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Abstract. The nonlinear integral equation has been widely studied and has become the heart of
the matter in many scientific and engineering fields, such as seismology, optical fiber evolution,
radio astronomy, and hadron physics with Quantum Chromodynamics. The Dyson-Schwinger
Equations (DSEs) approach provides an essential nonperturbative approach to investigating the
properties of hadrons and hot/dense quark matter. Mathematically, the Dyson-Schwinger
Equations are a group of coupled nonlinear integral equations of quark propagators, gluon
propagators, ghost propagators, and various vertices. On account of the non-linearity and
singularity of the coupled equations, it is almost impossible to solve the DSEs analytically. One
has to resort to the numerical solution of the equations, in which efficient fast algorithms are key
points in practice. In this work, two improvements for numerically solving the nonlinear and
singular integral equation for quark propagator in a vacuum are proposed. One is a modified
interpolation method for unknown functions in the integral with high degrees of freedom. The
other is the parallelization on CPUs with OpenMP in GCC Comparing the CPU times with
different algorithms, our results indicate that our proposed methods can greatly improve the
efficiency and reduce the computation time of the CPU.
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1. Introduction

The Dyson-Schwinger Equations (DSEs) of Quantum Chromodynamics (QCD) are mathematically
nonlinear and singular integral equations. They are an infinite set of coupled equations about quark
propagators, gluon propagators, ghost propagators, and various vertex functions. They provide a
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successful description of hadrons in vacuum and phase transitions in a hot or dense medium [1-2]. In
literature phenomenological models with effective gluon and vertex input are adopted to truncate the
coupled equations. Requirement on computing power increases quickly when equations for gluons and
vertexes are included or finite temperature and density effects are included. Therefore, it is imperative
to come up with more efficient methods for improving computational efficiency.

The DSEs are nonlinear and singular integral equations with high degrees of freedom. Therefore, the
numerical solutions are difficult to obtain. The equations are normally formed as [3-4]:

u(x) = f1(x) + f[lﬁ(x; OF11 ((®), v(x)) + Ky (x, ) Fro (u(t), v(x))]dt, 0

v(x) = f1(x) + f [K1 (x, ©)Faq (), v(x) + K (x, 0) Fop (u(t), v(x))]d,

where Fij(u(x),u(t)(i j= 1, 2) are composite functions nonlinearly dependent on functions u(x) and u(t),
the kernels K; and K> are the nonsingular kernels, while the kernels K; and K, are the singular kernels
given by

1?1'2 = 1/(x - t)a (2)

The integral will be singular when the denominator in the right hand of Eq. (2) becomes zero at one
or more points in integration. In our previous work [5-6], the integral is approximated as discretized
summation with Gauss-Legendre integral formula. The numerical results of the integral equation can be
obtained by a common iterative method with given initial test functions for u(x) and v(x). Specifically,
the numerical computation method introduces the recurrence relation:

uy(x) = arbitrary real function

vo(x) = arbitrary real function 3)
Uns1(X) = f1(x) + f[Kl(x, £)F11 (Un (£, v (%)) + Ky (%, ) F1p (un (£), va (x))]d,
4
Vaa () = i) + [ 1K GG O (0,9 (30) + K (2 6Pyt (0 v GO
Consequently, the solution are obtained as the convergent values of the sequences
= i
u(x) = lim u, (x) )

v(x) = lim v, (x)

Note that the singular kernels K; and K, make it difficult to integrate numerically. To avoid the
singularity, the integral nodes t; need to be different from x, and the values of the functions u(t)
and v(t) need to be interpolated with high precision from u(x) and v(x). In the traditional interpolation
process [7], such as Newton interpolation, and spline interpolation, the step to find the location of t in
the discrete sequence x cost a lot of CPU time.

In the following, we intend to optimize and speed up the numerical calculation with two algorithm
improvements. One is to modify the interpolation method, and the other is to paralyze our code with
OpenMP in GCC. OpenMP has been very successful in exploiting structured parallelism in applications
[8-9]. Particularly article [10] introduced the fundamental design of the OpenMP specification v2.5 in
GCC. The implementation supports all the programming languages (C, C++, and Fortran), and it is
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generally available on any platform that supports Portable Operating System Interface (POSIX) threads.

This paper is organized as follows. In section 2, we briefly introduce the truncation scheme of DSE
for quark propagator in vacuum. In section 3, we describe our modified algorithms to solve the nonlinear
and singular integral equations. In section 4, we compare the numerical results, especially the cost CPU
time with different algorithms. In section 5, a short summary and outlook are given.

2. Quark’s Dyson-Schwinger Equation with BC Vertex in Vacuum
In the four-dimensional momentum (p) space, the Dyson-Schwinger equation for quark propagator in
vacuum can be given as:

a

d* A
2n6)14- X Dpo (k) Z-¥pS (D15 (4, p), (6)

S@) = Zy(iy - B+ my) + 2192 () f (

where the D,,(k =p —q) represents the full gluon propagator, I7*(q,p) represents the dressed

quark-gluon vertex. Z; is the renormalization constant for the quark-gluon vertex, while Z, is the
quark wave-function renormalization constant, y is the renormalization point. Normally, the quark
propagator can be decomposed into two scalar functions A(p?) and B(p?):

S™Y(p) = iy pA(P*) + B(p?)

