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Abstract: We establish the Bonnet-Myers theorem, Laplacian comparison theorem, and Bishop—Gromov vol-
ume comparison theorem for weighted Finsler manifolds as well as weighted Finsler spacetimes, of weighted
Ricci curvature bounded below by using the weight function. These comparison theorems are formulated
with e-range introduced in our previous paper, that provides a natural viewpoint of interpolating weighted
Ricci curvature conditions of different effective dimensions. Some of our results are new even for weighted
Riemannian manifolds and generalize comparison theorems of Wylie-Yeroshkin and Kuwae-Li.
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1 Introduction

A weighted manifold is a pair given by a manifold, equipped with some metric, and a weight function on
it. A fundamental example is a Riemannian manifold (M, g) and a measure m = e volg on it, where volg
is the Riemannian volume measure induced from the Riemannian metric g and  is a weight function on
M. This kind of weighted manifolds, also called manifolds with density, naturally arise in the convergence
theory of spaces (wWhen a sequence collapses to a lower dimensional space), in the study of Ricci solitons
(a weighted analogue of Einstein manifolds), and in the needle decomposition (also called the localization;
needles are weighted even when the original space is not). We shall be interested in comparison geometry for
these structures.

As for the nature of the metric on the manifold, the Riemannian case was the first to be studied [2, 22],
and then generalizations to Finsler manifolds [34], Lorentzian manifolds [7], and Lorentz—Finsler manifolds
[25], followed.

In comparison geometry and geometric analysis of these weighted manifolds, the weighted Ricci curva-
ture, also called the Bakry—Emery—Ricci curvature and attributed to [2], plays a central role. The weighted Ricci
curvature Ricy includes a real parameter N sometimes called the effective dimension. For N € [dim M, +oc], N
indeed acts as an upper bound of the dimension in the sense that, if Ricy is bounded below by a real number
K (in a suitable sense), then the weighted space enjoys various properties as it has the Ricci curvature > K
and the dimension < N. In particular, Ric is useful for investigations of dimension-free estimates. Gaussian
spaces (R", |-||, e~ X" dx), K > 0, are typical examples of spaces satisfying Rice. > K. One of the recent mile-
stones is that Ricy > K is equivalent to the curvature-dimension condition CD(K, N) a la Lott—Sturm-Villani
for weighted Riemannian (or Finsler) manifolds [23, 34, 49, 50, 52]. Recently this characterization was gen-
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eralized to the (unweighted) Lorentzian situation by McCann [26], followed by a synthetic investigation on
Lorentzian length spaces in [8].

It is interesting that the parameter N in Ricy can be negative, though it might appear strange if one sticks
to the above interpretation of N as a bound on the dimension from above. Some comparison theorems can be
generalized to the case of Ricy > K with N € (~oo, 0) or more generally N € (oo, 1], including the curvature-
dimension condition [36, 37], isoperimetric inequality [27], splitting theorem [57], as well as singularity and
splitting theorems in the Lorentzian context [54, 55]. Then Wylie-Yeroshkin [58] introduced a different kind
of curvature bound,

Ricq = Kem‘/’g (11)

on a weighted Riemannian manifold (M, g, 1), where the lower bound is not constant but a function depend-
ing on the weight function . This curvature bound naturally arises from a projectively equivalent connection
to the Levi-Civita connection. Moreover, the i-completeness condition introduced in [57],

!
lim sup inf em@am Y00 q¢ = oo, (1.2)

oo 1

where 1 runs over all unit speed minimal geodesics of length ! with the same initial point, also motivates
the study of (1.1). In [58] they established the Bonnet—Myers theorem, Laplacian comparison theorem and
Bishop—Gromov volume comparison theorem among others. We remark that those comparison theorems do
not have counterparts under Ric; > K > 0, therefore the nonconstant bound (1.1) is essential. We refer to [44]
for the case of manifolds with boundary, [45] for the curvature-dimension condition, and to [15, 56] for related
works on the weighted sectional curvature. In [16], Kuwae-Li considered weighted Riemannian manifolds with

Ricy = Ke¥amnn¥g, N € (-o0, 1], (13)

and generalized the comparison results in [58] to the case of N € (-oo, 1) together with some probabilistic
applications.

In our previous paper [25], we introduced the notion of e-range and its associated completeness condition
for spacetimes. The aim of the present article is to establish comparison theorems with e-range which enable
us to interpolate the conditions Ricy > K and (1.1) and explain the reason why (1.1) and (1.3) are admissible
for those results in [16, 58] while Ricy = K with N € (-o0, 1] U {+oo} is not. Precisely, we showed in [25] some
singularity theorems for weighted Finsler spacetimes under Ricy = 0 and the e-completeness condition

/ PGV gf — oo
inspired by (1.2), where ¢ is taken from the e-range

N-1

= = <
e=0forN=1, e N-n

forN#1,n, €€R forN=n. (1.4)

(In order to avoid confusion, in this introduction we always set dim M = n, though dim M = n + 1 in [25] (and
Sections 4, 5 below) as usual in Lorentzian geometry.) Note that, on the one hand, € = 0 corresponding to
[58] is admissible for all N and € = (N - 1)/(N - n) as in [16] is allowed for N < 1. On the other hand, € = 1
corresponding to the constant bound Ricy > K (and the usual geodesic completeness) is admissible only for
N € [n, +o0).

We generalize comparison theorems in [16, 58] under appropriate curvature bounds including e. For ex-
ample, our Bonnet—Myers theorem (Theorem 3.6) in the case of a weighted Riemannian manifold (M, g, ¥)
asserts that, if

4(e-1) _2(e-1)

Ricy > Ke 1 g, e mi¥<h

for some N € (-o0, 1] U [n, +o0], € in the e-range (1.4) and K, b > 0, then the diameter of M is bounded above
by brt/+/cK, where
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This recovers the standard Bonnet—Myers theorem for N € [n, +o0), e = 1and b = 1 (¢ = 1/(N - 1)), as well as
the results in [16, 58] for N € (-oo, 1]and € = (N-1)/(N-n) (c = 1/(n- N)) (see Remark 3.7 for an alternative
statement in terms of a deformed distance structure without the bound e *+=-¥ < b on P).

Besides the Bonnet—Myers theorem, we also establish the Laplacian comparison theorem and Bishop—
Gromov volume comparison theorem (in the latter the weight function 1 is induced from a given measure m
on M), in both weighted Finsler manifolds and weighted Finsler spacetimes. We remark that those results for
€#(N-1)/(N-n)with N < 1 or for € # 1 with N € [n, +oo] are new even in the weighted Riemannian setting.
Furthermore, for the Bonnet-Myers and Laplacian comparison theorems on Finsler manifolds, our results
cover both the unweighted case [3] and the weighted case associated with measures [34, 39]; this unification is
notincluded in the literature. As for future work, it would be interesting to compare our comparison theorems
on weighted Finsler spacetimes with the recent synthetic investigations in [8, 26]. We refer to [17-19] for some
follow-up works on comparison geometry with e-range.

This article is divided into two parts. The first part is devoted to weighted Finsler manifolds. We recall
necessary concepts in Finsler geometry in Section 2 and develop the comparison theorems with e-range in
Section 3. The second part is devoted to weighted Finsler spacetimes. In Section 4 we review Lorentz-Finsler
geometry, causality theory and some analytic notions. Finally, in Section 5 we obtain the Lorentzian versions
of the comparison theorems.

Although some arguments could be unified to a single framework, we shall discuss the Finsler and
Lorentz-Finsler cases rather separately and present the proofs of comparison theorems in their each com-
mon languages, for the sake of accessibility and hopefully motivating interactions between Riemannian and
Lorentzian geometries.

2 Preliminaries for Finsler manifolds

We first consider comparison theorems on weighted Finsler manifolds. We refer to [3, 38, 46] for the basics
of Finsler geometry (we will follow the notations in [46]). Throughout this and the next sections, let M be a
connected C*-manifold without boundary of dimension n = 2.

2.1 Finsler manifolds

Given local coordinates (x')!; on an open set U C M, we will always use the fiber-wise linear coordinates
(d, vf)lf"j=1 of TU such that

n

i 0

- i9%| T )

v Zvaxilxe M, xeU
j=1

Definition 2.1 (Finsler structures) We say that a nonnegative function F : TM — [0, +o0) is a C*-Finsler

structure of M if the following three conditions hold:

(1) (Regularity) F is C* on TM \ 0, where 0 stands for the zero section;
(2) (Positive 1-homogeneity) It holds F(cv) = cF(v) forallv € TM and ¢ > 0;
(3) (Strong convexity) The n x n symmetric matrix

212 n
(8} o= (1 olF ].(V)) 1)

-1\ 2oviov )

is positive-definite for allv € TM \ 0.
We call such a pair (M, F) a (C*-)Finsler manifold.
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In other words, F provides a smooth Minkowski norm on each tangent space which varies smoothly in
horizontal directions as well. If F(-v) = F(v) for all v € TM, then we say that F is reversible or absolutely
homogeneous.

For x, y € M, we define the (asymmetric) distance from x to y by

1
A(x,y) s= inf 0/ F(i(®) dt

where 7 : [0, 1] — M runs over all C!-curves such that 7(0) = x and 17(1) = y. Note that d(y, x) # d(x, y)
can happen since F is only positively homogeneous. A C*-curve n on M is called a geodesic if it is locally
minimizing and has a constant speed with respect to d, similarly to Riemannian or metric geometry. See (2.4)
below for the precise geodesic equation. For v € TxM, if there is a geodesic 7 : [0, 1] — M with /(0) = v, then
we define the exponential map by exp,(v) := n(1). We say that (M, F) is forward complete if the exponential
map is defined on the whole TM. Then the Hopf-Rinow theorem ensures that any pair of points is connected
by a minimal geodesic and that every forward bounded closed set is compact (see [3, Theorem 6.6.1]; A ¢ M
is said to be forward bounded if SUPyca d(x, y) < oo for some (or, equivalently, for all) x € M).

