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Introduction

1.1 Motivation

Imagine you are riding your bike, going home after a long night out. Suddenly,
you start to wonder what time it is and if you will make it home before sunrise. To
answer this question, it suffices to just use classical physics. The behaviour of the
world at smaller scales, such as the structure of subatomic matter, is irrelevant.
Indeed, while you are lost in thought about the microscopic world, night will still
become day regardless of the detailed behaviour of quarks and gluons.

This separation of scales made it possible for physicists in the 20*" century to
develop accurate theories describing a wide range of phenomena. For example, at
(sub)atomic scales, quantum field theory describes the world of elementary par-
ticles and their interactions and this framework has been successfully applied to
describe three of the four fundamental forces of nature: the strong, weak and
electromagnetic interaction. The fourth force, gravity, is negligible at these scales
due to its weakness and its effect only becomes apparent at the scale of humans,
planets, solar systems and galaxies. Here, gravity dominates and its properties are
described by Einstein’s theory of general relativity.

Despite the success of quantum field theory and general relativity, there are situ-
ations where the physics at different scales cannot be disentangled. In Figure 1.1
the Bronstein cube is displayed, whose axes correspond to three fundamental con-
stants of nature: the speed of light ¢, Planck’s constant & and Newton’s constant
Gn. By moving along an axis starting from the classical physics origin, the effects
parametrized by the constant on this axis become more important and we see how
different regimes correspond to different physical theories.

Most of the corners of this cube are well understood. The one exception is the
corner indicated with red where effects in ¢, i and G are all relevant. This is the
regime of quantum gravity and the length scale at which quantum gravity effects
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Figure 1.1: The Bronstein cube describes the validity of different physical theories as
a function of the importance of effects measured by three fundamental constants: the
speed of light (c), Planck’s constant (h) and Newton’s constant (G ). One corner is left
empty, which corresponds to a quantum mechanical version of Newtonian gravity that
will not play any role in this thesis.

become important is given by the Planck length, a length scale given by

h
by =1/ E’;N =16-10"%m . (1.1)

One might expect that because this scale is so small, quantum gravity effects are
always negligible. Surprisingly, this turns out to be false and there are systems

even in our own galaxy where quantum gravity cannot be ignored, such as the
black hole at the center of our galaxy.

Of course, black holes are solutions of general relativity but that does not mean
that they can be completely described within classical general relativity. On the
contrary, we know that general relativity breaks down at the singular center of
a black hole where spacetime curvature becomes large and possibly even beyond.
Moreover, as is illustrated by the black hole information paradox, even though
the curvature at the horizon of large black holes is low compared to the Planck
scale, this does not mean quantum gravity effects always decouple from low-energy
physics at the horizon and naively applying effective field theory might yield in-
correct results. Instead, a complete description of the black hole must come from
a theory of quantum gravity.

In cosmology, something similar happens. The current (accelerated) expansion
of the universe implies that in the past, the universe must have been smaller.
When tracing back the expansion of the universe using general relativity, one
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finds a gravitational singularity not completely unlike the one inside a black hole.
Also here, a complete understanding of the initial conditions that gave rise to
our universe must come from a theory of quantum gravity. Moreover, just as
in the black hole case low-energy physics does not seem to decouple from high-
energy quantum effects. To explain the smallness of the cosmological constant for
example, one needs to understand why quantum effects do not renormalize the
cosmological constant to a much larger value.

We therefore have evidence from both black hole physics and cosmology that,
even though quantum gravity effects are guaranteed to become important at the
Planck scale, its effects propagate to much lower energies. This is good news,
because it makes quantum gravity predictive as it implies that not any garden
variety effective theory can be consistently coupled to it. Instead, for an effective
theory to be successfully embedded into quantum gravity it must satisfy certain
consistency conditions. The conclusion is that in many situations of interest, scale
separation fails and one needs a theory of quantum gravity that a unifies the
physics at small and large scales.

The most successful and best understood proposal for such a theory is string theory.
By replacing elementary point particles with extended objects such as strings and
D-branes, string theory consistently combines quantum field theory and general
relativity into a unified framework. This has led to a precise understanding of
quantum gravity in particular simple backgrounds. String theory has also been
applied to cosmological solutions such as de Sitter space, a vacuum solution of
general relativity that approximates the accelerated expansion of our universe
well. Strikingly, despite the fact that the landscape of all string vacua is expected
to be enormous!, it is notoriously difficult to find (meta)stable de Sitter solutions
in string theory. This has led to an active debate amongst string theorists whether
or not string theory vacua are stable under quantum effects. As a result, not only
the stability of de Sitter space has been questioned, but it has also been suggested
that nonsupersymmetric anti-de Sitter space is unstable as well.

Over the last few years, there has been mounting evidence that quantum grav-
ity effects indeed can destabilize vacuum solutions, unless they are protected by
a symmetry. In this thesis, we will carefully study the instability of black holes,
anti-de Sitter space and de Sitter space. It turns out that these kind of instabilities
are rather universal and that they might be viewed as low-energy predictions of
quantum gravity. This provides an opportunity to study quantum gravity without
having to build an experiment that directly probes Planckian energies, which is ex-
tremely challenging if not impossible. The hope is that by studying these universal
predictions, we will obtain a better understanding of the low-energy properties of

LA recent estimate of the number of F-theory vacua is 10272900 [g].
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quantum gravity and learn which effective theories can be consistently embedded
into quantum gravity.

Outline of this thesis. In the rest of this chapter, we will introduce some
concepts and technicalities that will be of use in the upcoming chapters. We first
discuss quantum effects of matter on top of a fixed gravitational background and
the swampland conjectures. This will serve as a basis for Chapter 2 and Chapter
3 where we study quantum instabilities of black holes, anti-de Sitter space and de
Sitter space. After that, we review some aspects of flux compactifications of string
theory and highlight some important details regarding a particular construction of
de Sitter vacua in string theory. This will prepare the reader for Chapter 4, where
we construct the effective description of de Sitter vacua in string theory using
constrained superfields. We will close this thesis in Chapter 5 with a summary
and outlook.

1.2 Quantum field theory on a fixed background

Systems in which the curvature of spacetime is low compared to the length scale
of interest need not to be described by a full theory of quantum gravity. Instead,
we can treat gravity semi-classically by keeping the background fixed and only
considering matter on top of the background as being quantum mechanical. We
will now use this approach to derive some quantum effects in Rindler space, de
Sitter space and black holes.

1.2.1 Rindler space

The simplest example where one can study quantum effects in gravity is Rindler
space, which is the coordinate system in Minkowksi space that is natural from the
point of view of an accelerating observer. Due to the acceleration of the Rindler
observer, Rindler space has event horizons beyond which there is no causal contact
with the Rindler observer. Hence, Rindler space only covers a quarter of the global
Minkowksi Penrose diagram, see Figure 1.2.

For simplicity, we will focus our attention on two-dimensional Rindler space which
is sufficient for our purposes. Consider two-dimensional Minkowski space.

ds® = —dt* + da* . (1.2)
Rindler coordinates in the left (‘L’) and right Rindler wedge (‘R’) can be defined

4
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Figure 1.2: Penrose diagram of Minkowski space with the left and right Rindler wedge
indicated with ‘L’ and ‘R’

as follows.

1
L: t=——¢sinh(ar), (1.3)
a
1
x = —=e® cosh(ar) ,
a
I ae .
R: t= —e%sinh(ar), (1.4)
a
1
x = —e® cosh(ar) .
a

The metric in Rindler coordinates in a single wedge is given by
ds® = e%a¢ (—d7? +d¢?) . (1.5)

Here, a is the acceleration of the Rindler observer. It will be convenient to also
introduce lightcone coordinates with respect to Minkowksi and Rindler coordinates
seperately.
U=t—=z, u=T1-¢. (1.6)
V=t+z, v=1+¢E,
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The direct relation between Minkowkski and Rindler lightcone coordinates is

1 1
U=——e™,  V=—e. (1.7)

The metric in lightcone coordinates now reads
ds? = —dUdV = —e*"~""dudv . (1.8)

Having specified the background, we now introduce a massless scalar field (¢, x)
on top of this background, whose action is given by

1
S = —3 /d%c\/—g Oupdtp . (1.9)

Notice that the two-dimensional action of a massless scalar field on any two-
dimensional spacetime is invariant under a conformal transformation.

G — Q(m)zg,“, . (1.10)

This immediately implies that the equation of motion of the massless scalar field
on any two-dimensional spacetime is given by the wave equation in flat space.

Oudve =0. (1.11)

This allows us to treat incoming and outgoing modes that solve the wave equation
separately where we define incoming and outgoing with respect to an asymptotic
observer. A complete set of modes that are positive frequency with respect to
Minkowski time t are given by
. , 1 .

@Sn) — e—le , SO(S,OUt) — e—sz ) (112)
Here, w is the energy of the mode and the normalization is chosen such as to obey
the standard Klein-Gordon norm

>
(P Pur) = /dt <<pf:/8t<pw> =w—u). (1.13)
As usual, we can now expand the scalar field in terms of these mode functions and

creation/annihilation operators.

© 4 A A
o= \/:Tw [e=V 4y, + eV al] + (U & V) . (1.14)

The creation/annihilation operators obey the canonical commutation relations.

[, 0] ] = 6(w — ') . (1.15)
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The Poincaré-invariant Minkowski vacuum is defined as being annihilated by ay
for both incoming and outgoing modes.

ty |0ar) =0 (1.16)

However, there is also an alternative way of quantizing the scalar field which makes
use of Rindler coordinates. The wave equation is then given by

au(?v@ =0 5 (117)

and the properly normalized mode functions in ‘R’ by

. 1 - 1 ;
(in) _ e — —al iw/a 1.18
wo T Ve AL (118)
1 . 1 )
(out) _ e~ WY — aV iw/a )
oo 4w 47rw( )

The mode expansion of the scalar field is now given by

> dw s R
P . w/a . —iw/ait
b= T (( al)/*b,, + (—al) bw> YU SV, (1.19)

with

~—

by, b1 ,] = 6(w — ' (1.20)

The Rindler vacuum is defined as being annihilated by both incoming and outgoing
Rindler modes.
b |0R) =0 . (1.21)

The two different vacua can be related to each other by a so-called Bogoliubov
transformation.

00
I;w = / dw/ (aww’dw’ + wa’&zﬂ) . (122)
0

A non-zero Bogoliubov coefficient [, indicates particle production, which can
be seen by computing the expectation value of the number operator. Let us say
we are interested in the number density of particles in the Minkowski vacuum as
seen by a Rindler observer. He or she would compute

(Oar| Ny [0ar) = (0ar[ L0 [0ar) = 18] (1.23)

where we used (1.22). So when |3,,|> # 0, it indicates that a Rindler observes sees
the Minkowski vacuum as a state that contains particles. By equating the two
mode expansions (1.14) and (1.19) it follows that

1
e2rw/a _ 1 °

1Bl = (1.24)

7
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We recognize this as the Bose-Einstein distribution of a thermal gas. The Rindler
observer thus sees the Minkowksi vacuum as a thermal state with a temperature
T = a/(2m), which is the famous Unruh effect [7]. As we will see later, in more
general situations we can attribute a temperature to an event horizon given by
K
=5
where k is the surface gravity at the horizon.

(1.25)

To analyze the energy density in these two vacua we compute the vacuum expec-
tation value of the energy-momentum tensor, given by

(Tuw) = @uo00) — 5 (050 0) - (1.26)

The expression for the energy-momentum tensor becomes particularly simple in
lightcone coordinates, where we find

(Tyv) = ((Oue)?) | (1.27)
(Tyv) = ((Ove))
(Tov) =0 .

A finite result can now easily be obtained by comparing the energy-momentum
tensor in the Rindler and Minkowski vacuum. Using the mode expansion (1.19)
and the Bogoliubov transformation we reproduce the following well-known result.

 dw w 1
0r|Tuu|0r) — (0a| Ty |0a) = — |2 = — ) 1.28
(Or|Tuv|O0r) — (Onm|Tyu|0ar) /0 27ra2U2|’8 | 1802 (1.28)
*© dw w 1
0|y v|0R) — (O] Ty |0ar) = — 2o _
(Or|Tvv[0r) — (On|Tv v |0ar) /0 QTGQVQW | 1872

By employing a regularization procedure, such as normal ordering with respect to
the a,, operators, we can find the regularized expression for the energy-momentum
tensor.

1
1
<0R|:TVV:|OR>:_W ) On| = Tyv : [0a) =0 .

Let us highlight some important aspects of this result.

The energy-momentum tensor is negative and diverges at the future (U = 0) and
past (V' = 0) horizon of the Rindler observer. The appearance of negative energy
can be understood by writing the Minkowski vacuum as a thermofield double state
between the left and right Rindler Wedge.

0) H 2 ) s b (1.30)
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Here, |n); 5 is the Rindler state with n particles in the left/right wedge and
B is the inverse Unruh temperature. This shows that the Minkowksi vacuum is
a careful equilibrium between incoming and outgoing fluxes, such that the total
energy-momentum vanishes. The Rindler vacuum then corresponds to the removal
of both incoming and outgoing particles such that an accelerating observer sees
an empty state. The result of course is that the energy associated with these
quanta is also removed, such that the energy density becomes negative. In fact,
the energy density violates the null energy condition (7T),,) k*k” > 0, where k* is
a null vector. Nevertheless, it can be shown that the total energy in the Rindler
vacuum remains positive due to a singular, positive contribution at the horizon [8].
Due to the singularities in the Rindler vacuum, it is typically not considered as a
reasonable physical state.

This finishes our discussion of Rindler space. As we will see next, many properties
of Rindler space naturally generalize to de Sitter space and black holes.

1.2.2 De Sitter space

De Sitter space is maximally symmetric vacuum solution of Einstein’s equations
with a positive cosmological constant A > 0 and in four dimensions it has the
isometry group O(1,4), which is the Lorentz group in five dimensions. It can be
defined as an embedding in Minkowski space in one dimension higher. So four-
dimensional de Sitter space is defined as

1
H?

where H = /A/3 is the Hubble parameter. A convenient coordinate system in
which de Sitter space is static is given by

— XXX X2+ XE = (1.31)

1 — H?r2sinh(Ht) , (1.32)
X' = H /1 — H2r2 cosh(Ht) ,
X?% =rsinfcos¢ ,
X3 =rsinfsing ,
X4 =rcosh .
In these coordinates, the metric becomes
ds* = — (1— H*r*)dt* + (1 — H21"2)_1 dr? +r2dQ3 . (1.33)

Here, ds is the volume element of the unit two-sphere. We see that there is an
event horizon located at » = 1/H. Static coordinates only cover a quarter of the
global de Sitter Penrose diagram, indicated with blue in Figure 1.3.
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It will be useful to introduce the tortoise coordinate

" 1 1 1+ Hr
/
Ty :/0 dr T2~ am log <1 Hr> ) (1.34)

in which the metric becomes

1
ds* = sech®(Hr,) (—dt* + dr?) + }7E] tanh?(Hr,)dQ3 . (1.35)

We will now consider the wave equation for a massless scalar field on this back-
ground

O (V=99""0,0) =0, (1.36)
and only take the scalar field to have a dependence on the time and radial coordi-

nate. We then write
o(t, )

plt,r) =—"—, (1.37)

and obtain the following equation for ¢(t,7)
(=07 + 02 +V(r)) ¢(t,r) =0 (1.38)
Here, the potential is given by
V(r) =2H*(1 - H*r?) . (1.39)

We notice that close to the horizon, V(r) vanishes. By introducing the lightcone
coordinates?
u=t+r,, vV=1—"Ty, (1.40)

the wave equation in the near-horizon limit then reduces to
OuOypd(u,v) =0 . (1.41)

By comparing with (1.17) we see that this is simply the wave equation in Rindler
space! The near-horizon region of de Sitter space can therefore be approximated
by two-dimensional Rindler space, see Figure 1.3. This implies that we can derive
some properties of de Sitter space by drawing the analogy with Rindler space.

Let us also introduce lightcone coordinates that can be extended to give a global
cover of de Sitter space. These are defined as

1 1
U= —Ee_H“ , V= ﬁeH” : (1.42)

The wave equation near the horizon is of course

aUang =0. (143)

2Notice that compared to Rindler space, our definition of u,v is slightly different. This to
ensure that the direction of the lightcone coordinates is still the same.

10



1.2.  Quantum field theory on a fixed background

De Sitter Rindler

Figure 1.3: Penrose diagram of de Sitter space. Static coordinates cover a quarter of
de Sitter space. The near-horizon region is well approximated by Rindler space, which is
shown by blue.

In similar fashion as in Rindler space, we can now expand the scalar field in modes
that are positive frequency with respect to either the static time coordinate or the
global time coordinate and this will define different vacuum states. By comparing
the expression for lightcone coordinates in Rindler space (1.7) with the analogous
expression in de Sitter space (1.42), we see that we can think of the near-horizon
geometry of de Sitter as a Rindler space where the acceleration of the Rindler
observer is given by a = H. By doing so, we immediately conclude that a static
observer in the static patch of de Sitter will see a thermal spectrum of particles at
a temperature

Tas = — 1.44
ds o ) ( )

which can be verified by explicit computation of the Bogoliubov transformation.
In Chapter 3, we will further elaborate on the different vacuum states that one
can define in de Sitter space and show how they affect the global evolution of de
Sitter space.

1.2.3 Charged black holes

For Schwarzschild black holes, which are completely characterized by their mass,
an entirely similar story as in de Sitter space goes through. We can introduce light-

11
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cone coordinates that are natural for an asymptotic observer outside of the black
hole and also coordinates that can be extended to cover the maximally extended
Schwarzschild solution. The near-horizon geometry becomes well approximated by
a Rindler space with acceleration a = 1/(4M) leading us to assign a temperature

of 1

StM '’
to the black hole horizon, which indeed is the Hawking temperature.

Teu = (1.45)

When we add charge to the black hole, we find an additional feature. Consider
the four-dimensional electrically charged Reissner-Nordstréom black hole.

oM Q2 oM Q2\ !
ds® = — (1 -—+ QQ> dt* + (1 -—+ %) dr® +r2dQ% . (1.46)
r r r r
Here, M is the mass and @ the charge of the black hole. This black hole has two
horizons located at
re =M+ \/M2-Q?%. (1.47)

We see that the horizon is real only when M > @, which is known as the ex-
tremality bound. When M > @, the story is similar as for Schwarzschild black
holes and the near-horizon geometry looks like Rindler space. As before, we can
assign a temperature to the outer horizon of the black hole that can be computed
by using that the near-horizon geometry is approximated by Rindler space.

_ QL VM- QT (1.48)
W(M+¢m)

However, when we consider a so-called extremal black hole with M = @) something
special happens. First of all, we notice that the temperature goes to zero in this
limit suggesting that the black hole has reached its ‘ground state’. Secondly, when
we look at the metric we find that the inner and outer horizon become degenerate

TrN

and that the metric components become a perfect square.

2 -2
ds® = — <1 - Q) dt? + (1 - Q) dr® 4 r2dQ3 . (1.49)
r r

By introducing a new coordinate z as
r=Q+z, (1.50)
and expanding for z < @ we take a near-horizon limit. The resulting metric is

given by
2 22 o e 2 1002

ds® = —@dt + ?dz + Q°dQ; . (1.51)
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1.2.  Quantum field theory on a fixed background

This is not the metric of Rindler space, but that of the Bertotti-Robinson geometry
which locally corresponds to AdSy x S2. The radius of AdSy and the S? are equal
and given by (% ;o = Q2. The Penrose diagram of the extremal Reissner-Nordstrom

black hole is displayed in Figure 1.4.

Singularity

Inside region

Extremal Reissner-Nordstrom AdSs,

Figure 1.4: Penrose diagram of the extremal Reissner-Nordstrém black hole, which ex-
tends indefinitely in the vertical direction. The blue region is the near-horizon geometry,

which corresponds to AdSs x S2.

We thus find that near-horizon physics of extremal charged black holes is not
determined by Rindler space, but by the dynamics of AdS;. Higher-dimensional
extremal black holes also have an AdS5 factor in their near-horizon geometry, but
the sphere becomes higher dimensional. To obtain a higher-dimensional anti-de
Sitter space as near-horizon factor, one needs to consider extended objects such

as extremal black brane solutions.

These observations will be relevant in Chapter 2 where we show that a quantum
instability of extremal charged black holes also implies that anti-de Sitter space is

unstable.

13



1. Introduction

1.3 Swampland conjectures

As we already briefly mentioned in section 1.1, high-energy quantum gravity effects
do not always decouple from low-energy physics. This is most clearly illustrated
by black hole physics and cosmological inflation. From the black hole information
paradox, we know that we cannot fully trust effective field theory even at (large)
horizon scales and the UV-sensitivity of inflation poses similar problems. While
this complicates the treatment of black holes and cosmology, it also provides us
with a unique opportunity because it suggests that we can learn about quantum
gravity, without ever having to probe Planckian energies.

Viewed from a different perspective, this implies that quantum gravity puts non-
trivial constrains on low-energy effective theories. This idea has been formulated
more sharply in the context of the swampland program [9], whose goal is to distin-
guish low-energy effective theories that can and cannot be consistently coupled to
quantum gravity. Theories that can be embedded into quantum gravity are said
to be in the landscape, while theories that do not enjoy this property belong to
the swampland, see Figure 1.5. To distinguish the swampland from the landscape
several criteria, known as the swampland conjectures, have been put forward that
a theory must satisfy for it to belong to the landscape, see [10,11] for reviews.
Most of these conjectures find their origin in string theory, but at least some of
them are expected to hold more generally.

1.3.1 Weak Gravity Conjecture

Over the years, many different swampland conjectures have been put forward and
one that is of particular relevance for this thesis is the Weak Gravity Conjecture
(WGCQC) [12]. The WGC roughly states that in any quantum theory of gravity
containing gauge forces, gravity should be the weakest force. More precisely, the
WGC requires that a state exists that has the property that, if we take two of
them, their gauge repulsion is always stronger than their gravitational attraction.
A further refinement of the conjecture has been made by specifying the properties
of the state(s) satisfying the WGC. This has led to different versions of the WGC
such as the mild form (there should exist some state satisfying the WGC) and the
strong form (the lightest charged state should satisfy the WGC). In later works,
further sharpened versions were proposed such as the (sub)lattice [13] and tower
WGC [14] for example.

But why should the WGC be true? Let us first give some loose arguments based
on four-dimensional Einstein-Maxwell theory. In this case, the WGC requires the
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1.8. Swampland conjectures

Effective theories

Swampland

Figure 1.5: In the space of all seemingly consistent low-energy effective theories only a
subset can be coupled to quantum gravity. Theories that enjoy this property are said to
belong the landscape, while theories that cannot be coupled to quantum gravity are in
the swampland.

existence of at least one massive, charged state with mass m and charge ¢ whose

mass-to-charge ratio obeys
m/q < \/g/Gn (1.52)

where ¢ is the gauge coupling. If we now take ¢ — 0 (but keep G finite) the
gauge symmetry becomes indistinguishable from a global symmetry, because the
interaction with the gauge field vanishes. For all practical purposes we have created
a global symmetry, but we know global symmetries should not exist in quantum
gravity [15-18]! For this reason, there should exist a lower bound on how small
we can make the gauge coupling and the WGC precisely provides us with this, see
(1.52). Exactly how strong (or weak) this bound is depends on the precise version
of the WGC that is true. Notice that if the WGC-satisfying state is light enough,
it is kinematically allowed for extremal charged black holes to decay. Hence, if the
WGC would not be satisfied, one could imagine building a large tower of exactly
stable (extremal) charged states, not neccesarily protected by any symmetry. The
existence of such a large tower would be quite puzzling, as all these states would
contribute to any scattering process by running in loops. This could potentially
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1. Introduction

lead to pathologies, such as the violation of entropy bounds and renormalization
of Gy to zero when the gauge coupling is sufficiently small [19].

Besides these somewhat heuristic arguments, also more precise derivations of a
mild form of the WGC have been found by making use of IR constraints on scat-
tering amplitudes [20,21], black hole thermodynamics [22] and the AdS/CFT cor-
respondence [23]. Finally, it has been observed that the WGC seems to be satisfied
in all string compactifications.

In Chapter 2 we will relate the WGC to the decay of extremal charged black holes
and see how this implies that the near-horizon anti-de Sitter space is unstable.

1.4 Vacuum solutions of string theory

In this section, we will introduce some of the key ideas used to find vacuum so-
lutions of string theory and highlight some of the difficulties one faces when con-
structing them. First of all, (critical) string theories are defined in more dimensions
than the four we observe at low energies. Hence, if we take ten-dimensional super-
string theory, we have to compactify six of the dimensions on a compact space to
arrive at a four-dimensional theory at low energies. Making sure that the result-
ing four-dimensional vacuum is stable is challenging and finding a vacuum that
resembles the one we live in today is an even more difficult problem. Nevertheless,
there has been progress in this direction and we now discuss some of the elements
that are essential to obtain stable four-dimensional vacua.

1.4.1 Flux compactifications

To explain the idea of a compactification, we will consider a simple example
(loosely based on examples in [24] and [25]) where we compactify the ten-dimensional

Einstein-Hilbert action. The action is given by
1
S=_— / d°X\/—-Ge *®R . (1.53)

= k2

Here 2 is the ten-dimensional Newton’s constant, ® the dilaton and R the Ricci
scalar constructed from the ten-dimensional metric given by

ds* = GyndXMax? . (1.54)

We now consider the situation where the ten-dimensional space Mg is a product

of the form
Mig =My x Ys , (1.55)
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1.4. Vacuum solutions of string theory

where My is a four-dimensional spacetime and Yg a compact six-dimensional space.
We take the following ansatz for the metric

ds® = eiﬁ“o(x)gu,,da:“dx” +e2*@ g dy™dy" | (1.56)

where p,v = 0,..,3 and m,n = 4,..,9. The field ¢(x) only depends on the four-
dimensional spacetime and parametrizes the overall size of the compact space. We
now reduce over the compact space by writing the action as

1 .
S = 53 /d4x\/7—g4/d6y\/giﬁe_2¢ e 6% (R4 +R6) . (1.57)

Here, ]%4 and RG are the Ricci scalars constructed from 6_6“"(:”)9,“, and e2¢@g,
We can write this in terms of R4 and Rg constructed from g¢,, and g, respec-
tively by using the fact that if two D-dimensional metrics are related by the Weyl
rescaling

ab = €*“Gap, , (1.58)
the Ricci scalars are related as
R=e2 (R—2(D - 1)V2w — (D — 2)(D — 1)(0qwdpw)g™) . (1.59)
Using this identity, we find
V _ _
S = 2762 d*zv/~gae™*® (Ry — 549,00" ¢ + ¢ ¥ Ry) . (1.60)

Here, V5 = [ d%y./gs is the volume of the compact space and we assumed the
six-dimensional Ricci scalar to be constant. We can canonically normalize ¢ and
take the dilaton to be constant (g, = e®) to find

Mz? 4 1 —-te
S = - /d x/—gs | Ry — 55‘#@8"90 +e 3vsRg | (1.61)
where we defined the four-dimensional Planck mass as Mg = ;2)3% .

This example shows that we obtain the four-dimensional Einstein-Hilbert action,
4

with in addition a scalar field with the potential V() = —eiﬁRg. There are

now three distinct possibilities.

1. Rg < 0: In this case, the potential will drive ¢ — 00, such that the compact
space will decompactify.

2. Rg = 0: In this case, the potential vanishes and we have an exactly massless
scalar field.

3. Rg > 0: In this case, the potential will drive ¢ — 0, such that we end up in
an unbounded negative potential.
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In all three cases, there is no stable vacuum where the scalar field ¢ obtains a
positive mass squared. This is the problem of moduli stabilization. Moduli are
scalar fields that parametrize deformations of the compact space and typically
show up as light scalar fields in the lower-dimensional theory. Hence, to obtain a
stable four-dimensional vacuum where the moduli are heavy enough such that they
can be integrated out we need to include additional contributions to the action
that generate a potential for the moduli.

In general, this presents an obstacle known as the Dine-Seiberg problem [26]. Let
us say that ¢ is a modulus that controls a weak coupling expansion. Then, the
leading-order result for the potential is given by the limit ¢ — oo where the
potential vanishes. For simplicity, let us consider Rg # 0, but the argument also
generalizes beyond this assumption. In this case, the leading correction to the
potential leads to runaway behaviour, either to decompatification or to strong
coupling. Hence, to obtain a stable minimum a higher-order correction needs to
be included that gives a contribution similar in size. But if the next-to-leading
order correction is of similar size, there is no reason to believe that we should not
include the entire series of corrections. Unless the first two terms are accidentally
similar in size and higher-order terms are small, a (meta)stable vacuum solution
in string theory seems to be strongly coupled. For anti-de Sitter vacua we need
competition between at least two terms, but for de Sitter vacua an additional third
correction is required.

This problem can be evaded if we can find different sources of corrections to the
potential that can be tuned independently of each other. As we will discuss now,
one such source can come from fluxes.

