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Abstract: The majority of the recent research on text similarity has been focused on machine learning

strategies to combat the problem in the educational environment. When the originality of an idea is

copied, it increases the difficulty of using a plagiarism detection system in practice, and the system

fails. In cases like active-to-passive conversion, phrase structure changes, synonym substitution, and

sentence reordering, the present approaches may not be adequate for plagiarism detection. In this

article, semantic extraction and the quantum genetic algorithm (QGA) are integrated in a unified

framework to identify idea plagiarism with the aim of enhancing the performance of existing methods

in terms of detection accuracy and computational time. Semantic similarity measures, which use the

WordNet database to extract semantic information, are used to capture a document’s idea. In addition,

the QGA is adapted to identify the interconnected, cohesive sentences that effectively convey the

source document’s main idea. QGAs are formulated using the quantum computing paradigm based

on qubits and the superposition of states. By using the qubit chromosome as a representation rather

than the more traditional binary, numeric, or symbolic representations, the QGA is able to express a

linear superposition of solutions with the aim of increasing gene diversity. Due to its fast convergence

and strong global search capacity, the QGA is well suited for a parallel structure. The proposed model

has been assessed using a PAN 13-14 dataset, and the result indicates the model’s ability to achieve

significant detection improvement over some of the compared models. The recommended PD model

achieves an approximately 20%, 15%, and 10% increase for TPR, PPV, and F-Score compared to GA

and hierarchical GA (HGA)-based PD methods, respectively. Furthermore, the accuracy rate rises by

approximately 10–15% for each increase in the number of samples in the dataset.

Keywords: plagiarism detection; semantic analysis; optimization; quantum evolutionary algorithms

1. Introduction

Over the last few decades, forensic linguistics has developed and used a type of
language analysis that has helped put in place reliable ways to find plagiarism. Forensic
linguistics research, which looks at how language affects the law, has shown that it is
possible to figure out how likely it is that two or more texts were written independently.
So, this analysis can be used as both a way to find out more and as proof, not just in legal
situations but also in ethical ones [1–5]. Today, more and more cases of plagiarism are being
reported. This could be because of one or more of the following: easy access to information;
intense pressure to publish in academia for career advancement; lack of confidence and
writing skills; or writing manuscripts quickly or under stress to meet a deadline. Also,
because authors do not know what plagiarism is, they do not know that it is wrong to
copy and paste word-for-word, even if they give a reference to the original text. Plagiarism
detection (PD) methods look for text that is similar or the same between two or more
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documents [6]. As most plagiarists reuse the text from other source papers to disguise
plagiarism by changing terms with synonyms or paraphrasing, and maybe by rearranging
the sentences, detecting plagiarism can be a very difficult process. On the other hand, it has
inspired the creation of automated detection methods. Publishing houses have recently
shown an eagerness to combat plagiarism [7].

Current PD approaches might have some shortcomings that reduce their effective-
ness in detecting plagiarized texts. Here are the issues [8]: (1) Most algorithms can only
identify word-for-word plagiarism, while others can detect random alterations. Online
PDs fail or lose efficiency at greater degrees of complexity [9]. (2) Plagiarists have it easier
with automatic translators, summarizers, and other tools. (3) Idea plagiarism detection
tools are ineffective [10]. (4) Most PD methods may not detect structural alterations [11].
(5) Passage-level detections may lack linguistic, semantic, and soft computing tools. Syn-
tactic, semantic, structural, and linguistic features must be evaluated to reveal hidden
obfuscations. (6) Finally, there are not enough benchmark data to evaluate plagiarism
techniques [12]. Plagiarism can take place in two ways: (1) Literal plagiarism, in which the
plagiarist uses all or part of another person’s work in their own. (2) Semantic plagiarism
(intelligent) is when someone steals the content of another person’s work but uses different
words to describe it.

Plagiarism can be as simple as copying and pasting or as complicated as changing the
words around. See [8] for more information. Textual documents can be divided into two
basic types based on how similar their languages are or how different they are. These are
monolingual and cross-lingual (CL) [13,14]. There are not many ways to find CL plagiarism
because it is hard to find closeness between two text segments in different languages [14].
Unlike its multilingual counterpart, monolingual plagiarism detection focuses on pairs of
languages that are mutually exclusive, such as English and English. This kind of detection
approach constitutes the vast majority [14]. Detection may be further subdivided into the
intrinsic type and the extrinsic type based on whether or not external references are used.
Intrinsic detection is a document analysis technique that identifies potentially harmful files
based only on linguistic features such as authorial style, paragraph structure, and section
formulations [8]. In extrinsic detection, the suspect document is compared to a database or
collection of source documents.

Optimization is an interesting area of research. In general, there are two types of
optimization solution methods: deterministic and stochastic methods. Every method has
its own pros and cons [15]. In deterministic methods, the initial values of the parameters
and the conditions completely determine the model’s output. Some randomness is built into
stochastic methods [16]. Although various random approaches have been developed, such
as swarm intelligence, genetic algorithms are becoming more popular for solving complex,
large-scale optimization issues [17]. The quantum genetic algorithm (QGA) is an innovative
evolutionary algorithm that combines quantum computing with conventional genetic
algorithm technology. The approach can solve the same types of problems as the traditional
genetic algorithm, but it does it far more quickly because of quantum parallelization and
the entanglement of the quantum state, which speeds up the evolutionary process. A global
search for a solution may be performed with quick convergence and a small population size
by combining the probabilistic mechanism of quantum computing with the evolutionary
algorithm. These methods have proven effective in a broad range of combinatorial and
functional optimization problems [18–20].

1.1. Problem Statement

Even if that is true, putting plagiarism in a legal context is hard because you have
to find strong proof that a suspicious text has been copied. When the text is copied and
pasted word-for-word, it is usually enough to compare the suspect text to the possible
source text to find the overlap. Most cases, though, are much more complicated. New
ways to find plagiarism lead to new ways to avoid being caught, which in turn require new
ways to find plagiarism. Plagiarism is when someone passes off someone else’s work as
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their own without giving credit. Plagiarism covers a wide range of things, from copying
someone else’s words to copying someone else’s ideas. Recently, there have been many PD
approaches based on semantic similarity and sentence-based concept extraction that may
facilitate the discovery of paraphrases. To detect instances of plagiarism, several algorithms
delve into the document’s semantic concept by analyzing factors like the author’s writing
style, the structure of the paragraphs, the arrangement of the sections, etc. Obfuscated
plagiarism cannot be prevented using these techniques, however.

1.2. Contribution and Methodology

In this paper, a modified PD algorithm is utilized to detect plagiarism using the
semantic concept and the QGA. Adopting the QGA inside the PD model can facilitate the
optimization of a similarity search. Furthermore, the QGA is employed to find sentences
that briefly show the concept of the source document. On the other hand, semantic-level
concepts are captured by applying semantic similarity metrics, which depend on the
WordNet database for extracting semantic information. How successfully individuals are
mapped to fitness metrics is what gives the QGA its usefulness in our context. Since all
quantum individuals are reduced to a single solution during the measurement of the fitness
function, the benefits disappear if the mapping is one-to-one. More individual-to-fitness
mappings mean a higher potential diversity benefit for the QGA.

