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A salient feature of quantum mechanics is the inherent property of collective quantum motion, when 
apparent independent quasiparticles move in highly correlated trajectories, resulting in strongly enhanced 
transition probabilities. To assess the extend of a collective quantity requires an appropriate definition 
of the uncorrelated average motion, often expressed by single particle units. A well known example 
in nuclear physics is the Weisskopf unit for electromagnetic transitions which reveals different aspects 
of collective motion. In this paper we define the corresponding single particle unit for alpha decay as 
induced by four uncorrelated/non-interacting protons and neutrons. Our definition facilitates an unified 
description of all alpha decay processes along the nuclear chart, revealing a simple mass dependence. The 
comparison of the uncorrelated decay rates with the experimentally observed ones, shows a significant 
enhancement of the decay rates pointing towards collective alpha like correlations in the nuclear ground 
state. As a limiting case, the formalism presented here is applied to proton decay revealing its single 
particle nature.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
Alpha decay has been one of the most rewarding subjects in 
physics since Gamow was the first to apply the probabilistic in-
terpretation of quantum mechanics to describe the penetrability of 
the Coulomb barrier by the α-particle [1]. The subsequent develop-
ments upon radioactive particle decay in nuclear physics have been
outstanding [2,3]. At present, α-decay is crucial for the identifica-
tion of unstable nuclei far from stability, particularly super heavy 
and proton rich nuclei [4]. Yet there are unsolved fundamental 
problems even today: One of these is whether the nuclear config-
uration interaction shell model is able to describe the clustering of 
the four nucleons which eventually constitute the α-particle from 
a microscopic point of view.

The understanding and quantification of collective motion in 
atomic nuclei have a long history. Enhanced decay probabilities in 
electromagnetic transitions are used to classify different excitation 
modes such as vibrations and rotations. These classifications of col-
lectivity can be made through a reliable basic quantity, namely the 
single-particle Weisskopf unit (W.u.) [5]. Such a common reference 
enables one to differentiate between decays that are non collec-
tive and those that involve the coherent motion of many nucleons. 
Although called “unit”, the W.u. has not an universal value, since 
it depends upon the mass of the nucleus in question as well as 
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upon the character of the transition (Eλ or Mλ). Similarly, the col-
lectivity of pairing correlations and its analogue to deformation in 
terms of symmetry breaking has been discussed to great extent 
in nuclear physics, see e.g. Refs. [6,7]. For alpha decay, one has 
found that the pairing interaction is important to describe the al-
pha clustering at the nuclear surface. Still, the pairing collectivity 
is far from sufficient to account for the alpha decay width in a 
microscopic fashion [3]. Indeed, several studies point towards the 
presence of alpha clustering in atomic nuclei [2,3].

To assess and describe the collectivity of the clustering of two 
neutron and protons into an alpha particle we define in this letter 
an unit which is equivalent to the W.u. We call it particle decay 
unit, p.d.u. The p.d.u. relates the measured probability of α de-
cay to an averaged single configuration in the description of the 
mother nucleus. Our definition enables the appropriate compari-
son of all hitherto observed l = 0 α decay on the same footing, 
avoiding the multitudes of effective quantities found at present in 
the literature [8–10]. In addition, the formalism presented in this 
paper will enable one to quantify the role played by α clustering 
in heavy nuclei.

Below we present in detail the formalism. We start with the 
Thomas expression for the α decay width [11],

�α(R) = ln 2h̄

T1/2
= ln 2h̄2k

μ

R2|Fα(R)|2
|H+(χ,ρ)|2 (1)
l
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which often is written as

�α(R) = h̄2 R

μ
|Fα(R)|2 Pα(R) (2)

where Pα(R) = kR/|H+
l (χ,ρ)|2 is the penetrability of the already 

formed α particle through the Coulomb and centrifugal fields 
starting at the point R , which is the distance between the mass 
centers of the daughter nucleus and α cluster. In these equations μ
is the reduced mass, H+

l is the Coulomb-Hankel function describ-
ing the two-body system in the outgoing channel. Its arguments 
are ρ = μνR/h̄ and χ = 2Zα Zde2/h̄ν with ν the outgoing velocity 
of the α-particle. Zα and Zd are the charge numbers of the al-
pha and daughter nucleus, respectively. The function Fα(R) is the 
α formation amplitude, i.e., the mother wave function describing 
the motion of the α cluster in the field induced by the daugh-
ter nucleus at the point R . It is important to stress the difference 
between the exact treatment and the effective treatments mostly 
used in the literature. In Eq. (1) the evaluation of the forma-
tion amplitude is assumed to be performed within a microscopic 
framework [12–14]. At the point R in Eq. (1) the α-particle is al-
ready formed and only the Coulomb and centrifugal interactions 
are relevant.