Including fluxes

Additional contributions to the potential can come from higher-order (quantum)
corrections in g; and o in the string action, but also fluxes. Because string theory
comes with various p-form electric and magnetic fields, we can turn on fluxes in
the compact space and as we will see this can lead to a stable vacuum. Let us say
we turn on a constant three-form flux in the compact space. The Einstein-Hilbert
action in ten dimensions is then given by

1
S = 3,2 /dloX\/—Ge’M’ (R—e %137 | (1.62)

where indices on F3 are raised and lowered with ¢,,,. By performing the same
reduction to four dimensions, we find that the action is modified in the following
way

2

M
5= TP /d4x —0a (R4 — 540,00"p + e % Rg — e~ 12?| F3]?) . (1.63)
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1.4. Vacuum solutions of string theory

The potential for the canonical scalar field is now given by
2 4
Vie) = 677%|F3‘2 — e VaRg . (1.64)

If the compact space has negative curvature (Rg < 0) both terms contribute
positively to the potential and the solution is driven to decompactification. On
the other hand, if Rg > 0 there is a competition between the two terms in the
potential and we can obtain a stable vacuum with a negative cosmological constant,
see Figure 1.6.

V(o)

-0.05

-0.10}

-0.15}

Figure 1.6: The potential (1.64) for |F3|> = Re¢ = 1, which has a stable anti-de Sitter
minimum.

This was just a simple example, but it shows the essence of the challenge one faces
when constructing (meta)stable vacua in string theory. As discussed before, to
stabilize moduli there always needs to be a competition between different terms
that contribute to the moduli potential and to evade the Dine-Seiberg problem it
must be possible to tune these contributions separately.

Next, we will digress slightly and discuss N = 1 supersymmetry and its sponta-
neous breaking, which is a necessary step in any (semi-)realistic string compacti-
fication.

1.4.2 Supersymmetry breaking

Another crucial ingredient to obtain explicit and well-controlled vacua of string
theory is supersymmetry. Supersymmetry is a powerful computational tool and
vacua that preserve some amount of supersymmetry belong to the best-understood
corners of string theory. Having said that, in our universe supersymmetry is nec-
essarily broken due to the positive energy density of our vacuum and its breaking
needs to be implemented in a controlled manner.
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To still make use of (some amount of) unbroken supersymmetry along the way from
ten to four dimensions, one typically considers compactifications that preserve
(at least) N = 1 supersymmetry and only after that we introduce an ingredient
that breaks supersymmetry at a relatively low energy scale. We are therefore
mostly interested in theories that preserve N = 1 supersymmetry that contain a
solution that breaks it spontaneously. We will now explain some useful techniques
to describe spontaneous supersymmetry breaking assuming the reader has some
familiarity with N = 1 supersymmetry. If not, the introductory review [27] will
serve as a good basis.

Consider a theory with a single chiral superfield S(¢, A, F') that contains a scalar
field ¢, a fermion A and an auxiliary field F'. A simple example of a globally
supersymmetric theory for S is given by the following Kéhler and superpotential

K=285S, (1.65)
W=FfS.

Here, f is a parameter with dimensions of (energy)?. The scalar potential of this
theory is given by )

V =KABa,Wow = f? . (1.66)
We see that this theory breaks supersymmetry spontaneously as dsW # 0 and
the vacuum just corresponds to a flat direction where the scalar field is massless.
Of course, because supersymmetry is broken spontaneously this also implies that
the fermion A is massless. This ‘goldstone fermion’ of supersymmetry breaking is
usually referred to as the goldstino.

We could also imagine a similar theory, but now with additional higher-dimensional
operators that give a contribution to the Kéahler potential, an example that was
considered in [28].

K =285 25(55)% - 22(835 4+ c.c) + O(A73) . (1.67)

A2( A2(
We take g1,92 > 0. Notice that due to the higher-dimensional operators, this
theory can only be viewed as an effective theory valid at energy scales £ < A.

The effect of the higher-dimensional operators is to induce a potential for ¢, given
by

V= 2 (144551012 + 355 (67 + 6) + O(A7) (1.68)
The mass of the scalar fields is given by
2
m? = e (491 £ 692) (1.69)

and we impose g; > %gg to have a stable vacuum. We can now integrate out
the scalar fields to obtain a theory that only contains the massless goldstino in
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1.4. Vacuum solutions of string theory

its spectrum. The Lagrangian in terms of the component fields to lowest order in
derivatives is given by [28]

L=—f2+|F+f]?- %W)F AP - 3% ((8°F — p)2) F+cc) . (1.70)

The equation of motion for the scalar derived from this action is given by

/\2

0=1% - (1.71)

By plugging this back into the Lagrangian and also integrating out F', it reduces
to
L = —f* + (derivatives of \) . (1.72)

The goldstino is only derivatively coupled, which means that it must be invariant
under A — X + €, where € is a constant spinor. Moreover, if we would have
kept derivatives we would have obtained a Lagrangian that is invariant under the
infinitesimal transformation [29]

deX =€+ (Ad"€)O N . (1.73)

We see that, despite the fact that supersymmetry is broken, the effective theory
still enjoys a residual symmetry. Because the second term in the infinitesimal
transformation is a term of order A2, we say that the goldstino realizes supersym-
metry nonlinearly. This representation of the supersymmetry algebra was first
discovered by Volkov and Akulov [30].

Furthermore, there also exists a convenient superfield procedure one can apply to
directly arrive at this effective action. If we expand the superfield S in components
as

S =¢+V20\+60°F (1.74)

and square it we find
52 = ¢ + 20V/20) + 0%(20F — X\?) . (1.75)

Now notice that when we plug in the scalar field equation of motion (1.71) in
the expression for S2, all three terms vanish independently (the first two due to
the fact that fermions anticommute). We conclude that starting with the theory
(1.65) and imposing

S22 =0, (1.76)

is a shortcut to directly integrate out the scalar degrees of freedom and to arrive at
the effective action (1.72). Of course, the resulting theory is only valid at energies
below the mass of the scalars that are integrated out. Hence, in general some
UV-information is required (in this example knowledge of the value of A) to make
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sure that the mass of the degrees of freedom projected out by the constraint is
large enough such that the resulting effective theory can be trusted at the energy
scale of interest. If so, the upshot is that the resulting effective theory becomes
universal, irrespective of its precise UV realization [28].

Constrained superfields can be generalized to supergravity, where the resulting
expressions are more involved but the essence is the same as in the globally super-
symmetric case. In Chapter 4, we will apply the formalism of constrained super-
fields to describe supersymmetry breaking by (anti-)D-branes. There, non-linear
supersymmetry arises in a very natural way as D-branes are %—BPS objects. This
means that half of the supersymmetries in ten-dimensions are realized linearly,
while the other half is broken spontaneously and realized nonlinearly [31].

1.4.3 Brief review of KKLT

Now we put the different ingredients discussed in the previous subsections together
and give a brief review of how they have been used to construct de Sitter solutions
in string theory. We will focus on a particular construction that has been developed
by Kachru, Kallosh, Linde and Trivedi (KKLT) in 2003 [32]. Even though we will
only focus on the KKLT scenario, which will play a major role in Chapter 4,
we should mention that after KKLT many other proposals for de Sitter vacua in
string theory have been put forward (see for example [24]). Nevertheless, even
16 years after the KKLT paper was published there still is an active debate in
the community about the consistency of de Sitter vacua in string theory. In this
debate, the KKLT scenario serves as a concrete framework in which many of the
concerns that have been raised can be addressed explicitly.

GKP compactifications

The starting point of many semi-realistic string compactifications are so-called
warped compactifications, which means that there exists a region in the compact
space that exhibits a large gravitational redshift (‘warping’). This allows one to
make use of scale separation and obtain a low-energy four-dimensional vacuum in
which stringy effects at high energies are decoupled. A particular metric ansatz
for a warped compactification to four-dimensional flat space is of the form

ds? = e2A(y)77de”d:1c” + e AWy dy™dy" . (1.77)

24(Y) is the warp factor and Nuv is the four-dimensional Minkowski metric.

Here, e
A concrete realization of such a compactification in type IIB supergravity was
developed by Giddings, Kachru and Polchinski (GKP) [33], which we will review

now closely following [24].
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1.4. Vacuum solutions of string theory

The GKP solution has non-zero self-dual five-form flux F5 and three-form flux G3,
the latter of which is only turned on in the compact space. Explicitly, the five-form
flux and three-form flux are given by

Fs = (1 +%10)da(y) Ada® A dxt A da® A da® (1.78)
Gg = F3 + ie_(ng .

The ten-dimensional Einstein equations are now given by [24]

8A
e _
V264A _ W‘GBF +e 4A (|8a|2 + ‘364A|2) + 2526214»710(: ) (179)
Here, V2 is the six-dimensional Laplacian on the compact space, T is the axiodila-
ton and Jjoc contains contributions to the energy-momentum tensor from localized
objects (such as branes and orientifold planes) and is given by

1
u7loc = Z (TTn - TIL) . (180)

Without sources (Jioc = 0) the solution is trivial, which can be seen by integrating
over the compact space: the left-hand side is zero and each term on the right-hand
side must vanish identically as it consists of a sum of positive-definite terms. We
therefore see that to obtain a non-trivial solution Jio. < 0.

An additional constraint on the solution comes from the Bianchi identify of Fj
which can be integrated over the compact space Ys to yield.

Hy AF3+ QY° = 1.81
wot; J, o/ P+ @) (1.81)
Here, Th3 is tension of an (anti-)D3-brane and Q¢ denotes the charge contribu-
tion of sources carrying D3-brane charge. Using the explicit form of Fy and the
integrated Bianchi identity, the ten-dimensional Einstein equations can be written
as

€8A

24Im (1)
+ 25262A (s7loc - Qloc) )

V2 (e4A —a) = liGs — %6G3)? + e ](e* — a)]? (1.82)

loc

where Qioc = Thspy
(1.82) is therefore only possible when all of the following conditions are satisfied.

is the D3-brane charge density. A non-trivial solution to

2. *GGS = iGg.

3. c7loc = Qloc < 0.
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Solutions satisfying these criteria are called imaginary self-dual (ISD).

As we have seen previously, turning on fluxes in the compact space can stabi-
lize moduli. In the simple example we considered in subsection 1.4.1, we just
considered a single modulus. In more realistic compactifications however, Y5 is a
Calabi-Yau three-fold that in addition to Kédhler moduli (among which the volume
modulus falls) also has complex structure moduli and an axiodilation that need to
be stabilized.

By writing the ISD compactification in the language of N = 1 supersymmetry
in terms of a Kahler and superpotential, it can be seen that the resulting theory
contains a potential for the complex structure moduli and axiodilaton. The Kéahler
moduli remain unstabilized however, due to the no-scale structure of the potential,
meaning the superpotential is independent of the Kédhler moduli. Next, we will
consider adding corrections and see how this can also stabilize the K&hler moduli.

Including quantum corrections

To stabilize the Kéhler moduli, KKLT considered adding quantum corrections to
the effective theory obtained from the GKP compactification. In the KKLT sce-
nario, one makes use of the fact that the no-scale structure of the superpotential
can be broken by non-perturbative effects. Two corrections that are typically con-
sidered and can generate a potential for Kédhler moduli are gaugino condensation
from wrapping D7-branes on 4-cycles or instantonic Euclidean D3-branes. It was
argued in the original KKLT paper [32] that by including these non-perturbative
effects, the Kédhler moduli are indeed stabilized, although this has recently been
challenged. For now, we will assume this procedure to be consistent, but we will
come back to this important point later on.

After integrating out the massive fields and for simplicity only considering a single
Kéhler modulus T', the resulting Kéhler and superpotential are of the form

K = —3log(T +T) (1.83)
W =W, + Ae—oT ,
where W, is a constant determined by the three-form flux. The exponential term
in the superpotential parametrizes the non-perturbative effect and the value of A

and a are set by the precise mechanism generating it. We can now compute the
scalar potential

V=K (KTTDTWDTW - 3|W2|) : (1.84)
and write the result in terms of o = (7 + T'). This leads to the following result
aAe a —ao
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This potential has a minimum given by the solution to
DrW =0, (1.86)

showing that it is supersymmetric. Then, by plotting the potential in Figure 1.7
we find that we have obtained a stable vacuum!

V(o) x 1010
2+

120 160 180

2l

Figure 1.7: The KKLT potential (1.85) for A = 1,a = 0.1 and Wy = —10~*. The
minimum is supersymmetric and corresponds to anti-de Sitter space.

To summarize, by including a non-perturbative effect to the superpotential, we
obtained a stable anti-de Sitter solution of string theory with all moduli stabilized.
On top of this, by tuning fluxes appropriately (meaning taking Wy small), the warp
factor can be made exponentially small. This creates a throat-like region in the
compact space where there is a large gravitational redshift between the region at
the tip and top of the throat. Lets say that we have M units of F3 flux and K
units of Hy flux with K/Mgs > 1. Then, the warp factor at the tip of the throat
is given by [33]

2K
exp(Ag) ~ exp (— 3g7TM> <1. (1.87)

Here, Ay is the value of A(y) at the tip. A cartoon of the resulting warped geometry
is shown in Figure 1.8.

The small warp factor ensures that the physics in the low-energy four-dimensional
anti-de Sitter vacuum can be decoupled from stringy effects at high energies.

Uplift to de Sitter

The final step in the KKLT scenario is to add a source to the supersymmetric anti-
de Sitter vacuum that breaks supersymmetry and provides a positive contribution
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Figure 1.8: Cartoon of the warped geometry in the compact space that is generated by
putting M units of F3 flux through the red cycle and K units of flux through the green
cycle. By taking K/Mgs > 1, there is a large gravitational redshift between the region
at the tip and top of the throat.

to the potential that ‘uplifts’ it from anti-de Sitter to de Sitter space. This is done
by adding anti-D3-branes to the solution.

As can be seen from the (integrated) Bianchi identity (1.81), the flux of the N =
1 supersymmetric background contains D3-brane charge and adding D3-branes
therefore preserves supersymmetry. Hence, a D3-brane obeys a ‘no-force’ condition
meaning that the gravitational force it feels towards the tip of the throat exactly
cancels with the force from the five-form flux. In contrast, anti-D3-branes carry
an opposite charge and they are therefore naturally attracted towards the tip of
the throat both gravitationally and by the five-form flux. At the tip of the throat,
they therefore contribute a potential energy of (see (4.7) at ¢» = 0 for example)

V = 2pTpsetto . (1.88)

Here p is the number of anti-D3-branes and Tps the tension of an (anti-)D3-brane.
The factor of 2 signifies that the gravitational and electromagnetic potential energy
add. Strictly speaking, we cannot just add this term to potential as we should
take into account the dependence of the anti-D3-brane potential on the modulus
o, as was done in [32]. Also, we did not take into account the effect of brane
polarization, which will lower the potential energy slightly, but we will come back
to this point in Chapter 4. For the sake of illustration, we ignore these two
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subtleties. Then, adding the energy of anti-D3-branes to the potential (1.85), we
find that for suitably chosen parameters the anti-de Sitter minimum is uplifted
to a positive potential energy, corresponding to a metastable de Sitter vacuum in
string theory.

At last, we have achieved our goal of constructing de Sitter vacua in string theory.
Notice that the way we evaded the Dine-Seiberg problem is by balancing three
different contributions to the effective potential: fluxes, non-perturbative quantum
effects and anti-D3-branes.

Critical remarks

As mentioned before, we should be careful not to declare victory too soon as even
today there still is an active debate concerning the consistency of constructions
of de Sitter vacua in string theory, such as the KKLT scenario we just reviewed.
Here, we make a selection of a few issues that have been raised and for a more
complete overview we refer the reader to [34].

One point of concern has been raised in [35], where it has been argued that because
supersymmetry is broken in the GKP solution (since Wy # 0), one should include
higher-order quantum corrections in the string action, even before adding anti-
D3-branes or non-perturbative corrections. Although these corrections are not
known completely in type IIB string theory, [35] took the point of view that this
generically leads to a runaway behaviour of the potential that cannot be stabilized
using an exponentially small non-perturbative effect. However, this conclusion
has been challenged in [36], where effective field theory arguments were used to
argue that by tuning fluxes, Wy can be made very small such that the runaway
behaviour due to non-zero Wy can be safely ignored. To fully resolve the tension
between both points of view, a better understanding of non-perturbative effects in
time-dependent backgrounds is required, about which much is unknown currently.
Recently, work towards this goal has been presented in [37].

A second issue that has received quite some attention recently is the descrip-
tion of non-perturbative effects, and in particular gaugino condensation, from a
ten-dimensional point of view. This study was initiated in [38], where a tension
was found between a ten-dimensional description of gaugino condensation and
the four-dimensional results of [32]. However, these results were based on our
incomplete knowledge of the ten-dimensional form of the action and in subse-
quent work [39-42], it was shown that this tension is resolved when a previously
missed contribution to the ten-dimensional action is included (although this was
challenged in [43]).

Furthermore, over the years it has also been questioned if the backreaction of
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supersymmetry-breaking anti-D3-branes in flux backgrounds is under control (see
[44-59] for a subset of the relevant references). Anti-D3-branes have been shown
to become singular when put inside the GKP background, and a fully backreacted
supergravity solution in which it is revealed that this singularity is physical has
never been constructed completely. Nonetheless, by imposing various consistency
conditions on the solution, it has been argued that brane polarization can resolve
the singularity, which allows for a consistent metastable solution [55,59].

Finally, an issue that will be of particular relevance for this thesis is the nature
of supersymmetry breaking by anti-D3-branes. As discussed in subsection 1.4.2,
any theory that breaks N = 1 supersymmetry spontaneously should have a low-
energy description in terms of constrained superfields. In particular, a universal
prediction of spontaneous supersymmetry breaking is the presence of a goldstino
that is exactly massless in the limit M, — oco. It transform nonlinearly under the
broken supersymmetry and can be captured by a nilpotent superfield. Hence, if
supersymmetry breaking by anti-D3-branes in the KKLT scenario is spontaneous,
as it should be for the resulting vacuum to be a bone fide solution of string theory,
we should be able to describe the uplift procedure by making use of constrained
superfields. However, in the way we explained how the uplift to de Sitter comes
about we simply added the anti-D3-brane contribution to the effective potential.
Instead, a proper treatment should reveal that their contribution can be described
in a manifestly supersymmetric manner showing that supersymmetry is broken
spontaneously and not explicitly.

Exactly how this works and what will be the implications for the effective theory
describing de Sitter space in the KKLT scenario will be the main focus of Chapter
4.
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Tunneling in Charged Black
Holes

In this chapter, which is based on [1], we study quantum instabilities of charged
black holes. We show how the backreaction of matter on the background geometry
can be taken into account and illustrate how this leads to distinct instabilities. We
calculate the decay rate of Reissner-Nordstréom black holes and find that it remains
finite even after taking the extremal limit. As a consequence, the near-horizon
anti-de Sitter space is also unstable, compatible with general expectations from
the Weak Gravity Conjecture. This supports the conjecture that all nonsuper-
symmetric anti-de Sitter spaces are unstable [60,61]. The different instabilities we
uncover are all governed by the black hole entropy and are shown to have a unified
and elegant description in terms of particles tunneling through the horizon.

2.1 Introduction

Ever since Hawking obtained his famous result for the thermal emission spectrum
of black holes, an important question has been to understand, compute or estimate
its leading corrections. The universal thermal nature of the spectrum is at the heart
of the black hole information paradox and one unavoidable source of corrections is
due to energy conservation: a black hole can only emit a particle with an energy
at most equal to the mass of the black hole, implying the spectrum cannot be
exactly thermal in any realistic microcanonical description.

In fact these backreaction corrections were first studied by Kraus and Wilczek
by focusing on the dominant spherically symmetric sector of black hole emission
[62,63]. They imposed energy conservation by constructing a (non-local) effective
action for the spherical shell in which the (radial) gravitational degrees of freedom
are integrated out. It was subsequently suggested by Parikh and Wilczek that
these results could also be interpreted, and more easily computed, in terms of the
amplitude of a single particle tunneling through the horizon [64]. The tunneling
approach clearly points towards a universal answer for the probability which is
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2. Tunneling in Charged Black Holes

always equal to the change in the black hole horizon entropy before and after
emission, which was already pointed out in earlier work by Massar and Parentani
[65] using different methods. The fact that this probability is proportional to the
change in the entropy supports the interpretation of the emission process, even
after including backreaction, in terms of statistical thermodynamics [66].

Here, we would like to understand better the relation between the effective ac-
tion approach of Kraus and Wilczek and the tunneling approach of Parikh and
Wilczek, over which there has been some confusion over the years. In particular,
the final result of the original Kraus-Wilczek paper does not match the (universal)
tunneling result, although this was apparently remedied in [67] for the case of neu-
tral spherical shells emitted from a Schwarzschild black hole. We will show, in a
more general charged black hole setting, that the approach of Kraus and Wilczek
is indeed equivalent to the tunneling approach. As a corollary, this provides a
thorough and ‘from first principles’ effective action explanation for the validity of
the tunneling approach, specified to the interesting case of charged particle shells.
We will confirm that for a large range of parameters the probability for emission
of charged spherical shells from a charged black hole indeed is proportional to

P, o eA5EH (2.1)

as in the neutral spherical shell case. Here ASgy = S(M —w,Q —q) — S(M, Q) is
the change in entropy of the black hole before and after emission of a spherical shell
with energy w and charge q. Although we will be considering charged emission from
a four-dimensional charged black hole, the appearance of the entropy difference
and its associated interpretation in terms of statistical thermodynamics strongly
suggests this result also applies to higher-dimensional black holes and/or black
branes (in the spherically symmetric sector).

After having carefully understood the detailed structure and universal nature of
the result, we then study its implications in limits of interest. Specifically, we
will show that the expression remains valid in the extremal limit of the black
hole (M = Q) as long as the emitted particle shell satisfies w < ¢. The latter
condition of course relates to the Weak Gravity Conjecture (WGC) [12], which
essentially claims that in any consistent theory of quantum gravity there should
exist a charged state whose mass is smaller than its charge in Planck units, that
is m < ¢. This bound simply reflects the fact that an extremal black hole can
only get rid of its charge by emitting a particle with w < ¢ to avoid creating a
naked singularity. After all, one of the original motivations for the WGC was
that an extremal black hole should be able to decay. We find that the probability
to emit a charged particle satisfying the WGC from an extremal black hole is
still nicely represented in terms of the entropy difference. To obtain a sensible
result in the extremal limit crucially relies on including the backreaction of the
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shell. Moreover, we point out that the result remains applicable in a (non-thermal)
regime of parameter space where the electrostatic potential energy dominates for
some fixed particle charge q. At low enough energies the emission of particles of
charge ¢ enters the so-called ‘superradiant’ regime, where the entropy difference
changes sign and the tunneling amplitude has to be reinterpreted. This low energy
superradiant instability allows the black hole to quickly get rid of its charge, as
originally noted and computed by Gibbons [68], but here we include the effect of
backreaction.

With the generalized result for charged emission from charged black holes at our
disposal we will then study its consequences in relation to a conjectured extension
of the WGC, as put forward in [60,61]. The claim of these authors is that only
supersymmetric BPS states, which saturate the WGC bound, can be (meta)stable.
If correct, this implies that not only (extremal) black holes, but also (nonsuper-
symmetric) anti-de Sitter vacua should feature universal decay channels. This
conjectured extension of the WGC can be studied concretely in the context of
an extremal Reissner-Nordstrom black hole, where the near-horizon geometry fac-
torizes into AdS, times S2. As we will show, the universal tunneling expression,
when applied to the case of extremal to (non-)extremal emission, indeed implies
a specific decay rate for non-extremal domain walls and at best metastability
(fragmentation) for extremal domain walls in AdS spacetimes. When we expand
our near-horizon result to leading order in backreaction, it exactly reproduces the
general AdS; Euclidean instanton action of Maldacena, Michelson and Strominger
which describes an instability in the nonsupersymmetric (w < ¢) case [69]. In the
extremal case, this result matches the instanton first discovered by Brill [70], cor-
responding to AdS, fragmentation. As shown in [69], in the limit where one of
the charges is very small, the fragmentation amplitude indeed coincides with the
Euclidean action of the Brill instanton, which we explicitly relate to the tunneling
amplitude. As a consequence, our results, which fully incorporate backreaction in
the spherically symmetric sector, confirm and extend the existence of a family of
gravitational instantons describing the decay of AdS vacua by the creation and
subsequent expansion of super-extremal domain walls.

The rest of this chapter is organized as follows. In section 2.2 we employ the meth-
ods of Kraus and Wilczek to show that non-extremal charged black holes give rise
to a universal decay rate of charged particles that is, after including backreaction,
given by (2.1). We demonstrate that this is equivalent to the tunneling prescrip-
tion of Parikh and Wilczek. Continuing, we then carefully study the extremal limit
of this result in section 2.3 and identify a ‘superradiant’ region of parameter space
where the charged emission is significantly enhanced as compared to the thermal
regime. We go on to analyze the near-horizon limit of the tunneling calculation
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and interpret our results in terms of a family of gravitational instantons corre-
sponding to instabilities of (nonsupersymmetric) AdS vacua. Finally, we discuss
our results and present our conclusions in section 2.4. Some details on relevant
integrals can be found in appendix 2.A.

2.2 Including gravitational backreaction

In order to study corrections to Hawking radiation from backreaction, Kraus and
Wilczek used an effective action to derive their results [62,63] whereas Parikh and
Wilczek used a seemingly more ad-hoc approach by assuming particles tunneled
through the horizon [64]. Obviously, since both approaches aim to incorporate
the spherically symmetric part of the backreaction on the geometry of a black
hole, the final result should be the same. However, on a technical level these
approaches seem to be rather different and the expected agreement is far from
obvious. Notably, the supplied boundary conditions, which are related to the
physical interpretation, are different in the two cases. Despite these differences,
we will in this section verify that the results are the same, and we will clarify some
of the sources of confusion.

In order to include the effects of the energy of the spherical shell in the emission
process one can either fix the total energy of the spacetime or the black hole mass.
While Kraus and Wilczek fix the black hole geometry and let the ADM mass
vary, Parikh and Wilczek fix the ADM mass and allow the black hole geometry
to fluctuate. Because black hole evaporation corresponds to the loss of black hole
mass-energy to the asymptotically flat space surroundings, one might be inclined to
prefer the Parikh-Wilczek approach. However, we would like to emphasize that the
effective action approach of Kraus and Wilczek, which might be considered a more
rigorous derivation of the spherically symmetric dynamics including backreaction,
can just as well be applied with the ADM mass fixed. As a consequence, one
should be able to derive the (universal) Parikh-Wilczek tunneling answer from a
first principles effective action method.

To illustrate this, we will first derive the decay rate of a charged spherical shell
from a charged black hole using the Kraus-Wilczek effective action method and
subsequently employ the tunneling perspective to arrive at the same result more
directly. Along the way we will show how the Kraus-Wilczek computation [62,63]
reduces to the one performed by Parikh and Wilczek [64].
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2.2. Including gravitational backreaction

2.2.1 The effective action of a spherical shell

The central idea of the Kraus-Wilczek approach is that the dominant contribu-
tion to the emission flux in Hawking’s original calculation is in the s-wave sector
(spherical shells). Even though backreaction is in general hard, if not impossible,
to keep track of, focusing on just the s-wave contribution allows backreaction to be
incorporated. By constraining the gravitational degrees of freedom one arrives at a
two-dimensional effective action for a spherical shell in the black hole background.
Of particular importance are the boundary conditions that are needed to explic-
itly determine the on-shell action, which is then used in a WKB approximation to
construct solutions to the (corrected) field equations. Using these corrected mode
functions, the overlap can then be computed between appropriate energy eigen-
states in terms of asymptotic Minkowski time and the Unruh vacuum state, which
is selected by a specific initial condition for the mode functions near the horizon.
Following through, one then arrives at Hawking’s result plus corrections due to
gravitational backreaction in the s-wave sector. In the original article [62] this
was done for neutral emission from a Schwarzschild black hole, and in a follow-up
article [63] the authors report to have worked out the result for charged emission
as well. We will summarize the computation in the more general case of charged
emission below and show that the corrected final result agrees with the elegant
and universal answer that is naturally obtained and understood from a perspective
of particle tunneling.

Lets us start by considering a four-dimensional Reissner-Nordstrém black hole
with mass M and electric charge () with the metric and gauge field A given by

ds* = —f(r)dt* + f(r)"tdr® 4+ r2dQ3

oM Q2
f(r):1_7+7‘727
A:—gﬁ. (2.2)

We introduce the standard notation for the inner and outer horizon of the black

hole.
re =M+ \/M2-Q?%. (2.3)

The metric (2.2) contains a coordinate singularity at 4, so in order to construct
regular mode functions for a freely falling observer we introduce coordinates that
are regular across the horizon. A particularly useful choice are the Painlevé-
Gullstrand coordinates [71]. We define a new time coordinate as

(r), g(r) = /dr w , (2.4)

tp,=%t+g
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2. Tunneling in Charged Black Holes

such that the metric becomes (dropping the subscript p)
ds* = —f(r)dt* + 2y/1 — f(r)dtdr + dr* + r2dQ, , (2.5)

which is regular at the horizon.