The remainder of this paper consists of the following sections: Some background on
quantum genetic algorithms is briefly discussed in Section 2. The third section provides a
literature review of relevant publications for the PD framework. The suggested approach is
presented in Section 4. The assessment of the suggested technique, including results and
discussion, is presented in Section 5. The study is concluded, and possible future directions
are discussed in Section 6.

2. Preliminaries

In this section, we will go through the fundamental concepts of quantum genetic algo-
rithms that will be used in the proposed framework. Primarily, evolutionary algorithms
(EAs) are stochastic searches and optimization techniques inspired by the concepts of natu-
ral biological evolution. EAs have many advantages over more conventional optimization
techniques, including their scalability, versatility, and independence from domain-specific
heuristics. However, it is challenging to incorporate the characteristics of population di-
versity and selection pressure concurrently into EAs like the genetic algorithm (GA). In
the face of rising selection pressure, the search narrows in on the best individuals in the
population, but the resulting exploitation reduces genetic variety. The reason for this is that
deterministic values are used in the definition of representations of EAs [20,21].

QGAs are a hybrid of conventional GAs and quantum algorithms. The superposition
of quantum mechanical states, or “qubits”, is the primary foundation for these. Here,
instead of being represented as a binary string, for example, chromosomes are vectors of
qubits (quantum registers). This means that a chromosome may stand in for a superposition
of all possible states. The QGA is distinguished by its simultaneous capacity for quick
convergence and global search. Quantum computing concepts and principles like qubits
and a linear superposition of states form the basis of the QGA [22,23]. One way to express
the status of a qubit is as follows:

|Ψ〉 = α|0〉+ β|1〉 (1)

|α|2 + |β|2 = 1 (2)

The probabilities of the qubit being in the ‘0’ and ‘1’ states are specified by the expressions

|α|2 and |β|2, respectively, where α and β are complex numbers describing the probability
amplitudes of the two states. Information on the states of a system may be stored in a system
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of m-qubits. However, a quantum state collapses to a classical one upon observation [24].
For m-qubits, the representation is:
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The current system status may be represented by:
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This allows for eight possible states of information storage inside the three-qubit machine.
Evolutionary computing with a qubit representation offers a more diverse feature than
conventional approaches since it may express the superposition of states. While in classical
representation at least eight chromosomes are needed to represent a state, just one qubit
chromosome is needed to represent eight states. Convergence may also be attained using
the qubit format. The qubit chromosome converges to a single state and loses its distinctive

feature of diversity when either |αi|2 or |βi|2 approaches 1 or 0. Therefore, it is possible
for the qubit representation to have both exploratory and exploitation properties [24]. The
structure of the QGA is described in Algorithm 1 [21,24].

Algorithm 1: QGA Procedure

Begin

t = 0 Initialize Q(t)
Make P(t) by observing Q(t) states

Evaluate P(t)
Save the best solution among P(t)
While (not termination-condition) do

Begin

t = t + 1

Make P(t) by observing Q(t− 1) states

Evaluate P(t)
Update Q(t) using quantum gates U(t)
Store the best solution among P(t)

End

End

The QGA maintains a population of qubit chromosomes, Q(t) =
{

qt
1, qt

2, qt
3, . . . ., qt

n

}

at generation t, where n is the population size, m denotes the total number of qubits
and indicates the string length of the qubit chromosome, and qt

j is the definition of a

qubit chromosome:
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where Sk is the k-th state represented by the binary string (x1x2 . . . . . . xn), xi, i = 1, 2, . . . .m,
is either 0 or 1, and θ is the rotation angle. The effectiveness (fitness) of each solution is
ranked. Then, among the available binary options, the P(t) is chosen as the best possible
starting point and saved. Q(t) uses the binary solutions and the best-stored solution to
construct an updated solution, which is then processed via the relevant quantum gates
U(t). To solve real-world issues, we may tailor the design of quantum gates to meet
specific needs.

3. The State of the Art

Plagiarism often falls into one of three categories: (1) If the original texts are available,
the study centers on comparing the suspect text(s) to the potential originals to uncover
linguistic evidence to infer that the suspect text is truly a derivative or original; (2) if the
source texts are unknown but plagiarism is suspected, the analysis focuses on determining
whether the material in question is plagiarized or not based on its inherent stylistic evidence;
or (3) if two or more texts are suspected of joint rather than individual composition, the
linguistic study will center on determining whether any probable overlap between the texts
is coincidental or the consequence of collaboration. Therefore, linguistic studies seek to
determine whether instances of textual overlap across various papers are suggestive of
plagiarism and if such overlap constitutes fraudulent behavior [1–5].

To aid in the building of the suggested model, this section discusses a few related PD
models and plagiarism prevention efforts from the cited literature. Figure 1 shows the
taxonomy of the existing PD models. In Ref. [25], the authors developed an approach based
on Semantic Role Labeling (SRL) to determine semantic similarity between texts. All of
WordNet’s ideas were combined into one node called the “topic signature node,” which
instantly captures suspicious elements from documents. This method identifies copy–paste
and semantic plagiarism, synonym substitution, phrase restructuring, and passive-to-active
voice changes. Hence, since not all arguments impact the PD process, the fuzzy inference
system should be used to increase the similarity score that argument weighting improves.

 

Figure 1. Taxonomy of existing PD models.
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In Ref. [7], the authors studied sentence ranking for PD and SRL. Vectorizing the mate-
rial generates suspicious and original sentence pairings. Pre-processing, candidate retrieval,
sentence rating, SRL, and similarity detection are the five stages of the approach. The pro-
posed technique leverages SRL to determine the semantic functions of each sentence word
based on its verb. This depends on the word’s semantic meaning. The algorithm recognizes
copy–paste, close copy, synonym substitution, phrase reordering, and active/passive voice
conversion faster and more accurately. It is unknown what degree of syntax is required
to provide a thorough study of semantic roles and how the state of the art constrains SRL
tagging and parsing performance.

In Ref. [26], the semantic and syntactic relationships between words are integrated.
This strategy improves PD because it avoids picking source text sentences with high
similarity to suspect text sentences with dissimilar meanings. It can identify copied text,
paraphrases, sentence translations, and word structure changes. This approach cannot
discriminate between active and passive sentences, however. In Ref. [27], the authors
suggested a fuzzy semantic-based similarity approach for detecting obfuscated plagiarism.
After feature extraction, the text characteristics are entered into a fuzzy inference system,
which models semantic similarity as a membership function. Once the rules have been
evaluated, the results are averaged to obtain a single score that indicates how similar two
texts are. The technology detected literal and disguised plagiarism. The system cannot
generalize and is not resilient to topological changes. Such modifications need rule-based
adjustments and an expert to develop inference rules.

Another approach was suggested in [28] which treated document-level-text PD as
a binary classification issue. The original source of a document was identified and that
information was used to determine whether or not the document in question contained
plagiarized content. The main parts are feature extraction, feature selection, and classifica-
tion using machine learning. After pre-processing and filtering, part-of-speech (POS) tags
and chunks removed extraneous data. The method investigated the influence of plagiarism
categories and complexity on attributes and behavioral variances. The lack of a large
database of manual plagiarism instances is a concern; thus, creating one is necessary for
testing detection techniques.

