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Chapter 1

Introduction

While differing widely in the various little bits we know, in our infinite
ignorance we are all equal.

– Karl Popper, Conjectures and Refutations

In this work, I will discuss some of the various little bits of research that I have
been part of in the last few years. Although all subjects in this work are in some
way related to black hole physics, they are all independent of one another. I have
found that constantly working on new, unrelated subjects is both challenging and
rewarding. Although it requires much effort to work yourself to the necessary level
of understanding, there is something enjoyable about learning new ways of looking
at things.
There are, besides this introduction, four chapters that each contain a different
subject of research. Before we get to those, we will, in this preliminary chapter,
first introduce the topics and provide some context. Then, the first chapter
considers black holes in the presence of supersymmetry breaking of the background
theory. Secondly, we will discuss the embedding of near-horizons of rotating black
holes into M-theory. The third chapter concerns a one-dimensional model of
Majorana fermions, the Sachdev-Ye-Kitaev model. Lastly, we concern ourselves
with magnetohydrodynamics at heavy-ion collisions.
Remarkably, all of these subjects are related to black holes. The first two chapters
turn the spotlight onto black holes themselves, while the last two are related to
black holes by so-called AdS/CFT and AdS/QCD dualities (which we will explain
below). Since parts of this chapter might be read by non-experts, I have written
a small section for some of the topics that should be accessible for the layman.
I would recommend the first following section on black holes and perhaps the
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1 Introduction

introduction to string theory and heavy-ion collisions. For each of these sections
there is, however, a progressive line of complexity.

1.1 Black Holes and Revelations

What are black holes? What is string theory? How do black holes arise in string
theory? It is these questions, plus perhaps some more that we will attempt to answer
in the coming sections. We will start by discussing black holes in the classical,
general relativistic sense in this section, and in the next section, we introduce string
theory to find out how black holes are created using strings.

1.1.1 Dark Stars

The first picture of a black hole was captured only relatively recently, in 2019 [7], it
is shown in Figure 1.1. This particular supermassive black hole lies at the center of
a galaxy called M87. The picture quickly teaches us why blacks holes are called
black; the black center of the image is where the black hole is located. The accretion
disk of matter surrounding the black hole causes the glowing ring around the black
hole. The glowing ring around it is caused by emissions from the accretion disk of
matter that surrounds the black hole. An example closer to home is Sagittarius A∗,
a supermassive black hole located in the center of our galaxy. Such supermassive
black holes can be found in most, if not all, spiral and elliptical galaxies.
The more ordinary, stellar-mass, black holes come into existence after heavy stars
have burned through all their fuel. At this point, provided the star is massive
enough, the star will collapse into itself due to gravity, and the extreme densities
that build up in the center irreversibly collapse into a black hole.1

The existence of these black holes is a critical consequence of Einstein’s theory of
General Relativity (GR). Gravitational objects are called black holes as soon as
light can no longer escape its gravitational potential anymore; no emitted light
means they become black, hence the name. Before he published GR, Einstein
already figured out that light always travels at the same speed and nothing moves
faster than light. Coming back to black holes, when light cannot escape something,
nothing can. This point beyond which nothing can escape is usually called the
event horizon.

1The formation of supermassive black holes remains an active field of research, with many
hypotheses on the origin of progenitors for the supermassive black holes.

2



1.1 Black Holes and Revelations

Figure 1.1: The first picture of a black hole, captured by the Event Horizon
Telescope Collaboration [7]. The glowing ’ring’ is caused by the accretion disk
that spirals around the rotating black hole. The varying brightness is caused by
the relativistic beaming of the emission from the rotating plasma.

The first hints of black holes were already found far before GR was developed
in the 18th century. At that time, Michell and Laplace considered objects with
gravitational fields that were strong enough to prevent light from escaping [8]. It
is because of this fundamental property that Michell named them dark stars, the
nomenclature of black holes was only introduced in the 60s by Wheeler. Without
the full force of general relativity, however, they could not make much progress in
understanding these objects. This lack of understanding changed when the first
genuine black hole solution, within general relativity, was written down in 1916 by
Schwarzschild2 and independently by Droste four months later, the metric is given
by

ds2 = −
(

1 − rs
r

)
dt2 +

(
1 − rs

r

)−1
dr2 + r2dΩ2 , (1.1)

with rs = 2GM , the Schwarzschild radius and dΩ2 is the metric on a two-sphere.

One way to illustrate the black hole spacetimes more intuitively is with a so-called
Penrose diagram. The Penrose diagram corresponding to the Schwarzschild black

2Although Schwarzschild wrote it down in 1916, the interpretation as a part of spacetime from
which nothing can escape, was only realized by Finkelstein in 1958.
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1 Introduction

Figure 1.2: The Penrose diagram for a Schwarzschild black hole. The time
and spatial coordinates are shown in the bottom left, along with the yellow lines
indicating how light rays move. The horizon is drawn as a dashed line; note that
it is also at a 45◦ angle, meaning light can never escape once it is beyond the
horizon. In the diagram, there is also a worldline of an observer that falls into
the black hole and ends up in the singularity (which is unavoidable once you cross
the horizon, as you may convince yourself from this diagram). Fig. from [10].

hole is shown in Figure 1.2.3 In these diagrams, the whole spacetime is put into a
compact form, and light always moves on straight lines at angles of 45◦.
Since massive objects (such as observers) always move slower than light, they are
confined to move within the cone defined by two oppositely moving light rays. The
event horizon is shown in the diagram as a line of 45◦, such that when light rays
move past it, they can never return.

Singularities

Perhaps the most curious feature of black hole solutions in GR arises when we
compute their curvature. As we move closer and closer to the center of the black
hole, the curvature gets stronger and stronger. In the middle of the black hole, the
curvature diverges, a gravitational singularity. At this point, Einstein’s theory tells
us that the curvature is infinite. Needless to say, you would not want to be at this

3As a historical note: it is precisely this diagram that Stephen Hawking used at a conference
organized by Jack Rosenberg to introduce the so-called information paradox of black holes.
Hawking believed to have found that information that fell into the black hole was irretrievably
lost. A discussion of this fascinating problem is beyond the scope of this thesis, but I would
highly recommend the popular scientific book by Susskind [9].
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1.1 Black Holes and Revelations

singularity; from Figure 1.2 it becomes clear that it is, however, impossible to avoid
once you move beyond the event horizon.

Usually, singularities signal that the theory is not complete in its explanations.
For example, in quantum field theory, we are very used to singularities showing
up in the computations and have even thought of a scheme to get rid of them
consistently. After doing so, we can match the computations with good agreement
to the experiments. That does not mean that quantum field theory is thereby fixed,
a better theory would not need such an ad hoc procedure in the first place, and
it signals flaws in the theory. However, the gravitational singularities inside the
black holes can not be gotten rid of in a similar manner. To make matters worse, if
the black hole is rotating, there are also closed timelike curves near the singularity,
meaning you could wave to your past self. It is usually thought that a theory of
quantum gravity will provide better explanations of what happens inside a black
hole and possibly resolve the infinities.

But can they spin?

So far we have discussed only Schwarzschild black holes, which are static non-
rotating black holes. In this thesis we will also be interested in certain classes of
black holes that rotate. Whereas the Schwarzschild black hole was only characterised
by its mass M , the rotating black hole will also have angular momentum J . In four
dimensions, the asymptotically flat rotating black holes were discovered by Kerr,
and the metric is given by4

ds2 = −
(

1 − rsr

Σ

)
dt2 + Σ

∆dr2 + Σdθ2 +
(
r2 + a2 + rsra

2

Σ sin2 θ

)
sin2 θ dφ2

− 2rsra sin2 θ

Σ dt dφ , (1.2)

where, as before, rs = 2GM is the Schwarzschild radius, and we have defined

a = J

M
,

Σ = r2 + a2 cos2 θ ,

∆ = r2 − rsr + a2 .

(1.3)

4The metric is written in Boyer-Lindquist coordinates, which conforms with conventions we will
use later in the thesis.
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1 Introduction

The rotation of the black hole can be seen from the dt dφ term, which shows there
is a coupling between the time and one of the angular coordinates. Furthermore, as
we take the angular momentum to zero, this term disappears, as we would expect.
The event horizons can be found by considering ∆ = 0, which has real solutions
provided that a2 ≤ M2 (we took G = 1 here). The case in which we take a = M is
called extremal, which will be an important limit in some of our later chapters. If
we were to take the near-horizon limit for the extremal Kerr black hole we would
get an AdS2 term from the time and radial coordinates, along with still the mixing
between the time and angular coordinate. Due to this last ‘mixing’, we often say
that the AdS2 is fibered; in this case over the angular coordinate φ.

Apart from rotation, there is one more property we could have given the black hole,
an electric charge Q. A static but charged asymptotically flat four-dimensional
black hole is known as a Reissner-Nordström black hole, and is given by

ds2 = −

(
1 − rs

r
+
r2
Q

r2

)
dt2 +

1 −
rs + r2

Q

r2

r

−1

dr2 + r2dΩ2 , (1.4)

where we have defined a length scale

r2
Q = Q2 G

4πε0
. (1.5)

A natural generalization would be to combine all the above discussed properties
and obtain a black hole solution that is both charged and rotating. This is called a
Kerr-Newman solution and we will discuss a variant of this later in chapter 3.

What if I throw my wallet in?

Suppose you are near a black hole and throw your wallet into the black hole. Will
you still know how much money was in there? What happens with information in
general as we throw it into the black hole has a long, interesting history with many
viewpoints. It is beyond the scope of this thesis to go into the problem in-depth, and
I would happily refer to the book black hole war by Susskind [9] for an accessible
history. To summarize, the consensus is that information of infalling objects seems
to be conserved and is later radiated away by Hawking radiation. So, regarding
your wallet: you definitely lose your money, but you can figure out how much it
was (by analyzing the Hawking radiation). The presence of radiation already shows
us that black holes are thermodynamic objects, and they have their own black hole

6



1.2 String Theory and Black Holes

thermodynamic laws. The most important for us is the analog of the second law,
which states that the entropy of isolated systems never decreases. The entropy of a
black hole can be computed by the Bekenstein-Hawking entropy [11]

SBH = A

4 , (1.6)

where A is the area of the horizon. This formula shows us that the second law of black
hole thermodynamics gets translated to ‘the area of a black hole never decreases’,
i.e. dA ≥ 0. Now, if we combine the above entropy along with Boltzmann’s
understanding that entropy ‘measures’ the number of microstates, we can wonder,
what are the microstates of black holes? Strominger and Vafa gave an answer
to this question in [12] for certain five-dimensional black holes. They reproduced
the entropy using string theory by considering the distribution of momentum on
so-called D1 and D5 branes. In the next section, we will discuss more string theory
and how to make black holes within the theory.

1.2 String Theory and Black Holes

The next element in our physics toolbox is string theory, the leading candidate
for a theory of quantum gravity. The basic idea of string theory is perfectly well
encompassed in its name: instead of considering zero-dimensional point particles,
we study one-dimensional objects called strings. Other fields, such as gauge fields,
will be made from certain strings and excitations that live on these strings. Within
string theory, there are two types of strings: open and closed strings. In Figure 1.3
we show two kinds of strings along with another curious feature of string theories,
the existence of so-called branes (short for membranes). As it turns out, open
strings always have their endpoints confined to higher-dimensional surfaces called
D-branes. These D-branes will be extremely vital for our purposes later on; spoiler
alert: most of our black holes are made from such D-branes. We will discuss what
types of branes exist in which string theories later on in subsection 1.2.5.

So how exactly does this make a theory of quantum gravity? To answer this, we
look at the spectrum of string theory. After we have quantized the theory, we
can find out what objects exist in the excitations of the strings. As it turns out,
the closed string spectrum always has a graviton, which is the force carrier for

7



1 Introduction

Figure 1.3: String theories consist of two types of strings, open and closed
strings. The closed ones are colored in green, while the open strings are red.
A crucial observation in string theories is the existence of D-branes, which are
depicted as the black squares here. The open strings always have their endpoints
fixed to such branes. Figure from [13].

gravity.5 This signals that our quantum theory of strings contains gravity. Apart
from the graviton, we can also find gauge fields and others, indicating that we
can also describe gauge theories. The presence of gauge fields provided even more
enthusiasm for string theory since the current best-corroborated theory of particles
in our universe, the standard model, is also a gauge theory. The standard model
has a gauge group SU(3)×SU(2)×U(1), corresponding to the strong interaction,
weak interaction, and electromagnetic interaction, respectively.
One curious feature of string theory6 is that it requires ten dimensions for consistency.
Clearly, we only encounter four of these in our daily lives, so the question arises:
where did the others go? The best explanation is in terms of compactification,
whereby the ‘extra’ dimensions are rolled up to become very small and thus

5In quantum field theories, such as the standard model, an indicative feature is the presence of
force carriers. These particles, such as the photon for the electromagnetic force, are the fields
that mediate interactions. So the presence of the graviton is a good indicator that we are dealing
with quantum gravity.

6I am assuming here that we are considering superstring theory, we will show in the next section
why purely bosonic string theory is not enough to describe anything remotely related to our
universe.

8



1.2 String Theory and Black Holes

Figure 1.4: To go from ten dimensions to four, we compactify the extra dimen-
sions. This means we ’roll up’ the additional dimensions such that they seem
point-like from our four-dimensional point of view. If we were to zoom in closely,
we could still find the hidden structure of these additional dimensions. Figure
from [13].

not visible in our seemingly four-dimensional world. An illustration is shown
in Figure 1.4. It might help to imagine the drawn line as a power cable seen
from far away; it then appears as a one-dimensional object. Suppose now an
ant is living on the cable, at his (much smaller) length scales, the wire is not
one-dimensional, but the ant can move around the cable in another direction. This
analogy encompasses the idea of compactification; at large length scales, the extra
dimensions are practically point-like, but they are present on microscopic length
scales.

A very reasonable question at this stage would be, are there different ways of
compactifying? The answer is yes; in fact, at this stage, it seems appropriate to
give the usual estimate of 10500 compactifications7 different possibilities. So, at first
sight, it seems that there is an extraordinary amount of freedom to choose here. If
we, however, take a closer look at how we can reproduce all aspects of our universe,
it seems there is a problem: how can we create de-Sitter spacetimes from string
theory. Instead of too much freedom, it seems in this area there is too little. To my
knowledge, there exists only one – widely criticized – way to achieve it [14]. The
swampland program (see, e.g. [15]) aims to investigate this and other important
questions but is beyond the scope of this thesis.
Let me now briefly summarise what we will discuss in the rest of this section. We

7This number is more correctly given as an estimate of the possible metastable vacua that can be
created in string theory.
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1 Introduction

will begin with an overview of which types of string theories exist and which we will
use in our research later on. Afterward, we will move on to supergravity, which is
the low-energy limit of string theory, followed by a short discussion of dualities that
exist in string theory. Then we turn to the elusive branes, both from supergravity
and string theory points of view. In the penultimate part we discuss how black
holes are made in string theory. The last part will shortly discuss holography and
the AdS/CFT correspondence since it lies in the motivation of many questions
addressed in this thesis.

1.2.1 Supersymmetry and Our Universe

Before we consider the string theories in more detail, we have a short discussion on
supersymmetry. The symmetry relates two types of particles: bosons with integer
spin and fermions with half-integer spin. Depending on the degree (or amount) of
supersymmetry, we can form so-called supermultiplets of different sizes by acting
with the different supersymmetries.
For example, consider 4D with N = 1 supersymmetry; in this scenario with one
spinor, we can act on, e.g., a spin 0 particle to obtain a spin 1/2, which together
form a chiral multiplet. We can build a vector multiplet is built by working on
the spin 1/2 particle to get a spin one particle. Similar considerations apply to
different dimensions and more extensive amounts of supersymmetry, in which case
we can build larger multiplets.
Supersymmetry is also a vital ingredient of superstring theory, and the types of
string theories we consider in this thesis will start with the maximal amount of
supersymmetry8. The question then remains, how much supersymmetry exists in
‘our’ universe? To answer this question, experiments (including B-physics at LHC,
XENON, WIMP, and many more) have sought for the superpartner particles for
quite some years; the Particle Data group gives a good overview of experimental
results in [16]. Up to now, no superpartners have been found experimentally, and
there are strong constraints on the existence of supersymmetry up to the energy
scales reached by the LHC.
Due to such results, it has become essential to find ways of ending up in four
dimensions with as little or no supersymmetry as possible. These considerations have
led to much research into compactifications on manifolds that break supersymmetry.

8There is a maximal amount because we only want the multiplets to go up to spin 2 (the graviton);
for higher spins, we can’t consistently write down renormalizable and interacting actions.
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1.2 String Theory and Black Holes

It is also one of the motivations for our work in chapter 2, whereby we construct
black hole solutions in supersymmetry breaking backgrounds. Such approaches
allow us to use the tools of superstring theory and still try to make contact with
our seemingly supersymmetry-less world.

1.2.2 Different Types of String Theories

In this section we will discuss the different types of string theories. To do so, let’s
make our previous discussion on strings a bit more precise, the action for a point
particle in D dimensions is given by

S = −m
∫

ds = −m
∫

dτ
√
ηµν ∂τXµ∂τXν , (1.7)

where η is the spacetime metric, m is the mass of the particle, µ runs over
0, 1, . . . ,D − 1 and ds is the line element. The coordinate τ describes the time
evolution of the worldline of the particle. This expression can now be generalized to
higher dimensional objects, in particular one-dimensional strings, where it is called
the Nambu-Goto action

S = −T
∫

d2σ

√
(Ẋ)2(X ′)2 − (Ẋ ·X ′)2 , (1.8)

where T is now the string tension and since strings are one-dimensional we have
introduced a new coordinate σ for the extended spatial direction. Due to the square
root in (1.8) it is hard to quantise, but luckily there is another way to write the
action, it is the (classically) equivalent Polyakov action

S = −T

2

∫
d2σ

√
ggαβ∂αX

µ∂βX
νηµν , (1.9)

where we have now introduced the auxiliary field g, the metric on the worldsheet.
This action is equivalent to the Nambu-Goto one upon substituting the equation of
motion for g back into the action. The equation of motion for X reduces to the
free wave equation,9 for which the most general solution is a sum of a left-moving
and right-moving wave.
We can complete the quantization for which there are many methods, excellently
documented in any string textbook. If we only consider (1.9), however, we will run
into a couple of problems. The first problem arises because we only incorporated
9Before it takes the form of the free wave equation, we first have to use the reparametrization and
Weyl symmetries to fix the worldsheet metric gαβ = ηαβ .
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1 Introduction

bosonic fields in the Polyakov action so far. After the quantization, we will only
find bosonic fields; in our universe, all matter is built from fermions, meaning that
any remotely realistic theory should reproduce them. Secondly, in the spectrum, we
find a tachyon, a particle with a negative mass that usually indicates that we are
doing perturbation theory in an unstable vacuum. The problem is that we don’t
know in bosonic string theory what this vacuum is or what we decay into.

Thankfully both problems can be solved by superstring theory, where we will
explicitly introduce fermions and supersymmetry into the Polyakov action. The
fermions can be included by simply adding the Dirac action for free massless
fermions to the Polyakov action:

S = −T

2

∫
d2σ

(
∂αX

µ∂αXµ + ψ̄µρα∂αψµ
)
, (1.10)

with ψ the worldsheet fermion field and ρ are two-dimensional Dirac matrices
satisfying the algebra

{ρα, ρβ} = 2ηαβ . (1.11)

In addition to the action itself, we also need to specify boundary conditions for
the fields in order for it to be well defined. We let the σ integral run from 0 to l,
where usually l is chosen to be 2π. We then distinguish between closed and open
strings.

Closed strings. The boundary points should be identified for the closed strings
since it is a closed topology. For the bosonic fields X this means

Xµ(τ, σ + 2π) = Xµ(τ, σ) . (1.12)

For the fermions, there are two options, which computationally arises because the
fermion action has only one derivative. In practice, this means we can choose

(R) : ψµ(τ, σ + 2π) = ψµ(τ, σ) , (1.13)

(NS) : ψµ(τ, σ + 2π) = −ψµ(τ, σ) , (1.14)

where we call the periodic boundary conditions the Ramond (R) sector and the
anti-periodic sector is called the Neveu-Schwarz (NS) sector. Recalling that the
most general solutions to the equations of motion were separate for left and right
moving waves, we can get four sectors: R-R, R-NS, NS-R, and NS-NS. As a last
note, we have to choose the same boundary conditions for all the µ directions, to
preserve the spacetime Poincaré invariance.

12



1.2 String Theory and Black Holes

Open strings. In the open string sector, we have boundary conditions for both
endpoints separately since they no longer coincide. The one extra ingredient, which
we have mentioned shortly before, is the presence of D-branes. The endpoints of
open strings end on these branes, and the presence of them allows us to break
the Poincaré invariance in the spacetime, meaning we can have different boundary
conditions for different values of the µ index. In Figure 1.3 we can see open strings
(drawn in red) that both start and end on the same D-brane, as well as open strings
that start and end on different stacks of D-branes (of different dimensions).
Let us consider the bosonic fields Xµ. There are then two different boundary
conditions that we can impose at the endpoints σ∗ ∈ {0, l}, Neumann (N) and
Dirichlet (D)10

(N) : ∂σX
µ|σ=σ∗ = 0 , (1.15)

(D) : δXµ|σ=σ∗ = 0 , (1.16)

where δXµ indicates the variation of the field X. The Neumann condition is
associated with directions in which the open string can move on the D-brane, whilst
the Dirichlet condition tells us that the string is fixed in these directions. As an
example, if we had open strings ending on a D5-brane, they would have Neumann
boundary conditions in the 0, 1, . . . , 5 directions (where the brane is located), whilst
having Dirichlet in the remaining 6, . . . , 9 directions of spacetime.
Similar to the closed strings, the fermions have an R and NS sector, depending on
the sign difference we choose at the endpoint of the string. The result for the open
strings thus consists of the four possibilities: NN, ND, DN, and DD, within each of
which the fermions have the choice between Ramond and Neveu-Schwarz.

Ten Dimensions

The Polyakov action (1.10) has supersymmetry on the two-dimensional worldsheet
of the string. We can wonder whether supersymmetry also shows up in the ten-
dimensional spacetime that it describes. Before diving into the types of string
theories that arise in 10D, we first mention the orientation of strings. This orien-
tation of a string is flipped when sending σ → 2π − σ. Strings that are invariant
under this operation are called unoriented. These properties allows us to classify
the first three types of string theories:
10The equivalence in the last line follows by realizing that demanding that the variation is zero

for all τ is equivalent to saying that X is independent of τ , i.e., the derivative is zero.
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Type I Type IIA Type IIB
Strings Open + Closed Closed Closed

Orientation Unoriented Oriented Oriented
Supercharges 16 32 32

All of these theories have supersymmetric spectra. The two Type II theories
are distinguished by the particular GSO11 projections that are performed on the
spectrum; we will have more to say about GSO projections in chapter 2. The Type
I theory can be constructed from the IIB theory by orientifolding12 the theory
and adding several branes (which break half of the supersymmetry) to cancel
anomalies [18].

In the remainder of this work, we will mostly be interested in the Type II theories,
so let’s shortly discuss their massless spectrum. In the NS-NS sector, both theories
contain the same fields: a dilaton Φ, the Kalb-Ramond two-form Bµν and the
metric gµν . The dilaton plays an important role in string theory, as the vacuum
expectation value determines the coupling strength as

gs = e〈Φ〉 . (1.17)

In the R-R sector, the theories differ, IIA has a one-form C1 and a three-form
C3, while the spectrum of IIB contains a zero-form (also known as the axion) a13,
two-form C2 and a self-dual four-form C4. In the fermionic sectors NS-R and R-NS,
both have two gravitini (corresponding to 32 supercharges) and dilatini; however,
they are of different chiralities. Type IIA is a non-chiral N = (1, 1) theory, and IIB
a chiral N = (2, 0) theory. Before moving on, it is important to notice that these
theories fix the problems we had with bosonic string theory. There are no tachyons
in the spectrum, and we have also found the fermions we were looking for.

So far, we have assumed that we make both the left and right moving sectors of
the Polyakov action supersymmetric. If we relax this condition and make only one
of these sectors supersymmetric, while leaving the other purely bosonic, we obtain
two new theories, called heterotic string theories:

11Named after the inventors Gliozzi, Scherk and Olive [17].
12An orientifold is a generalization of an orbifold, whereby the orbifold group includes the

orientation reversing operator σ → 2π − σ.
13Here, I use the notation conventions we will use later on, in the literature it is usually written

as C0
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1.2 String Theory and Black Holes

• E8 × E8 heterotic string theory

• SO(32) heterotic string theory

The two theories differ in their gauge groups, under which the massless vectors
transform. Together all the approaches we have considered make up the five
consistent superstring theories.
Apart from these string theories, there is one other player left: M-theory. Edward
Witten introduced the name14 at the strings conference in 1995 [19]. The theory
is not completely formulated yet, but its low-energy limit is known to be 11D
supergravity, which we will discuss in the upcoming section. M-theory is not a
string theory in the sense that its constituents are not strings. It is perhaps more
accurately described as a membrane theory since it contains two kinds of branes: M2
and M5-branes. In subsection 1.2.4 we will see how M-theory and 11d supergravity
are related to the other string theories. Before that, we will discuss supergravity
theories.

1.2.3 Low Energy Limits

It is now time to consider the low-energy limit of string theory: supergravity. The
supergravities form a correct description when E � l−1

s , with ls the string length
scale.15 The supergravities will be of particular importance to us in several places,
as we will use the Type IIB supergravity in our Scherk-Schwarz reductions in
chapter 2, and 11d supergravity plays a big role in chapter 3. Supergravity has
had different roles in its history. Originally, it was envisioned as a fundamental
theory, unifying the forces and describing underlying degrees of freedom and free of
ultraviolet divergences. It was soon discovered that it could not fulfill these roles.
Its modern-day interpretation is better described as an effective field theory of a
more fundamental, underlying theory: superstring theory and M-theory.

Local supersymmetry

The fundamental idea of supergravity is to combine the ideas of gravity and
supersymmetry. The supersymmetry is promoted to a local gauge symmetry.
14Usually said to mean ‘mysterious’ or ‘membrane’ of even ‘mother’, perhaps you can think of a

better one even.
15The energy E is to be interpreted as the center of mass-energy in a particle experiment. Massive

particles can be made from oscillations on strings and have masses M ≈ l−1
s , when our energy

scale is lower than this; we can effectively consider the massless spectrum instead.
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A natural question to ask is then: what is the gauge field associated with this
symmetry? It is called the gravitino, the superpartner of the graviton, and it carries
both a spinor and a vector index. The presence of two indices was expected since,
unlike ‘normal’ gauge symmetries, the underlying algebra of supersymmetry is a
superalgebra, also containing fermionic generators, the supercharges. Consider now
the Lagrangian for a D ≤ 11 dimensional supergravity; we know that it should at
least contain the Einstein-Hilbert term for gravity, but also a description of the
gravitino field. As it turns out, these fields are described by the Rarita-Schwinger
Lagrangian, supposing we have a single gravitino it is given by

L = 1
2e ψ̄µΓµνρDνψρ + . . . , (1.18)

with e the determinant of the vielbein, ψ is the gravitino field, and Γµ form a
Clifford algebra16 by

{Γµ,Γν} = 2ηµν . (1.19)

The a, b, . . . in the Lagrangian denote the tangent space indices needed to describe
the spinors, while µν, . . . are the curved indices; both types run from 0, . . . D − 1.
The covariant derivative D is given by

Dµψ =
(
∂µ − 1

4ω
ab
µ Γab

)
ψ , (1.20)

where ω ab
µ is the spin connection associated with the vielbeins.