Quantization

Now that we have specified the details of the background, we turn to quantization
of (spherically symmetric) fields in this background. Since we are interested in
charged radiation, we consider a complex scalar field ¢(¢,r) and write down its
mode expansion. Considering modes that are positive frequency with respect to
the Killing time that is used by an asymptotic observer we write

ot 1) = / dk (ékug(r)efw+d”,;a,;q(r)e+w) . (2.6)

Here u (r) denotes a particle mode function with positive charge ¢ and u; ?(r) an
anti-particle mode function with negative charge —g. The bar indicates complex
conjugation. Furthermore, k is the wavenumber with wy the corresponding energy.
We can now define the vacuum of an asymptotic observer as

er104) = dp [04) =0 . (2.7)

Alternatively, we can expand the scalar field in a different set of modes that are
positive frequency with respect to a freely falling observer as

$(t,r) = / i (af(t,r) + Bfo ) (2.8)
and define the vacuum of a freely falling (Unruh) observer as
ar |0p) = be [0p) =0 . (2.9)

The two sets of creation and annihilation operators are related by the following
Bogoliubov transformations

Cp = /dk‘/ (Oékk’dk + ﬂkk/lA)L) , (2.10)
dl = /dk:’ (o‘zkk,?); +Bkk,ak) . (2.11)
The Bogoliubov coefficients can be expressed in terms of the following integrals
1 e ot
Qplt = —— dt e* ' ol(t,r) 2.12
st () 212)
1 e ,
W= dte™ty, 1t 2.13
/Bkk 27T’U,Z(’I") [m € Uk ( ,7’) ) ( )
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which satisfy the standard orthonormality and completeness constraints. Selecting
the Unruh vacuum state, the amplitude for detecting n particles (and n anti-
particles) with momentum k is determined by the overlap

Iy = (Oylni,n_f) . (2.14)

The average number of particles with momentum k& in the Unruh state, introducing
the number operator Ny = éLék, is given by

(0| N [0y) = / 0K B (2.15)

Assuming the different mode expansions are defined on the same spatial slices,
as will be our case of interest, the Bogoliubov matrices will be diagonal and the
k' index can be dropped. Integrating over all modes and appropriately regulating
the expression (by introducing a finite space-time volume) one arrives at the result
for the (average) total flux of asymptotically observed particles. The integrand,
corresponding to the average flux density with an energy between wy and wy, + dwy,,

equals
dwy, Q(wy)

2m |anl?/|Bk> =1
Here an additional greybody factor Q(wy) was introduced that describes the ef-
fects of rescattering off the potential. In the case that we would ignore backre-
action, assuming the emission were exactly thermal and the background perfectly
transparent (Q(wy) = 1), the ratio |Bx|?/|ax|? would equal the Boltzmann factor
characterizing the Bose-Einstein distribution. Throughout this chapter, we will
ignore the effects of a non-trivial greybody factor, implying that the probability
for the black hole to emit a single quantum with momentum k equals

o=t = B L
(L+18el?)? fowl? [oul?

Flwy) = (2.16)

(2.17)

where in the final equality we used the normalization |ay | —|Bk|? = 1 which, as we
will explain later, cannot be assumed for charged particle emission at low enough
energies. For a thermal distribution this probability is of course proportional to
the Boltzmann factor.

In principal, we need to know the explicit form of the mode functions vy(t,)
in order to calculate the Bogoliubov coefficients, which is not straightforward.
However, as was argued by [62,63], the mode functions take on a simple form in
the WKB approximation, which is valid for short wavelengths. Because modes
near the horizon are infinitely blueshifted with respect to an asymptotic observer,
this approximation should be valid as long as the modes are close enough to the
horizon, which is then sufficient to determine the Bogoliubov coefficients describing
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the emission process. Thus, the mode functions are assumed to be of the following
WKB form

vl (t,r) = etSktr) o, U(t,r) = eI (2.18)

Here, S ,:Ct %(t,r) is the classical action of the shell and the superscript +¢ indicates
the charge of the solution. To obtain an explicit and useful expression for the
effective action, we will make use of a Hamiltonian formalism.

Effective action from a Hamiltonian formalism

In [62,63] a Hamiltonian formalism is used to derive the effective action of a particle
in the s-wave approximation, that is describing the dynamics of a shell in a black
hole background incorporating the backreaction of the shell. As is well known,
in order for the variation of the gravitational action to vanish when evaluated on
the equations of motion, it is necessary to supplement the action with boundary
terms that cancel the ones that are induced by the variation, see for example [72].
For non-extremal black holes in asymptotically flat spacetimes there are two types
of surface terms that require cancellation. One of these is defined asymptotically
and yields the ADM mass of the spacetime, whereas the second one is defined on
the black hole horizon and is related to its area and surface gravity [73].

In [62,63] the geometry of the black hole is kept fixed and the ADM mass is allowed
to vary to satisfy the Hamiltonian constraints. This means that the boundary term
on the horizon vanishes and we only need to subtract the asymptotic boundary
term from the action to have a well-defined variational principle. However, we
could also have fixed the ADM mass as was done in [64]. In this case, we should
add the boundary term defined on the horizon to the action.

For all practical purposes, this means that in the Kraus-Wilczek approach the
evolution of the shell is determined by the ADM mass and total charge of the sys-
tem (and therefore the geometry outside the shell), whereas in the Parikh-Wilczek
method it is the mass and charge of the black hole that determines the evolu-
tion (the geometry inside the shell). This is precisely the difference in boundary
conditions that we alluded to before. For the purpose of consistently comparing
with [63] we will fix the black hole geometry for now, but it should be stressed
that this is just a choice and we could just as well have fixed the ADM mass.

By solving the Hamiltonian constraints, it was found in [63] that the introduction
of a massless shell with energy w and charge ¢ splits the spacetime into two parts
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with mass parameter M(r), which appears in the metric as f(r) =1 — 2M(r)/r.

M—g—: (r<?),

M(r) = (2.19)
M+w-— % (r>7).

Here, 7 is the position of the shell. The classical action of the shell can be written
as [62,63]
r(t)
SE(t,r(t)) = SE0,r(0)) +/ drp. — (My — M)t . (2.20)
7(0)
In this expression, r(t) is trajectory of the shell, p. its canonical momentum whose
explicit form is given in (2.30) and M, the ADM mass of the spacetime. We
subtracted the contribution of the black hole from the action such that the Hamil-
tonian is that of the shell: (M} — M) = w. From Hamilton’s equations we find
that the equation of motion of the shell is

(2.21)

. 0H _1_\/2(M+w) BCET

r = =
Ope r 72

This is the equation of motion of an outgoing null geodesic in a spacetime with a
black hole of mass M + w and charge @ + ¢, as can be seen by solving

dx* dx”

P — 2.22

in Painlevé-Gullstrand coordinates. This indeed agrees with our earlier observation
that the imposed boundary conditions on the ADM mass and total charge should
determine the evolution of the shell.

To find an explicit expression for the trajectory r(t), we need to specify the initial
position r(t = 0). The natural choice is to demand the standard positive and
negative frequency modes for a freely falling observer that crosses the horizon (the
Unruh vacuum), that is we impose that the mode functions take the form of a
standard plane wave at t = 0:

S9(0,7(0)) = kr(0) . (2.23)

This means that the (diagonal) Bogoliubov coefficients can be written as

1 > i g
ap = 2l () / dt erttiSitr) (2.24)
—o0
1 o,
- - dt iwpt—iS, 1(t,r) ) 2.95
B 2muf (r) [m © ’ ( )
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We can compute these integrals by a saddle point approximation. The saddle
points of these integrals are solutions to

+
L 25 (t,r)
ot
where the plus sign corresponds to aj and the minus sign to ;. This simply
indicates that the different saddle point trajectories have opposite energy. Because
95} /ot is minus the Hamiltonian we find that the solution to (2.26) is given by

Wk

=0, (2.26)

M, =M +wy (2.27)

and the Bogoliubov coefficients at the saddle points are given by

r(t)
Qu; X exp (ikr(O) + z/ drpc> , (2.28)
r(0)

r(t)
Bk X exp (ikr(()) - z/ drpc> . (2.29)
r(0)

We will evaluate these expressions as close as possible to the horizon to minimize
corrections to the WKB approximation. At the same time we should remain
slightly outside the horizon for the mode functions uj (r) to be regular, so we take
r(t) to be just outside of the horizon, that is r(t) = r+ (M + w,Q + q) + € with
€ L ry(M+ w,Q + q). Before we can evaluate the Bogoliubov coefficients, we
will need some explicit details of the trajectory of the shell towards which we will
move our attention next.

Evaluating the Bogoliubov coefficients
The canonical momentum of an outgoing shell in our background is given by [63]
5 T — 4 / 2Mi’l“ — Qi
(r(t) = V2Mr — Q% — /2Myir — Q% —rlo . (2.30

The upper sign of My, Q+ denotes the saddle point for aj and the lower sign
the saddle point for 8. Null geodesics can be found by introducing lightcone
coordinates v and u as

u =t —r, = constant , (2.31)

v =t + r, = constant ,

where we introduced the tortoise coordinate 7.

—/d 1 +Ll ( ) Ll ( ) (2.32)
Te = Tf(T')_T R og(r—ry R og(r—r_) . .

38



2.2. Including gravitational backreaction

It is now straightforward to obtain an explicit expression for ¢ and k, given the
initial position 7(0) of the shell. By setting u(¢,7(t)) = u(0,7(0)) it follows that
2

j— 2 j—
t=r—r(0)+ T+ log(rr th )— = log(rr = ) (2.33)

Ty —T_ (0) —ry Ty —T_ (0) —r_
Using the initial condition (2.23) we obtain an expression for k.
k= pe(0,7(0) (2.34)

The last details we need are the value of r(0) and ¢ at the saddle points. Because
the modes are infinitely blueshifted near the horizon as compared to an asymptotic
observer, we only require the solution in the limit & — oo. In this limit we can
invert (2.34) to find an expression for r(0) and plug this into (2.33) to obtain an
expression for ¢. This then leads to

(M, Q1) + O(e /) (for awr)
’(0) = (2.35)
ri(M_,Q-) = O(e™*/r+)  (for Br)

0 (fOI‘ akk/)
Tm () = (2.36)

ry(M_,Q_)?
_ﬂ-“r(]‘/f—,z?f)frf(M,,Q,) (for Brrr) -

It is important to notice that generically, in the parameter space of the shell
spanned by ¢ and w, r(0) lies outside of the black hole horizon for aj. As a
consequence, the action at the saddle point of «y is completely real, and describes

a classically allowed trajectory. On the other hand, the initial position of the
shell is inside the horizon for ;. This implies that the shell travels on a classically
forbidden trajectory and the action picks up an imaginary part. Since the quantity
of interest is the ratio of the absolute values of the Bogoliubov coefficients, implying
that only the imaginary parts of the action contribute, we arrive at the following

|Br|? o
5 ocexp [2Im dr p. , (2.37)
|ovk | r(0)

which is evaluated at the saddlepoint for 8 and where r(¢) is taken as close as
possible, but slightly outside the horizon. Details on how to evaluate this integral
and the correct pole prescription can be found in appendix 2.A. Here, we simply
quote the result:

r(t) r+(M,Q) 1
Im / dr p. | = —71'/ drr=—m(ry(M_,Q_)* —r (M,Q)?%).
r(0) e (M_,Q-) 2
(2.38)

result
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This expression equals half the difference of the black hole entropy before and
after emission, which is typically negative and reduces to the Boltzmann factor
in the limit where the backreaction can be neglected. We therefore conclude that
the probability of the black hole to emit a particle with charge ¢ and energy w,
assuming ASpy is negative, equals

2
P(k) x |ﬁk|2 o e"f(T+(M—7Q—)2—T+(M7Q)2) — ¢ASBH , (239)
Qg

where ASpy = Spg(M —w,Q — q) — Spu (M, Q).

For both the neutral and charged case this does not exactly reproduce the result
of the original articles [62,63] due to a technical error, which was in fact corrected
in [67] for the neutral case. Here we extended it to also include charged emission.
The fact that the shell (generically) follows a classically forbidden trajectory clearly
suggests that we should be able to reproduce the result (2.39) directly by doing a
tunneling calculation, an idea that was worked out in [64]. In the next subsection
we demonstrate that this approach is indeed equivalent and verify explicitly that
the same Hamiltonian formalism used in [62,63] underlies this computation.

2.2.2 The tunneling perspective

In the previous section we saw that the computation of the Bogoliubov coefficients
reduced to calculating the imaginary part of the classical action, which is what
one would compute in a tunneling calculation in a WKB approximation. This was
done in [64] for the emission of neutral massless radiation. Here we generalize their
calculation to charged emission and make clear that this method is equivalent to,
and can be derived from, the Kraus-Wilczek effective action approach.

As mentioned, an important difference between the two approaches is that the
former keeps the black hole mass fixed and allows the ADM mass to vary, while
the latter keeps the ADM mass fixed and allows the black hole mass to vary. Before
we continue to discuss the tunneling calculation of Parikh and Wilczek, we first
discuss some details of the effective action computation if one would have fixed
the ADM mass. In that case the mass parameter M(r) for a shell at position 7 is
given by

M—w—i(("?;r)2 (r<#),
M(r) = (2.40)
M- (r>7).
Since we fixed the ADM mass M, it is now the geometry inside the shell that

determines the evolution. Again, we could use Hamilton’s equations to obtain the
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2.2. Including gravitational backreaction

result that the shell travels on a null geodesic with mass parameter M(r < ) as
the Hamiltonian of the shell is still given by Mapy — (M — w) = w. Another
difference is related to the initial condition of the shell which is now given by

o (M,Q) 4+ O(e*/m+) (for ay) ,
r(0) = (2.41)
ry(M,Q) — O(e */m+) (for B) .

So for ay, the shell now starts just outside of, and for §j just inside of the initial
horizon. It is important to notice that the parameter M that now appears in
all relevant expressions is the ADM mass and not the black hole mass. At the
end of the day, we want to interpret the probability for shell emission in terms
of the change in entropy of the black hole. Hence, we should write the canonical
momentum in terms of Mgy = Mapy —w. After this simple shift, the calculation
becomes equivalent to the Kraus-Wilczek computation with the black hole mass
fixed. We therefore conclude that when fixing the ADM mass the Kraus-Wilczek
effective action approach also leads to the same result (2.39).

In addition, this result can now be compared directly with the tunneling method
of [64]. The starting point of Parikh and Wilczek is the fact that in a WKB
approximation the tunneling probability is given by the exponential of the classical
action, which reduces to the integral

Pocesp |21 ( / arne)| (2.42)

where r; and 7y correspond to the initial and final position respectively of the
particle that is tunneling through a potential barrier. Based on the previous
section, we recognize it as the final expression for the integral in the Kraus-Wilczek
approach. In fact, it can be directly related to the expression (2.37) obtained
by fixing Mapy and using the boundary conditions (2.41). The relative minus
sign between these expressions can be explained by the fact that in the tunneling
integral (2.42) ry < r;, since the shell is taken to tunnel from just inside the
initial horizon to just outside the final horizon. In contrast, in the Kraus-Wilczek
computation 7(0) is always smaller than r(¢), when expressed in terms of the
black hole mass. Because these expressions are written in terms of the canonical
momentum and do not (explicitly) depend on the details of the background, we
expect this result to remain universally valid as long as spherical symmetry is
imposed.

Making use of Hamilton’s equations, we can manipulate (2.42) to write it as

ry ry H(w) 1
Im (/ drpc> =Im / dr/ dH - | . (2.43)
ri ri H(0) T
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2. Tunneling in Charged Black Holes

Here H is the Hamiltonian of the geometry seen by the shell. Since the shell
follows a null geodesic in a geometry with mass M — w and charge Q — ¢, the
Hamiltonian is identified as the mass of the black hole, such that dH = —dw. The
equation of motion for the outgoing positive energy shell in Painlevé-Gullstrand
coordinates is given by

7;:1_\/2(M_w)_(Q_Q)2. (2.44)

r 72

The boundaries of the integral are taken such that we integrate the shell from
just inside the initial horizon to just outside the final horizon. We now find that
the integral of (2.43) contains a pole, determined by the position of the outer
horizon, that is 74 (M — w,Q — ¢q). In order to evaluate this integral, we need a
prescription that tells us how to deform the contour around the pole. Different
choices correspond to different boundary conditions. We show in appendix 2.A
that the prescription that supplies the (physically) correct boundary conditions is
given by the (Feynman) deformation w — w — ie, which was also used in [64].

Evaluating the integral using the prescribed contour deformation and taking the
boundaries as the position of the initial and final horizon, one arrives at

Ty r+(M-,Q-)
i ([ arpe) = ow [ = 01,020 - (01,

+(M,Q)

(2.45)
where we used the results of appendix 2.A. The fact that these are the correct
boundaries to take can be seen by switching the order of integration, which leads
to the same result [64]. So we see that the tunneling method indeed gives the

i

same result, as it should, for generic parameters w and ¢ implying the following
universal decay probability (for sufficiently large energies w)

P(k) o eA5BH | (2.46)

where we (again) ignored the appropriate normalization factor, which for large
enough negative values of ASpy is approximately one. This universal expression
can now be employed to study different physical scenarios. In [64], where neutral
radiation was considered, the result was used to identify the (leading) correction
to Hawking radiation, capturing a deviation from perfectly thermal behavior, but
consistent with an interpretation in terms of statistical thermodynamics. We will
instead use this generalized expression to study charged decay channels in certain
limits of parameter space that are of interest to us and where the inclusion of
backreaction is crucial. We will in particular be considering limits where the
emission of charged quanta does not (only) occur through a thermal Hawking
process, but is dominated by a charged Schwinger-like process.
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2.2. Including gravitational backreaction

2.2.3 Superradiant emission and the tunneling integral

A particular limit of interest is that of low-energy charged emission, which is well
known to display superradiant behavior. Indeed, in the regime of parameters where
one expects superradiance the entropy difference ASpy becomes positive, implying
that the standard interpretation in terms of a tunneling probability is invalid.
The appearance of a superradiant regime in the (incorrect) expression for the
emission probability including backreaction was noticed in [63], but not elaborated
upon. Here we will provide the appropriate interpretation and application of the
tunneling integral in the low-energy superradiant regime.

To remind the reader, usually superradiance is associated to (and described by) a
scattering process, and as a consequence one introduces transmission and reflection
coefficients instead of Bogoliubov coefficients. When scattering an incoming wave
v1,%(t, ) on the horizon, conservation of flux implies

V1, + R Vo = T U3,k (2.47)

where v; and vy are respectively the right-moving and left-moving wave functions
inside the horizon and w3 is the right-moving wave outside the horizon. The
reflection and transmission coefficients R and T are normalized as

R>+|T)>=1. (2.48)

It is then straightforward to show that the transmission and reflection coefficients
can be related to the Bogoliubov coefficients in the following way [74]

2
‘Bk| _ |T‘2

o>

| = 1/|R? | ; (2.49)
where the standard normalization condition for the Bogoliubov coefficients has
been assumed

| = B> =1. (2.50)

We conclude that the transmission coefficient T" can be associated to the tunneling
probability P, which as we have seen is expressed in terms of the entropy difference
between the final and initial state of the black hole.

Obviously an interpretation in terms of a probability requires the ratio of Bo-
goliubov coefficients to be smaller than one. For charged emission there exists a
parameter regime at low enough energies where the sign of ASgy actually becomes
positive. For charged decay channels obeying

'S Q

LA 2.51
Wt g <A (2.51)
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2. Tunneling in Charged Black Holes

the change in entropy becomes positive and the tunneling integral is exponentially
enhanced instead of suppressed. We recognize the left-hand side as the total
energy of the shell (including its electromagnetic self-energy) and the right-hand
side as the electromagnetic potential of the black hole that the shell couples to.
Notably, in the extremal limit M = @, the effect of backreaction is to shift the
superradiant regime to lower (super-extremal w < ¢) values for the energy of the
emitted particle. When (2.51) is satisfied this clearly signals a (thermodynamic)
instability, as it becomes possible for the black hole to radiate away charge, while
nevertheless increasing the entropy of the black hole. This superradiant instability
was first discovered in the process of partial wave scattering off rotating black
holes. For rotating black holes it is absent in the s-wave sector (and therefore more
suppressed), but for charged black holes it remains present when restricting to the
s-wave sector at low enough energies. In the appropriate superradiant scattering
process, the normalization condition for reflection and transmission coefficients for
a particle with frequency v and charge ¢ is affected in the following way [75].

R =1 LA e (2.52)
So effectively this corresponds to the replacement
T2 LI e (2.53)

Comparing this to (2.48) we observe that when the frequency obeys the bound

v < qg , (2.54)

T+

the reflection coefficient exceeds unity, that is |R|?> > 1, meaning that the particle
that scatters off the black hole takes away some of its mass and charge [75]. This
frequency agrees with (2.51) in the limit ¢/2Q < 1, that is when ignoring back-
reaction. However, instead of particles scattering off black holes, we would like
to consider spontaneous emission in this superradiant regime of parameter space.
One observes that in the superradiant regime apparently |oy|? = 1/|R]* < 1,
suggesting that the Bogoliubov coefficients should be interchanged (ay <> ) to
still obey the normalization condition. Equivalently, one can interpret this as a
change in the sign of the normalization condition for the Bogoliubov coefficients.
This can be traced back to the fact that what was previously defined to be a
positive frequency mode at asymptotic infinity in the superradiant regime turns
into a negative frequency mode, and vice versa. As a consequence, in the super-
radiant regime the probability of emission P(k) for a charged particle should be
re-evaluated and is related in a more indirect way to the tunneling integral, as we
will see below.
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2.2. Including gravitational backreaction

To determine the probability distribution we start with the appropriate expression
for the average number of particles per mode in the superradiant regime [76].
This is most easily derived by applying a change of sign for the normalization
of the Bogoliubov coefficients, that is what one means with positive and negative
frequency modes. This results in the following expression for the expectation value
of the number operator in the superradiant regime
(Ny) = ——— (2.55)
T JowP 1B~ 1 |
The change of sign in the numerator ensures that the average number of par-
ticles remains positive in the superradiant regime where the ratio |ax|?/|Bk]? =
e~ASsu(k) < 1 Tt is important to note that at the transition from superradiant to
ordinary (Hawking) emission it is crucial to take into account the greybody factor
Q(wy,) to ensure appropriately continuous behavior, but for our purposes here we
can safely ignore this issue. The relevant probability distribution for observing n
particles in a mode k can be written in terms of the average number as follows

(Ng)"

P = Ty

(2.56)
As an easy check this indeed reproduces the standard (Bose-Einstein) distribu-
tion for single particle emission when ASpy is negative. Using the superradiant
expression for the average number of particles, one then arrives at the following
probability for emitting a single particle in mode k

_ 1
P(k)sgr = (1 — e 25pm(k) (2 e BSea)2 (2.57)

=

where we expressed the probability explicitly in terms of the ratio |ax|?/|Bk
e~ASsu(k) < 1. This superradiant expression clearly differs from the standard
(Bose-Einstein) distribution and generalizes the known result without backreaction
[76]. Typically ASgy > 0 over a considerable range of superradiant frequencies
and the probability distribution is very flat. As a consequence a charged black
hole quickly radiates away its charge.

We conclude that in addition to the direct connection to the probability of emission
in the high energy (charged) Hawking regime, the universal result for the tunnel-
ing integral also appears in the (modified) expression for the emission probability
in the superradiant regime, which can be interpreted in terms of (generalized)
Schwinger pair creation in the electric field near the horizon of the charged black
hole. Indeed, for large black holes it was shown in [68] that the emission of charged
quanta is dominated by Schwinger pair production, rather than the Hawking pro-
cess, and allows charged black holes to quickly get rid of their charge. The derived
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2. Tunneling in Charged Black Holes

probability distribution generalizes that result by taking into account the backre-
action which, as before, can be expressed in terms of the change of the black hole
entropy.

The superradiant regime and the inclusion of backreaction will play an important
role in the next section. To be precise, so far we only considered non-extremal black
holes for which the tunneling rate describes both thermal (neutral) radiation as
well as charged (superradiance). Next, we will take the extremal limit of charged
black holes. Since extremal black holes have a vanishing temperature, one expects
the neutral (thermal) emission to shut down but charged decay channels should
remain present. Clearly, to avoid creating a naked singularity only tunneling of
(super-)extremal particles with m < w < ¢ is allowed. We will see that the
tunneling calculation in the extremal limit not only confirms this expectation
but in addition suggests the existence of a family of (non-extremal) gravitational
instantons in the near-horizon AdSs x 52 limit, in which the superradiant regime
is decoupled.

2.3 Extremal and near-horizon limits

We would now like to study the universal result for charged emission from a charged
black hole in the extremal limit. As is well known, the temperature of an extremal
black hole vanishes, which is reflected by the fact that the emission rate (2.46)
for neutral particles becomes zero in the extremal limit M = ). However, we
are interested to see what happens to the charged decay channels in the extremal
limit. After a careful examination and regularization of the extremal limit, we will
conclude that those decay channels are still captured by the universal expression
for the tunneling integral. Once that has been established we will consider the
near-horizon limit and relate the tunneling decay rate to gravitational instantons
describing the spontaneous nucleation of domain walls in AdS.

2.3.1 Charged particle decay in the extremal limit

A description in terms of particles tunneling out of an extremal black hole, for
which the inner and outer horizon overlap, naively seems to be problematic due to
the absence of a tunneling barrier lying in between the inner and outer horizon.
The latter seems to be required to allow for a proper interpretation and related
derivation of the final tunneling integral. One should be careful just extrapolating
the final result, as it might be inconsistent and the different steps in the derivation
need to be understood properly as one takes the extremal limit.
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2.8. Extremal and near-horizon limits

To regularize the extremal limit, we will introduce a non-extremality parameter
€ < (@ defined as

T+ =Q+e€,
r_=Q—e, (2.58)

such that the metric becomes
ds* = —f(r)dt* + f(r)"tdr® 4 r2dQ3 |
Q —r 2 62
sy =920

r2 IRT
The extremal limit is then defined as € — 0. To study the region r_ <r <r, we
follow [77] by introducing the coordinates

(2.59)

2
r=Q —ecos(x), t= %1/1 . (2.60)

In this region y is a spacelike and 1 a timelike coordinate. Using these coordinates
the metric becomes

2 _ 12 2.2 Sinz(X) 2 2 102
i = @ (~han? + SO+ higPang )

hix)=1- 5cos(x) . (2.61)

The proper distance between r4 and r_ is given by

r—a Cdy h(x) =@, (2.62)

which is independent of e. We conclude just as [77], perhaps somewhat surprisingly,
that even in the extremal limit ¢ — 0 there remains a finite proper distance between
the inner and outer horizon.

Now we can continue as before and compute the tunneling integral for (super-
Jextremal shells from an extremal black hole. For an extremal shell we find (in
Painlevé-Gullstrand coordinates)

0 = [+ 3T T+ 4%, (2.6
_ 2 2
fry = UG

The final result can be calculated by taking into account the substitutions (2.58)
and in the end sending ¢ — 0. The result for the tunneling integral is

Tf
exp (_2 Im (/ dr pc>) _ ew((Q—q)2_Q2) — ¢ASBH ; (2.64)
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2. Tunneling in Charged Black Holes

in full agreement with the universal expression. Similarly, we could also consider
emission of super-extremal shells from an extremal black hole by making the sub-
stitutions

M=Q-w, (2.65)
Q*)qu7

in the metric to describe a non-extremal black hole as the final state. On the
other hand, if we were to consider sub-extremal shells, r, becomes imaginary after
emission of the shell, which implies that the tunneling integral vanishes. Therefore,
the emission of a sub-extremal particle (that would create a naked singularity) is
forbidden.

We conclude that the same universal expression in terms of the black hole en-
tropy difference still applies in the extremal limit. Although for an extremal black
hole neutral emission shuts down, it can still decay via charged particles and the
probability for that to happen can be expressed in terms of the (negative) entropy
difference, as anticipated. If we consider the emission of super-extremal shells

satisfying
2

q
w+2Q<q, (2.66)

we notice that the entropy difference becomes positive and therefore this process is
governed by the superradiant expression for the probability that was derived pre-
viously. In contrast, we note that by including backreaction a parameter window
opens up for shells satisfying

q(l—z(é2><w<q, (2.67)

that can be described by a (suppressed) tunneling amplitude, instead of the (lower
energy) regime of superradiant emission. From a near-horizon point of view one
might anticipate that these decay channels can be understood in terms of an in-
stanton. In fact, in the near-horizon limit of a four-dimensional extremal Reissner-
Nordstrom black hole [69] derived the action for an instanton with charge equal
to its tension connecting an initial AdS; x S? spacetime with charge @ to two
AdSy x S§? with charge @ and Q9 while keeping the total charge Q = Q1 + Q2
fixed. They related this to the instanton found by Brill [70] resulting in the fol-
lowing decay rate

P~ e @ (2.68)

which coincides with (2.64) in the limit ¢ < @, that is to leading order in the back-
reaction. In this extremal case this is appropriately described as fragmentation,
since the two different vacua coexist peacefully and the domain wall separating
them is flat and static.
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Similarly, super-extremal domain walls should be related to the emission of super-
extremal shells for which ¢(1 — ¢/2Q) < w < ¢. Such a shell necessarily expands
due to its electromagnetic repulsion describing an instability of the extremal near-
horizon AdS geometry. Starting from an extremal black hole, for all ¢ and w
satisfying M = Q > ¢ > w > ¢(1 — ¢/2Q) the entropy difference is negative
describing an exponentially suppressed tunneling rate. In the near-horizon limit
this should be related to a decay of AdS space through the creation and subsequent
expansion of a (super)extremal domain wall. In the next section we will make this
connection to domain walls in the near-horizon AdS geometry explicit by using
the near-horizon relation between the AdS energy parameter U, which we will
define in a moment, and the asymptotic Minkowski space energy parameter w.