In our formalism the formation amplitude is determined fol-
lowing the microscopic treatment [3], i.e.,

Fα(R) =
∫

dR̂dξddξα[	d(ξd)φα(ξα)Yl(R̂)]∗	m, (3)

where ξd and ξα are the internal degrees of freedom determining 
the dynamics of the daughter nucleus and the α-particle. The wave 
functions 	d(ξd) and 	m(ξd, ξα, R̂) correspond to the daughter and 
mother nuclei respectively. The intrinsic α-particle wave function 
has the form of a n = l = 0 (0s)4 harmonic oscillator eigenstate 
in the neutron-neutron relative distances rnn , as well as in the 
proton-proton distance rpp and in the distance rnp between the 
mass centers of the nn and pp pairs [3],

φα(ξα) =
√

1

8
(
να

π
)9/4exp[−να(r2

nn + r2
pp + 2r2

pn)/4]Sα (4)

where Sα is the α-spinor corresponding to the lowest harmonic 
oscillator wave function. The total angular momenta are L = S = 0. 
The quantity να = 0.574 fm−2 is the α-particle harmonic oscillator 
parameter [15].

We consider decays involving uncorrelated states of even-even 
nuclei. We will focus our treatment on ground-state to ground-
state transitions, implying that l = 0 and Yl=0(R̂) = 1/

√
4π . Un-

correlated decay means that the mother nucleus consists of the 
daughter nucleus times a pure configuration of a pair coupled to 
zero angular momentum times a similar proton pair, i.e.

	m(ξd, ξα, R̂) = (ϕν(r1)ϕν(r2))00(ϕπ (r3)ϕπ (r4))00	d(ξd) (5)

Writing the single-particle wave functions ϕi(r) in their radial, an-
gular and spin components, these last two are canceled in the 
angular and spin integrals in Eq. (3). In order to perform the ra-
dial part of this integral it is convenient to write the mother wave 
function in terms of the relative coordinates rnn , rpp , rpn and the 
center of mass coordinate R. Since the Jakobian corresponding to 
the transformation from absolute to relative coordinates in the in-
tegral (3) is unity one can write

	m(ξd, ξα, R̂) = φ(rnn)φ(rpp)φ(rpn)φ(R̂)	d(ξd) (6)

where φ are the wave functions in relative coordinates. These func-
tions may diverge at r = 0 and therefore we use the standard 
2

function u(r) = rφ(r). Following the method employed by Weis-
skopf, we assume that the radial single-particle wave function u(r)
in Eq. (5) is constant inside the mother nucleus, with radius R . 
As a result, the relative and center of mass radial wave functions 
inside the mother nucleus are constants. Notice that according to 
our prescription the nn, pp and pn wave functions vanish outside 
the nuclear surface, while φ(R), the wave function corresponding 
to the motion of the α particle center of mass, is constant inside 
the nucleus, but outside corresponds to an outgoing α particle, as 
seen below.

The normalization condition provides

R∫
0

(u(r)/r)2r2dr = RC2 = 1 (7)

where the constant C is the same for the pp, nn, pn and the center 
of mass wave functions inside the mother nucleus resulting in C =
1/

√
R .