The work in [8] presented another effort to identify plagiarism. The described study
explores GA syntax–semantics concept extractions to detect idea plagiarism. Pre-processing,
GA source sentence extraction, document level, and passage level are the four major
components. Natural language processing (NLP) approaches are utilized for word-level
extraction within documents. Sentence-based comparisons employing integrated semantic
similarity metrics are employed in the passage-level identification step. Using passage
boundary conditions, the passage level is detected. In the offered technique, the concept
of plagiarism enforced via summarizations is emphasized. The results demonstrated
substantial performance in catching plagiarized texts. Plagiarism may also occur via
elaboration and paraphrase, etc., which the system cannot detect.

In order to find instances of plagiarism, the study in [29] constructed a cutting-edge
system that relies on semantic properties. For each possible suspect and source phrase
combination, the system generates a relation matrix that uses semantic characteristics to
calculate the level of similarity. This study presents two weighted inverse distance and
gloss Dice algorithms that illustrate different text qualities (e.g., synonyms) and develops a
novel similarity metric for plagiarism detection, which overcomes the limits of the current
features. In addition, this study examines the efficacy of individual characteristics in
identifying copied works, combining the most effective ones by giving varying weights to
their individual contributions to further improve the system’s performance. The inverse
weighted distance functions have a drawback in that the function must have a maximum
or minimum at the data points (or on a boundary of the study region).

The study given in [30] outlines a three-stage process that, together, provides a hybrid
model for intelligent plagiarism detection: initially, we cluster the data; then, we create
vectors inside each cluster according to semantic roles, normalize the data, and compute
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a similarity index; and lastly, we use an encoder–decoder to provide a summary. For the
purpose of choosing the words to be used in the production of vectors, K-means clustering,
which is calculated using the synonym set, has been proposed as a method. Only if the
last stage’s estimated value is greater than a threshold value is the following semantic
argument evaluated. A brief description is generated for plagiarized documents if their
similarity score is high enough. The experimental results demonstrated the effectiveness
of the strategy in identifying not only literal but also connotative and concealing forms
of concept copying. However, long sequences take a long time to process because of the
slowness of the neural network’s processing and the difficulty of training it if activation
functions are used. Finally, it has problems like gradient vanishing and explosions.

In Ref. [31], the authors introduced an efficient method for determining the structural
and semantic similarity between two publications by only analyzing a subset of the material
of each document instead of the whole thing. To improve plagiarism detection regardless
of word order changes, a collection of remarkable keywords and different combinations
are used to compute similarity. The importance of a word varies depending on where
in the article it appears. As a final step, a weighted similarity is determined using an
AHP (Analytical Hierarchy Process) model. It was shown that the suggested method
outperformed its competitors in terms of runtime and accuracy for detecting semantic
academic plagiarism. One potential drawback of the AHP is the high number of pairwise
comparisons it requires. This is due to the fact that comparing each criterion and then each
option with regard to a given criterion is required.

In Ref. [32], the authors offered an approach to detecting two common forms of para-
phrased text: those that involve the use of synonyms and those that use the reordering
of words in plagiarized sentence pairs. They introduced a three-stage technique that
makes use of context matching and pertained word embedding to detect instances of
synonymous replacement and word reordering. Their experiments revealed that the
Smith–Waterman method for plagiarism detection combined with ConceptNet batch-
pertained word embedding yields the highest scores. Methods to determine paraphrase
styles for plagiarism detection may be used from this study to supplement similarity reports
from existing plagiarism detection systems. Even though it is the most sensitive technique
for detecting sequence similarity, the Smith–Waterman approach does not come without its
price. Time is a major restriction, as conducting a Smith–Waterman search requires a lot of
processing power and time.

Two methods for identifying external plagiarism are provided in [33]. Both methods
use a bag-of-words strategy-based two-stage filtering procedure, first at the document
level and then at the sentence level, to reduce the search area; only the outputs of both
filters are then evaluated for plagiarism. One uses the WordNet ontology and the term
frequency–inverse document frequency (TF-IDF) weighting technique to create two struc-
tural and semantic matrices; the other uses a pre-trained network technique of words
embedding fast text and TF-IDF weighting to create the same outcome. After forming
the aforementioned matrices, the structural similarity of the weighted composition and
the Dice similarity are used to determine the degree of similarity between the pairs of
matrices representing each phrase. The similarity between the suspect text and the mini-
mum criterion is used to classify documents as plagiarism or non-plagiarism. Using the
PAN-PC-11 database, the authors conducted experiments to determine whether or not a
word embedding network, as opposed to the WordNet ontology, would be more successful
in detecting instances of extrinsic plagiarism. However, TF-IDF weighting does have certain
restrictions. It may be time-consuming for large vocabularies since it calculates document
similarity directly in the word-count space. It assumes that evidence for similarity may be
found in the counts of various terms. One potential problem with the adaptable layout
described above is that WordNet’s’ meaning and scope might quickly diverge from one
another. We cannot be sure that we will be encoding the same relationships or that we will
be covering the same conceptual ground [34,35].
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In Ref. [36], the authors created a new database that contains all the characteristics
that indicate various linguistic similarities. As a solution to textual plagiarism issues, the
developed database is offered for use in intelligent learning. The produced database is then
used to propose a deep-learning-based plagiarism detection system. During development,
many deep learning techniques, including convolutional and recurrent neural network
topologies, were taken into account. To assess the efficacy of the presented intelligent
system, comparison research was conducted using the PAN 2013 and PAN 2014 benchmark
datasets. In comparison to state-of-the-art ranking systems, the test findings demonstrated
that the suggested system based on long short-term memory (LSTM) ranked first. However,
LSTMs are easy to overfit and are sensitive to different random weight initializations.

Using the fuzzy MCDM (multi-criteria decision-making) technique, the research in [37]
compared and contrasted many academic plagiarism detection strategies and offered
guidelines for creating effective plagiarism detection tools. They described a framework for
ranking evaluations and analyzed the cutting-edge methods for detecting plagiarism that
may be able to overcome the limitations of the state-of-the-art software currently available.
In this way, the research might be seen as a “blueprint” for developing improved plagiarism
detection systems. An innovative and cutting-edge technique known as compressive
sensing-based Rabin Karp is offered for use in the system presented in [38]. This technique
calculates both syntactic and semantic similarities between documents using a sampling
module to shrink the dataset and a cost function to identify document repetition. Yet,
simply applying the hash function based on the generated table may result in cases where
the hash codes for the pattern and text are the same, yet the pattern’s characters do not
match those in the text. For current surveys that include the most up-to-date research in
the plagiarism detection area, please refer to [39,40].

A novel plagiarism detection approach is presented in [41] to extract the most useful
sentence similarity features and build a hyperplane equation of the chosen features to
accurately identify similarity scenarios. The first phase, which contains three steps, is used
to pre-process the papers. The second phase is dependent on two different strategies: the
first strategy relies on the standard paragraph-level comparison, while the second strategy
relies on the calculated hyperplane equation utilizing Support Vector Machine (SVM) and
Chi-square methods. The best plagiarized segment is taken out in the third step. On the
whole test corpus of the PAN 2013 and PAN 2014 datasets, the recommended approach
attained the best values of 89.12% and 92.91% of the Plagdet scores and 89.34% and 92.95%
of the F-measure scores, respectively.