2.3.2 The near-horizon limit, domain walls and gravita-
tional instantons

In order to relate the extremal black hole tunneling rate to a near-horizon AdS
instanton one needs to introduce the relevant near-horizon energy parameter, in-
stead of the asymptotic Minkowski energy parameter w that we have used so far.
To derive an expression for the local energy density of the shell, let us reconsider
the situation where an extremal black hole with charge @) emits an extremal shell
with charge ¢q. Before emission, the metric is given by

452 = Fr)A? 4 fr)2dr® 1203
_ 2
iy = =28

- , (2.69)
and after emission the charge of the solution is reduced to @ —¢. In order for these
two geometries to be consistently joined together by the shell we need to satisfy
Israel’s junction conditions [78]. We place the shell at some fixed position r and
label coordinates on the shell by z*. In the thin-wall approximation the condition

we have to satisfy is (working in units where Gy = 1)
878; = (AK)8; — AK] . (2.70)

Here S’; is the surface energy-momentum tensor of the shell and AKj;; is the
difference between extrinsic curvature on both sides of the shell. The energy
density p of a shell is then given by

p= o (AK - AK) = - (VI V) - (2.71)

:87r

where f_(r) denotes the geometry with mass M — w and charge @ — ¢ and f4(r)
the geometry with M and Q. The extremal (w = ¢) shell has an energy density
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equal to
q

drr?

If the shell can be viewed as a domain wall in the near-horizon limit, this energy

(2.72)

Pext =

density should be equal to the tension of an extremal domain wall. An extremal
domain wall separating two (supersymmetric) vacua with vacuum energy V7 and
Vs has a tension T, that is given by [79]

2
ST = = (VIViT = VITa) (2.73)

where we take |V1]| > |V,|. For two AdS spaces of charge @1 = Q —q and Q2 = Q
the vacuum energy is given by |Vi| = 3/(Q — ¢)? and |Va| = 3/Q* Thus, the
tension of an extremal domain wall separating these two vacua is

B q _a
Tet = 00(Q )~ Q2

where we assumed the probe limit ¢ < ). This indeed matches with the tension
of an extremal shell, as given by (2.72) in the near horizon limit » — @, provided
q < . This confirms that extremal particle shells can be interpreted as flat,
extremal domain walls from the point of view of the near-horizon geometry.

+0(4*/Q%) . (2.74)

Similarly, in the near-horizon limit super-extremal shells should correspond to
super-extremal domain walls whose tension is bounded by T < T.;;. To make
this correspondence explicit let us derive an expression for the near-horizon AdS
energy

U= r2/d92 0, (2.75)

which is a function of the asymptotic energy w and the charges @ and q. Here, d2o
is the volume element of the unit 2-sphere. Integrating the local energy density
p in the spherical shell, as given by (2.71), and taking the near-horizon limit one
derives

U?=¢*-2Q(q—w) . (2.76)

Note that for shells satisfying w < ¢ this similarly implies U < q. This confirms
that T'(w < ¢q) < Tezt by recognizing that the tension can be expressed as T =
U/arQ?.

Several additional comments are in order regarding the domain wall energy (2.76).
In the extremal limit w = ¢ one indeed finds, as should be expected, that this
implies U = ¢ as well. Inverting this relation gives w = ¢(1 — ¢/2Q) + U?/2Q
and as a consequence the near-horizon domain wall energy U vanishes when the
asymptotic energy is equal to w = ¢(1 — ¢/2Q), which exactly corresponds to
the transition point where the entropy difference vanishes and the decay turns
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superradiant. We conclude that the near-horizon limit decouples this regime, in
the sense that for all U > 0 the asymptotic energy w is always in the regime where
the decay channel is described by a suppressed tunneling amplitude in terms of
the inherited entropy difference. We also note that the probe limit (¢/Q < 1)
necessarily implies w ~ ¢ and therefore is related to a near-extremal particle decay
channel of the parent extremal black hole.

To summarize the above, we explicitly related a family of domain wall instabilities
of the near-horizon geometry to decay channels of the parent black hole. This
seems to be a realization of an old conjecture made by Brill. He suggested that
there should be an instanton that describes a single extremal Reissner-Nordstrém
black hole splitting into two or more extremal black holes that agrees with the Brill
instanton in the interior throat region [70]. Work towards this goal was presented
in [80], where an instanton was found describing the splitting of the throat region
into two or more connected throat regions. According to that work the probability
for that specific process is only half the entropy difference. Our results suggest
that the tunneling integral corresponds to the Lorentzian continuation of Brill’s
conjectured instanton. In fact, by taking backreaction into account the gravita-
tional instanton related to the Hawking modes of a non-extremal black hole was
first discussed in [65], where they indeed found a decay rate equal to

P~ A/t = ASpH (2.77)

in full agreement with the tunneling result (for ASpy < 0). To extend their
results to the extremal near-horizon limit we can regulate it as before using (2.58),
at the end sending € — 0 and introducing U as the relevant near-horizon energy
parameter. For the special case where the extremal black hole emits an extremal
shell, the instanton involved in this process should correspond to Brill’s conjectured
instanton.

To be precise, we will now show explicitly that the expression for an extremal black
hole emitting an extremal shell indeed reduces to the Brill instanton in the near-
horizon limit. To do so, we continue the metric used in the tunneling calculation to
Euclidean signature. Before we do this, it should be noted that Brill considered a
magnetically charged solution whereas we are interested in an electrically charged
solution. In order to obtain a real-valued instanton action, the electrical charge
also has to be appropriately continued as @ — i@ [81]. The Euclidean metric is

then given by
1
ds® = f(r)dt* + —
A T

(-7

r2

dr® + r2dQ%
1) = (2.78)
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Here we defined

Q= (2.79)
Q —q (’I" > 7/:) )

where 7 denotes the position of the extremal shell. Both the geometry inside and
outside the shell are Reissner-Nordstrom geometries, with a charge of respectively
@ — g and ). We can therefore take the near horizon limit either inside or outside
the shell. This limit is defined by writing

r=9+x, (2.80)

and expanding around x = 0. The metric then becomes

QZ
dx® + Q*d03 . (2.81)

2
d52 = LdtQ + ?

=
This can be rewritten in a form used by Brill

ds® = H*dt* + H? (dﬂc2 + dy? + dzz) ,
Q
H=— 2.82
=2 (282)
where |Z|? = 22 + y? + 22. The Lorentzian version of this geometry, known as the
Bertotti-Robinson geometry, corresponds to AdS,; x S? and is an exact solution
to the Einstein-Maxwell equations. More general, there also exist solutions with
N charges @); for which

N Q
H=Y% —* 7 (2.83)
i=1

|z

that are interpreted as a set of static extremal black holes with charge @; placed
at fl

We will now write down a particular two-centered black hole solution that agrees
asymptotically with (2.82) by writing

(2.84)

As we will see, we can interpret this geometry as an extremal black hole placed
at & = 0 and our extremal shell placed at ;. It has the following asymptotic

behavior
hmV:g:H(r>f), limV:L:q:H(r<f). (2.85)
z—00 |x| z—0 |x|
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We see that this geometry, at least asymptotically, agrees with (2.82). Further-
more, we notice that (2.85) is precisely the Brill instanton where an AdSs x S?
space of charge @ splits into two AdS, x S? spaces with charge Q — q and ¢. This
leads us to the conclusion that the extremal near-horizon limit of the tunneling
instanton found by [65] for extremal shells is indeed the Brill instanton [70], as
conjectured.

Whereas the Brill instanton describes the fragmentation of AdS spaces, corre-
sponding to the emission of an extremal shell from an extremal black hole, the
tunneling expression should apply far more generally. In particular, it predicts
that there should exist an entire family of gravitational instantons labeled by w
and ¢ that satisfy ¢(1—¢/2Q) < w < g, for which the associated black hole entropy
difference is always negative and therefore corresponds to a suppressed tunneling
amplitude. From the perspective of the near-horizon limit these instantons de-
scribe the decay of AdS vacua through the creation of super-extremal (expanding)
domain walls connecting different vacua. The decay probability of these instantons
should be provided by the tunneling integral for a finite window of parameters up
until the extremal case. Indeed, the low-energy superradiant regime is decoupled
in the near-horizon limit, as it would correspond to an imaginary near-horizon
domain wall energy U.

In fact, in the context of string theory some AdS instantons of this type were
already constructed in [69]. There it was also observed that when the charge of
a particle (O-brane) equals its tension, the Euclidean action of the corresponding
instanton reduces to the value given by the Brill instanton. However, [69] only
derived this relation in the limit where the associated energy density (charge) of
one of the AdS spaces was small. Our results do not have such a restriction, as
the tunneling integral is valid as long as w < ¢ < @ < M. Nevertheless, in the
limit where backreaction is small, our result should reduce to those of [69]. By
writing the tunneling amplitude for an extremal black hole emitting a shell with
w < ¢ in terms of the domain wall energy U we find

ASpn = -27Q (¢ - V@@ =~ U?) + OU/Q*) + O(*/Q) . (2:86)

which as we already concluded reduces to the Brill instanton for U = ¢ and matches
exactly with the AdSs instanton found for U < ¢ in [69]. From the AdSs point of
view, this super-extremal emission corresponds to Schwinger pair production [82].
Since the superradiant regime is decoupled in the near-horizon limit, the general
decay rate including backreaction in the spherically symmetric sector, should just
be given by P ~ e298#  extending the result of [69] beyond the probe limit.

We thus find that the instabilities of (nonsupersymmetric) AdS space, as conjec-
tured in an extension of the WGC in [60,61], are related to the (charged) decay
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2. Tunneling in Charged Black Holes

channels that satisfy ¢(1 —¢/2Q) < w < g of the parent extremal black hole geom-
etry. The resulting decay rate can be expressed, including backreaction, in terms
of the associated entropy difference. This result is not restricted to extremal shells,
for which it was already noticed in [69,70], but extends to super-extremal shells.

Due to the universal nature of the decay rate, it would be of interest to understand
better how these results are related to constraints on low-energy effective potentials
in the context of the landscape, if such a connection exists at all. Because our
results imply constraints on AdS vacua, it is natural to wonder if and how this
generalizes to arbitrary effective potentials.

2.4 Conclusions

One of the original motivations to study backreaction corrections to the Hawk-
ing process was to potentially shed some light on how it could be consistent with
unitary evolution of an underlying microscopic description. Treating the emit-
ted particles as spherically symmetric shells and imposing energy conservation,
Kraus and Wilczek derived an effective action for the shells and indeed found that
the emission probability deviates from being exactly thermal [62,63]. In a similar
spirit, Parikh and Wilczek imposed energy conservation to include backreaction by
understanding the Hawking process in terms of a (spherically symmetric) quantum
mechanical tunneling process. Their universal result [64] in terms of the difference
of the black hole entropy before and after emission nicely supports a statistical
thermodynamical interpretation of the transition, as was pointed out in earlier
work by [65]. One important conclusion of our results is that the effective action
approach reduces exactly to the tunneling integral. As a consequence both ap-
proaches are equivalent and the final result can always be expressed in terms of
the entropy difference. This strongly suggests that the result can also be applied
to describe the (spherically symmetric) decay of higher-dimensional black holes
and/or black branes.

As our prime example of interest we then derived the probability for emission of
a charged shell from a charged black hole in terms of the exponential of the en-
tropy difference of the black hole before and after emission. We then clarified the
interpretation of the result in a low-energy regime of charged emission where the
entropy difference changes sign and becomes positive. In this superradiant regime
the probability for emission, including backreaction, has to be reassessed and we
derived an expression that again features the entropy difference and reduces to the
known expression for superradiant emission in the absence of backreaction. We
then studied the extremal limit, showing that the backreacted result for charged
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(super-extremal) particle emission remains valid. The absence of decay channels
for which w > m > ¢ is consistent with the weak cosmic censorship conjecture,
and assuming the existence of super-extremal particles in the spectrum, as conjec-
tured by the Weak Gravity Conjecture (WGC), the extremal black hole will decay.
Another noteworthy result is that in the extremal black hole limit the inclusion
of backreaction (and charge conservation) implies that the threshold energy below
which superradiant behavior kicks in is distinguishably lower than the particle’s
charge ¢, opening a window of suppressed tunneling in the super-extremal emission
regime.

Having understood the extremal limit, corresponding to a near-horizon geometry
of AdSy x S?, we then focused our attention on inherited decay channels of (non-
supersymmetric) AdS spacetimes by identifying the relevant near-horizon AdS
energy. In the near-horizon limit a positive domain wall energy will always be in
the suppressed (negative entropy difference) regime. Recently, the WGC conjec-
ture was extended in [60,61] by suggesting that the bound is only saturated for
BPS states in a supersymmetric theory. This would imply that all nonsupersym-
metric AdS spaces are unstable and will decay. In particular, [60] motivated their
conjecture by arguing that the WGC bounds the tension of (super-)extremal do-
main walls and therefore controls the stability of AdS vacua. Extending the result
for charged emission from charged black holes to the extremal near-horizon region,
we indeed confirm that domain walls satisfying the WGC constraint will be spon-
taneously produced resulting in the decay of the AdS geometry. The associated
probability for this process is given by the universal expression in terms of the en-
tropy difference of the parent black hole. Indeed, in the probe limit the tunneling
amplitude exactly reproduces known results for super-extremal and extremal AdS
instantons.

Strictly speaking our results only apply to AdSs, but the universal form of the
decay rate and its natural interpretation in terms of statistical thermodynamics
suggests it applies equally well to higher-dimensional AdS spacetimes, providing
a very general and precise expression for the decay rate of AdS through (super-
Jextremal domain walls, beyond the probe limit. It would of course be of interest
to investigate this in more detail. In fact, higher-dimensional analogues of the Brill
instanton that describe the fragmentation of higher-dimensional AdS spaces claim
to have been constructed in [81], seemingly at odds with general expectations from
the AdS/CFT correspondence. We find our results also particularly intriguing in
light of the work of [83]. These authors claim that the instabilities they found for
higher dimensional AdS spaces are higher-dimensional analogues of an instability
discovered by Aretakis [84,85], which seems to be closely related to the onset of
superradiance [86]. In our approach, the domain walls associated to superradiant
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decay of the parent black hole would have imaginary tension. Furthermore, in [83]
it is also argued that from the perspective of AdS the instability is actually per-
turbative, signalled by open string modes becoming tachyonic. It would certainly
be interesting to explore the relation between our semi-classical results and their
top-down constructions further.

Let us finally emphasize once more that our results are expected to be universally
valid in the spherically symmetric sector and can be applied whenever (super-
)Jextremal particles are present in the low-energy effective action. As such, assum-
ing the WGC holds, it should accurately describe the instabilities of charged black
holes, as well as those of the corresponding near-horizon AdS space in the extremal
limit. Our findings therefore support the conjecture that all nonsupersymmetric
AdS spaces are unstable and belong to the swampland, that is they cannot be con-
sistently coupled to quantum gravity. What would be interesting to investigate in
future work is if and how these results, derived from black hole physics, can be
related to specific (constraints on) potentials in low-energy effective descriptions
of AdS spaces. If this is possible, it is also natural to think about possible general-
izations to arbitrary potentials, such as the ones that have recently been proposed
for metastable de Sitter space in the context of the swampland program [87,88].

2.A Pole prescription and relevant integrals

To calculate the rate of particles emitted by a charged black hole we need a pole
prescription to evaluate the integrals (2.38) and (2.45). In this appendix we show
how the correct prescription is determined by the physical process under consid-
eration and calculate the relevant integrals.

Pole prescription

How to deal with the poles in the integrals we encountered can be understood by
viewing the classical action as a propagator K (z,z'), which can be written as [89]

K(z,2') =Y ¥ (2.87)

paths

where S(x,2’) is the classical action connecting the points  and 2’. Alternatively,
the same propagator can also be viewed as a Green’s function for the Klein-Gordon
equation of a scalar field with mass m.

(V, V¥ —m* K (z,2') = —5(z,2) . (2.88)
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Focussing on flat space for now, we write the propagator for a massless field in
momentum space and obtain the well-known Feynman propagator

o S
KF(x,xl):/Wme k( ), (289)

which corresponds to deforming the contour as

kO = wy, —ie (wr > 0),
k' =wp +ie  (wrp<0). (2.90)

We can evaluate (2.89) by making use of a contour integral. If t — ¢ > 0 we
have to close the contour in the lower half-plane in order to be able to apply
Jordan’s lemma. This choice picks up the positive energy pole. We then obtain
the well-known expression

i 1

Kp(z,2)=——o
F(l'ax) 47'['2 S($,$/)+i€ 9

(2.91)
with s(z,2’) the square of the geodesic distance between x and ’. Similarly, if
t —t' < 0 we have to close the contour in the upper half-plane which picks up the
negative energy pole. We see that future directed propagation of positive energy
particles corresponds to deforming the contour wy — wy — i€ in momentum space
and t — t — ie in position space.

Now we can use the results of [89] to obtain the analogous prescription for the
Reissner-Nordstrom background. Also in this case, it was found that a future
directed null geodesic corresponds to a deformation of the contour in the lower half
t-plane, which in momentum space is equivalent to wy — wy — i€, just as in flat
space. We conclude that future propagation of positive energy particles requires
wk — wg — i€ and past propagation of negative energy particles wy — wy +ie. This
is also the prescription used in [64].

Parikh-Wilczek integral

The integral of interest is

S:—/:dr/owdw' 1_\/2(M—w’)/7“1— (Q—q)%/r? —ic

where we used the prescription w — w — ie. To calculate this integral, we first
substitute u = \/2(M —w)/r — (Q — q)2/r2 — 1 to find

Tf u(w) 1 Tf u(0) 1
S:—/ drr/ du u+‘ :/ drr/ du u+. , (2.93)
i u(0) u + 1€ i w(w) u + 1€
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where in the right-hand side of the second equality we switched the boundaries
of the integral because u(0) > wu(w). This integral has a pole at u = —ie. To
evaluate it, we split it in terms of a principle value integral and a small (non-
closed) contour that runs clockwise around the pole in the upper half-plane, as
determined by the pole prescription. This contour is displayed in Figure 2.1. The

v

Figure 2.1: Contour of the integral (2.93), which has a pole at u = —ie.

integral now becomes

u(0) 1 u(0) 1 u(0)
lim du s :77/ duuJr 77;7'(/ du (u+ 1)0(u) ,

e—0t u(w) U+ 1€ u(w) u (w)
= P/ du YL i (2.94)
u(w) u

Here, P denotes the principle value of the integral. It is straightforward to check
that the principle value integral does not contribute an imaginary piece, and there-

fore we find
T

Tf
Im (S) = —TI'/ dr r = —5(7"]% —r?). (2.95)

Kraus-Wilczek integral

The second integral we need to evaluate appeared in section 2.2.

r(t)
I :/ dr pe , (2.96)
7(0)

with p. given in (2.30) and the boundaries by r(0) = ro (M — w,Q — ¢q) — € and
r(t) =ro (M, Q)+e. Notice that to evaluate this integral, we could use Hamilton’s
equations to rewrite this integral in the form of (2.92) to which we know the

answer. Instead, for completeness and comparison with other references we will
use the explicit expression of p..

Because we are only interested in the imaginary part of this integral, we can focus
on the logarithmic piece in p., since only this term can contribute an imaginary
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piece. Thus, the integral of interest is

. r(®) r—/2r(M —w) — (Q — q)% —ic
I = /r(o) dr rlog < RN s . (2.97)

This integral has branch points of the logarithm at

rm=M-—w+(M—-w?—(Q—q)? +ie, (2.98)

and
ro =M+ M?—-Q?. (2.99)

Moreover, the argument of the logarithm has additional branch cuts at r3 = (Q —
q)?/2(M — w) and ry = Q?/2M. We choose the following branch cut structure.

ri:(=oo,m],  r3:(—oo,73], (2.100)

re 1 (=00, 1], rg: (—00,7y] .

To evaluate I, we will split the integral in different parts.

I = lim / +/ +/ +/ +/ dr h(r), (2.101)
=0t \ Jo, c1 e c2 Cr

h(r) = rlog (T — \/2T£Aj[\_/% o ie) : (2.102)

The structure of this integral in the complex plane is displayed in Figure 2.2.

where

When we approach the real axis between r1 < r < ry from below, as required by

A r

CL T T2 CR
T3 T4 ;‘9 4 Q?
o5 C?

€ €

Figure 2.2: Branch cut structure of the integral (2.101). This integral has two branch
cuts that connect the points r1 to ro and r3 to ra. The piece over C} and C? vanishes in
the limit ¢ — 0 and the parts over C, and Cr are completely real.
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the pole prescription, the logarithm takes the following form.

o (12O —0) — @ =P\ _ [r= O w) - @—a?|
r—2Mr - Q? 20— Q2
(2.103)

On the other hand, the imaginary part of the logarithm is zero on Cp and Cpg.
Because we are only interested in the imaginary part of I, we can ignore these
pieces. Finally, by observing that the integrals over C! and C? vanish in the limit
€ — 0, we obtain

T+(A{7Q) T
Im (I) = —71'/ drr=—=(re(M,Q)° —ry(M_,Q-)%) . (2.104)
rp(M_,Q-) 2
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De Sitter Space in the
Unruh State

In the previous chapter, we learned that backreaction effects in semi-classical grav-
ity can lead to instabilities of black holes and anti-de Sitter space. In this chapter,
which is based on [2], we study the (in)stability of de Sitter space in different
quantum states. In particular, we construct the analogue of the Unruh state for
black holes and compute the energy-momentum tensor in this state. One of our
main observations is that the energy-momentum tensor carries a negative energy
density at the horizon. As a result, pure de Sitter space is no longer a consistent
solution when backreaction effects are included. We give a preliminary estimate
of the effect of backreaction which suggests that the horizon area decreases, just
as for black holes in the Unruh state. This instability puts a fundamental bound
on the lifetime of de Sitter space in the Unruh state, set by its initial entropy. We
point out that the Unruh-de Sitter state may be a natural initial state for patches
of spacetime locally described by de Sitter space and comment on the possible
cosmological implications.

3.1 Introduction

There have been contradictory claims about the quantum stability of de Sitter
space.! In much of the literature, a common and very reasonable approach is to
start out with perturbative quantum fluctuations in the Bunch-Davies state. Since
that state is invariant under the de Sitter isometry group, the question boils down
to whether or not (and how) the de Sitter symmetry becomes anomalous. Over
the years different authors, using a varying range of techniques and methods,
have reached different conclusions on the ultimate fate of de Sitter space. The
results range from exact all-order stability [92] to (slow or fast) decay to flat
space [93-96] and also evolution towards a phase where perturbative quantum field
theory techniques break down [97]. The different approaches, whose consistency

I'We refer the reader to [90,91] for good reviews on de Sitter physics.
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3. De Sitter Space in the Unruh State

and interpretation is not always transparent, make it difficult to compare results
and reach consensus on this important question. This is particularly confusing in
light of the fact that one would expect to be able to make unambiguous statements,
at least in perturbation theory, as long as the de Sitter curvature is small, since
an effective field theory description should be sufficiently accurate then.

Here we will take yet another approach, motivated by lessons learned from the
evaporation of black holes. Recall why it is that we are convinced that realistic
black holes are quantum mechanically unstable. The emission of Hawking ra-
diation from the horizon into the asymptotically flat geometry, where energy is
well-defined and conserved, is not quite enough to conclude that a black hole has
to evaporate: it is also necessary that there not be any special boundary conditions
corresponding to compensating incoming energy flux. Indeed, for black holes there
are two special quantum states that contain radiation: the Unruh and the Hartle-
Hawking state. Although an asymptotic observer measures thermal radiation in
both of these states, it is only in the Unruh state that the black hole decays. In
the Hartle-Hawking state, the outgoing flux of energy is balanced by incoming flux
from infinity and the maximally extended black hole geometry is in fact stable; this
state is therefore typically used to describe the eternal black hole in exact ther-
mal equilibrium, rather than the evaporating black hole, and the Hartle-Hawking
state also preserves the symmetries of the original extended Schwarzschild geom-
etry. In contrast, in the Unruh state there is an asymmetry between incoming
and outgoing fluxes. The boundary conditions are such that there is no incoming
flux from infinity and the outgoing flux is no longer compensated for. Therefore,
the black hole is no longer in thermal equilibrium and evaporates. Whereas the
vacuum expectation value of the energy-momentum tensor is regular everywhere
in the Hartle-Hawking state, in the Unruh state it features a singularity on the
past horizon. Despite this, the Unruh state is accepted as a physically viable state
because it is regular on the future horizon, and the putative singularity on the
past horizon is occluded by the collapsing matter forming the black hole.

We will translate these observations to the context of de Sitter space. The de
Sitter counterpart of the Hartle-Hawking state is the Bunch-Davies state, a state
annihilated by the full O(1,4) group of four-dimensional de Sitter isometries. Here
we propose that one can also consider a de Sitter analog of the Unruh state. As in
the black hole case, this state imposes different boundary conditions for incoming
and outgoing fluxes, breaking homogeneity by identifying a special static patch
region. Correspondingly, the vacuum expectation value of the energy-momentum
tensor is regular on the future horizon, but diverges on the past horizon. Never-
theless, as we will argue this state is consistent and even reasonable from a certain
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point of view.2 Therefore, the first goal of this chapter is to explicitly construct
the Unruh-de Sitter state.

Next, we would like to calculate the vacuum expectation value of the energy-
momentum tensor in this state in order to examine the singularity structure of
the vacuum and determine the backreaction on the geometry in semi-classical
gravity. The absence of an asymptotically flat region in de Sitter space means
that one cannot rely on global energy conservation arguments; instead, a careful
calculation of the expectation value of the energy-momentum tensor is required
to analyze the stability of the background. For the Bunch-Davies state, it is
well known that the vacuum expectation value of the energy-momentum tensor
is proportional to the metric; as it should if it preserves the de Sitter isometries.
This can only renormalize the bare cosmological constant and does not destabilize
de Sitter space. To study the stability of the Unruh-de Sitter state, we first
need to calculate the expectation value of the energy-momentum tensor in the
Unruh-de Sitter state. Unfortunately, as for black holes, directly calculating the
expectation value of the energy-momentum tensor in the Unruh-de Sitter state is
far from straightforward [99]. We therefore focus on 141 dimensional de Sitter
space, where the calculation is more tractable and can be nicely deconstructed and
interpreted for the different states. Under certain assumptions, which we spell out,
the 141 results can then be generalized to the s-wave sector of 3+1 dimensional
de Sitter space.

We find, as for black holes, that de Sitter space in the Unruh state is unsta-
ble. Even though the expectation value of the energy-momentum tensor in the
Unruh state is inhomogeneous, it is a small correction and its averaged initial
effect on a static patch region can be approximated by an analysis on the level
of the Friedmann-Lemaitre-Robertson-Walker (FLRW) equations. Analogous to
an evaporating black hole, we find that the direction of the instability in the Un-
ruh state is not towards Minkowski space but rather towards a singular geometry
whose description lies outside the semi-classical regime. This evolution therefore
corresponds to a quantum violation of the null energy condition (as occurs also
for evaporating black holes). Again in parallel with the black hole case, the time
scale of the instability is set by the gravitational entropy, that is H ¢ ~ Mg JH?.
As such, the instability cannot explain the smallness of the cosmological constant3
(being both too slow and in the wrong direction) but when applied in the context
of eternal inflation it might prevent the anthropically required level of population
of the landscape of string vacua. We will also comment on the relation to the
recent conjectures about de Sitter space [87,88] in the context of the swampland

2Earlier results supporting this point of view were described in [98], but did not explicitly
involve the Unruh-de Sitter state.
3See [100] for a nice review.
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program.

This chapter is organized as follows. In section 3.2, we recall some elementary
results about quantum fields on Rindler and Schwarzschild black hole backgrounds.
In particular, we review the different choices of state one can make. In section 3.3,
we translate the problem to de Sitter space, defining the Unruh-de Sitter state and
calculating the corresponding expectation value of the energy-momentum tensor.
In section 3.4, we use the expectation value to analyze the instability of de Sitter
space in the Unruh state. We give a bound on the maximal number of e-folds before
the semi-classical description breaks down. For most of the paper we emphasize
the mathematical consistency of the Unruh-de Sitter state, but here we will also
argue that in many circumstances for which de Sitter space is used to approximate
primordial or late-time cosmology, selecting the Unruh-de Sitter state might be a
natural choice. Finally, in section 3.5, we consider the potential implications of
our results for cosmological inflation and the string landscape.

