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ABSTRACT 

We describe the classical geometry of linear and non-linear realisations of the algebra in 
two-dimensional field theories. We also discuss the relation of gauged wQQ-invariant models with 
N — 1 independent scalar fields to WN symmetry. 

There has been much interest recently in the 

various possible extensions of the Virasoro algebra 

that could occur as world-sheet symmetry algebras 

of d = 2 field theories. The realisation that there 

exist not only spin-1 extensions of the Virasoro al­

gebra such as the Kac-Moody algebras, but also the 

w-algebras [1], which contain conformai spins higher 

than 2, has opened up new possibilities for world-

sheet symmetries. 

The left-handed Virasoro algebra is generated by 

the T++ component of the stress tensor, which may 

be Fourier analysed into the Ln generators: 

spins 3 © 4 © • • • © N. As can be seen from the need 

for covariance of the commutators of the new higher-

spin generators under the Virasoro subalgebra, there 

must be non-linear combinations of generators on the 

right-hand side of at least the highest spin commuta­

tor. For example, the W$ algebra has a term on the 

right-hand side of the [WM, WN] commutator that is 

quadratic in the Virasoro generators L m , for this is 

the only way to construct the term of conformai spin 4 

that is necessary by Virasoro covariance of the com­

mutation relations, without having an independent 

spin-4 generator itself. 

In the limit of N —> oo, however, the need for such 

non-linearity can be pushed off indefinitely. Thus, the 

algebra [2] recovers the structure of an ordinary 

Lie algebra: 
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where x~*~ = x + t is considered for this purpose to 

be a circular coordinate. At the classical level with 

which we shall mainly be concerned in this article, 

there is no central extension of the Virasoro algebra, 

which thus has the commutation relations 

Under the action of the Virasoro algebra, a primary 

field W(3)(x+,x~) of conformai spin s is one whose 

Fourier components W(s)n satisfy the commutation 

relations 

The WN algebras [1] extend the spin-2 Virasoro 

algebra by the inclusion of generators with conformai 

where the superscript indices i,j correspond to con-

formal spins 5 — 2, and run over integral values 

hj > 0« Thus, the Virasoro generators are the spin-2 

generators — Lm and the spin-3 generators are 

the v^, etc. The algebra (4) contains only the lead­

ing conformai spin i + j + 2 required by the Vira­

soro algebra. One can also consider a deformation 

of this algebra in which sub-leading conformai spins 

also make an appearance — the algebra WQO [3,4], 

from which as given above may be recovered by 

a contraction. Here, we shall be concerned only with 

the algebra (4). 
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Note that since we are concerned at present with 

the realisation of a single chiral copy of the Vira-

soro algebra, the parameter k(x^) (equivalent to k m i 

—oo < m < oo) depends only on the x + coordi­

nate and the transformation of (p involves only a 

derivative. This "semi-local" structure of the Vira-

soro transformation laws, involving only the x+ co­

ordinate and with x~ having essentially the rôle of 

an inert "time", requires a generalisation to and 

ix? i + 0 0 in terms of fields y? (x + , x~) where only the x^ 

coordinate is involved in the transformations. Thus, 

we are essentially looking for realisations in terms of 

functions of only one variable — the "time" vari­

able x~ will be important only when we consider 

the construction of a Lagrangian. Scalar functions of 

only one variable represent an infinitely smaller field 

content than that of the linear realisation described 

above. Thus, we are necessarily looking for nonlinear 

realisations of W\+to generalise the standard 

Virasoro realisation. 

A nonlinear realisation built according to the 

classic structure [5,6] with a QjJi coset will require 

both Q and H to be "large", if the coset is to 

be parametrised in terms of the "small" field con­

tent of scalar fields over one dimension. In fact, 7i 

should differ from G only by the omission of genera­

tors whose linear realisation involves one-dimensional 

fields. This is exactly the relation between and 

t^i+oo that we have discussed above, so it is natural 

for our purposes to try the coset w i + o o / ^ o o P ] . 

