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Abstract:We establish the Bonnet–Myers theorem, Laplacian comparison theorem, and Bishop–Gromov vol-
ume comparison theorem for weighted Finsler manifolds as well as weighted Finsler spacetimes, of weighted
Ricci curvature bounded below by using the weight function. These comparison theorems are formulated
with ϵ-range introduced in our previous paper, that provides a natural viewpoint of interpolating weighted
Ricci curvature conditions of di�erent e�ective dimensions. Some of our results are new even for weighted
Riemannian manifolds and generalize comparison theorems of Wylie–Yeroshkin and Kuwae–Li.
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1 Introduction
A weighted manifold is a pair given by a manifold, equipped with some metric, and a weight function on
it. A fundamental example is a Riemannian manifold (M, g) and a measure m = e−ψ volg on it, where volg
is the Riemannian volume measure induced from the Riemannian metric g and ψ is a weight function on
M. This kind of weighted manifolds, also called manifolds with density, naturally arise in the convergence
theory of spaces (when a sequence collapses to a lower dimensional space), in the study of Ricci solitons
(a weighted analogue of Einstein manifolds), and in the needle decomposition (also called the localization;
needles are weighted even when the original space is not). We shall be interested in comparison geometry for
these structures.

As for the nature of the metric on the manifold, the Riemannian case was the �rst to be studied [2, 22],
and then generalizations to Finsler manifolds [34], Lorentzian manifolds [7], and Lorentz–Finsler manifolds
[25], followed.

In comparison geometry and geometric analysis of these weighted manifolds, the weighted Ricci curva-
ture, also called theBakry–Émery–Ricci curvature andattributed to [2], plays a central role. TheweightedRicci
curvature RicN includes a real parameter N sometimes called the e�ective dimension. For N ∈ [dimM, +∞], N
indeed acts as an upper bound of the dimension in the sense that, if RicN is bounded below by a real number
K (in a suitable sense), then the weighted space enjoys various properties as it has the Ricci curvature ≥ K
and the dimension ≤ N. In particular, Ric∞ is useful for investigations of dimension-free estimates. Gaussian
spaces (Rn , ‖·‖, e− K2 ‖x‖

2
dx), K > 0, are typical examples of spaces satisfying Ric∞ ≥ K. One of the recentmile-

stones is that RicN ≥ K is equivalent to the curvature-dimension condition CD(K, N) à la Lott–Sturm–Villani
for weighted Riemannian (or Finsler) manifolds [23, 34, 49, 50, 52]. Recently this characterization was gen-

Yufeng Lu: Department of Mathematics, Osaka University, Osaka, Japan, E-mail: yufenglu.math@gmail.com
Ettore Minguzzi: Dipartimento di Matematica e Informatica “U. Dini”, Università degli Studi di Firenze, Firenze, Italy, E-mail:
ettore.minguzzi@uni�.it
*Corresponding Author: Shin-ichi Ohta: Department of Mathematics, Osaka University, Osaka, Japan; and RIKEN Center for
Advanced Intelligence Project (AIP), Nihonbashi, Tokyo, Japan, E-mail: s.ohta@math.sci.osaka-u.ac.jp

https://doi.org/10.1515/agms-2020-0131


2 | Yufeng Lu, Ettore Minguzzi, and Shin-ichi Ohta

eralized to the (unweighted) Lorentzian situation by McCann [26], followed by a synthetic investigation on
Lorentzian length spaces in [8].

It is interesting that the parameter N in RicN can be negative, though it might appear strange if one sticks
to the above interpretation of N as a bound on the dimension from above. Some comparison theorems can be
generalized to the case of RicN ≥ K with N ∈ (−∞, 0) or more generally N ∈ (−∞, 1], including the curvature-
dimension condition [36, 37], isoperimetric inequality [27], splitting theorem [57], as well as singularity and
splitting theorems in the Lorentzian context [54, 55]. Then Wylie–Yeroshkin [58] introduced a di�erent kind
of curvature bound,

Ric1 ≥ Ke
4

1−dim M ψg (1.1)

on aweighted Riemannianmanifold (M, g, ψ), where the lower bound is not constant but a function depend-
ing on theweight functionψ. This curvature bound naturally arises from a projectively equivalent connection
to the Levi-Civita connection. Moreover, the ψ-completeness condition introduced in [57],

lim sup
l→∞

inf
η

l∫
0

e
2

1−dim M ψ(η(t)) dt = ∞, (1.2)

where η runs over all unit speed minimal geodesics of length l with the same initial point, also motivates
the study of (1.1). In [58] they established the Bonnet–Myers theorem, Laplacian comparison theorem and
Bishop–Gromov volume comparison theorem among others. We remark that those comparison theorems do
not have counterparts under Ric1 ≥ K > 0, therefore the nonconstant bound (1.1) is essential. We refer to [44]
for the case ofmanifoldswith boundary, [45] for the curvature-dimension condition, and to [15, 56] for related
works on theweighted sectional curvature. In [16], Kuwae–Li consideredweightedRiemannianmanifoldswith

RicN ≥ Ke
4

N−dim M ψg, N ∈ (−∞, 1], (1.3)

and generalized the comparison results in [58] to the case of N ∈ (−∞, 1) together with some probabilistic
applications.

In our previous paper [25], we introduced the notion of ϵ-range and its associated completeness condition
for spacetimes. The aim of the present article is to establish comparison theorems with ϵ-range which enable
us to interpolate the conditions RicN ≥ K and (1.1) and explain the reason why (1.1) and (1.3) are admissible
for those results in [16, 58] while RicN ≥ K with N ∈ (−∞, 1]∪ {+∞} is not. Precisely, we showed in [25] some
singularity theorems for weighted Finsler spacetimes under RicN ≥ 0 and the ϵ-completeness condition∫

e
2(ϵ−1)

dim M−1ψ(η̇(t)) dt = ∞

inspired by (1.2), where ϵ is taken from the ϵ-range

ϵ = 0 for N = 1, |ϵ| <
√
N − 1
N − n for N ≠ 1, n, ϵ ∈ R for N = n. (1.4)

(In order to avoid confusion, in this introduction we always set dimM = n, though dimM = n + 1 in [25] (and
Sections 4, 5 below) as usual in Lorentzian geometry.) Note that, on the one hand, ϵ = 0 corresponding to
[58] is admissible for all N and ϵ = (N − 1)/(N − n) as in [16] is allowed for N ≤ 1. On the other hand, ϵ = 1
corresponding to the constant bound RicN ≥ K (and the usual geodesic completeness) is admissible only for
N ∈ [n, +∞).

We generalize comparison theorems in [16, 58] under appropriate curvature bounds including ϵ. For ex-
ample, our Bonnet–Myers theorem (Theorem 3.6) in the case of a weighted Riemannian manifold (M, g, ψ)
asserts that, if

RicN ≥ Ke
4(ϵ−1)
n−1 ψg, e−

2(ϵ−1)
n−1 ψ ≤ b

for some N ∈ (−∞, 1]∪ [n, +∞], ϵ in the ϵ-range (1.4) and K, b > 0, then the diameter ofM is bounded above
by bπ/

√
cK, where

c = 1
n − 1

(
1 − ϵ2 N − n

N − 1

)
> 0.
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This recovers the standard Bonnet–Myers theorem for N ∈ [n, +∞), ϵ = 1 and b = 1 (c = 1/(N −1)), as well as
the results in [16, 58] for N ∈ (−∞, 1] and ϵ = (N −1)/(N − n) (c = 1/(n −N)) (see Remark 3.7 for an alternative
statement in terms of a deformed distance structure without the bound e−

2(ϵ−1)
n−1 ψ ≤ b on ψ).

Besides the Bonnet–Myers theorem, we also establish the Laplacian comparison theorem and Bishop–
Gromov volume comparison theorem (in the latter the weight function ψ is induced from a given measure m

onM), in both weighted Finsler manifolds and weighted Finsler spacetimes. We remark that those results for
ϵ ≠ (N −1)/(N −n) with N < 1 or for ϵ ≠ 1 with N ∈ [n, +∞] are new even in the weighted Riemannian setting.
Furthermore, for the Bonnet–Myers and Laplacian comparison theorems on Finsler manifolds, our results
cover both the unweighted case [3] and theweighted case associatedwithmeasures [34, 39]; this uni�cation is
not included in the literature. As for futurework, it would be interesting to compare our comparison theorems
onweighted Finsler spacetimes with the recent synthetic investigations in [8, 26]. We refer to [17–19] for some
follow-up works on comparison geometry with ϵ-range.

This article is divided into two parts. The �rst part is devoted to weighted Finsler manifolds. We recall
necessary concepts in Finsler geometry in Section 2 and develop the comparison theorems with ϵ-range in
Section 3. The second part is devoted to weighted Finsler spacetimes. In Section 4 we review Lorentz–Finsler
geometry, causality theory and some analytic notions. Finally, in Section 5 we obtain the Lorentzian versions
of the comparison theorems.

Although some arguments could be uni�ed to a single framework, we shall discuss the Finsler and
Lorentz–Finsler cases rather separately and present the proofs of comparison theorems in their each com-
mon languages, for the sake of accessibility and hopefully motivating interactions between Riemannian and
Lorentzian geometries.

2 Preliminaries for Finsler manifolds
We �rst consider comparison theorems on weighted Finsler manifolds. We refer to [3, 38, 46] for the basics
of Finsler geometry (we will follow the notations in [46]). Throughout this and the next sections, let M be a
connected C∞-manifold without boundary of dimension n ≥ 2.

2.1 Finsler manifolds

Given local coordinates (xi)ni=1 on an open set U ⊂ M, we will always use the �ber-wise linear coordinates
(xi , vj)ni,j=1 of TU such that

v =
n∑
j=1

vj ∂
∂xj
∣∣∣
x
∈ TxM, x ∈ U .

De�nition 2.1 (Finsler structures) We say that a nonnegative function F : TM −→ [0, +∞) is a C∞-Finsler
structure of M if the following three conditions hold:

(1) (Regularity) F is C∞ on TM \ 0, where 0 stands for the zero section;
(2) (Positive 1-homogeneity) It holds F(cv) = cF(v) for all v ∈ TM and c > 0;
(3) (Strong convexity) The n × n symmetric matrix

(
gij(v)

)n
i,j=1 :=

(
1
2
∂2[F2]
∂vi∂vj

(v)
)n
i,j=1

(2.1)

is positive-de�nite for all v ∈ TM \ 0.

We call such a pair (M, F) a (C∞-)Finsler manifold.
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In other words, F provides a smooth Minkowski norm on each tangent space which varies smoothly in
horizontal directions as well. If F(−v) = F(v) for all v ∈ TM, then we say that F is reversible or absolutely
homogeneous.

For x, y ∈ M, we de�ne the (asymmetric) distance from x to y by

d(x, y) := inf
η

1∫
0

F
(
η̇(t)

)
dt,

where η : [0, 1] −→ M runs over all C1-curves such that η(0) = x and η(1) = y. Note that d(y, x) ≠ d(x, y)
can happen since F is only positively homogeneous. A C∞-curve η on M is called a geodesic if it is locally
minimizing and has a constant speed with respect to d, similarly to Riemannian or metric geometry. See (2.4)
below for the precise geodesic equation. For v ∈ TxM, if there is a geodesic η : [0, 1] −→ Mwith η̇(0) = v, then
we de�ne the exponential map by expx(v) := η(1). We say that (M, F) is forward complete if the exponential
map is de�ned on the whole TM. Then the Hopf–Rinow theorem ensures that any pair of points is connected
by a minimal geodesic and that every forward bounded closed set is compact (see [3, Theorem 6.6.1]; A ⊂ M
is said to be forward bounded if supy∈A d(x, y) < ∞ for some (or, equivalently, for all) x ∈ M).