The degree of supersymmetry differs among the possible supergravity theories,
and we can denote them according to the amounts of supercharges in the theory.
The maximum number that we consider is 32, as theories with more supercharges
automatically get massless fields with a spin larger than two, for which we can’t
consistently write down interactions.
How these supersymmetries are distributed over the spinors depends on the space-
time dimension. The minimum number of components of the spinors relies on
the type of spinors we can define; we can always make a Dirac spinor that has
2bD/2c complex components. In even dimensions, we can, furthermore, define Weyl
spinors, and in D = 2 mod 4 we can combine the Weyl condition with the Majorana
condition to obtain Majorana-Weyl spinors. Both of the constraints place addi-
tional limitations on the spinor, halving its number of degrees of freedom. Spinors
16The Γµν indicate asymmetric combinations of gamma matrices, e.g. Γµν = 1

2 [Γµ,Γν ].
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1.2 String Theory and Black Holes

Dimension Spinor Components
2 MW 1
3 M 2
4 M 4
5 S 8
6 SW 8
7 S 16
8 M 16
9 M 16
10 MW 16
11 M 32

Table 1.1: This table shows the minimal real components spinors have in various
dimensions. M stands for Majorana, W for Weyl, and S for symplectic. The
symplectic condition leaves the number of independent components invariant, but
both Majorana and Weyl conditions halve the degrees of freedom of a Dirac spinor.
It is also possible to define Weyl spinors in 4D and 8D, but we omitted this from
the table.

can also be symplectic, but this does not yield any restriction on their degrees
of freedom. In Table 1.1 we show the different possibilities for the spinors in the
various dimensions.

As an example, we can consider the Type II theories in ten dimensions. From the
table, we can see that in ten dimensions, we have Majorana-Weyl (MW) spinors,
meaning that the 32 complex components of a Dirac spinor get reduced to 16 real
components. The Type II theories are maximally supersymmetric, so there will be
two of these MW spinors. We can make two choices for the chiralities, one yielding
a chiral theory, IIB, and the other a non-chiral theory, IIA. We denote this by
writing that IIA is an N = (1, 1) theory whilst Type IIB is an N = (2, 0) theory.
Apart from the ten- and eleven-dimensional theories, we will also often make use of
the six- and five-dimensional spinors in chapter 2.

What does it look like?

Now that we have discussed supersymmetry and spinors, it is time to study some
examples of supergravities. As mentioned, the IIB and eleven-dimensional su-
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pergravities will play important roles for us. So let us begin with discussing the
eleven-dimensional supergravity.

11-dimensional supergravity. The unique, eleven-dimensional supergravity was
first written down in [20]; it is maximally supersymmetric, and by considering
Table 1.1 we find that there will be one gravitino, whose spinor structures is a 32-
component Majorana spinor. The fermionic part of the action will at least contain
the Rarita-Schwinger Lagrangian (1.18). In fact, the actions are usually used to
make classical solutions, in which the fermions always vanish, so the fermionic part
of the actions are often omitted. The bosonic action is given by

S = 1
2κ2

11

∫
R ∗ 1 − 1

2F4 ∧ ∗F4 − 1
6 A3 ∧ F4 ∧ F4 , (1.21)

where the last term is known as a Chern-Simons term, R denotes the Ricci-scalar,
A3 a three-form, F4 = dA3 is its field strength and κ11 denotes the gravitational
coupling through

2κ2
11 = 16πG11 . (1.22)

The Bianchi-identity and equation of motion for the three-form are given by

dF4 = 0 , (1.23)

d ∗ F4 = 1
2F4 ∧ F4 . (1.24)

Apart from these equations it is often useful to consider the supersymmetry trans-
formations on the action. In particular the variation of the gravitino is considered,
since the solutions that set these variations to zero characterise Killing spinors. The
Killing spinors indicate conserved supersymmetries. The variation, with parameter
ε, for the gravitino is given by

δεψµ = Dµε+ 1
288(Γνρσλµ − 8δνµ Γρσλ)Fνρσλε = 0 , (1.25)

Dµε =
(
∂µ + 1

4ω
βγ
µ Γβγ

)
ε . (1.26)

Another supergravity theory can be found by reducing the 11d supergravity on
a circle. As it turns out this yields exactly the Type IIA supergravity. This
remarkable relation is due to the duality of M-theory on a circle to Type IIA string
theory, about which we say some more in the next section.
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1.2 String Theory and Black Holes

Type IIB. Unlike the IIA theory, IIB cannot be found by reducing the eleven-
dimensional theory on a circle. The action for the IIB supergravity schematically
looks as

SIIB = SNS + SR + Sf , (1.27)

where the first two terms denote the bosonic actions, arising from NS-NS and R-R
sectors of the string theories (see subsection 1.2.2), and the last term denotes the
fermions. As mentioned before, the fermionic part will not be of importance for
classical solutions, so we focus on the bosonic part. The NS part of the action is
given by

SNS = 1
2κ2

10

∫
e−2Φ

(
R10 ∗ 1 − 1

2H3 ∧ ∗H3 + 4dΦ ∧ ∗dΦ
)
, (1.28)

where Φ is the dilaton and H3 = dB2 is the field strength of the Kalb-Ramond field
B2. The other bosonic part of the action is found to be

SR = − 1
4κ2

10

∫
F1 ∧ ∗F1 + F3 ∧ ∗F3 + 1

2F5 ∧ ∗F5 + C4 ∧H3 ∧ F3 , (1.29)

where the field strengths are defined as

F1 = da , (1.30)

F3 = dC2 − adB2 , (1.31)

F5 = dC4 − 1
2C2 ∧ dB2 + 1

2B2 ∧ dC2 . (1.32)

The IIB action, as written above, gives rise to all the equations of motion, but we
are still missing one more ingredient. As we have mentioned before the five-form
field strength is self dual and we need to still manually implement this afterward17

by demanding alongside the equations of motion

F5 = ∗F5 . (1.33)

The Type IIB supergravity has an important symmetry that is not currently
manifest. To find it we change from the string frame to the Einstein frame by a
redefinition of the metric, and define two new fields as

gEµν = e−Φ/2gµν , (1.34)

τ = a+ ie−Φ , (1.35)

F ′
3 = dC2 − τH3 , (1.36)

17If it is imposed within the action we find the term
∫
F5 ∧ F5 = −

∫
F5 ∧ F5 = 0.

19



1 Introduction

The scalar τ is often referred to as the axion-dilaton. Using the above definitions
we can rewrite the bosonic IIB action to

SIIB = 1
2κ2

10

∫ (
RE ∗ 1 − 1

4F5 ∧ ∗F5 − 1
2(Imτ)F

′
3 ∧ ∗F̄ ′

3

− 1
2(Imτ)2 dτ ∧ ∗dτ̄ − i

1
4 Imτ C4 ∧ F ′

3 ∧ F̄ ′
3

)
,

(1.37)

where we wrote RE to indicate that it is now computed in the Einstein frame. In
this form there is an SL(2,R) symmetry present, that acts non-trivially two-forms
and τ . The two 2-forms transform as a vector18(

B2

C2

)
=
(
d c

b a

)(
B2

C2

)
, (1.38)

while the scalar τ transforms as

τ → aτ + b

cτ + d
τ . (1.39)

Within this group there is the transformation with b = 1, c = −1 and the other
parameters zero; it sends τ → −1/τ . Using the fact that the exponent of the
dilaton is the string coupling (1.17), we can see that this maps gs → 1/gs. This
transformation is better known as S-duality, which we will have more to say about
in the next section. This concludes for now the discussion on the, for us relevant,
supergravities. Later on, in subsection 1.2.5, we will come back to brane solutions
of string theory and supergravity. First we turn back to string theory and discuss
some important dualities.

1.2.4 The Dual Pictures

This section will have a brief look at some essential dualities for string theory and
M-theory. We will not exhaustively discuss all examples of them, but instead, we
show the possible dualities and pick a few relevant examples for our purposes.

S-duality The first to consider is called S-duality, which is short for strong-weak
duality. This duality is thus concerned with the coupling strength of the theory. It
is not only known and used within string theory, but also shows up in quantum
field theories. For our purposes, however, let’s first consider the Type IIB theory;
as it turns out the S-duality here is part of a larger symmetry group SL(2,Z), which
18Note that the matrix has to be invertible, real and ad− bc = 1.
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1.2 String Theory and Black Holes

is the discrete version of the SL(2,R) symmetry of the previous section. The duality
sends the string coupling gs → 1

gs
, and in this case, it will map the IIB theory to

itself.
For the Type IIA theory, something more intriguing happens. As it turns out,
M-theory, when compactified on a circle, is dual to the IIA theory. In the low-energy
limit, we already mentioned this, but the duality runs a bit further than this. The
radius of the circle is given by

R11 = `s gs ,

with `s the string length and, more importantly, gs the string coupling. For the
perturbative regime of small gs, the radius will tend to zero, and we have ‘ordinary’
ten-dimensional string theory. When we now send gs → 1

gs
we find that the circle

radius goes to infinity; it decompactifies. So the S-duality relates the IIA theory
to the eleven-dimensional M-theory. There exist other S-dualities between string
theories, for example, between Type I and the SO(32) heterotic string theory, but
since we will not be using these, we will not go into detail.

T-duality The name is short for target-space duality. This duality arises when we
consider theories that are compactified on circles or tori. If we were to consider
purely bosonic, closed, string theories, one compactified on a circle with radius R
and the other with R̃ = α′/R, then T-duality maps these to one another by

XR → −XR XL → XL , (1.40)

where XL,R denote the left and right-movers, respectively. A similar story holds for
the Type II string theories when compactified on a circle. When we compactify one
of them, say IIA, on a circle with radius R, it turns that T-duality maps it to Type
IIB theory compactified on a circle with radius α′

R . We already saw that M-theory
on a circle was dual to IIA, so combining these facts teaches us that M-theory on a
two-torus is dual to IIB.

For compactifications on tori, we usually talk about the T-duality group: this group
is, in some sense, the generalization of the R → 1

R symmetry for circles we just
mentioned. It acts upon the coordinates, background fluxes and also includes shifts
symmetries. When compactifying on a Tn, the resulting T-duality group for Type
II theories will be SO(n,n,Z). If we were to consider the O(n,n,Z) group, we can
also interchange the Type IIA and Type IIB theories.
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Figure 1.5: This diagram shows the various dualities and relations between
string theories, 11D supergravity, and M-theory. The star indicates that all other
theories are certain limits of M-theory. Figure from [21].

Apart from the Type II theories, there is also a T-duality between the two heterotic
string theories. An overview of the different dualities is shown in Figure 1.5.

U-duality The last duality we will shortly mention is the so-called U-duality [22],
which unites the previous two dualities into a larger symmetry group. This particular
symmetry group is vital for us since we will use it for Scherk-Schwarz reductions in
chapter 2. In the specific example that we will consider, we will first be compactifying
Type IIB supergravity on a T 4 which has an SO(4,4) T-duality group. The total
symmetry (or duality) group for the supergravity is SO(5,5,R), which contains the
T-duality group. The U-duality group for string theory is then the discrete version,
i.e. SO(5,5,Z).

1.2.5 Branes

String theories describe more than just strings; they also contain non-perturbative,
extended objects called D-branes or Dp-branes (with p the spatial dimension).
These branes are objects upon which open strings can end. The Dirichlet boundary
conditions, which we saw in subsection 1.2.2, indicate that the endpoints of an
open string are fixed in those spacetime directions; this is the origin of their name:
Dirichlet-branes. If we have an open string that has Dirichlet boundary conditions
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1.2 String Theory and Black Holes

in p directions and Neumann boundary conditions in the rest, we find that the open
string endpoint is confined to a Dp-brane. A major leap in understanding D-branes
was made by Polchinski [23], when he realized that the branes carry charge under
the RR-fields in string theory. This allowed the identification of the Dp-branes with
the supergravity analog called p-branes. A p-brane couples to a (p+1)-form field by
an interaction as

Sint = µp

∫
Ap+1 , (1.41)

which can be seen as a generalization of the coupling of a charged particle to a
gauge field. We can also consider the worldvolume theory of the brane, which is
known as the Dirac-Born-Infeld (DBI) action. The massless bosonic part19 of this
action is given by

S = −Tp
∫

dp+1σe−Φ
√

−det(G+B2 + 2πα′F ) , (1.42)

where F = dA is the field strength of a gauge field, B2 is the pullback of the
Kalb-Ramond form to the brane and G is given as

Gab = ηµν∂aX
µ∂bX

ν , (1.43)

with the a, b indices on the worldvolume and µ, ν in the ten-dimensional spacetime.
Before we consider how these branes look in supergravity, we consider what happens
with the D-branes under T-duality. The duality acts on the open string boundary
conditions in the circle direction by interchanging the Neumann and Dirichlet
conditions. We can then distinguish two situations: the D-brane is wrapped on the
circle or it lies in directions orthogonal to the circle. This results in

Wrapped : Dp-brane → D(p− 1)-brane ,

Unwrapped : Dp-brane → D(p+ 1)-brane ,

where the last line follows from the fact that the Dirichlet conditions change to
Neumann. To summarize: D-branes that wrap the circle are mapped to those that
don’t and vice-versa.

From the supergravity point of view

To find the p-branes in supergravity, we can solve the equations of motion that follow
from the supergravity actions. First, we will consider the ten-dimensional Type II
19There also exist Chern-Simons terms, but they will not be important for us.
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theories. Let us consider the spacetime symmetries that exist in the presence of
these branes. Before we add the branes, there is an SO(1,9); when introducing a
p-dimensional brane, we find

SO(1,9) → SO(1, p) × SO(9 - p) . (1.44)

The brane breaks the Lorentz-symmetry to its spacetime direction, and the rightmost
group arises due to rotations around the directions orthogonal to the brane. We
will place one extra demand upon the brane solutions: they are extremal, which
we require for the preservation of supersymmetry.20 In particular, the branes will
satisfy the Bogomol’ny-Prasad-Sommerfield, or BPS, bound, which relates the mass
(or mass density) to the charge of the brane. The extremal branes are 1/2 BPS
states, meaning that they preserve half of the supersymmetry. The p-brane solution,
in string frame, is found to be21

ds2 = H−1/2
p [−dx2

0 + dx2
1 + · · · + dx2

p] +H1/2
p [dr2 + r2dΩ2

8−p] , (1.45)

eΦ = H
3−p

4
p , (1.46)

Cp+1 = (H−1
p − 1)dx0 ∧ · · · ∧ dxp , (1.47)

and all other fields are set to zero. The Hp is a harmonic function given by

Hp = 1 + Qp
r7−p , (1.48)

and Qp is the charge of the p-brane. When there are multiple branes present, we
can write Qp = cpNp, where Np is the number of branes, and cp is the charge
of a single brane, which we will say more about in chapter 2. So far, we have
considered branes charged under RR-fields; what if the brane is charged under
the Kalb-Ramond field? When electrically charged, this turns out to be nothing
but the fundamental string, and the magnetically charged brane is the so-called
NS5-brane.

Looking at M-theory

So far, we have been discussing the ten-dimensional theories, but let’s switch over to
M-theory for a bit. We saw before, subsection 1.2.2, that the low-energy description
20This ensures that the solutions are stable. Also, the solutions are truly ‘black’, the temperature

of the extremal solutions is zero.
21When Cp+1 is one of the form fields present in, say, the IIB theory, the brane is said to be

electrically charged. If Cp+1 is, however, the Hodge dual of one of the IIB forms, the brane is
said to be magnetically charged.
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of M-theory, eleven-dimensional supergravity, contains a three-form field A3. By
our previous discussion, we can then conclude there exist two kinds of branes in
the theory: M2-branes, which are charged by A3 electrically, and M5-branes that
are charged by the Hodge-star of A3, hence charged magnetically. The M2-brane
solution in the 11d supergravity is

ds2 = H−2/3dxµdxνηµν +H1/3dxmdxnδmn , (1.49)

A3 = H−1dt ∧ dx1dx2 , (1.50)

where H is again a harmonic function, dependent on the radial coordinate in the
transverse space:

H(r) = 1 + q

r6 . (1.51)

A similar solution can be written down for the M5-brane. Before we move on, we
can consider what happens with the M-theory branes when we reduce M-theory on
a circle, which yields the IIA theory. The results depend on whether the branes lie
on the circle. If the M2-brane is wrapped on the circle, we obtain the fundamental
string in IIA, and if it is orthogonal to the circle, we get a D2-brane. The M5-brane
on the circle similarly yields a D4-brane, but when it is orthogonal to the circle, we
obtain an NS5-brane.

1.2.6 Building Black Holes

The branes we have discussed so far are in some sense ‘black’; as we take the
limit of r → 0 we find that the solutions have a horizon.22 There are more things
we demand of our black hole solutions, most importantly that they will have a
finite, non-zero entropy. By the Bekenstein-Hawking entropy formula, (1.6), a
black hole has non-zero entropy if its event-horizon has a non-zero area. This
absence of a horizon furthermore implies that black holes with an area of zero have
a naked singularity, which are conjectured to not exist in the cosmic censorship
conjectures.

So let us use some of the techniques of previous sections to create a physically
acceptable black hole. In particular we will consider a five-dimensional black hole,
since it will play a role later in chapter 2. One way to construct them is to start with

22That the horizon is located at r = 0 is a feature of the isotropic coordinates that we have used
so far.
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M-theory on a six-torus and place three orthogonal M2-branes together to obtain a
M2⊥M2⊥M2 solution. We can then apply dualities in the following manner

M-theory R10−−→ IIA T567−−−→ IIB (1.52)

where R10 denotes reduction of the tenth spatial dimension, and T567 indicates
T-dualities in the 5,6 and 7 directions. Note that we end up with Type IIB theory
on T 4 × S1, where we take the circle to be denoted by the x5 and the torus by ym
with m = 1, 2, 3, 4. Denoting an M2-brane that is extended in the (i, j) directions
by M2(i, j), the dualities act as follows

M2(8, 9) R10−−→ D2(8, 9) T567−−−→ D5(5, 6, 7, 8, 9)

M2(6, 7) R10−−→ D2(6, 7) T567−−−→ D1(5) (1.53)

M2(5, 10) R10−−→ NS1(5) T567−−−→ P(5)

In the last transformation we end up with a gravitational wave in the 5-direction,
meaning there is a non-zero amount of momentum present in the resulting D1-D5-P
system. The solution in the Type IIB theory is given as

ds2 = H
−1/2
1 H

−1/2
5 [−dt2 + dx2

5 +K(dt− dx5)2] +H
1/2
1 H

1/2
5 [dr2 + r2dΩ2

3]

+H
1/2
1 H

−1/2
5 [dy2

1 + · · · + dy2
4 ] ,

e−2φ = H−1
1 H5 (1.54)

C05 = H−1
1 − 1 ,

(∗C)056789 = H−1
5 − 1 ,

where we see that, as expected, the D1-brane is charged under C2 and the D5-brane
under the Hodge-dual of C2. The harmonic functions are given by

H1 = 1 + Q1

r2 , H5 = 1 + Q5

r2 , HK = 1 +K = 1 + QK
r2 . (1.55)

As we mentioned before the branes are BPS objects, and we can wonder how many
supercharges are conserved by this combined configuration. To investigate this, we
can investigate the Killing spinors, and how many independent components they
have. By considering the starting point with M2-branes (1.53), and realizing that
every orthogonal M2-brane breaks half of the supersymmetry, we could already
guess that it preserves 1/8. Nevertheless, let us look a bit more formally: Type IIB
theory is a chiral (2, 0) theory and contains two spinors of the same 10D chirality,
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1.2 String Theory and Black Holes

which we denote by εL and εR.23 The D1 and D5-branes impose the following
constraints on the spinors (see e.g. [24])

Γ0Γ5εL = εR , (1.56)

Γ0Γ5Γ6Γ7Γ8Γ9εL = εR . (1.57)

The momentum in the x5 direction imposes the following additional independent
constraint

Γ0Γ5εL = εL , (1.58)

which, when combined with the other constraints, implies the same constraint on
the εR spinor. So, in total, we can see that the independent components in the
spinors are halved three times, meaning that the D1-D5-P system is 1/8 BPS.

Down by Five Dimensions

The five-dimensional black hole solution can be found by compactifying over the
T 4 × S1, using the ansatz

ds2
10 = e2χdymdym + e2ψ(dx2

5 +Aµdxµ)2 + e−(8χ+2ψ+φ)/3ds2
5 , (1.59)

where χ, φ and ψ are scalar fields, the index µ runs over 1, 2, 3, 4 and Aµ denote
gauge fields in the five-dimensional theory. The prefactor of the five-dimensional
metric is found by demanding that it becomes the metric in the Einstein-frame.
The 5D-metric is found to be

ds2
5 = −H−2/3(r)dt2 +H1/3(r)(dr2 + r2dΩ2

3) ,

H(r) = H1(r)H5(r)HK(r) .
(1.60)

This is the metric of a five-dimensional black hole, and we can now investigate the
entropy. To do so we first compute the area of the horizon as r → 0, which gives

A = 2π2
√
Q1Q5QK . (1.61)

As we have mentioned before the charges can be written as Qi = ciNi, where ci
are the charges of an individual brane, and Ni integers, indicating the number of

23The conventional notation for the spinors seems confusing since they have the same chirality in
ten dimensions. The L/R denote, however, the two-dimensional worldsheet chirality.
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branes or units of momentum. A derivation of the individual charges is found in,
for example, [24], the product of the three charges yields

√
c1c5cK = 4G(5)

N

π
. (1.62)

Using these results we can find that the entropy of the black hole, computed by the
Bekenstein-Hawking entropy (1.6), is given by

SBH = 2π
√
N1N5NK . (1.63)

The black hole has a non-zero entropy, for which it is vitally important that all
Ni are non-zero. This last observation shows us that if we had omitted one of the
ingredients, be it one of the D-brane species or the momentum; then the black
hole would have been a naked singularity. This particular solution has had quite
some attention in the past, as it was also used in [12] to re-derive this entropy from
the microscopic string-theory side. This work by Strominger and Vafa provided
for the first time a microscopic origin of the black hole entropy. In chapter 2 we
will investigate solutions like the D1-D5-P whilst breaking part of the background
supersymmetry and then study how this affects the entropy. Let us now turn to
another exciting topic: holography.

1.2.7 Holograms

the three-dimensional world of ordinary experience —the universe filled
with galaxies, stars, planets, houses, boulders, and people— is a hologram,
an image of reality coded on a distant two-dimensional surface. This new
law of physics, known as the Holographic Principle, asserts that everything
inside a region of space can be described by bits of information restricted
to the boundary.

– Leonard Susskind, The Black Hole War

The physics world was shocked in 1997 when Maldacena published his paper on the
Anti-de Sitter / Conformal Field Theory duality (AdS/CFT) [25]. This proposal
was the first string theory-based example of holography: the phenomenon whereby
a higher-dimensional theory is equivalently described by a lower-dimensional one,
thought of by ’t Hooft [26] and popularized by Susskind [27].
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1.2 String Theory and Black Holes

The AdS/CFT duality was discovered by looking at stacks of N D3-branes from
different perspectives. First, we can consider the D3-branes from a microscopic
point of view, where there exist closed strings in the vacuum and open strings that
end on the stack of D3-branes. We can consider only the massless excitations if
we take the low energy limit, meaning we obtain Type IIB supergravity in 10D
Minkowski space in the bulk from the closed strings. For the open string sector we
can consider the DBI-action (1.42) which, when expanded in α′, yields a maximally
supersymmetric Yang-Mills theory. From the first point of view, we thus have two
decoupled systems: free IIB supergravity in the bulk, and for the D3-branes, we
find an N = 4, D = 4 SYM theory.
Now, we also know that D-branes are objects that source fields in the supergrav-
ity theory. When considering this perspective at low energies, we get a similar
decoupling. The excitations that exist close to the brane, r � R := Q

1/4
3 , will

be decoupling from those that exist far away, r � R.24 In other words, there
will be excitations that have such long wavelengths that they will not ‘feel’ the
brane anymore, while the others can’t escape the gravity well of the brane. The
long-range excitations constitute, once again, IIB supergravity in 10D Minkowski
and the short-range ones constitute the near-horizon physics of the branes. The
latter consists of an AdS5× S5 geometry. We find an equal IIB supergravity in the
bulk for both perspectives, so we are now led to identifying the N = 4, D = 4 SYM
theory with the IIB supergravity in AdS5× S5. Since the five-sphere is compact,
we usually say that the CFT4 is dual to AdS5, and in general that an AdS in D+ 1
dimensions is dual to a D-dimensional CFT.

AdS / CFT Dictionary

Let us be a bit more precise in the couplings and limits that we take. The string
coupling constant is gs, the Yang-Mills coupling is denoted by gYM , L represents
the AdS radius. The two theories are then related by

g2
YM = 2πgs , 2λ = 2g2

YMN = L4

α′2 , (1.64)

where we introduced the ’t Hooft coupling λ = g2
YMN . As for the limits: in the

weakest form of the AdS/CFT duality, we take limits on the string theory side to

24The specific power of Q3 arises due to the harmonic functions f = 1 + Q3
r4 .
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end up in supergravity. The limits consist of first taking the limit N → ∞ and
subsequently taking λ → ∞, making sure that gs is small. By (1.64), these limits
imply that the string length is much smaller than the AdS radius, meaning we take
the point particle limit of string theory and hence obtain supergravity. So this form
of the AdS/CFT duality states that N = 4, D = 4 Yang-Mills with gauge group
SU(N) is dual to Type IIB supergravity with a radius of curvature L along with
N units of flux (due to the brane charges). This duality is a strong/weak duality
because the gauge theory is strongly coupled, and the supergravity is weakly curved.
Stronger forms of the duality are less stringent than the weak form on the limits of
N and λ.