In order to construct a coset-space nonlinear re­

alisation wi-foo/^oo-. it is necessary to know how to 

make a finite itfi+oo transformation on fields defined 

on the cylinder (it?, y). From the Poisson bracket form 

of the algebra, one sees that infinitesimal transforma­

tions of a function f(w, y) are given by / —• / where 

in which A is the infinitesimal parameter of the trans­

formation. Exponentiating, we obtain the transfor­

mation with finite A, 

Note that, like our Virasoro transformation of a 

scalar field (9), these transformations are active, i.e., 

one may men verity mat trie algebra (4J is realised 

by ordinary commutators of the differential operators 

v£ . 

There is a seemingly trivial extension of the 

algebra (4) that will nonetheless play an important 

part in the rest of our discussion. One can readily 

see that the algebra (4) will also close if one allows 

the upper indices i , j to range over integral values in 

the range i, j > —1. In that case, a set of conformai 

spin-1 generators v " 1 = meimwdy is included into 

the algebra, corresponding to the ^-independent basis 

functions v"1 = —ieimw. This extended algebra is 

called u?i+oo' 

The above linear realisations of and u>i+oo 

are not themselves of the type that we expect to have 

for fields on the worldsheet (x+,x~~). The type of 

realisation that we are looking for in this context is a 

generalisation of the Virasoro realisation on a scalar 

field (0. 

A natural realisation of the algebra (4) k 

in terms of area-preserving, or symplectic, diffeomor-

phisms of a cylinder [3] S1 x i?, to which we may 

give coodinates (w,y), and on which we may expand 

a general function f(w,y) in a complete Fourier x 

polynomial basis of functions 

in terms of which the algebra (4) is .realised as a 

Poisson bracket algebra where the Poisson 

brackets are defined on the cylinder (ttf, y) in the stan­

dard fashion: 

Alternatively, one may introduce the hamiltonian 

vector field operators 

where a function to be operated on by vl

m would be 

placed at the location of the bullet • . For the basis 

(5), these vector fields are given explicitly by 



The unorthodox feature of the above construc­

tion, namely the nonlinearity under transforma­

tions by the <ienominator group, arises because the 

wi+oo / i^oo coset is too small to form a linear realisa­

tion of the WOO denominator. More precisely, as one 

can see from (4), the commutator of a Ç/H genera­

tor with an H generator gives back a generator in H, 

except for commutators with the i = 0 level of the H 

algebra, i.e., with the Virasoro subalgebra, which is 

actually linearly realised as one can see from (9). 

In the nonlinear realisation of ttfi+oo> w e have 

a situation somewhat similar to the case of d — 4 

conformai symmetry 5 0 ( 4 , 2 ) , where the structure 

of the nonlinear realisation is made more clear by 

recourse to the "inverse Higgs effect" [9]. In this, 

one constructs a larger coset Q/H' which satisfies 

[Q/H',H'] C Q/H', so that Q/H' does actually form 

a linear realisation of H'. Then one looks for a set 

of covariant constraints to bring the number of in­

dependent Goldstone fields down to the smaller size 

actually sought. The possible covariant constraints 

are easily constructed using Cart an differential forms, 

according to the standard theory of nonlinear reali­

sations [5,6]. The analog of H' in the wi+oo case 

[10] is the Virasoro algebra, according to which the 

WI+OO generators vl

m break up into Virasoro represen­

tations of conformai spin s — i + 2. In order to realise 

w i + o o according to the nonlinear realisation theory of 

refs [6], we should associate the z + worldsheet coor­

dinate to some coset generator of the algebra, just 

as one does for 5 0 ( 4 , 2 ) with x** P». Here, we 

associate [10] x+ to the L-\ = v^_x generator. For 

the Virasoro algebra, this gives the transformations 

Ln : x+ -+ x+ + where 6x+ = fcn(:r+)n+1. In 

this realisation, the Virasoro algebra splits up into 

singular (n < —1) and non-singular (n > —1) sec­

tors. Moreover, the non-singular sector closes onto 
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they transform fields only and not the coordinates at 
the point of evaluation, f(w, y) —• / ( t o , y). If we re­
write the finite transformation (11) as an Einstein-
style tranformation for a scalar field f(w,y) —> 
f(w,y) = f(w,y), we derive the corresponding coor­
dinate transformation (w,y) —» (u?,y). Then one can 
verify that (11) does indeed yield an area-preserving, 