3.2 States in Rindler and Schwarzschild geome-
tries

To illustrate our key point regarding different states, their singularities and back-
reaction, let us briefly recap some of the properties of Rindler space we saw in
Chapter 1. Consider a massless minimally coupled scalar field in two-dimensional
Minkowski space. To quantize the scalar field we expanded it in terms of incoming
and outgoing modes that were either positive frequency with respect to Minkowski
time ¢ or Rindler time 7. There are now four special cases of vacuum states be-
cause we can select either the @ vacuum (positive frequency with respect to t) or
the b vacuum (positive frequency with respect to 7) for the incoming and outgoing
modes independently. When both set of modes are chosen to be in the a vacuum,
we call that the Poincaré-invariant vacuum, |0p7). When they are both chosen
to be in the b vacuum, we call that the Rindler vacuum, |Or). However, as we
saw, the vacuum expectation value of the energy-momentum tensor in the Rindler
vacuum is singular on the future (U = 0) and past (V = 0) Rindler horizons,
which makes the Rindler vacuum unphysical.

The vacuum expectation value of the energy-momentum tensor in the Minkowski
and Rindler vacuum is given by (see (1.29))

1

(Or|Tvu|OR) = TR (Op|Tou|0ar) =0, (3.1)
1

OrlTyvIOr) = — 7o (Ou[Tvv|Om) =0.
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We would like to emphasize that, as compared to the Minkowski vacuum, the
Rindler vacuum has a negative energy density and the energy-momentum tensor
is singular at the past (V' = 0) and future (U = 0) acceleration horizons of the
Rindler observer. Note also that in principle one could make a hybrid, asymmetric,
choice to allow for states that are only singular at one of the horizons.

An entirely similar story applies for quantum fields in the background of black
holes, which we take here to be a two-dimensional Schwarzschild black hole for
simplicity. The counterpart of the Poincaré-invariant state is the Hartle-Hawking
state, while the counterpart of the Rindler vacuum is the Boulware vacuum. In
addition, for physical black holes we introduce the Unruh state. This is a hybrid
state in which the outgoing (modes moving away from the past horizon) vacuum
is chosen to be annihilated by the @ operators, while the incoming (modes moving
towards the future horizon) vacuum is chosen to be annihilated by the b operators.
This state is singular on the past horizon but regular everywhere else. As already
mentioned, we could also have chosen this hybrid state in Minkowski space, but
there the singularity on the past horizon would still render it unphysical, much
like the Rindler vacuum. In the context of a black hole that forms from a col-
lapsing star, however, the Schwarzschild geometry is replaced at early times by
the geometry of the collapsing star. Thus, for physical black holes, this state is
acceptable and in fact natural. As we shall see the de Sitter counterpart of the
black hole Unruh state is also well-defined on an entire planar patch and might
even be a natural alternative to the commonly used Bunch-Davies state.

3.3 The Unruh-de Sitter state

Having described the Unruh state in two-dimensional Minkowski space and the
Schwarzschild geometry, let us now define the Unruh state of a massless, minimally
coupled scalar field in de Sitter space. For simplicity, we will first consider a scalar
field in two-dimensional de Sitter space and later generalize our results to four
dimensions. Recall the line element in static coordinates

d82 — _ (1 o H27’2) dt2 + (1 o H27"2)71d7"2 . (32)

As we saw in Chapter 1, these coordinates only cover a quarter of de Sitter space
and in terms of the tortoise coordinate

1 1+ H
e log< + ’") , (3.3)

:ﬁ 1—Hr

one finds that two-dimensional de Sitter space is conformally flat

ds®> = (1 — tanh®(Hr,))(—dt* + dr?) . (3.4)
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Thus, in terms of the lightcone coordinates
u=t+r,, v=t—r,, (3.5)

the solutions to the wave equation are the same as in flat space.
(w,0) = —
U, V) =
P Varw

We also define lightcone coordinates that can be analytically continued to provide
a global cover of de Sitter space, given by

—Ht 1—H +Ht 1—H
v=_% ./ Ty =2_/ = (3.7)
H 1+ Hr H 14+ Hr

The line element in these coordinates becomes

4

(e*i“’“ + e*w”) . (3.6)

ds® = —

Using these coordinates, the wave equation has positive frequency solutions given
by

(U, V) = (7™l 4 eV . (3.9)

1
Vimw
The Bunch-Davies state, understood as the analogue of the Hartle-Hawking vac-
uum for black holes, is now defined as the state that is annihilated by the &
operators that multiply the positive frequency modes (3.9) for both incoming and
outgoing modes, that is*

é\Lin|OBD> = CA’/out|OBD> =0. (310)

The static vacuum, which is the counterpart of the Boulware state for black holes,
can be defined as the state that is annihilated by the b operators that multiply the
positive frequency modes (3.6) for both incoming and outgoing modes:

bin|0s) = bout|0s) =0 . (3.11)

Finally, similar as the Unruh state for black holes the Unruh-de Sitter state is the
state that is annihilated by the @ operator for incoming modes® (moving from the
past horizon to an r = 0 observer), but annihilated by the b operator for outgoing
modes (moving from an r = 0 observer to the future horizon):

&in‘0U> = Bout|0U> =0. (312)

4 Alternatively, the Bunch-Davies state can be defined by using mode functions that are pos-
itive frequency with respect to the time coordinate used in the flat planar slicing of de Sitter
space. It is straightforward to show that the resulting vacuum state is equivalent.

5Notice that for black holes, incoming and outgoing is from the point of view of the black
hole. In de Sitter space, incoming and outgoing refers to an » = 0 observer.
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It is this state that we would like to study in more detail. It is essentially defined
as a hybrid between the Bunch-Davies and the static de Sitter vacuum, making an
asymmetric state choice for incoming (Bunch-Davies) and outgoing (static) modes.
As a consequence this hybrid Unruh-like state breaks the de Sitter symmetries in
the outgoing sector, by explicitly identifying a center, but is only singular at the
past horizon. This will have important consequences for the analysis of the energy-
momentum tensor expectation value and the corresponding stability of the state,
to which we will now turn.

To evaluate the energy-momentum tensor in any particular state, one could expand
the field ¢ in the different positive frequency mode functions, plug that into

1
(Tyw) = (OupOup) — §QMV<8;)‘P8P50> ) (3.13)

and calculate the mode sums. The disadvantage of this direct procedure, however,
is that a proper regularization scheme is required to obtain a finite answer, which
is of course notoriously subtle in curved spacetimes [101]. Unlike flat space, there
is no unique vacuum state with respect to which we can define a normal ordering
prescription, making a standard normal-ordering procedure ambiguous at best.
Hence, a more sophisticated regularization scheme would seem to be required.

We will actually avoid these subtleties by employing an approach pioneered in [102]
and instead impose various consistency conditions that the components of T},
should satisfy, independent of the state under consideration. This allows us to
construct the energy-momentum tensor in all generality, unambiguously and most
importantly without the need for a regularization procedure that might obscure
the relevant physics.

3.3.1 Vacuum expectation value of the energy-momentum
tensor

The vacuum states that we would like to consider are all spherically symmetric
and time independent, but not necessarily homogeneous. So we will only allow
the energy-momentum tensor components to depend on the radius, that is 7}, =
T, (r). Then, in two dimensions the conservation of the energy-momentum tensor

VI =0, (3.14)
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leads to two differential equations for the components of the energy-momentum
tensor, given by
2H?2%r
tr t
aTT r —_— WT r Pl (3.15)
0,T"" = —H*rT", .

The first equation is solved by

®

tr _
TT_l—HQTQ’

(3.16)
where ® is a constant. A non-zero off-diagonal component of the energy-momentum
tensor implies that there is a net flux, so all states with ® = 0 contain a flux of
energy momentum. The second equation can be solved by realizing that a mass-
less scalar field in two dimensions is conformally invariant. This implies that the
trace of the energy-momentum tensor picks up a conformal anomaly that is state
independent. For two-dimensional de Sitter space the conformal anomaly is given
by [103]

H2
™ = _— . 1
k12w (3.17)
We then find
H> 5
Ty = —(H -2 Q 3.18
tt 2477( r ) +Q, ( )
1 H4r?
T, = — Q) .
(1= 0%2) ( 2ar )

As we will see in more detail next, the constant 2 is associated to the energy of
particles present in the state under consideration without taking the flux ® into
account. Together with the flux parameter ®, these two constants parametrize
all possible two-dimensional conformally invariant states that obey the ansatz
Ty =Ty (7).

Transforming to lightcone coordinates the results are particularly transparant and
read

Ty = -2 22 (3.19)
YU T Tyugqu? T 2H2U2 ‘
_—— L
VT Tusrve T oogrye
H2
Tyy =

S 12n(H2UV —1)2

The physical interpretation of the different components is as follows. The off-
diagonal Ty term is completely fixed by the conformal anomaly and the diagonal
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3.3. The Unruh-de Sitter state

components describe the (null) energy present in the state under consideration.
The Tyy component describes the energy in incoming modes and Ty captures
the energy of outgoing modes. Remember that in de Sitter space, we defined
incoming and outgoing from the point of view of a static observer at r = 0.

Different states can now be uniquely determined by specifying the value of the flux
® and energy parameter €2, or equivalently by specifying incoming and outgoing
null energy. Notice that if we set the flux ® = 0, Q completely determines the
total energy. When the flux is non-zero (® # 0) there is an additional energy con-
tribution that contributes with an opposite sign to the diagonal components of the
stress tensor, breaking the symmetry between incoming and outgoing modes. We
therefore see that an incoming flux of positive energy particles (® < 0), contributes
negatively to the outgoing null energy and vice versa.

Because two-dimensional spacetimes are conformally flat, we can relate states con-
structed in Minkowski space to states in de Sitter space simply by a conformal
transformation [103]. By performing a conformal transformation on the Rindler
vacuum, we obtain a state in de Sitter space known as the static vacuum. This
state is the natural vacuum for a static observer at » = 0 and looks empty. Hence,
there is no flux and no energy associated with particles in this state and it is
therefore given by

|0g) : P=0=0. (3.20)

The vacuum expectation value of the energy-momentum tensor then only contains
‘vacuum energy’ and is given by

1
(O0s[Tyv|0s) = = o5 (3.21)
1
T -
(0s|Tvv[0s) 18212
H2
(0s|Tyv[0s) = —

120(H2UV —1)2°

which indeed agrees with known results obtained from conformal transformation
[103] or direct evaluation of mode sums [101]. The static vacuum is also the
analogue of the Boulware vacuum for black holes. Just as the Rindler vacuum, the
static vacuum is singular on both the past and future horizon. As a consequence
it is not considered a reasonable physical state.

A different state is found by insisting the energy-momentum tensor to be regular
on both the past and future horizon. This implies that the null energy vanishes
and it singles out the Bunch-Davies state.

H2

: o = = —"
05p) 0, 2471

(3.22)
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3. De Sitter Space in the Unruh State

Thus, the energy-momentum tensor in this state is given by
2

T, v = 57 Yuv >
(05D |T1w|0BD) YPL

(3.23)

again in agreement with standard results [101]. Because the off-diagonal compo-
nent of the energy-momentum tensor vanishes in static coordinates, there is no
net flux in the Bunch-Davies state, even though all free-falling observers will see a
thermal spectrum of particles [104], as is indicated by a non-zero Q. This means
that the incoming flux from the horizon is compensated for by an equal but op-
posite amount of outgoing flux. In this sense, the Bunch-Davies state is a careful
equilibrium of fluxes, just as the Hartle-Hawking state is for black holes. Further-
more, because the Bunch-Davies state preserves all de Sitter symmetries, which is
immediately clear since it is proportional to the metric®, the energy-momentum
tensor does not result in backreaction and just renormalizes the bare cosmological
constant.

Finally, we can also break the symmetry between incoming and outgoing modes.
To construct the Unruh-de Sitter state, we pick the incoming sector to be in the
Bunch-Davies vacuum and take the outgoing sector to be in the static vacuum.
The null energy in the Unruh state should therefore agree with the incoming energy
of the Bunch-Davies state and outgoing energy of the static vacuum. Due to this
asymmetry, ® is necessarily non-zero.

|0y) : ® = —% , = % . (3.24)
The energy-momentum tensor in the Unruh-de Sitter state becomes
(Ou|Tyuloy) =0, (3.25)
(Ou[Tvv|0y) = _4871V2 :
2
(OulTuv|0v) = - 127T(H21?]V —1)2

which is only singular at the past horizon, as expected. Of course, the same energy-
momentum tensor could also have been obtain by conformal transformation from
the Unruh state for black holes or by explicitly evaluating mode sums.

Let us make a few comments regarding the form of the energy-momentum tensor
in the Unruh-de Sitter state. First of all, notice that by construction an observer
at r = 0 in this state only observes incoming radiation and no outgoing radia-
tion. By removing the outgoing component of the radiation as compared to the

6To check if the energy-momentum tensor preserves an isometry we can act with a Lie deriva-
tive in the direction of the Killing vectors.
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3.3. The Unruh-de Sitter state

Bunch-Davies state, this has resulted in a negative energy density along a con-
stant V slice that violates the null energy condition locally and is only singular at
the past horizon. As a result, the Unruh state is well-defined on an entire planar
patch and has the potential to be used as a physically acceptable state in this
region. This is similar to what happens in the black hole case. There, the Unruh
state is constructed by taking modes coming from the past horizon to be in the
Harte-Hawking vacuum and modes moving through the future horizon to be in
the Boulware vacuum. As a result, an asymptotic observer only measures radia-
tion coming from the past horizon, which is singular and violates the null energy
condition [102].

Of course, it would be interesting to investigate if a more general energy condition
such as the averaged null energy condition does hold in the Unruh-de-Sitter state,
which is expected [105]. In fact, as discussed extensively in [8] for the Rindler
case, when integrating over the past horizon there are additional positive (singular)
contributions that ensure that the integrated energy-momentum tensor is indeed
positive.

Because the energy-momentum tensor in the Unruh state is only singular at the
past horizon, it is well-defined on an entire planar patch. In planar coordinates,
which are given by

ds? = yier (—dn? +dr?) , (3.26)
the energy-momentum tensor in the Unruh-de Sitter state reads
(O Ty|00) = 55 = (3.27)
UVl o4 — A8w(n —r)2 '
1 1
0 T’rr 0 - - ’
(00 [T+ |00) +247r772 48 (n — r)?
1
0u|Tyr|Oy) = —F—— -
< U‘ n | U> 487('(77—7")2

One might expect any difference from the Bunch-Davies vacuum to be redshifted
away exponentially fast, but by transforming the time-time component to the
standard planar time coordinate ¢ (given by dn/dt = —Hn) we find a source of
energy-momentum that does not redshift away with time. Furthermore, in the
limit (—r/n) > 1 (corresponding to superhorizon scales), the above expressions
reduce to the energy-momentum tensor in the Bunch-Davies state. Therefore,
the difference between the energy-momentum tensor in the Unruh-de Sitter state
and the Bunch-Davies vacuum is largest in a Hubble-sized region and vanishes at
large superhorizon scales where all de Sitter symmetries are restored. The relevant
subhorizon contributions are finite and break the de Sitter symmetries (only ro-
tational invariance and time translations are preserved), even when averaged over
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3. De Sitter Space in the Unruh State

a Hubble-sized region. Of course, these results are strictly two-dimensional, so let
us now consider how these results can be generalized to four dimensions.

3.3.2 Generalization to four dimensions

The method we used to construct the energy-momentum tensor in two dimen-
sions in principle generalizes without much difficulty to four dimensions. The
main difference is that the additional components of the energy-momentum ten-
sor imply more free components, unless additional constraints are imposed. By
constraining to emission in the s-wave sector the difference between the two and
four-dimensional case can be captured by a greybody factor. As we will argue
more precisely below, close to the horizon this ensures that the s-wave energy-
momentum tensor in four dimensions is effectively two-dimensional.

Consider the action of a massless minimally-coupled scalar field in four-dimensional
de Sitter space in static coordinates. The metric is given by

ds* = — (1= H*r?)dt* + (1 — H*r*)"'dr® + 1% (d6® +sin” 0 d¢®) ,  (3.28)

and the action for the scalar field on this background is
1
S = —3 /d4x\/fg 0,0t . (3.29)

If we concentrate on just the s-wave (¢ = ¢(t,r)), we can integrate over the
two-sphere to obtain an effective two-dimensional action.

S = —27r/d2x —g2 720,p0" p . (3.30)

Here g, is the determinant of the metric of two-dimensional de Sitter space. We
can go to a canonically normalized field by rescaling ¢ — (4772)~1/2¢ such that
the action becomes

1
5= [ Eovm (~50u0" - Vn(0)) | (3:31)
where (1 H%?)
— r
Vest () = 2 (1—78,)¢* . (3.32)

We conclude that the difference between the action of a scalar field in two and
four dimensions is captured by the effective potential Vg (), which vanishes at the
horizon » = 1/H. The radial potential modifies the propagation of modes away
from the horizon to the center of de Sitter space, which can be taken into account
by introducing a greybody factor. So as far as high frequency s-wave modes near
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3.3. The Unruh-de Sitter state

the horizon are concerned, their energy should be related to the two-dimensional
energy-momentum tensor results.

In general, under the assumption that 7, = T,,(r) and that the only non-
vanishing off-diagonal component is T}, conservation of the energy-momentum
tensor
v, " =0, (3.33)
in four dimensions leads to the following (differential) equations
2 (2H?*r? — 1)
0T = —— 2T 3.34
r(H?r?2 —1) (3:34)

2
O, T = —=T"" 4+ 29T — H2yT*
T

J7

T = sin=20 7T .

An important difference with two dimensions, where the massless scalar field is
conformally invariant, is that the trace T%, is not fixed by the conformal anomaly
and as a consequence does not introduce additional constraints.

The most general solution to (3.34) is given by

1 T
Ty =— (A - H2/ dr’ r'?’T“# +0(r) +2(1 — H*r*)Tpy — r*(1 — HQTQ)T“#>
r 1/H
(3.35)
T = __ A—H2/T dr' r3T" + O(r)
T P21 — H2r2)2 \/H I J
)
Ty = — s
! r2(1 — H2r2)
with ®, A constants and
" T,
o(r) = 2/ dr' =22 (3.36)
1/H r

As before, we see that a non-zero @ introduces a net flux and breaks the symmetry
between incoming and outgoing modes. Also notice that the T}, component has an
apparent singularity at » = 0 and at » = 1/H. The singularity at the origin is just
a consequence of the fact that in static coordinates the origin is a singular point.
The flux density diverges at r = 0 due to the vanishing volume of the two-sphere,
but the energy obtained by integrating over the two-sphere is of course finite and
we could have also chosen to remove this coordinate singularity by an appropriate
coordinate transformation. In contrast, the singularity at the horizon vanishes
only in an appropriate (non-singular) quantum state evaluated in a coordinate
system that is regular at the horizon.
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3. De Sitter Space in the Unruh State

We will now make use of the fact that the action for the four-dimensional massless
minimally coupled scalar in the s-wave sector effectively reduces, at the de Sitter
horizon, to a two-dimensional action of a massless minimally-coupled scalar field,
obtained by integrating over the two-sphere and canonically normalizing the scalar
field. This implies that close to the horizon the two energy-momentum tensors are
related as follows

rad) _ 2 1 (3.37)
T e

where the entire expression should be evaluated at the future horizon in a non-
singular coordinate system. In the Unruh-de Sitter state (see (3.25)), one obtains

(Ou|Tuu|0y) =0, (3.38)
H2
O0u|Tvv|Oy) = ————
< U| VV‘ U> 1927212
H4
Ouv|Tuv|Oy) = ———
(O[T 100) =~y |

which has been evaluated at the future horizon (U = 0). As before, we see that
the energy-momentum tensor in the Unruh-de Sitter state is singular at the past
horizon and breaks de Sitter symmetries as it preserves only SO(3) x R corre-
sponding to spatial rotations and time translations. The state is inhomogeneous
by introducing just incoming flux, which results in a conserved energy-momentum
tensor describing a net flow of energy and momentum. This is of course bound
to result in a nontrivial backreaction effect on the initial de Sitter geometry. Also
note that just as in the two-dimensional case, the energy density of the Unruh-de
Sitter state is negative. In the class of (inhomogeneous) states the Bunch-Davies
vacuum is now very special, corresponding to the case where the incoming and
outgoing fluxes precisely cancel, restoring the de Sitter symmetries. It is straight-
forward to check that the energy-momentum tensor is then indeed proportional to
the de Sitter metric, as it should.

Now that we have determined the vacuum expectation value of the four-dimensional
s-wave energy-momentum tensor in the Unruh-de Sitter state, close to the horizon,
let us next turn to an estimate of the backreaction effect on the de Sitter geometry
it induces.

3.4 Backreaction and de Sitter evolution

Before we estimate the backreaction effect, we would like to compare the situation
to computing backreaction in black hole spacetimes. An important difference
with de Sitter space is that for black holes one can rely on a globally conserved
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3.4. Backreaction and de Sitter evolution

energy, which makes estimating the backreaction effect more tractable. In the
Unruh state, there is a flux of energy-momentum coming from the black hole,
described by T3, [102], and energy conservation immediately implies that the mass
of the black hole should decrease. Notice that although the Unruh state for black
holes preserves time translations, by imposing energy conservation we are forced
to conclude that the black hole geometry evolves.

Although in de Sitter space there is no globally conserved energy, we can still
use the semi-classical Einstein equations to learn about the evolution of de Sitter
space. The effect of backreaction on the geometry is then estimated by putting
the field in the Unruh-de Sitter state and plugging the energy-momentum tensor
into the semi-classical Einstein equations

G + Ngy = 8TGN(T)) (3.39)

which should be consistent when the backreaction effect is small and only evolves
slowly as compared to the typical timescale set by the background. This is also the
procedure one uses for black holes in the Unruh state. As mentioned before, notice
that despite the fact that the energy-momentum tensor in the Unruh state is time-
translation invariant, one finds by including backreaction that the (static) black
hole geometry has to be modified to be consistent with the semi-classical Einstein
equations. By doing so in an iterative procedure, time evolution is generated and
it is found that the black hole decays.

The same procedure can be applied to de Sitter space in the Unruh state. We will
use a semi-classical de Sitter space (H < M,) as our initial background in order
to calculate the right-hand side of the equation and then estimate how the small
energy-momentum tensor correction affects the geometry on the typical Hubble
timescale of the original de Sitter geometry. Once again, this iterative procedure is
completely analogous to the situation for evaporating black holes. There (T),,) is
calculated for a static Schwarzschild spacetime, even though the outgoing Hawking
flux in the Unruh state implies that the geometry is only approximately static on
the typical Schwarzschild timescale.

Before we derive an estimate of the backreaction effect it is important to empha-
size that we have only derived the four-dimensional energy-momentum tensor in
the Unruh-de Sitter state close to the horizon. Nevertheless, to estimate the ef-
fects on the de Sitter geometry we will use a homogeneous and isotropic FLRW
ansatz which is, strictly speaking, incorrect. In fact, conservation of a perfect fluid
energy-momentum tensor for a homogeneous and isotropic FLRW ansatz forces
any backreaction effects to redshift away quickly. Indeed, it is the inhomogeneous
nature of the Unruh-de Sitter state that allows for a maintained flux of stress
energy. Nevertheless, even though the energy-momentum tensor in the Unruh-de
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3. De Sitter Space in the Unruh State

Sitter state breaks homogeneity, its effects are dominant in a Hubble-sized region
and to estimate backreaction the energy can be averaged over a single static patch.
On large superhorizon scales, the energy-momentum tensor should reproduce the
Bunch-Davies energy-momentum tensor, just as in the two-dimensional case.

Then, we can approximate the backreaction by using a homogeneous and isotropic
Friedmann-Lemaitre-Robertson-Walker (FLRW) ansatz

ds® = —dt* + a*(t) (dr2 +72(df? + sin® 0 d¢2)) , (3.40)

where ¢ is now the planar time coordinate and a(t) the scale factor. Combining the
time-time and spatial-spatial components of the Einstein equations, the evolution
of the Hubble parameter is given by

i = —”j(ggv (Tyn) + (Tor)) (3.41)

where the dot denotes a time derivative with respect to ¢ and T}, is the time-time
component of the energy-momentum tensor using conformal time (9n/0t = —Hn).

We now use the value of the near-horizon energy-momentum tensor as a proxy for
the average (integrated) energy-momentum in a Hubble-sized region. Again, in
two dimensions this is an excellent approximation and we will assume this is also
true in four dimensions. We then find (using (3.38))

3H?
Ou|Tyy|Oy) = ————= 3.42
< U‘ 7777| U> 2567’(2772 ) ( )
TH?
0| Ty |0y) = ———= ,
(Ou T |Ov) 7687212
H2
00| T |00) = ——— .
< U| n | U> 768’/T27]2

Furthermore, just as in the black hole case we will choose to ignore the off-diagonal
component, since it does not affect the backreaction on the (local) Hubble param-
eter to leading order. In a more complete treatment it would be interesting to
keep this term and calculate how it modifies the evolution.

Plugging in the small and approximately homogeneous and isotropic energy-momentum
tensor correction, the evolution equation for the Hubble parameter is (with N =
log a the number of e-folds and M~ 2 = 877Gy the reduced Planck mass)

H* 1dd 1 H?

Hr e == 3.43
T6872M2  HAN 76872 M2 (3.43)

implying that the relative magnitude of the backreaction effect per e-fold is sup-
pressed as (H/M,)?. The inverse can then be associated to a bound on the lifetime
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3.4. Backreaction and de Sitter evolution

of de Sitter space that is of the order of the de Sitter entropy
Nmax:HtNMg/H2CXSdS . (344)

As mentioned earlier, the energy-momentum tensor in the Unruh-de Sitter state
violates the null energy condition. By again referring to the analogy with black
holes this should not come as a surprise: we know that black holes evaporate in
the Unruh state and, by Hawking’s area theorem, a decrease in the horizon area is
only possible by violating the null energy condition (locally, at the horizon scale).
Nevertheless, it would be interesting to study more general energy conditions such
as the averaged null energy condition or the quantum null energy condition in this
context. We conclude that the presence of negative vacuum energy in the Unruh-
de Sitter state effectively causes the Hubble radius to decrease. The evolution can
be followed as long as the effects are in the semi-classical regime, until it enters a
highly curved inhomogeneous and presumably singular regime beyond an effective
field theory description.

Let us make a few comments regarding the approximations we made. To obtain an
estimate of the effect of backreaction on the background geometry, we used several
assumptions regarding the form of the energy-momentum tensor in four dimen-
sions. Based on the two-dimensional result, we expect the difference between the
Unruh state and the Bunch-Davies vacuum to be dominant in a Hubble-sized re-
gion. In addition, we also assumed the near-horizon value of the energy-momentum
tensor to give a good estimate of the true averaged energy-momentum and we ig-
nored the off-diagonal component of the energy-momentum tensor. It is important
to mention however that, despite the subtleties in trying to track the evolution of
the backreacted geometry, the conclusion that pure de Sitter space is no longer
a solution in the Unruh state holds regardless of these assumptions. Contrary to
an exactly homogeneous and isotropic energy-momentum tensor the continuous
flux of stress energy in the Unruh-de Sitter state does not simply redshift away.
Because of this, energy-momentum present in the Unruh state backreacts on the
geometry such that pure de Sitter space is no longer a consistent solution. Just
as for black holes in the Unruh state, the Unruh-de Sitter state contains negative
outgoing null energy at the future horizon (given by Ty ) which is present be-
cause of the removal of outgoing flux as compared to the Bunch-Davies vacuum.
This negative energy violates the null energy condition and backreaction on the
geometry causes the de Sitter horizon to shrink.

In future work it would be interesting to go beyond the approximations we made
here to track the evolution of the instability, perhaps using an approach based on
cosmological perturbation theory.
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3. De Sitter Space in the Unruh State

3.4.1 Consistency and interpretation

Although exact global de Sitter space is a very interesting spacetime, the typical
cases of physical interest only require a geometry which is approximately de Sitter
space in a few Hubble-sized regions of space and time. Examples include i) the
interior of a bubble of false vacuum in global de Sitter space and ii) a patch of
spacetime dominated by vacuum energy leading to inflation. In each of these cases,
the local geometry is essentially that of de Sitter space. However, certain global
features, such as the existence of past horizons or IR issues [106,107] should now be
revisited. In these examples the existence of a singular (7),,) at the past horizon is
not necessarily problematic and just indicates our ignorance to how the universe
started off in a state dominated by vacuum energy. Again this is analogous to
physical black holes that form from collapsing matter. In these scenarios the
inhomogeneous Unruh state therefore seems to be a reasonable candidate for an
initial state. More generally, any linear combination of the Bunch-Davies state
and the Unruh state would then also be acceptable. As a first step, in this work
we just constructed the Unruh-de Sitter state and analyzed its implications for the
evolution of de Sitter space.

An important observation is that the state constructed is asymmetric and can be
viewed as a combination of the Bunch-Davies vacuum for incoming modes and the
static vacuum for outgoing modes. As a consequence it breaks homogeneity, but
only mildly so, allowing for an approximate analysis of the backreacted evolution
in terms of slightly corrected FLRW equations. The presence of the static vacuum
for outgoing modes implies a singularity at the past horizon, but it is well-defined
across the future horizon on a (large) planar patch, and explains the presence of
negative energy density as compared to the Bunch-Davies state. By removing the
outgoing thermal flux that would be present in the Bunch-Davies state, as seen
by a static observer, the system is no longer in thermal equilibrium. In fact, the
negative energy density in the static outgoing vacuum depends on the de Sitter
radius, becoming more negative as the Hubble radius decreases, explaining the
direction of the instability towards smaller de Sitter radius and equivalently higher
de Sitter temperature. Note also that by generalizing to a class of isotropic, but
inhomogeneous, initial states, the Bunch-Davies choice is very special, fine-tuned
and in fact unstable to small perturbations.

