

0 (𝑘)
𝜆𝑎

2
𝛤𝜎(𝑝, 𝑞) 

where 𝐷𝜌𝜎
0 (𝑘) =

1

𝑘2 [𝛿𝜌𝜎 −
𝑘𝜌𝑘𝜎

𝑘2 ] corresponds to the Landau gauge free gluon propagator, 

𝜍(𝑘2) represents a model effective interaction, and 𝛤𝜎(𝑞, 𝑝) is an effective quark-gluon vertex.  

In our work, we use the well-known Ball-Chiu (BC) ansätz for the effective quark-gluon vertex, 

which satisfies the nonperturbative Ward-Takahashi identity. The BC vertex in vacuum was given in Ref 

[12].  

𝛤𝜎
𝐵𝐶(𝑞, 𝑝; 𝜇) = 𝜆1𝛾𝜇 + 𝜆2(𝑝 + 𝑞)𝜇 + 𝜆3(𝑝 + 𝑞)𝜇(𝑝 ∙ 𝛾 + 𝑞 ∙ 𝛾) + 𝜆4(𝑝 + 𝑞)𝑣𝛿𝜇𝑣 

where 𝑘 = 𝑞 − 𝑝, 𝑡 = 𝑞 + 𝑝, λi (i=1,2,3,4) are composite functions of the scalar functions A(p2), A(q2), 

B(q2) and B(p2) of the quark propagator:  

𝜆1 =
𝐴(𝑝2) + 𝐴(𝑞2)

2
, 𝜆2 = −𝑖

𝐵(𝑝2) − 𝐵(𝑞2)

𝑝2 − 𝑞2
, 𝜆3 = −

1

2

𝐴(𝑝2) − 𝐴(𝑞2)

𝑝2 − 𝑞2
, 𝜆4 = 0. 

Note that the model effective interaction has been widely investigated [13]. In this paper, we employ 

a popular infrared-dominant model, denoted as the “HF” model, which indicates the long-range behavior 

of Qin-Chang (QC) model and is defined as [14]:  

𝜍𝑄𝐶(𝑘2) =
8𝜋2

𝜔4
𝐷𝑒−𝑘2/𝜔2

 

Hence, the renormalization constants in Eq. (6) can be set to 1. With inputs of the effective quark-

gluon vertex and the effective interaction model, the nonlinear and singular integral equations for the 

scalar functions A(p2) and B(p2) can be obtained:  

𝐴(𝑝2) = 𝑧1 + ∫
𝑑𝑞4

(2𝜋)4

𝜍𝑄𝐶(𝑘2)

𝑘2𝑝2(𝑝2𝐴2(𝑝2) + 𝐵2(𝑝2))
(𝐼𝐴1 + 𝐼𝐴2 + 𝐼𝐴3)， 

𝐵(𝑝2) = 𝑚0𝑧1 + ∫
𝑑𝑞4

(2𝜋)4

𝜍𝑄𝐶(𝑘2)

𝑘2(𝑝2𝐴2(𝑝2)+𝐵2(𝑝2))
(𝐼𝐵1 + 𝐼𝐵2 + 𝐼𝐵3)， 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 
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with 

𝐼𝐴1 = −
𝐵(𝑞2)

𝑝2

𝑘2(𝑝∙𝑡)−(𝑘∙𝑝)(𝑘∙𝑡)

𝑘2𝑝2

𝐵(𝑞2)−𝐵(𝑝2)

𝑞2−𝑝2 ， 

𝐼𝐴2 = −
𝐴(𝑞2)

2𝑝2

𝑝2(𝑝∙𝑡)𝑘2+𝑞2(𝑝∙𝑡)𝑘2−𝑞2(𝑝∙𝑘)(𝑡∙𝑘)−𝑝2(𝑞∙𝑘)(𝑡∙𝑘)

𝑘2

𝐴(𝑞2)−𝐴(𝑝2)

𝑞2−𝑝2 ， 

𝐼𝐴3 =
𝐴(𝑞2)

𝑝2

𝑘2(𝑝∙𝑞)+2(𝑘∙𝑞)(𝑘∙𝑝)

𝑘2

𝐴(𝑞2)+𝐴(𝑝2)

2
， 

𝐼𝐵1 = −𝐴(𝑞2)
(𝑞∙𝑡)𝑘2−(𝑞∙𝑘)(𝑡∙𝑘)

𝑘2

𝐵(𝑞2)−𝐵(𝑝2)

𝑞2−𝑝2 ， 

𝐼𝐵2 = 3𝐵(𝑞2)
𝐴(𝑞2)+𝐴(𝑝2)

2
， 

𝐼𝐵3 = 𝐵(𝑞2)
𝑘2𝑡2−(𝑘∙𝑡)2

2𝑘2

𝐴(𝑞2)−𝐴(𝑝2)

𝑞2−𝑝2 . 