With the model inputs of the gluon propagator and the effective quark-gluon vertex [6, 11], equation
(6) can be solved within the simplest truncation scheme. In vacuum, the models are usually taken as

(7

a

1
Z19*Dpe ()15 (4,P) = §(k*) D (k) = I (P, 4) (8)

where D[(,),, (k) = kiz [6p5 — %] corresponds to the Landau gauge free gluon propagator,
¢(k?) represents a model effective interaction, and I;(q,p) is an effective quark-gluon vertex.

In our work, we use the well-known Ball-Chiu (BC) ansétz for the effective quark-gluon vertex,
which satisfies the nonperturbative Ward-Takahashi identity. The BC vertex in vacuum was given in Ref
[12].

IFC@pm) =y + 2@+ Qp+ 430+ D@ v+ a0 V) + 24 + o6y ©)
where k = q —p, t = q + p, ki (i=1,2,3,4) are composite functions of the scalar functions A(p°), 4(q°),
B(q’) and B(p’) of the quark propagator:

A + A% s B(»*) — B(q®) 1= 1A(p?) — A(q?) 1 =0 (10)
- 5 2__1W' 3__§W' 4=
Note that the model effective interaction has been widely investigated [13]. In this paper, we employ

a popular infrared-dominant model, denoted as the “HF”” model, which indicates the long-range behavior
of Qin-Chang (QC) model and is defined as [14]:

M

2
O (k?) = o peKe? (11)

Hence, the renormalization constants in Eq. (6) can be set to 1. With inputs of the effective quark-
gluon vertex and the effective interaction model, the nonlinear and singular integral equations for the
scalar functions 4(p°) and B(p’) can be obtained:

dq* % (k*
A(p?) = z. + f Iyq + 1y, +1
(p ) Z1 (21_[)4, kzpz(pzAz (pz) + Bz(pz)) ( Al A2 A3)r

(12)

dq* ¢QCk?)
(2m)* k2(p2A2%(p2)+B2%(p?))

B(p*) =moz; + [ (Ipy + Igz + Ip3),



AMDS-2022 IOP Publishing

Journal of Physics: Conference Series 2449 (2023) 012004  doi:10.1088/1742-6596/2449/1/012004
with

[.. = — B KE@0-(ep)(kt) Ba*)=B®*)
Al p? k2p2 q2—p?

[ = _A@®) PPk +a* (0 )k*=q* (0 k) (k) —p? (a-k) (t-k) A(@*)-A(P?)

A2 — 2p2 k2 q2—p? (13)
[.. = AW @a+2(kagkp) AG@)+HAR?)
A3 — p2 k2 2 ’

‘t)k?—(q-k)(t-k) B(q*)—B(p?
Iy, = —A(qz) (a-) k(zq (k) (qqz_pgp ),

A(@*)+A@P?)
Ipz = 3B(q%) BT

_ k22— (k-t)? A(a$)—-A®?)
Ips = B(q?) ) q?—p?

We could find the singular kernel 1/(q>-p?) in the term Ly, Ls>, Iz and Ip;. In traditional numerical
calculation, the integral and singular equation can be solved by discretized with Gauss-Legendre integral
formula. The initial functions are set to be: 4o(p) = 1, Bo(p) = 1. The convergence criteria of the iterated
sequence is given by an accuracy ¢ that at every momentum point:

A(p) = lim A,(p) = abs(An+1(p) — An(P)) <,

B(p) = lim B,(p) = abs(Br+1(p) = Ba(p)) <¢,

3. Modified Interpolation Algorithm and Parallelization in GCC

The tricky problem in numerical computation is that the values of momentum p and q always take
different values for eliminating the singularity. Therefore, the unknown functions 4(g°) and B(q’) inside
the integral need to be interpolated with high precision from A(p’) and B(p?), which is quite time-
consuming. In the following, we optimize the numerical calculation with two algorithm improvements.

3.1. Modified Interpolation Algorithm

void main() void main()
{ {
double Ap[N],Bp[N]; double Ap[N],Bp[N];
Il... some initialization code; Il... some initialization code;
for(int i=0;i<N:i++) # pragma omp parallel for
{ for(int i=0;i<N:i++)
Ap[i]=functionA(pli]); {
Bpl[i]=functionB(pli]); Ap[i]=functionA(pli]);
} Bp[i]=functionB(pl[i]);
t t
}

Figure 1. Left : code of the “for” loop in a sequential process. Right: code of the “for” loop in a paralyzed
process with OpenMP.