If we would be interested in using the Unruh state for cosmological purposes, one
might worry that the introduction of an inhomogeneous initial state might be in
direct conflict with observation. Inflationary states should produce a large, flat
and very homogeneous observable universe. However, selecting the Unruh-de Sit-
ter vacuum does not change this conclusion. The state just identifies an initial

78



3.4. Backreaction and de Sitter evolution

center, or ‘patch’, that exponentially expands and can accommodate the entire
observable universe after roughly 60 e-folds of inflation. The inherent instability
of the Unruh-de Sitter state only becomes apparent after Syg e-folds, which is
typically much larger than 60 e-folds. We therefore expect a suppression of cor-
rections to inflationary correlation functions computed in the Bunch-Davies state.
In other words, the properties of the Unruh-de Sitter state are expected to be
indistinguishable from the Bunch-Davies vacuum, as long as the number of e-folds
is much smaller than the de Sitter entropy. We hope to explicitly confirm these
expectations in future work.

Another point of concern with the Unruh-de Sitter state is how the decrease of
the de Sitter horizon can be consistent with thermodynamics, as the decrease of
the horizon radius naively seems to violate the second law. Of course, for black
holes we know how this works. By taking into account the entropy of the emitted
radiation, the total generalized entropy still increases. It is therefore possible that
in de Sitter space, something similar happens.

Indeed, the change in entropy is given by the change in horizon area, which in the
Unruh state decreases

A 1672 Mg
4Gy  H3

Shorizon = H<O0. (3.45)
However, the system is not in complete equilibrium and the energy flux through
the horizon also carries an entropy which can be calculated using the first law.
We will consider the entropy in a fixed proper volume V and, as before, we will
assume the radiation to be distributed in a homogeneous and isotropic manner.
From the first law, the entropy change is then given by

dE
dSmatter = T . (346)
By using the continuity equation
p=-3H(p+p), (3.47)

where p is the energy density and p the pressure we can express this as

3H

S’matter = —?(p +p)V . (348)

Any contribution from a cosmological constant (p = —p) would drop out, as
expected. By combining this with the result for the change in horizon area and
by using the Friedmann equations, the total entropy change can be written as

. - : 872  3HV
Stotal = Shorizon + Smatter = (m - T) (p -l-p) . (349)
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Now we take the temperature of the matter to be at the de Sitter temperature
Tys = % and the volume to be a Hubble volume: V = 34%. We then find that
both entropy contributions cancel exactly such that

Siotal =0, (3.50)

which saturates the second law. This was already observed in [108], showing that
a decrease of the horizon area is not necessarily in conflict with the second law.

The fact that the generalized entropy vanishes in a static patch is also supported
by Bousso’s N-bound [109], which roughly states that the entropy in a causal
diamond in a spacetime with a positive cosmological constant should be bounded
from above by the de Sitter entropy. Because the static patch is the largest causal
diamond in de Sitter, it better be that Siota; < Sgs. At the same time, if we
assume the initial entropy to be given by the de Sitter entropy the generalized
second law implies Siotq; > Sgs. Therefore, the only way how these two bounds
can be consistent with each other is if the total entropy in a static patch remains
constant.

For volumes larger than the proper volume of a static patch, the N-bound no longer
applies and the matter entropy term in (3.49) at fixed temperature dominates over
the horizon contribution, which implies that

Stot >0, (3.51)

only when (p + p) < 0. Notably, this is the case in the Unruh-de Sitter state.
We therefore see that also in the Unruh state in de Sitter space, a decrease of the
horizon area is not directly in conflict with the second law of thermodynamics,
at least not when we approximate the energy as being homogeneously spread out
over a single Hubble volume.

3.5 Conclusions

In this chapter, we considered quantum field theory of a massless minimally cou-
pled scalar field on a de Sitter background. We discussed and constructed different
vacuum states that are the de Sitter analogue of the Hartle-Hawking, Boulware
and Unruh vacua for black holes. In particular, focussing on two-dimensional de
Sitter space, we computed the energy-momentum tensor in these different states
and related the two-dimensional energy-momentum tensor to the near-horizon
energy-momentum tensor in four dimensions in the s-wave sector. We argued that
the Unruh-de Sitter state, which is only singular at the past horizon, might be a
viable and natural alternative to the de Sitter invariant Bunch-Davies state which
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is typically assumed in inflationary scenarios. Modifications to the standard pre-
dictions from 60 e-folds of slow-roll inflation assuming the Bunch-Davies state are
likely negligible, but we would like to investigate this further in future work. If
the instability we found in the Unruh state persists, it puts a fundamental bound
on the maximum number of e-folds possible given by the de Sitter entropy.

Such a bound might be relevant in the context of the recent (refined) de Sitter
swampland conjectures [87,88]. Note however that, first of all, the instability of
the Unruh-de Sitter state is much slower than any of the de Sitter swampland
conjectures, removing any potential tension with single field slow-roll inflation
or dark energy constraints. Secondly, the instability of the Unruh-de Sitter state
evolves towards smaller de Sitter radius which, as we explained, has a clear physical
interpretation. This is to be contrasted with the de Sitter swampland conjectures,
in which the de Sitter radius increases. This different behaviour is not in conflict
with our results, as the setup leading to this conclusion is rather different; in the
de Sitter swampland conjectures it is assumed that a tower of states becomes light
which contributes to the de Sitter entropy, whereas we do not consider such a
situation. Our results therefore seem to be more closely related to the so-called
‘quantum break time’ of de Sitter that was recently revisited in [110], and perhaps
to the vacuum state modifications suggested in [111].

The physical origin of the instability is clear. Similar to black holes, one identifies
a special static observer that only measures a flux of incoming radiation, which
implies that the expectation value of the vacuum energy is negative, producing
a backreaction effect that shrinks the horizon slightly. This conclusion is also
supported by the complementary point of view in terms of radiation tunneling
through the de Sitter horizon [112]. In an effective field theory description of the
tunneling process in de Sitter space one indeed requires the identification of a state
that is empty for an observer freely falling through the horizon. Just as for black
holes [1], this naturally selects the Unruh state. This identifies a special observer,
breaking homogeneity. The inhomogeneous nature of the state is crucial, since
it introduces unbalanced incoming and outgoing flux leading to an instability.
Contrary to the de Sitter invariant Bunch-Davies vacuum, the Unruh-de Sitter
state is a non-equilibrium state. In fact, in the class of all isotropic states that
are non-singular on the future horizon, the fine-tuned homogeneous Bunch-Davies
vacuum is perturbatively unstable.

By allowing inhomogeneous vacuum states that only introduce singularities at the
past horizon, the situation in de Sitter becomes analogous to that for black holes.
Indeed, for initial Hubble parameters far below the Planck scale, allowing for an
effective field theory description, the instability is tiny and measured in terms
of the de Sitter entropy. As a consequence we expect these initial state effects
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3. De Sitter Space in the Unruh State

to be suppressed in the context of slow-roll inflationary phases that only require
O(100) e-folds. It will certainly be interesting to show this more explicitly in
terms of correlation functions to characterize the differences between cosmological
observables in the Unruh and Bunch-Davies state more precisely.

Furthermore, we only gave a preliminary estimate of the effect of backreaction in
the Unruh state and we relied on an FLRW ansatz for the backreacted geometry.
Because the Unruh state (mildy) breaks homogeneity, it would be of interest to go
beyond this approximation and calculate backreaction in a complete treatment.
This should reveal exactly how de Sitter space evolves and if the Unruh vacuum
indeed is a well-behaved state (as we anticipated here) that can be consistently
used for cosmological purposes. We hope to come back to some of these interesting
questions in future work.
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Supersymmetry Breaking in
de Sitter Space

After having discussed quantum effects in de Sitter space in semi-classical gravity
in Chapter 3, we now continue our study of de Sitter space, but in string theory.
This chapter is based on [3,4] and focusses on spontaneous supersymmetry break-
ing. In particular, we apply the formalism of constrained superfields to understand
the effective description of de Sitter vacua in the KKLT scenario [32], which we
reviewed in Chapter 1. We show, by including polarization effects, that the anti-
D3-branes used in this construction break supersymmetry spontaneously. This
allows us to identify the leading corrections of the effective description of KKLT
vacua in terms of a single nilpotent goldstino superfield. The energy scale at which
this description breaks down is rather low and we comment on the implications
for cosmological models based on the KKLT scenario.

4.1 Introduction

De Sitter vacua are at the heart of any cosmological model. However, to fully
address the UV-sensitivity of inflation and embed dark energy into a UV-complete
framework, it is necessary to understand how de Sitter vacua can be constructed in
string theory and supergravity. Unfortunately, this has proven to be a tremendous
challenge and one has to face several challenges we reviewed in Chapter 1 (see
also the introduction of [35]) to construct solutions of string theory with a positive
cosmological constant. Nevertheless, a breakthrough came in 2003 when Kachru,
Kallosh, Linde and Trivedi (KKLT) provided a generic mechanism of moduli sta-
bilization in anti-de Sitter space and a subsequent uplift to a de Sitter vacuum by
introducing supersymmetry-breaking anti-D3-branes [32]. Also, after that many
other different approaches for de Sitter compactifications have been uncovered and
we refer the reader to [24] for an excellent review.

This does not mean however that all details of de Sitter solutions in string theory
are understood. One point of concern regarding the KKLT scenario specifically
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4. Supersymmetry Breaking in de Sitter Space

has always been that it was unclear if the anti-D3-branes can be understood to
break supersymmetry spontaneously in an effective four-dimensional theory. Only
recently, a description of de Sitter vacua that exhibit spontaneous supersymme-
try breaking was uncovered in effective four-dimensional N = 1 supergravity, by
making use of constrained superfields [113-117]. By imposing constraints on a
(linearly supersymmetric) multiplet, it becomes possible to describe fields trans-
forming nonlinearly under spontaneously broken supersymmetry and at the same
time it eliminates unwanted degrees of freedom. General prescriptions to obtain
constrained superfields from linearly transforming ones in a supergravity context
were given in [118,119]. For some reviews of constrained superfields and their
applications to cosmology, see [120,121].

Over the years, also other aspects of KKLT have been scrutinized, such as the
possible dangerous backreaction of anti-D3-branes on the internal space [44-58]
and antibrane backreaction on four-dimensional moduli [38,122]. Recently, new
doubts have even been cast on general aspects of moduli stabilization, before
adding antibranes, in flux compactifications [35]. It is thus fair to say that various
details of the KKLT scenario still need to be better understood. For some recent
work discussing these and other issues regarding constructions of de Sitter vacua
in string theory, we refer the reader to [10, 34, 36,39-43, 59, 87,123-138].

In this chapter, we will focus our attention on understanding how anti-D3-branes
in flux backgrounds break supersymmetry spontaneously and show how this has
a description in term of constrained superfields. For this purpose, it is important
to remember that constrained superfields are often only effective descriptions of
low-energy excitations. For example, we saw in Chapter 1 that in a vacuum with
spontaneously broken supersymmetry the massless goldstino can be packaged in a
chiral superfield that satisfies a nilpotent constraint, which is only valid below the
mass scale of the scalars that are projected out [28,139,140]. As argued in [28], this
can be extended to multiple fields and integrating out additional heavy degrees
of freedom generally results in extra constraints that describe the universal low-
energy dynamics of the theory, see also [118,140].

It is thus of crucial importance to understand the embedding of constrained su-
perfields in a putative UV-complete description. Can we indeed realize large mass
splittings such that the constrained superfields correspond to a good approxima-
tion of the relevant low-energy physics? This question is especially important
when considering cosmology. As one typically accesses high energy scales during
inflation it is necessary to ensure that the fields eliminated by the constraints have
large enough masses to be integrated out. Otherwise, a constrained superfield de-
scription will be invalid. Such concerns have been raised in [141] and, in a specific
model of inflation, it has been shown in [142] that finite mass effects can signifi-
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cantly limit the range of parameters for which an effective nilpotent description is
available.

In the context of KKLT, the first effective description of a single anti-D3-brane
in a flux background in terms of constrained superfields has been constructed by
putting the anti-D3-brane on top of an orientifold plane [143,144]. This simplifies
the problem, as it projects out all bosonic degrees of freedom on the worldvolume.
The low-energy spectrum then only consists of a single massless gaugino (originally
part of a vector multiplet) that plays the role of goldstino. Unfortunately, by doing
so it is no longer possible to restore linear supersymmetry within this theory,
making it difficult to estimate the size of corrections to a constrained superfield
description. To answer this question, it is necessary to remove the orientifold plane
and this study was initiated in [145,146], where it was found that also the other
degrees of freedom on the worldvolume of the anti-D3-brane can be captured by
additional constrained superfields.

However, to learn how a constrained superfield description of an anti-D3-brane
might emerge from a linearly supersymmetric theory and to study the leading
corrections, we will choose to study multiple antibranes probing the Klebanov-
Strassler (KS) geometry [147].1 It has been shown by Kachru, Pearson and Ver-
linde (KPV) that in this background, anti-D3-branes polarize to form an NS5-
brane wrapping an S? and settle into a metastable state [148]. The upshot of tak-
ing into account polarization is that it shows there is a direct connection between
the nonsupersymmetric metastable state and a supersymmetric vacuum in which
all antibranes have annihilated. This makes it possible to see the supersymmetry-
breaking metastable phase emerge from a linearly supersymmetric theory.

To correctly identify the goldstino after including polarization effects, we reduce
the NS5-brane action to four dimensions and truncate to the lowest lying modes of
a Kaluza-Klein tower. We then indeed find that there lives a massless gaugino on
the NS5-brane worldvolume, which was identified as the goldstino in the case of
a single anti-D3-brane. However, one should not jump to the conclusion too soon
that this is still the goldstino when polarization effects are taken into account and
make sure that it also transform correctly under supersymmetry. By computing
the supersymmetry transformations in the metastable minimum we find that the
standard non-linear transformations receive corrections that scale with M/p, with
p the number of antibranes and M the flux number of the KS background. Hence,
a strict decoupling limit where these corrections vanish does not exist, since it is
equivalent to sending the dimensionless ratio p/M to infinity, while the metastable
state only exists for sufficiently small p/M. This signals a breakdown of the

ITo study the physics of anti-D3-branes in warped throats, such as in the KKLT scenario, it
is standard practice to model the throat by the noncompact KS geometry [147].
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effective theory and suggests that the gaugino cannot be identified as the goldstino
in the metastable state.

This can be explained by the fact that, due to polarization, the theory probes
higher-dimensional physics and ignoring the Kaluza-Klein tower is inconsistent.
We illustrate this by constructing a linearly supersymmetric model, in which a
metastable state emerges that breaks supersymmetry spontaneously and matches
many features of the true metastable vacuum. We explicitly confirm the presence of
a goldstino in this model and observe that the goldstino does not coincide with the
massless gaugino. We find that restoring linear supersymmetry requires including
the full dynamics on the S? which implies that the standard effective reduction of
KPYV to a single (massive) scalar degree of freedom can be misleading and in fact
obscures the appearance of a massless goldstino in the metastable vacuum. Only
at energy scales below the Kaluza-Klein scale, one can integrate out the massive
tower of states on the S? after which a description in terms of a single nilpotent
goldstino superfield, in addition to the four-dimensional massless vector multiplet,
becomes accurate.

This chapter is organized as follows. In section 4.2 we review some of the rel-
evant bosonic details of brane polarization and show that the full polarization
dynamics involves a Kaluza-Klein tower. Then, we include fermions in section 4.3
and compute the supersymmetry transformations in section 4.4. Continuing, we
argue in section 4.5 that a full understanding of supersymmetry breaking in the
metastable state requires including higher-dimensional physics. We then present
our supersymmetric model that embeds the metastable minimum into a linearly
supersymmetric theory and explicitly confirm the existence of a goldstino. We
close this chapter in section 4.6 with the conclusions and an appendix featuring
some technical details on fermions.

4.2 Brane polarization: bosonic action

We will start by giving a short recap of some of the main results of KPV [148] and
highlight the features that will be important later on. In particular, we will show
that the effective potential they derived is a consistent truncation that is useful to
determine some qualitative features of the metastable polarized state, but that it
is not suitable to be used as a four-dimensional effective action, since it does not
take into account all of the dynamics on the S2.

KPYV considered creating a nonsupersymmetric solution by adding a small number
of anti-D3-branes to the KS geometry [147], which is a non-compact version of a
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4.2. Brane polarization: bosonic action

GKP solution [33] which we reviewed in Chapter 1. This geometry consists of a
long warped throat with a topology R'3 x S2 at its tip. The throat is supported
by putting M units of RR 3-form flux through the A-cycle and K units of NSNS
3-form flux through the B cycle of the throat

1 1
— | Fs=M — | H3=-K. 4.1
e ST (41)

At the tip of the throat, the metric is given by
ds? = *Aon,, datde” + e 20 (dip? + sin ¢ dQ3) (4.2)

where €240 ~ (g,M)~! < 1 is the warp factor at the tip. Since KPV considered
p > 1 antibranes, the wordvolume description of the anti-D3-branes becomes a
non-Abelian gauge theory with gauge group U(p), that contains noncommuting
matrix degrees of freedom. This allows for a version of the Myers effect [149] where
the anti-D3-branes polarize to collectively form a spherical 5-brane configuration
that has a description for p > 1 in terms of an NS5-brane? wrapping an S? of the
S3. The bosonic action for the NS5-brane is given by

Snss = _§ /dﬁg\/— det(G))) det(GL + 2mg, Fa) + M5/B6 - (43)

Here, G| is the metric along the worldvolume of the anti-D3-branes and G| the
metric along the S? and the form fields in the action are

1
271'./—"2 = 27TF2 - 02 5 dB6 = —;dV4 A F3 . (44)

The gauge field A on the worldvolume has field strength dA = F5 and gives the
anti-D3 charge p carried by the NS5-brane:

- Fy=2mp , (4.5)

and F3 = dCy. We are specifically interested in the effective dynamics in the
angular direction ¢ on the S3, which is transverse to the NS5-brane wrapped on
an S? inside the S3. By expanding the kinetic term around i = 0 we obtain

4Aq
vw)) . (4.6)

e

1
Snss =P TDg/d4$ (—2 Lot —

Here Tps = 13/gs is the tension of an (anti)-D3-brane. The function V() is an
effective potential for the the azimuthal angle ¢ on the S3.3

V() = V) + P(¥)* = Q(¢) , (4.7)

2Formally, the NS5-brane action is strongly coupled as it is derived by S-dualizing the D5-
brane action. Nevertheless, KPV found reasonable agreement between the NS5-brane perspective
and the non-Abelian anti-D3-brane perspective.

30f course, this is not the potential for the canonically normalized field. We will use the
canonically normalized scalar field when we derive physical quantities such as the mass.
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with bZ ~ 0.93. Here we defined the effective 3-brane charge Q(v)) as

QW) =5 [ 7= d <¢ - ;sin(Qd))) —p. (4.8)
and ) RAL
P(’(/J)EZMTQQS/Sz\/GJ_: ——sin P . (4.9)

By expanding the potential (4.7) around ¢ = 0, it was found by KPV that this po-
tential has a nonsupersymmetric metastable minimum present for p/M < 0.08 at
Ymin = J%;’;%. In addition, the full potential also features a global supersymmetric
minimum at ¢ = 7 where all antibranes have annihilated and linear supersymme-

try is restored; see Figure 4.1.

V()

Figure 4.1: The effective potential (4.7) plotted for p/M = 0.03. This potential contains
a supersymmetry-breaking metastable minimum when p/M < 1 and a global supersym-
metric minimum at ¢ = .

KPV also described the metastable minimum from the perspective of the non-
Abelian worldvolume gauge theory of the anti-D3-branes. In that case, the poten-
tial expanded around the nonsupersymmetric North Pole* (¢ = 0) is given as a
function of three bosonic p x p dimensional matrix degrees of freedom ¢*=12:3

V(¢') =2p + én ik Tr ([¢°, ¢7]0") — %Tr ([¢", ¢'1?) . (4.10)

We will first discuss the features of this potential and after that match its param-
eters to the effective potential (4.7). Note that up to now we have ignored the
fermionic degrees of freedom, but these will be included in the next section.

4Contrary to [148] we refer to the ¢ = 0 pole of the S3 as ‘North Pole’ and to the 1) = 7 pole
as ‘South Pole’. We apologize for any confusion this might cause.
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4.2. Brane polarization: bosonic action

The critical points of (4.10) are given by
6, 6] = gieij%k , (4.11)

which corresponds to the commutation relations of the generators of SU(2) upon
rescaling ¢* = §Ji. We see that any SU(2) representation extremizes the po-
tential, but two representations are worth mentioning specifically. The trivial
representation (which has commuting matrices) corresponds to parallel anti-D3-
branes and has the highest vacuum energy. The configuration of lowest energy is
given by the p-dimensional irreducible representation, corresponding to the min-
imum where the anti-D3-branes have polarized [148]. The vacuum energy in the
metastable minimum, after reinstating the correct units, is given by

I<C4
Vmin = TD3€4AOp (2 - 24)\3 (p2 - 1)) 3 (412)

The radius of the S? in the minimum is given by

o—240 , 12
Tr (¢1¢l) gi _ 6_2A°7(p2 _ 1>£2

2 _
RSZ — 4)\2 s

(4.13)

where ¢, is the string length.

Comparing (4.12) and (4.13) to the equivalent quantities from the Abelian NS5-
brane perspective, we find
. M

W= (»

e

-1 -7

(p* —1). (4.14)

Expanding the matrices around the metastable vacuum in fluctuations ¢’ as

¢ = ;ﬂ +o, (4.15)
one finds a tower of fields that are labeled by { = 1,...,p — 1.5 Details on how to

explicitly diagonalize the mass matrix can be found for example in [150].

After canonically normalizing the scalar fields, the masses of the different states
in the metastable minimum are given by

K2 4

m2 = (1 + 1)e*om? = bél(l + 1)ettom? | (4.16)

A

with a 2(2]+ 1) multiplicity for the eigenvalues of the mass matrix for each [ [151].
Notice that the masses are warped down from the string scale my.

5The | = 0 modes are gauge redundancies and should be omitted.
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4. Supersymmetry Breaking in de Sitter Space

From the Abelian NS5-brane perspective we can similarly describe fluctuations
around the metastable vacuum by performing a Kaluza-Klein reduction of the
NS5-brane action on the S?. One then also finds a tower of states [152] that can
be matched with (4.16). This emphasizes that the effective potential derived by
KPYV should be understood as a (bosonic) truncation of the full NS5-brane theory
that keeps only one bosonic degree of freedom. This is the azimuthal angle 1,
whose mass (using canonical normalization) around the metastable minimum is
given by

—etom? (4.17)

This mass matches the one calculated from the non-Abelian perspective for [ = 1,
see (4.16). We want to stress once more that this degree of freedom is in fact
part of a Kaluza-Klein tower of states, which will turn out to be important later.
The fact that this mass does not explicitly feature the radius of the S?, which
is proportional to p/M, can be explained as follows. By expanding the potential
in the metastable minimum in fluctuations, we find that the mass of the scalar
fluctuation is given by mfb ~ Y2, /R%:. The overall p/M dependence therefore
drops out in a small ¥ expansion around ¥ = 0.

We thus come to the conclusion that the Kaluza-Klein scale in the four-dimensional
effective theory is set by the mass of this fluctuation

Exx =my , (4.18)

which is warped down from the string scale. Thus, strictly speaking the effective
theory in the metastable minimum can only be considered four-dimensional at
energy scales E < my < ms. Also note that the supersymmetry breaking scale,
set by the value of the KPV potential at the metastable minimum, is of the same
order as my,. This strongly suggests that the restoration of linear supersymmetry
hinges on the inclusion of all the Kaluza-Klein modes on the S2, of which the v
field is just one particular component.

Now that we have introduced all relevant details of the bosonic KPV action, we
will include fermions next.

4.3 Brane polarization: fermionic action

If the metastable minimum breaks supersymmetry spontaneously, there should
exist an associated massless goldstino. For a single anti-D3-brane on top of an ori-
entifold plane, the goldstino was identified as the four-dimensional gaugino fermion
on the worldvolume of the antibrane, which is a singlet under the SU(3) holonomy
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of the six-dimensional internal space [143,144]. Removing the orientifold plane, we
now want to revisit the situation for the polarized NS5-brane. Based on the bosonic
truncation of the effective potential to a single bosonic single degree of freedom v
that we discussed in the previous section, we expect the effective four-dimensional
worldvolume description to reduce to the known results for p anti-D3-branes at
the North Pole and (M — p) D3-branes at the South Pole, both probing the KS
background.

4.3.1 The fermionic action up to second order

Just as for the bosonic action, we formally obtain the fermionic NS5-brane world-
volume action from S-duality of a D5-brane. The action up to quadratic order
in fermions is given by [153] (notice that we have a background with a constant
dilaton)

1 _ . A
Snss = 5%/6165\/— det(g + 2mgs F2)0(1 — I'nss) [(Mﬁl)aﬁFﬂDa —Al0,

(4.19)
where
Mag = gap + 279503 Fap , (4.20)
Da = Va + Wa y
Wa = & (= FopTm L g Hy
a — g —Lanp o3 + ggs mnp a01 )
1 - mn
A= ﬂ (*anp037gs 1Hmnp01)r P,

We only included terms in the action that are non-zero at the tip of the throat, be-
cause we are not interested in dynamics taking us away from the tip (we dropped
terms with five-form and one-form field strengths). The indices m,n are ten-
dimensional curved indices, «, indicate worldvolume indices. To avoid confu-
sion with the equations below, we wrote the pullbacks of gamma matrices on the
worldvolume with hats: f‘a = I'mem™0,2™ and we underline tangent space in-
dices (m,n...). The fermion 6 is a doublet of Majorana-Weyl spinors with positive
chirality.

We now use the specific embedding of the NS5-brane in the KS throat and use
the leg structure of the three-forms to simplify the expressions. The Fj flux is
fully along the S spanned by (6, ¢,) while H3 is orthogonal to F3 in the internal
space. This means we can drop H3 terms with legs along the worldvolume of the
NS5-brane. Also we will drop the terms with 0,% coming from the pullbacks of
gamma matrices, as those do not contribute to the mass matrix. We only highlight
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the main points of the calculation here. For more general expressions and more
detailed information, see appendix 4.A.

The combination in right brackets of (4.19) gives:
(M~YH*T3Dy — A = (4.21)

~ 1
(M~—H*TsV,, — 2 (= cos(2a) Frunpos + (1 + sin® @) gy " Hyppo1 ) 7P

1 1
+ cos?(a)((2mgso3F) )P <—Mg;1H"anlra@npq - 4Fa@q0'31—‘q) ,

with the position-dependent angle « defined as

QY . Py
cos(a(y)) = — 2( ) =, sin(a(y)) = — 2( ) = . (4.22)
Q()* + P(v) Q(Y)* + P(v)
It is important for our calculations to note that I'ygs is off-diagonal. As explained
in appendix 4.A, at the tip of the throat, this projector takes on a fairly simple
form:

Tngs = — ( ﬁo B()‘) . Bi=Tgm(cos(a) — Tysin(a)).  (4.23)
+

We still need to gauge fix the xk-symmetry on the brane. We do this by taking the
gauge fixing condition on the doublet 6§ = (61, 62)

o0 =—0 = 6,=0. (4.24)

Now we can express the action in terms of the spinor 65 only. This gauge fixing
condition is convenient due to its simplicity, but it is not suitable when one also
wants to perform an orientifold projection. The calculation for the mass matrix
can also be done in a gauge where we set (1 + I'yss)0 = 0, compatible with an
orientifold. We show in the appendix that this choice of gauge does not change
the mass matrix.

We introduce the notation for the remaining spinor components

Taking care of the off-diagonal matrix I'yss and using that for a ten-dimensional
Majorana-Weyl spinor A the only fermion bilinears that are non-zero have three
or seven gamma matrices, we find the result

0o - -
Snss = Thae*0p / d*z / —d4 2 XM YTV, + M)A, (4.26)
7

with d€)s the volume element on the unit two-sphere.
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The only terms that contribute to the mass matrix M are

M = 2i4 (cos(20) Fpnp — g5 ' c08(@) Hinnplo123) TP (4.27)
This is the mass matrix on the six-dimensional worldvolume. The reduction to
four dimensions could also pick up extra mass terms coming from the reduction of
the kinetic term [154]. Furthermore, just as for the bosons the reduction over the
S? gives rise to a Kaluza-Klein tower. For now, we will ignore this tower and just
focus on the lowest lying modes, but this will be important later on. To determine
if the extra mass terms still allow for a massless fermion, we have to make sure
the internal piece of the modified Dirac operator together with the mass matrix
[(M~1)*T,V 5 + M| has a zero mode, which we will check next.

4.3.2 Reduction to four dimensions

In the previous section we obtained the action for the worldvolume fermions from
the six-dimensional point of view. We now discuss the four-dimensional interpre-
tation. When we perform the reduction to four dimensions, we will write A in
terms of four fermions: a singlet A\° and a triplet A\’ under the SU(3) holonomy of
the six-dimensional transverse internal space. This decomposition can for instance
be found in [144].