The present plagiarism detection solutions now on the market compare plagiarism
only when the input document includes text, despite the fact that there are a number
of tools available that address the issue of plagiarism using various methodologies and
features. However, when the input document is an image, the techniques currently in use
do not check for plagiarism. The authors in [42] suggested a tool that searches both the text
and text hidden in images using an exhaustive searching approach. The project’s suggested
tool compares the input document’s content to that of websites and returns findings on
how similar they are. The source and suspect papers are in two different languages, making
it difficult to identify cross-lingual plagiarism (CLP). In this context, a number of solutions
to the issue of CPD in text documents were proposed. To obtain comparability metrics,
the authors in [43] employed the one-gram and tri-gram of the pre-processed text. The
models are constructed using five ML classifiers: KNN, Naive Bayes, SVM, Decision Tree,
and Random Forest. The trial demonstrates that KNN, RF, and other models offer superior
outcomes versus other models.

Commercial plagiarism detection tools are accessible online for purchase or subscrip-
tion. EVE2, Plag Aware, Write Check, Turnitin, and Ithenticate are some of the most well
known [44]. Turnitin is an online similarity detection service that compares submitted
papers to various databases using a proprietary algorithm to check for possibly plagia-
rized material. In addition to scanning its own databases, it has licensing arrangements
with significant academic private databases. Turnitin does not deal with the causes of
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academic integrity problems, and so it does not fix them. Instead, it might give students
the impression that they are being held accountable for cheating from the very first day
of class or that their work is being used against them and others without their permis-
sion. iThenticate is a plagiarism prevention tool that assesses written material (such as
journal article manuscripts, proposals, research reports, theses, and dissertations, among
other things) against millions of published works that are accessible online and via paid
databases. The following are some benefits of iThenticate: The finest tool for detecting
plagiarism in academic writing is iThenticate, which employs cutting-edge algorithms to
evaluate submitted text against a huge library of scholarly publications.

Despite decades of study, PD might be strengthened to better prevent intellectual
property theft. Still, PD should account for things like running time and computational com-
plexity. The available PD approaches are not all suitable to be employed in all applications.
To address these issues and outperform competing methods, a model combining semantic
idea extraction and the QGA for optimizing similarity search has been proposed. The QGA
is structurally similar to classical genetic algorithms, with the exception that quantum
gates and quantum superposition are used to construct the initial and updated populations,
with consideration given to the adaptation of such operators to meet GA-based PD issues.
One clear benefit of a QGA is that its population tends to be more diverse than that of
a non-QGA. To put it another way, a quantum population may be exponentially greater
than its “size” in the classical world. Only one possible solution may be represented by
each individual in a classical population. Each “individual” in a quantum population is
a superposition of many different possible solutions. In this sense, the population of a
quantum system is far greater than that of a classical system.

4. The Proposed QGA-Based Plagiarism Detection Model

This section presents the suggested model for QGA-based idea (semantic) extraction
for plagiarism detection. PD exploits document notions at several structural levels for
document-level (DL) and passage-level (PL) detection. QGA-based sentence scoring is
examined for sentence-level extraction. The DLD stage captures nouns and verbs using
natural language processing (NLP) methods. In the PLD phase, phrase-based assessments
utilizing a joint similarity measure with WorldNet detect plagiarized sentence pairings.
We decided to use a quantum-inspired evolutionary algorithm to solve the PD problem
because of the many benefits of quantum-inspired metaheuristics. (1) With quantum gates
and quantum parallelism, it is possible to compute all possible values of a given variable
simultaneously, which not only enhances the quality of the result but also drastically
shortens the search time. (2) The use of quantum superposition and quantum gates to
represent individuals in a population results in (a) more diversity, (b) enhanced search capacity,
(c) faster and more accurate convergence, and (d) efficient escape from local optima. Due to the
limited number of individuals, the method may quickly and efficiently probe the search space
for a global solution, even if it only contains a single element. (3) There is a balance between
diversification/intensification and exploration/exploitation [18,21,22]. Figure 2 shows the
suggested framework, and each module is discussed in the following subsections.

4.1. Pre-Processing and Document Representation

The database, which includes both source and suspect documents, is pre-processed in
the first module. The steps included in this section are as follows.

4.1.1. Sentence Segmentation and Tokenization

First, suspicious (Xsusp) and source (X src) documents are sentence-segmented. Text
segmentation is a pre-processing procedure that divides text into meaningful components
like sentences or words. The document is split into sentences. Then, source and suspect
phrases are tokenized. Punctuation and capitalization are eliminated [7,8,27].
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Figure 2. The proposed plagiarism detection framework using the QGA.

4.1.2. Part-of-Speech Tagging and Lemmatization

After the pre-processing step, tokenized words are employed for the part-of-speech
(POS) tagging of suspect and source tokenized phrases. Each word is labelled as a noun,
verb, adjective, preposition, etc. Noun, verb, adjective, and adverb tags are the only seman-
tic tags that are kept. Conjunctions, prepositions, articles, pronouns, and determinants were
taken out of the sentence, along with anything else that did not add meaning. By conserving
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memory and speeding up processing, removing such words improves accuracy and time.
Lemmatization reduces words to their dictionary base forms and allows for comparisons.
The Stanford Log-Linear Speech Tagger and WordNet Lemmatizer were employed for POS
tagging [8,45]. The pre-processed suspicious sentence in Xsusp is Ssusp, while the source
sentence in Xsrc is Ssrc. Each pre-processed source and suspect tokenized sentence includes
lemmatized and POS-tagged words available for feature extraction [7,8,27,45].

4.1.3. Feature Extraction

The pre-processed source and suspect documents are a collection of tokenized sen-
tences, and the Vector Space Model (VSM) with term-frequency-inverse sentence frequency
(t f − is f ) weighting reflects the vocabulary of the lemmatized and POS-tagged words
contained in these documents [8]. (t f − is f ) is a metric developed for use in informa-
tion retrieval (IR) that attempts to quantify a word’s significance within the context of a
phrase [28,45–48]. The w(t, S) weight is calculated using:

t f (t, S) = f (t, S) (9)

is f (t, X) = log
|X|

|{S ∈ X; t ∈ S}| (10)

w(t, S) = t f (t, S) ∗ is f (t, X) (11)

The number of times a term t appears in any generic sentence S is denoted by term frequency
t f (t, S). The term-inverse sentence frequency (is f ) is used to highlight the fact that the
computation is performed over individual sentences as opposed to whole documents,
where X is the collection of all sentences found in the provided documents. Sentence

vectors for the source and suspect sentences are denoted by
→

ssrc and
→

ssusp, respectively.

4.2. The Quantum Genetic Algorithm for Extracting Sentence Concepts

Concept extraction using the QGA is feasible when the documents have been pre-
processed and expressed in t f − is f weight form. The documents’ syntactic concepts
are derived from their respective structural levels. Paragraphs, phrases, sentences, and
keywords are all ways in which these ideas may be found across a document [49]. The
suggested approach starts by using sentence scoring methods with the QGA to extract
sentence-based ideas from the original documents. In order to simplify the content of a
lengthy text into a few carefully chosen sentences, the QGA is used.

4.2.1. Population Initialization

Pre-processed source sentences, each of which will be given a fixed score, are the
QGA’s input. Static scores, together with relevance and theme scores, may be calculated.
Sentence weights are assigned to each Ssrc in Xsrc by extracting features from Xsrc based on
w(t, S). Both the relevance score and the thematic score may achieve this [47,48].