Let us now consider the (bosonic) symmetries on both sides. The SYM theory is
conformal in four dimensions, and the four-dimensional conformal group is SO(2,4).
Furthermore, the R-symmetry in the theory is given by SU(4) ∼= SO(6). For AdS5,
the isometry group is SO(2,4) and the isometry group of S5 is SO(6); the symmetries
thus coincide on both ends.
The next important step is to realize how the bulk fields φ are related to the
operators in the CFT, O. The one-to-one correspondence between these two is
realized as25 ∫

φ0

Dφ e−Sstring =
〈

e
∫

d4xφ0 O
〉

CFT
, (1.65)

where the subscript φ0 means that the paths of φ are on-shell and at the boundary
of the AdS-space take the value φ0. The partition function of the string theory
is thus identified with the generating functional for correlation functions. The
identification of objects between the two theories is usually called the dictionary.
For example, we identify the energy-momentum tensor in the CFT with the metric
in the bulk. In this case, the boundary value is the metric on the boundary.26 A
more elaborate introduction to the duality can be found in, for example, [28].
Although we don’t explicitly use the correspondence in this thesis often, it motivates
much research. The research described in chapter 2 is from the supergravity side of
things; an explanation using the AdS/CFT duality would (hopefully) teach us the
microscopics of the story. In chapter 3 we discuss the embedding of near horizon
limits of rotating black holes into M-theory, which provides the first step towards a
gravitational dual of c and I-extremization applicable to rotating geometries. The
25Note that we have switched to a Euclidean signature, if
26To be precise, it is defined up to a conformal rescaling, so φ0 would correspond to the boundary

value of the conformal class of the metric.
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1.3 SYK Models

models in chapter 5 and chapter 4 can be viewed as duals of black hole physics in
some limits, the one-dimensional SYK-model (in certain limits) is thought to be
dual to the two-dimensional Jackiw-Teitelboim gravity [29,30]. The quark-gluon
plasma created in heavy-ion collisions can be linked to five-dimensional black hole
physics via the AdS/QCD correspondence [31].

1.3 SYK Models

So far, our discussion has concerned string theory and how to build black holes
within string theory. We now turn our attention to the Sachdev-Ye-Kitaev (SYK)
model [32,33]. Instead of the ten dimensions of string theory, this model has only one:
time. In the context of studying black holes, the one-dimensional model is thought
to be dual to a two-dimensional gravity model that can contain black holes. There
are two reasons why we expect this duality, the first being that there is emergent
conformal symmetry in the IR limit. So by the AdS/CFT correspondence, we could
learn about the two-dimensional black holes by studying the one-dimensional model.
A second relevant property is that the SYK model is maximally chaotic. Before we
turn to the SYK model, let’s shortly review what chaos means and what it has to
do with black holes.

Chaos and Scrambling

Black holes are fast scramblers , meaning they quickly scramble any information
thrown into the black hole. More technically, we can consider a complex, chaotic
quantum system with many degrees of freedom N (for example, a black hole)
that we initially place into a pure state. After some time, the system evolves in
the following sense: if we consider a subsystem of size m � N , we find that the
density matrix approaches a maximally mixed state. Computing the entropy of
this mixed state tells us how much entanglement exists between m and mc (since
it is effectively computing the entanglement entropy between the two). In other
words, the scrambling tends to send the entanglement entropy of the subsystem to
its maximal value. Now, if this last statement is true for any subsystem with size
m < N/2, we call the system scrambled. In practical terms, we need to consider
half of the total system to extract information since the data is scrambled over the
system. Consider now adding one bit of information to the system. Initially, the
system is then no longer scrambled since we can find information by looking only
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at one bit. The scrambling time is then defined as the time scale until the bit of
information is scrambled over the system. What does it have to do with chaos? The
chaos, or also called the butterfly effect, is thought to be the underlying mechanism
by which black holes achieve the scrambling of information. This quantum chaos
turns out to be subject to a bound [34], and black holes exactly satisfy this bound,
i.e., they are the fastest possible scramblers. So if there is any theory dual to the
black hole, we expect it to show this maximal chaos, which the SYK model indeed
does.

What does the SYK model look like?

In chapter 4 we will be studying a generalization of the SYK model. We will
introduce the ‘original’ SYK model and its supersymmetric variant here to provide
some context for the generalized model. We will introduce the Hamiltonian of the
model, the disorder average and afterward, we discuss the two-point function for
both free Majorana fermions and the complete interacting theory. When we take
the large N limit (’t Hooft limit) alongside the IR limit, we can obtain an expression
for this full two-point function. Afterward, we will focus on the four-point function,
which has a unique role in computing the chaos exponent or Lyapunov exponent. In
the next section we discuss the effective action to rewrite the theory in terms of a
bilocal action. The last section shortly discusses the supersymmetric SYK model.

The SYK model [35] is a simplified version of the Sachdev-Ye model [32]. The
model contains N Majorana fermions that randomly interact with q ∈ 2Z other
Majorana fermions. In particular, we will first discuss the case q = 4 where four
fermions interact with each other. The Hamiltonian is then given by:

H = 1
4!
∑
ijkl

Jijkl χi χj χk χl , (1.66)

where χ denote the Majorana fermions, which obey the commutation relations

{χi, χj} = δij . (1.67)

The coupling Jijkl is completely antisymmetric in all its indices (which follows
from H being Hermitian and the anti commutation of the χ fields). From the
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1.3 SYK Models

Hamiltonian we can also obtain the Lagrangian:

L = 1
2 χj

d

dτ
χj −H . (1.68)

From the Lagrangian we can find that the fermions χ have dimension 0 and the
coupling in the Hamiltonian (for any q) has dimension 1, the dimension of an energy
scale. The Euler-Lagrange equation for the fermion yields

χ̇i = 1
3! Jiklmχ

k χl χm . (1.69)

Lastly, the model has quenched disorder where the couplings Jijkl are randomly
drawn from a normal distribution [35]

P (Jijkl) =
√

N3

12πJ2 exp
(

−N3 J2
ijkl

12J2

)
. (1.70)

Where J is the dimension 1 (energy) parameter that characterizes the distribution.
To find the average 〈Jn

ijkl〉 (n ∈ Z+) we simply integrate over the probability
distribution (note that there is no sum in the expression below)

〈Jn
ijkl〉 =

∫
d(Jijkl) Jn

ijkl P ( Jijkl ) , (1.71)

which yields us the two results:

〈Jijkl〉 = 0 , (1.72)

〈J2
ijkl〉 = 3!J2

N3 . (1.73)

We will also use X̄, for some X dependent on Jijkl, to denote the averaging over
the distribution.

One of the nice things about the SYK model is that we can write down explicit
results for the n point functions under a large N and strong coupling limit. Let us,
as an example, show the results for the two-point function.

1.3.1 Two-Point Functions

The combination of large N and strong coupling limits will severely limit the
diagrams that can show up in the loop corrections, and in fact all will be of a type
called ‘melons’. Let us first see the influence of the large N limit. Consider for
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Figure 1.6: These diagrams will contribute to leading order in N. The dotted line indicates
the disorder average, which forces the indices to be equal. Note that the indices in the
loops are summed over.

example the diagram in Figure 1.6 which will contribute to the leading order in
N ; the dotted line indicates the disorder average. The expression for the leftmost
diagram is:

C

(4!)2

∑
jkl
mno

〈Jijkl Jimno〉G0,jmG0,knG0,lo = J2G0(τ1, τ2)3 , (1.74)

where we made use of (1.73) and the combinatorial factor C =
(4

3
)(4

3
)

3!. There are,
however, also diagrams that don’t contribute at this order. For example take the
diagrams in Figure 1.7 which can be checked to contribute as 1

Nd
with d > 0.

We can now generalize the expression for the self energy by realizing that the only
kinds of diagrams that contribute are those similar to (1.74). The diagrams need
in general to have a disorder average over their incoming and outgoing lines and
the lines must not cross any other lines in the diagram. We can thus construct
the full two-point function as shown in (1.8). It then becomes clear that the total
expression for the self energy becomes [36,37]

Σ(τ1, τ2) = J2G(τ1, τ2)3 , (1.75)

where G now denotes the full two-point function. Besides the above expression,
we can also express the full two-point function as a sum of all the one particle
irreducible (1PI) diagrams by

1
G(ω) = −iω − Σ(ω) . (1.76)
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Figure 1.7: Here we show two diagrams that do not contribute at leading order in N the
left diagram will contribute at N−5 and the right diagram as N−1.

= + + . . . + + . . . 

Figure 1.8: The full two-point function is denoted by the line with the box. On the right
side, we omitted the dotted lines indicating the disorder averages. They are, however, all
implemented in the same manner as shown in Figure 1.6.

When we take (1.75) and (1.76) together, they completely determine the full two-
point function. We can solve these equations in the strong coupling (or low energy)
limit: ω � J .

Cranking the Coupling

In the strong coupling limit we may ignore the first term that appears in (1.76)
such that we can obtain the following equation:∫

dτ ′G(τ, τ ′) Σ(τ ′, τ ′′) = −δ(τ − τ ′′) , (1.77)

which, by using (1.75), becomes (notice the familiarity with the Schwinger-Dyson
equations)

J2
∫
dτ ′G(τ, τ ′)G(τ ′, τ ′′)3 = −δ(τ − τ ′′) . (1.78)
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We can now make an ansatz for G by using the conformal symmetry and anticom-
mutativity of fermions

Gc(τ) = A
sgn(τ)
|τ |2∆ , (1.79)

where A and ∆ are constants and the subscript c denotes the conformal limit. Indeed,
it can be checked that the expression is invariant under SL(2,R) transformations.
Plugging this into (1.78), we can find that the full two-point function is given by

G(τ) =
(

1
4π J2

) 1
4 sgn(τ)√

|τ |
. (1.80)

Similarly, there are techniques for computing four point functions using ladder
diagrams, and there are also results for n-point functions [38].

Conformal symmetries and heating up

There is an interesting consequence of taking the IR limit for the equations defining
the full two-point function: emergent conformal symmetry. We can see that (1.78)
has Conf(R1) ∼= Diff(R1) symmetry as follows27 Suppose that G(σ, σ′′) solves the
equation:

J2
∫
dσ′G(σ, σ′)G(σ′, σ′′)3 = −δ(σ − σ′′) .

We now let σ = f(τ) such that we obtain

J2
∫ ∣∣∣∣ dfdτ ′

∣∣∣∣ dτ ′G(f(τ), f(τ ′))G(f(τ ′), f(τ ′′))3 = − 1
|f ′(τ ′′)|δ(τ − τ ′′) , (1.81)

where we used that δ(f(x) − f(x0)) = 1
|f ′(x0)|δ(x− x0). It now becomes clear that

this is equal to (1.78) if we have

G(τ, τ ′) = |f ′(τ) f ′(τ ′)|∆ G(f(τ), f(τ ′)) , (1.82)

where, in our current case, ∆ = 1
4 . So we find that (1.78) is invariant under

the reparametrisation group Diff(R). The symmetry is, however, spontaneously
broken by the explicit solution for G in (1.80). This solution no longer has the full
symmetry group but instead is only invariant under the subgroup SL(2,R). We
can use the conformal symmetry to change the domain to a compact manifold, for

27Conf(R1) ∼= Diff(R1) follows because there is no notion of an angle in one-dimension, so all
smooth transformations are conformal.
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example S1. We pick f(τ) = e2πit/β such that we map the line into the circle, and
with this we can obtain a result for finite temperature:

Gβ(τ) = − π
1
4

√
2β J

1√
sin(πτβ )

sgn(τ) . (1.83)

1.3.2 Lyapunov and Chaos

As mentioned in the introduction, the SYK model saturates the chaos bound.
This chaos bound, introduced in [34], can be found using an Out of Time Order
Correlation (OTOC) function. In particular one can consider two Hermitian
operators V and W separated by a time distance t. The chaos can then be
investigated by the OTOC

F (t) = tr [yW (t) y V (0) yW (t) y V (0)] , (1.84)

where y = ρ(β)1/4. So the thermal density matrix ρ is split into the four factors
of y. One may then furthermore show that for a large N CFT, holographically
described by Einstein gravity [34], that

F (t) = f0 − f1

N2 exp
(

2π
β
t

)
+ O(N−4) . (1.85)

The conjecture about the bound on chaos then reads: chaos in thermal quan-
tum systems (with many degrees of freedom) can never develop faster than the
above holographic result. In chaotic systems the correlators are expected to grow
exponentially

Fd − F (t) ∝ exp (λL t) , (1.86)

where λL the Lyapunov exponent and Fd is the product of the disconnected
correlators. Furthermore, at some time between the scrambling time, mentioned
in the introduction of the SYK section, and the dissipation time, the exponential
decay time of two-point functions, we have that F (t) ≈ Fd. The conjecture is then
stated as:

d

dt
(Fd − F (t)) ≤ 2π

β
(Fd − F (t)) . (1.87)

Or in terms of the Lyapunov exponent:

λL ≤ 2π
β
. (1.88)
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As it turns out the SYK saturates this bound. To derive this explicitly requires
considering the non-conformal contribution to the four point function in exhaustive
detail. In particular we would consider:

Tr [y χi(t) y χj(0) y χi(t) y χj(0)] . (1.89)

Then, as derived in [37], the non-conformal contribution will yield a factor in the
four point function as:

C β J

(
1 − π

2 cosh 2πt
β

)
, (1.90)

where C is a constant. This indeed shows the exponential behaviour with a Lyapunov
exponent λL = 2π

β , such that SYK saturates the chaos bound. In chapter 4 we will
use a different, easier, method to find the maximally chaotic behaviour.

1.3.3 Effective Action

Another useful way to understand the model is by a path integral representation
over bilocal fields. This can be used to find the free energy, the entropy and might
be a good starting point for a holographic interpretation of the theory. We note that
the results we discuss below also have a generalization including certain ’flavours’
of χ’s, see [39]. Now, in order to find the free energy (or action) we would use
naively −β F = logZ. Due to the disorder averaging, however, we have to consider
Z, and for the free energy F = logZ. The problem with our naive assumption is
that logZ 6= log(Z) in general. The solution to this problem is the so-called replica
trick (see [40] for an introduction). This is most intuitively stated as

logZ = lim
n→0

Zn − 1
n

. (1.91)

The main idea of this equality is that we now have to calculate the disorder average
over n copies of Z instead of the logarithm. This means the disorder average will
boil down to doing Gaussian integrals. The replica trick can also be written in a
more useful way as

logZ = lim
n→0

1
n

log
(
Zn
)
. (1.92)

38



1.3 SYK Models

Following the replica idea we will now compute the disorder average of M copies of
the partition function.

ZM =
∫

Dχαi DJijkl exp

−a
∑
ijkl

J2
ijkl

 (1.93)

× exp

−
M∑
α=1

∫
dτ

1
2
∑
i

χαi
d

dτ
χαi − 1

4!
∑
ijkl

Jijkl χ
α
i χ

α
j χ

α
k χ

α
l

 ,

where the bar denotes the disorder average, α denotes the replica index and a is
the prefactor in the exponential as in (1.70). We won’t show all the details here,
but the straightforward computation consists out of first computing the Gaussian
integral over Jijkl and afterward introducing, by means of Lagrangian multipliers,
bilocal fields

G̃αβ(τ1, τ2) = 1
N

N∑
i=1

χαi (τ1)χβi (τ2) . (1.94)

As a last step we can integrate out the fermions and the resulting partition function
becomes

ZM =
∫

DG̃DΣ̃ exp {−M Seff} , (1.95)

where Seff is given by

Seff = −N

2 log det
(
∂τ − Σ̃

)
+ 1

2

∫
dτ1 dτ2

(
N Σ̃(τ1, τ2) G̃(τ1, τ2) − J2N

4

(
G̃(τ1, τ2)

)4
)
,

(1.96)

where the G̃ denotes the bilocal field, and Σ̃ arose as the Lagrangian multiplier.
Note that if we vary Σ̃ or G̃ we obtain (1.76) or (1.75) respectively. This shows
us that we have found an exact rewriting of our theory in terms of path integrals
over bilocal fields. The computation for a general q-pt interaction is completely
analogous to above and yields as a result

ZM =
∫

DG̃DΣ̃ exp
{
M

N

2 log det
(
∂τ − Σ̃

)}
× exp

{
−M

2

∫
dτ1 dτ2

(
N Σ̃(τ1, τ2) G̃(τ1, τ2)−

J2N

q

(
G̃(τ1, τ2)

)q)}
.

(1.97)
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Lastly, we can now compute the leading order contribution to the free energy by
evaluating at the saddle point and using our starting point (1.92) (which exactly
divides away the M):

−β F
N

= 1
2 log det (∂τ − Σ) − 1

2

∫
dτ1 dτ2 [Σ(τ1, τ2)G(τ1, τ2)

− J2

q
G(τ1, τ2)q

]
.

(1.98)

Schwarzian

A widely discussed action in relation to the SYK model is the so-called Schwarzian
action. It arises when we consider the action at its saddle point, and subsequently
consider fluctuations around these saddle points, and want an action describing
such fluctuations. When we consider the low energy limit, this action has zero
modes, exactly the same zero modes as we mentioned during the four point function
computations. These zero modes are the fluctuations which are exactly equal to
reparametrisations τ → f(τ). The Schwarzian action arises when we consider the
non-conformal corrections in the four point function, yielding a finite action for
the reparametrisations. The full derivation is involved, but described in [37]. The
action is given by

S

N
= −αs

J

∫
dτ {f, τ} , (1.99)

{f, τ} = f ′′′

f ′ − 3
2

(
f ′′

f ′

)2
, (1.100)

where {f, τ} is called the Schwarzian derivative.

1.3.4 The Supersymmetric SYK Model

In this section, we will shortly discuss the supersymmetric N = 1 SYK model, first
introduced in [41]. The model we will discuss in chapter 4 will be equivalent to this
model at some choice of parameters. We will shortly discuss the Hamiltonian and
Lagrangian formulation, followed by the effective action.
To construct the Hamiltonian we start by considering the supercharge

Q = i

3!

N∑
ijk=1

Cijk χ
i χj χk . (1.101)
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Following the standard procedures of supersymmetry for quantum mechanics we
note that

H = 1
2 {Q,Q†} .

Of course, in our case, with Majorana fermions, we simply find that Q† = Q and
thus H = Q2. Since H must be Hermitian it follows that also Q must be and
Cijk must be an N ×N ×N antisymmetric tensor with fixed real entries. In some
analogy with the standard SYK model (see (1.73)) we now take Cijk to be a random
Gaussian variables with:

〈Cijk〉 = 0 , (1.102)

〈C2
ijk〉 = 2! J

N2 . (1.103)

After some manipulations we can then write the Hamiltonian as

H = E0 + 1
4!

N∑
ijkl=1

Jijkl χ
i χj χk χl , (1.104)

where we have defined the constant E0 and a coupling Jijkl as

E0 = 1
8

1
3!

N∑
ijk=1

C2
ijk = 1

8
∑

1≤i<j<k≤N

C2
ijk , (1.105)

Jijkl = −1
8
∑
a

Ca[ij Ckl]a . (1.106)

It is important to note that in this case Jijkl are not the independent Gaussian
variables, which constitutes an important difference between the supersymmetric
model and the ordinary one.

Superspace and Lagrangian

Now we will obtain the Lagrangian for this supersymmetric model. In particular,
we will start by deriving it in the superspace representation following [41], for which
we will denote the supercharge with Q. The superspace representation arises by
introducing an anticommuting coordinate for each supercharge in the model. So in
our case we essentially map (for each t in the domain):

t 7→ (t, θ) ,
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where now θ is the anticommuting coordinate. In a model where Q† 6= Q (so
no Majorana fermions) one would also have the θ∗ coordinate. Furthermore, we
introduce the superfield

Ψi = χi + θ bi , (1.107)

with b a non-dynamical auxiliary field, that will linearise the supersymmetry
transformations. To see this we start by considering the supercharge in this
representation

Q = ∂θ − θ ∂τ . (1.108)

Note that this supercharge satisfies the expected anticommutation relation 1
2 {Q,Q} =

−∂τ = i∂t, yielding the generator of time translations. Related to the supercharge
by t 7→ −t (or taking right derivatives instead of left ones) is the covariant derivative:

Dθ = ∂θ + θ ∂τ . (1.109)

Now we can determine how the superfield (and its components) change under
supersymmetry transformations, which we will denote by δε. For a general superfield
Φ we have

δεΦ = (ε∗Q + εQ†) Φ ,

where ε and ε∗ are (infinitesimal) anticommuting constant parameters. So in our
case we have only the supercharge Q and the above reduces to

δε Ψi = εQ Ψi = εbi + θ ε ∂τχ
i . (1.110)

So we find that the χ and b fields transform as follows

δεχ
i = εbi , (1.111)

δεb
i = ε ∂τ χ

i . (1.112)

The manifestly supersymmetric Lagrangian is then given by

L =
∫
dθ

(
−1

2 ΨiDθ Ψi + i

3! Cijk Ψi Ψj Ψk

)
, (1.113)

where Dθ = ∂θ + θ ∂τ , the covariant derivative, is obtained by taking t 7→ −t in the
supercharge. Instead of writing it in this manifestly symmetric way we can also
first fill in the above expressions:

L =
∫
dθ

[
−1

2
(
χi + θ bi

)
(∂θ + θ ∂τ )

(
χi + θ bi

)
+ i

3! Cijk
(
χi + θ bi

) (
χj + θ bj

) (
χk + θ bk

)]
.

(1.114)
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Then we can complete the Grassmann integral to obtain

L = 1
2 χ

i ∂τ χ
i − 1

2 b
i bi + i

2 Cijk b
i χj χk . (1.115)

We see that, as expected, the equation of motion for bi is algebraic:

bi = i

2Cijk χ
j χk . (1.116)

And since the Lagrangian is quadratic in this non-dynamical field b we can substitute
the equation of motion back into the action. When we plug (1.116) into the
Lagrangian, (1.115), we see indeed that the second and third term yield the four
fermion interaction as seen in (1.104). The dynamics described by this Lagrangian
thus indeed reproduce those of the found Hamiltonian.

Effective actions and symmetries

In an analogous process as we followed in subsection 1.3.3 one can integrate out the
disorder and derive an effective action for the supersymmetric SYK model [41]

Z =
∫

DGψψDΣψψDGbbDΣbb e−Seff ,

Seff

N
= −1

2 log det [∂τ − Σψψ] + 1
2 log det [−1 − Σbb]

+ 1
2

∫
dτ1 dτ2 [Σψψ(τ1, τ2)Gψψ(τ1, τ2) + Σbb(τ1, τ2)Gbb(τ1, τ2)

−J Gbb(τ1, τ2)Gψψ(τ1, τ2)2] .
(1.117)

Here, just as in the non-supersymmetric SYK, (1.96), the Σ and G are introduced
by Lagrange multipliers. In this case there are two types of fields due to the
appearance of both a bosonic b and a fermionic ψ. Note also the similar kinetic
terms, the lack of a ∂τ term for b is due to it’s lack of dynamics.
The model has a symmetry-breaking pattern analogous to the non-supersymmetric
SYK model. However, apart from the Diff(R) there is now also supersymmetry.
The transformations hence include also the above introduced θ:

τ 7→ τ ′(τ, θ) , (1.118)

θ 7→ θ′(τ, θ) . (1.119)
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Together, these make up the so-called SDiff group. The bosonic part of these
transformations is simply the group Diff(R):

τ 7→ τ ′ = f(τ) , (1.120)

θ 7→ θ′ =
√
∂τθ . (1.121)

The first line is the symmetry as we had it in the original SYK model, the second
line shows its action on θ. There are many more results in supersymmetric SYK
models; here, we mention a few, although our list is incomplete. In [42], the notions
above are extended to two dimensions, and it discusses the of problems when
doing so. The article [43] discusses a bi-local collective superfield theory for both
N = 1, 2 supersymmetric SYK models. In [44] the four-point function in N = 2
supersymmetric SYK is computed. This concludes our introduction to the SYK
models, and we will continue with the topic in chapter 4.

1.4 Heavy-Ion Collisions

It is now time, once again, to make a complete switch of subjects; this time, we
will focus our attention mainly on the depths below Geneva in Switzerland: CERN.
About 175 meters below the ground, there is the (at the time of writing) most
giant machine in the world, the Large Hadron Collider (LHC). One month a year,
two beams of heavy-ions, usually lead, are accelerated to speeds very close to the
speed of light, after which they are sent to collide with each other. Understandably,
there is loads of energy packed into these collisions, and the resulting plasma has
an extremely high temperature (billions of degrees in Kelvin). In this introduction
we will shortly introduce quantum chromodynamics and point out some relations
to the AdS/CFT correspondence. Afterward we expand on heavy-ion collisions and
discuss the quark-gluon plasma.

1.4.1 Quantum Chromodynamics

In order to understand what happens at the extreme temperatures of heavy-ion
collisions we will need a theory of strong interactions, which govern this regime.
The best known explanations are formed by QCD, which is a gauge theory based
upon the group SU(3). Its main constituents are the quarks and gluons, which exist
in three so-called colors (hence the name). The Lagrangian for this gauge theory is
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written as

LQCD = −1
4 tr [Gµν Gµν ] +

Nf∑
i=1

q̄i(i /D −mi) qi , (1.122)

where we have defined

Gµν = ∂[µAν] + g[Aµ, Aν ] , /D = γµ (i∂µ + gAµ) . (1.123)

The trace over the field strengths G concerns the Nc = 3 color indices, and the
summation goes over the quark flavours Nf . In the standard model there are six
flavours of quarks, denoted by q in the above Lagrangian. Sometimes, for example
in holographic applications, the number of colors and flavours are left unspecified;
for example in the Veneziano limit both Nf and Nc are assumed to be large, but
their ratio is kept fixed.

A remarkable property of QCD concerns the coupling constant g, which we can
investigate with the beta function. It turns out that the beta function is negative
to the first order in perturbation theory under some reasonable condition on Nc

and Nf [45, 46]. This negative beta function leads to the phenomenon known as
asymptotic freedom, meaning that at high energies, the coupling constant decreases,
and the particles become free. This behavior of the coupling constant is also seen
in experiment, as shown in Figure 1.9. From the figure we can also see that around
1 GeV the coupling constant is of order one, i.e., we can no longer use perturbation
theory.

At the low energy scales, we can thus no longer use the standard, perturbative
techniques for understanding the behavior of particles. We won’t be very interested
in the low energy limit for our purposes, but let us mention one exciting feature:
confinement. At low energies, it appears that all quarks confine themselves in
groups such that the total color charge is zero. One way this low energy limit of
QCD is still studied is using LatticeQCD, whereby the equations of QCD are solved
numerically on a small lattice of points.