Let us first focus on the reduction of the mass matrix. We observe that, up
to angles that parameterize the position of the NS5 on the S3, it is completely
determined by the flux of the background, which can be written in terms of the
complexified three-form®

G3 = F3 —ig, 'Hs. (4.28)

Supersymmetry of the KS background dictates that x¢Hz = —gsF3 or equivalently
that the complex three-form is imaginary self-dual (ISD) G5 = i x¢ G3 [148]. This
immediately implies that the only relevant structure for the fermionic mass matrix
we have to reduce to four dimensions is the real part of the complex three-form:

1 _
M= yr (cos(2a) + cos(a)) (G3 + G3)mnpl ™™P (4.29)
Up to the coordinate-dependent prefactor (cos(2a) 4 cos(a)), this is the known
mass term for anti-D3-branes in a supersymmetric background with fluxes that
carry only D3-brane charges, as reviewed in [144]. By evaluating the prefactor, we

SNotice that compared to Chapter 1 we use a different sign convention for the definition of
Gs.
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find
1 _
v=0:  M=L(G1a),, T, (4.30)

mnp

Y= M=0,

Y = Ymin M = i,éﬁﬁ (G +G rmne

o T B (24 6 bi2 M2) 3% G3) ’
where we expanded the last expression for small a(¢pin) = %%. The results at
the North and South Pole match earlier results for anti-D3-branes and D3-branes
on GKP backgrounds derived in [144,155] (note that we are working in an S-
dual frame compared to those references, so one should take G3 — —ig; !G5 for
comparison to those references.)

The general discussion of our mass terms also carries through directly as in [144].
The background three-form is (2,1) and primitive, and therefore we find that the
only non-zero contributions to the mass matrix can come from the triplet:

AMN = m NN, + AN (4.31)

where the m;; are linear in the components of the background flux and £ subscripts
denote four-dimensional Weyl spinors AL = %(1 +iTp123)A. We thus find that the
mass matrix only leaves A’ massless, similar to a single anti-D3-brane that does
not polarize [144].

The kinetic term of the fermions still contains a ‘modified Dirac operator’
(M~1*PT, V) = ((g + 2mgs03F) )T, VA (4.32)

that could contribute to the mass matrix in four dimensions. We can ask whether
there is a fermion that remains massless. Here, the global structure of the full
KS geometry is very important. If we would just reduce a Dirac operator on an
S? without flux, this would leave no fermion massless as a two-sphere admits no
covariantly constant spinors. However, the KS geometry is an example of a Stenzel
metric which is Ricci flat and therefore has a covariantly constant spinor [156]. In
the reduction to four dimensions, this spinor can be identified as A%, for which the
modified Dirac operator and the mass matrix both vanish. We therefore conclude
that, irrespective of polarization dynamics, A° remains massless.”

However, contrary to expectations for a goldstino, A\° is massless everywhere and
not just in the metastable minimum. We therefore have to make sure that it also
transforms in the correct way under the broken supersymmetry, before being able
to unambiguously identify the gaugino as goldstino in the metastable minimum.
For this reason, we will now examine the supersymmetry transformations.

"In [3], a slightly different reasoning was used to argue that A\° is massless that is based on
the non-Abelian perspective. Here, we presented a complementary point of view.
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4.4 Supersymmetry transformations

In the previous section we showed that, even after including polarization effects,
there still exists a massless fermionic degree of freedom. If this is the goldstino
associated with supersymmetry breaking, it should also transform in a standard
non-linear manner under the broken supersymmetry. In this section we will show
that, to leading order in an expansion around the North Pole, this massless degree
of freedom transforms in the expected way. However, in the metastable minimum,
corrections appear that force us to conclude that \° is no longer the goldstino
when polarization effects are included.

To begin, we need the expressions for the supersymmetry transformations in non-
trivial flux backgrounds, which can be found in short in appendix 4.A, adapted
from [153]. Supersymmetry of the background requires that

(1 + Z.O'QFM) e=0 <& €y = Fwel . (433)

With a slight abuse of notation, we will write the 32-component Majorana-Weyl

spinor again as € = —2e5. We have the following supersymmetry transformations:
1

deA = —[1 - Ble+ ON)?, (4.34)

Sutp = %W’ [+ Ble + £40,06 + O(N)?,

1 1 _
0cAp = =5MTp + Ty0u)[1 + Ble + S Cum A" [+ Ble+ €7 Fryp + O(\)?,
with &* = f%S\F“(‘ﬂ + B)e and the operator /5 defined as 8 = I'g12354, see (4.73):

1 1
g=- <cos(a) - I‘g,Siﬂ(Oz)) (1 + §FWF’“’ + oMYy, — igwamaw (4.35)

1 1 1
LR B P T+ SR )

We do not write fermion terms in /3, as those result in transformations that take
use beyond the quadratic fermion order in the action.

More details on these transformations can be found in appendix 4.A. From here,
we can already see the general form of the transformations around the poles, since

atyp=0: fB=-1+..., (4.36)
aty=m: [B=4+T+...,

where the ellipses denote terms with field fluctuations. So around ¥ = 0 we find
non-linear transformations and at ¥ = 7 linear ones.
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To obtain four-dimensional supersymmetry transformations, in the end we always
decompose the spinor into the singlet A\° and the triplet A* under the SU(3) holon-
omy. Moreover we can focus on just one of the triplet fermions, say ¢ = 3, due to
the arbitrary orientation of the S? inside the transverse S, corresponding to the
superpartner of the scalar ¢ at the south pole where supersymmetry is restored.
The other directions come along for the ride and we can ignore them throughout.
We are also interested in the supersymmetry transformations with parameter €,
the SU(3) singlet component of the 32-component Majorana-Weyl spinor ¢, as this

is the supersymmetry preserved by the background.

With all the relevant information in place, we present a summary of the four-
dimensional fermionic, scalar and gauge field supersymmetry transformations at
the different locations of interest: both poles and most importantly the metastable
minimum.

4.4.1 At the South Pole

Let us first analyze the South Pole v = 7, where the D3-branes do not break the
background N = 1 supersymmetry. We obtain to leading order in fluctuations the
expression for S:

1
=1+ §FWFW + Ol I, (4.37)
and the reduction of the supersymmetry transformations to four dimensions gives
1
S0 = ZWWFWEO, (4.38)
1 -
S A3 = —~H0,1€°
- 1 -
S = —=\3€"

V2
1-
(5€A# = 75)\07#‘60,

where we redefined the scalar as follows.

7 ¥

)= —ey = —(g:Mb3)' ¢, (4.39)
and rescaled spinors as A — %)\, € — %e. We conclude that, as expected, at
¢ = 7 a linearly realized N = 1 supersymmetry exists under which (\°, 4,,) form
a vector multiplet and (\3,) correspond to a chiral multiplet. If we would have
included the other two directions on the S? that we now have ignored, they would
form two additional chiral multiplets. Those correspond to the decomposition of

the spectrum of the N = 4 supersymmetric Yang-Mills (SYM) multiplet on the
D3-brane transforming under the N = 1 supersymmetry of the background.
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4.4.2 At the North Pole

At the (unstable) North Pole we expect the effective description to formally reduce
to the results for a supersymmetry-breaking anti-D3-brane in the KS background.
We will write the transformations to at most quadratic order in field fluctuations.
Since sin(a) = O(¥?), cos(a) = 1 + O(¥*), we set cos(a) = 1, as the subleading
terms will come in at higher order in the supersymmetry transformations. Then
we indeed reproduce to quadratic order the results of [146].

We will expand the supersymmetry transformations up to the first non-trivial
order in the fields. Then we only have to expand the operator § to first order:

B=—-1- %FWF’“’ — YTy + o (4.40)
The supersymmetry transformations around ¢ = 0 are
S\ = le e — 1( 0, 0Ty e + O(¢?), (4.41)
Setp = —§<Xr“e)6uw - ,(AW%)F v +0(6%),
G = —5 (AP Fyy = S (T4 + 10T g0 )PP + 5 (L0 + O()

with ¢ the collection of all fields ¢ = {1, A\, A,}. We recognize the first terms as
the standard non-linear transformations. By requiring the fields to transform non-
linearly under the supersymmetry we can perform appropriate field redefinitions
of the spinors, scalar and gauge field, that fix the transformations uniquely:

A=-X+ EFWF’“’)\ + %(auw)rwrm +0(¢?), (4.42)
b= — 1(XFWA)F v+ 0(¢4)
A= Ay = FOT N80 + ST NP £ 1Ly )7 + O(6%),
and we have the standard-looking transformations
S = e+ 0(¢?), (4.43)
el = S (T40)2,5 + 0(6"),

1 = -
6 A, = 5()\1”’6)Fpu +0O(4%).

With an additional rescaling of the spinors A= \/?5\,6 — v/2¢, we then find
the following supersymmetry transformations in terms of the appropriate four-
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dimensional fields around ¢ = 0

SN =€+ 0(¢?) (4.44)
SN2 =04 0(¢?)

beth = (A9 )0, 0 + O(6%)
beA, = (A7) E, + O(6%).

We conclude that this seems to describe an exact non-linear realization of (broken)
supersymmetry when adding anti-D3-branes to the KS background and ignoring
the (higher-order) dynamics describing the polarization in the transverse S® direc-
tions. This matches the results for a single anti-D3-brane in the supersymmetric
background of [143-146]. Note that this (direct) expansion of the theory around
the north pole is only a formal result: since the scalar field ¢ sits at the maximum
of its potential, this is an expansion around an unstable configuration.

4.4.3 At the metastable minimum

Now let us include the polarization dynamics and determine the transformations
at the metastable minimum iy, which should include corrections due to the
dynamics on the S3. We first expand in 7 and then in the fluctuations around
the metastable minimum. The expansion for a around the metastable minimum

is then

M

4 4 b2
B [
bg T p

(Ymin + 6Y) = TR S+ ... (4.45)

The leading corrections in the expansions of ¥-fluctuations and powers of p/M are
then captured by expanding § in powers of a:

= (1 —alys — %oﬂ T )mzo , (4.46)

where f|y—¢ is given by (4.40).

We find that after the field redefinition (4.42) and the spinor rescalings the trans-
formations (4.43) are corrected by the a-expansion (or equivalently 1-expansion):

~ 1 1
= 0eA|y=0 — §afﬁe — 10426 +.., (4.47)

~ ~ ~ 1 ~
Seth = 0cah| o — aN[23¥ e — §a2Arwe +...,

poN

Oe

~ ~ = 1 =
0eA; = 0cAulp=0 + aAl'ssl e + iaz)\F#e + ...
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The transformations in the metastable minimum become

~ 1
SN0 =¢ — Za260 + ., (4.48)

S A =0—ae® +...,

~ = ~ = 1 =
5cth = (A" e®)a,0 — 2\/§ei(a)\oeo + ZOcQ)\?’eO) +.o,

5 A, = (A0 E,, + 20&5\0’)/“60 + 5042)\37“60 +...

The first terms correspond to the standard non-linear transformations, but we find
two types of corrections. First of all we observe that there are corrections that
vanish in the probe limit p/M — 0. These terms are just proportional to (the
square of) Ymin ~ p/M and reflect the shift towards the metastable minimum. In
fact, if we could ignore the field 51 (as well as the spinor A\?), the probe limit would
consistently reproduce a subset of the non-linear supersymmetry transformations
at the North Pole. In other words, if the §1 and A3 fields were infinitely massive,
the probe limit takes you to the North Pole and a constrained superfield description
in terms of just A’ and A4, would be adequate.

However, when we keep dv¢ in the spectrum to capture polarization effects, we
find that the corrections to the non-linear supersymmetry transformations cannot
seem to be consistently decoupled. The reason for this is that the corrections that
are proportional to (d1)? are all, except for the gaugino, proportional to M/p
suggesting that in the probe limit corrections become large and one should include
(all) higher-order terms. This therefore signals that for small p/M, as required
for the existence of a metastable minimum, a constrained superfield description
truncated to 6A°, 64,523 and §1p breaks down.

This should not come as a complete surprise. As we already saw in section 4.2,
a proper reduction to four dimensions over the S? involves a Kaluza-Klein tower
of fields that we have ignored so far. As we will argue next, such a truncation
is inconsistent because higher-dimensional physics is crucial to restore linear su-
persymmetry and the origin of supersymmetry breaking cannot be understood as
being purely four-dimensional. To show this, we will construct a model in which
the metastable state is embedded into a linearly supersymmetric theory. This al-
lows us to see explicitly how the metastable state emerges from a supersymmetric
theory. Using this model, we are then finally able to conclude that the metastable
state indeed breaks supersymmetry spontaneously and that the appearance of a
massless goldstino crucially hinges on the presence of the Kaluza-Klein tower.
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4.5 Supersymmetric embedding of antibrane po-
larization

Before we present our linearly supersymmetric embedding, let us briefly explain
why the probe actions used so far (the non-Abelian anti-D3-action and the trun-
cated NS5-brane action) are insufficient to find a supersymmetric embedding of
the metastable minimum.

4.5.1 Probes cannot restore supersymmetry

To illustrate this point, let us take a step back and consider a single probe anti-
D3-brane. The worldvolume theory of an anti-D3-brane (in flat space) has 32
supersymmetries, 16 of which are linearly realized and the other 16 nonlinearly;
see for example [157]. The supersymmetries that are preserved by the antibrane
are solutions to [143]

(1-Tp3)e=0, (4.49)

where I'gz is the xk-symmetry projector of an anti-D3-brane. On the other hand,
because the background we are interested in contains an O3 orientifold projection,
the supersymmetries that are preserved by the background are solutions to [143]

(1-To3)e=0, (4.50)

where '3 is the action of an O3 orientifold projection. This background orientifold
is not to be confused with putting the anti-D3-brane on top of an orientifold plane
as was done in [143,144], which also projects out all bosonic degrees of freedom on
the worldvolume. For an anti-D3-brane probing the KS background, I'g3 = —I'os,
which shows that the linear supersymmetries on the anti-D3-brane are projected
out by the orientifold and only the non-linear supersymmetries survive. As a
result, all degrees of freedom on the antibrane transform in the standard non-
linear manner under supersymmetry [145,146], but there is no chance of restoring
linear supersymmetry as the linear supersymmetries are projected out.

One might expect that the situation is better from the perspective of the NS5-
brane action truncated to four dimensions and ignoring the Kaluza-Klein tower,
because the effective potential (4.7) connects the supersymmetry breaking state to
the global supersymmetric vacuum. In this picture however, the supersymmetries
preserved by the NS5 brane are solutions to

(1 —-Tnss(¥))e=0. (4.51)
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As can be seen from (4.23), at the poles of the S? TI'nss(¢)) reduces to

I'nss = {FDS W
I'ps (¢

0),

4.52
. (4.52)

but away from the poles it does not align nicely with the xk-symmetry projector
of an (anti-)D3-brane. So in general, away from the poles, the (reduced) NS5-
brane projector seems to break supersymmetry explicitly, as it does not transform
in the standard way under (non-linear) supersymmetry. We conclude that if a
supersymmetric theory exists in which the metastable state is a solution it cannot
be described by one of the truncated KPV four-dimensional probe actions used so
far. The action of probe anti-D3-branes only preserves non-linear supersymmetry
and has no obvious connection to the linearly supersymmetric regime. The NS5-
brane action on the other hand is linearly supersymmetric at ¢ = m, but away
from this pole breaks supersymmetry explicitly. This suggests to us that both
probe descriptions apparently do not contain enough degrees of freedom to allow
for the restoration of supersymmetry. To restore linear supersymmetry we will
be forced to include additional (massive) degrees of freedom on the S?, which are
absent in the reduced four-dimensional KPV probe descriptions.

We will use that, at the supersymmetric South Pole the physics is that of (M —
p) > 1 D3-branes, and we will expand around that supersymmetric point to get
information on the specific deformations that are needed to describe the metastable
state. This allows us to go beyond the level of the probe action and propose a
supersymmetric model of (M — p) D3-branes in the KS background, obtained
by introducing additional degrees of freedom from the S? and specific irrelevant
deformations of the N = 4 SYM theory. Adding these degrees of freedom and
deformations the supersymmetric model then indeed features a metastable vacuum
state in which supersymmetry is spontaneously broken.

4.5.2 Towards a supersymmetric embedding

We just argued that neither of the probe actions used by KPV preserve linear
supersymmetry when placed inside the KS background. So if we think that anti-
D3-brane polarization can nevertheless be embedded in a supersymmetric effective
field theory model, how are we going to identify that theory?

Of course, any D-brane state is a solution of superstring theory, so it might be
the case that an explicit description in terms of spontaneous breaking of super-
symmetry is only possible in the full ten-dimensional superstring theory. This
is a possibility, but one that is contrary to expectations in this particular KPV
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setup. Because the supersymmetry breaking scale is warped down from the string
scale [158] one would expect that the metastable state can be embedded in a
lower-dimensional effective supersymmetric theory. In particular, if backreaction
of anti-D3-branes does not destroy the metastable state and a well-defined super-
gravity solution exists [55], it must be realizable as a state in a supersymmetric
field theory that is (holographically) dual to the supergravity solution [159].

For example, before adding anti-D3-branes to the KS geometry, the holographic
dual of KS is given by a nonconformal N = 1 cascading gauge theory [147]. The
effect of antibranes can then be included by adding a particular nonsupersymmetric
perturbation to the cascading gauge theory [159] and it was shown in subsequent
work [160,161] that the resulting gauge theory indeed contains a massless fermion,
as expected if the supersymmetry breaking was spontaneous. Although this is
suggestive, in these approaches the perturbations describing anti-D3-branes still
explicitly break supersymmetry. Our goal here is to instead present an effective
fully supersymmetric model in which the polarized antibrane state appears as a
metastable nonsupersymmetric solution.

Indications for how to construct such a model can be obtained from the works
[61, 54, 56] (for related work, see [162]). Here, the authors argued that, close to
the nonsupersymmetric ) = 0 pole, anti-D3-branes source an AdSs x S® throat
perturbed by flux that is dual to relevant deformations of N =4 SYM that break
all supersymmetry. Hence, the dual gauge theory that describes these antibranes
is a nonsupersymmetric version of the NV = 1* theory of Polchinski and Strassler
[163]. Obviously, because we are interested in finding a supersymmetric starting
point, we will not try to identify the polarized state in a theory obtained as an
expansion around the nonsupersymmetric (¢» = 0) pole, but instead we will start
from the supersymmetric (1) = ) pole. Here, the physics should be that of (M —p)
D3-branes that source a supersymmetric AdSs x S° throat dual to N = 4 SYM.
To describe polarization, we suggest that one should add irrelevant deformations
to N = 4 SYM that have the effect of gluing the AdSs x S® throat back to the
KS region in the UV [164]. In fact, an expansion of the effective potential (4.7)
around the supersymmetric pole of the S® reveals that, as anticipated, the first
term in the effective potential is ¢* (which corresponds to the SYM term in the
worldvolume gauge theory) and the leading corrections are irrelevant operators (in
four dimensions) of mass dimension 6 and 7.

We will provide evidence below that a manifestly supersymmetric model that
includes matrix degrees of freedom on the $? and irrelevant operators of mass
dimension 6 and 7 indeed features a nonsupersymmetric metastable vacuum state
with the expected properties. Obviously, this model is finetuned in the sense that
all other irrelevant operators should be suppressed; that is, it crucially relies on
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the details of the UV embedding. Nevertheless, if we extrapolate this model away
from the supersymmetric pole, we discover a metastable vacuum that has the
same properties as the metastable state found by KPV. It breaks supersymmetry
spontaneously by a nonzero F-term and as a consequence features a massless gold-
stino. This fermion is only massless at the metastable minimum, as appropriate
for a goldstino, and therefore provides an additional low-energy degree of freedom
on top of the massless gaugino residing in the vector multiplet.

4.5.3 Supersymmetric model

The field content of a stack of M = (M — p) D3-branes in four dimensions is
given by three matrix-valued chiral multiplets ®=1:23 and a matrix-valued vector
multiplet. We will ignore the vector multiplet and just focus on the three chiral
multiplets, which is sufficient for our purposes. The supersymmetric model we
propose to describe the metastable state with is defined by the following superpo-
tential
i a Y
W(d') = 37Cin T ([@°, ®7] @) (4.53)
b o
+izeiTr ([@°, ®7)[@F, @'2))
C . .
+ G €igheimnTr ([@°, ®7][@!, @™][@%, @"]) ,

and a canonical Kéhler potential. The first line of (4.53) is the N = 4 SYM
term and the second and third lines are the irrelevant deformations, that break
supersymmetry from N = 4 — 1. Locally, the metric on field space can be
approximated by the flat metric §;;% and we take all coefficients to be real.

The scalar potential is given by

oW OW
=Tr( —— | . 4.54
Ve (a@ a@) (4.54)

To find its critical points, we take the following ansatz for the commutation rela-
tions of the scalar fields

(6, ¢7] = ie7" gy, (4.55)
which are the commutation relations of the generators of SU(2). The trivial repre-

sentation corresponds to parallel D-branes, representing a vacuum with vanishing
energy that makes it supersymmetric. In addition, there can be two other types

8We believe our results can easily be generalized beyond this approximation, but it will be
sufficient for our purposes here.
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of vacua that obey (4.55), depending on the choice of parameters. They are given
by

Typel: a+2b—4c=0, (4.56)
TypelIl: a+4b—10c=0. (4.57)

The vacuum energy in these two vacua after reinstating units is given by

TypeI: Vi =0, (4.58)

M -
Type Il Vipin = Tpse* (100(1\42 —1)(3a + 2b)2> .

We see that the type I vacuum has vanishing vacuum energy (and vanishing F-
terms) and therefore corresponds to a supersymmetric state, similar to the su-
persymmetric polarized states in the N = 1* theory [163]. The type II vacuum,
however, has nonvanishing F-terms, and positive vacuum energy and it necessarily
breaks supersymmetry spontaneously. Upon comparing the vacuum energy with
(4.12), we find

a= —gb +0O(e) , (4.59)

where € = \/p/M?3 < 1 is a small parameter. By expanding in fluctuations around
the type II vacuum as ¢' = J* 4 ¢°, we again find a tower of scalar fields. The
mass of the lightest fluctuation is given by

24 4
mi ~ (ae - 3€2> etAom? (4.60)
where we used (4.59). This result matches the mass of the lightest fluctuation
derived from the non-Abelian KPV potential given by (4.17) when we identify
a > + O(e) (4.61)
= — €) . .
3bje
Thus, all fluctuations have a positive mass squared when p/M?3 < 1. Notice
that this condition is weaker than, but consistent with, the condition p/M <
0.08 derived in [148] for a metastable minimum to exist. We conclude that the
superpotential (4.53) reproduces the main features of the effective potential derived
by KPV. As already mentioned, we should stress that since this crucially relies on
the inclusion of two (supersymmetric) irrelevant corrections, the model depends
sensitively on the UV embedding (in string theory).

In addition, because the metastable vacuum breaks supersymmetry spontaneously
it should have a massless fermion in its spectrum corresponding to the goldstino
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of supersymmetry breaking. By computing the determinant of the fermionic mass
matrix? 52
i W
det(M}) =det | ——— | , 4.62

(o1 = det 5255 (4.62)
we indeed find that this equals zero exactly when (4.57) is satisfied signalling that,
precisely in the metastable minimum, a fermion becomes massless as expected for
a goldstino.

Obviously, one should also be able to identify this goldstino from the perspective
of a non-truncated Abelian NS5-brane description expanded around the super-
symmetric pole. There it should correspond to a fermionic zero mode on the S?
threaded by magnetic flux (the presence of flux twisting the S? is crucial to al-
low for a zero mode [150,166]), but since the degrees of freedom are organized
differently in the Abelian NS5-brane perspective identifying the goldstino is not
straightforward and it would be of interest to confirm its presence. Whether such
a fermionic zero mode should also be present in the non-Abelian anti-D3-brane de-
scription expanded around the nonsupersymmetric pole, as was considered in [158],
is not obvious a priori, but it should clearly not be associated with the gaugino
when polarization effects are taken into account. In the absence of a supersym-
metric embedding the appearance of a goldstone fermion should be expected to
be difficult at best.

To summarize, the proposed model allows for a supersymmetric description of
brane polarization. It describes both a supersymmetric vacuum corresponding to
M parallel D3-branes and a metastable vacuum. The metastable vacuum breaks
supersymmetry spontaneously and its spectrum of fluctuations contains the four-
dimensional vector multiplet, a massless goldstino and a massive tower of Kaluza-
Klein states that, when included, allow for full restoration of supersymmetry. The
supersymmetry breaking scale +/f is thus of the order of the Kaluza-Klein scale

Vf =~ Exk =my , (4.63)

as can be seen by comparing the potential energy and the mass of the lightest
fluctuation. As a consequence, below the supersymmetry breaking scale one can
integrate out the massive fields such that a constrained superfield description in
terms of a single nilpotent superfield that contains the goldstino is a good approx-
imation for the dynamics on the S? and supersymmetry is realized nonlinearly.
At or above this scale, this description will be modified and one has to take the
Kaluza-Klein modes on the S? into account. Because the Kaluza-Klein scale is

9Because we are working with matrix-valued fields, the fermion mass matrix has four indices.
To compute the determinant this tensor first needs to be decomposed to obtain a regular 3N?2 x
3N? matrix of which we can calculate the determinant. The details of this procedure can be
found for example in [165].
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warped down from the string scale, as noted in section 4.2, the energy at which
one needs to include the Kaluza-Klein modes can be very low. Depending on
the details realizing a hierarchy between the energy scale one is probing and the
warped down Kaluza-Klein scale might therefore be difficult, but not impossible.

4.6 Conclusions

Constrained superfields provide a powerful technique in the context of a universal
(UV-insensitive) low-energy description of spontaneously broken supersymmetry.
A crucial requirement is a stable and large enough hierarchy between the scale of
the fields that are projected out by the constraints and the relevant scale of the
low-energy effective theory. In some cases such a hierarchy might not be achiev-
able, precluding the existence of a standard constrained superfield description. In
general however the appropriate constrained superfield description is valid up to
an energy scale that should be carefully identified. In this chapter, we studied
corrections to the nilpotent goldstino superfield description of anti-D3-branes in
the KS background arising from polarization effects.

To do so, we used the four-dimensionally reduced effective theory on the NS5-
brane wrapping an S? inside the transverse S3 at the tip of the KS throat ge-
ometry of [148]. One of our main observations is that the (non-linear) supersym-
metry transformations in the metastable vacuum receive corrections that cannot
be decoupled and actually become large in the probe limit p/M — 0. While this
theory still features a massless fermion (the gaugino) that one might be tempted
to identify as the goldstino, we argued that the corrections to the supersymmetry
transformations signal a breakdown of the constrained superfield description in
terms of the degrees of freedom on the truncated NS5-brane.

We also gave an interpretation of these results. When the source of supersymmetry
breaking is intrinsically higher-dimensional, it might not admit any low-energy
description in terms of (simple) constrained superfields. Indeed, we argued that
the effective four-dimensional potential used by KPV does not include the Kaluza-
Klein tower from reducing over the S? to four dimensions and the breakdown of the
constrained superfield description seems to hint that this truncation is inconsistent.

To confirm that supersymmetry breaking nevertheless is spontaneous when higher-
dimensional physics is involved, we set out to identify a linearly supersymmetric
field theory in which the metastable vacuum state can be embedded. Our pro-
posal for an effective supersymmetric field theory model indeed exhibits such a
metastable supersymmetry-breaking vacuum with all the expected properties. Be-
sides the fact that we ignored gravity by working in the noncompact KS geometry
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(effectively sending Mp; — o0), this construction is also finetuned; that is, it seems
to depend sensitively on the precise UV theory in which it is embedded due to the
introduction of irrelevant operators. Keeping those limitations in mind the qual-
itative features of the metastable solution nicely agree with the polarized state
in the KPV model. Expanding around the metastable solution we observed that
the restoration of supersymmetry crucially relies on taking into account a tower of
Kaluza-Klein modes, with masses warped down from the string scale, explaining
why it is impossible for the truncated probe actions to restore supersymmetry.

Our results have a number of consequences. First of all, the crucial importance of
Kaluza-Klein modes on the S? confirms that the KPV effective potential should
only be thought of as a truncation of a more complete description. In other words,
the additional degrees of freedom related to the S? only decouple at the poles
and should in general be included in the four-dimensional effective theory. This
impacts models derived from KPV’s effective potential, such as the inflationary
model recently considered in [167,168], where the effective potential (4.7) was used
for large field inflation in the regime p/M > 1. Our results clearly suggest that
it is inconsistent to rely on just the scalar mode v for the effective dynamics on
the S? and one should include (a subset of) a Kaluza-Klein tower of states. As a
result one would expect the results reported in [167,168] to be affected. We note
that an inflationary model that is described from the perspective of scalar matrix
degrees of freedom, albeit in a different context, already has been studied in [169].
In light of the results obtained here it might be of interest to revisit some of these
approaches.

