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ABSTRACT

We describe the classical geometry of linear and non-linear realisations of the w,, algebra in
two-dimensional field theories. We also discuss the relation of gauged w-invariant models with
N — 1 independent scalar fields to Wy symmetry.

There has been much interest recently in the
various possible extensions of the Virasoro algebra
that could occur as world-sheet symmetry algebras
of d = 2 field theories. The realisation that there
exist not only spin-1 extensions of the Virasoro al-
gebra such as the Kac-Moody algebras, but also the
w-algebras [1], which contain conformal spins higher
than 2, has opened up new possibilities for world-
sheet symmetries.

The left-handed Virasoro algebra is generated by
the 744 component of the stress tensor, which may
be Fourier analysed into the L,, generators:

= ingt
Tiy= Y ™ Ly, (1)

n=—oo

where 1 = z 4+ 1 is considered for this purpose to
be a circular coordinate. At the classical level with
which we shall mainly be concerned in this article,
there is no central extension of the Virasoro algebra,
which thus has the commutation relations

[Lin, Ln] = (m — n) Ly (2)

Under the action of the Virasoro algebra, a primary
field Wigy(z%,27) of conformal spin s is one whose
Fourier components W, ,, satisfy the commutation

relations
[Lm,W(s)n] = ((.S — l)m ~—n) W(_g) m+n- (3)

The Wy algebras [1] extend the spin-2 Virasoro
algebra by the inclusion of generators with conformal
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spins 34 @ ---P N. As can be seen from the need
for covariance of the commutators of the new higher-
spin generators under the Virasoro subalgebra, there
must be non-linear combinations of generators on the
right-hand side of at least the highest spin commuta-
tor. For example, the W3 algebra has a term on the
right-hand side of the [W,,, W, ] commutator that is
quadratic in the Virasoro generators L, for this is
the only way to construct the term of conformal spin 4
that is necessary by Virasoro covariance of the com-
mutation relations, without having an independent
spin-4 generator itself.

In the limit of N — oo, however, the need for such
non-linearity can be pushed off indefinitely. Thus, the
W algebra [2] recovers the structure of an ordinary
Lie algebra:

[ors 93] = (G + D~ (i + D)0l (4)
where the superscript indices ¢, j correspond to con-
formal spins s — 2, and run over integral values
1,7 > 0. Thus, the Virasoro generators are the spin-2
generators v0, = L., and the spin-3 generators are
the v}, etc. The algebra (4) contains only the lead-
ing conformal spin i + j + 2 required by the Vira-
soro algebra. One can also consider a deformation
of this algebra in which sub-leading conformal spins
also make an appearance — the algebra W, [3,4],
from which w,, as given above may be recovered by
a contraction. Here, we shall be concerned only with
the w,, algebra (4).



A natural realisation of the w,, algebra (4) is
in terms of area-preserving, or symplectic, diffeomor-
phisms of a cylinder [3] S! x R, to which we may
give coodinates (w,y)}, and on which we may expand
a general function f(w,y) in a complete Fourier x
polynomial basis of functions

— _ielmwyl+1,

U (5)
in terms of which the algebra (4) is realised as a
Poisson bracket algebra {v} ,vi}, where the Poisson
brackets are defined on the cylinder (w, y) in the stan-
dard fashion:

{f,9} = 0uwf0,9 — 0y fOug- (6)
Alternatively, one may introduce the hamiltonian
vector field operators

{)ﬁz = {’U£ .}a

m?

(7)

where a function to be operated on by %, would be
placed at the location of the bullet o. For the basis
(5), these vector fields are given explicitly by
oL, = €™ (my™a, +i(€+ 1)y8.);  (8)

one may then verify that the algebra (4) is realised
by ordinary commutators of the differential operators
e,
There is a seemingly trivial extension of the weq,
algebra (4) that will nonetheless play an important
part in the rest of our discussion. One can readily
see that the algebra (4) will also close if one allows
the upper indices 7,7 to range over integral values in
the range ¢,57 > ~1. In that case, a set of conformal
spin-1 generators ¥} = meimwa,, is included into
the algebra, corresponding to the y-independent basis