For v ∈ TxM \ {0}, the positive-de�nite matrix (gij(v))ni,j=1 in (2.1) induces the Riemannian structure gv of
TxM by

gv

( n∑
i=1

ai
∂
∂xi
∣∣∣
x
,
n∑
j=1

bj
∂
∂xj
∣∣∣
x

)
:=

n∑
i,j=1

gij(v)aibj . (2.2)

Note that this de�nition is coordinate-free and gv(v, v) = F2(v) holds. One can regard gv as the best Rieman-
nian approximation of F|TxM in the direction v. The Cartan tensor

Cijk(v) := 1
2
∂gij
∂vk

(v), v ∈ TM \ 0,

measures the variation of gv in the vertical directions, and vanishes everywhere on TM \ 0 if and only if F
comes from a Riemannian metric. We remark that

n∑
i=1

Cijk(v)vi =
n∑
j=1

Cijk(v)vj =
n∑
k=1

Cijk(v)vk = 0 (2.3)

by Euler’s homogeneous function theorem ([3, Theorem 1.2.1]).
De�ne the formal Christo�el symbol

γ ijk(v) := 1
2

n∑
l=1

gil(v)
{
∂glk
∂xj

(v) +
∂gjl
∂xk

(v) −
∂gjk
∂xl

(v)
}

for v ∈ TM \0, where (gij(v)) denotes the inverse matrix of (gij(v)), and the geodesic spray coe�cients and the
nonlinear connection

Gi(v) := 1
2

n∑
j,k=1

γ ijk(v)vjvk , N ij (v) := ∂Gi
∂vj

(v)

for v ∈ TM \ 0 (Gi(0) = N ij (0) := 0 by convention). Observe that Gi is positively 2-homogeneous (Gi(cv) =
c2Gi(v) for c > 0) and we have

∑n
j=1 N

i
j (v)vj = 2Gi(v). By using N ij , the coe�cients of the Chern connection are

given by

Γ ijk(v) := γ ijk(v) −
n∑

l,m=1
gil(v)(ClkmNmj + CjlmNmk − CjkmN

m
l )(v)

on TM \ 0.

De�nition 2.2 (Covariant derivative) The covariant derivative of a vector �eld X by v ∈ TxM with reference
vector w ∈ TxM \ {0} is de�ned as

Dwv X(x) :=
n∑

i,j=1

{
vj ∂X

i

∂xj
(x) +

n∑
k=1

Γ ijk(w)vjXk(x)
}
∂
∂xi
∣∣∣
x
∈ TxM.
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The geodesic equation is then written with the help of (2.3) as

Dη̇η̇ η̇(t) =
n∑
i=1

{
η̈i(t) + 2Gi

(
η̇(t)

)} ∂
∂xi
∣∣∣
η(t)

= 0. (2.4)

2.2 Jacobi �elds and Ricci curvature

A C∞-vector �eld J along a geodesic η is called a Jacobi �eld if it is realized as the variational vector �eld of
a variation consisting of geodesics, namely J(t) = ∂ζ /∂s(t, 0) for some ζ : [0, l] × (−ε, ε) −→ M such that
ζ (t, 0) = η(t) and ζ (·, s) is geodesic for every s ∈ (−ε, ε). A Jacobi �eld is equivalently characterized by the
equation

Dη̇η̇D
η̇
η̇J + Rη̇(J) = 0,

where

Rv(w) :=
n∑

i,j=1
Rij(v)wj ∂

∂xi
∣∣∣
x

for v, w ∈ TxM and

Rij(v) := 2∂G
i

∂xj
(v) −

n∑
k=1

{∂N ij
∂xk

(v)vk − 2
∂N ij
∂vk

(v)Gk(v)
}
−

n∑
k=1

N ik(v)Nkj (v)

is the curvature tensor.

De�nition 2.3 (Curvatures) For linearly independent tangent vectors v, w ∈ TxM, we de�ne the �ag curva-
ture by

K(v, w) := gv(Rv(w), w)
F2(v)gv(w, w) − gv(v, w)2 .

We then de�ne the Ricci curvature of v by

Ric(v) := F2(v)
n−1∑
i=1

K(v, ei),

where {ei}n−1
i=1 ∪ {v/F(v)} is an orthonormal basis of (TxM, gv), and Ric(0) := 0.

Remark 2.4 Although we will not use it, here we explain a useful connection between the Riemannian and
Finsler curvatures (see, e.g., [1, 38, 46]). Given a nonzero vector v ∈ TxM, let us extend it to a C∞-vector �eld
V on a neighborhood of x such that every integral curve of V is geodesic. Then the Finsler �ag curvature
K(v, w) for any w coincides with the sectional curvature of the plane spanned by v and w with respect to the
Riemannian metric gV . In particular, the Finsler Ricci curvature Ric(v) coincides with the Riemannian Ricci
curvature Ric(v, v) with respect to gV . The condition that all integral curves are geodesic is essential. This
characterization sometimes enables us to reduce a Finsler problem to a Riemannian one.

2.3 Unweighted Laplacian

In order to introduce some analytic tools including the Laplacian andHessian, we need the dual Finsler struc-
ture F* : T*M −→ [0, +∞) to F de�ned by

F*(ω) := sup
v∈TxM, F(v)≤1

ω(v) = sup
v∈TxM, F(v)=1

ω(v)
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for ω ∈ T*xM. It is clear by de�nition that ω(v) ≤ F*(ω)F(v) holds. In the coordinates (xi , ωj)ni,j=1 of T*U given
by ω =

∑n
j=1 ωj dxj, we will also consider

g*ij(ω) := 1
2
∂2[(F*)2]
∂ωi∂ωj

(ω), i, j = 1, 2, . . . , n,

for ω ∈ T*U \ 0.
Let us denote by L * : T*M −→ TM the Legendre transform. Precisely, L * sends ω ∈ T*xM to the unique

element v ∈ TxM such that F(v) = F*(ω) and ω(v) = F*(ω)2. In coordinates we can write down

L *(ω) =
n∑

i,j=1
g*ij(ω)ωi

∂
∂xj
∣∣∣
x

=
n∑
j=1

1
2
∂[(F*)2]
∂ωj

(ω) ∂
∂xj
∣∣∣
x

forω ∈ T*xM\{0} (the latter expressionmakes sense also at 0). Note that g*ij(ω) = gij(L *(ω)) forω ∈ T*xM\{0}.
The map L *|T*xM is linear only when F|TxM comes from an inner product.

For a C1-function f : M −→ R, we de�ne the gradient vector �eld of f by

∇f := L *(df ) =
n∑

i,j=1
g*ij(df )

∂f
∂xi

∂
∂xj

.

We remark that, to be precise, the latter expression makes sense provided df ≠ 0. If f is C2 and df (x) ≠ 0,
then we de�ne the Hessian∇2f : TxM −→ TxM of f at x by

∇2f (v) := D∇f
v (∇f ). (2.5)

The Hessian is symmetric in the sense that

g∇f
(
∇2f (v), w

)
= g∇f

(
v,∇2f (w)

)
for all v, w ∈ TxM (see [40, Lemma 2.3] or Lemma 4.13 below). Then we de�ne the unweighted Laplacian of a
C2-function f : M −→ R by

∆f := trace(∇2f ) (2.6)

on {x ∈ M |df (x) ≠ 0}.
When (M, F) is equippedwith ameasure (as in Subsection 3.4),we employ theweightedLaplaciande�ned

as the divergence (associated with the measure) of the gradient vector �eld; see [39] for details. In this article
(except for Subsection 3.4), more generally, we shall consider a weight function not necessarily induced from
a measure. Introducing a measure is necessary when we develop analysis on Finsler manifolds, however,
we remark that there is in general no canonical measure on a Finsler manifold as good as the Riemannian
volume measure (see [35] for a related discussion).

3 Comparison theorems on weighted Finsler manifolds

3.1 Weighted Finsler manifolds

As a weight, following [25], we employ a positively 0-homogeneous C∞-function on the slit tangent bundle:

ψ : TM \ 0 −→ R, ψ(cv) = ψ(v) for all c > 0.

For a nonconstant geodesic η, we de�ne

ψη(t) := ψ
(
η̇(t)

)
. (3.1)
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De�nition 3.1 (Weighted Ricci curvature) Given v ∈ TM \ 0, let η : (−ε, ε) −→ M be the geodesic with
η̇(0) = v. Then, for N ∈ R \ {n}, de�ne the weighted Ricci curvature by

RicN(v) := Ric(v) + ψ′′
η (0) −

ψ′
η(0)2

N − n . (3.2)

We also de�ne
Ric∞(v) := lim

N→∞
RicN(v) = Ric(v) + ψ′′

η (0), Ricn(v) := lim
N↓n

RicN(v),

and RicN(0) := 0.

By de�nition we observe the following monotonicity: For N ∈ (n, +∞) and N′ ∈ (−∞, 1),

Ricn(v) ≤ RicN(v) ≤ Ric∞(v) ≤ RicN′ (v) ≤ Ric1(v). (3.3)

Thereby bounding Ric1 from below is a weaker condition than that for Ric∞. By RicN ≥ K we will mean that
RicN(v) ≥ KF2(v) holds for some K ∈ R and all v ∈ TM.

This framework generalizes the weighted Ricci curvature associated with a measure introduced in [34]
(see also [38]). WhenM is equipped with a positive C∞-measurem (i.e., in each local chart, the density func-
tion ofmwith respect to the Lebesgue measure is positive and C∞), the corresponding weight function ψm is
given by

dm = e−ψm(η̇(t))
√

det
[
gij
(
η̇(t)

)]
dx1dx2 · · · dxn (3.4)

along geodesics η. Notice that
√

det[gij(η̇(t))] dx1dx2 · · · dxn is the volume measure for the Riemannian met-
ric gη̇ along η. Then, for (M, F,m) satisfying RicN ≥ K, we can obtain various comparison theorems including
those we will extend in this article ([34, 39]), as well as the curvature-dimension condition ([34, 36, 37]) and
the needle decomposition ([37]) among others. Compared with ψm, our general weight function ψ on TM \ 0
allows us to include in the analysis the unweighted case, which is indeed recovered for ψ ≡ 0 (cf. (3.2)). We
also remark that, in the Riemannian case, it is common to employ a function onM as a weight function. This
is because any measurem is written asm = e−ψ volg, and then ψ ∈ C∞(M) is the weight function.

In our previous paper [25], inspired by Wylie’s work [57], we introduced a completeness condition with
respect to a parameter ϵ ∈ R in a certain range speci�ed later. We shall follow the same lines in the Finsler
setting.

De�nition 3.2 (ϵ-completeness) A geodesic η : [0, l) −→ M (l ∈ (0, +∞]) is said to be forward ϵ-complete if

l∫
0

e
2(ϵ−1)
n−1 ψη(t) dt = ∞.

We say that (M, F, ψ) is forward ϵ-complete if any geodesic η : [0, δ) −→ M inM can be extended to a forward
ϵ-complete geodesic.

The case of ϵ = 1 is the usual forward completeness in Finsler geometry, and the case of ϵ = 0 was
introduced in [57] and further studied in [44, 45, 58] for Riemannianmanifolds.We also remark that, if (ϵ−1)ψ
is bounded below, then the forward completeness implies the forward ϵ-completeness. The reason behind
these di�erent choices of ϵ is understood by introducing the admissible range of ϵ depending on N, called
the ϵ-range introduced in [25, Proposition 5.8], where we showed the existence of a conjugate point within
the ϵ-range. In the current setting, we de�ne as follows.

De�nition 3.3 (ϵ-range) Given N ∈ (−∞, 1] ∪ [n, +∞], we will consider ϵ ∈ R in the following ϵ-range:

ϵ = 0 for N = 1, |ϵ| <
√
N − 1
N − n for N ≠ 1, n, ϵ ∈ R for N = n. (3.5)
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We also de�ne the associated constant c = c(N, ϵ) by

c := 1
n − 1

(
1 − ϵ2 N − n

N − 1

)
> 0 (3.6)

for N ≠ 1. If ϵ = 0, then one can take N → 1 and set c(1, 0) := 1/(n − 1).

Note that ϵ = 1 is admissible only for N ∈ [n, +∞), while ϵ = 0 is always admissible.