where 8(p* = ip' — tp*. For the infinitesimal tu^ trans­
formation generated by À = A ^ ( x + ) ^ + 1 , one then 
finds V = (ki(ip')i+1)'y so 

The whole set of numerator and denominator trans­

formations (15) and (17) can be summarised by 

Since the basis functions v~x corresponding to the 

wi+oo/ttfoo coset are ^-independent, projection of an 

expression linear in generators of Wi+oo into the coset 

is easily effected by setting y —• 0. Correspondingly, 

the coset transformations are parametrised by func­

tions of w alone, A(w), and similarly the Goldstone 

fields <pm for the wi+oo/woo nonlinear realisation can 

be assembled into a field <p(w,x~), where, as before, 

x~ is the inert "time". At this stage, it is appropriate 

to make the identification w <-> # + . The vector field 

built from the Goldstone field <p is 

where tp1 = (d/dx*)tp = dw<p. Thus, the finite 

Wi+oo/^oo element parametrised by <p is exp(<p'dy). 

We may now derive the non-linear transforma­
tions in the usual way, multiplying on the left by a 
general element g of w i + o c : 

where h is an element of 7i = w^. For a trans­

formation in the coset, g = e A DY G W\+OOLWOO-> the 

transformation of tp is just an inhomogeneous shift: 

This transformation is indeed not linear, in the sense 

that it is not homogeneous in tp, and thus fulfils our 

expectations for the transformation of a Goldstone 

field under a transformation from its own coset. More 

unusual, however, is what happens to ip under a trans­

formation from the denominator group WOO. 

For a transformation by an element of the WOO 
denominator, we take an element g G W Ç » in the in­

finitesimal neighborhood of the identity, g — 1 + À, 

and make the standard rearrangement: 



itself, as can be seen from the algebra (2) . Thus, we 

may consistently restrict the discussion to the non-

singular sector of the Virasoro algebra and the cor­

responding non-singular sector of WI+OQ, which con­

sists of the generators ô j n > _ ^ + 1 ^ . The denominator 

subalgebra H1 for this realisation is the stability sub-

algebra of the point x + = 0, with generators £ ^ > 0 . 

The boundary generators &L(î + 1) will correspond to 

the irreducible coset elements that remain after the 

inverse Higgs effect, analogously to x*1 and a(x) in 

the d = 4 conformai case. The result of the inverse 

Higgs analysis is given by the following diagram of 

the Wi+oo generators: 

Map of the non-singular Wi+oo generators 

In this diagram, the generators corresponding to re­

ducible Goldstone fields that can be eliminated by 

covariant constraints in the inverse Higgs effect are 

indicated by X, the irreducible Goldstone fields that 

survive the inverse Higgs effect are indicated by o, 

the v^_x generator corresponding to the world-sheet 

coordinate x + is indicated by • , and the generators 

of the denominator subalgebra H! are indicated by 

Introducing the notation ipl

m(x+) for the Gold­

stone field corresponding to the Wi+oo generator vl

m, 

we see that the boundary generator in the bottom row 

of the diagram is the one corresponding to the x+-

independent transformations in the wi+oo/^oo coset, 

and so the Goldstone field (p^1 is the one that cor­

responds to the wi+co/woo Goldstone field y>(x+) of 

our earlier discussion. Indeed, after eliminating all 

of the reducible Goldstone fields in the diagram by 

the inverse Higgs covariant derivative conditions, the 

transformation of <^^"1(x"+") = <p(x~*~) l s exactly given 

by eq. (18) as required, after re-expressing the trans­

formations in the same active form that we used be­

fore. Thus, similarly to the d = 4 conformai case, we 

have recovered the nonlinear transformations of the 

minimal nonlinear realisation G/H from an extended 

discussion starting from a coset G/H1 that transforms 

linearly under H\ then eliminating as many as possi­

ble reducible Goldstone fields by the covariant deriva­

tive conditions of the inverse Higgs effect. 