One last, important aspect of QCD concerns the phase diagram; the expected
diagram is shown in Figure 1.10. The phase diagram is plotted with temperature
and baryon chemical potential µB . The latter quantifies the abundance of quarks
over anti-quarks. We can study highly energetic heavy-ion collisions to good
approximation with zero chemical potential. In the figure also the accessible parts
to LHC and RHIC experiments are shown, along with the beam energies. Note
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Figure 1.9: This figure shows the QCD coupling constant, denoted here by αs, as
a function of the energy scale Q. As the energy scale increases, we see indeed that
the coupling drops, indicating asymptotic freedom. The figure is taken from [47].
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1.4 Heavy-Ion Collisions

Figure 1.10: Here, we show the expected phase diagram that follows from quan-
tum chromodynamics; it plots temperature versus chemical potential. At high
enough temperatures, a quark-gluon plasma forms. The lines show the regions that
are accessible in heavy-ion collisions, along with their beam energies. Note that for
increasing beam energy, a baryon chemical of zero becomes a better approximation.
The figure was taken from [48].

that indeed the highly energetic collisions at LHC can be approximated very well
with zero chemical potential. The most important takeaway is that there is a phase
transition to a Quark-Gluon Plasma (QGP) at high enough temperatures, which
we will discuss more below.

One of the main motivations for studying the quark-gluon plasma comes from
cosmology. In particular, it has been known since early in the 70’s [49, 50] that
the early universe was too hot for hadrons, like protons and neutrons, to exist.
At these extreme temperatures, microseconds after the big bang, the universe
consisted of quark-gluon plasma. The studies of the QGP thus provide us with a
peek back at the very early universe. Another interesting situation arises from the
AdS/QCD correspondence, which aims to understand (aspects of) QCD by using
the AdS/CFT duality from subsection 1.2.7. In [31] it was shown that some aspects
of the quark-gluon plasma could be understood by studying five-dimensional black
holes.28 In particular, the ratio of the shear viscosity over the volume density of

28And perhaps we can understand aspects of black holes by studying the quark-gluon plasma.
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entropy was calculated as
η

s
= 1

4π . (1.124)

Recent Bayesian analyses [51, 52] show that the experimentally observed values are
consistent with this predicted value.

1.4.2 Quark-Gluon Soup

The question then arises, how can we create the quark-gluon plasma? This is
where heavy-ion collisions come in; the collisions produce the right conditions for a
quark-gluon plasma to be produced. For the remainder of this section, I will discuss
the situation for the ALICE detector at the LHC, although the same principles
apply to the Relativistic Heavy Ion Collider (RHIC), albeit with slightly different
numbers.

For one month a year, heavy-ions are accelerated in the LHC to tremendous speeds,
close to the speed of light. As a result, there are two ‘blobs’ of heavy-ions, accelerated
in opposite directions; when the blobs reach the desired speed, they collide with
one another. In Figure 1.11 we show an example of a heavy-ion collision. In this
particular example, we can see before the collision the two blobs of heavy-ions.
Their shape is elongated due to Lorentz contraction (I usually describe them as
pancakes), which is quite extreme at the relativistic velocities of the heavy-ions.

The diameter of the disks of heavy-ions is about 14 fm (femtometer), and their
width is Lorentz contracted to 14/γ fm, where γ is approximately 2500 for the
LHC [53]. The energy density just after the collision is roughly 12 GeV/fm3, which
is close to twenty times the energy density of a hadron. At such energy densities, a
quark-gluon plasma is created, see also Figure 1.10. As the name suggests, it is a
plasma that consists out of quarks and gluons. Normally, under lower temperatures,
all the quarks are bound to hadrons, such as protons and neutrons.
As the plasma cools down and expands, we get to a phase called hadronization,
whereby the energy densities have dropped enough for hadrons to form again.
Understanding this process of hadronization is yet another motivation for performing
heavy-ion collisions.

The example collision shown in Figure 1.11 is a central one. In heavy-ion collisions,
centrality measures how aligned the two beams of heavy-ions are, with 0% being the
most central and 100% being the most peripheral collisions. A related variable is
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Figure 1.11: Time snapshots of an animated PbPb heavy-ion collision, as viewed
from the side. The situation before, during and after the collision is shown; red
color indicates the presence of the quark-gluon plasma. The last time snapshot
shows the hadronization taking place. Figure taken from [53], which adapted it
from [54].

the impact parameter b, which is defined as the distance between the two centers of
the heavy-ion disks. The ions that participate in the collision are called participants
and those that don’t are called spectators, since they only ‘spectate’ the collision;
the latter will turn out to be very important for us. The situation is illustrated
in Figure 1.12, where the dotted circles indicate spectators and the solid lines the
participants.

Coordinate systems

In the field of particle physics, there are some conventions for coordinates, which
we briefly review. Due to the detector layouts, it is useful to measure not ‘ordinary’
momentum but transverse momentum. This transverse momentum thus lies in
the plane orthogonal to the beam direction (ẑ), so it lies in the xy-plane. More
importantly, however, the transverse momentum is caused completely by the collision
and contains all the important information. The azimuthal angle φ is defined as
the angle in the transverse plane. Next up, the pseudorapidity, η, which is a spatial
coordinate describing the angle of the particle relative to the beam-axis (not to be
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Figure 1.12: Here we show a view transverse to the beams, red circles indicate
nucleons from one beam and blue from the other. Solid circles indicate nucleons
that participate in the collision, while the dotted circles are the spectators. The
more central a collision is, the more participants will be in a collision. Figure
taken from [55].

confused with φ), by

η = −ln tan
(
θ

2

)
. (1.125)

Lastly we define the rapidity Y , which is not a coordinate but an alternative way
to describe speed as

Y = tanh−1
(vz
c

)
, (1.126)

where vz is the speed in the beam direction and thus the rapidity maps the speed
−c < vz < c to −∞ < Y < ∞. The Lorentz factor γ = 1/

√
1 − v2

c2 can be rewritten
with the rapidity as cosh(Y ).

Anisotropic flow

One of the main observations that lead to a whole host of new research ideas
was the observation of large elliptic flow. This flow is an example of anisotropic
flow in the expansion of the quark-gluon plasma. In addition to this elliptic flow,
there are different forms of anisotropic flow, which provide information on the
bulk properties of the matter and the initial geometry of the collision. The most
important anisotropic flows we will consider are the directed and the elliptic flow,
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Figure 1.13: Shown here is the elliptic flow and its time dependence. One can see the
characteristic elliptic shape of the expansion, which defines elliptic flow. Note that the
z-direction is the beam direction, and here the x-axis is defined by the impact parameter.
Figure from Ref. [23].

denoted by v1 and v2 respectively. These flow components can be found from a
Fourier expansion of the differential azimuthal distribution of the particles, given
by

E
d3N

dp3 = 1
2π

d2N

dpT dY

(
1 + 2

∞∑
n=1

vn cos[n(φ− ψRP)]
)
, (1.127)

where E is the energy of the particle, p the momentum, pT the transverse momentum,
Y the rapidity, φ the azimuthal angle, ψRP the angle with the reaction plane29 and
vn are the Fourier coefficients or flow components, defined by

vn = 〈cos[n(φ− ψRP)]〉 , (1.128)

where the brackets define an average over all particles and all events (for a certain
(pT ,Y ) bin). As mentioned before, we will look mostly at the first few Fourier
coefficients, called the directed flow, v1, the elliptic flow, v2 and the triangular flow
v3. The directed flow is the flow directed along transverse axes with respect to the
beam axis. The elliptic/triangular flow is the elliptic/triangular expansion of the
plasma in the transverse plane, the elliptic flow is shown in Figure 1.13.

1.4.3 Electromagnetic fields

In this thesis, we shall be looking at the quark-gluon plasma in the presence of vast
electromagnetic fields. These fields have various origins, which we will study in

29The reaction plane is the plane formed by the collision geometry, and lies in the x and z

directions if we follow the conventions of Figure 1.13
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chapter 5. The magnitude of these fields, at LHC, has been estimated to be of order
e| ~B|/m2

π ≈ 10−15 [56]. 30 Our goal is to obtain the influence of the electromagnetic
fields on the expansion of the QGP and, in particular, the influence on the first
few flow coefficients. We will approach this by first using a numerical realistic
hydrodynamic background for the quark-gluon expansion without electromagnetic
fields. After obtaining the background velocity u, we want to get the velocity ~v
caused by the electromagnetic field. To get this, however, we will need to boost to
the local fluid rest frame where we have ~u′ = 0. In this primed frame (with ~v′), all
the components of ~E′ and ~B′ are non-zero. To compute the velocity ~v′ we will solve
the equation of motion with the Lorentz force law and using stationary currents

m
d~v′

dt
= q ~E′ + q~v′ × ~B′ − µm~v′ = 0 , (1.129)

where m denotes the mass, q the charge, µ is the drag coefficient, and the last
term denotes the drag force on a fluid element with mass m. Note that the above
Lorentz equation is a non-relativistic equation, which is only applicable in the case
that |~v| << |~u|. We shall see later, chapter 5, that this is a good assumption. The
calculation of µm for light quarks is not trivial, and it is not exactly analytically
known at this moment. We use holographic results from [57]; currently, there are
only precise results known for heavy quarks in the N = 4 SYM theory (which we
also mentioned in subsection 1.2.7)

µm = 1
2 π

√
λT 2 , (1.130)

where λ = g2
YM Nc is the t’ Hooft coupling. Here g is the gauge coupling and Nc

the number of colors, see also [58, 59]. We will pick, just as in [56], λ = 6π and
further assume µm to be constant. Having obtained our four-velocity in the fluid
rest frame, we shall boost back to the center of mass frame and obtain V ±µ, the
total four-velocity. This four-velocity then incorporates the expansion as found by
the hydrodynamic model and the effects due to the electromagnetic field. With
the four-velocity at hand, we can get the spectra of particles (protons and pions in
our case), and by using (1.127) we can compute the different flow components, the
details of which we will show in the later chapters.

30In units of Tesla, this estimate is of order 1015 T.

52



1.5 This thesis

1.5 This thesis

Although we have mentioned various bits throughout the introduction, let us briefly
discuss the topics in this thesis. In the first chapter, chapter 2 we will discuss
black holes in string theory with duality twists. In particular, we start off using a
supergravity setup and then perform Scherk-Schwarz twists (of which the string
counterpart is called a duality twist). The starting point is Type IIB supergravity,
which we then compactify on T 4 × S1, where the compactification on the circle
is a Scherk-Schwarz twist. The Scherk-Schwarz twist can, as we will see, break
the supersymmetry of the supergravity theory. This breaking provides one of the
primary motivations for this research: to study black holes from string theory under
the breaking of supersymmetry. The relevance of this study is clear since there
appears to be no supersymmetry in our universe (at currently accessible energy
scales). Thus, we will use black holes, like the ones we created in subsection 1.2.6,
and investigate them under the Scherk-Schwarz twists. We will describe the Type
IIB action in an SO(5,5) covariant manner, introduce the relevant Scherk-Schwarz
twists, discuss the implications for the black hole solutions, and, finally, describe
how the twists can be uplifted to string theory. Certain classes of duality twists
can be alternatively described as orbifolds, which provide a more complete picture
of the duality twists, including all the possible string states.

In the second chapter, chapter 3, we investigate the near-horizons of rotating
supersymmetric black holes, in particular how we can uplift these to the eleven-
dimensional M-theory. The rotating black holes always have some fibered AdS2

structure in the near-horizon, which we also saw in our discussion of the Kerr black
hole in (1.2). We will allow for the most general fibration over the AdS2 and keep
a flux configuration that allows for rotating M2-branes. As an example, we will
provide the uplift of the asymptotically AdS4 Kerr-Newman black hole into the
classification. The last part of the chapter concerns the conditions of rotating black
strings in Type IIB using dualities with the aforementioned eleven-dimensional
theory.

The third chapter, chapter 4, concerns a generalization of the ‘standard’ SYK
model that we discussed in section 1.3. Apart from the N Majorana fermions,
we also add in M auxiliary bosons; when M = N the model coincides with the
supersymmetric SYK model. The disorder average gets changed in this model,
which results in different dynamics. When solving the model with assumptions that
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the two-point functions are conformal, similar to what we did in (1.79), we find
two solutions. Based on their behavior when M/N = 1, we name them ‘rational’
and ‘irrational’. Afterward we determine numerically which of these appears to be
the dominant saddle, and lastly, we investigate the chaos of the model using the
OTOC correlators.

Finally, in the last chapter, chapter 5, we will study heavy-ion collisions and the
quark-gluon plasma, which we introduced in section 1.4. In particular, we will
examine the electromagnetic fields that are present in the heavy-ion collisions and
what influence they have on the charge-dependent expansion of the quark-gluon
plasma, beside its ‘normal’ thermodynamic growth. First, we first numerically model
the evolution of a cooling droplet in the strongly coupled plasma and subsequently
add in the electromagnetic fields. We find that there are charge-odd, parity-odd,
contributions to the directed flow v1 and the triangular flow v3, arising due to
a combination of Lorentz, Faraday, and Coulomb forces. Furthermore, we find
a parity even contribution to the elliptic flow v2, which arises from the plasma’s
charged participants. We conclude by analyzing of the influence of parameters used
in the computations.

Conventions

In this thesis we will always use natural units with ~ = c = kb = G = 1 unless
otherwise stated. For metrics we work in the mostly plus convention such that
η = diag(−1, 1, 1, . . . , 1).
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Part I

Black Holes in String Theory

In this first part there are two chapters, each with a specific focus on black hole
solutions. The first chapter, black holes in string theory with duality twists, focusses
on black hole solutions in string theory whereby part of the spacetime supersymme-
try is broken. We will investigate whether several ten-dimensional brane solutions
are preserved under the supersymmetry breaking compactifications. In the second
chapter we discuss how the near-horizon geometries of rotating black holes can be
embedded into M-theory. We will allow for a general AdS2 fibration structure, with
fluxes allowing rotating M2-brane setups. As an example, we show how the AdS4

Kerr-Newman black hole fits into the classification.

55





Chapter 2

Black Holes in String Theory with Duality
Twists

Of all the conceptions of the human mind from unicorns to gargoyles to
the hydrogen bomb perhaps the most fantastic is the black hole: a hole in
space with a definite edge over which anything can fall and nothing can
escape; a hole with a gravitational field so strong that even light is caught
and held in its grip; a hole that curves space and warps time.

– Kip Thorne, Cosmology + 1

In this first chapter we will discuss black holes in the presence of supersymmetry
breaking backgrounds. From a phenomenological point of view this has interest since
there appears to be no supersymmetry present in our universe at our energy scales.
The method we use can in principle be used to break all of the supersymmetry,
which could provide insights into creating black hole objects from string theory
whilst simultaneously breaking the supersymmetry. In this work we will mostly
consider cases where only part of the supersymmetry is broken, as to maintain the
various advantages of the symmetry, e.g. the stability of the vacuum that we end
up in. The set-up we consider will be Type IIB theory on T 4 × S1, whereby the
reduction on the circle will be a so-called Scherk-Schwarz reduction, which we will
introduce in section 2.2.1 Since Type IIB is ten-dimensional, our resulting black
holes will live in five dimensions.

In order to study such BPS black holes in five dimensions both macroscopically
and microscopically, we can use a set-up of the D1-D5-P system in Type IIB string

1We could also have used K3 instead of T 4.
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theory. The black hole can be described as an asymptotically flat three-charge
1/8 BPS black hole solution of 5D N = 8 supergravity (or 1/4 BPS in N = 4
supergravity). The entropy can be computed microscopically from a 2D (4, 4)
CFT dual to the near horizon geometry of the black hole [12]. This system has
U-dual formulations in terms of F1 and NS5-branes, and in terms of intersecting
D3-branes.

Black holes in compactifications preserving eight supersymmetries in five dimensions
can be constructed in M-theory on CY3 [60] or in F-theory on CY3 × S1 [61,62]. In
these cases, the microscopic field theory dual to the black hole horizon geometry is a
2D (0, 4) CFT. These CFTs are considerably more complicated than the (4, 4) CFTs
on the symmetric product of T 4 (or K3) as they have less supersymmetry [12].

In this chapter, we consider a different way to reduce supersymmetry, namely
string compactifications with a duality twist [63], which are the lifts to string
theory of Scherk-Schwarz reductions in supergravity [64,65]. Such compactifications
allow for partial supersymmetry breaking and include string vacua preserving no
supersymmetry at all (though this won’t be the focus in this work). This gives rise
to 5D Minkowski vacua preserving N = 6, 4, 2, 0 supersymmetry. We investigate 5D
supersymmetric black holes in these theories that lift to 10D systems of branes in
the string theory picture. An important point is that we choose the twist inducing
the supersymmetry breaking to be a duality transformation that leaves the original
system of branes invariant, and so the 5D black hole solution of the untwisted
theory remains a solution of the twisted theory. The fields sourcing the system of
branes are invariant under the twist, so that the fields appearing in the solution
remain massless and the same solution remains as a solution of the twisted theory.
This makes it possible to consider the effect of the twist on the corresponding CFT
and so to investigate the microscopic aspects of these black holes.

This work is a follow-up to the ideas proposed earlier in [66] in an M-theory setting
in which supersymmetry is completely broken. Completely broken supersymmetry
is not a well controlled situation, and for that reason we will focus on the twists
preserving some supersymmetry. The current work studies string vacua with partial
supersymmetry breaking and the macroscopic supergravity description of black
holes in such vacua. The microscopic description of the dual CFTs is left for future
study.
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Scherk-Schwarz reduction of supergravity theories has been extensively studied
in the literature; see e.g. [63–65, 67–75] and references therein. IIB supergravity
compactified on T 4 gives maximal N = (2, 2) supergravity in six dimensions which
has a Spin(5, 5) duality symmetry. The maximal compact subgroup of this global
symmetry is Spin(5)×Spin(5); we shall refer to this as the R-symmetry group. (Note
that this global R-symmetry should not be confused with the Spin(5)×Spin(5) local
symmetry that is introduced in some formulations of the theory.) The 6D scalar
fields take values in the coset Spin(5, 5)/Spin(5) × Spin(5). We will be interested
in the Scherk-Schwarz reduction of this theory to five dimensions, which has been
considered previously in [69,70]. This uses ansätze of the type ψ̂(xµ, z) = g(z)ψ(xµ)
where z is the S1 coordinate and g(z) is a local element of Spin(5, 5). On going round
the circle z → z + 2πR, the fields pick up a monodromy M = g(2πR) ∈ Spin(5, 5).
Such a reduction gives a consistent truncation to a 5D gauged supergravity theory
for the fields ψ(xµ), in which there is a Scherk-Schwarz potential for the scalar
fields and mass terms are generated for all fields charged under the monodromy.

If the twist g(z) is compact, i.e. it is an element of the R-symmetry group, then
the potential is non-negative and has stable five-dimensional Minkowski vacua [63].
Such a twist can be specified by four parameters m1,m2,m3,m4 which become
mass parameters in the reduced theory. The amount of supersymmetry that is
preserved in the vacuum depends on the number of parameters mi that are equal to
zero: if r of the parameters mi are zero, then N = 2r supersymmetry is preserved.
This yields 5D supergravities with N = 8, 6, 4, 2, 0 Minkowski vacua [70] (where
the case r = 4 is the untwisted reduction to 5D N = 8 supergravity, and the case
r = 0 is the twisted reduction that breaks all supersymmetry). This reduction
is a straightforward generalization of the Scherk-Schwarz reduction of 5D N = 8
supergravity to 4D with four mass parameters and N = 8, 6, 4, 2, 0 vacua [67].

The lift of these supergravity reductions to full compactifications of string theory
involves a number of subtle features [63]. These have been worked out in detail for
compactifications of IIA string theory on K3 or the heterotic string on T 4 followed
by a reduction on a circle with a duality twist in [74,75]. Here we draw on these and
the results of [63] for our construction, which is IIB string theory compactified on
T 4 × S1 with a U-duality twist around the circle. Type IIB on T 4 has a Spin(5, 5)
supergravity duality symmetry that, on the level of the full string theory, is
broken to the discrete U-duality subgroup Spin(5, 5;Z) by quantum corrections [22].
The moduli space is the scalar coset space Spin(5, 5)/[(Spin(5) × Spin(5))/Z2]
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2 Black Holes in String Theory with Duality Twists

identified under the action of Spin(5, 5;Z). A key requirement for there to be a
lift to string theory is that the Scherk-Schwarz monodromy lies in the U-duality
group Spin(5, 5;Z), imposing a ‘quantization’ condition on the twist parameters
mi [63, 76].

There is still an action of the continuous group Spin(5, 5) on the theory, but only
the subgroup Spin(5, 5;Z) is a symmetry. Reduction of the theory on a circle with
a duality twist introduces a monodromy M which is required to be an element of
Spin(5, 5;Z). If the monodromy acts as a diffeomorphism of T 4, which requires that
it is in a GL(4;Z) subgroup of Spin(5, 5;Z), then this corresponds to compactification
of the IIB string on a T 4 bundle over S1. If the monodromy acts as a T-duality of
T 4, which requires that it is in an SO(4, 4;Z) subgroup of Spin(5, 5;Z), then this
constructs a T-fold background, while for general U-duality monodromies this is a
U-fold [77].

A point in the scalar coset will be a minimum of the scalar potential giving a
stable Minkowski vacuum if and only if it is a fixed point under the action of
the monodromy M ∈ Spin(5, 5;Z) [63]. The monodromy will then generate a Zp
subgroup of Spin(5, 5;Z) for some integer p. Furthermore, at this critical point the
construction becomes a Zp generalized orbifold of IIB string theory on T 5, where
the theory is quotiented by the Zp generated by M acting on the IIB string on T 4

combined with a shift by 2πR/p on the circle. When the monodromy is a T-duality,
this is a Zp asymmetric orbifold.

Regarded as an element of Spin(5, 5), the monodromy is conjugate to an R-symmetry
transformation: M = kRk−1 for some R ∈ Spin(5)×Spin(5) and k ∈ Spin(5, 5) [63].
The rotation R conjugate to a given monodromy is specified by four angles, which
are given by the four parameters mi. For N = 2 supersymmetry to be preserved,
one of the parameters must be zero so that R in fact lies in an SU(2) × Spin(5)
subgroup. For N = 4 supersymmetry to be preserved, two of the parameters must
be zero so that R lies either in a Spin(5) subgroup or a SU(2) × SU(2) subgroup
(with one SU(2) factor in each Spin(5)). These two options lead to theories that
have the same massless sector, but differ in their massive sectors. We use the
notation (0, 2) and (1, 1) to distinguish these two N = 4 theories, reflecting whether
the massive states are in (0, 2) or (1, 1) BPS supermultiplets, using the terminology
of [78]. Lastly, for N = 6 supersymmetry to be preserved, three of the parameters
must be zero so that R lies in an SU(2) subgroup of the R-symmetry.
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As mentioned above, if M is a perturbative symmetry (i.e. a T-duality) in
Spin(4, 4;Z), the theory in the Minkowski vacuum is an asymmetric orbifold. In
general this will not be modular invariant, and further modifications are needed
to achieve modular invariance. For perturbative monodromies, the shift in the
circle coordinate z must be accompanied by a shift in the coordinate of the T-dual
circle [75, 79, 80]. Put differently, the quotient introduces phases dependent on
both the momentum and the winding number on the circle, and on the charges
of the state under the action of M [75]. For non-perturbative monodromies, the
arguments of [75,81] lead to phases dependent on other brane wrapping numbers.

Quantum effects can lead to corrections to the coefficients of the five-dimensional
Chern-Simons terms A ∧ F ∧ F at the two-derivative level and A ∧R ∧R at the
four-derivative level. There have been indications in the literature (see e.g. [82])
that the A ∧ R ∧ R term can be supersymmetrized in the N = 4 (0, 2) theory
but not in the N = 4 (1, 1) theory, nor in the N = 6 theory. In the N = 2
theory the supersymmetrization is known [83]. Our results are in agreement with
these claims. That is, we find corrections only in the cases where supersymmetric
Chern-Simons terms are expected. The corrections to the Chern-Simons coefficients
modify the black hole solutions in supergravity [84, 85] and therefore also the
entropy. We compute the quantum corrections to the Chern-Simons coefficients and
the resulting modifications to the black hole entropies from supergravity and the
Kaluza-Klein modes from the circle compactification, using results in the literature
for 5D N = 2 supergravity [84,85]. Similar calculations have been done in different
setups, see [86,87].

As a by-product of our analysis, we present in detail the supergravity reduction
of type IIB on T 4. While the general techniques and results are known in the
literature [88], the explicit relation between the 10D and 6D fields has not been
given, to the best of our knowledge. We present this calculation in section 2.1;
the results are relevant for understanding which black holes survive which twist in
subsequent sections.

In section 2.2, we perform the Scherk-Schwarz reduction to five dimensions, starting
from the maximally supersymmetric 6D (2, 2) supergravity. We construct mass
matrices and decompose the 5D field content into massless and massive multiplets.
By simply truncating to the massless sector, we can embed known BPS black holes
in these five dimensional theories. In section 2.3, we work out which choices of
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2 Black Holes in String Theory with Duality Twists

Scherk-Schwarz twist preserve the D1-D5-P black hole, the F1-NS5-P black hole
and the D3-D3-P black hole. By tuning the mass parameters, we can find twists
that preserve more than one black hole solution (e.g. we find the twists that
preserve both the D1-D5-P and the F1-NS5-P black holes). In section 2.4, we study
one-loop effects by integrating out the massive fields. We compute the corrections
to the Chern-Simons terms and to the entropy of 5D BPS black holes. Finally, in
section 2.5, we discuss how to embed our supergravity model in string theory and
discuss the quantization conditions on the parameters mi of the twist.

2.1 Duality invariant formulation of IIB supergravity on a
four-torus

Reducing type IIB supergravity on a four-torus gives six-dimensional maximal
supergravity. This theory has N = (2, 2) supersymmetry and a Spin(5, 5) duality
symmetry group. The goal of this section is to write this supergravity theory in
a form in which both the type IIB origin of the six-dimensional fields and the
Spin(5, 5) symmetry are manifest. We do this explicitly for the scalar and tensor
fields.

2.1.1 Ansätze for reduction to 6D

We start from type IIB supergravity. Written in Einstein frame, the bosonic terms
in the Lagrangian read

LIIB =
(
R(10) − 1

2 |dΦ|2 − 1
2 e

−Φ ∣∣H(10)
3
∣∣2 − 1

2 e
2Φ |da|2 − 1

2 e
Φ ∣∣F (10)

3
∣∣2

−1
4
∣∣F (10)

5
∣∣2) ∗ 1 − 1

2 C
(10)
4 ∧H

(10)
3 ∧ F

(10)
3 ,

(2.1)

where the field strengths are given by

H
(10)
3 = dB(10)

2 ,

F
(10)
3 = dC(10)

2 − adB(10)
2 ,

F
(10)
5 = dC(10)

4 − 1
2C

(10)
2 ∧ dB(10)

2 + 1
2B

(10)
2 ∧ dC(10)

2 .