• Relevance Score

The relevance score expresses Ssrc using i f − is f weights, which is the source sentence’s
pre-processed word count:

Rel(Ssrc) =
∑
|Ssrc |
i=1 w(ti, Ssrc)

|Ssrc|
; Rel(Ssrc)[0, 1] (12)

where w(t, Ssrc) denotes the sum of the t f − is f weights of each word t in Ssrc and |Ssrc| is
the source sentence length.

• Thematic Score
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The themeatic score is calculated by retrieving and sorting the words from the pre-
processed Xsrc. The top L words are then saved in the Xsrc keyword set kw(Xsrc):

Thm(Ssrc) =
|kw(Ssrc)|

L
;

Kw(Ssrc) = {t|t ∈ Ssrc ∧ t ∈ kw(Xsrc)}; Thm(Ssrc) ∈ [0, 1] (13)

where |kw(Ssrc)| is the number of words between kw(Xsrc) and Ssrc in Xsrc and kw(Xsrc)
has L words. After calculating the relevance and thematic scores, Stat(Ssrc) is calculated.

Stat(Ssrc) = Rel(Ssrc) + Thm(Ssrc); Stat(Ssrc) ∈ [0, 2] (14)

The Ssrc with the associated Stat(Ssrc) will be employed for building the QGA population.
A population with N chromosomes is randomly chosen. A chromosome is conceptually
equivalent to a quantum register made up of a string of m-qubits. A quantum chromosome’s
structure can be seen in Figure 3. All qubit amplitudes may be conveniently set to the
value 1/ 2

√
2 [22] to generate the starting population. This implies that each of the possible

quantum superposition states is equally represented in a chromosome. To begin, we create
N quantum registers and give them the labels Reg10 through Reg1N−1, where N is the total
number of individuals in the population. Then, each of these registers is layered on top
of one another to create a superposition of all potential individuals. This means that each
register is capable of storing all potential individuals. The next step is to apply the fitness
function to each of the N quantum registers, and then store the results in a second set of
N quantum registers, which are designated by the labels Reg20 through Reg2N−1. The
application of the fitness function will result in an entanglement being produced between
the first set of registers and the second set of registers.

 𝑋௦௥௖ 𝐿 𝑋௦௥௖ 𝑘𝑤 (𝑋௦௥௖)𝑇ℎ𝑚 (𝑆௦௥௖) =  | 𝑘𝑤 (𝑆௦௥௖)|𝐿 ;
𝐾𝑤 (𝑆௦௥௖) =  { 𝑡|𝑡 ∈  𝑆௦௥௖  ∧  𝑡 ∈  𝑘𝑤 (𝑋௦௥௖ ) } ;  𝑇ℎ𝑚 (𝑆௦௥௖)  ∈  [0, 1] | 𝑘𝑤 (𝑆௦௥௖)| 𝑘𝑤 (𝑋௦௥௖ ) 𝑆௦௥௖  𝑋௦௥௖ 𝑘𝑤 (𝑋௦௥௖ ) 𝐿 𝑆𝑡𝑎𝑡 (𝑆௦௥௖)
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Figure 3. Quantum chromosome structure. 
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Figure 3. Quantum chromosome structure.

4.2.2. Fitness Function Computation

The quality of each quantum chromosome in the population is quantified at this stage
in order to facilitate reproduction. A superposition of all the individuals who may have
been there is included in each of the initial registers. Because of this, the data stored in
each of the second registers is a superposition of all of the feasible fitnesses. Even if every
individual was examined, which led to the generation of every fitness, there was still
only one instance of the fitness function that needed to be applied to each register. The
parallelism of quantum mechanics may be shown here [22–24]. The optimal solution would
be to evaluate the highest fitness in register Reg2i, which would then cause register Reg1i
to collapse into a superposition of perfect individuals. The outcome of a measurement
is completely unpredictable, and the probabilities are based on the amplitudes of the
probabilities. Therefore, the likelihood of achieving a maximum level of fitness (Fit(C)) is
precisely the same as the probability of accidentally producing an ideal individual. In our
case, the fitness function (Fit(C)) is calculated as follows:

Fit(C) = ∑
|C|
i=1

Tot(Ssrc) (15)

in which, a dynamic cohesiveness factor is generated for each phrase in C and supplemented
using Stat(Ssrc). The cohesiveness factor determines sentence relatedness [50]. Cosine
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similarity measures lexical cohesiveness [51]. Cosine similarity between the source sentence
vectors is calculated first.

Cos

( →
Ssrci,

→
SSrcj

)

=

→
Ssrci·

→
SSrcj

∣

∣

∣

∣

∣

∣

∣

∣

→
Ssrci

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

→
SSrcj

∣

∣

∣

∣

∣

∣

∣

∣

; ∀i, j
→

Ssrci,
→

SSrcj ∈ C (16)

Cos

( →
Ssrci,

→
SSrcj

)

denotes the cosine similarity between an Ssrc vector pair

( →
Ssrci,

→
SSrcj

)

such that each sentence is a chromosomal C element. Cosine similarities are calculated and
stored in a symmetric matrix with diagonal entry 1. The Ssrci sentence cohesion factor is
then calculated.

Coh(Ssrci) =
∑
|C|
j=1,j 6=i cos

(

Ssrci, Ssrcj

)

max{(Ssrci, Ssrcj)}
, ∀ij = {1, 2, ...,|C|}, i 6= j (17)

To avoid self-similarity, i 6= j is used; otherwise, the denominator is 1. After computing the
sentence cohesiveness factor, the total score for each source sentence Tot(Ssrc) is determined.

Tot(Ssrc) = Stat(Ssrc) + Coh(Ssrc) (18)

Using quantum selection and crossover, the fitness value C is used to build the next generation.

4.2.3. Quantum Selection and Crossover

Our initial population will be represented by a set of N paired registers, with half of the
registers carrying fitness values and the other half having the superposition of individuals
based on those fitness values. Normal procedures are followed upon crossover. The
information included in the register Reg1i is combined with the information found in the
register Reg1j. Since both registers already contain a superposition of individuals, we obtain
two additional superpositions as a result. In particular, if Reg1i contains all individuals
with fitness values Fit(Ci) and Reg1j contains all individuals with fitness values Fit

(

Cj

)

,
then the superposition of all individuals that may be generated by crossing at the given
location is achieved. The N registers (Reg10 through Reg1N−1) will then be subjected to the
fitness function. The second set of registers is used to store the results and is entangled
with the first set of registers in the same way that the initial population was. The next step
is to take a measurement. This reduces the number of individuals from Reg10 through
Reg1N−1 to only those with the measured fitness, and it also collapses the superimposed
fitness values to a single value. The generation ends when a selection is performed based
on the calculated fitness values. Any desired mutations may be included [49,52,53].