3.2 Bonnet–Myers theorem

We �rst consider the Bonnet–Myers diameter bound taking the ϵ-range into account. The case of N ∈ [n, +∞)
and ϵ = 1 (so that c = 1/(N − 1)) can be found in [34].

Let us �rst illustrate some common notations used in the proofs of the comparison theorems. Given a
unit tangent vector v ∈ UxM := TxM ∩ F−1(1), let η : [0, l) −→ R be the geodesic with η̇(0) = v. We take an
orthonormal basis {ei}ni=1 of (TxM, gv) with en = v and consider the Jacobi �elds

Ei(t) := (d expx)tv(tei), i = 1, 2, . . . , n − 1,

along η. De�ne the (n − 1) × (n − 1) matrices A(t) = (aij(t)) and B(t) = (bij(t)) by

aij(t) := gη̇
(
Ei(t), Ej(t)

)
, Dη̇η̇Ei(t) =

n−1∑
j=1

bij(t)Ej(t).

We also de�ne R(t) = (Rij(t)) by

Rij(t) := gη̇
(
Rη̇(Ei(t)), Ej(t)

)
= gη̇

(
Rη̇(Ej(t)), Ei(t)

)
.

We summarize some necessary properties of A, B and R.

Lemma 3.4 (i) We have BA = ABT and A′ = 2BA, where BT is the transpose of B.
(ii) A−1/2BA1/2 is symmetric.
(iii) The Riccati equation

A′′ − 2B2A + 2R = 0 (3.7)

holds.

See [34, §7] (or [38, §8.1]) for the proof of the lemma, here we only remark that (ii) readily follows from
BA = ABT in (i). We shall prove the Bishop inequality in the current setting, inspired by [25, Proposition 5.14]
forweightedLorentz–Finslermanifolds (see [9, §III.4] for theRiemannian case). This is an essential ingredient
of all the comparison theorems in this section.

Proposition 3.5 (Bishop inequality) Let v ∈ UxM, η : [0, l) −→ M, A(t), B(t) and R(t) as above. Given
N ∈ (−∞, 1] ∪ [n, +∞], ϵ in the ϵ-range (3.5) and c = c(N, ϵ) as in (3.6), we de�ne

h(t) := e−cψη(t)(detA(t)
)c/2, h1(τ) := h

(
φ−1
η (τ)

)
for t ∈ [0, l) and τ ∈ [0, φη(l)), where

φη(t) :=
t∫

0

e
2(ϵ−1)
n−1 ψη(s) ds. (3.8)

Then, for all τ ∈ (0, φη(l)), we have

h′′1 (τ) ≤ −ch1(τ) RicN
(

(η ◦ φ−1
η
)′(τ)

)
. (3.9)
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When N ∈ [n, +∞) and ϵ = 1, we have c = 1/(N − 1), φη(t) = t and h1 = h. Hence (3.9) reduces to the
Bishop inequality in the standard form:

h′′(t) ≤ −RicN(η̇(t))
N − 1 h(t).

Note also that the parametrization (3.8) has the same form as the ϵ-completeness (De�nition 3.2).
We give here a rather algebraic but streamlined proof. A di�erent proof, that might give further insights,

could be obtained along the lines of the analogous statement in Subsection 5.2 for the Lorentz–Finsler case;
see (5.9). That line of proof, however, would requiremorework in terms of preliminary de�nitions and results.

Proof. Put h0(t) := (detA(t))1/(2(n−1)) and observe from Lemma 3.4 that

(n − 1)h′0 = h0
2 (detA)−1(detA)′ = h0

2 trace(A′A−1) = h0 trace(B),

(n − 1)h′′0 = h′0 trace(B) + h0
2 trace

(
A′′A−1 − (A′A−1)2)

= h0
n − 1 (trace(B))2 − h0 trace(RA−1) − h0 trace(B2).

The Cauchy–Schwarz inequality (applied to the eigenvalues of B) yields (trace B)2 ≤ (n − 1) trace(B2) (since
A−1/2BA1/2 is symmetric), and hence we obtain the unweighted Bishop inequality:

h′′0 (t) ≤ −Ric(η̇(t))
n − 1 h0(t). (3.10)

This is the starting point of our estimate.
We �rst assume N ∈ (−∞, 1) ∪ (n, +∞]. Since h(t) = e−cψη(t)h0(t)c(n−1), we have

h′ = h ·
(
c(n − 1)h

′
0
h0
− cψ′

η

)
and

h′′ = h
(
c(n − 1)h

′
0
h0
− cψ′

η

)2
+ h
{
c(n − 1)h0h′′0 − (h′0)2

h2
0

− cψ′′
η

}
= ch

{
(n − 1)h

′′
0
h0
− ψ′′

η +
(
c(n − 1)2 − (n − 1)

) (h′0)2

h2
0
− 2c(n − 1)h

′
0
h0
ψ′
η + c(ψ′

η)2
}

≤ −ch RicN(η̇)

+ ch
{

(n − 1)
(
c(n − 1) − 1

) (h′0)2

h2
0
− 2c(n − 1)h

′
0
h0
ψ′
η +
(
c − 1

N − n

)
(ψ′

η)2
}
,

whereweused (3.10). In order to estimate the remaining terms in the last line,weobserve from h(t) = h1(φη(t))
that

h′ = h′1(φη)e
2(ϵ−1)
n−1 ψη , h′′ = h′′1 (φη)e

4(ϵ−1)
n−1 ψη + h′ 2(ϵ − 1)

n − 1 ψ′
η .

Hence we have

h′′1 (φη)e
4(ϵ−1)
n−1 ψη = h′′ − ch2(ϵ − 1)

n − 1

(
(n − 1)h

′
0
h0
ψ′
η − (ψ′

η)2
)

≤ −ch RicN(η̇) + chΦ,

where

Φ := (n − 1)
(
c(n − 1) − 1

) (h′0)2

h2
0
− 2c(n − 1)h

′
0
h0
ψ′
η +
(
c − 1

N − n

)
(ψ′

η)2

− 2(ϵ − 1)
n − 1

(
(n − 1)h

′
0
h0
ψ′
η − (ψ′

η)2
)
.



10 | Yufeng Lu, Ettore Minguzzi, and Shin-ichi Ohta

By substituting c from (3.6) and noticing (N − n)/(N − 1) > 0, we deduce that

Φ = −ϵ2 (n − 1)(N − n)
N − 1

(h′0)2

h2
0
− 2
(
ϵ − ϵ2 N − n

N − 1

)
h′0
h0
ψ′
η

+
(
c − 1

N − n + 2(ϵ − 1)
n − 1

)
(ψ′

η)2

= −ϵ2 (n − 1)(N − n)
N − 1

(h′0)2

h2
0
− 2ϵ

(
1 − ϵ N − nN − 1

)
h′0
h0
ψ′
η

−
(
N − 1
N − n − 2ϵ + ϵ2(N − n)

N − 1

) (ψ′
η)2

n − 1

= −
(
ϵ
√

(n − 1)(N − n)
N − 1

h′0
h0
±
√
N − 1
N − n − 2ϵ + ϵ2(N − n)

N − 1
ψ′
η√

n − 1

)2

≤ 0,

where we choose ‘+’ if 1 − ε(N − n)/(N − 1) ≥ 0 and ‘−’ otherwise. Therefore we obtain

h′′1 (τ) ≤ −ce−
4(ϵ−1)
n−1 ψη(φ−1

η (τ))h1(τ) RicN
(
η̇
(
φ−1
η (τ)

))
= −ch1(τ) RicN

(
(η ◦ φ−1

η )′(τ)
)
,

since
η̇(t) = e

2(ϵ−1)
n−1 ψη(t) · (η ◦ φ−1

η )′
(
φη(t)

)
. (3.11)

This completes the proof for N ∈ (−∞, 1) ∪ (n, +∞]. Then the cases of N = 1, n follow by taking the limits. �

The diameter of (M, F) is de�ned by diam(M) := supx,y∈M d(x, y). Along a geodesic η : [0, l) −→ M, we
say that η(t0) is a conjugate point to η(0) if there is anontrivial Jacobi �eld J vanishing at 0 and t0. Equivalently,
η(t0) is a conjugate point if d(expη(0))(t0η̇(0)) does not have full rank. In this case, η is no more minimizing
beyond t0, so that �nding a conjugate point yields, by the Hopf–Rinow theorem, a diameter bound (and
singularity theorems in the Lorentzian setting).

Theorem 3.6 (Bonnet–Myers Theorem) Let (M, F, ψ) be forward complete and N ∈ (−∞, 1] ∪ [n, +∞], ϵ in
the ϵ-range (3.5), K > 0 and b > 0. Assume that

RicN(v) ≥ KF2(v)e
4(ϵ−1)
n−1 ψ(v) (3.12)

holds for all v ∈ TM \ 0 and
e−

2(ϵ−1)
n−1 ψ ≤ b. (3.13)

Then we have
diam(M) ≤ bπ√

cK
.

In particular, M is compact and has �nite fundamental group.

We remark that, to be precise, the forward completeness is a condition on (M, F) and the weight function
ψ plays a role in (3.12) and (3.13).

Proof. We will use the same notations as in Proposition 3.5, and show that any unit speed geodesic η neces-
sarily has a conjugate point by the length bπ/

√
cK. By the Bishop inequality (3.9) and the hypothesis (3.12)

combined with (3.11), we have for positive τ

h′′1 (τ) ≤ −ch1(τ)K.

Now we shall prove that the limit limτ→0 τh′1(τ) exists and is nonpositive. Here we present a simple ar-
gument based on the above Bishop inequality. Moreover, in this paragraph we are going to consider general
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K ∈ R, for later reference to this proof in the proofs of the Laplacian and Bishop–Gromov comparison theo-
rems.We observe from the de�nition of h1 that h1(τ) = O(τc(n−1)) as τ → 0, and 0 < c(n−1) ≤ 1. Hence τh1(τ)
is di�erentiable at 0, however, we need to be careful because it does not necessarily imply that τh1(τ) is C1

at 0. By the continuity of h1, for su�ciently small τ > 0, we have |h1(τ)| ≤ 1 and in particular h′′1 (τ) ≤ |cK|.
Hence the function ĥ(τ) := h1(τ) − |cK|

2 τ2 is concave in τ near τ = 0. Let f (τ) := ĥ(τ) − τĥ′(τ) be the ordinate
of the intersection between the tangent to the graph of ĥ at (τ, ĥ(τ)) and the vertical axis. By the concavity of
ĥ, f is non-decreasing in τ > 0 and f (τ) ≥ ĥ(0) = 0. Therefore the limit limτ→0 f (τ) exists and we obtain

lim
τ→0

τh′1(τ) = lim
τ→0

τĥ′(τ) = − lim
τ→0

f (τ) ≤ 0.

Comparing h1 with s(τ) := sin(
√
cKτ) which satis�es s′′(τ) + cKs(τ) = 0, we �nd

(h′1s − h1s′)′ ≤ 0

and, by limτ→0 τh′1(τ) ≤ 0,
lim
τ→0

(
h′1(τ)s(τ) − h1(τ)s′(τ)

)
≤ 0.

This implies h′1s−h1s′ ≤ 0andhence h1/s is non-increasing. Then, since s(π/
√
cK) = 0, h1(τ0) = 0necessarily

holds at some τ0 ∈ (0, π/
√
cK], and η(t0) with t0 := φ−1

η (τ0) is a conjugate point to x = η(0). Noticing
φη(t0) ≥ t0/b by the hypothesis (3.13), we obtain t0 ≤ bτ0 ≤ bπ/

√
cK. Since η was an arbitrary unit speed

geodesic and (M, F) is forward complete, we conclude that diam(M) ≤ bπ/
√
cK.