The formation amplitude in Eq. (3) acquires the form,

Fα(R) =
∫

dR̂

∫
r2

nndrnnr2
ppdrppr2

pndrpn

√
1

8
(
να

π
)9/4

×e−να(r2
nn+r2

pp+2r2
pn)/4 1√

4π

C4

rnnrpprpn R

=
∫

rnndrnnrppdrpprpndrpn

√
1

8
(
να

π
)9/4

×e−να(r2
nn+r2

pp+2r2
pn)/4

√
4π

R3
(8)

It is straightforward to perform the radial integrals. Thus for rnn

one obtains,∫
rnndrnnexp[−ναr2

nn/4] = 2

να
. (9)

The remaining integrals can be calculated in the same fashion. 
We are interested in the formation amplitude at the radius R and 
therefore integrate over the angle R̂ (which provides a factor 4π ). 
The formation amplitude at the nuclear surface becomes,

Fα;pdu(R) =
√

1

8
(
να

π
)9/4

√
4π

C4

R

4

ν3
α

=
√

8ν
−3/4
α π−7/4

R3
(10)

which defines the particle decay unit (p.d.u.). It measures the α
decay formation amplitude for decays from four uncorrelated sin-
gle particle states. With R = 1.2(A1/3 + 41/3) fm one obtains

Fα;pdu = 0.335/(A1/3 + 41/3)3 fm−3/2. (11)

In order to clarify the procedure that we are following here it is 
worthwhile to point out that the neutrons and protons form the α
particle at the nuclear surface due to the clusterization induced by 
the pairing interaction. As Weisskopf did, we assume that inside 
the nuclear surface the α particle wave function has the constant 
value u(r) = C . Outside the nuclear surface, i.e. at r > R (where 
only the Coulomb and centrifugal interactions are relevant), the 
wave function of the outgoing α particle becomes

u(r) = rφ(r) = N[H+
l (χ,ρ)] (12)

where N is the matching constant. The independence of the 
Thomas expression upon the distance R (as pointed out above, R
should be beyond the nuclear surface) has often been used in mi-
croscopic calculations of α decay to probe whether the results are 
reliable [16].
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Fig. 1. α-particle formation probabilities in p.d.u. for the decays of the even-even 
isotopes as a function of the neutron numbers N of the mother nuclei.

Following Eq. (11), we extract the α decay formation ampli-
tude measured in p.d.u. from the ratio between experiment and 
the corresponding p.d.u. value. For that we firstly extract the ab-
solute value of the α decay formation amplitude from experiential 
decay half-life as

|F Expt.
α (R)| = (ln 2)1/2

Rν1/2

|H+
l (χ,ρ)|

(T Expt.
1/2 )1/2

. (13)

Above “experimental” α decay formation amplitude is then ex-
pressed in p.d.u. as [17]

Fα(pdu) = |F Expt.
c (R)|
Fα;pdu

. (14)

Similar to the W.u. in electromagnetic decay, values that exceed 
the p.d.u. by an order of magnitude reflect an enhancement of α
decay, pointing towards the presence of alpha clustering as a fun-
damental collective mode.

The value of the α formation amplitudes in p.d.u. of known α
emitters in the mass A = 180 region and beyond are depicted in 
Fig. 1. The experimental half-lives are taken from Ref. [18] and ref-
erences therein. The figure reveals distinctive features characteriz-
ing α decay. Thus and most conspicuous, the decay rates all exceed 
by far the value of a single particle unit. This feature indicates the 
presence of α clustering due to the correlated motion of neutrons 
and protons in the nuclear field generated by the daughter nucleus. 
This is attested by the need of adding cluster components in the 
shell model wave function in order to account for the experimental 
decay width [2,19]. Other important feature revealed by the figure 
is the shell closure at N = 126, reducing the probability for α clus-
tering. For heavier isotopes, i.e. above the magic number 126, the 
p.d.u. approach a constant value, somewhat above 20 p.d.u. When 
N > 126, and Z > 82, neutrons and protons move above the magic 
shell gaps in similar orbits, contributing coherently to the pairing 
mode, thus enhancing the nucleon-nucleon clustering.

Below the magic number N = 126 the ground states of Po, 
Hg and Pb are determined by neutron hole excitations. Therefore 
continuum configurations, lying high in the spectrum, do not con-
tribute appreciably to the clusterization process. As a result the 
collectivity of α clustering is reduced. This reduction of clustering, 
explains the reduced p.d.u. value, of about 10 units, seen in the 
Figure. Below N = 126 one can recognize two decay branches cor-
responding to the Po isotopes. The ground state to ground state de-
cays of neutron deficient Po isotopes are strongly hindered due to 
the different deformations in the mother and daughter nuclei and 
the reduced overlap between their wave functions, see Ref. [20,21].