For v € TxM\ {0}, the positive-definite matrix (g;(v)) ijo1in (2.1) induces the Riemannian structure g, of

TxM by
n
0
gv<i21:aiaxi K }Z: ,aX] ) Zg,](v)a :b;. 2.2

Note that this definition is coordinate-free and gy (v, v) = F?(v) holds. One can regard gy as the best Rieman-
nian approximation of F|r,y in the direction v. The Cartan tensor

_ 108
CipV) = 5 Sk
measures the variation of g, in the vertical directions, and vanishes everywhere on TM \ 0O if and only if F

comes from a Riemannian metric. We remark that

> CiplV' =3~ Cpv =3 Cipe(wve =0 (23)
i=1 j=1 k=1

(v), ve TM\O,

by Euler’s homogeneous function theorem ([3, Theorem 1.2.1]).
Define the formal Christoffel symbol

'Y]k -5 Z zl( ){aglk(v ag]l( )— ag)k( )}

for v e TM\ 0, where (g7(v)) denotes the inverse matrix of (gij(v)), and the geodesic spray coefficients and the

nonlinear connection
i 1 & i j. k i an
_ j
V=5 D WV NV = )
j k=1

forv e TM\ 0 (Gi(0) = N}(O) := 0 by convention). Observe that G is positively 2-homogeneous (Gi(cv) =
c®Gi(v) for ¢ > 0) and we have S N}’f (v)V/ = 2G'(v). By using N!, the coefficients of the Chern connection are
given by

n
L) := ) = > g0 CremN]" + CitmNE = CiromNT(¥)
1,m=1
on TM\ 0.

Definition 2.2 (Covariant derivative) The covariant derivative of a vector field X by v € TxM with reference
vector w € TxM \ {0} is defined as

n

DY X(x) := Z {v’(x) + Z k(w)vak(x)}:)(i

i,j=1

e TxM.




DE GRUYTER Comparison Theorems on Weighted Finsler Manifolds and Spacetimes with e-Range =—— 5
The geodesic equation is then written with the help of (2.3) as

DA = Z {1’ +26 (n(t))} (2.4)

(t)

2.2 Jacobi fields and Ricci curvature

A C>-vector field J along a geodesic 1 is called a Jacobi field if it is realized as the variational vector field of
a variation consisting of geodesics, namely J(t) = 9{/0s(t, 0) for some { : [0, ] x (-&, &) — M such that
{(t,0) = n(t) and ((-, s) is geodesic for every s € (-¢, €). A Jacobi field is equivalently characterized by the
equation o

DIDYJ +Ry(J) = 0,

where

Ry(w) := Z R aXl

i,j=1

forv,w € TxM and

ON noo.
R =295 ) - Z{ 24(v)ek(v)}—zwa(v)wf(v)

k=1

is the curvature tensor.

Definition 2.3 (Curvatures) For linearly independent tangent vectors v, w ¢ TxM, we define the flag curva-
ture by
gv(Rv(w), w)

K, w) := F2(v)g,(w, w) - go(v, w)2 "

We then define the Ricci curvature of v by

n-1
Ric(v) := F*(v) Y "K(v, ey),

i=1

where {e;}} 1 U {v/F(v)} is an orthonormal basis of (TxM, gv), and Ric(0) := 0.

Remark 2.4 Although we will not use it, here we explain a useful connection between the Riemannian and
Finsler curvatures (see, e.g., [1, 38, 46]). Given a nonzero vector v € TxM, let us extend it to a C*-vector field
V on a neighborhood of x such that every integral curve of V is geodesic. Then the Finsler flag curvature
K(v, w) for any w coincides with the sectional curvature of the plane spanned by v and w with respect to the
Riemannian metric gy. In particular, the Finsler Ricci curvature Ric(v) coincides with the Riemannian Ricci
curvature Ric(v, v) with respect to gy. The condition that all integral curves are geodesic is essential. This
characterization sometimes enables us to reduce a Finsler problem to a Riemannian one.

2.3 Unweighted Laplacian

In order to introduce some analytic tools including the Laplacian and Hessian, we need the dual Finsler struc-
ture F* : T"M — [0, +o) to F defined by

F(w) := sup w(y) = sup wv)
veT M, F(v)<1 veT M, F(v)=1
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for w € TyM. It is clear by definition that w(v) < F*(w)F(v) holds. In the coordinates (x/, W)} of T"U given
by w = 3", w;dx/, we will also consider

1 92[(F")?

]
Zaa)aa)]( ) 1’1_1’2’--"”5

gij(w) =
forwe T'U\O.
Let us denote by .#" : T"M — TM the Legendre transform. Precisely, " sends w € TyM to the unique
element v € TxM such that F(v) = F*(w) and w(v) = F*(w)?. In coordinates we can write down

LI(FY] ) 0

n
* * 0
Lw=) gyl ox ‘x T 227 dw; ox Ix
=)

ij=1

forw € TyM\{0} (the latter expression makes sense also at 0). Note that glfi(w) = gU( & (w)) forw € TyM\{0}.
The map .Z”| r: i is linear only when F|r, y; comes from an inner product.
For a C!-function f : M — R, we define the gradient vector field of f by

of 0o
oxi oxi "

Vf = 2"(df) = Zgz,( df) 5

i,j=1

We remark that, to be precise, the latter expression makes sense provided df # 0. If f is C% and df(x) # 0,
then we define the Hessian V2f : TyM —s TxM of f at x by

V*f(v) == DY (V). (2.5)
The Hessian is symmetric in the sense that

gvr(V W), w) = gvs (v, V(W)

forall v, w € TxM (see [40, Lemma 2.3] or Lemma 4.13 below). Then we define the unweighted Laplacian of a
C?-function f : M — R by
Af := trace(V>f) (2.6)

on {x € M|df(x) # 0}.

When (M, F) is equipped with a measure (as in Subsection 3.4), we employ the weighted Laplacian defined
as the divergence (associated with the measure) of the gradient vector field; see [39] for details. In this article
(except for Subsection 3.4), more generally, we shall consider a weight function not necessarily induced from
a measure. Introducing a measure is necessary when we develop analysis on Finsler manifolds, however,
we remark that there is in general no canonical measure on a Finsler manifold as good as the Riemannian
volume measure (see [35] for a related discussion).

3 Comparison theorems on weighted Finsler manifolds

3.1 Weighted Finsler manifolds

As a weight, following [25], we employ a positively 0-homogeneous C*°-function on the slit tangent bundle:
Y:TM\0 — R, P(cv) = Y(v) forall c > 0.
For a nonconstant geodesic 17, we define

PYn(0) == Y (7(1)). (3.1)
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Definition 3.1 (Weighted Ricci curvature) Given v € TM \ 0, let  : (-¢,€) — M be the geodesic with
1(0) = v. Then, for N € R\ {n}, define the weighted Ricci curvature by
Ricy(v) := Ric(v) + 15 (0) - M (3.2)
n N-n
We also define
Riceo(v) = lim Ricy(v) = Ric(v) + $3(0),  Ricn(v) := lim Ricy(v),
N—oo Nin

and Ricy(0) := 0.
By definition we observe the following monotonicity: For N € (n, +o0) and N’ € (-oo, 1),
Ricn(v) < Ricy(v) < Riceo(v) < Ricyr(v) < Ricq (v). (3.3)

Thereby bounding Ric; from below is a weaker condition than that for Rice.. By Ricy = K we will mean that
Ricy(v) = KF?(v) holds for some K € Rand all v € TM.

This framework generalizes the weighted Ricci curvature associated with a measure introduced in [34]
(see also [38]). When M is equipped with a positive C>-measure m (i.e., in each local chart, the density func-
tion of m with respect to the Lebesgue measure is positive and C*°), the corresponding weight function ¥, is
given by

dm = e V=0, /det [g;;(7(6))] dx'dx? - - dx" (3.4)

along geodesics 7. Notice that  /det[g;;(7(£))] dx'dx? - - - dx" is the volume measure for the Riemannian met-
ric 8 along n. Then, for (M, F, m) satisfying Ricy = K, we can obtain various comparison theorems including
those we will extend in this article ([34, 39]), as well as the curvature-dimension condition ([34, 36, 37]) and
the needle decomposition ([37]) among others. Compared with 1, our general weight function 1) on TM \ 0
allows us to include in the analysis the unweighted case, which is indeed recovered for i) = 0 (cf. (3.2)). We
also remark that, in the Riemannian case, it is common to employ a function on M as a weight function. This
is because any measure m is written as m = eV volg, and then ¥ € C*(M) is the weight function.

In our previous paper [25], inspired by Wylie’s work [57], we introduced a completeness condition with
respect to a parameter € € R in a certain range specified later. We shall follow the same lines in the Finsler
setting.

Definition 3.2 (e-completeness) A geodesic 7 : [0, 1) — M (I € (0, +o0]) is said to be forward e-complete if

l
/ e w1 P10 gt = oo,
0

We say that (M, F, i) is forward e-complete if any geodesic n : [0, §) — M in M can be extended to a forward
e-complete geodesic.

The case of € = 1 is the usual forward completeness in Finsler geometry, and the case of € = 0 was
introduced in [57] and further studied in [44, 45, 58] for Riemannian manifolds. We also remark that, if (- 1)y
is bounded below, then the forward completeness implies the forward e-completeness. The reason behind
these different choices of € is understood by introducing the admissible range of € depending on N, called
the e-range introduced in [25, Proposition 5.8], where we showed the existence of a conjugate point within
the e-range. In the current setting, we define as follows.