The compactness of M is an immediate consequence of the Hopf–Rinow theorem. Since the universal
cover M̃ equipped with the lifted metric and weight function again satis�es (3.12) and (3.13), M̃ is compact
and the fundamental group of M is �nite. �

We stress that Theorem 3.6 covers both the unweighted and weighted cases simultaneously. On the one
hand, in the unweighted case where ψ ≡ 0, choosing N = n, ϵ = 1 and b = 1 gives the classical (unweighted)
Bonnet–Myers bound diam(M) ≤ π

√
(n − 1)/K under Ric ≥ K by Auslander [1]. On the other hand, when

N ∈ [n, +∞) and ϵ = 1, we can again take b = 1 and recover the weighted Bonnet–Myers bound diam(M) ≤
π
√

(N − 1)/K under RicN ≥ K in [34]. We also remark that, in the remaining case of N ∈ (−∞, 1] ∪ {+∞},
one cannot in general bound the diameter under the constant curvature bound RicN ≥ K (see [58] for some
examples). Therefore, assuming the modi�ed bound RicN ≥ Ke

4(ϵ−1)
n−1 ψ with |ϵ| < 1 is essential. Moreover, by

virtue of the monotonicity (3.3), one can easily construct an example satisfying (3.12) for some N ≤ 1 but
Ric∞(v) < 0 for some v.

Remark 3.7 In the above proof we found τ0 = φη(t0) ≤ π/
√
cK, which means

t0∫
0

e
2(ϵ−1)
n−1 ψη(s) ds ≤ π√

cK
,

without the need for the bound (3.13) on the weight function ψ. This can be regarded as a diameter bound
with respect to a deformed length, studied with ϵ = (N − 1)/(N − n) in [58, Theorem 2.2] (N = 1) and [16,
Theorem 2.7] (N < 1).

As a corollary to the theorem and remark above, we have the following compactness theorem without
(3.13) (see [58, Corollary 2.3] and [16, Corollary 2.8]).

Corollary 3.8 Let (M, F, ψ) be forward complete and N ∈ (−∞, 1] ∪ [n, +∞], ϵ in the ϵ-range (3.5) and K > 0.
If

RicN(v) ≥ KF2(v)e
4(ϵ−1)
n−1 ψ(v)

holds for all v ∈ TM \ 0 and (M, F, ψ) is forward ϵ-complete, then M is compact.
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Proof. It is su�cient to show that M is forward bounded. By way of contradiction, suppose that there are
a point x ∈ M and a sequence {yk}k∈N such that d(x, yk) → ∞. Let vk ∈ UxM be a unit vector such that
ηk(t) := expx(tvk) gives a minimal geodesic from x to yk. Taking a subsequence if necessary, we can assume
that vk converges to some unit vector v ∈ UxM and put η(t) := expx(tv). Now, it follows from Remark 3.7 that

d(x,yk)∫
0

e
2(ϵ−1)
n−1 ψηk (s) ds ≤ π√

cK
.

Letting k →∞ yields
∞∫

0

e
2(ϵ−1)
n−1 ψη(s) ds ≤ π√

cK
,

which contradicts the ϵ-completeness of η. ThereforeM is forward bounded and hence compact by theHopf–
Rinow theorem. �

3.3 Laplacian comparison theorem

Next we deal with the Laplacian comparison theorem for the distance function u(x) = d(z, x) from a �xed
point z ∈ M. We say that x ∈ M is a cut point to z if there is a minimal geodesic η : [0, 1] −→ M from z to x
such that its extension η̄ : [0, 1 + ε] −→ M is not minimizing for any ε > 0 (in fact this holds for any minimal
geodesic to a cut point). The set of all cut points to z is called the cut locus of z and denoted by Cut(z).

Note that u is C∞ outside {z} ∪ Cut(z), and every integral curve of ∇u is a unit speed geodesic. Let η :
[0, l) −→ M be a unit speed minimal geodesic emanating from z without cut point, then we de�ne the ψ-
Laplacian of u by

∆ψu
(
η(t)

)
:= ∆u

(
η(t)

)
− ψ′

η(t). (3.14)

Generalizing s in the proof of Theorem 3.6, we de�ne the comparison function sκ as

sκ(t) :=


1√
κ sin(

√
κt) κ > 0,

t κ = 0,
1√
−κ sinh(

√
−κt) κ < 0,

(3.15)

where t ∈ [0, π/
√
κ] for κ > 0 and t ∈ R for κ ≤ 0. Observe that sκ solves s′′κ + κsκ = 0 with sκ(0) = 0 and

s′κ(0) = 1.

Theorem 3.9 (Laplacian comparison theorem) Let (M, F, ψ) be forward complete and N ∈ (−∞, 1] ∪
[n, +∞], ϵ ∈ R in the ϵ-range (3.5), K ∈ R and b ≥ a > 0. Assume that

RicN(v) ≥ KF2(v)e
4(ϵ−1)
n−1 ψ(v)

holds for all v ∈ TM \ 0 and
a ≤ e−

2(ϵ−1)
n−1 ψ ≤ b. (3.16)

Then, for any z ∈ M, the distance function u(x) := d(z, x) satis�es

∆ψu(x) ≤ 1
cρ

s′cK(u(x)/b)
scK(u(x)/b)

on M \ ({z} ∪ Cut(z)), where ρ := a if s′cK(u(x)/b) ≥ 0 and ρ := b if s′cK(u(x)/b) < 0.

Note that we have s′cK(u(x)/b) < 0 only when K > 0 and u(x) > bπ/(2
√
cK), and in this case the assump-

tion e−
2(ϵ−1)
n−1 ψ ≥ a is unnecessary. We also remark that, if K > 0, then u(x)/b < π/

√
cK thanks to Theorem 3.6

and the hypothesis x ∈ ̸ Cut(z).
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Proof. We �x a unit tangent vector v ∈ UzM, take the geodesic η(t) := expz(tv) and again make use of the
same notations as in Subsection 3.2. Let lv > 0 be the supremum of t > 0 such that there is no cut point to z on
η((0, t)). In the polar coordinates (xi)ni=1 around η((0, lv)) such that xn = u and (∂/∂xi)|η(t) = Ei(t), we shall
�rst see that

∆ψu
(
η(t)

)
= −ψ′

η(t) + d
dt

[
log
(√

det[gij(η̇)]
)]

, (3.17)

where one can take det[gij(η̇)] for i, j = 1, 2, . . . , n − 1 since gin(η̇) = 0 for i = 1, 2, . . . , n − 1 (by the Gauss
lemma; see [3, Lemma 6.1.1]) and gnn(η̇) = 1. By comparing (3.17) with the de�nition (3.14) of ∆ψu(η(t)), it
su�ces to show that the second term in the right hand side of (3.17) coincides with the unweighted Laplacian
∆u(η(t)). To this end, on the one hand, let us observe∇u = ∂/∂xn and

∇2u
(
∂
∂xi

)
= D∇u

∂/∂xi

(
∂
∂xn

)
=

n∑
j=1

Γ jin(∇u) ∂
∂xj

(we will suppress the evaluations at η(t)), and hence

∆u = trace(∇2u) =
n∑
i=1

Γ iin(∇u)

= 1
2

n∑
i,k=1

gik(∇u)∂gik∂xn (∇u) −
n∑

i,k,l=1
gik(∇u)Ckil(∇u)N ln(∇u)

= 1
2

n∑
i,k=1

gik(∇u)∂gik∂xn (∇u),

where we used the geodesic equation (2.4) for η to see N ln(∇u) = 2Gl(∇u) = −η̈l = 0. On the other hand,

d
dt

[
log
(√

det[gij(η̇)]
)]

= 1
2 trace

[(d[gij(η̇)]
dt

)
·
(
gjk(η̇)

)]
= 1

2

n∑
i,j=1

∂gij
∂xn (η̇)gji(η̇)

since η̈l = 0, thereby we obtain (3.17).
Now, putting h0 = (det[gij(η̇)])1/2(n−1) as in the proof of Proposition 3.5, we �nd that

∆ψu
(
η(t)

)
= −ψ′

η(t) + (hn−1
0 )′

hn−1
0

(t) = (e−ψηhn−1
0 )′

e−ψηhn−1
0

(t).

Recall that
(e−ψηhn−1

0 )(t) = h(t)1/c = h1
(
φη(t)

)1/c ,

and one can show that h1/scK is non-increasing in the same way as in Theorem 3.6. Therefore
(e−ψηhn−1

0 )/scK(φη)1/c is non-increasing and we have

(e−ψηhn−1
0 )′

e−ψηhn−1
0

(t) ≤ (scK(φη)1/c)′

scK(φη)1/c (t) = 1
c
s′cK(φη(t))
scK(φη(t))φ

′
η(t) ≤ 1

cρ
s′cK(t/b)
scK(t/b)

by the fact that s′κ/sκ is non-increasing for any κ and by b−1 ≤ φ′
η ≤ a−1 from (3.16). This completes the proof.

�

Remark 3.10 The intermediate estimate

∆ψu
(
η(t)

)
≤ e

2(ϵ−1)
n−1 ψη(t) s′cK(φη(t))

cscK(φη(t))

(without the bound (3.16) on ψ) in the above proof corresponds to [58, Theorem 4.4] (N = 1) and [16, Theo-
rem 2.4] (N < 1) for ϵ = (N − 1)/(N − n) and c = 1/(n − N). When N ∈ [n, +∞), ϵ = 1 and c = 1/(N − 1), we can
take a = b = 1 and recover [39, Theorem 5.2].
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We �nally remark that, in the above proof, we made use of the special property of the distance function
u that every integral curve of∇u is a geodesic. In dealing with more general functions, the usefulness of this
type of Laplacian (which is associated with a weight function ψ not necessarily induced from ameasure) has
yet to be shown.

3.4 Bishop–Gromov comparison theorem

We �nally show the Bishop–Gromov volume comparison theorem, for which we need a measure onM. Letm
be a positive C∞-measure onM and ψm be the weight function associated withm (recall (3.4)). We de�ne the
forward r-ball of center x as

B+(x, r) := {y ∈ M | d(x, y) < r}.

Theorem 3.11 (Bishop–Gromov comparison theorem) Let (M, F,m) be forward complete and N ∈
(−∞, 1] ∪ [n, +∞], ϵ ∈ R in the ϵ-range (3.5), K ∈ R and b ≥ a > 0. Assume that

RicN(v) ≥ KF2(v)e
4(ϵ−1)
n−1 ψm(v)

holds for all v ∈ TM \ 0 and
a ≤ e−

2(ϵ−1)
n−1 ψm ≤ b.

Then we have
m(B+(x, R))
m(B+(x, r)) ≤

b
a

∫ min{R/a, π/
√
cK}

0 scK(τ)1/c dτ∫ r/b
0 scK(τ)1/c dτ

for all x ∈ M and 0 < r < R, where R ≤ bπ/
√
cK when K > 0 and we set π/

√
cK := ∞ for K ≤ 0.

Proof. Given each unit vector v ∈ UxM and the geodesic η(t) := expx(tv), (h1/scK)1/c is non-increasing as in
the proof of Theorem 3.9. Hence the standard technique using Gromov’s lemma (see [9, Lemma III.4.1]) yields
that the integration is also non-increasing in the sense that∫ S

0 h1(τ)1/c dτ∫ S
0 scK(τ)1/c dτ

≤
∫ s

0 h1(τ)1/c dτ∫ s
0 scK(τ)1/c dτ

for 0 < s < S. Observe from b−1 ≤ φ′
η ≤ a−1 that

S∫
0

h1(τ)1/c dτ =

φ−1
η (S)∫
0

h(t)1/cφ′
η(t) dt ≥ 1

b

φ−1
η (S)∫
0

h(t)1/c dt

and
s∫

0

h1(τ)1/c dτ ≤ 1
a

φ−1
η (s)∫

0

h(t)1/c dt.

Therefore we have ∫ S
0 h(t)1/c dt∫ s
0 h(t)1/c dt

≤ ba

∫ φη(S)
0 h1(τ)1/c dτ∫ φη(s)
0 h1(τ)1/c dτ

≤ ba

∫ φη(S)
0 scK(τ)1/c dτ∫ φη(s)
0 scK(τ)1/c dτ

.