The mid-shell nuclei with Z > 84 show significant increase in 
p.d.u. Apparently the onset of deformation in those nuclei results 
3

Fig. 2. α-decay formation amplitude in p.d.u. as a function of N for neutron-
deficient Te (circle) and Xe (square) above 100Sn. Open symbols correspond to the 
decays of α particles carrying orbital angular momentum l = 2. The experimental 
data are extracted from Ref. [25–28].

in an enhanced collectivity corresponding to α clustering. In par-
ticular, the α decay of the deformed ground state of 188Po to the 
deformed 0+

2 state in 184Pb shows the largest value in p.d.u. and
hence the largest collective α clustering.

We have evaluated the α decay formation amplitude for the 
magic nucleus 208Pb, which is stable due to low Q value, following 
the microscopic treatment as described in Ref. [16]. What is strik-
ing is that the calculated α decay formation amplitude is nearly 
unitary in p.d.u. This result is quite reasonable since one expects 
minimal collectivity in the nucleus 208Pb. It further validates the 
approximation we applied in deriving Eq. (10).

Fig. 1 reveals similar trends as the formation amplitude de-
picted in Ref. [3]. Indeed, the formation amplitude is calculated in 
a similar fashion as the p.d.u. is derived. The profound difference 
is that the p.d.u. enables an unified description, that is not de-
pendent on model wave functions used to calculate the formation 
amplitude. In particular, the p.d.u. elucidates the physical process 
of alpha clustering, resulting in a global formula.

The collectivity manifested in alpha decay, goes beyond stan-
dard pairing collectivity. In addition to the correlated motion of 
protons and neutrons in time reversed orbits, one deals with the 
one induced by neutrons and protons moving coherently as con-
stituents of the alpha particle itself. To account for those correla-
tions, alpha-cluster components need to be present in the wave 
function. Alternatively, presentations where these correlations can 
be treated explicitly.

In Fig. 2 we show the formation amplitudes of nuclei above 
100Sn in p.d.u. The alpha decay properties of those nuclei have 
attracted much attention in recent studies because an expected su-
perallowed α decay process here. This expectation is due to the 
enhanced neutron-proton interaction in nuclei close to the N = Z
line and hence an enhanced clustering [23,24,26,29]. The definition 
of p.d.u. enables now a direct comparison between these very dif-
ferent mass regions and to assess different aspects of collectivity 
on the same footing. Fig. 2 reveals that the formation amplitude of 
those nuclei follows the average general trend of the α available 
experimental data. Still, rather large fluctuations and uncertainties 
are attached to these values. Further experimental investigations 
are essential to clarify whether this mass region indeed experi-
enced enhanced clustering effects.

The systematics of formation probabilities in available α decay 
data shows an increasing trend with decreasing mass number [3]. 
As our formula for p.d.u. shows, the formation of α particles scales 
with the nuclear volume, 1/A. This important feature revealed by 
our results, needs to be taken into account in studies of α decays 
of trans-tin nuclei, in particular when comparing to heavy nuclei 
like e.g. 212Po.

One can employ the α decay formation amplitude in Eq. (10) to 
go one step further and evaluate even the α decay width in p.d.u. 
This can be easily evaluated by using Eq. (2). Thus, the l = 0 decay 
width in p.d.u. is,
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Fig. 3. Systematics of α-decay formation amplitudes in p.d.u. in odd-A nuclei as a 
function of A with l = 0 (square) and l > 0 (triangle) in comparison of those for l =
0 even-even nuclei (circle). The experimental data are extracted from Ref. [27,28].

�α;pdu(R) = h̄2k

μ

R2 F 2
α;pdu(R)

|H+
0 (χ,ρ)|2

≈ h̄2k

μ

R2 F 2
α;pdu(R)

e2
[
π/2−2(ρ/χ)1/2+1/3(ρ/χ)3/2]·cotβ

(15)

where cos2 β = ρ/χ . It has to be noticed that this width depends 
upon the decay Q -value, analogous to the energy dependence of 
the EM transitions. For details of the approximate form of the 
Coulomb function used in this equation, see Ref. [32].