Obtaining a result is the last action when the termination condition is met. The final
product will be N pairs of registers, where each pair’s first register has a set of superimposed
individuals with the same fitness value, and is entangled with the second register of the
pair, which has the measured fitness value. A measurement of the first register will be able
to identify one of the individuals as having the specified fitness level. This provides the
effect that was sought, which is a single individual of the fitness level that was specified.
It is necessary to conduct an observation on each qubit if we are to successfully utilize
the superposed states of qubits (measuring chromosomes). Because of this, we are able to
obtain a traditional chromosome, as illustrated in Figure 4. The purpose of this is to make
it possible to evaluate each quantum chromosome. A final set of best C is generated, where
the highest Fit(C) is picked, representing the best source sentence set Ssrc_sel [8].
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Figure 4. Measured chromosome.

The interference operation allows for the modification of specific amplitudes in order
to optimize performance. It mostly entails shifting the state of each qubit in the direction
of the optimal solution’s value. This is important for narrowing down the search for
the best option. The amplitudes (αi, βi) and the value of the corresponding bit in the
reference solution determine the angle of the rotation that may be carried out using a
unit transformation. Early convergence may be prevented by appropriately setting the
rotation angle δθ. The direction of the change is determined by the values of αi, βi, and
the qubit inserted at location i in the individual (chromosome) being altered, all of which
are typically estimated experimentally. The population Q(t) is revised when the qubits
making up individuals are rotated using quantum gates. Equation [22] explains the rotation
method that is employed:

[

αt+1
i

β+1
i

]

=

[

cos(δ θi) −sin(δ θi)
sin(δ θi) cos(δ θi)

][

αt
i

βt
i

]

(19)

where δθi is the rotation angle of each quantum chromosome’s qubit quantum gate i, as
illustrated in Figure 5 [53]. As stated in [22], it is frequently taken via a lookup table to
guarantee convergence; see Table 1.
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Figure 5. Qubit transformations with Hadamard gate.
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Table 1. Lookup table for quantum gate rotation [22].

xi bi f(x) > f(b) δθi

S(ai , bi)

ai.bi > 0 ai.bi < 0 ai = 0 bi = 0

0 0 0 0.001π - + ± ±
0 0 1 0.001π - + ± ±
0 1 0 0.08π - + ± ±
0 1 1 0.001π - + ± ±
1 0 0 0.08π + - ± ±
1 0 1 0.001π + - ± ±
1 1 0 0.001π + - ± ±
1 1 1 0.001π + - ± ±

The i-th bits of x and b (the optimal solution) are denoted by xi and bi, respectively.
The rotation angle θi has a sign that may be written as S(ai , bi), and f is the fitness function.
Using the lookup table, we can see that this method increases the amplitudes of poor
qubits according to angle δθ1 = 0.08π, while decreasing the amplitudes of good qubits
according to angle δθ2 = 0.001π. Quantum bit amplitudes are adjusted in accordance
with the signs of the amplitudes, the optimal solution, and the solution extracted with
the respective container. Because reducing amplitudes only helps to correct stochastic
mistakes, preventing genetic drift and guaranteeing genetic diversity, it stands to reason
that δθ1 > δθ2 [22].

4.3. The Document-Level Plagiarism Detection Phase

After selecting the important sentence-level ideas, the word-level concepts are re-
trieved. As most document ideas are transmitted using nouns and verbs, Ssrc_sel picks
out nouns and verbs [8]. Ssusp collects nouns and verbs from each Xsusp. The number of
common source and suspect word ideas is utilized to detect document-level plagiarism in
the DLD phase. If the count value is more than the threshold ε, the document is deemed to
be plagiarized. After DLD, suspicious source document pairings that are determined as
plagiarized proceed to the PLD phase.

4.4. The Passage-Level Plagiarism Detection Phase

Semantic concept extractions are used for passage-level comparisons to calculate se-
mantic similarity. Plagiarized suspicious source pre-processed document pairings are given
to PLD. In this step, suspicious sentences are compared to Ssrc_sel. The source sentences
result from QGA’s sentence-level idea extraction. Since sentences are pre-processed, unnec-
essary words are deleted and each word is tagged (POS tag). For sentence comparisons,
WordNet extracts semantic-based word synsets. Synsets are groups of semantically similar
data elements [28]. POS information is compared to determine if a suspicious source
sentence pair

(

Ssusp, Ssrc_sel

)

is plagiarized. That implies only comparing nouns and verbs,
etc. Comparing word classes seems meaningless.

For each suspicious source word pair
(

wq, wk

)

, WordNet is used to derive the synset
lists Wq_syn of wq and Wk_syn of wk of each word. Only synsets in the same POS class as the
word are retrieved for these lists. Common words between suspicious source sentence pairs
(

Ssusp, Ssrc_sel

)

are calculated and kept in the list Count. Suspicious word wq is checked for
in Ssrc_sel . The synonyms of wq’s are taken from WordNet if it is not in Ssrc_sel . Syns

(

wq

)

represents a suspicious word’s synonym list. Common words between Syns
(

wq

)

and
Ssrc_sel are calculated and added to Count, which includes the number of frequent terms or
synonyms between suspicious and source sentence pairs. Using threshold τ, a suspicious
source sentence combination is found to be plagiarized or not. If WorldNet’s similarity
score is higher than the set value, the phrases are plagiarized [54]. Algorithm 2 outlines the
main steps of the suggested technique.
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Algorithm 2: QGA for Plagiarism Detection

Input: Dataset Xsrc; Suspicious Document Xsusp; QGA Parameters, WordNet

1- while n < size of documents do

2- S← Sentence Segmentation (Xsrc)

3- y←0

4- While y < S ! = NULL do

5- T← Tokenization (S)

6- z←0

7- while z < size of T do

8- M← POS Tagging (T)

9- N← Lemmatization (M)

10- z++

11- end

12- tf-isf (N)

13- y++

14- end

15- n++

16- end

17- t← 0

18- while termination condition not satisfied do

19- t← t+1

20- Call Algorithm 1 // QGA Procedure

21- Return Best_Pop←New_Pop // Store the best solution among P(t)

22- end

23- sim1← sum of words in Xsusp // the number of common word-level concepts in Xsusp

that collects nouns and verbs

24- sim2← sum of words in Xsrc // the number of common word-level concepts in Xsrc

25- If sim1 − sim2 > ε

26- Doc. Status = =Plagiarized

27- end

28- For each suspicious-source word pair (wq,wk) //To compute the semantic similarity

29- - WordNet is used to derive the synset lists Wq_syn ofwq and Wk_synof wk

30- of each word.

31- - Only synsets in the same POS class as the word are retrieved for these lists

32- end

33- Count←The common words between the compared suspicious-source sentence

pair
(

Ssusp, Ssrc_sel

)

// Ssrc_sel is the best set of selected source sentences

extracted from QGA’ procedure

34- If count > τ

35- Doc. Status = = Plagiarized

36- end

37- Else

38- Doc. Status = = not plagiarized

39- end

40- Output = Doc. Status

5. Experimental Results

The effectiveness and reliability of the suggested model were evaluated using MAT-
LAB implementation and QuTiP package Release 4.7.1 [55] for building quantum genetic
algorithm modules. The prototype verification method was developed in a modular form
and tested on a DellTM InspironTM N5110 Laptop, Dell computer Corporation, Texas,
which included the following specifications: 64-bit Windows 7 Home Premium, 4.00 GB
RAM, Intel(R) Core(TM) i5-2410M CPU, 2.30 GHz. Benchmark datasets [56] provided the
source for these data. Table 2 displays the proportion of plagiarized to original papers in
each group of suspects. The Summary Obfuscation (SO) training and test datasets provided
by the PAN13-14 text alignment task were utilized to evaluate the plagiarism detection
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(PD) model in Figure 6. Different performance metrics, as shown in Table 3, were employed
to assess the performance of the suggested model [57]. All test data examples may be
predicted by a binary classifier as positive or negative. Table 4 displays the current QGA
setup settings.