We shall integrate this inequality in v ∈ UxM with respect to the measure Ξ induced from gv. For each
v ∈ UxM, let lv be the supremum of t > 0 satisfying d(x, expx(tv)) = t. Then we have, when K > 0, φη(lv) ≤
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π/
√
cK by the proof of Theorem 3.6 (recall Remark 3.7). Moreover, t/b ≤ φη(t) ≤ t/a. Therefore we obtain

m
(
B+(x, R)

)
=
∫
UxM

min{R, lv}∫
0

h(t)1/c dt Ξ(dv)

≤ ba

∫ min{R/a, π/
√
cK}

0 scK(τ)1/c dτ∫ r/b
0 scK(τ)1/c dτ

∫
UxM

min{r, lv}∫
0

h(t)1/c dt Ξ(dv)

= b
a

∫ min{R/a, π/
√
cK}

0 scK(τ)1/c dτ∫ r/b
0 scK(τ)1/c dτ

m
(
B+(x, r)

)
(notice that r/b < π/

√
cK if K > 0 by hypothesis). This completes the proof. �

This volume comparison theorem could be compared with [53, Theorem 1.2] on Riemannian manifolds
(M, g,m) with Ric∞ ≥ K and |ψm| ≤ k. See also [58, Theorem 4.5] and [16, Theorem 2.10] in terms of the
deformed distance structure that we brie�y discussed in Remark 3.7.

4 Finsler spacetimes
From here on we switch to the Lorentzian setting. We refer to [6, 33, 41] for the basics of Lorentzian geometry,
and to [28, 32] for further generalizations including Lorentz–Finslermanifolds (see also Remark 4.3 below). In
this and the next sections, letM be a connected C∞-manifoldwithout boundary of dimension n+1.We remark
that dimM = n in the preceding sections, however, it is standard in Lorentzian geometry to let dimM = n+ 1,
we hope that this di�erence causes no confusion. We will use indices in Greek: α, β = 0, 1, . . . , n.

4.1 Lorentz–Finsler manifolds

Similarly to the preceding sections (and [25]), given local coordinates (xα)nα=0 on an open set U ⊂ M, we will
use the coordinates

v =
n∑
β=0

vβ ∂
∂xβ

∣∣∣
x
, x ∈ U .

We follow Beem’s de�nition [5] of a Finsler version of Lorentzian manifolds.

De�nition 4.1 (Lorentz–Finsler structures) A Lorentz–Finsler structure ofM will be a function L : TM −→
R satisfying the following conditions:

(1) L ∈ C∞(TM \ 0);
(2) L(cv) = c2L(v) for all v ∈ TM and c > 0;
(3) For any v ∈ TM \ 0, the symmetric matrix(

gαβ(v)
)n
α,β=0 :=

(
∂2L

∂vα∂vβ
(v)
)n
α,β=0

is non-degenerate with signature (−, +, . . . , +).

A pair (M, L) is then called a (C∞-)Lorentz–Finsler manifold.

We say that (M, L) is reversible if L(−v) = L(v) for all v ∈ TM. For v ∈ TxM \ {0}, de�ne the Lorentzian
metric gv of TxM in the same manner as (2.2) by

gv

( n∑
α=0

aα
∂
∂xα

∣∣∣
x
,
n∑
β=0

bβ
∂
∂xβ

∣∣∣
x

)
:=

n∑
α,β=0

gαβ(v)aαbβ .
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Then we have gv(v, v) = 2L(v).

De�nition 4.2 (Timelike vectors) A tangent vector v ∈ TM is said to be timelike (resp. null) if L(v) < 0 (resp.
L(v) = 0). We say that v is lightlike if it is null and nonzero, and causal (or non-spacelike) if it is timelike or
lightlike (L(v) ≤ 0 and v ≠ 0). The spacelike vectors are those for which L(v) > 0 or v = 0. The set of timelike
vectors will be denoted by

Ω′
x := {v ∈ TxM | L(v) < 0}, Ω′ :=

⋃
x∈M

Ω′
x .

We will make use of the following function on Ω′:

F(v) :=
√
−2L(v) =

√
−gv(v, v). (4.1)

Note that Ω′
x ≠ ∅ and every connected component of Ω′

x is a convex cone ([5], [25, Lemma 2.3]). In general, the
number of connected components of Ω′

x may be larger than 2 (see Example 4.12(b) below from [5]). This fact
will not a�ect our discussion because we shall deal with only future-directed (timelike or causal) vectors; see
De�nition 4.4 below. We also remark that Ω′

x has exactly two connected components in reversible Lorentz–
Finsler manifolds of dimension ≥ 3 ([29, Theorem 7]).

Remark 4.3 We comment on the di�erences in approach between our Lorentz–Finsler setting and that
adopted in somephysicalworks. Finslerian approaches to gravity have a venerable history, one of the �rst for-
mulations goes back toHorváth [13] in the 1950s. Since thenmany di�erent Finslerian gravitational equations
have appeared in the physical literature. Due to the lack of exact solutions, particularly of Finslerian general-
izations of the Schwarzschild metric, and of their confrontation with experiment, a consensus on the correct
Finslerian gravitational equation has not yet been reached. Most equations (including Horváth’s) imply Ricci
�atness in vacuum, so this condition is often regarded as a minimal requirement.

Many authors worked via tensorial equations and paid little attention on the constraints imposed by the
Lorentzian signature of the vertical Hessian of the Finsler Lagrangian. Precisely, in physical papers, a direct
product metric of the form

2L
(
a ∂∂t + v

)
= −a2 + F2(v),

(
a ∂∂t , v

)
∈ TR × TΣ,

would be imposed as ansatz (see, e.g., [20, (8)], [21, (27)], [42, (34)]). These metrics are not of Lorentz–Finsler
type according to our de�nition, since the vertical Hessian at the observer (timelike vector) ∂/∂t is not well
de�ned (F2 is not twice di�erentiable at the origin; see, e.g., [38, §1.2.2]). Less severe regularity problems are
shared by those Lagrangians that have no vertical Hessian at the light cone. This happens, for instance, to all
the metrics that follow from the Bogoslovsky metric element (very special relativity) [12, 47]. In these metrics
lightlike particles might have in�nite momenta, making these models not as physically natural as one would
desire. The metrics of Lorentz–Randers type [4, 48, 51] have a vertical Hessian that is also not Lorentzian and
C2 at the boundary of the light cone, though the Finsler Lagrangian can be C1. Unfortunately, in thesemodels
the momenta of lightlike particles might vanish.

When it comes to work in Lorentz–Finsler geometry, the ansatzes tried by physicists have the advantage
of being simple, and of making the calculations somewhat easier, but being non-C2 at the light cone, often
produce, as shown previously, metrics that have undesired physical features. From the point of view of pure
mathematics, it is not easy to work with these less regular models. Nonetheless, some of our results could
hold relaxing the C2-regularity assumption at the light cone, e.g., by imposing the C2-Lorentzian condition
only in the timelike cone. This would raise issues related to the physical interpretation of light. It has been
proved in [31, Section 4] (and again in [14, Theorem 6.6]) that lightlike geodesics and transport of momenta
over them do not require the vertical C2-di�erentiability of the Finsler Lagrangian at the light cone, and that
these concepts follow just from the distribution of (anisotropic) cones, not from the Finsler Lagrangian itself.

The problemof allowing for Lorentz–Finsler Langrangianswith non-C2 vertical behavior at the light cone
is somewhat analogous, in the positive signature, to that of studying Finsler metrics F for which the Hessian
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of L = F2/2 is not well de�ned or positive-de�nite in some directions (e.g., Kropina metrics). Here one faces
some annoying problems, for instance, the Hopf–Rinow theorem does not hold [43]. Our comparison results
could be generalized to these frameworks, as many of our proofs present arguments that seem localized over
the indicatrix. However, the impossibility of appealing to the Hopf–Rinow theorem would certainly make
such an investigation somewhat involved.We do not attempt to generalize our results to that extent, and keep
the simpler framework of C2-di�erentibility on the slit-tangent bundle. This seems to be the right approach
as our focus is on the role of the ϵ-range concept in comparison theorems rather than generality.

4.2 Causality theory

Let (M, L) be a Lorentz–Finsler manifold.

De�nition 4.4 (Finsler spacetimes) If (M, L) admits a timelike smooth vector �eld X (namely L(X(x)) < 0
for all x ∈ M), then (M, L) is said to be time oriented (by X). A time oriented Lorentz–Finsler manifold will be
called a Finsler spacetime.

In a Finsler spacetime oriented by X, a causal vector v ∈ TxM is said to be future-directed if it lies in the
same connected component of Ω′x \{0} as X(x). Wewill denote by Ωx ⊂ Ω′

x the set of future-directed timelike
vectors, and de�ne

Ω :=
⋃
x∈M

Ωx , Ω :=
⋃
x∈M

Ωx , Ω \ 0 :=
⋃
x∈M

(Ωx \ {0}).

A C1-curve in (M, L) is said to be timelike (resp. causal) if its tangent vector is always timelike (resp. causal).
All causal curves will be future-directed.

Given distinct points x, y ∈ M, we write x � y (resp. x < y) if there is a future-directed timelike (resp.
causal) curve from x to y, and x ≤ y means that x = y or x < y. Then we de�ne the chronological past and
future of x by

I−(x) := {y ∈ M | y � x}, I+(x) := {y ∈ M | x � y},

and the causal past and future by

J−(x) := {y ∈ M | y ≤ x}, J+(x) := {y ∈ M | x ≤ y}.

For a set S ⊂ M, we de�ne I−(S), I+(S), J−(S) and J+(S) analogously. Let us recall several causality conditions.

De�nition 4.5 (Causality conditions) Let (M, L) be a Finsler spacetime.

(1) (M, L) is said to be chronological if x ∈ ̸ I+(x) for all x ∈ M.
(2) We say that (M, L) is causal if there is no closed causal curve.
(3) (M, L) is said to be strongly causal if, for all x ∈ M, every neighborhood U of x contains another neigh-

borhood V of x such that no causal curve intersects V more than once.
(4) We say that (M, L) is globally hyperbolic if it is strongly causal and, for any x, y ∈ M, J+(x) ∩ J−(y) is

compact (or empty).

It is straightforward that strong causality implies causality, and a causal spacetime is chronological. A
chronological spacetime is necessarily noncompact.

4.3 Covariant derivative and Ricci curvature

One can introduce the covariant derivative and Ricci curvature in the same way as in the positive-de�nite
case. We shall use the same notations as in Section 2 and [25].



18 | Yufeng Lu, Ettore Minguzzi, and Shin-ichi Ohta

Similarly to Subsection 2.1, we de�ne

γαβδ(v) := 1
2

n∑
λ=0

gαλ(v)
{
∂gλδ
∂xβ

(v) +
∂gβλ
∂xδ

(v) −
∂gβδ
∂xλ

(v)
}

for α, β, δ = 0, 1, . . . , n and v ∈ TM \ 0, where (gαβ(v)) is the inverse matrix of (gαβ(v)),

Gα(v) := 1
2

n∑
β,δ=0

γαβδ(v)vβvδ , Nαβ (v) := ∂Gα

∂vβ
(v)

for v ∈ TM \ 0 (Gα(0) = Nαβ (0) := 0 by convention), and

Γαβδ(v) := γαβδ(v) − 1
2

n∑
λ,µ=0

gαλ(v)
(
∂gλδ
∂vµ N

µ
β +

∂gβλ
∂vµ N

µ
δ −

∂gβδ
∂vµ N

µ
λ

)
(v)

on TM \ 0. Then the covariant derivative is de�ned in the same way as in De�nition 2.2,

Dwv X(x) :=
n∑

α,β=0

{
vβ ∂X

α

∂xβ
(x) +

n∑
δ=0

Γαβδ(w)vβXδ(x)
}

∂
∂xα

∣∣∣
x
∈ TxM,

for a vector �eld X, v ∈ TxM and reference vector w ∈ TxM \ {0}.
The geodesic equation for a causal curve η : [0, 1] −→ M is written as Dη̇η̇ η̇ ≡ 0 (recall (2.4)). This is

understood as the Euler–Lagrange equation associated with the action

S(η) :=
1∫

0

L
(
η̇(t)

)
dt.