1

functions v;,! = —ie'™¥

. This extended algebra is
called w1400-

The above linear realisations of we, and wiqee
are not themselves of the type that we expect to have
for fields on the worldsheet (z*,z~). The type of
realisation that we are looking for in this context is a
generalisation of the Virasoro realisation on a scalar

field ¢,

8 = k(z™)d4p. (9)
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Note that since we are concerned at present with
the realisation of a single chiral copy of the Vira-
soro algebra, the parameter k(z1) (equivalent to &y,
—o0 < m < oo) depends only on the z¥ coordi-
nate and the transformation of ¢ involves only a 04
derivative. This “semi-local” structure of the Vira-
soro transformation laws, involving only the zt co-
ordinate and with =~ having essentially the role of
an inert “time”, requires a generalisation to wy, and
W14oo in terms of fields p(z*, z~) where only the z*
coordinate is involved in the transformations. Thus,
we are essentially looking for realisations in terms of
functions of only one variable — the “time” vari-
able £~ will be important only when we consider
the construction of a Lagrangian. Scalar functions of
only one variable represent an infinitely smaller field
content than that of the linear realisation described
above. Thus, we are necessarily looking for nonlinear
realisations of Wy, W14eo to generalise the standard
Virasoro realisation.

A nonlinear realisation built according to the
classic structure [5,6] with a G/H coset will require
both G and H to be “large”, if the coset is to
be parametrised in terms of the “small” field con-
tent of scalar fields over one dimension. In fact, H
should differ from G only by the omission of genera-
tors whose linear realisation involves one-dimensional
fields. This is exactly the relation between w,, and
Wi4oo that we have discussed above, so it is natural
for our purposes to try the coset w14 o0/Weo7]-

In order to constiruct a coset-space nonlinear re-
alisation W14eo/Weo, it is necessary to know how to
make a finite w4, transformation on fields defined
on the cylinder (w, y). From the Poisson bracket form
of the algebra, one sees that infinitesimal transforma-
tions of a function f(w,y) are given by f — f where

]=f+{A’f}a (10)

in which A is the infinitesimal parameter of the trans-
formation. Exponentiating, we obtain the transfor-
mation with finite A,

F= AN+ A A 4 ()

Note that, like our Virasoro transformation of a
scalar field (9), these transformations are active, i.e.,



they transform fields only and not the coordinates at
the point of evaluation, f(w,y) — f(w,y). If we re-
write the finite transformation (11) as an Einstein-
style tranformation for a scalar field f(w,y) —
f(®,%) = f(w,y), we derive the corresponding coor-
dinate transformation (w,y) — (@, §). Then one can
verify that (11) does indeed yield an area-preserving,

or symplectic, diffeomorphism:

der (5o0) =1

Since the basis functions v;;! corresponding to the

(12)

Wi4oo/Woo coset are y-independent, projection of an
expression linear in generators of wy 4, into the coset
is easily effected by setting y — 0. Correspondingly,
the coset transformations are parametrised by func-
tions of w alone, A(w), and similarly the Goldstone
fields @, for the w400/Wweo nonlinear realisation can
be assembled into a field ¢(w, z7), where, as before,
z~ is the inert “time”. At this stage, it is appropriate
to make the identification w < z*. The vector field
built from the Goldstone field ¢ is

¢ ={p,0} = ‘P’aw (13)
(0/0zF)p = 8uwp. Thus, the finite

W1 400/ Woo element parametrised by ¢ is exp(yp'dy).

where ¢' =

We may now derive the non-linear transforma-
tions in the usual way, multiplying on the left by a
general element g of w1 4:

ge?' % = P U}, (14)

where A is an element of H = we. For a trans-
formation in the coset, ¢ = Aoy ¢ W1 oo/ Woo, the
transformation of ¢ is just an inhomogeneous shift:

=@ =p+Aa"). (15)

This transformation is indeed not linear, in the sense
that it is not homogeneous in ¢, and thus fulfils our
expectations for the transformation of a Goldstone
field under a transformation from its own coset. More
unusual, however, is what happens to ¢ under a trans-
formation from the denominator group we.