In both the present case and in the d = 4 con-

formal example, one actually gets more than was 

asked for. In the d — 4 conformai case, one wants 

to understand the nonlinear proper conformai trans­

formations of ar**, which are initially realised in the 

fashion of ref. [8] using the coset 5 0 ( 4 , 2 ) / W , where 

H consists of the unorthodox Poincaré subalgebra 

( 5 0 ( 3 , 1 ) ® times the dilations D. After the in­

verse Higgs effect, one reobtains the desired x / 1 trans­

formations, but finds that there is also a Goldstone 

field, <J(X / a ) , which is necessary in general to make a 

dilation-covariant coupling to general matter fields. 

Of course, certain specific Lagrangians may not in­

volve this dilation Goldstone field — for example, 

classical d = 4 Yang-Mills theory is already con­

formally invariant by itself and does not need any 

help from the dilation Goldstone field. This is not 

the case, on the other hand, for the massless spin-

two Pauli-Fierz theory (general relativity linearised 

in = g^y - 7 ? ^ ) , whose conformally invariant re­

alisation does require coupling to the dilaton. More­

over, as is well-known, even if a theory is conformally-

invariant at the classical level without coupling to 

the dilation Goldstone field <T(X), conformai anoma­

lies may require such coupling at the quantum level. 

Indeed, a standard way to calculate the conformai 

anomaly for a given theory is to provide a dilation 

Goldstone field that is classically decoupled, and then 

to calculate the quantum-induced coupling to it. 

In the itfi+oo case, we get lots more than the ex­

pected Virasoro transformations of x+ and the non­

linear transformations (18) of (p(x+,x~). Aside from 

the world-sheet coordinate which is also a sur­

vivor of the inverse Higgs effect, the surviving irre­

ducible Goldstone fields are: 

= ^ - 2 , v i a » ¥>-(.•+!), ' ' * • ( 1 9 ) 

Thus, general lui+œ-in variant theories cannot be 

made with just the Goldstone field ^ ( x + , # ~ ) , al­

though specific theories might be. An example of such 
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a specific it>i + c x riiivariant theory is just the d = 2 free 

field theory for tp(x~*~,x~) itself: 

which one can verify is invariant under the nonlinear 

transformations (18) without any need for coupling 

to the higher Goldstone fields in (19). As in the case 

of the d = 4 dilaton field, however, this classical de­

coupling may be violated by anomalies. Thus, one 

should be on guard for the recoupling of the second 

and higher members of the list in (19) at the quan­

tum level. Moreover, coupling of the multiplet (19) to 

other worldsheet fields should in general be expected 

to involve the whole set. 

The above discussion has concerned only the 

"rigid" realisation of u;^ , which might better be con­

sidered "semi-local" since the transformation param­

eters in (18) are functions of x + only. We next con­

sider the case of gauged w ^ , in which the parameters 

are allowed to become arbitrary functions of x + and 

x~ , and to achieve this one has to couple to gauge 

fields A{, i > 0. Thus, we are dealing with a the­

ory of "itfoo-gravity" coupled to (p. As was shown 

in [12] for the case of W 3 , this gauging is particu­

larly simple for the case of the chiral W-realisations 

generalising just the left-handed copy of the Virasoro 

algebra (2). This chiral gauging of W3 trivially gen­

eralises to the chiral Wqq case. The non-chiral cases 

are more involved, with two sets of gauge fields A,*, 

Ai and infinite series of "seagull" couplings nonlinear 

in these gauge fields [12]. These infinite series are 

equivalent to the use of cross-coupled auxiliary fields 

F{, Fi that give rise to "nested covariant derivatives" 

as a result of their algebraic but non-polynomial field 

equations [13]. For our present purposes, however, 

we shall be concerned with the simplest case of chiral 

gauged [7], for we wish to examine the features 

of the gauged model analogous to those found above 

in the semi-local case. 