Definition 3.3 (e-range) Given N ¢ (-oo, 1] U [n, +oo], we will consider € € R in the following e-range:

e=0forN=1, |e|< ’/x:rlz forN#1,n, e€cRforN=n. (3.5)
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We also define the associated constant ¢ = c(N, €) by

o 1 _ zN—n
c.—n_1<1 €N—1)>0 (3.6)

for N # 1. If ¢ = 0, then one can take N — 1 and set ¢(1, 0) := 1/(n - 1).

Note that € = 1 is admissible only for N € [n, +o0), while € = 0 is always admissible.

3.2 Bonnet—Myers theorem

We first consider the Bonnet—Myers diameter bound taking the e-range into account. The case of N € [n, +o0)
and € = 1 (so that ¢ = 1/(N - 1)) can be found in [34].

Let us first illustrate some common notations used in the proofs of the comparison theorems. Given a
unit tangent vector v € UxM := TxM N F1(1), let n : [0, ) — R be the geodesic with (0) = v. We take an
orthonormal basis {e;}}; of (TxM, gv) with e, = v and consider the Jacobi fields

Ei(t) := (dexp)n(te), i=1,2,...,n-1,

along 7. Define the (n - 1) x (n — 1) matrices A(t) = (a;;(t)) and B(t) = (by;(t)) by

n-1
aii(t) := gy (Ei(0, Ei(©)),  DIE(0) = by(DE;(0).
j=1

We also define R(t) = (R;;(f)) by

Ryj(8) := g; (Ry (E;(0)), Ej(8)) = g5 (R (E;(0)), Es(8)).
We summarize some necessary properties of A, B and R.
Lemma3.4 (i) Wehave BA = AB" and A’ = 2BA, where B’ is the transpose of B.
(i) A"Y2BAY? is symmetric.

(iii) The Riccati equation
A" -2B’A+2R=0 (37)

holds.

See [34, §7] (or [38, §8.1]) for the proof of the lemma, here we only remark that (ii) readily follows from
BA = AB' in (i). We shall prove the Bishop inequality in the current setting, inspired by [25, Proposition 5.14]
for weighted Lorentz-Finsler manifolds (see [9, §111.4] for the Riemannian case). This is an essential ingredient
of all the comparison theorems in this section.

Proposition 3.5 (Bishop inequality) Let v € UxM, np : [0,1) — M, A(t), B(t) and R(t) as above. Given
N € (-o0, 1] U [n, +o0], € in the e-range (3.5) and c = c(N, €) as in (3.6), we define

h(t) = MO (det AD) %, hy(0) = h(p7' (D)
fort € [0,0) and T € [0, @y(1)), where

t

(D) = / e B i) g, (3.8)
0

Then, for all T € (0, @y()), we have

h1(t) < —chy (1) Ricy (( o (pgl)l(‘r)). (3.9)
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When N € [n, +o0) and € = 1, we have ¢ = 1/(N - 1), ¢y(t) = t and h; = h. Hence (3.9) reduces to the
Bishop inequality in the standard form:

Rh'(t) < —Wh(ﬂ.

Note also that the parametrization (3.8) has the same form as the e-completeness (Definition 3.2).

We give here a rather algebraic but streamlined proof. A different proof, that might give further insights,
could be obtained along the lines of the analogous statement in Subsection 5.2 for the Lorentz—Finsler case;
see (5.9). That line of proof, however, would require more work in terms of preliminary definitions and results.

Proof. Put ho(t) := (det A(£))/?"=1) and observe from Lemma 3.4 that
(n-1hj = %(detA)_l(detA)’ = % trace(A’A™1) = hg trace(B),

(n - 1)hg = hj trace(B) + % trace (A”A"1 - (A’A"l)z)

01 (trace(B))? - ho trace(RA™Y) — hg trace(B?).

The Cauchy-Schwarz inequality (applied to the eigenvalues of B) yields (trace B)? < (n - 1) trace(B?) (since
A~Y2BAY? is symmetric), and hence we obtain the unweighted Bishop inequality:

ho (t) < —who(ﬂ- (3.10)

This is the starting point of our estimate.
We first assume N € (—oo, 1) U (n, +o0]. Since h(t) = e 1O o ()Y we have

W=nh- (c(n - 1)2—/8 - cr,b§1>

and

' = h(c(n - 1)h—6 - CI,D,I) + h{c(n - 1)}1()}1}172(}1)2 CIM{}
0

= ch{(n 1) ho -y + (c(n - 1)?-(n- 1)) (ho)” 2c(n - 1)h—l21/)§1 + c(ng)z}
<—ch RlcN(n)
2
. ch{(n ~1)(en-1-1) & ho)” _5e(n- 1)”0 W+ ( — n)(wgf},

where we used (3.10). In order to estimate the remaining terms in the last line, we observe from h(t) = h1(@y(t))
that

1(<Pn)92(”€ T, h/ll(‘Pn)e“” Ty 251€:11) ¥y

Hence we have

Ry (py)e’ P < 1 - hzie 3 (( ) Dho ¥ (¢")2>
< —chRicy() + ch®,
where
132 /
®:=(n-1)(cln-1)-1) (};102) -2c(n- 1)Fg¢2 + (C - ﬁ)ﬁl)%)z
2(6 1)
(o

(n-1) Ozpq W) )
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By substituting ¢ from (3.6) and noticing (N - n)/(N - 1) > 0, we deduce that

_ o-DWN-n)(hp)* [  SN-n\hy ,
D =-¢ N-1 h2 2( € eN—l h—oz/)n

(e i 2Dy
_2 (=D - n) ()’ _26(1 M- n)i)l,,;l

N-1 n2 N-1
N-1_ 2(N n)\ @)’
(N n ) -1
B [(n- 1)(N n)ho \/ -1 ., e0N-n ¥y \’
-T\¢ “n N-1 Vn-1

<0,

where we choose ‘+’ if 1 — (N - n)/(N - 1) = 0 and ‘-’ otherwise. Therefore we obtain

4(e-1)

(1) = —ce VO O, () Ricy (107’ (1))
= —chy(T) Ricy ((n 0 97 (7)),

since
-1

)
A(6) = e 1O (7.0 71 (pn(0)). 3.11)
This completes the proof for N € (-oo, 1) U (n, +oo]. Then the cases of N = 1, n follow by taking the limits. OJ

The diameter of (M, F) is defined by diam(M) := SUpy yem d(x, y). Along a geodesic 1 : [0,1) — M, we
say that 11(to) is a conjugate point to n(0) if there is a nontrivial Jacobi field J vanishing at 0 and t,. Equivalently,
n(to) is a conjugate point if d(exp,l(o))(tot'](o)) does not have full rank. In this case, n is no more minimizing
beyond tg, so that finding a conjugate point yields, by the Hopf-Rinow theorem, a diameter bound (and
singularity theorems in the Lorentzian setting).

Theorem 3.6 (Bonnet-Myers Theorem) Let (M, F, ) be forward complete and N € (—oo, 1] U [n, +o0], € in
the e-range (3.5), K > 0 and b > 0. Assume that

Ricy(v) = KF2(v)e it ¥ (3.12)
holds for allv € TM \ 0 and
Y <, (313)
Then we have ‘ bar
diam(M) < Tk

In particular, M is compact and has finite fundamental group.

We remark that, to be precise, the forward completeness is a condition on (M, F) and the weight function
Y plays a role in (3.12) and (3.13).

Proof. We will use the same notations as in Proposition 3.5, and show that any unit speed geodesic n neces-
sarily has a conjugate point by the length bsr/+/cK. By the Bishop inequality (3.9) and the hypothesis (3.12)
combined with (3.11), we have for positive T

(1) < —ch1 (D)K.

Now we shall prove that the limit lim,_. Th’ (1) exists and is nonpositive. Here we present a simple ar-
gument based on the above Bishop inequality. Moreover, in this paragraph we are going to consider general
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K € R, for later reference to this proof in the proofs of the Laplacian and Bishop—Gromov comparison theo-
rems. We observe from the definition of h; that h1 (1) = 0(t°™ Y)as 7 — 0,and 0 < c¢(n-1) < 1. Hence th; (1)
is differentiable at 0, however, we need to be careful because it does not necessarily imply that Th, (1) is C 1
at 0. By the continuity of h1, for sufficiently small T > 0, we have |h1(7)| < 1 and in particular hy(7) < |cK|.
Hence the function A(t) := hy (1) - |CK |72 is concave in 7 near 7 = 0. Let f(7) = h(t) - Th'(1) be the ordinate
of the intersection between the tangent to the graph of h at (7, h(1)) and the vertical axis. By the concavity of
h, f is non-decreasing in 7 > 0 and f(7) > h(0) = 0. Therefore the limit lim,_,o f(7) exists and we obtain

lim 7h} (1) = lim 7h'(t) = - lim f(7) < O.
7—0 7—0 7—0
Comparing h; with s(7) := sin(v/cK7) which satisfies s” (1) + cKs(t) = 0, we find
(his-his’) <0

and, by lim,_,o Th (1) < 0,
lim (k' (7)s(1) - h1(7)s'(1)) < 0
7—0

Thisimplies hjs—h;s’ < 0and hence h; /s is non-increasing. Then, since s(r7/v/cK) = 0, h1(1¢) = O necessarily
holds at some 15 € (0, 1/v/cK], and n(ty) with ¢y := (pgl(ro) is a conjugate point to x = 7(0). Noticing
@y(to) 2 to/b by the hypothesis (3.13), we obtain to < bty < brr/v/cK. Since n was an arbitrary unit speed
geodesic and (M, F) is forward complete, we conclude that diam(M) < brr/+/cK.