We could find the singular kernel 1/(q2-p2) in the term IA1, IA2, IB1 and IB3. In traditional numerical 

calculation, the integral and singular equation can be solved by discretized with Gauss-Legendre integral 

formula. The initial functions are set to be: A0(p) = 1, B0(p) = 1. The convergence criteria of the iterated 

sequence is given by an accuracy 𝜉 that at every momentum point: 

𝐴(𝑝) = lim
𝑛→∞

𝐴𝑛(𝑝) → 𝑎𝑏𝑠(𝐴𝑛+1(𝑝) − 𝐴𝑛(𝑝)) < 𝜉, 

𝐵(𝑝) = lim
𝑛→∞

𝐵𝑛(𝑝) → 𝑎𝑏𝑠(𝐵𝑛+1(𝑝) − 𝐵𝑛(𝑝)) < 𝜉, 

3. Modified Interpolation Algorithm and Parallelization in GCC 

The tricky problem in numerical computation is that the values of momentum p and q always take 

different values for eliminating the singularity. Therefore, the unknown functions A(q2) and B(q2) inside 

the integral need to be interpolated with high precision from A(p2) and B(p2), which is quite time-

consuming. In the following, we optimize the numerical calculation with two algorithm improvements. 

3.1. Modified Interpolation Algorithm 

 

Figure 1. Left : code of the “for” loop in a sequential process. Right: code of the “for” loop in a paralyzed 

process with OpenMP. 

First we briefly introduce the traditional interpolation method.  With traditional interpolation [7], 

such as Newton interpolation, and spline interpolation, one needs to find the location of q on the discrete 

data array 𝑝[𝑖] = (𝑖 = 1,2,3 … 𝑁) , where  N is the number of the discrete points of the outside 

momentum p.  

(13) 
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𝑞 

↓ 𝑤ℎ𝑒𝑟𝑒? 

𝑝[1] < 𝑝[2] < ⋯ < 𝑝[𝑖 − 1] < 𝑝[𝑖] < 𝑝[𝑖 + 1] < ⋯ < 𝑝[𝑁] 

Then with 𝑝[𝑖] < 𝑞 < 𝑝[𝑖 + 1] unknown function value 𝐹(q2)= A(q2), B(q2) can be obtained with 

linear interpolation 

𝐹(𝑞) = {
𝐹(𝑝[𝑖]) + (𝑞 − 𝑝[𝑖]) ×

𝐹(𝑝[𝑖 + 1]) − 𝐹(𝑝[𝑖])

𝑝[𝑖 + 1] − 𝑝[𝑖]
   𝑖 < 𝑁

𝐹(𝑝[𝑖])                                  𝑖 = 𝑁

 

Normally the “searching step” costs a lot of CPU time due to many logical operations. In this work, 

we will use a modified interpolation method. In particular, the integral nodes-momentum q are set and 

saved as array 𝑞[𝑖] = (i = 1,2,3. . . N), with the relationship between array 𝑝[𝑖], and array 𝑞[𝑖]:  

𝑝[1] < 𝑞[1] < 𝑝[2] < ⋯ < 𝑝[𝑖 − 1] < 𝑞[𝑖 − 1] < 𝑝[𝑖] < ⋯ 𝑞[𝑁 − 1] < 𝑝[𝑁] < 𝑞[𝑁] 

In this modified interpolation method, we use equation (15) to replace the traditional “searching step”, 

then a lot of CPU time for logical operations will be saved and the unknown function 𝐹(q2)= A(q2), 

B(q2) can be obtained directly.  