(2.2)
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2.1 Duality invariant formulation of IIB supergravity on a four-torus

The superscripts (10) indicate that the fields live in 10 dimensions. The field
equations are supplemented by the self-duality constraint

F
(10)
5 = ∗F (10)

5 . (2.3)

In our compactification to six dimensions, the coordinates split up as XM = (x̂µ̂, ym)
with M = 0, . . . , 9, µ̂ = 0, . . . , 5 and m = 1, . . . , 4. We now present the ansätze that
we use in our reduction. In order to arrive in Einstein frame in 6D, we decompose
the ten-dimensional metric as

gMN =

g−1/4
4 gµ̂ν̂ + gmn Am

µ̂ An
ν̂ gmn Am

µ̂

gmn An
ν̂ gmn

 , (2.4)

where g4 = det(gmn). The compact part of the metric, gmn, we parametrize in
terms of scalar fields φi (i = 1, . . . , 4) and Amn (m < n) by

gmn =



e
~bm·~φ +

∑
k<m

e
~bk·~φ (Akm)2 for m = n

e
~bm·~φAmn +

∑
k<m

e
~bk·~φAkmAkn for m < n

gnm for m > n .

(2.5)

Here ~φ = (φ1, φ2, φ3, φ4) and the vectors ~bm are given by

~b1 = (− 1√
2 ,−

1√
2 ,−

1√
2 ,

1
2 ) ,

~b2 = (− 1√
2 ,

1√
2 ,

1√
2 ,

1
2 ) ,

~b3 = ( 1√
2 ,

1√
2 ,−

1√
2 ,

1
2 ) ,

~b4 = ( 1√
2 ,−

1√
2 ,

1√
2 ,

1
2 ) .

(2.6)

From this, it can be computed that g4 = e2φ4 , so the scalar φ4 parametrizes the
volume of the T 4.

We reduce the 10D form-valued fields by simply splitting into components with
different numbers of indices on the torus. For example, the Kalb-Ramond field
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B
(10)
2 decomposes as

B
(10)
2 = 1

2 BMN dXM ∧ dXN

= 1
2 Bµ̂ν̂ dxµ̂ ∧ dxν̂ +Bµ̂m dxµ̂ ∧ dym + 1

2 Bmn dym ∧ dyn

= B
(6)
2 +B

(6)
1,m ∧ dym + 1

2 Bmn dym ∧ dyn ,

(2.7)

where B(6)
2 , B(6)

1,m and Bmn are 2, 1 and 0-forms defined on the six-dimensional
non-compact space. The ten-dimensional scalars are simply equal to their six-
dimensional descendants, e.g. Φ(10) = Φ(6) = Φ. For this reason, we usually drop
the superscript (D) for scalar fields.

Reduction of the self-dual five-form field strength

To find the fields that descend from the RR four-form C
(10)
4 we need to be a bit

careful, since it has a self-dual field strength: ∗F (10)
5 = F

(10)
5 . Because of this

self-duality, the action (2.1) does not properly describe the dynamics of the RR
four-form. So instead of reducing the action, we should reduce the corresponding
field equations along with the self-duality constraint. The action (2.1) with field
strengths (2.2) yields the following equation of motion and Bianchi identity

d
(
∗ F (10)

5
)

= dB(10)
2 ∧ dC(10)

2 , (2.8)

dF (10)
5 = dB(10)

2 ∧ dC(10)
2 . (2.9)

We see that, because of the self-duality of F (10)
5 , these two equations are identical,

so we only have to reduce one of them. In what follows, we choose to reduce the
Bianchi identity (2.9). Subsequently, we reduce the self-duality equation and use it
to rewrite the six-dimensional Bianchi identities to a system of Bianchi identities
and equations of motion. By integrating this system of equations to an action, we
find the proper result of the reduction of C(10)

4 . Below, we work out this reduction
in detail for the scalars and the two-forms.

First, we consider the scalars. In 6D, massless four-forms can be dualized to scalars,
so we need to consider the components of F (10)

5 that have either zero or four legs on
the torus. The Bianchi identities for these components following from (2.9) read

dP (6)
1 = 1

2! 2! ε
mnpq dBmn ∧ dCpq ,

dP (6)
5 = dB(6)

2 ∧ dC(6)
2 .

(2.10)
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2.1 Duality invariant formulation of IIB supergravity on a four-torus

Here we have introduced the notation P
(6)
1 = 1

4! ε
mnpq F

(6)
1,mnpq and P

(6)
5 = F

(6)
5 .

Next, we write down the relevant components that follow from the reduction of the
self-duality constraint. By using the metric ansatz (2.4), and ignoring interactions
with the graviphotons Am

µ̂ , we find

P
(6)
5 = 1

g4
∗ P (6)

1 . (2.11)

We now use this constraint to eliminate P (6)
5 from (2.10). In this way, we find the

following Bianchi identity and equation of motion for the one-form field strength
P

(6)
1

dP (6)
1 = 1

2! 2! ε
mnpq dBmn ∧ dCpq ,

d
(
e−2φ4 ∗ P (6)

1
)

= dB(6)
2 ∧ dC(6)

2 .

(2.12)

From the first equation, we can find an expression for P (6)
1 in terms of the corre-

sponding scalar field that we denote by b. The second equation can be integrated to
an action that contains both the kinetic term for b and interaction terms between
b and other scalar and two-forms fields. These expressions can be found in (2.16)
and (2.17).

Next, we look at the two-forms coming from C
(10)
4 . We are interested in the action

for the six-dimensional two-form fields and their interactions with scalar fields. We
will ignore interactions with six-dimensional one-forms. The relevant components
that follow from the reduction of (2.9) read

dF (6)
3,mn = dBmn ∧ dC(6)

2 + dB(6)
2 ∧ dCmn

= d
(
Bmn dC(6)

2 − Cmn dB(6)
2
)
.

(2.13)

These are Bianchi identities for six tensors in six dimensions. We want to eliminate
half of these fields in exchange for equations of motion for the residual ones. We
choose to retain the components F (6)

3,mn for mn = 12, 13, 14 and to eliminate the
ones with indices mn = 23, 24, 34. For this, we again use the reduced self-duality
constraint. The relevant components are

F
(6)
3,mn = 1

2
√
g4 εmnpq g

prgqs ∗ F (6)
3,rs . (2.14)

Due to the summations over the r and s indices, each component of this equation
contains a linear combination of all the dual field strengths ∗F (6)

3,rs (recall that the
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2 Black Holes in String Theory with Duality Twists

metric on T 4 is given by (2.5)). Consequently, solving (2.14) for three of the six
field strengths results in unwieldy expressions. We choose not to write down these
expressions here, but instead to give a step-by-step outline of the way we use them
to find an action for the 6D tensors.

First, we introduce a new notation for the field strengths that we plan on retaining:
P

(6)
3; 1 = F

(6)
3,12, P (6)

3; 2 = F
(6)
3,14 and P

(6)
3; 3 = F

(6)
3,13. Here the first subscript indicates

that these are three-forms, and the second subscript labels the three distinct field
strengths (we will sometimes drop this label when we are talking about all three
of them). The expressions for these field strengths in terms of the corresponding
two-form fields can be deduced from (2.13). For example,

P
(6)
3; 1 = dR(6)

2; 1 +B12 dC(6)
2 − C12 dB(6)

2 , (2.15)

where R(6)
2; 1 is then one of the two-forms that arise from compactifying the ten-

dimensional 4-form. Similar expressions can be found for P (6)
3; 2 and P (6)

3; 3 in terms of
fields that we call R(6)

2; 2 and R
(6)
2; 3 respectively.

Next, we solve the six equations in (2.14) for F (6)
3,mn and ∗F (6)

3,mn (for mn = 23, 24, 34)
in terms of the field strengths P (6)

3 and their duals ∗P (6)
3 . By substituting these

expressions in the components of (2.13) for mn = 23, 24, 34, we find the equations
of motion for the tensor fields R(6)

2 purely in terms of the (dual) field strengths
P

(6)
3 and ∗P (6)

3 , and fields that don’t descend from the RR four-form C
(10)
4 . These

field equations are quite unwieldy, but with some careful bookkeeping they can
be integrated to an action. We will not write down this awkward version of
the action here. Instead, we write down a more elegant version of the action
for the six-dimensional tensor fields and their interactions with scalar fields in
subsection 2.1.3.

2.1.2 6D scalars

The field content of maximal six-dimensional supergravity contains 25 scalars. In
terms of their origin in type IIB, these are Φ, φi, Amn, Bmn, Cmn, a and b. We
find the action for these scalar fields by using the methods and ansätze described
in the previous section. This yields

e−1
(6) Ls = − 1

2 |dΦ|2 − 1
4 |dφ4|2 − 1

2 |dgmn|2 − 1
2 e

−Φ ∣∣H(6)
1,mn

∣∣2
− 1

2 e
2Φ |da|2 − 1

2 e
Φ ∣∣F (6)

1,mn
∣∣2 − 1

2 e
−2φ4

∣∣P (6)
1
∣∣2 . (2.16)
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Note that the absolute values apply both to the 6D Lorentz indices and to the indices
on the torus. For example, |H(6)

1,mn|2 = 1
2! Hµ̂mnH

µ̂mn = 1
2! Hµ̂mn g

mpH µ̂
pq g

pn. The
field strengths in (2.16) are given by

H
(6)
1,mn = dBmn ,

F
(6)
1,mn = dCmn − adBmn , (2.17)

P
(6)
1 = db+ 1

8 ε
mnpq (Bmn dCpq − Cmn dBpq) .

These 25 scalar fields together parametrize the coset Spin(5, 5)/(Spin(5) × Spin(5))
[88]. The action above has a global Spin(5, 5) and a local Spin(5)×Spin(5) symmetry.
In its current form, these symmetries are not visible, so we will now write this
action in a form that makes both symmetries manifest.

In order to do this, we construct a generalized vielbein (or coset representative) V
from the scalar fields. This vielbein is an element of Spin(5, 5) and it transforms as
V → U V W (x̂), with U ∈ Spin(5, 5) and W (x̂) ∈ Spin(5) × Spin(5). We now define
the Spin(5) × Spin(5) invariant field H = V VT , that transforms as H → U HUT

under global Spin(5, 5) transformations2. We can now write the scalar Lagrangian
in terms of H as

e−1
(6) Ls = 1

8 Tr
[
∂µ̂H−1∂µ̂H

]
. (2.18)

In this formulation, the Lagrangian is manifestly invariant under the U-duality
group Spin(5, 5).

We now specify the way we build V from the 25 scalar fields so that the two
Lagrangians (2.16) and (2.18) are equal to one another. We choose to build
V ∈ Spin(5, 5) in τ -frame, i.e. it satisfies VT τ V = τ (for the definition of τ , see
Appendix 2.B.1). The exact construction is as follows:

V = exp
[
b T b

]
× exp

[ ∑
1≤m<n≤4

(
Bmn T

B
mn + Cmn T

C
mn

)]
× exp

[
aT a

]
×
( ∏

1≤m<n≤4
exp

[
Amn T

A
mn

])
× exp

[
ΦH0 +

4∑
i=1

φiHi

]
.

(2.19)

2In this section we suppress Spin(5, 5) indices, but we will need them later on. With indices, H is
written as HAB and it transforms as HAB → U C

A HCD

(
UT
)D

B
. The inverse of H is written

with upper indices: H−1 = HAB .
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Here the T ’s and the H’s are generators of so(5, 5) that span the subspace of so(5, 5)
that generates the coset Spin(5, 5)/(Spin(5) × Spin(5)). The precise expressions for
these generators are given in Appendix 2.B.1. All the scalar fields appear under
the same name as in (2.16).

Because we construct our vielbein (2.19) in τ -frame3, the transformation matrices
U and W are also written in τ -frame. Henceforth, we use this frame whenever
Spin(5, 5) and Spin(5) × Spin(5) groups appear (unless mentioned otherwise).

2.1.3 6D tensors

The field content of maximal supergravity in six dimensions contains five 2-form
tensor gauge fields. Collectively, we denote these fields by A(6)

2,a (a = 1, . . . , 5), and
their field strengths by G(6)

3,a = dA(6)
2,a. The Lagrangian for these fields reads [88, 89]

Lt = −1
2 K

abG
(6)
3,a ∧ ∗G(6)

3,b − 1
2 L

abG
(6)
3,a ∧G

(6)
3,b . (2.20)

Here Kab and Lab are functions of the scalar fields. We define a set of dual field
strengths G̃(6)a

3 = Kab ∗G(6)
3,b +LabG

(6)
3,b so that we can write the Lagrangian in the

more compact form
Lt = −1

2 G
(6)
3,a ∧ G̃

(6)a
3 . (2.21)

In this notation, we write the Bianchi identities and the equations of motion as
dG(6)

3,a = 0 and dG̃(6)a
3 = 0. We can combine these in the more compact notation

dG(6)
3,A = 0, where G(6)

3,A is defined as

G
(6)
3,A =

(
G

(6)
3,a

G̃
(6)a
3

)
. (2.22)

The Spin(5, 5) duality symmetry acts on this ten-component vector as

G
(6)
3,A → U B

A G
(6)
3,B , U B

A ∈ Spin(5, 5) . (2.23)

Only the subgroup GL(5) ⊂ Spin(5, 5) is a symmetry of the action. The full
symmetry group is only manifest on the level of the field equations.

3For the convenience of the reader, it might be useful to mention how this convention is related
to those of other authors. The following relations hold: V = X U[Tanii]X where U[Tanii] is the
vielbein that is used in [88], and V = V[BSS]X where V[BSS] is the vielbein that is used in [89].
The matrix X is a conjugation matrix that is defined in Appendix 2.B.1.
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2.1 Duality invariant formulation of IIB supergravity on a four-torus

When we decompose our coset representative in 5 × 5 blocks as V =
(
a b
c d

)
, we can

write the matrices Kab and Lab as

K = 1
2 ((c+ d)(a+ b)−1 − (c− d)(a− b)−1) ,

L = 1
2 ((c+ d)(a+ b)−1 + (c− d)(a− b)−1) .

(2.24)

Now, by making the identification

A
(6)
2,a =

(
R

(6)
2; 1 , R

(6)
2; 2 , R

(6)
2; 3 , C

(6)
2 , −B(6)

2
)
, (2.25)

the Lagrangian (2.21) is exactly equal to the one that we find by explicit reduction
from type IIB supergravity using the ansätze given in subsection 2.1.1. The
advantage of (2.21) is that we have made the duality symmetry manifest.

Doubled formalism

It is a common feature of supergravity actions in even dimensions that only a
subgroup of the duality group is a symmetry of the action. In such cases, one
can use the so-called doubled formalism [90] to construct an action that realizes
the full symmetry group. In order to do this, one needs to introduce twice the
original amount of form-valued fields as well as a constraint that makes sure that
the doubled theory does not contain more degrees of freedom than the original
theory.

We apply this formalism to our 6D tensor fields. We promote the G̃(6)a
3 to field

strengths that correspond to the doubled fields, i.e. we write them as G̃(6)a
3 = dÃ(6)a

2 .
These doubled fields Ã(6)a

2 are now treated as independent fields. We write down
the doubled Lagrangian as

L
(doubled)
t = −1

4 HAB G
(6)
3,A ∧ ∗G(6)

3,B . (2.26)

In this formulation we have ten field strengths G(6)
3,A that satisfy the Bianchi identities

dG(6)
3,A = 0 and the equations of motion d

(
HAB ∗ G(6)

3,B
)

= 0. Furthermore, these
fields are subject to the self-duality constraint

G
(6)
3,A = τAB HBC ∗G(6)

3,C . (2.27)

By imposing this constraint on the field equations, we see that they reduce to
the ones that correspond to the undoubled action. Thus we have found a proper
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2 Black Holes in String Theory with Duality Twists

doubled version of (2.21). Both the action (2.26) and the constraint (2.27) are
invariant under the full Spin(5, 5) duality group. This can be seen directly from
the way that these transformations work on the fields:

HAB →
(
U−T )A

C
HCD

(
U−1) B

D
, G

(6)
3,A → U B

A G
(6)
3,B , (2.28)

where U B
A ∈ Spin(5, 5) and we use the notation U−T = (U−1)T .

2.2 Scherk-Schwarz reduction to five dimensions

In a Scherk-Schwarz reduction, one considers a (D + 1)-dimensional supergravity
theory with a global symmetry given by a Lie group G that is compactified to D
dimensions. The difference between ‘ordinary’ Kaluza-Klein and Scherk-Schwarz
reduction lies in the compactification ansatz. Consider a field ψ̂ in the (D + 1)-
dimensional theory that transforms as ψ̂ → gψ̂ with g ∈ G (for scalars, this is
typically a non-linear realization, while some fields such as the metric in Einstein
frame will be invariant). The Scherk-Schwarz ansatz then gives ψ̂ a dependence on
the coordinate z on the circle, which has periodicity z ' z + 2πR, given by

ψ̂(xµ, z) = exp
(
Mz

2πR

)
ψ(xµ) , (2.29)

where M lies in the Lie algebra of G. This ansatz is not periodic around the circle,
but picks up a monodromy M = eM ∈ G. The Lie algebra element M is sometimes
called the mass matrix because it appears in mass terms in the D-dimensional
theory. For more details, see [63–65,67–75,91] and references therein. A conjugate
mass matrix

M ′ = gMg−1 , (2.30)

with g ∈ G, gives a conjugate monodromy

M′ = gMg−1 . (2.31)

This conjugated monodromy gives a massive theory that is related to the one for
the monodromy M by a field redefinition, so that it defines an equivalent theory.
Thus the possible Scherk-Schwarz reductions are classified by the conjugacy classes
of the duality group [63].

In our case, we reduce from 6D to 5D on a circle with a Scherk-Schwarz twist. We
denote the coordinates on the five-dimensional Minkowski space by xµ and the
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2.2 Scherk-Schwarz reduction to five dimensions

coordinate on the circle by z. The compact coordinate is periodic with periodicity
z ' z + 2πR. The metric (in Einstein frame) is inert under the duality group, so
we choose the conventional Kaluza-Klein metric ansatz:

gµ̂ν̂ =

e−
√

1/6φ5 gµν + e
√

3/2φ5 A5
µA5

ν e
√

3/2φ5 A5
µ

e
√

3/2φ5 A5
ν e

√
3/2φ5

 . (2.32)

The factors in the exponents are chosen so that we arrive in Einstein frame in five
dimensions and the scalar field φ5 is canonically normalized [92].

The result of our reduction is a gauged N = 8 supergravity theory in five dimensions
in which a non-semi-simple subgroup of Spin(5, 5) is gauged. The gauge group
contains an important U(1) subgroup for which A5

µ is the corresponding gauge field.
For each twist, the theory has a vacuum (partially) breaking the supersymmetry
where it can be described by an N < 8 effective field theory. This reduction from
6D to 5D has been considered previously in [69,70]. An important feature is that
reducing self-dual 2-form gauge fields in 6D can result in massive self-dual 2-form
fields in 5D [69]. See [72,91] for further details.

2.2.1 Monodromies and masses

In six dimensions the global symmetry is G = Spin(5, 5), so in principle we can
choose the mass matrix to be any element of the Lie algebra of G. However, our
goal is to obtain a Minkowski vacuum with partially broken supersymmetry, so, as
discussed in the introduction, we restrict our twist to be conjugate to an element of
the R-symmetry group

USp(4)L × USp(4)R = Spin(5)L × Spin(5)R , (2.33)

that preserves the identity in Spin(5, 5). We take then a monodromy

M = gM̃g−1 , g ∈ Spin(5, 5) , M̃ ∈ USp(4)L × USp(4)R ⊂ Spin(5, 5) . (2.34)

By a further conjugation, we can bring M̃ to an element M̄ of a maximal torus
T = U(1)4 of the R-symmetry group USp(4)L × USp(4)R

M̃ = hM̄h−1 , h ∈ USp(4)L × USp(4)R , M̄ ∈ T ⊂ USp(4)L × USp(4)R . (2.35)

The element M̄ of a maximal torus T = U(1)4 is then specified by four angles,
which we denote m1,m2,m3,m4; we take 0 ≤ mi < 2π. Writing

M̄ = (Musp(4)
L ,Musp(4)

R ) , Musp(4)
L/R ∈ USp(4)L/R , (2.36)
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2 Black Holes in String Theory with Duality Twists

we can take the monodromies to be in the SU(2) × SU(2) subgroup of USp(4) for
both the left and right factors (note that SU(2) ∼= USp(2)):

SU(2)L1
× SU(2)L2

× SU(2)R1
× SU(2)R2

⊂ USp(4)L × USp(4)R . (2.37)

We can then take, for example,

Musp(4)
L = em1σ3 ⊗ em2σ3 , Musp(4)

R = em3σ3 ⊗ em4σ3 , (2.38)

where σ3 is the usual Pauli matrix. Other choices of the monodromy are related to
this by USp(4)L × USp(4)R conjugation.

The six-dimensional supergravity fields fit into the following representations under
the R-symmetry group (see e.g. [70,88]):

scalars : (5,5) ,

vectors : (4,4) ,

tensors : (5,1) + (1,5) ,

gravitini : (4,1) + (1,4) ,

dilatini : (5,4) + (4,5) .

(2.39)

We have an equal number of self-dual and anti-self-dual 2-form tensor fields, and
an equal number of fermions of positive and negative chirality. In terms of the
R-symmetry representations above, the self-dual tensors B+

2 transform in the (5,1)
and the anti-self-dual tensors B−

2 transform in the (1,5). The positive chiral
gravitini ψ+

µ and dilatini χ+ transform in the (4,1) and (5,4) respectively, and the
negative chiral gravitini ψ−

µ and dilatini χ− transform in the (1,4) and (4,5).

These representations determine the charges (e1, e2, e3, e4) of each field under
U(1)4 ⊂ USp(4)L × USp(4)R. A field with charges (e1, e2, e3, e4) will then be an
eigenvector of the mass matrix with eigenvalue iµ and will have z-dependence
eiµz/2πR where

µ =
4∑
i=1

eimi . (2.40)

The resulting mass for the field will turn out to be |µ|/2πR.
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2.2 Scherk-Schwarz reduction to five dimensions

2.2.2 Supersymmetry breaking and massless field content

The R-symmetry representations (2.39) decompose into the following representations
under the SU(2)4 subgroup (2.37):

scalars : (5,5) → (2,2,2,2) + (2,2,1,1) + (1,1,2,2) + (1,1,1,1) ,

vectors : (4,4) → (2,1,2,1) + (2,1,1,2) + (1,2,2,1) + (1,2,1,2) ,

tensors : (5,1) + (1,5) → (2,2,1,1) + (1,1,2,2) + 2 (1,1,1,1) ,

gravitini : (4,1) + (1,4) → (2,1,1,1) + (1,2,1,1) + (1,1,2,1) + (1,1,1,2) ,

dilatini : (5,4) + (4,5) → (2,2,2,1) + (2,2,1,2) + (2,1,2,2) + (1,2,2,2)

+ (2,1,1,1) + (1,2,1,1) + (1,1,2,1) + (1,1,1,2) .
(2.41)

This then determines the four charges ei under the U(1)4 subgroup: each doublet
gives charges ±1 and each singlet gives charge 0. For example, the sixteen vector
fields in the

(4,4) → (2,1,2,1) + (2,1,1,2) + (1,2,2,1) + (1,2,1,2) (2.42)

have charges

(e1, e2, e3, e4) = (±1, 0,±1, 0) + (±1, 0, 0,±1) + (0,±1,±1, 0)

+ (0,±1, 0,±1) .
(2.43)

These charges then determine the masses through (2.40). The eight gravitini
(symplectic Weyl spinors) in the (4,1) + (1,4) representation of the R-symmetry
group USp(4)L × USp(4)R decompose into four pairs, each of which has a different
mass |mi|/2πR, with i = 1, 2, 3, 4. The number N of unbroken supersymmetries
is then given by the number of massless gravitini, which is N = 2r where r is the
number of parameters mi that are zero. The different values of r give rise to 5D
supergravities with N = 8, 6, 4, 2, 0 Minkowski vacua, corresponding to twisting in
4 − r of the SU(2) factors in (2.37).

In general, all fields that are charged, with at least one of the ei 6= 0 corresponding
to an mi 6= 0, become massive in 5D. Below we give the massless field content
of reductions with twists that preserve N = 8, 6, 4, 2, 0 supersymmetry in the
Minkowski vacuum and check that they fit into the relevant supermultiplets of 5D
supergravities [93].
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2 Black Holes in String Theory with Duality Twists

• N = 8

We start with the untwisted case, mi = 0, where all fields remain massless.
Apart from the 5D graviton, the spectrum contains 8 gravitini, 27 vectors,
48 dilatini and 42 scalars (all massless). As expected, these fields make up a
single gravity multiplet of maximal 5D supergravity.

• N = 6

In order to end up with N = 6 supergravity, we take only one of the four
mass parameters to be non-zero so that we twist in only one of the four SU(2)
subgroups. The massless spectrum from such a reduction contains a graviton,
6 gravitini, 15 vectors, 20 dilatini and 14 scalars. These fields form the gravity
multiplet of the N = 6 theory.

• N = 4

We obtain N = 4 supergravity by twisting in two SU(2) groups, with two mass
parameters zero. This can be done in two qualitatively different ways: either
with a chiral twist, say in SU(2)R1

and SU(2)R2
with m1 = m2 = 0, or with

a non-chiral twist, for example in SU(2)L2
and SU(2)R2

with m1 = m3 = 0.
Both types of twists result in the same massless spectrum: the graviton, 4
gravitini, 7 vectors, 8 dilatini and 6 scalars, although as we shall see, they
result in different massive spectra.

In the N = 4 theory, the gravity multiplet contains the graviton, 4 gravitini,
6 vectors, 4 dilatini and a single scalar field, and the vector multiplet contains
1 vector, 4 dilatini and 5 scalars [94]. We see that our massless spectrum
consists of the gravity multiplet coupled to one vector multiplet.

• N = 2

We end up with minimal 5D supergravity by twisting in three of the four
SU(2) subgroups, with just one of the mass parameters zero. The massless
field content after such a twist contains the graviton, 2 gravitini, 3 vectors, 4
dilatini and 2 scalars.

For N = 2 supersymmetry, the gravity multiplet contains the graviton, 2
gravitini, and 1 vector field, and the vector multiplet contains 1 vector, 2
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2.2 Scherk-Schwarz reduction to five dimensions

dilatini and 1 scalar field. Thus, the field content that we find from this
reduction forms a gravity multiplet coupled to two vector multiplets.

• N = 0

By twisting in all four SU(2) groups, with all four mass parameters non-zero,
we break all supersymmetry. The only fields that are not charged under such
a twist are the graviton and the singlets which are completely uncharged, with
all ei = 0. As a result, the massless spectrum in 5D consists of the graviton,
3 vectors and 2 scalars. Note that all fermions become massive.

2.2.3 Massive field content

The charges (e1, e2, e3, e4) following from (2.41) determine the massive spectrum for
the reduced theory in five dimensions. This spectrum is summarized in Table 2.1.
The spectrum of Table 2.1 has been previously derived from Scherk-Schwarz reduc-
tion in [70] and corresponds to a gauging of N = 8 five-dimensional supergravity.