The compactness of M is an immediate consequence of the Hopf-Rinow theorem. Since the universal
cover M equipped with the lifted metric and weight function again satisfies (3.12) and (3.13), M is compact
and the fundamental group of M is finite. O

We stress that Theorem 3.6 covers both the unweighted and weighted cases simultaneously. On the one
hand, in the unweighted case where 1) = 0, choosing N = n, € = 1 and b = 1 gives the classical (unweighted)
Bonnet—Myers bound diam(M) < m+/(n - 1)/K under Ric > K by Auslander [1]. On the other hand, when
N € [n, +o0) and € = 1, we can again take b = 1 and recover the weighted Bonnet—Myers bound diam(M) <
/(N - 1)/K under Ricy = K in [34]. We also remark that, in the remaining case of N € (-o0, 1] U {+o0},
one cannot in general bound the diameter under the constant curvature bound Ricy > K (see [58] for some
examples). Therefore, assuming the modified bound Ricy > Ke" ¥ with le| < 1 is essential. Moreover, by
virtue of the monotonicity (3.3), one can easily construct an example satisfying (3.12) for some N < 1 but
Rices(v) < O for some v.

Remark 3.7 In the above proof we found 7o = @y(to) < m/+/cK, which means

to

2(e-1) T
- ’/’q(s)
enl ds < ,
/ vcK

0

without the need for the bound (3.13) on the weight function . This can be regarded as a diameter bound
with respect to a deformed length, studied with € = (N — 1)/(N - n) in [58, Theorem 2.2] (N = 1) and [16,
Theorem 2.7] (N < 1).

As a corollary to the theorem and remark above, we have the following compactness theorem without
(3.13) (see [58, Corollary 2.3] and [16, Corollary 2.8]).

Corollary 3.8 Let (M, F, ) be forward complete and N € (—oo, 1] U [n, +o0], € in the e-range (3.5) and K > 0.
If

Ricy(v) = KF? (v)e4(€ Hyw)
holds for allv € TM \ 0 and (M, F, ) is forward e-complete, then M is compact.
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Proof. 1t is sufficient to show that M is forward bounded. By way of contradiction, suppose that there are
a point x € M and a sequence {y; }xen such that d(x, yy) — oo. Let vi € UxM be a unit vector such that
N () := exp,(tvy) gives a minimal geodesic from x to y,. Taking a subsequence if necessary, we can assume
that v converges to some unit vector v € UxM and put n(t) := exp,(tv). Now, it follows from Remark 3.7 that

d(x,yx)
2(e-1)
= U, (s)
et "uds < ——,
0

Letting k — oo yields

oo

/ e it Vil gs < L
cK

(0]

which contradicts the e-completeness of 1. Therefore M is forward bounded and hence compact by the Hopf-
Rinow theorem. g

3.3 Laplacian comparison theorem

Next we deal with the Laplacian comparison theorem for the distance function u(x) = d(z, x) from a fixed
point z € M. We say that x € M is a cut point to z if there is a minimal geodesic n : [0, 1] — M from z to x
such that its extension 7 : [0, 1 + €] — M is not minimizing for any € > O (in fact this holds for any minimal
geodesic to a cut point). The set of all cut points to z is called the cut locus of z and denoted by Cut(z).

Note that u is C*° outside {z} U Cut(z), and every integral curve of Vu is a unit speed geodesic. Let 17 :
[0,1) — M be a unit speed minimal geodesic emanating from z without cut point, then we define the -
Laplacian of u by

Alpu(n(t)) = Au(n(t)) - l,b;l(t). (3.14)

Generalizing s in the proof of Theorem 3.6, we define the comparison function sy as

1 .
% sin(v/xt) k>0,

sk(t):=qt K =0, (3.15)
1 .
= sinh(v/-xt) k<0,

where t € [0, 1/+/k] for x > 0and t € R for x < 0. Observe that s solves sy + kSx = 0 with sx(0) = 0 and
s,(0) = 1.

Theorem 3.9 (Laplacian comparison theorem) Let (M, F, ) be forward complete and N € (-oo,1] U
[n, +o0], € € Rin the e-range (3.5), K € Rand b > a > 0. Assume that

Ricy(v) = KF2(v)e "1 ¥

holds for allv ¢ TM \ 0 and
_2(e-1)

ase 1 ¥<p. (3.16)

Then, for any z € M, the distance function u(x) := d(z, x) satisfies

Ayu(x) < iSch(u(x)/b)

cp scx(u(x)/b)
on M\ ({z} U Cut(2)), where p := a if s.x(u(x)/b) = 0 and p := b if s.x(u(x)/b) < 0.
Note that we have s/ (u(x)/b) < 0 only when K > 0 and u(x) > br/(2v/cK), and in this case the assump-

tion e’%‘/’ > g is unnecessary. We also remark that, if K > 0, then u(x)/b < m/+/cK thanks to Theorem 3.6
and the hypothesis x ¢ Cut(z).



DE GRUYTER Comparison Theorems on Weighted Finsler Manifolds and Spacetimes with e-Range = 13

Proof. We fix a unit tangent vector v € U, M, take the geodesic n(t) := exp,(tv) and again make use of the
same notations as in Subsection 3.2. Let I, > 0 be the supremum of ¢ > 0 such that there is no cut point to z on
n((0, t)). In the polar coordinates (x"){‘:1 around 7((0, 1)) such that X" = u and (9/9x")| e = E;(t), we shall

first see that
Ayu(n(t)) =~y + % {log ( det[gij(ﬁ)])] , (3.17)

where one can take det[g;()] fori,j = 1,2,...,n - 1 since g;,(17) = 0 fori = 1, 2,...,n - 1 (by the Gauss
lemma; see [3, Lemma 6.1.1]) and gnn(17) = 1. By comparing (3.17) with the definition (3.14) of A, u(n(¢)), it
suffices to show that the second term in the right hand side of (3.17) coincides with the unweighted Laplacian
Au(n(t)). To this end, on the one hand, let us observe Vu = 0/9x™ and

2,( 0 _pvu (9 _ & . )
Viul 55 ) = Dojaxi | gy =, in(VU) 55
j=1
(we will suppress the evaluations at 1(t)), and hence

n
Au = trace(V?u) = fo:n(Vu)
i=1

1< do: noo.
=5 > g VWSEVY - Y fTWCa(VuN(TW)
i,k=1 i,k,l=1

1 ik 0Zik
=3 .;g (VU)W(VU),
i k=

where we used the geodesic equation (2.4) for 7 to see Ni(Vu) = 2G!(Vu) = -ij' = 0. On the other hand,

% {log ( det[g,-;(ﬁ)])} ! race [(d[ggt(ﬁ)]) . (gjk(f?))}

. 08

2
1 L\ i
=3 2 o (Mg (@)

i,j=1
since i = 0, thereby we obtain (3.17).

Now, putting ho = (det[gi]-(f])])l/ 2(n-1) 3 in the proof of Proposition 3.5, we find that

(hg—l)/
hil

(e ¥nhp-1y

Ayu(n() = -y + iy

(0= (®).

Recall that
@RI = R = hy (@q(0) S,

and one can show that h;/s.x is non-increasing in the same way as in Theorem 3.6. Therefore
(e¥nh1)/scx(py) /¢ is non-increasing and we have
(e¥rhgty
e ¥api-t

(t) < (SCK(q’n)l/C)/( _ 15/61((?11(0) '(0) < 1 sch(t/b)

ScK(‘Pn)l/c t) - E SCK((Pﬂ(t)) §Dq 5 ScK(t/b)

by the fact that s /s is non-increasing for any k and by b™! < Py < a! from (3.16). This completes the proof.
O
Remark 3.10 The intermediate estimate

ety () Se(@n(0)

A u(n(d) < e nr a0 Sck¥n
wu(n®) cscr(pn(0)

(without the bound (3.16) on ) in the above proof corresponds to [58, Theorem 4.4] (N = 1) and [16, Theo-

rem24](N<1)fore=(N-1)/(N-n)andc =1/(n-N). When N € [n, +o0), e =1and c = 1/(N - 1), we can

take a = b = 1 and recover [39, Theorem 5.2].
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We finally remark that, in the above proof, we made use of the special property of the distance function
u that every integral curve of Vu is a geodesic. In dealing with more general functions, the usefulness of this
type of Laplacian (which is associated with a weight function ¥ not necessarily induced from a measure) has
yet to be shown.

3.4 Bishop—Gromov comparison theorem

We finally show the Bishop—Gromov volume comparison theorem, for which we need a measure on M. Let m
be a positive C>°-measure on M and i, be the weight function associated with m (recall (3.4)). We define the
forward r-ball of center x as

B*(x,r):={y e M|d(x,y) < r}.

Theorem 3.11 (Bishop—Gromov comparison theorem) Let (M, F,m) be forward complete and N ¢
(-o0, 1] U [n, +o0], € € Rin the e-range (3.5), K € Rand b > a > 0. Assume that

Ricy(v) = KF2(v)e s ¥=®)

holds for allv € TM \ 0 and
2(6‘ l)

a< l/}m<b

Then we have
m(B*(,R) _ b fy "NV s (m)1fe ar

m(B*(x, r)) a fr/b scx(T)V/edr

forallx e Mand O < r < R, where R < bri/v/cK when K > 0 and we set 11/+/cK := oo for K < 0.