The l-dependence of the alpha decay is not considered in our 
definition of p.d.u. That introduces an explicit l-dependence in the 
penetrability through the Coulomb and centrifugal barriers as well 
as in the formation amplitude (see, the Yl term in Eq. (3)). The 
l �= 0 alpha formation amplitude is difficult to evaluate without ex-
plicitly considering the angular momentum coupling of the valence 
particle wave functions entering Eq. (3) which, however, mostly re-
flect nuclear structure features. Therefore one can still expect that 
the p.d.u. can provide an useful measure for the collectivity in 
those l �= 0 cases. We have found 8 cases of alpha decay from ex-
cited states of even-even nuclei with l �= 0. In most of those cases 
the α formation measured in p.d.u. is significantly smaller than 
the l = 0 cases. A typical example is the non-collective 18+ state in 
212Po which has a p.d.u. value 12 orders of magnitude smaller than 
that of the ground state. A similar reduction is expected for the de-
cays from non-collective high-spin isomeric states [22]. Many more 
l �= 0 cases can be found in α decays from odd-A and odd-odd nu-
clei. In Fig. 3 we plotted α-decay formation amplitudes in p.d.u. in
odd-A nuclei in comparison of those for even-even nuclei. In gen-
eral, the p.d.u. values for l = 0 decays from odd nuclei are slightly 
smaller but comparable with those of neighboring even-even nu-
clei, where the reduction can be attributed to the reduced pairing 
collectivity. On the other hand, the p.d.u. values for l �= 0 decays 
can be significantly smaller. As can be seen from the figure, it falls 
below one in many cases. The case with the smallest p.d.u. value, 
and consequently the one with least collectivity, corresponds to 
the decay from 9/2− state in 209Bi which is a rather pure single-
particle state, i.e. with no collectivity. The odd-odd nuclei show a 
similar trend.

It is still difficult to extend our alpha-decay derivation to heav-
ier clusters due to the increasing complexity of the internal cluster 
constituents. On the other hand, one may test our approach for the 
limiting case of proton decay. Since the proton is already a con-
stituent in the nucleus, the formation amplitude is just the proton 
wave function. For details, see Ref. [3]. With the same assumption 
as above the uncorrelated proton decay formation has the simple 
form,

F p;pdu(R) = 1
3/2

. (16)

R

4

Fig. 4. Proton decay formation amplitude in p.d.u. extracted from known data [30,
31] on decays from ground states and low-lying isomeric states.

Using this value, in Fig. 4 we show the proton formation ampli-
tude in p.d.u. As expected, the p.d.u. values are smaller than unity. 
This is because a given p.d.u. value indicates a partial occupation of 
the state corresponding to a spectroscopic factor, upon which the 
emitted proton is moving in the daughter nucleus before decay-
ing. Most decays in the figure show p.d.u. values between 0.1 and 
0.8. The largest values correspond to the decays from the odd-odd 
nuclei 144,146Tm, with values of 0.9 and 1.2, respectively. This en-
hancement is suggested to arise from the coupling of the decaying 
proton with the odd neutron [33].

In conclusion, we presented in this paper the single-particle 
limit of the α formation amplitude, which we call particle de-
cay unit (p.d.u.). We also presented the value of the corresponding 
alpha-decay width in p.d.u. This unit enables an unified description 
of alpha-decay in nuclei. Thus a large value of the alpha forma-
tion amplitude in p.d.u. indicates that a collective mechanism is 
involved. The decay pattern reveals clearly that a truly microscopic 
description requires the explicit presence of α clustering elements 
in the nuclear wave function. An important feature revealed by 
our formalism is that the α formation amplitude in p.d.u. scales 
with the nuclear volume. Competing decay mechanisms within the 
same mother nucleus can be understood as changes of α cluster-
ing at the surface. One may expect a similar effect as induced by 
the competition between pairing and deformation in two-nucleon 
transfer reactions (see, e.g., Ref. [34]). As a limiting case and test 
of our approach, we apply the model to proton decay showing 
that this decay is uncorrelated. The definitions presented in this 
paper can be useful for quantifying the role played by α cluster-
ing in heavy nuclei, which may be expected to exhibit a strong 
correlation to the slope of the nuclear symmetry energy and the 
underlying nuclear equation of state [35]. The present definition 
aims to greatly enhance the understanding of α correlations in nu-
clei.
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