For a transformation by an element of the w,,
denominator, we take an element g € wq, in the in-
finitesimal neighborhood of the identity, ¢ = 1 + ;\,
and make the standard rearrangement:

=¥ 3e 9, = 60’ + A, (16)
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where 8¢’ = ¢' — ', For the infinitesimal wo trans-
formation generated by A = ke(z*)y‘*!, one then
finds 8¢’ = (ke(@")+1), s0

§p = ko(z)(040),  £=0,1,...,00.

(17)
The whole set of numerator and denominator trans-
formations (15) and (17) can be summarised by
6 = ko(z 1) (40), £> -1 (18)
The unorthodox feature of the above construc-
tion, namely the nonlinearity under transforma-
tions by the denominator group, arises because the
Witoo/Woo COSEL 18 too small to form a linear realisa-
tion of the wo, denominator. More precisely, as one
can see from (4), the commutator of a G/H genera-
tor with an ‘H generator gives back a generator in H,
except for commutators with the ¢ = 0 level of the H
algebra, i.e., with the Virasoro subalgebra, which is
actually linearly realised as one can see from (9).

In the nonlinear realisation of w40, we have
a situation somewhat similar to the case of d = 4
conformal symmetry SO(4,2), where the structure
of the nonlinear realisation is made more clear by
In this,
one constructs a larger coset G/H' which satisfies
[G/H',H'| C G/H', so that G/H' does actually form
a linear realisation of H'. Then one looks for a set

recourse to the “inverse Higgs effect” [9].

of covariant constraints to bring the number of in-
dependent Goldstone fields down to the smaller size
actually sought. The possible covariant constraints
are easily constructed using Cartan differential forms,
according to the standard theory of nonlinear reali-
sations [5,6]. The analog of H' in the w4 case
[10] is the Virasoro algebra, according to which the
w1400 generators #%, break up into Virasoro represen-
tations of conformal spin s = i+ 2. In order to realise
W1+4eo according to the nonlinear realisation theory of
refs [6], we should associate the z¥ worldsheet coor-
dinate to some coset generator of the algebra, just
as one does for SO(4,2) with £# «— P*#. Here, we
associate [10] zt to the L_; = 9%, generator. For
the Virasoro algebra, this gives the transformations
Ly :zt — 2t + 6z, where 621 = kn(z%)". In
this realisation, the Virasoro algebra splits up into
singular (n < —1) and non-singular (n > —1) sec-
tors. Moreover, the non-singular sector closes onto



itself, as can be seen from the algebra (2). Thus, we
may consistently restrict the discussion to the non-
singular sector of the Virasoro algebra and the cor-
responding non-singular sector of wj4e, Which con-

sists of the generators f}in The denominator

—(i41)"
subalgebra H' for this real-izsa(tiZn) is the stability sub-
algebra of the point z+ = 0, with generators 97,+,.
The boundary generators bi_(,- +1) will correspond to
the irreducible coset elements that remain after the
inverse Higgs effect, analogously to z# and o(z) in
the d = 4 conformal case. The result of the inverse
Higgs analysis is given by the following diagram of

the wy 4o generators:

Map of the non-singular ;4. generators

X X X X X

: 0O X X X X X X
1=2 6 X X X X X
1=1 0o X X X X
=0 - - = e O ¢ O
1= —1 o X X

|
m= 0

In this diagram, the generators corresponding to re-
ducible Goldstone fields that can be eliminated by
covariant constraints in the inverse Higgs effect are
indicated by x, the irreducible Goldstone fields that
survive the inverse Higgs effect are indicated by o,
the 9, generator corresponding to the world-sheet
coordinate z* is indicated by e, and the generators
of the denominator subalgebra H' are indicated by
$.