Proof. Given each unit vector v € UxM and the geodesic n(t) := exp,(tv), (h1/ s.x) /¢ is non-increasing as in
the proof of Theorem 3.9. Hence the standard technique using Gromov’s lemma (see [9, Lemma II1.4.1]) yields
that the integration is also non-increasing in the sense that

.S .
Iy hy(r)Ycdr ) ]§ hy(r)Ycdr
fos scx(m)V/edr [y Scx(T)V/edr

for0 < s < S. Observe from b™" < ¢}, < a* that

s 9,9 0;1(9)
/ hi(0)!/dr = / h(t)”csoi](t)dtz% / h(OY¢ de
0 0 0
and
s O]
/ hy()!/e dr % / h(t)Y€ dt.
0 0

Therefore we have
f(f h(t)l/c dt ) b f o(S) hy (1) 1/c dr b f(Pn(S) s K(T)l/c dr

Jo hOede = a@ o gy ryviedr @ s (e ar

We shall integrate this inequality in v € UxM with respect to the measure = induced from gy. For each
v € UxM, let Iy be the supremum of ¢ > O satisfying d(x, exp,(tv)) = t. Then we have, when K > 0, ¢y(1y) <
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1/ cK by the proof of Theorem 3.6 (recall Remark 3.7). Moreover, t/b < @;(t) < t/a. Therefore we obtain

min{R, I, }
mER)- [ [ hoMeaezay
UM 0
min{R/a, n/v/cK} 1/c min{r, I}
S d
cbJo o k(T dr / / h(H)Y/¢ dt E(dv)
a fo scx(n)V/edr UM 0
p e mVE s @ Vedr
=2 7 m(B*(x, 1))
a Jo" sek(m)t/edr
(notice that r/b < /+/cK if K > 0 by hypothesis). This completes the proof. O

This volume comparison theorem could be compared with [53, Theorem 1.2] on Riemannian manifolds
(M, g, m) with Riceo > K and || < k. See also [58, Theorem 4.5] and [16, Theorem 2.10] in terms of the
deformed distance structure that we briefly discussed in Remark 3.7.

4 Finsler spacetimes

From here on we switch to the Lorentzian setting. We refer to [6, 33, 41] for the basics of Lorentzian geometry,
and to [28, 32] for further generalizations including Lorentz—Finsler manifolds (see also Remark 4.3 below). In
this and the next sections, let M be a connected C*-manifold without boundary of dimension n+1. We remark
that dim M = n in the preceding sections, however, it is standard in Lorentzian geometry to letdimM = n+1,
we hope that this difference causes no confusion. We will use indices in Greek: @, § =0, 1, ..., n.

4.1 Lorentz-Finsler manifolds

Similarly to the preceding sections (and [25]), given local coordinates (x*)?_, on an open set U C M, we will
use the coordinates

We follow Beem’s definition [5] of a Finsler version of Lorentzian manifolds.

Definition 4.1 (Lorentz-Finsler structures) A Lorentz-Finsler structure of M will be a function L : TM —
R satisfying the following conditions:

(1) L eC=(TM\0);
(2) L(cv) = c’L(v) forallv € TM and ¢ > 0;
(3) Forany v ¢ TM \ 0, the symmetric matrix

(gas)" i (<25 )"
8ap a,B=0 * ovadvB =0

is non-degenerate with signature (-, +, ..., +).

A pair (M, L) is then called a (C*-)Lorentz—Finsler manifold.

We say that (M, L) is reversible if L(-v) = L(v) forall v € TM. For v € TxM \ {0}, define the Lorentzian
metric gy of TxM in the same manner as (2.2) by

n n n
0 0
gv(Zaaaxa X’Zbﬁaxﬁ‘x> = Z gaﬂ(V)aablg.
a=0 B=0 a,B=0
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Then we have g,(v, v) = 2L(v).

Definition 4.2 (Timelike vectors) A tangent vector v € TM is said to be timelike (resp. null) if L(v) < O (resp.
L(v) = 0). We say that v is lightlike if it is null and nonzero, and causal (or non-spacelike) if it is timelike or
lightlike (L(v) < 0 and v # 0). The spacelike vectors are those for which L(v) > 0 or v = 0. The set of timelike
vectors will be denoted by
Q:={ve M|L() <0}, Q:=[] .
XeEM

We will make use of the following function on Q':

F) = v/-2L(v) = /-gv(v, V). (4.1)

Note that Q) # () and every connected component of Q} is a convex cone ([5], [25, Lemma 2.3]). In general, the
number of connected components of Q, may be larger than 2 (see Example 4.12(b) below from [5]). This fact
will not affect our discussion because we shall deal with only future-directed (timelike or causal) vectors; see
Definition 4.4 below. We also remark that Q} has exactly two connected components in reversible Lorentz—
Finsler manifolds of dimension = 3 ([29, Theorem 7]).

Remark 4.3 We comment on the differences in approach between our Lorentz-Finsler setting and that
adopted in some physical works. Finslerian approaches to gravity have a venerable history, one of the first for-
mulations goes back to Horvath [13] in the 1950s. Since then many different Finslerian gravitational equations
have appeared in the physical literature. Due to the lack of exact solutions, particularly of Finslerian general-
izations of the Schwarzschild metric, and of their confrontation with experiment, a consensus on the correct
Finslerian gravitational equation has not yet been reached. Most equations (including Horvath’s) imply Ricci
flatness in vacuum, so this condition is often regarded as a minimal requirement.

Many authors worked via tensorial equations and paid little attention on the constraints imposed by the
Lorentzian signature of the vertical Hessian of the Finsler Lagrangian. Precisely, in physical papers, a direct
product metric of the form

0 2 0
2L<aa+v>— a +F(v), (aa,v> e TRxTZ,

would be imposed as ansatz (see, e.g., [20, (8)], [21, (27)], [42, (34)]). These metrics are not of Lorentz—Finsler
type according to our definition, since the vertical Hessian at the observer (timelike vector) 0/9dt is not well
defined (F? is not twice differentiable at the origin; see, e.g., [38, §1.2.2]). Less severe regularity problems are
shared by those Lagrangians that have no vertical Hessian at the light cone. This happens, for instance, to all
the metrics that follow from the Bogoslovsky metric element (very special relativity) [12, 47]. In these metrics
lightlike particles might have infinite momenta, making these models not as physically natural as one would
desire. The metrics of Lorentz—Randers type [4, 48, 51] have a vertical Hessian that is also not Lorentzian and
C? at the boundary of the light cone, though the Finsler Lagrangian can be C. Unfortunately, in these models
the momenta of lightlike particles might vanish.

When it comes to work in Lorentz—Finsler geometry, the ansatzes tried by physicists have the advantage
of being simple, and of making the calculations somewhat easier, but being non-C? at the light cone, often
produce, as shown previously, metrics that have undesired physical features. From the point of view of pure
mathematics, it is not easy to work with these less regular models. Nonetheless, some of our results could
hold relaxing the C?-regularity assumption at the light cone, e.g., by imposing the C?-Lorentzian condition
only in the timelike cone. This would raise issues related to the physical interpretation of light. It has been
proved in [31, Section 4] (and again in [14, Theorem 6.6]) that lightlike geodesics and transport of momenta
over them do not require the vertical C>-differentiability of the Finsler Lagrangian at the light cone, and that
these concepts follow just from the distribution of (anisotropic) cones, not from the Finsler Lagrangian itself.

The problem of allowing for Lorentz—Finsler Langrangians with non-C? vertical behavior at the light cone
is somewhat analogous, in the positive signature, to that of studying Finsler metrics F for which the Hessian
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of L = F?/2 is not well defined or positive-definite in some directions (e.g., Kropina metrics). Here one faces
some annoying problems, for instance, the Hopf-Rinow theorem does not hold [43]. Our comparison results
could be generalized to these frameworks, as many of our proofs present arguments that seem localized over
the indicatrix. However, the impossibility of appealing to the Hopf-Rinow theorem would certainly make
such an investigation somewhat involved. We do not attempt to generalize our results to that extent, and keep
the simpler framework of C2-differentibility on the slit-tangent bundle. This seems to be the right approach
as our focus is on the role of the e-range concept in comparison theorems rather than generality.

4.2 Causality theory
Let (M, L) be a Lorentz-Finsler manifold.

Definition 4.4 (Finsler spacetimes) If (M, L) admits a timelike smooth vector field X (namely L(X(x)) < O
for all x € M), then (M, L) is said to be time oriented (by X). A time oriented Lorentz—Finsler manifold will be
called a Finsler spacetime.

In a Finsler spacetime oriented by X, a causal vector v € TxM is said to be future-directed if it lies in the
same connected component of Q% \ {0} as X(x). We will denote by Qx C Q the set of future-directed timelike
vectors, and define

Q=)0 Q:=[J0n 0Q\0:=[J@x\{O}.
XEM XEM xXeM
A C-curve in (M, L) is said to be timelike (resp. causal) if its tangent vector is always timelike (resp. causal).
All causal curves will be future-directed.

Given distinct points x, y € M, we write x < y (resp. x < y) if there is a future-directed timelike (resp.
causal) curve from x to y, and x < y means that x = y or x < y. Then we define the chronological past and
future of x by

I'(x):={y e M|y < x}, I'«) :={ye M|x <y},

and the causal past and future by
J):={yeMlysx}, J():={yeMxsy}.

ForasetS c M, we define I"(S), I'(S), J7(S) and J*(S) analogously. Let us recall several causality conditions.

Definition 4.5 (Causality conditions) Let (M, L) be a Finsler spacetime.

(1) (M, L) is said to be chronological if x ¢ I'*(x) for all x € M.

(2) We say that (M, L) is causal if there is no closed causal curve.

(3) (M, L) is said to be strongly causal if, for all x € M, every neighborhood U of x contains another neigh-
borhood V of x such that no causal curve intersects ¥V more than once.

(4) We say that (M, L) is globally hyperbolic if it is strongly causal and, for any x,y € M, J*(x) n J (y) is
compact (or empty).

It is straightforward that strong causality implies causality, and a causal spacetime is chronological. A
chronological spacetime is necessarily noncompact.