Secondly, the decay rate to tunnel from the metastable state to the global super-
symmetric vacuum was calculated in [148] by making use of the effective potential
(4.7). However, in the presence of additional degrees of freedom this tunneling rate
will likely be modified. For example, it is well known that a coupling between a
quantum mechanical system and its environment can lead to a significant suppres-
sion of the tunneling rate [170,171]. Furthermore, additional degrees of freedom
can also open up new decay channels; see for example [172] and references therein.
If and how these effects modify the lifetime of the metastable vacuum is a question
that would be interesting to come back to in future work.

Our results also shed light on how the anti-D3-brane uplift procedure in KKLT
might be captured by an effective supersymmetric theory. To be specific, we claim
that the constrained superfield description proposed in [143,144], with just a single
nilpotent superfield containing the goldstino, is certainly a valid description far
below the warped down Kaluza-Klein scale. However, to understand this in terms
of spontaneous supersymmetry breaking and identify leading corrections one needs
to identify the supersymmetric completion of this nonsupersymmetric phase. This
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requires the introduction of additional degrees of freedom at the warped down
Kaluza-Klein scale. The effective field theory model that we introduced to describe
the dynamics on the compact S? is a good candidate for a linearly supersymmetric
theory in which the polarized state appears as a nonsupersymmetric solution. This
model does not contain degrees of freedom at the string or Planck scale, so it can be
studied as a supersymmetric low-energy effective field theory, but it does depend
sensitively on the specific UV embedding (in string theory).

Finally, we would like to comment on how our results are related to the debate in
the literature regarding the existence of the KPV metastable state after taking into
account the full backreaction of anti-D3-branes. As mentioned, the nonexistence of
a fully backreacted supergravity solution would imply that supersymmetry break-
ing in the holographically dual gauge theory description is necessarily explicit.
Since the effective supersymmetric field theory model that we introduced nicely
allows for the appearance of a nonsupersymmetric phase with the expected prop-
erties to relate it to antibrane polarization, this suggests that a fully backreacted
supergravity solution should exist, in line with results of [55,59], assuming such a
holographic duality.

However, even if the supersymmetric model constructed is holographically dual
to this fully backreacted supergravity solution, it is clearly not UV complete and
requires a specific UV embedding. Whether or not such an embedding is possible
in string theory will determine its ultimate fate. So with these results we can
certainly not rule out the possibility that the KPV metastable state and therefore
the KKLT de Sitter vacua, after including gravity, belong to the swampland, as
was recently conjectured [10, 34,87, 88,123]. As a consequence, understanding
the UV completion of the proposed model is an important direction for further
research.

4.A Details on fermions

In this appendix we review and apply the relevant details of the fermionic action
of a Dp-brane of [153,173,174], its supersymmetry transformations and gauge
fixing. We take the results for a D5 brane with worldvolume flux in the S-dual
background to Klebanov-Strassler. We follow the conventions of [153]. For easy
comparison with the literature on gauge-fixed fermionic D-brane actions, we keep
this appendix wholly in that ‘D5-frame’ and we adapt notation slightly to match
as much as possible the related work for Dp-branes in flat space [157] used in the
recent literature on non-linear supersymmetries on anti-D3-branes [144-146,175].

To transform the results of this appendix (‘app’) to the expressions used in the
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text, one has to apply the following S-duality rules to the NS5-frame:

HIPP = _pfext FyPP o = et (4.64)

q)?l}’)l"

e — (g: 1 )text , JFapp  — 27TgZextJT_'text )

4.A.1 Projection matrix

We obtain the matrix I'ps from [153]:

(0 B
I'ps = — <B+ 0 ) : (4.65)

with

v—detg +1)F
Pr = Fl(Dsz Z( 19k
V—det(g+ F) 5~ k2

We have $46_ =1 and the relation S_(F) = 4+ (—F). Note that hats on gamma
matrices denote pullbacks on the worldvolume f‘a = 0, XMT s, and

fa1---042k (]:)alozz R (‘F)a2k71a2k . (466)

I 1 6

A

——T .
6ly—detg

We will split the field and the metric in a four-dimensional part (along the D3
worldvolume) and a transverse part along the two-sphere as:

% — (4.67)

F=Fl+Ft,  ds®=dsf+dsT . (4.68)
It is not hard to see that the matrix in the projector splits as:
By = BBl (4.69)

with

af — 1
pr=_° v detGy <1+2fiﬁraﬂ), (4.70)

= Fa
VG Y —det(GL + FL)
ﬁ” _5“1"‘“4f —det GH
+ TN S MieeMa
4G \/— det(G + Fll)

1 R |
X (1 + §‘F/u1uzrl e g‘F/LuszM

f#l H2 3 e )

where Greek letters still refer to worldvolume indices, but we make a split: the
middle of the alphabet to four dimensions (p,v... = 0,1,2,3) and the beginning
to the two-sphere (o, ... =4,5).
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The calculation of the term ﬁi follows straightforwardly from the discussion of
section 4.2, with

Ft = —Q()volg: . (4.71)

The four-dimensional part of the projector parallels that of the projector dubbed
B in the appendix of [146]. Note that we only consider the bosonic terms, as
fermionic terms in 8 would take us beyond the quadratic fermionic order in the
action. The result for 5_‘}_ is

1 1 1
gl = FM(I + 5 Fuw ™ + 9" XITy, — iguauXIa”XJ = g fw " (472)

1 1 1
1 Fyu (54 F) Dotz = 50" X 0V X1 4+ 50, X Fu DI ) .

The ellipses indicate terms higher order in fields, indices have been raised and
lowered with the metric G| and X I are the transverse coordinates. This is the
straightforward covariantization of the x -symmetry matrix for a D3-brane.

Applied to one non-trivial transverse scalar X! = ¢, we have
Bt = cos(a) — Ty5sin(a) (4.73)
1 1 1
B = Towsa (14 SFul™ + 0"UT = 590u0 00" — 1 Fu F*

1 1
1 Fuu (4 F) " Toszg + S0,0F TV + . )

4.A.2 Fermionic action

We briefly describe how to get the mass terms of the action (4.19). After gauge
fixing #; = 0, and writing A = 63, the terms not involving derivatives define a
mass matrix M as

AMA = M1 —Tps)[(M~1)*PT W5 — AN (4.74)

We split the terms not involving a covariant derivative along the four dimensions
and the two-sphere as

(Mﬁl)QBFan — A= MH + M, , (475)
with
MH = [Gﬁyruwu - A] s (4.76)

M, = [(GL +2rgso3F) T, W;.
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We find (using «, 8 for directions on the two sphere, and p, v for four dimensions)
1

1
My = ] (Hyupqos + €¥ Fpupqor) THPT — BY (Hinnpos + €® Frppot) T (4.77)

1 1
M, = sin2(a) (8(01F°‘"p + o3 HP)T yp — 801Fm"pf‘mnp)

1 1
+ COSQ(Q)((UgJT'.)il)aﬁ <Hapq03F5pq — 1 €<I>anq01Fa5npq

8 8- 3!
1 o q
+ 3 (2Ha[3qa3 —e Fagqal) r
with
Vdet Vdet
cos(a) = — 7 sin(a) = — el (4.78)

V= det(GL+ F) V= det(GL+ F)

The signs in these last two equations are chosen for later convenience.

Now we use that the flux Hs is fully along S® and F is along 52, while F3 is
orthogonal. So the non-zero terms in M, M are

1
M = ~5 (Himnpos + €® Fpppot) T2 (4.79)
M, = sin®*(a) (12(03H ) np — 4'73!0164)}7 menp) ;

1 . 1
—!e(DF PUo1T apnpg + Haﬁqagrq> ,

+COS2(04)((U3]:)1)aﬁ< 8.3 4

which gives the result (4.21).

From (4.65) and (4.73) we find that for vanishing F' and neglecting the derivative
terms on ¢ (as they are higher order in the action), we get

Tps = — (60 5()) , Bi =To123(E£cosa — sinalys) . (4.80)
+

Now we use that for Majorana-Weyl bilinears only terms with three or seven
gamma matrices are non-zero.

AL ) = () for n ¢ {3,7} (4.81)

We now see that the last term in M| will not contribute at all and we find

)\(1 - FD5)MA ==

1< 1
ﬁ)\ [COS(?@)HmnP + (1 + sin?(a) — 3 cosz(a)(f_l)“'BFa5> e‘bBJranp} rmre .

(4.82)
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With the identity (F~1)**T,5 = 2tan(a)T4s and dropping again terms with the
wrong number of I' matrices, we find

1 -
M = 2 (c08(20) Hymp + €08(@0)€” FrnnpT0123) T™P A (4.83)
Finally we can use the Majorana-Weyl property I'(;0)A = A, to write:
Fm”I)FMA = (*GF)mnp/\a (484)

with x¢ the Hodge star operator on the six-dimensional internal manifold. This
yields the final result (4.27):

1
M= 21 (cos(2a) Hppp + €% co8() Frpnplor2s) T™P (4.85)

Fermionic action: orientifold compatible gauge choice
For completeness, we show that taking the alternative gauge choice
(1 + FD5)0 =0 = 91 = —FM(COS(OL) + sin(a)l“ﬁ)ﬂg y (486)

to fix the k-symmetry we obtain the same mass matrix. This gauge choice is
useful when one also wants to perform an orientifold projection, which has to be
compatible with the gauge fixing condition. Using this condition, we can write the
terms appearing in M and M completely in terms of A = 0.

OH iy TP0 =0, (4.87)
OH TP 030 = —2\H, oy TP\
éanme”paﬁ =-2 cos(a)S\anme”pFM/\ )

We then find after some algebra that
_ 1 -
AMYA = X (o + e® cos() Frunp) TP (4.88)
_ 1 _
M = —¢ sin® (@) AH,ypp TP

Here, we again used (4.81) to eliminate some terms. The total mass matrix is then
given by

- 1 -
AMA = oA (cos(20)) Hypnyp + €® c0s(a) FpnpLoras) TP\ (4.89)
in agreement with the mass matrix in the gauge where #; = 0 up to a factor of 2.
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4.A.3 Supersymmetry transformations

The fields on the brane enjoy a combination of supersymmetry transformations,
k-symmetry with spinorial parameter x and diffeomorphisms (we leave out the
possibility of gauge transformations of the gauge field). To linear order in the
fermions 6, these are:
00 = e+ [1 +TI'ps|k + 400, (4.90)
SX™ = —OT™e + OT™[1 + I'ps)k + 20, X™,
§A, = —00 036 — Com0T™e + 01, 05 [1+Tpsls
+ CamfT™[1 + I'ps)0 + €7 Faq .

As explained in [153,157], we can fix the gauge redundancy in the following way.

We fix k-symmetry by the spinor gauge choice §; = 0 or (1 + 03)0 = 0 and by
requiring that this remains valid under the combined transformation

(1 + 03)00 = 0. (4.91)

The diffeomorphism invariance can be fixed by requiring static gauge, such that
0X* = 0. The background spinor obeys

€2 = Dp123€1 - (4.92)

This sets
e +r'—pB_Kr*=0, and &% = A1+ Bles. (4.93)

We will denote the transverse scalars by X! and with slight abuse of notation
€ = —2¢5. Then the supersymmetry transformations after fixing the xk-gauge that
leave the quadratic action (4.26) invariant are (see also [153])

S\ = —%[ﬂ — e+ 002, (4.94)
5.xT = %XFI[II 4 Ble+ €70, X + 0N,
JcAo = —%X(f‘a + 0, X[ + Ble + %Camﬁm[ﬂ + Ble + E7Fgo + O(N?),

with 1.
B =Toi238+, = *?\Fa[ﬂ + Ble. (4.95)
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Summary & Outlook

In this final chapter, we summarize the main results presented in this thesis and
put them into context. We provide an outlook and mention several interesting
directions for future work.

5.1 Instabilities of anti-de Sitter space

One important observation that we made in this thesis is that to study quantum
gravity it is not always necessary to directly probe Planckian energies. It turns out
that UV effects do not always decouple from IR physics, contrary to expectations
from effective field theory. Instead, for an arbitrary effective theory to be consis-
tently coupled to quantum gravity it needs to fulfill certain consistency conditions
known as the swampland conjectures. One of these conditions is the Weak Grav-
ity Conjecture (WGC), which is closely related to decay of nonsupersymmetric
extremal charged black holes.

In Chapter 2, we studied the WGC in the context of four-dimensional Reissner-
Nordstrom black holes. By focussing on the (thermal) emission of the black hole in
the s-wave sector, which is the dominant decay channel, we were able to construct
an effective action for a spherically symmetric shell that we used to describe the
emission process in terms of quanta tunneling through the horizon. Doing so made
it possible to take into account backreaction and the resulting decay rate of the
black hole deviates slightly from Hawking’s original calculation, which did not take
into account backreaction.

Most interestingly, this decay rate is governed by the black hole entropy and
remains finite even after taking the extremal limit. In this case, the black hole
temperature vanishes and the decay process can be interpreted as Schwinger pair
production. However, this decay channel is only allowed when there exists a (super-
)extremal state whose charge-to-mass ratio exceeds that of the extremal black hole,
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as required by the WGC. When this condition is satisfied, the near-horizon anti-de
Sitter space then also becomes unstable in line with the conjectures of [60,61].

Strictly speaking, our results only apply to AdSs, but based on the universal form
of the decay rate in terms of the black hole entropy we expect a generalization
to higher-dimensional anti-de Sitter spaces to be possible. Furthermore, our re-
sults might also be used to derive constraints on low-energy effective descriptions.
Typically, black hole/black brane solutions contain a compact space and by re-
ducing over it we can obtain a lower-dimensional effective theory. It would then
be of interest to understand if and how the instability of the ‘parent black geom-
etry’ carries over to restrict the properties of the effective description. In fact,
some ideas along these lines have already been applied to a compactification of
the standard model (see for example [61,176]) leading to non-trivial constraints
on beyond the standard model physics.

5.2 Instabilities of cosmological spacetimes

In Chapter 3, we extended our analysis of quantum instabilities of black holes and
anti-de Sitter space to cosmological spacetimes. We constructed the analogue of
the Unruh state for black holes and analyzed if this state can be used as a physically
acceptable alternative to the more commonly used Bunch-Davies state for patches
of spacetime that are locally described by de Sitter space. We constructed this state
by an asymmetric choice of boundary conditions in the quantization of a massless
scalar field: incoming modes are taken to be in the Bunch-Davies vacuum, but for
outgoing modes we pick the static vacuum. As a result, a static observer will only
measure incoming radiation and the outgoing component of the flux is removed.
This behaviour is to be contrasted with the Bunch-Davies vacuum, in which a
static observer measures both incoming and outgoing radiation.

Starting from two-dimensional de Sitter space and generalizing the computation to
four dimensions, we constructed the energy-momentum tensor in the Unruh state
and showed it is only singular on the past horizon and well-defined on an entire
planar patch. Therefore, the Unruh state could be a physically acceptable state for
cosmological purposes. A striking property of the Unruh state is that it contains
a negative energy density at the horizon that violates the null energy condition.
This can be understood from the fact that the Unruh state can be viewed as
being constructed from the Bunch-Davies state by removing the (positive energy)
outgoing flux. Because the Unruh state breaks some of the de Sitter symmetries,
pure de Sitter space is no longer a solution when including backreaction effects. We
estimated the effect of backreaction by approximating the energy in a static patch
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to be smeared out homogeneously. Because the negative energy density violates
the null energy condition, we find that the Hubble parameter slowly increases with
a rate that is Planck suppressed. This puts a fundamental bound on the lifetime
of de Sitter space in the Unruh state set by its gravitational entropy.

To fully understand what are the cosmological applications of the Unruh state, one
would need to characterize the difference between choosing the Bunch-Davies vac-
uum and the Unruh state in terms of inflationary correlation functions and derive
the modifications of, for example, the power spectrum and bispectrum. Because
backreaction effects in the Unruh state are Planck suppressed, we anticipate that
any difference is similarly suppressed during a phase of O(60) e-folds of slow-roll
inflation, but it would be interesting to study this in more detail in future work.

In the context of string theory a bound on the lifetime of de Sitter space is not that
surprising, as de Sitter solutions in string theory are typically only metastable. In
this thesis, we mainly focussed on a particular construction of de Sitter vacua in
string theory known as the KKLT scenario. One of the open questions after the
original KKLT paper [32], was exactly how the anti-D3-branes used in the KKLT
scenario break supersymmetry spontaneously. Under the assumption of putting a
single anti-D3-brane on top of an orientifold plane, it was shown in [143,144] that
its contribution to the potential can be captured in a manifestly supersymmetric
fashion using a single nilpotent superfield containing the goldstino. However, in
Chapter 4 we argued that the situation is much more subtle when this assumption
is removed and polarization effects are taken into account.

Due to polarization, supersymmetry breaking can no longer be understood as
being purely four-dimensional. Instead, higher-dimensional physics needs to be
properly taken into account which reveals the existence of a Kaluza-Klein tower of
modes that are crucial to be able to correctly identify the goldstino. In addition,
these modes might also affect cosmological models based on the KKLT scenario. In
particular, the decay rate of the metastable vacuum derived in [148] was estimated
by truncating to the lowest lying Kaluza-Klein mode. It could very well be the case
that when taking into account the dynamics of the entire Kaluza-Klein tower, this
result is modified and it would be interesting to return to some of these questions
in future work.

5.3 Outlook

To close this this thesis, let us remind ourselves of the goal we started out with,
which was to understand the (universal) properties of quantum gravity and see
how they constrain low-energy physics. One of the lessons we have learned is that
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vacuum solutions, such as anti-de Sitter space and de Sitter space have a tendency
to decay due to quantum effects, unless protected by a symmetry. As mentioned
before, the instability of anti-de Sitter space dovetails nicely with expectations
from the swampland conjectures. On the other hand, it is unclear how the insta-
bility of de Sitter space in the Unruh state connects (if at all) to string theory
and in particular to the metastability of de Sitter space in the KKLT scenario.
Said differently, how should the boundary conditions defining the Unruh state be
interpreted in string theory and especially in the KKLT scenario?

In future work, it would be interesting to explore this connection (if it exists)
especially in the light of the recent de Sitter swampland conjectures [87,88], which
claim that metastable de Sitter space belongs to the swampland. According to
these conjectures, any solution with a positive energy density is necessarily rolling
with a rate that is of order one in Planck units. This seems to be in stark contrast
with both the instability of de Sitter space in the Unruh state (which is much
slower and of the opposite sign) and the metastability of de Sitter space in the
KKLT scenario. However, it should be mentioned that the bounds of [87,88] are
currently only supported by circumstantial evidence and it could be that the KKLT
scenario evades these bounds by working in a regime of parameter space where
these bounds do not apply. Future work should clarify this and at the moment no
conclusive statements can be made about the tension (or absence thereof) between
the KKLT scenario and the swampland conjectures.

Another interesting direction for future study is to understand more precisely
at what energy scale constraints dictated by the swampland conjecture have to
appear. After all, the idea of the swampland conjectures is to constrain low-energy
effective theories, such as scalar potentials driving inflation. At the moment, it
is not clear however how constraining the swampland conjectures truly are, as
illustrated by the different versions of the WGC that are on the market. If only
the mild form of the WGC should be satisfied, we could imagine a situation where
the state that satisfies the WGC only appears above the cutoff of a low-energy
observer. In this case, the WGC might not be that constraining after all. There
are indications however that a stronger form must be true.

If we consider the worldsheet description of perturbative string theories for exam-
ple, modular invariance of the partition function can be used to relate constraints
on the heavy sector of the theory to constraints on the light sector and vice versa.
This exemplifies once more that in quantum gravity (or at least in string theory)
the UV does not always decouple from the IR. We can use this to our benefit by
assuming a mild form of the WGC derived from black hole physics [20-22] and
strengthen it using modular invariance to constrain the low-energy spectrum of
the theory [5].

118



5.8. Outlook

The hope is that, eventually, we will know precisely what are the requirements
that any effective theory should satisfy in order for it to be consistently embedded
into quantum gravity. If this program succeeds, it could be used to ‘bootstrap’
the quantum gravity problem: instead of doing detailed string theory computa-
tions, we could explore the properties of quantum gravity simply by imposing all
necessary consistency conditions.
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Samenvatting

Quantumzwaartekracht

Een groot deel van de fysica in de 20° eeuw stond in het teken van de ontwikke-
ling van twee theorieén: quantumveldentheorie en de algemene relativiteitstheorie.
Deze twee theorieén vormen de basis van de moderne theoretische fysica en be-
schrijven de vier fundamentele krachten van de natuur. Quantumveldentheorie
geeft de wiskundige beschrijving van drie van deze krachten: de elektromagne-
tische kracht, de zwakke kernkracht en de sterke kernkracht. De vierde kracht,
zwaartekracht, past niet in het raamwerk van quantumveldentheorie en wordt in
plaats daarvan beschreven door Einsteins algemene relativiteitstheorie.

Deze twee theorieén zijn enorm succesvol gebleken in het beschrijven van een rijk
scala aan fenomenen. Recent nog zijn twee belangrijke voorspellingen van beide
theorieén bevestigd. In 2012 toonden onderzoekers verbonden aan CERN (het on-
derzoeksinstituut in Geneve dat de Large Hadron Collider herbergt) het bestaan
van het Higgsboson aan. Deze meting bevestigde een voorspelling van Brout, Eng-
lert en Higgs uit de jaren 60 en was een grote triomf voor quantumveldentheorie.
Later, in 2015, werden voor het eerst direct zwaartekrachtsgolven waargenomen
door wetenschappers verbonden aan de LIGO/VIRGO experimenten. Het bestaan
van deze ‘golven in de ruimtetijd’ werd al door Einstein afgeleid in 1916. Beide
ontdekkingen hebben nogmaals de voorspellingen van quantumveldentheorie en de
algemene relativiteitstheorie bevestigd en zijn dan ook bekroond met een Nobel-
prijs.

Een van de vragen die hiermee niet is beantwoord, is hoe deze twee theorieén
samengebracht kunnen worden in een overkoepelende beschrijving. Deze vraag
is niet alleen interessant vanuit theoretisch oogpunt, maar ook van groot belang
voor de beschrijving van systemen wiens zwaartekracht zeer groot is. In dergelijke
situaties, die bijvoorbeeld optreden in zwarte gaten en vlak na het ontstaan van
het heelal, volstaat de beschrijving van zwaartekracht vanuit de algemene relati-
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viteitstheorie niet meer. Om een fysisch correcte beschrijving van deze systemen
te geven moet zwaartekracht quantummechanisch worden behandeld en is een zo-
geheten theorie van quantumzwaartekracht nodig.

Een van de best begrepen en meest succesvolle voorstellen voor zo’n theorie is
snaartheorie. Volgens snaartheorie bestaan de elementaire puntdeeltjes (zoals bij-
voorbeeld elektronen) uit kleine tweedimensionale snaren. Ook bevat de theorie
hogerdimensionale membranen, wiens excitaties net als die van snaren correspon-
deren met verschillende type deeltjes. In principe zijn de effecten van deze snaren
en membranen direct te meten, maar in de praktijk zijn ze zo klein dat dit met de
huidige technologie nagenoeg onmogelijk is. Het blijkt echter dat in sommige situ-
aties microscopische quantumzwaartekrachteffecten toch macroscopische gevolgen
kunnen hebben. Zo zijn er bijvoorbeeld aanwijzingen dat de conventionele be-
schrijving van zwarte gaten vanuit de algemene relativiteitstheorie al op de schaal
van de horizon moet worden aangepast om consistent te zijn met quantumzwaarte-
kracht. Centraal in dit proefschrift staat daarom de vraag wat de macroscopische
voorspellingen van quantumzwaartekracht zijn. In hoofdstuk 2 en 3 focussen we
hierbij voornamelijk op algemene quantumeffecten van zwaartekracht en in hoofd-
stuk 4 duiken we wat dieper in de snaartheorie.

Resultaten van dit proefschrift

In hoofdstuk 2 bestuderen we quantumeffecten in zwaartekracht in de context van
extremale zwarte gaten. Deze zwarte gaten hebben naast een massa ook een even
grote elektrische lading. Het interessante aan extremale zwarte gaten is dat ze
dichtbij de horizon worden beschreven door een tweedimensionaal anti-de Sitter
vacuum: een oplossing van Einsteins algemene relativiteitstheorie met een nega-
tieve energiedichtheid. Alhoewel deze geometrie niet direct ons eigen universum
beschrijft (dat een positieve energiedichtheid heeft) is zij wel uitermate geschikt om
quantumzwaartekracht te bestuderen in een eenvoudige achtergrond. In hoofdstuk
2 laten we zien dat quantumeffecten ervoor zorgen dat in deze achtergrond spon-
taan deeltjes worden gecreéerd die tot een instabiliteit van het vacuum leiden. Deze
instabiliteit hangt niet af van de precieze microscopische beschrijving van anti-de
Sitter vacua en lijkt dus een universele voorspelling van quantumzwaartekracht te
zijn.

In hoofdstuk 3 verplaatsen we onze aandacht naar quantumeffecten in de Sitter
vacua. Dit zijn oplossingen van de algemene relativiteitstheorie die een positieve
energiedichtheid hebben en daarmee een goede beschrijving geven van ons uit-

dijende heelal. We analyseren de verschillende quantumtoestanden die gekozen
kunnen worden in een de Sitter vacuum. De keuze voor een bepaalde quantum-
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toestand kan worden gezien als het opleggen van specifieke randvoorwaarden die
de evolutie van de geometrie bepalen. We identificeren en construeren een nieuwe
quantumtoestand die we de Unruh-de Sitter toestand noemen en bepalen zijn ka-
rakteristieke eigenschappen. Net als de meer conventioneel gekozen Bunch-Davies
toestand lijkt deze toestand een goede beschrijving te geven van het vroege heelal.
Een belangrijk verschil met de Bunch-Davies toestand is dat de Unruh-de Sitter
toestand minder symmetrieén bewaart en dat de Sitter vacua hierdoor een insta-
biliteit ontwikkelen. Dit plaatst een fundamentele restrictie op de levensduur van
een uitdijend heelal. We beargumenteren dat de Unruh-de Sitter toestand wellicht
een meer accurate beschrijving geeft van het vroege universum dan de Bunch-
Davies toestand. Verder onderzoek moet uitwijzen of deze toestand ook mogelijk
waarneembare eigenschappen heeft waarmee deze kan worden onderscheiden van
de Bunch-Davies toestand.

We vervolgen onze discussie in hoofdstuk 4 door de Sitter vacua te bestuderen in
snaartheorie. We focussen specifiek op een snaartheoretische constructie van de
Sitter vacua die bekend staat als het KKLT scenario. Een van de karakteristieke
eigenschappen van deze constructie is dat supersymmetrie (een symmetrie van
snaartheorie tussen bosonen en fermionen) wordt gebroken door gebruik te ma-
ken van een stapel anti-D3-branen: een van de bouwstenen van snaartheorie. Het
breken van supersymmetrie is noodzakelijk aangezien de Sitter vacua door hun po-
sitieve energiedichtheid deze symmetrie niet kunnen bewaren. Om wel consistent
te zijn met de onderliggende supersymmetrie van snaartheorie moet supersym-
metrie gecontroleerd (de technische benaming is ‘spontaan’) worden gebroken in
het KKLT scenario. Tot recent was het niet duidelijk of anti-D3-branen super-
symmetrie inderdaad spontaan breken, maar in hoofdstuk 4 wordt, voortbouwend
op eerder werk, overtuigend aangetoond dat dit wel het geval is. Een universele
voorspelling van spontaan gebroken supersymmetrie is de aanwezigheid van een
massaloos fermion. Door een matrixmodel op te stellen dat de vrijheidsgraden
van de stapel anti-D3-branen beschrijft is dit massaloze fermion expliciet geidenti-
ficeerd. Dit resultaat ondersteunt dus de consistentie van het KKLT scenario wat
betreft de breking van supersymmetrie.

Toekomstig onderzoek

De resultaten van dit proefschrift zijn slechts een kleine stap in de goede richting
om de eigenschappen van quantumzwaartekracht te ontrafelen. In het bijzonder
staat ons begrip van quantumzwaartekracht in de Sitter vacua nog in de kinder-
schoenen. Momenteel is er een levendige discussie gaande in de literatuur over de
consistentie van de verschillende constructies van de Sitter vacua in snaartheorie,
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zoals het KKLT scenario, en of snaartheorie iberhaupt wel stabiele de Sitter va-
cua toelaat. Deze discussie is ook zeer relevant in de context van de resultaten
gepresenteerd in hoofdstuk 3 waar we een quantumtoestand hebben geidentificeerd
waarin de Sitter vacua een instabiliteit ontwikkelen. Het zou interessant zijn om
te begrijpen hoe deze toestand zich manifesteert in snaartheorie en of dit een mo-
gelijke verklaring is voor de spanning die er lijkt te bestaan tussen kosmologische
(uitdijende) geometrieén en snaartheorie. Meer algemeen suggereren de resultaten
van dit proefschrift dat microscopische quantumzwaartekracht effecten macrosco-
pische gevolgen kunnen hebben. Ondanks het feit dat deze effecten typisch zeer
klein zijn biedt dit de hoop dat we in sommige situaties toch universele voorspel-
lingen kunnen afleiden die mogelijk te testen zijn met nauwkeurige observaties van
zwarte gaten en het uitdijende heelal.
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