𝐹(𝑞[𝑖]) = {
𝐹(𝑝[𝑖]) + (𝑞[𝑖] − 𝑝[𝑖]) ×

𝐹(𝑝[𝑖 + 1]) − 𝐹(𝑝[𝑖])

𝑝[𝑖 + 1] − 𝑝[𝑖]
   𝑖 < 𝑁,

𝐹(𝑝[𝑖])                                     𝑖 = 𝑁,

 

3.2. Automatic Parallelization with OpenMP 

In each step of the iteration, we need to calculate functions 𝐴𝑛+1(𝑝) and 𝐵𝑛+1(𝑝)at every momentum 

p[i] which is done by a “for loop” as shown in the left panel of Figure 1. However, because N - the 

number of momentum p[i] is very large, it is quite time-consuming to complete the loop. In this work, 

we use OpenMP to paralyze our code, following the standard method in the article[10]. The code of a 

normal “for” loop is shown in the left panel of figure 1, where function A(p[i]) and function 𝐵(p[i]) are 

subroutines computing the right hand of the equation (13). Clearly, function A(p[i]) and function 𝐵(p[i]) 

for each p[i] run independently from those for other momenta. Therefore, we can split the “for” loop 

and assign them to multiple CPU cores. The right panel of Figure 2  shows how OpenMP helps us do 

it. The parallelization of the code helps us to split the “for” loop workload across multiple threads, with 

each thread running on different cores independently. Consequently, the total CPU running time can be 

significantly decreased.  

4. Numerical Results 

For numerically solving the coupled system in equation (13), two parameters D and ω in the effective 

interaction in equation (11) need to be fixed. We take the parameters D = 0.550 and ω = 0.678 from 

reference [5] which are determined by fitting meson properties with the BSE approach. With the above 

parameters and the ansätz, the DSE for quark propagator in vacuum with four different algorithms are 

investigated: Algorithm 1) traditional interpolation with sequential processing. Algorithm 2) modified 

interpolation with sequential processing. Algorithm 3) traditional interpolation with parallel processing. 

Algorithm 4) modified interpolation with parallel processing. For each algorithm, there are three 

parameters for controlling the computational accuracy and CPU time: the length of array 𝑝[𝑖] = (i =
1,2, . . . N) , the number M of the nodes in the Gauss-Legendre integral integration formula, and the 

accuracy ξ for iteration convergence. 

(14) 

(15) 

(16) 
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Figure 2. Left: quark’s scalar function A(p) evolving with iterations. Middle: quark’s scalar function 

B(p) evolving with iterations. Right: the quark’s scalar function A(log p=-2.5), A(log p=0.0), B(log p=-

2.5) and B(log p=0.0) evolving with iterations. The results are the same with all four algorithms. 

Table 1. Costed CPU time with different algorithms. All codes are run on a computer with 

Inter(R) Core(TM) i7- @1.00GHz on GCC version 9.3.0 (Ubuntu 9.3.0-10). 
 

N M ξ algorithm %CPU iteration times CPU time(s) 

150 100 0.005 algorithm.1 100.0 11 65 

150 100 0.005 algorithm.2 100.0 11 6 

150 100 0.005 algorithm.3 782.0 11 9 

150 100 0.005 algorithm.4 792.0 11 1 

It is noted that the four algorithms lead to the same solution with the same number of iterations. In 

Figure 2 we show the quark’s scalar functions A(p) and B(p) evolving in each iteration step. All are the 

same with different algorithms Our new algorithms just improve the efficiency of numerical 

computation, while the process and the result remain the same.  

Table 1 shows the costed CPU time of our code with various algorithms. Clearly, both the modified 

interpolation method and parallelization with OpenMP can save a lot of computation time. Comparing 

the result of algorithm 2 and algorithm 1, the modified interpolation method speeds up the code 10 times. 

Comparing the result of algorithm.3 and algorithm.1, the parallelization with OpenMP speeds up the 

code about 7 times, which identifies with the computation ability of my computer (Intel i7).  

Comparing the result of algorithm.4 and algorithm.1, the combination of the modified interpolation 

method and the parallelization with OpenMP speeds up the code about 60 times. 

5. Summary 

In summary, two improved methods to numerically solve the nonlinear and singular integral equation 

of the quark propagator in vacuum are proposed. One is t a modified interpolation method, the other is the 

parallelization of our code with OpenMP in GCC. With our new algorithms, we can obtain the same 

results with the same accuracy, but speeds up to several tens of times, with our present hardware of 

computers. Our new algorithms can also be used in a more complex system, such as the coupled Dyson-

Schwinger equations for both the quark propagator and the gluon propagator [6], or for the quark 

propagator at finite chemical potential and/or temperature [13]. In the latter case, the propagator 

functions will depend on more variables, and two-dimensional interpolation will cost more computation 
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time. Then the application of the two new algorithms will be more efficient for solving the complex 

system. 
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