4.3 Covariant derivative and Ricci curvature

One can introduce the covariant derivative and Ricci curvature in the same way as in the positive-definite
case. We shall use the same notations as in Section 2 and [25].
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Similarly to Subsection 2.1, we define

o) 1= 2§jg“wﬁaﬁﬂw - o)

fora,B,6=0,1,...,nand v € TM \ 0, where (g*¥(v)) is the inverse matrix of (8ap(M)),

n

G*(v) :=% ST s, Nj) =

$,6=0

Gd

S

forve TM\ 0 (G*(0) = Ng(o) := 0 by convention), and

9 g, og
L5 (v) :=75(V) = 5 Z g‘“(v)( 810 k4 ﬁ"Ng 5 L3N )(v)
}l ,u=0

on TM \ 0. Then the covariant derivative is defined in the same way as in Definition 2.2,

DYX(x) := Z { v Xt (x)+ZF55(w)vﬁX6(x)}

a,B=0

e TxM,

aa

for a vector field X, v € TxM and reference vector w € TxM \ {0}. _
The geodesic equation for a causal curve  : [0,1] — M is written as Dgrj = 0 (recall (2.4)). This is
understood as the Euler-Lagrange equation associated with the action

1

s0n) o= [ L(i(0) de

0

The Lagrangian L is preserved over a geodesic, a fact which proves that the causal character of a geodesic is
preserved, hence we can speak of timelike and causal geodesics.
We also define the Lorentz-Finsler distance d(x, y) for x, y € M by

1

d(x, ) := sup / F(i(0) dt
n

0

where 1 : [0,1] — M runs over all causal curves from x to y (recall (4.1) for the definition of F). We set
d(x,y) := 0 if there is no causal curve from x to y (namely x # y). A constant speed causal curve attaining
the above supremum, which is a causal geodesic, is said to be maximal. In general, causal geodesics are
locally maximizing much in the same way as geodesics are locally minimizing in Riemannian geometry ([28,
Theorem 6]). The distance function d is well-behaved in globally hyperbolic spacetimes as follows.

Theorem 4.6 If (M, L) is globally hyperbolic, then the distance function d is finite and continuous, and any
pair of points x, y € M with x < y is connected by a maximal geodesic.

See [30, Proposition 6.8] for the former claim. The latter is the Finsler analogue of the Avez—Seifert theorem
and found in [30, Proposition 6.9]. In general, d is only lower semi-continuous ([30, Proposition 6.7]) and can
be infinite.

Next we introduce the Ricci curvature. First of all, a C*-vector field ] along a geodesic 7 is called a Jacobi
field if it is a solution to the equation

DID]IT+Ry() = 0,

where

R,(w) :=

a,B=0
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forv,w € TxM and

ay . 506 = [ONg 5 _ONg . s SN
Rﬂ(v) = ZW(V) - Z W(v)v - W(V)G ) - ZNs(v)Nﬁ(v)
6=0 6=0
is the curvature tensor. Similarly to Subsection 2.2, a Jacobi field is also characterized as the variational vector
field of a geodesic variation. Note that Ry, (w) is positively 2-homogeneous in v and linear in w.

Definition 4.7 (Ricci curvature) For v € Qy, we define the Ricci curvature (or Ricci scalar) of v as the trace
of Ry: Ric(v) := trace(Ry).

We have Ric(cv) = ¢? Ric(v) for ¢ > 0. If v is timelike, then one can also define the flag curvature

gv(Rv(w), w)

K(v, w) := “gv(v, Vgv(w, w) - gv(v, w)2

for w € TxM linearly independent of v (this is the opposite sign to [6]), and we have

Ric(v) = () Y " K(v, &),

i=1

where {v/F(v)} U {e;}1, is an orthonormal basis of (TxM, gv) (i.e., gv(e;, ;) = &;; and gv(v, e;) = O for all
i,j=1,2,...,n).The Riemannian characterization of the Ricci (and flag) curvature in the sense of Remark 2.4
is available also in this setting (see [25, Theorem 3.7]).

We summarize some basic properties of the curvature tensor (see [30, Proposition 2.4]).

Lemma 4.8 (i) We have R,(v) = O forallv € Q.
(i) gv(v,Rv(W)) =0 forallv € Qx\ {0} and w € TxM.
(iii) Ry is symmetric in the sense that gv(Rv(w1), w2) = gv(w1, Rv(w>)) for allv € Qx \ {0} and w1, w; € TxM.

4.4 Polar cones and Legendre transform

In order to introduce the spacetime Laplacian (d’Alembertian), we consider the dual structure to L and the
Legendre transform (see [29], [32, §3.1] for further discussions). Let (M, L) be a Finsler spacetime. Define the
polar cone to Qx by

Q) = {we TeM|w(v) <0forallv e Oy \ {0}}.

This is an open convex cone in TyM. For w € Qy, we define

* 2
U@=-3( s wm) =-3 inf (wm).
2\ conF1() 2 yeQ,nF-1(1)

By definition, forany v € Qx and w € Q}, we have

N 1 v 2 (w)?
L (a))z—§<w(m>> EOR

This implies, since L(v) < 0, the reverse Cauchy-Schwarz inequality

L (w)L(v) = %(a)(v))2

(see also [29, Theorem 3], [32, Proposition 3.2]). Then we arrive at the following variational definition of the
Legendre transform.

Definition 4.9 (Legendre transform) Define the Legendre transform .#* : Qy —s Qy as the map sending
w € Q} to the unique element v € Qy satisfying L(v) = L"(w) = w(v)/2. We also define #*(0) := 0.
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Note that the uniqueness of v = .#"(w) follows from the strict convexity of the super-level sets of F in Qy.
One can define % : Qy —» Qj in the same manner, and then . = (#")~! holds by construction. In order to
write down .#" and . in coordinates, we introduce

o°L”

dwadwy awﬂ Swaow, @

gtxﬁ(a})
forw e T"M\O0.

Lemma 4.10 (Coordinate expressions) Forv € Qy and w € Q}, we have in local coordinates around x

n
ZW) = a—L(v) dx® = Z gap(v)vﬁ dx*“,
a=0 a,B=0
n n a
£ () = —( ) axa %jogaﬁ(w)wﬁwx
af-

Proof. We consider only .#(v), the assertion for " (w) is seen in the same way. Fix v € Qy and put @ := (V).
Then, by the definition of L”, the function v — @(v)/+/-L(v) on Qy attains its maximum at v = v. Hence we
find

o [(@W)?] 1 0L, ;-2 200).
vt | 10|~ ave ) 00+ =0
foralla =0,1,...,n. This implies, since @(v) = 2L(v),
1w oL
V=570 Sya) = ava( V).

This yields the first expression of .#(v), and then the second is given by Euler’s homogeneous function the-
orem. (]

Note that the expressions of . and ¢ in the lemma make sense for null and spacelike vectors as well.

Therefore we define .

oL N
L) = W(V) dx?®, L (w) :=
a=0 a=0

oL”
oWy

0
ox«

w)

for general v € TM and w € T"M (one can readily see that they are well-defined). This is indeed the usual
definition of the Legendre transform, and we summarize the basic properties in the next lemma (see [29, §2.4]
for further discussions).

Lemma 4.11 (Properties of ¥ and #") (i) For any x € M, < is injective in each connected component of
Q.

(i) IfdimM = 3, then £ : TxM — TyM and ¢~ : TxM —s TxM are bijective at every x € M.

(iii) IfdimM = 3, then " = ¢ holds on TyM and, for each v € Qy, (g;ﬁ(i”(v))) is the inverse matrix of
(8ap (V).

Proof. (i) and (ii) are proved by [29, Theorem 5] and [29, Theorem 6], respectively. Here we only show (iii) (see
also [32, Theorem 3.2]). By differentiating

oL"
a

=2 (2W) = (z(v))

in vﬂ, we observe

Oap = Z aw aw 2l ))a ﬁa 5 )=§g;5($(v))g5ﬁ(v)-

This completes the proof. O
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Example 4.12 (a) In the standard Minkowski space M = R™"! with
1
L(v) = E{—(VO)2 + )+ (V) Q= {(Vio0 | L(v) <0,V > 0},
in the canonical coordinates of TM and T M, we have

L'(w) = %(—w% twi+rwr), Q= {(Wdio|L (W) <0, wo <0},

and £2(v) = (=9, v1, ..., v").
(b) We shall see that the injectivity on the whole tangent space as in Lemma 4.11(ii) fails for dim M = 2. Let
us consider the Lorentz—Finsler structure

0 . o). 1,
L(rcos@a+rsmea—y) = Er cos kO

of R? from [5] and [25, Example 2.4], where k € N and (x, y) denotes the canonical coordinates (k = 2
corresponds to the standard Minkowski space). Note that, if we choose

0 . 0
Oy := {rcos 9& + rsm@a—

mn 3m
y T>O,e€(ﬂ,ﬁ)}

rs0, 8¢ ((3+k)n (1+3k)ﬂ)}’

as future directions, then we have

Q;:{rcosedx+rsin9dy Kk’ 2k

provided k = 2. When k = 4, one can rewrite L as

0 d V2 -w?)?-Qvw)? v -6viw? +wh
Llve—+w— | = = ,
ox oy 2(v2 + w?) 2(v2 + w?)

and we observe from Lemma 4.10 that

0 0 gvw* 8viw
f(va + wa—y) = (v Tz w2 w2)2) dx + (w T 0Zrwd)e WZ)Z) dy,

in other words,

9

0 .
.Z(rcos 9a + rsin Gay

) =rcos (1 - 8sin* 8) dx + rsin (1 — 8 cos* 0) dy.

Therefore, for 6; € (0, 1/2) and 6, € (17/2, 1) with sin 6; = sin 6, = 8 /%, we find

0 . 0 0 . 0
,%(rcos 61& + rs1n916—y) = Z(rcos@za + rsm@za—y>.

4.5 Differential operators

A continuous function f : M — R is called a time function if f(x) < f(y) forall x,y € M with x < y. A
C!-function f : M — R is said to be temporal if -df (x) € Q} for all x € M. Observe that temporal functions
are time functions.

For a temporal function f : M — R, define the gradient vector of -f at x € M by

V(-HK) == 2" (-df (X)) € Qx.
Note that, thanks to Lemmas 4.10 and 4.11, we have for any v € TxM

gvin(VENL V) == 3 gaﬁ(V(—f)(x»g;a(—df(x))a"—)g(x)vﬁ

a,B,6=0

= -df(v).
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For a C?-temporal function f : M —s R and x € M (thereby V(-f)(x) € Qx), we define the Hessian V?(-f) :
TxM — TxM in the same manner as (2.5) by

V2 (-f)w) := DY (v (-f).