When we let the parameters in the transforma­

tions (18) depend on both world-sheet coordinates, 

ki(x+) —» fc/(x+,x~), the action (20) will be invari­

ant only if we include Noether coupling terms for the 

gauge fields A/ , £ > 0. The gauged action then be­

comes 

and the gauge field transformations required when 

the (p transformations (18) become fully local are 

where a ^ ( x + , x ~ ) , £ > 1 is a set of local parameters. 

These local "shift" symmetries are akin to the Steuck-

elberg symmetry that arises when massive Maxwell 

theory is made into a gauge theory by the addition 

of a "spurion" scalar field. The shift symmetries can 

be fixed by the gauge conditions 

Thus, the infinite set of gauge fields At can 

be "telescoped" down to just Ao, which couples to 

the one truly independent current in the action (25). 

Moreover, the eliminable gauge fields correspond ex­

actly to the generators v ^ 1 whose Goldstone 

fields decouple in the actions (20,21). 
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The Noether currents (d+ip)w coupled to the 

At in (21) might perhaps better be considered semi-

local "charges", since the free <p equation of motion 

= 0 implies that they are all independent of 

the "time" even without integration over As 

a consequence, they are not really all independent 

for the single (^-component case that we have been 

studying for simplicity up to now, since d-d+ip — 

0 d_(d+)w = 0. 

This lack of independence is at the root of an­

other infinite set of local symmetries of the action 

(22), under which the Ae>i gauge fields undergo ar­

bitrary shifts [7]: 



The telescoping phenomenon goes differently if 

one takes a multiplet of scalars <pAB valued in the 

adjoint representation of some Lie group T [7]. For 

example, if (p is valued in the adjoint representation 

of SU(N)y then the action is similar to (21) except 

that we must now trace over the T indices: 
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The difference in the telescoping behaviour now arises 

because some of the currents tr(*9+y>)*+2 are trully 

independent; the number of such independent cur­

rents is given by the rank of the group T . Thus, 

for T = SU(N), there are N — 1 independent cur­

rents tr(ô+(.s>)2, • • •, ti(d+ip)N, which couple to the ir­

reducible gauge fields A Q , A L 7 * • •, AN-2- The shift 

symmetries in this case permit one to gauge to zero all 

the higher gauge fields AI>N-I- Moreover, in order 

to maintain the gauge Ae>N-i = 0 on performing w-

transformations, compensating shift transformations 

are needed. The remaining fields and transformation 

laws then agree with those for a gauged chiral WN 

model, the nonlinearity in the WN algebra arising 

from the combination of with the compensat­

ing shift transformations. The same agreement oc­

curs (after field redefinitions) between the non-chiral 

gauged Wz theory of ref. [13] and the gauge-fixed 

X = SU(3) version of the gauging of ref. [7]. 

Thus, from we come back to WN in a finite com­

ponent model. The restriction on the telescoping of 

the higher gauge fields down to those of a WN gaug­

ing actually can be done somewhat more economi­

cally than we have presented above. It is not neces­

sary to take a full set of fields valued in the adjoint 

representation of T — all that is necessary is to let 

the fields <p take their values in diagonal T-matrices 

[14], in order to preserve the independence of the cur­

rents t r (9 + ( / p ) 2 , - - - , t r (9 . f ^ ) i V . How to describe this 

T-valued "telescoping" structure in the languange of 

nonlinear realisations that we started with remains a 

problem for further research. 