Table 2. Data statistics of PAN 13-14.

PAN 13-14 Dataset

Files

Training Data Testing Data-1 Testing Data-2

Source Suspicious Source Suspicious Source Suspicious

Non-plagiarized (NP) 947 - 97 - 949 -
Plagiarized (P) 238 - 24 - 236 -

Total 1185 237 121 102 1185 237
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Figure 6. Size of training and testing datasets.

Table 3. Performance metrics [50].

Define Metric

Accuracy ACC = TP+TN
TP+TN+FN+FP = TP+TN

P+N
Sensitivity or Recall or Hit Rate or True Positive Rate TPR = TP

TP+FN = TP
P

Precision or Positive Predictive Value PPV = TP
TP+FP

F-Score F-Score = 2∗PPV∗TPR
PPV+TPR = 2TP

2TP+FP+FN

Table 4. QGA parameters settings.

Parameter Value

Population Size (N) 50
Max. No. of Generations (Max_Gen) 10
Selection Highest Fitness
Probability of Crossover 0.7
Probability of Mutation 0.3
Termination Condition Max_Gen

5.1. Experiment 1: A Comparative Study of the Different Types of GA

To validate the benefits of implementing the proposed model (semantic concept ex-
tractions with the QGA) for PD, this experiment compares the suggested model with
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related PD models that include syntax–semantic concept extractions with the GA [8] and
syntax–semantic concept extractions with the hierarchical GA (HGA) [58]. The experiment
was reported for datasets PAN13-14 in terms of TPR, PPV, and F-Score for all the used
datasets. It is observable that the results of the QGA-based PD model are better than
those that depend on both the HGA and the traditional GA. Table 5 reveals the superiority
of the suggested model for document detection in terms of TPR, PPV, and F-Score. The
recommended PD model achieves an approximately 20%, 15%, and 10% increase for TPR,
PPV, and F-Score compared to the GA and HGA, respectively. These results might be
explained by the fact that the proposed methodology uses semantic idea extraction to iden-
tify instances of plagiarism. Additionally, using the QGA aids in efficiently removing the
non-plagiarized documents. It also lowers the number of PLD-phase sentence comparisons.

Table 5. Comparison between semantic concept extractions with the QGA, HGA, and GA methods (P:

plagiarized, NP: non-plagiarized) for the PAN13-14 dataset. (Average of testing data-1 and testing data-2)

PD Methods
TPR Value PPV Value F-Score

P NP P NP P NP

Semantic concept extractions
with the QGA (proposed model)

1 0.99 0.99 0.98 0.99 0.98

Semantic concept extractions
with the HGA [58]

0.98 0.97 0.98 0.95 0.98 0.96

Semantic concept extractions
with the GA [8]

0.97 0.95 0.96 0.93 0.97 0.94

5.2. Experiment 2: QGA-Based PD Model Validation

The purpose of these tests was to verify the QGA’s usefulness in the features selection
module by measuring its effect on accuracy. In this investigation, the adaptive feature
selection technique is used to focus in on the most relevant details for enhancing the PD
model. It compares the GA-based PD and the proposed QGA-based PD model for different
datasets and provides a confusion matrix for all used datasets. The definitions regarding
the confusion matrix are summarized in Table 6 [8]. Tables 7 and 8 reveal that the QGA for
PD achieves better results with the confusion matrix compared to the GA procedure. The
QGA produces an approximate increase (of about 5%, on average) in plagiarism detection
compared to the GA. The way the QGA works is that it facilitates the capturing of the
non-plagiarized documents efficiently. Moreover, the QGA decreases sentence comparison
numbers in the PLD. Utilizing the space’s desirable features is a discriminatory way to
highlight individual differences. The feature selection issue is often multi-modal since
there are often numerous optimal solutions. That is why, in this case, a typical evolu-
tionary process might lead to convergence, freeing up time for further exploration of the
space issue.

Table 6. Confusion matrix.

Predicted Class

Condition Positive (P) Condition Negative (N)

Actual Class

Condition Positive (P)
The number of real positive cases

in the data

True Positive (TP)
Correct positive prediction

False Positive (FP)
Incorrect positive prediction,

Type I error.
Condition Negative (N)

The number of real negative cases
in the data

False Negative (FN)
Incorrect negative prediction,

Type II error

True Negative (TN)
Correct negative prediction.
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Table 7. GA-based PD confusion matrix (average).

Predicted Class

Positive (P) Negative (N)

Actual Class
Positive (P) 93% 7%

Negative (N) 7% 93%

Table 8. QGA-based PD confusion matrix (average).

Predicted Class

Positive (P) Negative (N)

Actual Class
Positive (P) 98% 2%

Negative (N) 2% 98%

5.3. Experiment 3: A Self-Assessment with Different Values of ε and τ

The objective of the third set of experiments is to test the TPR, PPV, and F-Score
of the model with different values of ε and τ for the PAN 13-14 dataset. As shown in
Tables 9 and 10, the proposed model achieves better results as compared with the GA
version in terms of TPR, PPV, and F-Score, which shows a general trend for documents as
θ and β increase, TPR decreases, and PPV increases. At ε = 8 and τ = 30, the best F-score
is obtained for the documents. That means that changing ε and τ will affect the value of
the TPR, PPV, and F-Score. The superiority of the θ comes from the fact that it helps to
minimize false detection. By adjusting the ε parameter, we may reduce the number of
document-level comparisons performed during the passing stage and hence the number of
plagiarized documents. How much of a sentence from a questionable source is plagiarized
is determined by the threshold τ.

Table 9. Model performance with different ε values.

ε Values
TPR Value PPV Value F-Score

QGA GA QGA GA QGA GA

1 1 0.98 0.23 0.20 0.39 0.38
2 1 0. 98 0.25 0.23 0.41 0.39
3 1 0.98 0.26 0.26 0.44 0.41
4 1 0.98 0.34 0.32 0.53 0.52
5 1 0.97 0.44 0.43 0.62 0.61
6 0.98 0.97 0.73 0.72 0.84 0.81
7 0.98 0.97 0.85 0.84 0.94 0.93
8 0.97 0.97 0.98 0.96 0.97 0.96
9 0.97 0.96 1 0.98 0.95 0.95

10 0.93 0.92 1 1 0.94 0.94

Table 10. Model performance with different τ values.