Introducing the notation ¢ (z*) for the Gold-
stone field corresponding to the w; o, generator o7,
we see that the boundary generator in the bottom row
of the diagram is the one corresponding to the z*-
independent transformations in the wyyco/woo coset,
and so the Goldstone field ;' is the one that cor-
responds to the wy4./wo, Goldstone field ¢(z*) of
our earlier discussion. Indeed, after eliminating all
of the reducible Goldstone fields in the diagram by
the inverse Higgs covariant derivative conditions, the
transformation of ¢y !(zt) = o(z) is exactly given
by eq. (18) as required, after re-expressing the trans-
formations in the same active form that we used be-
fore. Thus, similarly to the d = 4 conformal case, we
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have recovered the nonlinear transformations of the
minimal nonlinear realisation G/H from an extended
discussion starting from a coset G/H' that transforms
linearly under H', then eliminating as many as possi-
ble reducible Goldstone fields by the covariant deriva-
tive conditions of the inverse Higgs effect.

In both the present case and in the d = 4 con-
formal example, one actually gets more than was
asked for. In the d = 4 conformal case, one wants
to understand the nonlinear proper conformal trans-
formations of z*, which are initially realised in the
fashion of ref. [8] using the coset SO(4,2)/H, where
‘H consists of the unorthodox Poincaré subalgebra
(SO(3,1)®{K*}) times the dilations D. After the in-
verse Higgs effect, one reobtains the desired z# trans-
formations, but finds that there is also a Goldstone
field, o(z*#), which is necessary in general to make a
dilation-covariant coupling to general matter fields.
Of course, certain specific Lagrangians may not in-
volve this dilation Goldstone field — for example,
classical d = 4 Yang-Mills theory is already con-
formally invariant by itself and does not need any
help from the dilation Goldstone field. This is not
the case, on the other hand, for the massless spin-
two Pauli-Fierz theory (general relativity linearised
in hyy = guy — Nyw), whose conformally invariant re-
alisation does require coupling to the dilaton. More-
over, as is well-known, even if a theory is conformally-
invariant at the classical level without coupling to
the dilation Goldstone field o(x), conformal anoma-
lies may require such coupling at the quantum level.
Indeed, a standard way to calculate the conformal
anomaly for a given theory is to provide a dilation
Goldstone field that is classically decoupled, and then
to calculate the quantum-induced coupling to it.

In the wy 4, case, we get lots more than the ex-
pected Virasoro transformations of 21 and the non-
linear transformations (18) of ¢(z*,27). Aside from
the world-sheet coordinate =1, which is also a sur-

vivor of the inverse Higgs effect, the surviving irre-
ducible Goldstone fields are:

(19)

Y= t100—1, ‘PI—Z, ‘P2—3"' '7‘/7i—(i+1)a'

Thus, general wi4oo-invariant theories cannot be
made with just the Goldstone field p(zt,z7), al-
though specific theories might be. An example of such



a specific w14 o-invariant theory is just the d = 2 free
field theory for p(z¥,z7) itself:

I,= %/d2z8+<pa_<p, (20)
which one can verify is invariant under the nonlinear
transformations (18) without any need for coupling
to the higher Goldstone fields in (19). As in the case
of the d = 4 dilaton field, however, this classical de-
coupling may be violated by anomalies. Thus, one
should be on guard for the recoupling of the second
and higher members of the list in (19) at the quan-
tum level. Moreover, coupling of the multiplet (19) to
other worldsheet fields should in general be expected

to involve the whole set.

The above discussion has concerned only the
“rigid” realisation of w,,, which might better be con-
sidered “semi-local” since the transformation param-
eters in (18) are functions of z* only. We next con-
sider the case of gauged w,, in which the parameters
are allowed to become arbitrary functions of z and
z~, and to achieve this one has to couple to gauge
fields A;, ¢ > 0. Thus, we are dealing with a the-
ory of “wy,-gravity” coupled to ¢. As was shown
in [12] for the case of W3, this gauging is particu-
larly simple for the case of the chiral W-realisations
generalising just the left-handed copy of the Virasoro
algebra (2). This chiral gauging of W3 trivially gen-
eralises to the chiral wo, case. The non-chiral cases
are more involved, with two sets of gauge fields A;,
A; and infinite series of “seagull” couplings nonlinear
in these gauge fields [12]. These infinite series are
equivalent to the use of cross-coupled auxiliary fields
F;, F; that give rise to “nested covariant derivatives”
as a result of their algebraic but non-polynomial field
equations [13]. For our present purposes, however,
we shall be concerned with the simplest case of chiral
gauged wy, [7], for we wish to examine the features
of the gauged model analogous to those found above
in the semi-local case.