The Lagrangian L is preserved over a geodesic, a fact which proves that the causal character of a geodesic is
preserved, hence we can speak of timelike and causal geodesics.

We also de�ne the Lorentz–Finsler distance d(x, y) for x, y ∈ M by

d(x, y) := sup
η

1∫
0

F
(
η̇(t)

)
dt,

where η : [0, 1] −→ M runs over all causal curves from x to y (recall (4.1) for the de�nition of F). We set
d(x, y) := 0 if there is no causal curve from x to y (namely x ≮ y). A constant speed causal curve attaining
the above supremum, which is a causal geodesic, is said to be maximal. In general, causal geodesics are
locally maximizing much in the same way as geodesics are locally minimizing in Riemannian geometry ([28,
Theorem 6]). The distance function d is well-behaved in globally hyperbolic spacetimes as follows.

Theorem 4.6 If (M, L) is globally hyperbolic, then the distance function d is �nite and continuous, and any
pair of points x, y ∈ M with x < y is connected by a maximal geodesic.

See [30, Proposition 6.8] for the former claim. The latter is the Finsler analogueof theAvez–Seifert theorem
and found in [30, Proposition 6.9]. In general, d is only lower semi-continuous ([30, Proposition 6.7]) and can
be in�nite.

Next we introduce the Ricci curvature. First of all, a C∞-vector �eld J along a geodesic η is called a Jacobi
�eld if it is a solution to the equation

Dη̇η̇D
η̇
η̇J + Rη̇(J) = 0,

where

Rv(w) :=
n∑

α,β=0
Rαβ(v)wβ ∂

∂xα
∣∣∣
x
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for v, w ∈ TxM and

Rαβ(v) := 2∂G
α

∂xβ
(v) −

n∑
δ=0

{∂Nαβ
∂xδ

(v)vδ − 2
∂Nαβ
∂vδ

(v)Gδ(v)
}
−

n∑
δ=0

Nαδ (v)Nδβ (v)

is the curvature tensor. Similarly to Subsection 2.2, a Jacobi �eld is also characterized as the variational vector
�eld of a geodesic variation. Note that Rv(w) is positively 2-homogeneous in v and linear in w.

De�nition 4.7 (Ricci curvature) For v ∈ Ωx, we de�ne the Ricci curvature (or Ricci scalar) of v as the trace
of Rv: Ric(v) := trace(Rv).

We have Ric(cv) = c2 Ric(v) for c > 0. If v is timelike, then one can also de�ne the �ag curvature

K(v, w) := − gv(Rv(w), w)
gv(v, v)gv(w, w) − gv(v, w)2

for w ∈ TxM linearly independent of v (this is the opposite sign to [6]), and we have

Ric(v) = F2(v)
n∑
i=1

K(v, ei),

where {v/F(v)} ∪ {ei}ni=1 is an orthonormal basis of (TxM, gv) (i.e., gv(ei , ej) = δij and gv(v, ei) = 0 for all
i, j = 1, 2, . . . , n). TheRiemannian characterizationof theRicci (and�ag) curvature in the sense of Remark 2.4
is available also in this setting (see [25, Theorem 3.7]).

We summarize some basic properties of the curvature tensor (see [30, Proposition 2.4]).

Lemma 4.8 (i) We have Rv(v) = 0 for all v ∈ Ωx.
(ii) gv(v, Rv(w)) = 0 for all v ∈ Ωx \ {0} and w ∈ TxM.
(iii) Rv is symmetric in the sense that gv(Rv(w1), w2) = gv(w1, Rv(w2)) for all v ∈ Ωx \ {0} and w1, w2 ∈ TxM.

4.4 Polar cones and Legendre transform

In order to introduce the spacetime Laplacian (d’Alembertian), we consider the dual structure to L and the
Legendre transform (see [29], [32, §3.1] for further discussions). Let (M, L) be a Finsler spacetime. De�ne the
polar cone to Ωx by

Ω*x :=
{
ω ∈ T*xM |ω(v) < 0 for all v ∈ Ωx \ {0}

}
.

This is an open convex cone in T*xM. For ω ∈ Ω*x, we de�ne

L*(ω) := −1
2

(
sup

v∈Ωx∩F−1(1)
ω(v)

)2
= −1

2 inf
v∈Ωx∩F−1(1)

(
ω(v)

)2.

By de�nition, for any v ∈ Ωx and ω ∈ Ω*x, we have

L*(ω) ≥ −1
2

(
ω
(

v
F(v)

))2
= (ω(v))2

4L(v) .

This implies, since L(v) < 0, the reverse Cauchy–Schwarz inequality

L*(ω)L(v) ≤ 1
4
(
ω(v)

)2

(see also [29, Theorem 3], [32, Proposition 3.2]). Then we arrive at the following variational de�nition of the
Legendre transform.

De�nition 4.9 (Legendre transform) De�ne the Legendre transform L * : Ω*x −→ Ωx as the map sending
ω ∈ Ω*x to the unique element v ∈ Ωx satisfying L(v) = L*(ω) = ω(v)/2. We also de�ne L *(0) := 0.
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Note that the uniqueness of v = L *(ω) follows from the strict convexity of the super-level sets of F in Ωx.
One can de�ne L : Ωx −→ Ω*x in the same manner, and then L = (L *)−1 holds by construction. In order to
write down L * and L in coordinates, we introduce

g*αβ(ω) := ∂2L*
∂ωα∂ωβ

(ω)

for ω ∈ T*M \ 0.

Lemma 4.10 (Coordinate expressions) For v ∈ Ωx and ω ∈ Ω*x, we have in local coordinates around x

L (v) =
n∑
α=0

∂L
∂vα (v) dxα =

n∑
α,β=0

gαβ(v)vβ dxα ,

L *(ω) =
n∑
α=0

∂L*
∂ωα

(ω) ∂
∂xα

∣∣∣
x

=
n∑

α,β=0
g*αβ(ω)ωβ

∂
∂xα

∣∣∣
x
.

Proof. Weconsider onlyL (v), the assertion forL *(ω) is seen in the sameway. Fix v̄ ∈ Ωx and put ω̄ := L (v̄).
Then, by the de�nition of L*, the function v 7−→ ω̄(v)/

√
−L(v) on Ωx attains its maximum at v = v̄. Hence we

�nd
∂
∂vα

[
(ω̄(v))2

L(v)

]
v=v̄

= − 1
L2(v̄)

∂L
∂vα (v̄) ·

(
ω̄(v̄)

)2 + 2ω̄(v̄)
L(v̄) ω̄α = 0

for all α = 0, 1, . . . , n. This implies, since ω̄(v̄) = 2L(v̄),

ω̄α = 1
2
ω̄(v̄)
L(v̄)

∂L
∂vα (v̄) = ∂L

∂vα (v̄).

This yields the �rst expression of L (v), and then the second is given by Euler’s homogeneous function the-
orem. �

Note that the expressions of L and L * in the lemma make sense for null and spacelike vectors as well.
Therefore we de�ne

L (v) :=
n∑
α=0

∂L
∂vα (v) dxα , L *(ω) :=

n∑
α=0

∂L*
∂ωα

(ω) ∂
∂xα

for general v ∈ TM and ω ∈ T*M (one can readily see that they are well-de�ned). This is indeed the usual
de�nition of the Legendre transform, andwe summarize the basic properties in the next lemma (see [29, §2.4]
for further discussions).

Lemma 4.11 (Properties of L and L *) (i) For any x ∈ M, L is injective in each connected component of
Ω′
x.

(ii) If dimM ≥ 3, then L : TxM −→ T*xM and L * : T*xM −→ TxM are bijective at every x ∈ M.
(iii) If dimM ≥ 3, then L * = L −1 holds on T*xM and, for each v ∈ Ωx, (g*αβ(L (v))) is the inverse matrix of

(gαβ(v)).

Proof. (i) and (ii) are proved by [29, Theorem 5] and [29, Theorem 6], respectively. Here we only show (iii) (see
also [32, Theorem 3.2]). By di�erentiating

v = L *(L (v)
)

=
n∑
α=0

∂L*
∂ωα

(
L (v)

) ∂
∂xα

∣∣∣
x

in vβ, we observe

δαβ =
n∑
δ=0

∂2L*
∂ωδ∂ωα

(
L (v)

) ∂2L
∂vβ∂vδ

(v) =
n∑
δ=0

g*αδ
(
L (v)

)
gδβ(v).

This completes the proof. �
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Example 4.12 (a) In the standard Minkowski space M = Rn+1 with

L(v) = 1
2
{
−(v0)2 + (v1)2 + · · · + (vn)2}, Ωx =

{
(vα)nα=0

∣∣ L(v) < 0, v0 > 0
}
,

in the canonical coordinates of TM and T*M, we have

L*(ω) = 1
2
(
−ω2

0 + ω2
1 + · · · + ω2

n
)
, Ω*x =

{
(ωα)nα=0

∣∣ L*(ω) < 0, ω0 < 0
}
,

and L (v) = (−v0, v1, . . . , vn).
(b) We shall see that the injectivity on the whole tangent space as in Lemma 4.11(ii) fails for dimM = 2. Let

us consider the Lorentz–Finsler structure

L
(
r cos θ ∂∂x + r sin θ ∂∂y

)
:= 1

2 r
2 cos kθ

of R2 from [5] and [25, Example 2.4], where k ∈ N and (x, y) denotes the canonical coordinates (k = 2
corresponds to the standard Minkowski space). Note that, if we choose

Ωx :=
{
r cos θ ∂∂x + r sin θ ∂∂y

∣∣∣∣ r > 0, θ ∈
(
π

2k ,
3π
2k

)}
as future directions, then we have

Ω*x =
{
r cos θ dx + r sin θ dy

∣∣∣∣ r > 0, θ ∈
(

(3 + k)π
2k , (1 + 3k)π

2k

)}
,

provided k ≥ 2. When k = 4, one can rewrite L as

L
(
v ∂∂x + w ∂

∂y

)
= (v2 − w2)2 − (2vw)2

2(v2 + w2) = v4 − 6v2w2 + w4

2(v2 + w2) ,

and we observe from Lemma 4.10 that

L

(
v ∂∂x + w ∂

∂y

)
=
(
v − 8vw4

(v2 + w2)2

)
dx +

(
w − 8v4w

(v2 + w2)2

)
dy,

in other words,

L

(
r cos θ ∂∂x + r sin θ ∂∂y

)
= r cos θ(1 − 8 sin4 θ) dx + r sin θ(1 − 8 cos4 θ) dy.

Therefore, for θ1 ∈ (0, π/2) and θ2 ∈ (π/2, π) with sin θ1 = sin θ2 = 8−1/4, we �nd

L

(
r cos θ1

∂
∂x + r sin θ1

∂
∂y

)
= L

(
r cos θ2

∂
∂x + r sin θ2

∂
∂y

)
.

4.5 Di�erential operators

A continuous function f : M −→ R is called a time function if f (x) < f (y) for all x, y ∈ M with x < y. A
C1-function f : M −→ R is said to be temporal if −df (x) ∈ Ω*x for all x ∈ M. Observe that temporal functions
are time functions.

For a temporal function f : M −→ R, de�ne the gradient vector of −f at x ∈ M by

∇(−f )(x) := L *(−df (x)
)
∈ Ωx .

Note that, thanks to Lemmas 4.10 and 4.11, we have for any v ∈ TxM

g∇(−f )
(
∇(−f )(x), v

)
= −

n∑
α,β,δ=0

gαβ
(
∇(−f )(x)

)
g*αδ
(
−df (x)

) ∂f
∂xδ

(x)vβ

= −df (v).
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For a C2-temporal function f : M −→ R and x ∈ M (thereby ∇(−f )(x) ∈ Ωx), we de�ne the Hessian ∇2(−f ) :
TxM −→ TxM in the same manner as (2.5) by

∇2(−f )(v) := D∇(−f )
v

(
∇(−f )

)
.