τ Values
TPR Value PPV Value F-Score

QGA GA QGA GA QGA GA

10 1 0.97 0.46 0.43 0.64 0.62
15 1 0.97 0.47 0.45 0.66 0.63
20 1 0.97 0.60 0.51 0.74 0.69
25 0.99 0.95 0.62 0.62 0.76 0.75
30 0.95 0.89 0.80 0.82 0.84 0.82
35 0.86 0.65 0.83 0.84 0.77 0.74
40 0.71 0.60 0.85 0.86 0.73 0.71
45 0.58 0.46 0.96 0.96 0.65 0.62
50 0.36 0.27 0.99 0.98 0.44 0.41
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5.4. Experiment 4: Performance Accuracy with Different Training Samples

The objective of the fourth set of experiments is to test the accuracy of the model with
different values of document datasets. As the model has more enrolled samples, the chance
of a correct hit increases. The accuracy of the proposed model achieves better results with
an increasing number of training documents. For all values of the documents’ number,
accuracy increases by approximately 10% on average. This means that if the model is
trained with more samples, it will be better at finding plagiarized documents. As shown in
Table 11, as expected, the identification rate increases as the number of samples grows. The
accuracy rate rises by approximately 10–15% for each increase in the number of samples in
the dataset. The accuracy may reach 98% when all samples are used to train the proposed
model, owing to the role played by the QGA in determining which characteristics to use.
In order to achieve this improvement, the time needed to train the model increases. When
compared to the time invested in testing, however, this delay is small. The optimum feature
selection module is the most time-consuming part of the training procedure.

Table 11. Accuracy of the model with different numbers of samples.

No of Samples 5 10 15 30 50 100 500 750 1000 1535

Accuracy (%) 15 35 40 50 55 60 70 75 80 98

5.5. Experiment 5: A Comparative Study with Recent Related Work

The fifth set of experiments was also conducted to evaluate the proposed system
compared with the recent models. Models from [41,59–63] were selected to compare the
proposed model to other well-known methods for text similarity detection. In the study
described in [59], plagiarism is only evaluated after two levels of filtering have been applied
using the bag-of-words approach, one at the document level and the other at the sentence
level. In Ref. [60], a three-stage method based on the Smith–Waterman algorithm for
plagiarism detection employs context matching and pre-trained word embeddings to detect
instances of synonym substitution and word reordering. By combining linguistic features
such as path similarity and depth estimation measures to compute the resemblance between
the pair of words and assigning different weights to each feature, the work presented in [61]
uses semantic knowledge to detect the plagiarized part of the text.

In Ref. [62], text embedding vectors are used to compare document similarity for pla-
giarism detection; these vectors include both semantic and syntactic information about the
text, and they provide effective text alignment between the suspect and original documents.
Sentences with the greatest resemblance are regarded as candidates or seeds of plagiarism
cases by comparing their appearances in the source and suspect documents. Syntactic
similarities between source and suspect phrases may be revealed using part-of-speech tag
n-grams, as shown in [63]. Word2Vec, a word embedding method, is employed to quantify
the semantic relatedness between words, while the longest common subsequence approach
is used to quantify the semantic similarity between the source and suspect sentences.
Table 12 shows the performance results of the proposed system compared to other related
systems in terms of precision and F-measure.

The performance results for the PAN 13-14 corpus demonstrate that the proposed
system outperforms the state-of-the-art systems on all documents. It can be seen that the
majority of the previous systems acquired varying ranks in the various datasets. This
variation is due to the structure of the dataset and the kinds of plagiarism that were
included in it. However, the suggested method maintained its position as the best across
all of the datasets. The suggested approach thus achieves effectiveness and reliability in
detecting the various types of textual plagiarism based on these results. They also indicate
the ability of the QGA to find the hyperplane equation of the selected features to detect the
different types of text similarities. Utilizing the GQA helps to identify the interconnected,
cohesive sentences that effectively convey the source document’s main idea with more
accuracy. See [64] for a more comparative study of different PD methods. Regarding the
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running time, we find that there are no major variations between any of the approaches
and that the average variance between them is just 4 s. The total time largely depends on
the size of the corpus (1535 documents in our case). The suggested approach requires more
time, but the results are more precise.

Table 12. Comparison results of the proposed text similarity system and other relevant systems in

the PAN 13-14 dataset. (Average for testing data-1 and testing data-2.)

PD Methods Precision (%) F-Measure (%) Run Time (Sec)

Arabi, H., Akbari, M [59] 90.08 86.65 56
Alvi, F. et al. [60] 92.52 86.84 55
Ahuja, L. et al. [61] 85.60 88.65 49
Gharavi, E. et al. [62] 89.75 90.15 53
Yalcin, K. et al. [63] 92.76 90.l8 54
El-Rashidy M. et al. [41] 92.61 89.43 51
Proposed System 97.91 94.68 58

5.6. Experiment 6: Run Time and Complexity Analysis

The last set of experiments is meant to prove that the suggested QGA-based PD model
converges quickly compared to the traditional GA-based model for PAN 13–14 datasets
with different population sizes. The results shown in Table 13 confirm this fact with an
average 1% reduction. As discussed earlier, the total running time largely depends on the
size of the corpus.

Table 13. Running time (average) with different population sizes for both the QGA and the traditional

GA-based PD model for PAN 13-14.

Population Size 5 10 15 30 50 100

QGA-based PD Model 49 51 52 53 55 58

GA-based PD model 54 56 57 59 60 65

It is usually true that quantum algorithms may reduce the complexity of their classical
counterparts. We can roughly estimate the complexity decrease by comparing the global
complexity of the QGA to that of the GA. The global complexity for the QGA is O(N),
where N is the total population size (Evaluation + Interference). The global complexity
of an ordinary GA is often in the order of O

(

N2
)

(Evaluation + Selection + Crossover +
Mutation). Indeed, one can foresee what would occur if we were to study a very large
population of chromosomes; the QGA instead of the GA would be extremely beneficial.
Our experimental results show that the QGA can be a very promising tool for exploring
large search spaces while preserving the relation efficiency/performance. See [22] for
more details.

6. Conclusions

From the standpoint of a forensic linguist, it is critical to determine with absolute
certainty whether a text is an original or the consequence of plagiarism. Expert evidence
from a forensic linguist is often required in court cases, but this field is not only concerned
with law; forensic linguists also study public-facing topics. Therefore, incorrect judgments
must be avoided at all costs to avoid miscarriages of justice, whether in the classroom or the
courtroom. In this paper, a new approach based on the semantic similarity concept and the
QGA for PD is proposed. The proposed model includes four main steps: the pre-processing
and document representation module, sentence-level concept extraction using the QGA,
the document-level detection phase, and the passage-level detection phase.

The semantic similarity concept, which depends on intelligent techniques, is employed
for extracting the concepts from documents in an effective way to enhance the model’s
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performance. The QGA is employed to find relatedness between sentences that show
the concept of the source document briefly, enhancing the model’s processing time. The
solution based on PDS has the advantage of detecting plagiarized ideas in documents
presented via summarization.

The proposed model was evaluated by using samples of benchmarked datasets. Based
on the obtained results, the proposed model for the detection of plagiarism shows an
excellent performance in terms of accuracy. It has been compared with the HGA and the
GA-based PD model, and it has come up with better results against them. The QGA has
been proven to provide better results in terms of accuracy without adding any complications
to the model. The solution’s shortcomings, such as WordNet’s inability to measure all
possible semantic relationships between words, reduce its efficiency. Despite the method’s
general effectiveness, there are other methods to implement the idea, such as paraphrasing
and expanding upon concepts. A possible future study includes making use of a different
database to determine how closely related terms are semantically. Furthermore, future
work will focus on comparing different QGA strategies to study the effect of choosing
rotation gate angles. Another perspective of this work is to study parallel QGAs because
QGAs are highly parallelizable.
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