This spacetime Hessian has the same symmetry as in the positive-definite case, let us give a proof (without
coordinate calculations) for thoroughness.

Lemma 4.13 (Symmetry of Hessian) For a C>-temporal function f : M — R, we have

gvin (V2ENW, W) = oy (v, V(HW))

forallv,w € TxM.

Proof. Put h := —f for brevity, and let V, W be extensions of v, w to smooth vector fields around x, respec-
tively. Then we have

gun(DY(Vh), W) = V[ggn(Vh, W)] - ggn(Vh, DY " W)
= V[dh(W)] - dh(DY "W)
(see [3, Exercise 10.1.2] for the first equality). Combining this with DY "W — D}/"V = [V, W], we obtain
gvn(DY"(Vh), W) - gon(D¥"(Vh), V) = dh([V, W]) - dh([V, W]) = 0
as desired. O
Similarly to (2.6), we define the spacetime Laplacian (or d’Alembertian) as the trace of the Hessian,
A(-f) := trace (Vz(—f)), (4.2)

for C?-temporal functions f. We remark that this Laplacian is not elliptic but hyperbolic, and is nonlinear
(since the Legendre transform is nonlinear).

5 Comparison theorems on weighted Finsler spacetimes

Comparison theorems in Section 3 can be generalized to Finsler spacetimes in a suitable way. We need to be
careful with some Lorentzian behaviors and introduce some special notions in Lorentzian geometry, so we
will give at least outlines of the proofs. In addition, let us again stress that dim M = n + 1 (see also Remark 5.2
below).

5.1 Weighted Finsler spacetimes

Let (M, L) be a Finsler spacetime. Similarly to Section 3, we employ a weight function ¢ : 2\ 0 — R such
that (cv) = Y(v) for all ¢ > 0, and set P, (¢) := P (7(t)) along causal geodesics 1 (as in (3.1)).

Definition 5.1 (Weighted Ricci curvature) Givenv € Q\0, letn : (-£, &) — M be the causal geodesic with
1(0) = v. Then, for N € R\ {n}, define the weighted Ricci curvature by
P (0)?

Ricy(v) := Ric(v) + 17(0) - N—n

We also define
Riceo(v) := Ric(v) + 95 (0), Ricn(v) := }\gn Ricy(v),
n

and Ricy(0) := 0.
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Remark 5.2 Note that, despite dim M = n+1, the denominator N-n in the last term of Ricy is unchanged from
(3.2). Therefore Ricy in the Lorentzian case corresponds to Ricy, 1 in the positive-definite case. In particular,
Ricg in this section corresponds to Ric; in Section 3.

We will say that Ricy = K holds in timelike directions for some K € R if we have Ricy(v) = KF?(v) =
-2KL(v) for all v € Q (recall (4.1) for the definition of F).

Due to our convention dim M = n + 1, we slightly modify the e-range in Definition 3.3 as follows (in the
same form as in [25]).

Definition 5.3 (e-range) Given N € (-oo, 0] U [n, +oo], we will consider € € R in the following e-range:

€e=0forN=0, J¢gl< forN#0,n, €cRforN=n. (5.1)

N-n

The associated constant ¢ = c(N, €) is defined by

C:=1<1_€2N—n>>0 (5.2)

for N # 0, and c(0, 0) := 1/n.
Note that € = 1 is admissible only for N € [n, +o0), while € = 0 is always admissible. For a future-directed
timelike geodesic i1 : [0, ) — M and € € R, we set

t

(pn(t) - /ez(en—l),/,q(s) ds (5.3)
0

in the same way as (3.8) throughout this section.

5.2 Bonnet-Myers theorem

We have shown in [25, Theorem 5.17] the Bonnet—Myers theorem for weighted Finsler spacetimes in the form
that Ricy > K > 0 with N € [n, +o0) implies diam(M) < 711/N/K (we refer to [6, Chapter 11] for the Lorentzian
case). In order to generalize this to the one with e-range, let us recall some notations and results of [25].
Given a timelike geodesic i : [0,1) — M of unit speed F(7) = 1 (equivalently, L(7}) = -1/2), we will
denote by Ny(t) C Ty »M the space of vectors orthogonal to n(t) with respect to 8- For simplicity, the

covariant derivative DZX of a vector field X along 1 will be denoted by X’.
Definition 5.4 (Jacobi and Lagrange tensor fields) Let n : [0,]) — M be a timelike geodesic of unit
speed.

(1) A smooth tensor field ), giving an endomorphism J(¢) : Ny(t) — Ny(¢) for each t € [0, 1), is called a
Jacobi tensor field along 1 if we have
J”+Rj=0 (5.4)

and ker(J(t)) N ker()'(¢)) = {0} for all ¢, where R(¢) := Ry : Ny(t) — Ny(t) is the curvature endomor-
phism.
(2) AJacobi tensor field | is called a Lagrange tensor field if

-1 =0 (5.5)
holds on [0, I), where the transpose T is taken with respect to g;;.

Some remarks on those notations are in order.
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Remark 5.5 (a) The equation (5.4) means that, for any g;-parallel vector field P along n (namely P =0),
Y(t) := )(t)(P(t)) is a Jacobi field along 7. Then the condition ker(J(t))nker()’(¢)) = {0} implies that ¥ = J(P)
is not identically zero for every nonzero P. Note also that Lemma 4.8(ii) ensures R, (w) € Ny(t) for all
w e Trl(t)M

(b) The equation (5.5) means that )T}’ is gj;-symmetric, precisely, given two g;-parallel vector fields Py, P,
along 177, the Jacobi fields Y; := J(P;) satisfy

gn(Yi: YZ) _gfl(Yl) Yé) =0. (5.6)

Since (5.4) and Lemma 4.8(iii) (with the help of [25, (3.1)], see also [3, Exercise 5.2.3]) yield that
[g4(Y7, Y2) - g4(Y1, Y3)]" = 0, we have (5.6) for all ¢ if it holds at some ¢.

Given a Lagrange tensor field ] along 1, define B := )’ 71, which is symmetric by (5.5). We remark that A
(resp. B, R) in Section 3 corresponds to )7 (resp. )'B(") 1, J'R)), and that A’ = 2BA in Lemma 3.4 is equivalent
to B = J/)~1. Multiplying (5.4) by J~! from right, we arrive at the corresponding Riccati equation

B'+B2+R=0
(see [25, (5.3)], compare this with (3.7)). We further define the expansion scalar
6(t) := trace (B(t)),

and the shear tensor (the traceless part of B)

o(t)

o(t) := B(t) - .

In(8),

where |,(t) denotes the identity of Ny (¢).
The weighted counterparts will make use of the parametrization ¢y in (5.3). Note that, similarly to (3.11),

- - 2e) » . _
(ogy) (1) =e 2Aet w«o,ll(f»n((pnl(r))
for T € [0, @y(1)). Define, for e € Rand ¢ € [0, 1),

1y () == e P OImy(p),

and for t € (0, 1),

el (B(t) - ‘/’;;ft)ln(t)) :

Be(t) := trace (Be(t)) = e 2 (0 (6(t) - (1)),

eergt) (6 = e z(en—l)ll,n(t)a(t).

Be(t) := Uy o 7' (@n(D) - Jy(t) " =€

oe(t) := Be(t) -
Then the weighted Riccati equation is given by
- 2e - - - -
(Be o (Prll)l + ?(lprl o QDql)/ * Be(§0q1) + Bg(%l) + R(oyg)((Prll) =0

on (0, ¢y (1), where

4(e-1 ! (£)2
Rov.o(f) =€ % )wn(t){R(t) + %(l/’f{(t) B z]pvnft)n )ln(t)}

([25, Lemma 5.5]). Observe that trace(R(y ¢)(t)) = Ricy((n o <p51)’ (@n(D)).
We shall need the timelike weighted Raychaudhuri inequality, which was proved in [25, Proposition 5.7]
as a consequence of the above weighted Riccati equation.
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Theorem 5.6 (Raychaudhuri inequality) Let ] be a nonsingular Lagrange tensor field along a timelike
geodesic 1 : [0, 1) — M of unit speed. Then, for every € € R and N € (—oo, O] U [n, +o0], we have

(8c 0 9") = - Ricw (7 0 95")) - trace (02 (g ") - cOZ (")
on (0, py(1)) with ¢ = c(N, €) in (5.2).

Now we can follow the lines of [25, §5.5] to see the Bonnet-Myers theorem with e-range. The timelike
diameter of (M, L) is defined as diam(M) := SUPy yem d(x, y) (recall that d(x, y) = 0if x ¢ y), we refer to [6,
§11.1] for some accounts on diam(M). We remark that the finite diameter does not imply the compactness in
the Lorentzian setting.

Theorem 5.7 (Bonnet-Myers theorem) Let (M, L, 1) be a globally hyperbolic Finsler spacetime of dimen-
sionn + 1 2 2. Suppose that, for some N € (o0, 0] U [n, +oo), € in the e-range (5.1), K > 0 and b > 0, we have

Ricy(v) = KF2(v)e i ¥ (5.7)
forallv € Q and
—MIIJ
e n Y<h. (5.8)
Then we have b
diam(M) < .
) vcK

Proof. Suppose in contrary that there are x,y € M such that ! := d(x,y) > bn/v/cK. By Theorem 4.6, one
can find a maximal timelike geodesic 17 : [0, [] — M from x to y with F(i) = 1, and put v := 7(0) € Q.
Consider the Jacobi tensor field ] given by J(£)(w) := d(exp,)« (tP(0)) for w € Ny(t), where P is the g;,-parallel
vector field along 1 with P(t) = w. Then ] is a Lagrange tensor field (recall Remark 5.5 and see the proof of [25,
Proposition 5.13]).
Put
h(t) := (det)y(6)) = e (det)(6))“ > 0

for ¢ in (5.2), and h{(1) := h(gogl(r)) for r € [0, ¢y(D) similarly to Proposition 3.5. Then we have, since
log hy (1) = clogldet ), (¢ (D)),

ha((Pn(t)) hlllhl - (hll)z —1v/
S /AN, B = i S S S P .
ACR0) ctrace( e(t)) cOe(2), h% S o )
Hence it follows from Theorem 5.6 that
hy{(t) < —=chi(1) Ricy ((17 0 (pgl)’(r)) (5.9)

for T € (0, py(1) (as in [25, Proposition 5.14]). This is exactly the analogue to the weighted Bishop inequal-
ity (3.9). Under the hypotheses (5.7) and (5.8), we can show the existence of a conjugate point n(ty) to n(0)
for some ty < brr/+/cK by the same argument as in Theorem 3.6. This contradicts the maximality of n and
completes the proof. O

Similarly to Remark 3.7, one can also obtain from the above proof the deformed diameter estimate
to

on(to) = / e ) g < T
cK
0

without assuming (5.8).