This spacetime Hessian has the same symmetry as in the positive-de�nite case, let us give a proof (without
coordinate calculations) for thoroughness.

Lemma 4.13 (Symmetry of Hessian) For a C2-temporal function f : M −→ R, we have

g∇(−f )
(
∇2(−f )(v), w

)
= g∇(−f )

(
v,∇2(−f )(w)

)
for all v, w ∈ TxM.

Proof. Put h := −f for brevity, and let V ,W be extensions of v, w to smooth vector �elds around x, respec-
tively. Then we have

g∇h
(
D∇h
V (∇h),W

)
= V

[
g∇h(∇h,W)

]
− g∇h(∇h, D∇h

V W)

= V[dh(W)] − dh(D∇h
V W)

(see [3, Exercise 10.1.2] for the �rst equality). Combining this with D∇h
V W − D∇h

W V = [V ,W], we obtain

g∇h
(
D∇h
V (∇h),W

)
− g∇h

(
D∇h
W (∇h), V

)
= dh([V ,W]) − dh([V ,W]) = 0

as desired. �

Similarly to (2.6), we de�ne the spacetime Laplacian (or d’Alembertian) as the trace of the Hessian,

∆(−f ) := trace
(
∇2(−f )

)
, (4.2)

for C2-temporal functions f . We remark that this Laplacian is not elliptic but hyperbolic, and is nonlinear
(since the Legendre transform is nonlinear).

5 Comparison theorems on weighted Finsler spacetimes
Comparison theorems in Section 3 can be generalized to Finsler spacetimes in a suitable way. We need to be
careful with some Lorentzian behaviors and introduce some special notions in Lorentzian geometry, so we
will give at least outlines of the proofs. In addition, let us again stress that dimM = n + 1 (see also Remark 5.2
below).

5.1 Weighted Finsler spacetimes

Let (M, L) be a Finsler spacetime. Similarly to Section 3, we employ a weight function ψ : Ω \ 0 −→ R such
that ψ(cv) = ψ(v) for all c > 0, and set ψη(t) := ψ(η̇(t)) along causal geodesics η (as in (3.1)).

De�nition 5.1 (Weighted Ricci curvature) Given v ∈ Ω \0, let η : (−ε, ε) −→ M be the causal geodesic with
η̇(0) = v. Then, for N ∈ R \ {n}, de�ne the weighted Ricci curvature by

RicN(v) := Ric(v) + ψ′′
η (0) −

ψ′
η(0)2

N − n .

We also de�ne
Ric∞(v) := Ric(v) + ψ′′

η (0), Ricn(v) := lim
N↓n

RicN(v),

and RicN(0) := 0.
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Remark 5.2 Note that, despite dimM = n+1, thedenominatorN−n in the last termofRicN is unchanged from
(3.2). Therefore RicN in the Lorentzian case corresponds to RicN+1 in the positive-de�nite case. In particular,
Ric0 in this section corresponds to Ric1 in Section 3.

We will say that RicN ≥ K holds in timelike directions for some K ∈ R if we have RicN(v) ≥ KF2(v) =
−2KL(v) for all v ∈ Ω (recall (4.1) for the de�nition of F).

Due to our convention dimM = n + 1, we slightly modify the ϵ-range in De�nition 3.3 as follows (in the
same form as in [25]).

De�nition 5.3 (ϵ-range) Given N ∈ (−∞, 0] ∪ [n, +∞], we will consider ϵ ∈ R in the following ϵ-range:

ϵ = 0 for N = 0, |ϵ| <
√

N
N − n for N ≠ 0, n, ϵ ∈ R for N = n. (5.1)

The associated constant c = c(N, ϵ) is de�ned by

c := 1
n

(
1 − ϵ2 N − n

N

)
> 0 (5.2)

for N ≠ 0, and c(0, 0) := 1/n.

Note that ϵ = 1 is admissible only for N ∈ [n, +∞), while ϵ = 0 is always admissible. For a future-directed
timelike geodesic η : [0, l) −→ M and ϵ ∈ R, we set

φη(t) :=
t∫

0

e
2(ϵ−1)
n ψη(s) ds (5.3)

in the same way as (3.8) throughout this section.

5.2 Bonnet–Myers theorem

We have shown in [25, Theorem 5.17] the Bonnet–Myers theorem for weighted Finsler spacetimes in the form
that RicN ≥ K > 0 with N ∈ [n, +∞) implies diam(M) ≤ π

√
N/K (we refer to [6, Chapter 11] for the Lorentzian

case). In order to generalize this to the one with ϵ-range, let us recall some notations and results of [25].
Given a timelike geodesic η : [0, l) −→ M of unit speed F(η̇) ≡ 1 (equivalently, L(η̇) ≡ −1/2), we will

denote by Nη(t) ⊂ Tη(t)M the space of vectors orthogonal to η̇(t) with respect to gη̇(t). For simplicity, the
covariant derivative Dη̇η̇X of a vector �eld X along η will be denoted by X′.

De�nition 5.4 (Jacobi and Lagrange tensor �elds) Let η : [0, l) −→ M be a timelike geodesic of unit
speed.

(1) A smooth tensor �eld J, giving an endomorphism J(t) : Nη(t) −→ Nη(t) for each t ∈ [0, l), is called a
Jacobi tensor �eld along η if we have

J′′ + RJ = 0 (5.4)

and ker(J(t)) ∩ ker(J′(t)) = {0} for all t, where R(t) := Rη̇(t) : Nη(t) −→ Nη(t) is the curvature endomor-
phism.

(2) A Jacobi tensor �eld J is called a Lagrange tensor �eld if

(J′)TJ − JTJ′ = 0 (5.5)

holds on [0, l), where the transpose T is taken with respect to gη̇.

Some remarks on those notations are in order.
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Remark 5.5 (a) The equation (5.4) means that, for any gη̇-parallel vector �eld P along η (namely P′ ≡ 0),
Y(t) := J(t)(P(t)) is a Jacobi �eld along η. Then the condition ker(J(t))∩ker(J′(t)) = {0} implies that Y = J(P)
is not identically zero for every nonzero P. Note also that Lemma 4.8(ii) ensures Rη̇(t)(w) ∈ Nη(t) for all
w ∈ Tη(t)M.

(b) The equation (5.5) means that JTJ′ is gη̇-symmetric, precisely, given two gη̇-parallel vector �elds P1, P2
along η, the Jacobi �elds Yi := J(Pi) satisfy

gη̇(Y ′
1, Y2) − gη̇(Y1, Y ′

2) ≡ 0. (5.6)

Since (5.4) and Lemma 4.8(iii) (with the help of [25, (3.1)], see also [3, Exercise 5.2.3]) yield that
[gη̇(Y ′

1, Y2) − gη̇(Y1, Y ′
2)]′ ≡ 0, we have (5.6) for all t if it holds at some t.

Given a Lagrange tensor �eld J along η, de�ne B := J′J−1, which is symmetric by (5.5). We remark that A
(resp. B, R) in Section 3 corresponds to JTJ (resp. JTB(JT)−1, JTRJ), and that A′ = 2BA in Lemma 3.4 is equivalent
to B = J′J−1. Multiplying (5.4) by J−1 from right, we arrive at the corresponding Riccati equation

B′ + B2 + R = 0

(see [25, (5.3)], compare this with (3.7)). We further de�ne the expansion scalar

θ(t) := trace
(
B(t)

)
,

and the shear tensor (the traceless part of B)

σ(t) := B(t) − θ(t)
n In(t),

where In(t) denotes the identity of Nη(t).
The weighted counterparts will make use of the parametrization φη in (5.3). Note that, similarly to (3.11),

(η ◦ φ−1
η )′(τ) = e−

2(ϵ−1)
n ψη(φ−1

η (τ))η̇
(
φ−1
η (τ)

)
for τ ∈ [0, φη(l)). De�ne, for ϵ ∈ R and t ∈ [0, l),

Jψ(t) := e−ψη(t)/nJ(t),

and for t ∈ (0, l),

Bϵ(t) := (Jψ ◦ φ−1
η )′
(
φη(t)

)
· Jψ(t)−1 = e−

2(ϵ−1)
n ψη(t)

(
B(t) −

ψ′
η(t)
n In(t)

)
,

θϵ(t) := trace
(
Bϵ(t)

)
= e−

2(ϵ−1)
n ψη(t)(θ(t) − ψ′

η(t)
)
,

σϵ(t) := Bϵ(t) − θϵ(t)
n In(t) = e−

2(ϵ−1)
n ψη(t)σ(t).

Then the weighted Riccati equation is given by

(Bϵ ◦ φ−1
η )′ + 2ϵ

n (ψη ◦ φ−1
η )′ · Bϵ(φ−1

η ) + B2
ϵ (φ−1

η ) + R(0,ϵ)(φ
−1
η ) = 0

on (0, φη(l)), where

R(N,ϵ)(t) := e−
4(ϵ−1)
n ψη(t)

{
R(t) + 1

n

(
ψ′′
η (t) −

ψ′
η(t)2

N − n

)
In(t)

}
([25, Lemma 5.5]). Observe that trace(R(N,ϵ)(t)) = RicN((η ◦ φ−1

η )′(φη(t))).
We shall need the timelike weighted Raychaudhuri inequality, which was proved in [25, Proposition 5.7]

as a consequence of the above weighted Riccati equation.
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Theorem 5.6 (Raychaudhuri inequality) Let J be a nonsingular Lagrange tensor �eld along a timelike
geodesic η : [0, l) −→ M of unit speed. Then, for every ϵ ∈ R and N ∈ (−∞, 0] ∪ [n, +∞], we have

(θϵ ◦ φ−1
η )′ ≤ −RicN

(
(η ◦ φ−1

η )′
)
− trace

(
σ2
ϵ (φ−1

η )
)
− cθ2

ϵ (φ−1
η )

on (0, φη(l)) with c = c(N, ϵ) in (5.2).

Now we can follow the lines of [25, §5.5] to see the Bonnet–Myers theorem with ϵ-range. The timelike
diameter of (M, L) is de�ned as diam(M) := supx,y∈M d(x, y) (recall that d(x, y) = 0 if x ≮ y), we refer to [6,
§11.1] for some accounts on diam(M). We remark that the �nite diameter does not imply the compactness in
the Lorentzian setting.

Theorem 5.7 (Bonnet–Myers theorem) Let (M, L, ψ) be a globally hyperbolic Finsler spacetime of dimen-
sion n + 1 ≥ 2. Suppose that, for some N ∈ (−∞, 0] ∪ [n, +∞], ϵ in the ϵ-range (5.1), K > 0 and b > 0, we have

RicN(v) ≥ KF2(v)e
4(ϵ−1)
n ψ(v) (5.7)

for all v ∈ Ω and
e−

2(ϵ−1)
n ψ ≤ b. (5.8)

Then we have
diam(M) ≤ bπ√

cK
.

Proof. Suppose in contrary that there are x, y ∈ M such that l := d(x, y) > bπ/
√
cK. By Theorem 4.6, one

can �nd a maximal timelike geodesic η : [0, l] −→ M from x to y with F(η̇) ≡ 1, and put v := η̇(0) ∈ Ωx.
Consider the Jacobi tensor �eld J given by J(t)(w) := d(expx)tv(tP(0)) for w ∈ Nη(t), where P is the gη̇-parallel
vector �eld along η with P(t) = w. Then J is a Lagrange tensor �eld (recall Remark 5.5 and see the proof of [25,
Proposition 5.13]).

Put
h(t) :=

(
det Jψ(t)

)c = e−cψη(t)(det J(t)
)c > 0

for c in (5.2), and h1(τ) := h(φ−1
η (τ)) for τ ∈ [0, φη(l)) similarly to Proposition 3.5. Then we have, since

log h1(τ) = c log[det Jψ(φ−1
η (τ))],

h′1(φη(t))
h1(φη(t)) = c trace

(
Bϵ(t)

)
= cθϵ(t), h′′1h1 − (h′1)2

h2
1

= c(θϵ ◦ φ−1
η )′.