We now give the supermultiplet structure of the massive spectra that follow from the
various twists preserving different amounts of supersymmetry. All fields that acquire
mass also become charged under the graviphoton A5

1 with covariant derivatives of
the form

Dµ = ∂µ − iq gA5
µ . (2.44)

Here the gauge coupling is g = 1/R, and the charge q of each 5D field is equal
to 1/g = R times its mass. Because the massive fields are charged, the real fields
that follow from the reduction have to combine into complex fields. In the spectra
that we give below, we list the number of complex fields (unless stated otherwise).
Furthermore, when we give the mass of a field or collection of fields we only write
down |µ|. In order to find the actual mass, this needs to be divided by 2πR.

The massive multiplets we find are all BPS multiplets in five dimensions; these
multiplets were analyzed and classified in [78] and are labeled by two integers
(p, q). For N supersymmetries in five dimensions (with N even), the R-symmetry
is USp(N ). For a (p, q) massive multiplet, the choice of central charge breaks
the R-symmetry to a subgroup USp(2p) × USp(2q), i.e. the subgroup of USp(N )
preserving the central charge, where 2p+ 2q = N . The nomenclature was chosen
such that a massless supermultiplet of (p, q) supersymmetry in six-dimensions
has, after reducing on a circle, Kaluza-Klein modes that fit into (p, q) massive
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2 Black Holes in String Theory with Duality Twists

Fields Representation |µ| = Mass (multiplied by 2πR)

Scalars (5,5)
∣∣±m1 ±m2 ±m3 ±m4

∣∣∣∣±m1 ±m2
∣∣∣∣±m3 ±m4
∣∣

0

Vectors (4,4)
∣∣±m1,2 ±m3,4

∣∣
Tensors (5,1)

∣∣±m1 ±m2
∣∣ , 0

(1,5)
∣∣±m3 ±m4

∣∣ , 0

Gravitini (4,1)
∣∣±m1,2

∣∣
(1,4)

∣∣±m3,4
∣∣

Dilatini (5,4)
∣∣±m1 ±m2 ±m3,4

∣∣∣∣±m3,4
∣∣

(4,5)
∣∣±m1,2 ±m3 ±m4

∣∣∣∣±m1,2
∣∣

Table 2.1: This table gives the value of |µ(mi)| for the 5D fields coming from
the different types of 6D fields. The mass of the field is then |µ(mi)|/2πR. The
notation mi,j indicates that both mi and mj occur. There is no correlation
between the ± signs and the ij indices, so that e.g. (±m1 ± m2) denotes 4
different combinations of mass parameters, and (±m1,2 ± m3,4) denotes 16
different combinations. For example, the 5 tensors in the (5,1) representation
consist of two with mass |m1 +m2| , two with mass |m1 −m2| and one with mass
0.

supermultiplets in five dimensions. The physical states of a (p, q) massive multiplet
in five dimensions then fit into representations of

SU(2) × SU(2) × USp(2p) × USp(2q) , (2.45)

where SU(2) × SU(2) ∼ SO(4) is the little group for massive representations in
five dimensions. The representations of the little group SU(2) × SU(2) that arise
include (3, 2) and (2, 3) for massive gravitini and (2, 2) for massive vector fields.
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2.2 Scherk-Schwarz reduction to five dimensions

The representation (3, 1) corresponds to a massive self-dual two-form field satisfying
the five-dimensional duality condition

dB2 = −im ∗B2 , (2.46)

while the (1, 3) representation corresponds to the anti-self dual case with dB2 =
im ∗ B2. In the following, we consider the cases in which the Scherk-Schwarz
reduction breaks the supersymmetry to N = 6, 4, 2. The massless states are in the
N supersymmetry representations given in the previous subsection, and we now
give the N supersymmetry representations of the massive fields. It was already
pointed out in subsection 2.2.2 that there are two qualitatively different twists that
result in a theory with N = 4 supersymmetry: a chiral one and a non-chiral one.
Both theories have the same massless spectrum (see subsection 2.2.2), but their
massive spectra are different. The non-chiral twist gives massive fields fitting into
(1, 1) multiplets and we will refer to this as the (1, 1) theory. The chiral twist leads
to (0, 2) supermultiplets and we will refer to this as the (0, 2) (or (2, 0)) theory.

• N = 6

In order to break to N = 6, we twist with just one of the four mass parameters
non-zero. Without loss of generality, we take m1 6= 0 and the other three
parameters equal to zero. The physical states will then fall into representations
of

SU(2) × SU(2) × USp(2) × USp(4) . (2.47)

The massive field content from such a twist contains 1 gravitino, 2 self-dual
tensors, 4 vectors, 13 dilatini and 10 scalars. All these fields are complex,
and their mass is equal to |m1|. This is a (1, 2) BPS supermultiplet with the
representations

(3, 2; 1, 1)+(3, 1; 2, 1)+(2, 2; 1, 4)+(1, 2; 1, 5)+(2, 1; 2, 4)+(1, 1; 2, 5) . (2.48)

• N = 4 (0, 2)

We obtain the (0, 2) theory by taking chiral twist with m1,m2 6= 0 and
m3,m4 = 0. The physical states will then fall in representations of

SU(2) × SU(2) × USp(4) . (2.49)
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2 Black Holes in String Theory with Duality Twists

From the reduction we find two massive (0, 2) spin- 3
2 multiplets, one with

mass |m1|, and the other with mass |m2|. Each consists of 1 gravitino, 4
vectors and 5 dilatini, which are in the representations

(3, 2; 1) + (2, 2; 4) + (1, 2; 5) . (2.50)

Furthermore, we find two massive (0, 2) tensor multiplets with masses |m1 +
m2| and |m1 − m2|. Each of these contains one self-dual 2-form satisfying
(2.46), 4 dilatini and 5 scalars [78], fitting in the representations

(3, 1; 1) + (2, 1; 4) + (1, 1; 5) . (2.51)

We note at this point that a part of the massive spectrum above can be made
massless by tuning the mass parameters. That is, if we choose m1 = ±m2,
one of the two (complex) tensor multiplets becomes massless. This gives two
additional real vector multiplets in the massless sector of the N = 4 theory
(see subsection 2.2.2).

• N = 4 (1, 1)

For the non-chiral twist, we choose m1,m3 6= 0 and m2,m4 = 0 in order
obtain the (1, 1) theory. There are two massive (1, 1) vector multiplets, one
with mass |m1 +m3| and one with mass |m1 −m3|. Each consists of 1 vector,
4 dilatini and 4 scalars [78] corresponding to a representation of

SU(2) × SU(2) × USp(2) × USp(2) , (2.52)

given by
(2, 2; 1, 1) + (2, 1; 2, 1) + (1, 2; 1, 2) + (1, 1; 2, 2) . (2.53)

In addition, there are two massive (1, 1) spin- 3
2 multiplets, one with mass

|m1|, and one with mass |m3|. Each consists of 1 gravitino, 2 (anti-)self-dual
tensors, 2 vectors, 5 dilatini and 2 scalars. The one with mass |m1| is in the
representation

(3, 2; 1, 1)+(3, 1; 2, 1)+(2, 2; 1, 2)+(1, 2; 1, 1)+(2, 1; 2, 2)+(1, 1; 2, 1) , (2.54)

and the one with mass |m3| is in the representation

(2, 3; 1, 1)+(1, 3; 1, 2)+(2, 2; 2, 1)+(2, 1; 1, 1)+(1, 2; 2, 2)+(1, 1; 1, 2) . (2.55)
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2.2 Scherk-Schwarz reduction to five dimensions

As in the (0, 2) theory, we can tune the mass parameters in such a way that a
part of this spectrum becomes massless. For m1 = ±m3, one of the massive
vector multiplets becomes massless, and so we get two more real vector
multiplets in the massless sector of the theory (again see subsection 2.2.2).
Note that, even though the massive tensor multiplet of the (0, 2) theory and
the massive vector multiplet of the (1, 1) theory contain different fields, they
give the same field content in the massless limit.

• N = 2

We choose m1,m2,m3 6= 0 and m4 = 0 to obtain the N = 2 case with massive
(0, 1) multiplets in representations of

SU(2) × SU(2) × USp(2) . (2.56)

There are four massive hypermultiplets with masses |m1 ±m2 ±m3| consisting
of 1 complex dilatino and 2 complex scalars in the

(2, 1; 1) + (1, 1; 2) (2.57)

representation. The four vector multiplets with masses |m1,2 ±m3| consist of
1 vector and 2 dilatini in the

(2, 2; 1) + (1, 2; 2) (2.58)

representation. Furthermore, we find two tensor multiplets (1 self-dual tensor,
2 dilatini, 1 scalar) with masses |m1 ±m2| in the following representation of
(2.56):

(3, 1; 1) + (2, 1; 2) + (1, 1; 1) . (2.59)

There are also two spin- 3
2 multiplets, one with mass |m1| and one with mass

|m2|, containing 1 gravitino, 2 vectors and 1 dilatino in the

(3, 2; 1) + (2, 2; 2) + (1, 2; 1) (2.60)

representation. We also find another multiplet containing a spin- 3
2 field: 1

gravitino, 2 anti-self-dual tensors, 1 dilatino and 2 scalars with mass |m3|.
This is reducible, giving one massive hypermultiplet consisting of 1 dilatino
and 2 scalars with the representation (2.57) and one multiplet consisting of 1
gravitino and 2 anti-self-dual tensors in the representation:

(2, 3; 1) + (1, 3; 2) . (2.61)
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As for the N = 4 theories, we can tune the mass parameters in order to
obtain extra massless fields. Choosing m1 = ±m2 or m1,2 = ±m3 would
make either a tensor multiplet or a vector multiplet massless. Both of these
would give two real massless vector multiplets. Another choice would be to
set m1 = ±m2 ± m3 so that one of the massive hypermultiplets becomes
massless.

2.2.4 Mass matrices

The monodromies Musp(4)
L ∈ USp(4)L and Musp(4)

R ∈ USp(4)R in (2.36) are the
exponentials of mass matrices in the Lie algebra of USp(4):

Musp(4)
L = exp(Musp(4)

L ) , Musp(4)
R = exp(Musp(4)

R ) . (2.62)

For the monodromies (2.38), the mass matrices are given by

M
usp(4)
L = m1σ3 ⊕m2σ3 , M

usp(4)
R = m3σ3 ⊕m4σ3 . (2.63)

By conjugating, as in (2.35), by an element h of the SU(2)4 subgroup (2.37), we
can bring this to the form

M
usp(4)
L = m1(n1 · σ) ⊕m2(n2 · σ) ,

M
usp(4)
R = m3(n3 · σ) ⊕m4(n4 · σ) ,

(2.64)

for any four unit 3-vectors ni. Here σ is the 3-vector of Pauli matrices.

The Lie algebra of USp(4) consists of anti-hermitian 4×4 matrices MA
B (M† = −M)

such that MAB = ΩACMC
B is symmetric (MAB = MBA), where ΩAB = −ΩBA is

the symplectic invariant; see Appendix 2.B.2 for more details. In a basis in which
Ω = σ2 ⊕ σ2 and the subgroup (2.37) is block diagonal, we have the 4 × 4 matrix
representation

M
usp(4)
L =

(
m1(n1 · σ) 0

0 m2(n2 · σ)

)
, ΩAB =

(
σ2 0
0 σ2

)
. (2.65)

However, for our purposes, it will be useful to have mass matrices in a basis in
which

ΩAB =
(

0 12

−12 0

)
. (2.66)
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2.2 Scherk-Schwarz reduction to five dimensions

In this basis, we can take for example

M
usp(4)
L =


0 0 −m1 0
0 0 0 −m2

m1 0 0 0
0 m2 0 0

 , (2.67)

and a similar expression for Musp(4)
R that can be found by replacing m1 → m3 and

m2 → m4. The monodromy for the above mass matrix is given by

Musp(4)
L =


cos(m1) 0 − sin(m1) 0

0 cos(m2) 0 − sin(m2)
sin(m1) 0 cos(m1) 0

0 sin(m2) 0 cos(m2)

 , (2.68)

and there is a similar expression for Musp(4)
R . We can use the isomorphism usp(4) ∼=

so(5) to map (2.67) to the corresponding generator in the Lie algebra of SO(5).
This yields

ML =


0 −(m1 +m2) 0 0 0

m1 +m2 0 0 0 0
0 0 0 0 −(m1 −m2)
0 0 0 0 0
0 0 m1 −m2 0 0

 , (2.69)

and a similar expression for MR where we replace m1 → m3 and m2 → m4 (see
Appendix 2.B.2 for more information on the isomorphism usp(4) ∼= so(5)). The
corresponding SO(5) monodromy is given by

ML =


cos(m1 +m2) − sin(m1 +m2) 0 0 0
sin(m1 +m2) cos(m1 +m2) 0 0 0

0 0 cos(m1 −m2) 0 − sin(m1 −m2)
0 0 0 1 0
0 0 sin(m1 −m2) 0 cos(m1 −m2)

 .

The USp(4) monodromy is of course a double cover of the SO(5) monodromy:
taking e.g. m1 = m2 = π gives ML = 1 but Musp(4)

L = −1.

We can use the mass matrices ML and MR in the algebras of SO(5)L and SO(5)R
to create an so(5, 5) mass matrix. In the basis in which the SO(5, 5) metric takes
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2 Black Holes in String Theory with Duality Twists

the form

τAB =
(

0 15

15 0

)
, (2.70)

(see Appendix 2.B.1) this so(5, 5) mass matrix is given by

M
B

A = 1
2

(
(ML +MR) b

a (ML −MR)ab
(ML −MR)ab (ML +MR)a b

)
∈ so(5, 5) . (2.71)

It is this matrix that appears explicitly in the bosonic action, as we shall see in the
following subsections.

In section 2.3, we consider various brane configurations that result in five-dimensional
black holes. For each of these systems, we choose ML and MR in such a way that the
fields that charge the black hole remain massless in 5D. All of these are conjugate
to the ones given here. In particular, they all have the same eigenvalues and so give
the same mass spectrum.

2.2.5 5D scalars

In this section, we go through the reduction of the 6D scalar fields in detail. The
goal is to compute the mass that each of the 25 scalar fields obtains in 5D. For
notational convenience, we set R = 1

2π here and in the next subsection where we
reduce the 6D tensors. Consequently, the masses that we compute here carry an
‘invisible’ factor 1

2πR that can be reinstated by checking the mass dimensions.

The scalar Lagrangian in six dimensions reads (see subsection 2.1.2)

e−1
(6) Ls = 1

8 Tr
[
∂µ̂H−1∂µ̂H

]
. (2.72)

The global Spin(5, 5) transformations act as H → U HUT with U ∈ Spin(5, 5).
This leads us to the following Scherk-Schwarz ansatz:

H(x̂µ̂) = eMz H(xµ) eM
T z , (2.73)

where M is the mass matrix defined in (2.71). By substituting this ansatz in (2.72),
we find the five-dimensional Lagrangian

e−1
(5) Ls = 1

8 Tr
[
DµH−1DµH

]
− V (H) . (2.74)
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2.2 Scherk-Schwarz reduction to five dimensions

Matter that is charged under the monodromy becomes charged under the U(1)
symmetry corresponding to the graviphoton A5

1 in 5D. The covariant derivative on
H is given by

DµH = ∂µH − A5
µ

(
MH + HMT

)
. (2.75)

The potential in (2.74) is given by

V (H) = 1
4 e

−
√

8/3φ5 Tr
[
M

2 +MTH−1
MH

]
. (2.76)

For an R-symmetry twist, such potentials must be non-negative [63]; consequently,
a global minimum can be found by solving V = 0. We find such a minimum by
putting all 25 scalar fields to zero, so that H = 1. By realizing that our mass
matrix is anti-symmetric, MT = −M, we immediately see that this gives V = 0.

We now compute the masses of the scalar fields in this minimum. We denote the
collection of all 25 scalar fields by σi, with i = 1, . . . , 25, and compute the mass
matrix as4

mij = ∂2V

∂σi∂σj

∣∣∣∣
σk=0

. (2.77)

We diagonalize this mass matrix as mij = Q k
i mdiag

kl Ql j , where mdiag is a diagonal
matrix and Q is a conjugation matrix built from an orthonormal basis of eigenvectors.
In this way, we find the mass that corresponds to each of the redefined fields
σ̃i = Qijσ

j .

We have computed these masses explicitly for the mass matrices that preserve the
various 6D black string configurations that we consider in section 2.3. Tables are
provided in section 2.C.

2.2.6 5D tensors

In this section we work out the reduction of the six-dimensional tensor fields in
detail, following [69,91]. Just like in the previous subsection, we set R = 1

2π and
neglect the Kaluza-Klein towers for notational convenience.

The Lagrangian for the six-dimensional tensor fields reads

L
(doubled)
t = −1

4 HAB G
(6)
3,A ∧ ∗G(6)

3,B . (2.78)

4The kinetic term of the sigma model is diagonal at the minimum of the potential, i.e. it takes
the form − 1

2gij(σ
k) ∂µσi∂µσj with gij(0) = δij .
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The ten three-form field strengths G(6)
3,A transform as in (2.28), so we choose our

Scherk-Schwarz ansatz to be

G
(6)
3,A(x̂µ̂) =

(
eMz

) B

A

(
G

(5)
3,B(xµ) + G

(5)
2,B(xµ) ∧

(
dz + A5

1
))
, (2.79)

where G(5)
3,A and G

(5)
2,A are five-dimensional field strengths that are independent of

the circle coordinate z. As usual for self-dual tensor fields, we don’t compactify the
Lagrangian of the theory but rather its field equations. We start by reducing the
six-dimensional Bianchi identities dG(6)

3,A = 0. We find

dG(5)
3,A + d

(
G

(5)
2,A ∧ A5

1
)

= 0 ,

dG(5)
2,A −M B

A

(
G

(5)
3,B +G

(5)
2,B ∧ A5

1
)

= 0 .
(2.80)

From these we deduce expressions for the five-dimensional field strengths in terms
of the corresponding two-form and one-form potentials:

G
(5)
3,A = dA(5)

2,A −G
(5)
2,A ∧ A5

1 ,

G
(5)
2,A = dA(5)

1,A +M B
A A

(5)
2,B .

(2.81)

Normally at this point, we would like to shift A(5)
2,A → A

(5)
2,A − (M−1) B

A dA(5)
1,B so

that the field strengths in (2.81) would lose their dependence on A
(5)
1,A. This is not

possible, however, because our mass matrix M B
A is not invertible. We therefore

need to diagonalize M B
A and split the indices that correspond to zero and non-zero

eigenvalues. In the most general case where the combinations m1 ±m2 and m3 ±m4

are non-zero, this splitting goes like A → (α, α̇) with α̇ ∈ {i, i + 5}, where i is
the index that corresponds to the row and column that we set to zero in ML and
MR. For example, for the reduction of the D1-D5 system (see (2.112)) we have
α̇ ∈ {4, 9}. The index α takes the other eight values of the original index A. The
second equation in (2.81) now separates into

G
(5)
2,α = dA(5)

1,α +M β
α A

(5)
2,β ,

G
(5)
2,α̇ = dA(5)

1,α̇ .
(2.82)

The matrix M β
α is invertible, so now we can shift A(5)

2,α → A
(5)
2,α − (M−1) β

α dA(5)
1,β .

After this shift, the five-dimensional field strengths read

G
(5)
3,α = dA(5)

2,α −G
(5)
2,α ∧ A5

1 , G
(5)
3,α̇ = dA(5)

2,α̇ −G
(5)
2,α̇ ∧ A5

1 ,

G
(5)
2,α = M β

α A
(5)
2,β , G

(5)
2,α̇ = dA(5)

1,α̇ .
(2.83)
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2.2 Scherk-Schwarz reduction to five dimensions

The six-dimensional field strengths are subject to the self-duality constraint

G
(6)
3,A = τAB HBC ∗G(6)

3,C . (2.84)

We now compactify this constraint. First, we need to reduce the six-dimensional
Hodge star to five dimensions. By using the metric decomposition (2.32), we find

∗(6)G
(6)
3,A =

(
eMz

) B

A
∗(6)(G(5)

3,B + G
(5)
2,B ∧

(
dz + A5

1
))

(2.85)

=
(
eMz

) B

A

(
e
√

2/3φ5 ∗(5)G
(5)
3,B ∧

(
dz + A5

1
)

− e−
√

2/3φ5 ∗(5)G
(5)
2,B
)
.

This result allows us to write down the 5D self-duality constraint that follows from
(2.84) as

G
(5)
3,A = − e−

√
2/3φ5 τAB HBC ∗G(5)

2,C . (2.86)

Recall for the derivation of this result that HAB with raised indices is the inverse
of the matrix H as defined in subsection 2.1.2. Consequently, we use the inverse of
(2.73) as Scherk-Schwarz ansatz.

Mass spectrum

In order to find the mass spectrum of the fields that descend from G
(6)
3,A, we put all

other fields in (2.86) to zero. In particular, this means that HAB = δAB . We find

dA(5)
2,α = − τ β

α M
γ

β ∗A(5)
2,γ , dA(5)

2,α̇ = − τ β̇
α̇ ∗ dA(5)

1,β̇ , (2.87)

where we use the notation τ β
α = ταγ δ

γβ and an analogous expression for the dotted
indices. These are massive and massless five-dimensional self-duality conditions.
From these, we can deduce the equations of motion for the corresponding fields
(following [95]). They read

d
(
∗ dA(5)

2,α
)

= −
(
τMτM

) β

α
∗A(5)

2,β , d
(
∗ dA(5)

1,α̇
)

= 0 . (2.88)

So in 5D, we end up with eight massive tensors and two massless vectors (again,
this is for the case where m1 ± m2 and m3 ± m4 are non-zero). The self-duality
constraint (2.86) eliminates the massless tensors A(5)

2,α̇ and makes sure that the
massive tensors A(5)

2,α carry only half their usual degrees of freedom. The masses of
the fields A(5)

2,α are determined by the mass matrix −
(
τMτM

) β

α
. By diagonalizing

this matrix, we find the mass corresponding to each field.
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2 Black Holes in String Theory with Duality Twists

Just as for the scalar fields, we have computed these masses explicitly for the mass
matrices that we use for the reduction of the D1-D5 system and the dual brane
configurations in section 2.3. These masses can be found in section 2.C.

Graviphoton interactions

We now pay some extra attention to the interactions between the graviphoton and
the vector and tensor fields that we find in this subsection. They will prove to be
very important in section 2.4. As it turns out, there is a difference in the result
that we find for the reduction of a self-dual 6D tensor and an anti-self-dual 6D
tensor. We illustrate this difference with two simple examples.

Consider a six-dimensional (anti-)self-dual tensor field B̂2 with field strength Ĥ3 =
d̂B̂2 (here hats denote 6D quantities). The field equations and self-duality constraint
for this field read

d̂Ĥ3 = 0 , ∗̂ Ĥ3 = ± Ĥ3 . (2.89)

By decomposing this field (strength) as Ĥ3 = H3 +H2 ∧ (dz + A1), and by using
straightforward reduction techniques and the conventions of this chapter, we find
the following 5D Lagrangian:

L = − 1
2 H2 ∧ ∗H2 ± 1

2 A1 ∧H2 ∧H2 , (2.90)

with H2 = dB1. We see that a self-dual and an anti-self-dual tensor give a Chern-
Simons interaction term with the graviphoton with an opposite sign.

Now take a real doublet of (anti-)self-dual tensor fields, that we Scherk-Schwarz
reduce from 6D to 5D with the ansatz

Ĥ3 = exp
[(

0 −m
m 0

)
z

] (
H3 +H2 ∧ (dz + A1)

)
, (2.91)

(apart from the ansatz and the fact that we are considering a doublet this set-up is
similar to the previous one). Going through this reduction gives a complex massive
tensor B2 in five dimensions subject to the self-duality equation

dB2 − imA1 ∧B2 ± im ∗B2 = 0 . (2.92)

Again, the ± sign indicates the difference between the result for the reduction of a
self-dual and an anti-self-dual tensor from six dimensions. Now, this sign is not in
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2.2 Scherk-Schwarz reduction to five dimensions

front of the interaction with the graviphoton, but we can still flip it by redefining
A1 → −A1. To see this, recall that the field B2 is complex so that we also have the
complex conjugate of (2.92). By flipping the sign of the graviphoton, we effectively
switch the particle and the anti-particle B2 ↔ B̄2 in order to protect the sign in
the covariant derivative. The ± sign in the mass term of the equation for B̄2 is
flipped with respect to (2.92), and so we see that redefining A1 → −A1 effectively
interchanges the result for a self-dual and an anti-self-dual tensor.

2.2.7 Conjugate monodromies

We have so far considered monodromies in the R-symmetry group Spin(5)L ×
Spin(5)R preserving the identity in the coset Spin(5, 5)/Spin(5)L × Spin(5)R, which
is the point in the moduli space at which all scalar fields vanish. Then this point
in moduli space is a fixed point under the action of the Spin(5, 5) transformation
ψ → Mψ given by the monodromy, and as we have seen this point is a minimum
of the Scherk-Schwarz potential giving a Minkowski vacuum. Conjugating by an
element of the R-symmetry group

M → hM̄h−1 , h ∈ USp(4)L × USp(4)R (2.93)

will then preserve the fixed point in the moduli space and the minimum will remain
at the origin.

However, for the embedding in string theory (see subsection 2.5.1), we will need
to consider monodromies that are related to an R-symmetry transformation by
conjugation by an element of Spin(5, 5)

M = gM̃g−1 , g ∈ Spin(5, 5) , M̃ ∈ USp(4)L × USp(4)R ⊂ Spin(5, 5) . (2.94)

This change of monodromy can be thought of as the result of acting on the theory
twisted with monodromy M̃ by a transformation ψ → gψ. For the supergravity
theory, this is just a field redefinition giving an equivalent theory, but as we shall
see later this has consequences for the embedding in string theory. The fixed point
is now at the coset containing g, [g] = {gh | h ∈ Spin(5)L × Spin(5)R}, and this is
now the location of the minimum of the potential [63]. At this point, the kinetic
terms of the various fields are not conventionally normalized. On bringing these to
standard form, the masses become precisely the ones given earlier for the theory
with monodromy M̃. This was of course to be expected: a field redefinition cannot
change physical parameters such as masses.
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2.2.8 Gauged supergravity and gauge group

The result of the Scherk-Schwarz reduction is a gauged N = 8 supergravity theory in
which a subgroup of the E6 duality symmetry of the ungauged 5D theory is promoted
to a gauge symmetry. In this subsection we discuss this gauged supergravity and
its gauge group.