First we briefly introduce the traditional interpolation method. With traditional interpolation [7],
such as Newton interpolation, and spline interpolation, one needs to find the location of q on the discrete
data array pl[i] = (i = 1,2,3...N), where N is the number of the discrete points of the outside
momentum p.
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q

|l where?
p[l] <p[2] <--<p[i-1] <p[i] <p[i+1] < <p[N]

Then with p[i] < q < p[i + 1] unknown function value F(¢°)= A(q°), B(q’) can be obtained with
linear interpolation
. o F@E+1ID - F@ED .
FID +(q = pli) X — s (<N (14)
F(pliD i=N
Normally the “searching step” costs a lot of CPU time due to many logical operations. In this work,

we will use a modified interpolation method. In particular, the integral nodes-momentum q are set and
saved as array q[i] = (i = 1,2,3...N), with the relationship between array p[i], and array q[i]:

pl1] <q[1l] <p[2] <. <p[i—1] <q[i —1] <p[i] <--q[N —1] <p[N] < q[N] (15)

In this modified interpolation method, we use equation (15) to replace the traditional “searching step”,
then a lot of CPU time for logical operations will be saved and the unknown function F(q%)= A(¢’),
B(q’) can be obtained directly.

F(q) =

S P4 - FEED
FOLD + (@l —pli) X — = i<W, 16)

F(pli]) L=N,

F(qliD) =

3.2. Automatic Parallelization with OpenMP

In each step of the iteration, we need to calculate functions A, ,4(p) and B, ,;(p)at every momentum
p[i] which is done by a “for loop” as shown in the left panel of Figure 1. However, because N - the
number of momentum p[i] is very large, it is quite time-consuming to complete the loop. In this work,
we use OpenMP to paralyze our code, following the standard method in the article[10]. The code of a
normal “for” loop is shown in the left panel of figure 1, where function A(p[i]) and function B(pl[i]) are
subroutines computing the right hand of the equation (13). Clearly, function A(p[i]) and function B(p[i])
for each p[i] run independently from those for other momenta. Therefore, we can split the “for” loop
and assign them to multiple CPU cores. The right panel of Figure 2 shows how OpenMP helps us do
it. The parallelization of the code helps us to split the “for” loop workload across multiple threads, with
each thread running on different cores independently. Consequently, the total CPU running time can be
significantly decreased.

4. Numerical Results

For numerically solving the coupled system in equation (13), two parameters D and o in the effective
interaction in equation (11) need to be fixed. We take the parameters D = 0.550 and ® = 0.678 from
reference [5] which are determined by fitting meson properties with the BSE approach. With the above
parameters and the ansétz, the DSE for quark propagator in vacuum with four different algorithms are
investigated: Algorithm 1) traditional interpolation with sequential processing. Algorithm 2) modified
interpolation with sequential processing. Algorithm 3) traditional interpolation with parallel processing.
Algorithm 4) modified interpolation with parallel processing. For each algorithm, there are three
parameters for controlling the computational accuracy and CPU time: the length of array p[i] = (i =
1,2,...N), the number M of the nodes in the Gauss-Legendre integral integration formula, and the
accuracy & for iteration convergence.
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Figure 2. Left: quark’s scalar function A(p) evolving with iterations. Middle: quark’s scalar function
B(p) evolving with iterations. Right: the quark’s scalar function A(log p=-2.5), A(log p=0.0), B(log p=-
2.5) and B(log p=0.0) evolving with iterations. The results are the same with all four algorithms.

Table 1. Costed CPU time with different algorithms. All codes are run on a computer with
Inter(R) Core(TM) i7- @1.00GHz on GCC version 9.3.0 (Ubuntu 9.3.0-10).

N M & algorithm %CPU iteration times ~ CPU time(s)
150 100  0.005  algorithm.1 100.0 11 65

150 100 0.005 algorithm.2  100.0 11 6

150 100 0.005 algorithm.3  782.0 11 9

150 100 0.005 algorithm.4  792.0 11 1

It is noted that the four algorithms lead to the same solution with the same number of iterations. In
Figure 2 we show the quark’s scalar functions A(p) and B(p) evolving in each iteration step. All are the
same with different algorithms Our new algorithms just improve the efficiency of numerical
computation, while the process and the result remain the same.

Table 1 shows the costed CPU time of our code with various algorithms. Clearly, both the modified
interpolation method and parallelization with OpenMP can save a lot of computation time. Comparing
the result of algorithm 2 and algorithm 1, the modified interpolation method speeds up the code 10 times.
Comparing the result of algorithm.3 and algorithm.1, the parallelization with OpenMP speeds up the
code about 7 times, which identifies with the computation ability of my computer (Intel i7).
Comparing the result of algorithm.4 and algorithm.1, the combination of the modified interpolation
method and the parallelization with OpenMP speeds up the code about 60 times.

5. Summary

In summary, two improved methods to numerically solve the nonlinear and singular integral equation
of the quark propagator in vacuum are proposed. One is t a modified interpolation method, the other is the
parallelization of our code with OpenMP in GCC. With our new algorithms, we can obtain the same
results with the same accuracy, but speeds up to several tens of times, with our present hardware of
computers. Our new algorithms can also be used in a more complex system, such as the coupled Dyson-
Schwinger equations for both the quark propagator and the gluon propagator [6], or for the quark
propagator at finite chemical potential and/or temperature [13]. In the latter case, the propagator
functions will depend on more variables, and two-dimensional interpolation will cost more computation
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time. Then the application of the two new algorithms will be more efficient for solving the complex
system.
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