26 —— VYufeng Lu, Ettore Minguzzi, and Shin-ichi Ohta DE GRUYTER

5.3 Laplacian comparison theorem

Next we consider the Laplacian (d’Alembertian) comparison theorem with e-range, as the Lorentzian coun-
terpart to Theorem 3.9. The Laplacian comparison theorem plays an essential role in the Lorentzian splitting
theorem (see [6, Chapter 14], [7, 55]).

Given z € M, we say that x € I"(z) is a timelike cut point to z if there is a maximal timelike geodesic
n : [0,1] — M from z to x such that its extension /; : [0,1 + €] — M is not maximal for any £ > O.
The timelike cut locus Cut(z) is the set of all cut points to z. Notice that the function u(x) := d(z, x) satisfies
—du(x) € Qj for x € I'(2) \ Cut(z), and hence A(-u) as in (4.2) is well-defined on I*(z) \ Cut(z). Then, similarly
to (3.14), we define the -Laplacian of u (or —u) by

Ay (~u)(x) == A(-u)(x) - Py (d(z, x))

on I*(z) \ Cut(z), where ; : [0, d(z, x)] — M is the unique maximal timelike geodesic of unit speed from z to
x. Recall (3.15) for the definition of s.

Theorem 5.8 (Laplacian comparison theorem) Let (M, L, 1) be a globally hyperbolic Finsler spacetime of
dimensionn+1 22 and N € (o0, 0] U [n, +oo], € € R in the e-range (5.1), K € R and b > a > 0. Suppose that

Ricy(v) > KF2(v)e T ¥

holds for allv € Q and
acs< e‘y“' <b. (5.10)

Then, for any z € M, the distance function u(x) := d(z, x) satisfies

1 L (u0)/b)
Ayt < ot B

onI*(2) \ Cut(z), where p := a if s.x(u(x)/b) = 0 and p := b if s.x(u(x)/b) < 0.

Proof. By the global hyperbolicity and x € I*(z) \ Cut(z), there exists a unique maximal timelike geodesic
n(t) = exp,(tv) from z to x with F(v) = 1. Let | be the Lagrange tensor field along 1 as in the proof of Theo-
rem 5.7. Then the key ingredient of the proof is

V2 (W, = BO) (5.11)

(which is a standard fact but we give a proof for completeness; see also [40, Lemma 3.2]). To this end, simi-
larly to the proof of Theorem 3.9, let (x*)"_, be polar coordinates around 7((0, d(z, x))) such that x° = u and
g;y(,0/0x") = 0foralli=1,2,..., n. Note that V(-u)(n(¢)) = ij(t) = (a/ax°)|n(0.

Given w € Ny(to) with to € (0, d(z, x)), let P be the g;-parallel vector field along 1 such that P(to) =
J(to) ! (w). Then, by the construction in the proof of Theorem 5.7, we have w = J(to)(P(to)) = d(exp,)s,v(toP(0)).
Put

Y(0) := )(O)(P(D) = d(exp,)e (tP(0)) = [expz (v + 6P() ||

Let Y(t) = >, Yi()(d/ axi)\n(t) and note that (Y!)’ = 0 since we are considering the polar coordinates (by
exchanging the order of the derivatives in § and t). Hence, on the one hand, we have

B(to)(w) = J')™" (W) = Y'(to) = Z To (A(t0)) Y(

i,j=1

On the other hand,
V2 (—u)w) = Dy Y (V(-u)) = Z A(to))w

i,j=1

oxi Iy’
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Since Y(tg) = w, we obtain (5.11).
It follows from (5.11) that

2(e-1)

Ay (-u)(n(0) = trace (V2(-w) (n(D) - Yy(t) = e~ Y1 trace (Be(t))

_ 20y (0 _ 252y, halen(0)
=e n Oc(t)=e = )
e(t) chi(@q (D)

where the last equality was seen in the proof of Theorem 5.7. Combining this with hs.x — his.x < 0 shown

in the same way as in the proof of Theorem 3.6 thanks to (5.9), we have

- L o250y Sex(on() 1 s (t/b)
Ay-u)(n(®) <e = o

by the fact that s/ /s x is non-increasing and by b™* < oy < a! from (5.10). This completes the proof. O
Similarly to Remark 3.10, the intermediate estimate

- < 2(en—1),/,,l(t)M
Alp( u)(rl(t)) =¢ CscK((Pn(t))

without the bound (5.10) on 1 is also meaningful.

5.4 Bishop-Gromov comparison theorem

Volume comparison theorems in the Lorentzian setting are not as simple as in the positive-definite case. This
is because, given x € M, the “future ball” {y € I'*(x)|d(x,y) < r} is possibly noncompact and can have
infinite volume. For this reason, we need to restrict the directions to make the set of our interest be compact.
We shall make use of the following notion introduced in [11]. We refer to [10, 24] for other volume comparison
theorems in the same spirit, the latter is concerned with weighted Finsler spacetimes.

Definition 5.9 (SCLV) For x € M, aset U C M is called a standard for comparison of Lorentzian volumes
(SCLV in short) at x if there is Uy C TxM satisfying the following conditions:

(1) Uyisan open set in Qy;

(2) Uyis star-shaped from the origin, i.e., we have tv € Uy forallv € Uyand ¢ € (0, 1);

3) f]x is contained in a compact set in TxM;

(4) The exponential map at x is defined on Uy, the restriction of exp, to Uy is a diffeomorphism onto its
image, and we have U = expx(ﬁx).

Note that, for a small convex neighborhood W of 0 € TxM, exp, (W N Q) is an SLCV at x. We need some
more notation. For x, U, Uy as above and O < r < 1, we define

Ux(r) == {rv|ve Ux} c Ux,  Ux(r) :=exp, (Ux(r)) C U.
Since U is not like a “ball” in general, we also define
Uy := {v € Qx| F(v) = 1, tv € Uy for some t > 0},
Tyx(v) :=sup{t>0|tv e U}, veEly

(Ty,x is called the cut function in [11]). Assuming that Ty , is constant on Uy amounts to considering (a part
of) a ball. Let m be a positive C*°-measure on M and ), be the weight function associated with m in a similar
way to (3.4), precisely,

dm = e =00 /_det [g,(7(8))] dxXOdx’ - - - dx”

along timelike geodesics 7.
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Theorem 5.10 (Bishop-Gromov comparison theorem) Let (M, L, m) be globally hyperbolic of dimension
n+122,N & (-00,0]U|[n, +co], € € Rinthe e-range (5.1), K € Rand b > a > 0. Suppose that

Ricy(v) = KF2(v)e T ¥n®)

holds for allv € Q and
_Mlp
ase © *m<ph,
Then, for any SCLV U C M at x € M such that either

(A) Tyx=TonlUy,or
(B) K=0andT :=infyeq, Tyx >0,

we have

m(Ux(R) _ b Jo VK s o (n) Ve dr
mUG) Ta e (ovedr

forall0 <r <R <1, where we set m/+/cK := oo for K < 0.

Proof. For each v € Uy and the geodesic n(t) := exp,(tv), h1/sck is non-increasing as we mentioned in the
proof of Theorem 5.8. Hence we have

fos hy(r)Ycdr IS hy(r)Ycdr
<

fos scx(T)Vedr B fos sc(T)t/edr

for 0 < s < S, similarly to the proof of Theorem 3.11. Moreover, since blc (pﬁl <a’l,

fos h(t)l/c dt . B f0<pn(5) hl(‘r)l/c dr . é fo%(s) ScK(T)I/C dr
J h@Yedt ~a o0 pyyedr @ (@ (@)iledr

Now, letting S = RTy (v), s = rTy «(v), and noticing ¢, (RTy x(v)) < n/v/cK if K > 0 by the proof of Theo-
rem 5.7 (or Theorem 3.6), we deduce from the hypothesis (A) or (B) that (recall so(7) = 7 from (3.15))

fo(ﬂq(RTU,x(V)) scK(T)l/c dr ) f(;nin{RTU,x(v)/a, n/VcK} SCK(T)llc dr

O‘Pn(YTU.x(V)) SCK(T)l/C dr a f(;'TU,x(V)/b SCK(T)l/C dr

fmin{RT/a, n/+/cK} SCK(T)l/c dr

0
JoTP s eg(1)1le dr

<

We integrate this inequality in v € Uy with respect to the measure = induced from gy to see

RTU.X(V)
m(Ux(R)) = / / h(V* dt Z(dv)
U O
. rTy,(v)

b fénm{RT/a’ K g mYedr 1/¢ 44 =

< = T h(6)cdtE(dv)
a fo scx(T)V/edr U 0
b fénin{RT/a,n/ﬂ} scK(T)l/C dr

= E /b m(Ux(r))

Jo 17 scx(D)Vedr
(we remark that rT/b < y(rT) < m/+/cK if K > 0). This completes the proof. O
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