We start with the case in which the twist is a T-duality transformation in the
T-duality subgroup Spin(4, 4) of Spin(5, 5). Consider first the bosonic NS-NS sector
of the ten-dimensional supergravity theory, consisting of the metric, B-field and
dilaton. Compactifying on T 4 gives a 6D theory with SO(4, 4) symmetry. There is a
6D metric, B-field and dilaton, together with 8 vector fields AAµ̂ in the 8 of SO(4, 4)
(with A = 1, . . . , 8 labelling the vector representation of SO(4, 4)) and scalars in the
coset space SO(4, 4)/SO(4) × SO(4). The Scherk-Schwarz compactification of this
on a circle with an SO(4, 4) twist with mass matrix NAB was given in detail in [72].
In 5D, there are then 10 gauge fields: eight AAµ arising from the 6D vector fields, the
graviphoton vector field A5

µ from the metric and a vector field B5
µ from the reduction

of the 6D B-field. Then (AAµ ,A5
µ,B5

µ) are the gauge fields for a gauge group with
10 generators TA, Tz, Tz̃ respectively. After the field redefinitions given in [72] to
obtain tensorial fields transforming covariantly under duality transformations, the
gauge algebra is [72]

[Tz, TA] = NA
B TB , [TA, TB ] = NAB Tz̃ , (2.95)

with all other commutators vanishing. Here NAB = NA
CηCB where ηAB is the

SO(4, 4)-invariant metric, so that NAB = −NBA as the mass matrix is in the Lie
algebra of SO(4, 4). This then represents a gauging of a 10-dimensional subgroup
of SO(4, 4), which has a U(1)2 subgroup generated by Tz, Tz̃. A further U(1) factor
can be obtained by dualising the 2-form bµν to give an extra gauge field and the
generator t of this U(1) factor commutes with all other generators.

Next, consider reintroducing the R-R sector. In six dimensions, there are a further 8
one-form gauge fields Cαµ̂ transforming as a Weyl spinor of Spin(4, 4) (α = 1, . . . , 8),
which combine with the 8 NS-NS one-form gauge fields to form the 16 of Spin(5, 5).
There are also a further 4 two-form gauge fields, which split into four self-dual ones
and four anti-self dual ones that transform as an 8 of SO(4, 4). These combine
with the degrees of freedom of the NS-NS 2-form to form the 10 of Spin(5, 5). The
mass matrix acts on the spinor representation through Nαβ which is given as usual
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by Nαβ = 1
4NAB(γAB)αβ where Nαβ = Nα

γηγβ and ηαβ is the symmetric charge
conjugation matrix. The structure in the spinor representation is related to that
in the vector representation by SO(4, 4) triality. The gauge algebra then gains the
terms

[Tz, Tα] = Nα
β Tβ , [Tα, Tβ ] = Nαβ Tz̃ , (2.96)

to give an 18-dimensional gauge group. This corresponds to gauging an 18-
dimensional subgroup of E6. For generic values of the parameters mi, the two-form
gauge fields in the 8 of SO(4, 4) become massive, while the 5D NS-NS two-form
remains massless and can again be dualized to give a further U(1) factor with
generator t. For special values of the parameters, some of the two-forms in the 8
of SO(4, 4) can become invariant under the twist and so become massless as well.
These can be dualized to give further U(1) factors.

The gauge algebra can now be written

[Tz, Ta] = Ma
b Tb , [Ta, Tb] = Mab Tz̃ , (2.97)

with all other commutators vanishing, where Ta = (TA, Tα) and

Ma
b =

(
NA

B 0
0 Nα

β

)
. (2.98)

There is a U(1)3 subgroup generated by t (if the NS-NS two-form is dualized)
with possible further U(1) factors coming in if some of the R-R two-forms remain
massless.

In the generic case in which Ma
b has no zero eigenvalues, then the vector fields

Aa corresponding to the generators Ta all become massive, while the gauge fields
corresponding to the generators Tz, Tz̃, t remain massless. Then the gauge group
is spontaneously broken to the U(1)3 subgroup generated by Tz, Tz̃, t. For special
values of the parameters mi such that Ma

b has some zero eigenvalues, there will be
more massless gauge fields and the unbroken gauge group will be larger.

In subsection 2.3.2, we will consider a twist of this kind in the compact Spin(4) ×
Spin(4) subgroup of the Spin(4, 4) T-duality group. The other twists we will
consider are all related to this one by conjugation (see subsection 2.2.7 and 2.3.2)
and will give isomorphic gauge groups.
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One can argue what part of the matter content is charged under each of these
generators of the gauge group by Scherk-Schwarz reducing the 6D gauge transforma-
tions and seeing how the 5D fields transform under these reduced transformations.
The 6D gauge transformations can be found in [88, 89]. The generators Ta come
from the gauge transformations corresponding to the 16 vector fields in 6D. These
transform the 6D vectors and the 6D tensors, so the 5D descendants of these fields
can become charged under generators Ta. The generators Tz̃ and t come from the
gauge transformation that correspond to the 6D tensor field that is a singlet under
the twist. This transformation acts only on this tensor field, so after reduction no
matter becomes charged under the resulting 5D transformations Tz̃ and t. The
generator Tz (corresponding to the graviphoton A5

1) comes from 6D diffeomorphisms
in the circle direction. By explicit reduction of these diffeomorphisms, we find that
all fields that become massive in 5D carry U(1) charge under Tz.

2.2.9 Kaluza-Klein towers

In the previous subsections, we have constructed 5D theories with both massless
and massive fields from Scherk-Schwarz reduction. However, this is not the whole
story: if we consider a compactification on S1, then each field picks up an infinite
Kaluza-Klein tower5. We choose Scherk-Schwarz ansätze including Kaluza-Klein
towers on the S1 of the form

ψ(xµ, z) = exp
(
Mz

2πR

) ∑
n∈Z

einz/R ψn(xµ) , (2.99)

where we use ψ as a schematic notation for any field in the theory that transforms
in some representation of the R-symmetry group. Then if ψ has charges ei, it is an
eigenvector of M with eigenvalue iµ given by (2.40), Mψ = iµψ, so that

ψ(xµ, z) =
∑
n∈Z

exp
(
i
( µ

2π + n
) z

R

)
ψn(xµ) . (2.100)

Clearly, shifting µ
2π by an integer r can be absorbed into a shift n → n− r and so

corresponds to changing the n’th Kaluza-Klein mode to the (n− r)’th one while
leaving the sum unchanged. From Table 2.1, we see that shifting the mi by 2πri for

5Of course, even this is not the whole story. There are also Kaluza-Klein modes that come from
the reduction from 10D to 6D on the four-torus, plus stringy degrees of freedom. We will return
to these in section 2.5, where we discuss the full string theory.
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any integers ri shifts all the µ
2π by an integer and so leaves the above sum (2.100)

unchanged. For this reason, there is no loss of generality in taking mi ∈ [0, 2π).

Without loss of generality, we can restrict the mi’s further by realizing that all
eigenvalues iµ appear with a ± sign in front of them. By taking into account two
towers of the form (2.100), one of them with a minus sign in front of µ, we see that
the combination of these towers is unchanged under µ

2π → 1 − µ
2π . Consequently,

we can take mi ∈ [0, π] without loss of generality.

The Scherk-Schwarz ansatz is a truncation of (2.100) to the n = 0 mode. This gives
a consistent truncation to a gauged five-dimensional supergravity theory, which is
sufficient for e.g. determining which twists preserve which brane configuration in
section 2.3. The full string theory requires keeping all these modes, together with
stringy modes and degrees of freedom from branes wrapping the internal space.

The mass of the n’th KK-mode is given by∣∣∣ µ

2πR + n

R

∣∣∣ , n ∈ Z , (2.101)

and the value of µ(mi) for each field can be read off from Table 2.1. As an example,
we check this for the reduction of the 6D tensors. If the whole tower is taken into
account, the Scherk-Schwarz ansatz (2.79) is extended to

G
(6)
3 (x̂µ̂) = exp

(
Mz

2πR

) ∑
n∈Z

einz/R
(
G

(5)
3,n(xµ) + G

(5)
2,n(xµ) ∧

(
dz + A5

1
))
. (2.102)

Note that we have restored the circle radius R in this ansatz; from now on, we
will keep it manifest in all our equations. Furthermore, in (2.102) the Spin(5, 5)
indices are suppressed for clarity. It can be seen directly that this extended ansatz
essentially changes the mass matrix M as we used it in subsection 2.2.6 to(

M

2πR + in1

R

)
, n ∈ Z . (2.103)

We can now use that the eigenvalue of M is iµ with µ given by (2.40) to see that
the masses of the Kaluza-Klein modes are given by (2.101).

Note that the modes with n = 0 that are kept in the Scherk-Schwarz reduction are
not necessarily the lightest modes in the tower. In particular, if the parameters mi
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2 Black Holes in String Theory with Duality Twists

are chosen so that µ(mi)
2π is an integer, µ(mi)

2π = N , then the mode with n = −N
will be massless. As an example of this, we can choose

m1 = m2 = π
2 , m3 = π , m4 = 0 . (2.104)

By using Table 2.1, we can see which additional massless fields arise. In this case,
there are four scalars and two spin- 1

2 fermions that become massless, which form
a hypermultiplet of N = 2 supergravity. For further discussion of such accidental
massless modes, see [63,74].

2.3 Five-dimensional black hole solutions

In this section, we consider several 10D brane configurations that we compactify
to give black holes in 5D. We do this in two steps. First, we reduce the brane
configuration to a black string solution of (2, 2) supergravity in six dimensions.
This solution will not be invariant under the whole Spin(5, 5) duality group, but
will be preserved by a stabilizing subgroup. If we then do a standard (untwisted)
compactification of this on a circle with the black string wrapped along the circle,
we obtain a BPS black hole solution of N = 8 supergravity in five dimensions. This
reduction can be modified by including a duality twist on the circle. If the duality
twist is in the stabilizing subgroup, the same black hole solution will remain a
solution of the gauged supergravity resulting from the Scherk-Schwarz reduction,
and of its truncation to an effective N < 8 supergravity describing the massless
sector. This is because the only fields that become massive as a result of the
Scherk-Schwarz twist are the ones that are trivial (zero) in the black hole solution.
As a consequence, the black hole will also be BPS and preserving (at least) four
supercharges. Indeed, it descends from a BPS black string solution in six dimensions,
and the duality twist preserves the supercharges and Killing spinors of the truncated
theory that has the black hole as a solution.

Primarily, we focus on the D1-D5 system, but later in this section we also consider
the dual F1-NS5 and D3-D3 systems.

2.3.1 The D1-D5-P system

The D1-D5 system, sometimes more accurately called the D1-D5-P system, consists
of D1-branes, D5-branes and waves carrying momentum. The ten-dimensional
configuration is as follows:
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2.3 Five-dimensional black hole solutions

R1,4 S1 T 4︷ ︸︸ ︷ ︷︸︸︷ ︷ ︸︸ ︷
t r θ ϕ1 ϕ2 z y1 y2 y3 y4

D1 − · · · · − · · · · · · · · · · · ·
D5 − · · · · − − − − −
P − · · · · − · · · · · · · · · · · ·

Here a line (−) denotes an extended direction, a dot ( · ) denotes a pointlike direction,
and multiple dots (· · · ) denote a direction in which the brane or wave is smeared.

We start from the ten-dimensional solution and reduce it to 5D with the ansätze
that are given in previous sections. The D1-D5 solution of type IIB supergravity in
Einstein frame reads

ds2
(10) = H

− 3
4

1 H
− 1

4
5
[
− dt2 + dz2 +K(dt− dz)2]+H

1
4

1 H
3
4

5
[
dr2 + r2dΩ2

3
]

+H
1
4

1 H
− 1

4
5
[
dy2

1 + dy2
2 + dy2

3 + dy2
4
]

eΦ = H
1
2

1 H
− 1

2
5

C
(10)
2 = (H−1

1 − 1) dt ∧ dz +Q5 cos2θ dϕ1 ∧ dϕ2 ,

(2.105)

where dΩ2
3 = dθ2 + sin2θ dϕ2

1 + cos2θ dϕ2
2 is the metric on the three-sphere written

in Hopf coordinates. The harmonic functions corresponding to the D1-branes, the
D5-branes and the momentum modes can be written in terms of their total charges
as

H1 = 1 + Q1

r2 , H5 = 1 + Q5

r2 , HK = 1 +K = 1 + QK
r2 . (2.106)

Reduction to six dimensions

We compactify the metric in (2.105) to 6D using the ansatz (2.4). The metric on
the torus, gmn, is diagonal in (2.105) so we find that

e
~bm·~φ = H

1
4

1 H
− 1

4
5 , m = 1, . . . , 4 . (2.107)

By using the expressions for the vectors ~bm given in (2.6), we can solve for the
individual scalar fields φi. We find that only one of them is non-zero in the 6D
solution:

eφ4 = H
1
2

1 H
− 1

2
5 , φ1 = φ2 = φ3 = 0 . (2.108)
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The rest of the reduction is straightforward. The six-dimensional Einstein frame
metric is related to the ten-dimensional one by a Weyl rescaling with g1/4

4 = H
1
4

1 H
− 1

4
5 ,

which is incorporated in the ansatz (2.4). The dilaton Φ and the R-R two-form
C

(10)
2 have no non-zero components on the torus, so they reduce trivially. The

result reads
ds2

(6) = H
− 1

2
1 H

− 1
2

5
[
− dt2 + dz2 +K(dt− dz)2]+H

1
2

1 H
1
2

5
[
dr2 + r2dΩ2

3
]

eφ+ = H

√
1
2

1 H
−

√
1
2

5

C
(6)
2 = (H−1

1 − 1) dt ∧ dz +Q5 cos2θ dϕ1 ∧ dϕ2 .

(2.109)

Here, we have defined the scalar field φ+ = 1√
2 (φ4 + Φ). This solution describes a

black string in six dimensions.

When we use the doubled formalism (see subsection 2.1.3) we can rewrite the
solution above in terms of the doubled tensor fields. To derive the contributions of
these doubled fields to the black string solution, recall that the dual field strengths
are defined as G̃(6)a

3 = Kab ∗ G(6)
3,b + LabG

(6)
3,b . By putting all scalar fields except

φ+ to zero, this reduces to G̃(6)a
3 = Kab ∗G(6)

3,b with Kab = diag (1, 1, 1, e
√

2φ+ , 1).
Hence, we find that the doubled tensors to which the black string solution couples
are given by

C
(6)
2 = (H−1

1 − 1) dt ∧ dz +Q5 cos2θ dϕ1 ∧ dϕ2 ,

C̃
(6)
2 = (H−1

5 − 1) dt ∧ dz +Q1 cos2θ dϕ1 ∧ dϕ2 .
(2.110)

In the doubled formalism, the degrees of freedom of both these fields are halved by
the self-duality constraint (2.27) so the total number of degrees of freedom of the
fields that the black string couples to remain unchanged.

Scherk-Schwarz reduction to five dimensions

The last step is to Scherk-Schwarz reduce the six-dimensional black string solution,
which results in a black hole in five dimensions. We choose the twist matrices
to be in the stabilizing subgroup of the R-symmetry group, i.e. the subgroup of
the R-symmetry that preserves the solution. As a result, all the fields that are
non-constant in the black hole remain massless.
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2.3 Five-dimensional black hole solutions

For the D1-D5 system, we choose the following usp(4) mass matrices:

M
usp(4)
L =


0 0 −m1 0
0 0 0 −m2

m1 0 0 0
0 m2 0 0

 ,

M
usp(4)
R =


0 0 −m3 0
0 0 0 −m4

m3 0 0 0
0 m4 0 0

 .

(2.111)

Here m1, m2, m3 and m4 are real mass parameters, each corresponding to one
SU(2) in the R-symmetry subgroup (2.37). The isomorphism usp(4) ∼= so(5) of
Appendix 2.B.2 maps these to so(5) mass matrices. We find

ML =


0 −(m1 +m2) 0 0 0

m1 +m2 0 0 0 0
0 0 0 0 −(m1 −m2)
0 0 0 0 0
0 0 m1 −m2 0 0

 ,

MR =


0 −(m3 +m4) 0 0 0

m3 +m4 0 0 0 0
0 0 0 0 −(m3 −m4)
0 0 0 0 0
0 0 m3 −m4 0 0

 .

(2.112)

The embedding of these so(5) matrices in the so(5, 5) mass matrix M B
A is given in

(2.71).

We can now follow the techniques of subsection 2.2.5 and 2.2.6 to determine the
masses that each of the scalar and tensor fields acquires due to this twist. The
results of these calculations for the mass matrices (2.112) are presented in Appendix
2.C. In particular, we find that the fields that appear in the six-dimensional black
string solution (φ+, C(6)

2 and C̃
(6)
2 ) do not become massive in this Scherk-Schwarz

reduction, as required. This means that the reduction of the solution (2.109) to a
5D black hole is the same as in the untwisted case.
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The two self-dual tensors that charge the black string solution, C(6)
2 and C̃(6)

2 , yield
two tensors and two vector fields in 5D. We denote these by C(5)

2 , C(5)
1 , C̃(5)

2 , C̃(5)
1 .

We now consider the self-duality conditions for these fields from (2.86), where we
only take along fields that are non-zero in the 5D black hole solution. We find that
they are pairwise dual by the relations

dC(5)
1 = e

√
2/3φ5 e−

√
2φ+ ∗ dC̃(5)

2 ,

dC̃(5)
1 = e

√
2/3φ5 e

√
2φ+ ∗ dC(5)

2 .
(2.113)

We use these to write the contributions of C(5)
2 and C̃(5)

2 to the black hole solution
in terms of the dual one-forms. In doing so, we move to an undoubled formalism.
The full five-dimensional black hole solution is then given by

ds2
(5) = − (H1H5HK)− 2

3 dt2 + (H1H5HK) 1
3
[
dr2 + r2dΩ2

3
]

eφ+ = H

√
1
2

1 H
−

√
1
2

5

eφ5 = H
−

√
1
6

1 H
−

√
1
6

5 H

√
2
3

K

C
(5)
1 = (H−1

1 − 1) dt

C̃
(5)
1 = (H−1

5 − 1) dt

A5
1 = (H−1

K − 1) dt .

(2.114)

Here C(5)
1 and C̃

(5)
1 are full vector fields, meaning that they are not subject to a

self-duality constraint and carry the usual number of degrees of freedom. Note that
this compactification can be generalized by adding angular momentum in directions
transverse to the 10D branes to give a rotating black hole in five dimensions.

This three-charge black hole has been well studied in the literature. Its charges are
quantized as Qi = ciNi, where Ni are integers and the the basic charges are given
by [24]

c1 = 4G(5)
N R

πα′gs
, c5 = α′gs , cK = 4G(5)

N

πR
. (2.115)

The entropy of this black hole can be computed with the Bekenstein-Hawking
formula, which yields

SBH = A

4G(5)
N

= π2

2G(5)
N

√
Q1Q5QK = 2π

√
N1N5NK . (2.116)
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2.3 Five-dimensional black hole solutions

2.3.2 Dual brane configurations

The F1-NS5-P system

We now study the F1-NS5-P system, which consists of F1 and NS5-branes arranged
as follows:

t r θ ϕ1 ϕ2 z y1 y2 y3 y4

F1 − · · · · − · · · · · · · · · · · ·
NS5 − · · · · − − − − −

Again there are waves with momentum in the z-direction. This system is related to
the D1-D5 system via S-duality. As in the previous case, we start by considering
the supergravity solution in ten dimensions. It can be written in Einstein frame as



ds2
(10) = H

− 3
4

F H
− 1

4
N

[
− dt2 + dz2 +K(dt− dz)2]+H

1
4
FH

3
4
N

[
dr2 + r2dΩ2

3
]

+H
1
4
FH

− 1
4

N

[
dy2

1 + dy2
2 + dy2

3 + dy2
4
]

eΦ = H
− 1

2
F H

1
2
N

B
(10)
2 = (H−1

F − 1) dt ∧ dz +QN cos2θ dϕ1 ∧ dϕ2 ,

(2.117)

where we have the harmonic functions

HF = 1 + QF
r2 , HN = 1 + QN

r2 , (2.118)

andHK is as before. Note that this solution can be obtained from the D1-D5 solution
(2.105) by an S-duality transformation, which sends Φ → − Φ and C

(10)
2 → B

(10)
2 .

After reduction on T 4, we obtain a very similar six-dimensional solution, given by
(2.109) with the replacements φ+ → φ− = 1√

2 (φ4 − Φ) and C
(6)
2 → B

(6)
2 . In the

doubled formalism, the black string couples to the two-forms

B
(6)
2 = (H−1

F − 1) dt ∧ dz +QN cos2θ dϕ1 ∧ dϕ2 ,

B̃
(6)
2 = (H−1

N − 1) dt ∧ dz +QF cos2θ dϕ1 ∧ dϕ2 .
(2.119)

Again these fields carry only half their usual degrees of freedom due to the self-duality
constraint (2.27).
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To reduce to five dimensions, we need to specify the mass matrices. We choose the
Scherk-Schwarz twist to be in the stabilizing subgroup of the R-symmetry group.
Since the F1-NS5 system couples to B2 instead of C2, the twist is chosen to preserve
B2. We choose the so(5) matrices

ML =


0 −(m1 +m2) 0 0 0

m1 +m2 0 0 0 0
0 0 0 −(m1 −m2) 0
0 0 m1 −m2 0 0
0 0 0 0 0

 , (2.120)

and MR similar with m1 → m3 and m2 → m4. By using the isomorphism in
Appendix 2.B.2, these map to usp(4) generators of the form

M
usp(4)
L =


0 0 −m1+m2

2
m1−m2

2
0 0 m1−m2

2 −m1+m2
2

m1+m2
2

−m1+m2
2 0 0

−m1+m2
2

m1+m2
2 0 0

 . (2.121)

The masses of the scalar and tensor fields that follow from the reduction with these
mass matrices are given in Appendix 2.C.

The resulting five-dimensional black hole is given by (2.114) with the field redef-
initions φ+ → φ−, C(5)

2 → B
(5)
2 and C̃

(5)
2 → B̃

(5)
2 . It is not surprising that these

black holes are related by field redefinitions. After all, the D1-D5 and F1-NS5
systems are related by U-duality, and the corresponding mass matrices are related
by conjugation

MF1-NS5 = CMD1-D5 C
−1 , C ∈ Spin(5, 5) . (2.122)

This conjugation matrix C is given by

C =
(
c 0
0 c

)
, c =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 1
0 0 0 1 0

 . (2.123)

Essentially this conjugation matrix interchanges the fourth and fifth row and column
and the ninth and tenth row and column in the mass matrix (and monodromy).
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The D3-D3-P systems

Finally, we consider the reduction of the D3-D3-P system of branes. We specify
the brane configuration:

t r θ ϕ1 ϕ2 z y1 y2 y3 y4

D3 − · · · · − − − · · · · · ·
D3′ − · · · · − · · · · · · − −

As before, we also have momentum in the z-direction. We start with the supergravity
solution in ten dimensions, in Einstein frame it can be written as

ds2
(10) = H

− 1
2

3 H
− 1

2
3′

[
− dt2 + dz2 +K(dt− dz)2]+H

1
2

3 H
1
2

3′

[
dr2 + r2dΩ2

3
]

+H
− 1

2
3 H

1
2

3′

[
dy2

1 + dy2
2
]

+H
1
2

3 H
− 1

2
3′

[
dy2

3 + dy2
4
]

C
(10)
4 = (H−1

3 − 1) dt ∧ dz ∧ dy1 ∧ dy2 + (H−1
3′ − 1) dt ∧ dz ∧ dy3 ∧ dy4 ,

(2.124)

where the harmonic functions are given by

H3 = 1 + Q3

r2 , H3′ = 1 + Q3′

r2 . (2.125)

On compactifying to six dimensions on T 4 by taking the coordinates y1, . . . , y4

periodic, this brane configuration is related to the D1-D5 system by T-duality. This
means that the black string solution for the D3-D3 system can be obtained from that
for the D1-D5 system (2.109) by a field redefinition. We find this field redefinition
as C(6)

2 → R
(6)
2; 1 and φ+ → φ1. In the doubled formalism, the six-dimensional black

string arising from the D3-D3 system couples to the two-forms

R
(6)
2; 1 = (H−1

3 − 1) dt ∧ dz +Q3′ cos2θ dϕ1 ∧ dϕ2 ,

R̃
(6)
2; 1 = (H−1

3′ − 1) dt ∧ dz +Q3 cos2θ dϕ1 ∧ dϕ2 .
(2.126)

Different D3-D3 systems can be constructed by arranging the D3-branes differently
on the torus. These would be charged under the two-forms coming from the
reduction of C(10)

4 in such systems. All of these systems are related by T-duality.

In the last step of the reduction we need to ensure the fields that are non-trivial in
the black hole solution remain massless in 5D. For this twisted reduction we choose
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so(5) mass matrices of the form

ML =


0 0 0 0 0
0 0 0 −(m1 +m2) 0
0 0 0 0 −(m1 −m2)
0 m1 +m2 0 0 0
0 0 m1 −m2 0 0

 , (2.127)

which results in R
(6)
2; 1 remaining massless. In usp(4) this mass matrix reads

M
usp(4)
L =


0 0 −m1−m2

2
i(m1+m2)

2
0 0 i(m1+m2)

2
m1−m2

2
m1−m2

2
i(m1+m2)

2 0 0
i(m1+m2)

2 −m1−m2
2 0 0

 . (2.128)

The scalar and tensor masses that follow from the reduction with these mass
matrices are given in Appendix 2.C. The resulting five-dimensional black hole is
given by making the field redefinitions φ+ → φ1, C(5)

2 → R
(5)
2; 1 and C̃

(5)
2 → R̃

(5)
2; 1

in the solution (2.114). The mass matrices are again conjugate to those of the
dual D1-D5 and F1-NS5 solutions. The relation is similar to the F1-NS5 result in
(2.122), except now the matrix C switches the first and fourth rows and columns
instead of the fourth and fifth ones.

2.3.3 Preserving further black holes by tuning mass parameters

In the previous subsection, we chose twist matrices with four arbitrary real pa-
rameters mi. For each black hole solution (D1-D5, F1-NS5, D3-D3), we chose this
matrix in such a way that the fields that source the black hole are left unchanged
by the Scherk-Schwarz twist. Consequently, the black hole remains a valid solution
of the 5D theory for all values of the mass parameters.

Here, we treat the special cases in which the mass parameters can be tuned in such
a way that, in addition to the original black hole, other black hole solutions are
also preserved by the same twist. For example, we consider twists that preserve
both the D1-D5 and F1-NS5 black holes. As it turns out, this can only be done in
the N = 4 (0, 2) theory and in the N = 0 theory. Since we are interested mostly in
partial supersymmetry breaking, we treat an example of the N = 4 (0, 2) case in
detail below.
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2.3 Five-dimensional black hole solutions

Preserving D1-D5 with T-duality twist in N = 4(0, 2)

For this example, we consider mass matrices of the form given in (2.120) that
preserve the F1-NS5 black hole solution. In order to twist to the N = 4 (0, 2)
theory, we choose m1,m2 6= 0 and m3,m4 = 0.