When we let the parameters in the transforma-
tions (18) depend on both world-sheet coordinates,
ke(zT) — ky(zt,z7), the action (20) will be invari-
ant only if we include Noether coupling terms for the
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gauge fields Ay, £ > 0. The gauged action then be-
comes

Docal = /d-zﬂc(%5+9°a—¢
_ i 1
pos £+ 2

and the gauge field transformations required when

(21)

Al(a+‘70)l+2)a

the ¢ transformations (18) become fully local are

¢
§Ay =0_ky — Z [(] + I)Aja+kg_j

=0
— ([ S E: l)k,_j6+A,-].

(22)

The Noether currents (94¢)**? coupled to the
Apgin (21) might perhaps better be considered semi-
local “charges”, since the free ¢ equation of motion
0-04+¢ = 0 implies that they are all independent of
the “time” z~, even without integration over z+. As
a consequence, they are not really all independent
for the single p-component case that we have been
studying for simplicity up to now, since _dyp =
0=0_(0,)"*%=0.

This lack of independence is at the root of an-
other infinite set of local symmetries of the action
(22), under which the A¢>; gauge fields undergo ar-
bitrary shifts [7]:

2
640 = — ; mal(aw)z
>1

5A[=ae [_>_0,

(23)

where ag(zt,z7), £ > 1 is a set of local parameters.
These local “shift” symmetries are akin to the Steuck-
elberg symmetry that arises when massive Maxwell
theory is made into a gauge theory by the addition
of a “spurion” scalar field. The shift symmetries can
be fixed by the gauge conditions

Ap=0 £>1. (24)
Thus, the infinite set of w, gauge fields A, can
be “telescoped” down to just Ag, which couples to
the one truly independent current in the action (25).
Moreover, the eliminable gauge fields correspond ex-
actly to the w,, generators 92! whose Goldstone
fields decouple in the actions (20,21).



The telescoping phenomenon goes differently if
one takes a multiplet of scalars ¢4 valued in the
adjoint representation of some Lie group 7 [7]. For
example, if ¢ is valued in the adjoint representation
of SU(N), then the action is similar to (21) except
that we must now trace over the T indices:

Ir = /dzx[%tr(a.;,.cp(?_cp)

1
£42

(25)

NE

Agtr(D49)+?).

o
Il

0

The difference in the telescoping behaviour now arises
because some of the currents tr(04p)**? are trully
independent; the number of such independent cur-
rents is given by the rank of the group 7. Thus,
for T = SU(N), there are N — 1 independent cur-
rents tr(04p)%, - - -, tr{B4+p)", which couple to the ir-
reducible gauge fields Ay, Ay, -+, Ay_z. The shift
symmetries in this case permit one to gauge to zero all
the higher gauge fields A¢»n_1. Moreover, in order
to maintain the gauge A¢>n_1 = 0 on performing w-
transformations, compensating shift transformations
are needed. The remaining fields and transformation
laws then agree with those for a gauged chiral Wy
model, the nonlinearity in the Wy algebra arising
from the combination of w,, with the compensat-
ing shift transformations. The same agreement oc-
curs (after field redefinitions) between the non-chiral
gauged W3 theory of ref. [13] and the gauge-fixed
T = SU(3) version of the w,, gauging of ref. [7].
Thus, from w,, we come back to Wy in a finite com-
ponent model. The restriction on the telescoping of
the higher gauge fields down to those of a Wy gaug-
ing actually can be done somewhat more economi-
cally than we have presented above. It is not neces-
sary to take a full set of fields valued in the adjoint
representation of 7 — all that is necessary is to let
the fields ¢ take their values in diagonal T-matrices
[14], in order to preserve the independence of the cur-
rents tr(04p)?, - - -, tr(84+¢)". How to describe this
T-valued “telescoping” structure in the languange of
nonlinear realisations that we started with remains a
problem for further research.
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