Hence it follows from Theorem 5.6 that

h′′1 (τ) ≤ −ch1(τ) RicN
(

(η ◦ φ−1
η )′(τ)

)
(5.9)

for τ ∈ (0, φη(l)) (as in [25, Proposition 5.14]). This is exactly the analogue to the weighted Bishop inequal-
ity (3.9). Under the hypotheses (5.7) and (5.8), we can show the existence of a conjugate point η(t0) to η(0)
for some t0 ≤ bπ/

√
cK by the same argument as in Theorem 3.6. This contradicts the maximality of η and

completes the proof. �

Similarly to Remark 3.7, one can also obtain from the above proof the deformed diameter estimate

φη(t0) =
t0∫

0

e
2(ϵ−1)
n ψη(s) ds ≤ π√

cK

without assuming (5.8).
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5.3 Laplacian comparison theorem

Next we consider the Laplacian (d’Alembertian) comparison theorem with ϵ-range, as the Lorentzian coun-
terpart to Theorem 3.9. The Laplacian comparison theorem plays an essential role in the Lorentzian splitting
theorem (see [6, Chapter 14], [7, 55]).

Given z ∈ M, we say that x ∈ I+(z) is a timelike cut point to z if there is a maximal timelike geodesic
η : [0, 1] −→ M from z to x such that its extension η̄ : [0, 1 + ε] −→ M is not maximal for any ε > 0.
The timelike cut locus Cut(z) is the set of all cut points to z. Notice that the function u(x) := d(z, x) satis�es
−du(x) ∈ Ω*x for x ∈ I+(z) \Cut(z), and hence ∆(−u) as in (4.2) is well-de�ned on I+(z) \Cut(z). Then, similarly
to (3.14), we de�ne the ψ-Laplacian of u (or −u) by

∆ψ(−u)(x) := ∆(−u)(x) − ψ′
η
(
d(z, x)

)
on I+(z) \ Cut(z), where η : [0, d(z, x)] −→ M is the unique maximal timelike geodesic of unit speed from z to
x. Recall (3.15) for the de�nition of sκ.

Theorem 5.8 (Laplacian comparison theorem) Let (M, L, ψ) be a globally hyperbolic Finsler spacetime of
dimension n + 1 ≥ 2 and N ∈ (−∞, 0] ∪ [n, +∞], ϵ ∈ R in the ϵ-range (5.1), K ∈ R and b ≥ a > 0. Suppose that

RicN(v) ≥ KF2(v)e
4(ϵ−1)
n ψ(v)

holds for all v ∈ Ω and
a ≤ e−

2(ϵ−1)
n ψ ≤ b. (5.10)

Then, for any z ∈ M, the distance function u(x) := d(z, x) satis�es

∆ψ(−u)(x) ≤ 1
cρ

s′cK(u(x)/b)
scK(u(x)/b)

on I+(z) \ Cut(z), where ρ := a if s′cK(u(x)/b) ≥ 0 and ρ := b if s′cK(u(x)/b) < 0.

Proof. By the global hyperbolicity and x ∈ I+(z) \ Cut(z), there exists a unique maximal timelike geodesic
η(t) = expz(tv) from z to x with F(v) = 1. Let J be the Lagrange tensor �eld along η as in the proof of Theo-
rem 5.7. Then the key ingredient of the proof is

∇2(−u)|Nη(t) = B(t) (5.11)

(which is a standard fact but we give a proof for completeness; see also [40, Lemma 3.2]). To this end, simi-
larly to the proof of Theorem 3.9, let (xα)nα=0 be polar coordinates around η((0, d(z, x))) such that x0 = u and
gη̇(η̇, ∂/∂xi) = 0 for all i = 1, 2, . . . , n. Note that∇(−u)(η(t)) = η̇(t) = (∂/∂x0)|η(t).

Given w ∈ Nη(t0) with t0 ∈ (0, d(z, x)), let P be the gη̇-parallel vector �eld along η such that P(t0) =
J(t0)−1(w). Then, by the construction in theproof of Theorem5.7,wehavew = J(t0)(P(t0)) = d(expz)t0v(t0P(0)).
Put

Y(t) := J(t)
(
P(t)

)
= d(expz)tv

(
tP(0)

)
= ∂
∂δ

[
expz

(
tv + δtP(0)

)]∣∣∣
δ=0

.

Let Y(t) =
∑n

i=1 Y
i(t)(∂/∂xi)|η(t) and note that (Y i)′ ≡ 0 since we are considering the polar coordinates (by

exchanging the order of the derivatives in δ and t). Hence, on the one hand, we have

B(t0)(w) = J′J−1(w) = Y ′(t0) =
n∑

i,j=1
Γ ij0
(
η̇(t0)

)
Y j(t0) ∂

∂xi
∣∣∣
x
.

On the other hand,

∇2(−u)(w) = D∇(−u)
w

(
∇(−u)

)
=

n∑
i,j=1

Γ ij0
(
η̇(t0)

)
wj ∂
∂xi
∣∣∣
x
.
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Since Y(t0) = w, we obtain (5.11).
It follows from (5.11) that

∆ψ(−u)
(
η(t)

)
= trace

(
∇2(−u)

)(
η(t)

)
− ψ′

η(t) = e
2(ϵ−1)
n ψη(t) trace

(
Bϵ(t)

)
= e

2(ϵ−1)
n ψη(t)θϵ(t) = e

2(ϵ−1)
n ψη(t) h′1(φη(t))

ch1(φη(t)) ,

where the last equality was seen in the proof of Theorem 5.7. Combining this with h′1scK − h1s′cK ≤ 0 shown
in the same way as in the proof of Theorem 3.6 thanks to (5.9), we have

∆ψ(−u)
(
η(t)

)
≤ e

2(ϵ−1)
n ψη(t) s′cK(φη(t))

cscK(φη(t)) ≤
1
cρ

s′cK(t/b)
scK(t/b)

by the fact that s′cK/scK is non-increasing and by b−1 ≤ φ′
η ≤ a−1 from (5.10). This completes the proof. �

Similarly to Remark 3.10, the intermediate estimate

∆ψ(−u)
(
η(t)

)
≤ e

2(ϵ−1)
n ψη(t) s′cK(φη(t))

cscK(φη(t))

without the bound (5.10) on ψ is also meaningful.

5.4 Bishop–Gromov comparison theorem

Volume comparison theorems in the Lorentzian setting are not as simple as in the positive-de�nite case. This
is because, given x ∈ M, the “future ball” {y ∈ I+(x) | d(x, y) < r} is possibly noncompact and can have
in�nite volume. For this reason, we need to restrict the directions to make the set of our interest be compact.
We shall make use of the following notion introduced in [11]. We refer to [10, 24] for other volume comparison
theorems in the same spirit, the latter is concerned with weighted Finsler spacetimes.

De�nition 5.9 (SCLV) For x ∈ M, a set U ⊂ M is called a standard for comparison of Lorentzian volumes
(SCLV in short) at x if there is Ũx ⊂ TxM satisfying the following conditions:

(1) Ũx is an open set in Ωx;
(2) Ũx is star-shaped from the origin, i.e., we have tv ∈ Ũx for all v ∈ Ũx and t ∈ (0, 1);
(3) Ũx is contained in a compact set in TxM;
(4) The exponential map at x is de�ned on Ũx, the restriction of expx to Ũx is a di�eomorphism onto its

image, and we have U = expx(Ũx).

Note that, for a small convex neighborhoodW of 0 ∈ TxM, expx(W ∩ Ωx) is an SLCV at x. We need some
more notation. For x, U, Ũx as above and 0 < r ≤ 1, we de�ne

Ũx(r) := {rv | v ∈ Ũx} ⊂ Ũx , Ux(r) := expx
(
Ũx(r)

)
⊂ U .

Since U is not like a “ball” in general, we also de�ne

Ux := {v ∈ Ωx | F(v) = 1, tv ∈ Ũx for some t > 0},

TU,x(v) := sup{t > 0 | tv ∈ Ũx}, v ∈ Ux

(TU,x is called the cut function in [11]). Assuming that TU,x is constant on Ux amounts to considering (a part
of) a ball. Letm be a positive C∞-measure onM and ψm be the weight function associated withm in a similar
way to (3.4), precisely,

dm = e−ψm(η̇(t))
√
−det

[
gαβ
(
η̇(t)

)]
dx0dx1 · · · dxn

along timelike geodesics η.
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Theorem 5.10 (Bishop–Gromov comparison theorem) Let (M, L,m) be globally hyperbolic of dimension
n + 1 ≥ 2, N ∈ (−∞, 0] ∪ [n, +∞], ϵ ∈ R in the ϵ-range (5.1), K ∈ R and b ≥ a > 0. Suppose that

RicN(v) ≥ KF2(v)e
4(ϵ−1)
n ψm(v)

holds for all v ∈ Ω and
a ≤ e−

2(ϵ−1)
n ψm ≤ b.

Then, for any SCLV U ⊂ M at x ∈ M such that either

(A) TU,x ≡ T on Ux, or
(B) K = 0 and T := infv∈Ux TU,x > 0,

we have
m(Ux(R))
m(Ux(r)) ≤

b
a

∫ min{RT/a, π/
√
cK}

0 scK(τ)1/c dτ∫ rT/b
0 scK(τ)1/c dτ

for all 0 < r < R ≤ 1, where we set π/
√
cK := ∞ for K ≤ 0.

Proof. For each v ∈ Ux and the geodesic η(t) := expx(tv), h1/scK is non-increasing as we mentioned in the
proof of Theorem 5.8. Hence we have ∫ S

0 h1(τ)1/c dτ∫ S
0 scK(τ)1/c dτ

≤
∫ s

0 h1(τ)1/c dτ∫ s
0 scK(τ)1/c dτ

for 0 < s < S, similarly to the proof of Theorem 3.11. Moreover, since b−1 ≤ φ′
η ≤ a−1,∫ S

0 h(t)1/c dt∫ s
0 h(t)1/c dt

≤ ba

∫ φη(S)
0 h1(τ)1/c dτ∫ φη(s)
0 h1(τ)1/c dτ

≤ ba

∫ φη(S)
0 scK(τ)1/c dτ∫ φη(s)
0 scK(τ)1/c dτ

.

Now, letting S = RTU,x(v), s = rTU,x(v), and noticing φη(RTU,x(v)) ≤ π/
√
cK if K > 0 by the proof of Theo-

rem 5.7 (or Theorem 3.6), we deduce from the hypothesis (A) or (B) that (recall s0(τ) = τ from (3.15))∫ φη(RTU,x(v))
0 scK(τ)1/c dτ∫ φη(rTU,x(v))
0 scK(τ)1/c dτ

≤
∫ min{RTU,x(v)/a, π/

√
cK}

0 scK(τ)1/c dτ∫ rTU,x(v)/b
0 scK(τ)1/c dτ

≤
∫ min{RT/a, π/

√
cK}

0 scK(τ)1/c dτ∫ rT/b
0 scK(τ)1/c dτ

.

We integrate this inequality in v ∈ Ux with respect to the measure Ξ induced from gv to see

m
(
Ux(R)

)
=
∫
Ux

RTU,x(v)∫
0

h(t)1/c dt Ξ(dv)

≤ ba

∫ min{RT/a, π/
√
cK}

0 scK(τ)1/c dτ∫ rT/b
0 scK(τ)1/c dτ

∫
Ux

rTU,x(v)∫
0

h(t)1/c dt Ξ(dv)

= b
a

∫ min{RT/a, π/
√
cK}

0 scK(τ)1/c dτ∫ rT/b
0 scK(τ)1/c dτ

m
(
Ux(r)

)
(we remark that rT/b ≤ φη(rT) ≤ π/

√
cK if K > 0). This completes the proof. �
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