Suppose that, in addition to the F1-NS5 solution, we also want to preserve the
D1-D5 solution with this twist. Then the fields{

φ+ = 1√
2 (φ4 + Φ) , C(5)

2 , C̃
(5)
2
}

(2.129)

have to remain massless as well. The masses of these fields for this twist matrix
can be found in Appendix 2.C. By setting m3,m4 = 0, we see that each field
either becomes massive with mass |m1 −m2| or remains massless. It is therefore
straightforward to tune the mass parameters in such a way that all of these fields
remain massless by taking m1 = m2.

We thus see that the D1-D5 solution can be preserved in a reduction to N = 4 (0, 2)
with the twist matrix that was originally proposed to preserve the F1-NS5 solution,
simply by taking the two mass parameters to be equal. This particular example
offers some interesting possibilities. On the one hand, we note that the twist that
preserves the F1-NS5 solution lies in the perturbative SO(4, 4) subgroup of the
duality group. From the perspective of the full string theory this is a T-duality
twist. Since T-duality is a perturbative symmetry, we can in principle work out the
corresponding orbifold compactification of the perturbative string theory explicitly.
On the other hand, the microscopic description of the D1-D5 black hole, the D1-D5
CFT, is understood reasonably well. Therefore, it should be possible to study this
particular reduction thoroughly both from the perspective of the full string theory,
and from the perspective of the black hole microscopics. We will return to this
elsewhere.

Other possibilities in N = 4 (0, 2)

By taking m1 = m2 in the example above, we managed to keep the fields that
couple to the D1-D5 black hole massless, and so we could preserve this particular
solution. It turns out, however, that this choice kept more fields massless than just
the ones that charge the D1-D5 solution. In particular, the fields{

φ3 , R
(5)
2;3 , R̃

(5)
2;3
}

(2.130)
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also remain massless (as can be checked from the tables in Appendix 2.C). These
are exactly the fields that are non-trivial in one of the three possible D3-D3 black
holes. So not only the D1-D5 and F1-NS5 black holes, but also one of the D3-D3
black holes is preserved in this reduction.

Suppose now that, instead of m1 = m2, we choose m1 = −m2 in this reduction
to N = 4 (0, 2). This choice does not preserve the D1-D5 solution and the D3-D3
solution charged under R(5)

2;3, but instead other solutions are preserved. Now the
fields coupling to the two other D3-D3 black holes remain massless:{

φ1 , R
(5)
2;1 , R̃

(5)
2;1
}

and
{
φ2 , R

(5)
2;2 , R̃

(5)
2;2
}
. (2.131)

These are all the possibilities for preserving multiple black hole solutions with a
T-duality twist to the N = 4 (0, 2) theory. The same game can be played, however,
with the other twist matrices given in subsection 2.3.1 and 2.3.2. For each case,
we find that taking either m1 = m2 or m1 = −m2 in the reduction to N = 4 (0, 2)
results in the preservation of two additional black hole solutions.

Preserving further black holes in N = 0

The only other theory in which we can preserve several black hole solutions by
tuning mass parameters is the one in which we break all supersymmetry: the N = 0
case. Now all four mass parameters are non-zero. As an example, let’s consider the
geometric F1-NS5 twist (2.120) again. If we take m1 = m2 and m3 = m4 in this
reduction, all fields (2.129) that are non-trivial in the D1-D5 black hole solution
remain massless. Consequently, the D1-D5 solution is preserved. Other examples
can be worked out for similar reductions to N = 0.

2.4 Quantum corrections

So far, we have considered five-dimensional supergravity theories with both massless
and massive fields. For the purpose of finding black hole solutions in these theories,
we truncated (consistently) to the n = 0 modes of the Kaluza-Klein towers and
identified black hole solutions in the massless sector after this truncation.

Under certain conditions, which we discuss in the next section, the black hole
solutions we have been considering lift to solutions of the full string theory. In the
string theory, the effective supergravity theory receives quantum corrections. In
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particular, there are quantum corrections to the coefficients of the 5D Chern-Simons
terms which in turn lead to modifications of the black hole solutions and hence to
quantum corrections to their entropy.

In this section, we consider corrections to the coefficients of the 5D Chern-Simons
terms that result from integrating out the massive spectrum. It is a little unusual
that it is massive fields that contribute to these parity-violating terms. This is
because in five dimensions massive fields can be in chiral representations of the
little group SU(2) × SU(2) and so can contribute to the parity-violating Chern-
Simons terms. First, we consider these quantum corrections in a general setting
and then discuss their origins and consequences for the entropy of the black holes
solutions of section 2.3. Subsequently, we compute the quantum corrections to the
Chern-Simons terms from integrating out massive supergravity fields. This is of
course not the full story: there are in principle further corrections from stringy
modes; these will be considered elsewhere.

2.4.1 Corrections to Chern-Simons terms

In five dimensions massive fields can be chiral as they are in representations (s, s′)
of the little group SU(2) × SU(2), and we will refer to them as chiral if s 6= s′. In
the supergravity theory we have been discussing, the chiral massive field content
consists of the gravitino in the (3, 2) representation, the self-dual two-form field
in the (3, 1) representation and the spin-half dilatino in the (2, 1) representation
(together with their anti-chiral counterparts (2, 3), (1, 3) and (1, 2)). As we have
seen in subsection 2.2.3, these massive fields fit into (p, q) BPS supermultiplets. By
integrating out this chiral matter, we can obtain corrections to the 5D Chern-Simons
terms [96]. In principle, one would need to integrate out the entire chiral massive
spectrum; the fields that we found in our supergravity calculation, as well as massive
stringy modes. We focus on the supergravity fields here.

From the fields that we obtain in our duality-twisted compactification of 6D
supergravity, only the self-dual tensors, gravitini (spin- 3

2 fermions) and dilatini
(spin- 1

2 fermions) contribute to the Chern-Simons terms. Integrating out other
types of massive fields does not yield Chern-Simons couplings [96]. The origin of
this lies in parity: since the Chern-Simons terms violate parity, they can only be
generated by integrating out parity-violating fields.
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The non-abelian gauge symmetry of the 5-dimensional gauged supergravity is
spontaneously broken to an abelian subgroup with massless abelian gauge field
one-forms AI with field strengths F I = dAI , with the index I running over the
number of massless vector fields in the theory. The pure gauge and the mixed
gauge-gravitational Chern-Simons terms involving these fields are of the form

SAFF = − g3

48π2

∫
kIJKA

I ∧ F J ∧ FK ,

SARR = − g

48π2

∫
kIA

I ∧ tr (R ∧R) ,
(2.132)

for some coefficients kIJK , kI . Here g denotes the gauge coupling and R denotes
the curvature two-form. Integrating out the chiral massive fields yields quantum
corrections to the coefficients kIJK , kI .

Consider first the Chern-Simons terms in the classical 5D supergravity obtained by
Scherk-Schwarz reduction from maximal 6D supergravity. By explicit reduction, we
find that there are no A∧R∧R terms. There are A∧F ∧F terms present however.
For example, in the reduction with the Scherk-Schwarz twist that preserves the
D1-D5 black hole, we find the term

1
2κ2

(5)

∫
A5

1 ∧ dC(5)
1 ∧ dC̃(5)

1 , (2.133)

so that we have kIJK = − 4π2

κ2
(5)g

3 for the indices I, J,K corresponding to the three
gauge fields in (2.133). This Chern-Simons term (and other similar terms) can be
found from the reduction of the 6D tensor fields (following subsection 2.2.6). There
are also Chern-Simons terms coming from the reduction of the 6D vectors.

Quantum corrections to the Chern-Simons terms are only allowed for certain
amounts of unbroken supersymmetry. The coefficients of the A ∧ F ∧ F term are
fixed for N > 2 supersymmetry, so corrections to this terms are only allowed in
the N = 2 (and 0) theories. For N = 2, the supersymmetric completion of the
A ∧R ∧R term exists and is known [83], but this is not the case for theories with
more supersymmetry. However, in the chiral N = 4 (0, 2) theory a A∧R∧R term is
generated by quantum corrections, leading to the conjecture that a supersymmetric
completion of this term should exist [82]. There is no such quantum A ∧ R ∧ R

term for the non-chiral N = 4 (1, 1) theory, nor for the N = 8, 6 theories. We
will see in subsection 2.4.3 that the corrections that we find from integrating
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out the massive fields that come from our duality-twisted compactification of 6D
supergravity (including the Kaluza-Klein towers from the circle compactification)
are in agreement with the above: we find corrections to the A∧F ∧F term only for
N = 2 supersymmetry and a quantum A ∧R ∧R term is induced only for N = 2
and the chiral N = 4 (0, 2) theory.

For our purposes, we will focus on the Chern-Simons terms A5 ∧ dA5 ∧ dA5 and
A5 ∧ R ∧ R that involve the graviphoton A5. This is because the black holes
that we consider couple only to the graviphoton and to vectors descending from
the 6D tensors (see section 2.3). The chiral massive field content that we find
from duality-twisted compactification is not charged under the gauge symmetries
corresponding to the vectors that descend from 6D tensors, so for the purposes of
studying corrections to the black hole solutions we only need to consider couplings
of this chiral matter to the graviphoton; these then lead to corrections to the
coefficients of the A5 ∧ dA5 ∧ dA5 and A5 ∧R ∧R terms.

We introduce the notation kAFF for the coefficient of the A5 ∧ dA5 ∧ dA5 term and
kARR for the coefficient of the A5 ∧R ∧R term. Neither of these terms are present
in the classical theory – there is no A5 ∧ dA5 ∧ dA5 term for the graviphoton. As a
result, both kAFF and kARR have no classical contributions and arise only from
quantum corrections.

2.4.2 Corrections to black hole entropy

We now study the effect that the corrections to the Chern-Simons terms have on
the black holes that we studied in section 2.3. As it turns out, both the coefficients
kAFF and kARR affect the black hole solutions. In particular, the entropy of these
black holes is modified by the corrections to these coefficients.

In [84,85] general BPS black hole solutions were found for N = 2 supergravity with
both pure gauge and gauge-gravitational Chern-Simons terms (2.132). These general
results then give BPS black hole solutions for our N = 2 supergravity models, with
the specific values of the Chern-Simons coefficients obtained in the next subsection.
In particular, these BPS black holes are preserved by four supersymmetries, and
these are the black holes for which we compute the entropy.

We can also apply this to the black holes in the N = 4 (0, 2) theory. As discussed
in the previous subsection, the N = 2 and N = 4 (0, 2) theories are the only ones
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for which corrections to the Chern-Simons coefficients are allowed, and so these are
the only theories in which we find corrected black hole solutions.

Consider the N = 4 (0, 2) theory. By integrating out the massive field content we
obtain a non-zero coefficient kARR for the gauge-gravitational Chern-Simons term.
In order to compute corrected BPS black hole solutions in this theory, we use the
framework of [84, 85] for N = 2 supergravity. We can consistently truncate this
N = 4 theory to an N = 2 theory by decomposing fields into representations of
an USp(2) × USp(2) subgroup of the R-symmetry group and removing all fields
that transform non-trivially under one of these USp(2)’s. For each of the black hole
solutions we have considered, we make a corresponding choice of the embedding
of the USp(2) × USp(2) subgroup so that all the fields that are non-trivial in the
black hole solution survive the truncation. As a result, the black hole solutions of
the effective theory with an A∧R∧R term given in [84,85] will also be solutions of
the quantum-corrected N = 4 (0, 2) theory that we have been considering here.

We now briefly review the procedure to compute the entropy of BPS black holes in
these quantum corrected theories. It is given by the formula [84,85]

S = π

6 kIJK X
IXJXK , (2.134)

where XI are the (rescaled) moduli corresponding to the three gauge fields AI

that couple to the black hole charges and kIJK are the Chern-Simons coefficients
from (2.132). The values of these moduli in the solution are found by solving the
attractor equation, which in the near-horizon limit is

−1
2 kIJK X

JXK = π

2g G(5)
N

QI + 2 kI , (2.135)

More comprehensive studies of these solutions can be found in [84,85].

We now apply this to our setup. When we solve (2.135) and compute (2.134) for
general coefficients kAFF and kARR (to the Chern-Simons terms that contain the
graviphoton A5), we find the entropy of the corrected D1-D5-P black hole solution
in terms of its three charges to be

SBH = 2π2

4G(5)
N

√√√√√√√√Q1Q5Q̂K

2
(

1 +
√

1 + kAFF
4G(5)

N

πR3
Q1Q5
Q̂2
K

+ kAFF
4G(5)

N

3πR3
Q1Q5
Q̂2
K

)2

(
1 +

√
1 + kAFF

4G(5)
N

πR3
Q1Q5
Q̂2
K

)3 .

(2.136)
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Here the charge arising from momentum in the z direction is shifted

Q̂K = QK + 4G(5)
N

πR
kARR . (2.137)

It can easily be checked that for kAFF = kARR = 0 this expression for the black
hole entropy reduces to the uncorrected result

SBH = π2

2G(5)
N

√
Q1Q5QK . (2.138)

Just as was done for the uncorrected expression for the entropy, we can express the
three charges in terms of integers Ni times the basic charges as Qi = ciNi with the
basic charges ci as given in (2.115). This yields

SBH = 2π

√√√√√√√√N1N5N̂K

2
(

1 +
√

1 + kAFF
N1N5
N̂2
K

+ 1
3 kAFF

N1N5
N̂2
K

)2

(
1 +

√
1 + kAFF

N1N5
N̂2
K

)3 , (2.139)

where the shifted momentum charge number is given by

N̂K = NK + kARR . (2.140)

The expression (2.139) can be expanded for small kAFF as

SBH = 2π
√
N1N5N̂K + π

12 kAFF
(
N1N5

N̂K

) 3
2

+ O
(
k2
AFF

)
. (2.141)

The first term is equal to the uncorrected black hole entropy (2.116) and the second
term is the correction to first order in kAFF .

2.4.3 One-loop calculation of the Chern-Simons coefficients

In this section we compute the contributions to kAFF and kARR that come from
integrating out chiral massive fields arising from the duality-twisted compactification
of 6D supergravity. While this is a well-defined calculation, some caution is needed
since there will also be contributions from the chiral spectrum of stringy modes to
the Chern-Simons coefficients. The coefficients that we compute here come purely
from the supergravity modes.

Contributions are only obtained from integrating out massive self-dual tensors,
gravitini (spin- 3

2 fermions) and dilatini (spin- 1
2 fermions). The relevant diagrams
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k

A5
1(p1) A5

1(p2)

A5
1(p3)

Figure 2.1: This diagram generates corrections to the A∧F ∧F Chern-Simons
coupling. The external lines represent the graviphoton whilst the solid internal
lines represent a massive self-dual tensor, gravitino or dilatino running in the
loop.

for corrections to the couplings (2.132) have been computed in [96]. As an example,
we show the diagram that contributes to the A ∧ F ∧ F term in Figure 2.1. The
diagrams that contribute to the A ∧R ∧R term can be found in [96]. The results
of these computations are shown in the table below.

self-dual tensor B2 gravitino ψµ dilatino χ

kAFF −4 cB q3 5 cψ q3 cχ q
3

kARR cB q − 19
8 cψ q

1
8 cχ q

We see that the contribution of a massive field to each of the Chern-Simons couplings
consists of three parts: a prefactor that depends on the field type, a constant cfield

(equal to ±1) that depends on the field’s representation under the massive little
group, and the field’s U(1) charge q under the graviphoton A5

1.

In order to find the corrections to the Chern-Simons terms that are induced by the
massive spectra of our 5D theories, we need to know two things about each of the
massive fields: the sign of cfield and the charge q. We always take q ≥ 0 and absorb
any minus signs into the corresponding cfield.

The conventions in this work are such that 5D tensors that descend from 6D self-
dual tensors and 5D fermions that descend from 6D positive chiral fermions have
cfield = −1, while tensors descending from 6D anti-self-dual tensors and fermions
descending from 6D negative chiral fermions have cfield = +1. In terms of the
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six-dimensional R-symmetry representations, the signs of cfield of the corresponding
five-dimensional massive fields are

(5,1) : cB = −1 , (1,5) : cB = +1 ,

(4,1) : cψ = −1 , (1,4) : cψ = +1 , (2.142)

(5,4) : cχ = −1 , (4,5) : cχ = +1 .

We know from subsection 2.2.9 that each 6D field produces a Kaluza-Klein tower
of 5D fields for which the sum of the charges is given by

∞∑
n=−∞

∣∣∣∣µ(mi)
2π + n

∣∣∣∣ . (2.143)

We need to regularize such sums (and similar sums in which we take the sum of
the cube of the charges). Following [97], the regularized expressions are

s1[m] =
∞∑

n=−∞

∣∣∣m2π + n

∣∣∣ =
∣∣∣m2π ∣∣∣ (2k + 1) − k(k + 1) − 1

6 , (2.144)

s3[m] =
∞∑

n=−∞

∣∣∣m2π + n

∣∣∣3 =
∣∣∣m2π ∣∣∣3 (2k + 1) − 3

(
m

2π

)2 (
k(k + 1) + 1

6

)
(2.145)

+ 3
∣∣∣m2π ∣∣∣

(
k(k + 1)(2k + 1)

3

)
− k2(k + 1)2

2 + 1
60 .

Here we use the notation
k ≡

⌊∣∣m
2π
∣∣⌋ ,

where bxc is the integer part of x.

We now have all the information that we need to compute the corrections to the
Chern-Simons terms (2.132) that are generated by integrating out our massive
five-dimensional spectra. Now, for a general twist (i.e. all twist parameters are
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turned on) we find the correction to the pure gauge term

kAFF = 4
(
− s3[m1] − s3[m2] + s3[m3] + s3[m4]

+ s3[m1 +m2] + s3[m1 −m2] − s3[m3 +m4] − s3[m3 −m4]
)

− s3[m1 +m2 +m3] − s3[m1 +m2 −m3] − s3[m1 −m2 +m3]

− s3[m1 −m2 −m3] − s3[m1 +m2 +m4] − s3[m1 +m2 −m4]

− s3[m1 −m2 +m4] − s3[m1 −m2 −m4] + s3[m1 +m3 +m4]

+ s3[m1 +m3 −m4] + s3[m1 −m3 +m4] + s3[m1 −m3 −m4]

+ s3[m2 +m3 +m4] + s3[m2 +m3 −m4] + s3[m2 −m3 +m4]

+ s3[m2 −m3 −m4] ,

(2.146)

and the correction to the mixed gauge-gravitational term

kARR = 5
2
(
s1[m1] + s1[m2] − s1[m3] − s1[m4]

)
− s1[m1 +m2] − s1[m1 −m2] + s1[m3 +m4] + s1[m3 −m4]

+ 1
8
(

− s1[m1 +m2 +m3] − s1[m1 +m2 −m3] − s1[m1 −m2 +m3]

− s1[m1 −m2 −m3] − s1[m1 +m2 +m4] − s1[m1 +m2 −m4]

− s1[m1 −m2 +m4] − s1[m1 −m2 −m4] + s1[m1 +m3 +m4]

+ s1[m1 +m3 −m4] + s1[m1 −m3 +m4] + s1[m1 −m3 −m4]

+ s1[m2 +m3 +m4] + s1[m2 +m3 −m4] + s1[m2 −m3 +m4]

+ s1[m2 −m3 −m4]
)
.

(2.147)

The above formulae give the contributions from summing over all Kaluza Klein
modes arising from the reduction from 6D to 5D. The Scherk-Schwarz reduction to
5D supergravity keeps only the n = 0 modes and not the whole KK-towers, and on
restricting to the n = 0 modes the functions s1 and s3 reduce to

s1[m] =
∣∣m

2π
∣∣ , s3[m] =

∣∣m
2π
∣∣3 . (2.148)

Then the quantum corrections to the Chern-Simons coefficients kAFF and kARR

from integrating out only the massive modes of the 5D supergravity that arises
from Scherk-Schwarz reduction are given by (2.146) and (2.147) with the simpler
expressions (2.148) for s1, s3.

The expressions (2.146) and (2.147) are the quantum corrections for general values
of the mass parameters. The results for twists that preserve supersymmetry can be
found by taking certain parameters in (2.146) and (2.147) equal to zero. We work
out some interesting cases below.
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• N = 8, N = 6 and N = 4 (1, 1)

By twisting to any of these cases we find that kAFF = 0 and kARR = 0, as
can be checked straightforwardly by setting the appropriate mass parameters
equal to zero in (2.146) and (2.147). This is consistent with expectations
based on supersymmetry and chirality, as was explained earlier in this section.

• N = 4 (0, 2)

For the case where we choose a chiral twist to the N = 4 theory, say with
m1,m2 6= 0 and m3 = m4 = 0, we find that kAFF vanishes but kARR does
not. For such a twist, we find the correction from the n = 0 modes to be

kARR = 1
2π
(
3 |m1| + 3 |m2| − 3

2 |m1 +m2| − 3
2 |m1 −m2|

)
, (2.149)

and by taking into account the Kaluza-Klein towers as well we find

kARR = 1
2 + 3 s1[m1] + 3 s1[m2] − 3

2 s1[m1 +m2] − 3
2 s1[m1 −m2] . (2.150)

• N = 2 (0, 1)

In the minimal N = 2 theory corrections to both the Chern-Simons coefficients
are allowed, and the supersymmetric extension of the A ∧ R ∧ R term is
known [83]. The coefficients kAFF and kARR can be computed from the general
formulas (2.146) and (2.147) by taking m4 = 0 and the other parameters
non-zero. The general expressions are quite unwieldy, but if we take m1 =
m2 = m3 = m they simplify substantially. For this choice of mass parameters
the corrections due to the n = 0 modes are

kAFF = 36
∣∣∣m2π ∣∣∣3 , kARR = 9

4

∣∣∣m2π ∣∣∣ , (2.151)

and the corrections due to both the n = 0 modes and the Kaluza-Klein towers
read

kAFF = 1
6 − 15 s3[m] + 6 s3[2m] − s3[3m] , (2.152)

kARR = 13
24 + 33

8 s1[m] − 3
4 s1[2m] − 1

8 s1[3m] . (2.153)

The expressions for the coefficients kAFF and kARR that we found in this subsection
are computed from the supergravity fields that come from the duality-twisted
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compactification. A more thorough calculation would be needed to include all
the stringy modes as well. The embedding into string theory is discussed in the
next section. The full string theory calculation of the coefficients kAFF and kARR,
however, is beyond the scope of this research and left for future study.

2.5 Embedding in string theory

So far we have considered a supergravity setup in which we studied BPS black holes
in a Scherk-Schwarz reduced theory. In some cases, Scherk-Schwarz reductions can
be lifted to string theory as compactifications with a duality twist. We study such
lifts in this section.

2.5.1 Quantization of the twist parameters

The Scherk-Schwarz reductions we have been considering have lifts to string theory
(or M-theory) only for special values of the parameters mi. We now investigate the
lifts of Scherk-Schwarz reductions to full string theory constructions. The supergrav-
ity duality symmetry is broken to the discrete U-duality symmetry Spin(5, 5;Z) [22],
and the Scherk-Schwarz monodromy has to be restricted to be in this discrete
subgroup [63,76].

We then have three conditions on the monodromy, similar to the three conditions
in [74,75].

1. The monodromy is a U-duality

M ∈ Spin(5, 5;Z) . (2.154)

2. The monodromy is conjugate to an R-symmetry

M = gM̃g−1, g ∈ Spin(5, 5), M̃ ∈ USp(4)L × USp(4)R . (2.155)

This ensures that there is a Minkowski vacuum and implies that the mon-
odromy is in fact conjugate to an element of a maximal torus (2.35) parame-
terised by four angles mi. Note that the conjugation is by an element g of
the continuous group Spin(5, 5).
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3. At least one of the parameters mi is zero, so that the monodromy is conjugate
to a subgroup of the R-symmetry

M̃ ∈ SU(2) × USp(4) ∈ USp(4) × USp(4) . (2.156)

This condition ensures that some supersymmetry is preserved.

Conditions (1) and (2) imply that M satisfies Mp = 1 for some integer p, so that
M generates a cyclic group Zp [63]. As a a result, the phases eimi are all p’th roots
of unity, so that

mi = 2πni
p

, i = 1, . . . , 4 , (2.157)

for some integers ni. This can be thought of as a quantization of the parameters
mi.

The point in the moduli space given by the coset [g] of the group element g ∈
Spin(5, 5) in (2.155) is a fixed point under the action of the Zp generated by M,
and this is the point at which the scalar potential has its minimum [63]. The corre-
sponding low energy supergravity description is as described in subsection 2.2.7.

The general solution to these three requirements is not known. Consider, however,
the special case in which

M ∈ SL(2;Z) × SL(2;Z) × SL(2;Z) × SL(2;Z) ⊂ Spin(5, 5;Z) . (2.158)

This subgroup arises from considering

Spin(2, 2) × Spin(2, 2) ⊂ Spin(4, 4) ⊂ Spin(5, 5) , (2.159)

and the isomorphism

Spin(2, 2) ∼= SL(2;R) × SL(2;R) . (2.160)

Then taking

M = M1 ×M2 ×M3 ×M4 ∈ SL(2;Z) × SL(2;Z) × SL(2;Z) × SL(2;Z) , (2.161)

there are solutions in which each Mi ∈ SL(2;Z) is an element of an elliptic conjugacy
class of SL(2;Z) [63]. Each Mi is then conjugate to a rotation:

Mi = kiR(mi) k−1
i , (2.162)
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where

ki ∈ SL(2;R) , R(mi) =
(

cosmi − sinmi

sinmi cosmi

)
. (2.163)

The angles mi must each take one of the values

mi ∈
{

0, π3 ,
π
2 ,

2π
3 , π

}
, (2.164)

and each Mi generates a Zni subgroup of SL(2;Z) with each ni being one of
1, 2, 3, 4, 6 (the lowest number such that R(mi)ni = 1). The monodromy M then
generates a Zp where p is the least common multiple of the ni (i = 1, . . . , 4) and so
is equal to 2, 3, 4, 6 or 12 (excluding the trivial case M = 1).

The quantization condition on the parameters mi then provides a condition on the
corrections to the coefficients of the Chern-Simons terms. We have checked that
for the values of the mi given by (2.164), the corrections to the coefficients of the
Chern-Simons terms satisfy the appropriate quantization conditions.

2.5.2 Orbifold picture and modular invariance

The point in moduli space at which there is a minimum of the scalar potential is a
fixed point under the action of the Zp generated by the U-duality transformation
M. At this point, the construction can be realized as a generalized orbifold of IIB
string theory compactified on T 4 × S1 [63]. The full string construction is then IIB
string theory on T 4 × S1 quotiented by the Zp generated by the monodromy M
combined with a shift on the S1 given by z → z + 2πR/p.

The T-duality subgroup of the U-duality group is a particular embedding of
Spin(4, 4;Z) ⊂ Spin(5, 5;Z), and when the monodromy is a T-duality, this orbifold
construction becomes a conventional asymmetric orbifold [79, 80]. However, this
asymmetric orbifold is not modular invariant in general. The remedy is straight-
forward [75, 79, 80]: modular invariance can be achieved if the shift in the circle
coordinate z is accompanied by a shift in the coordinate of the T-dual circle. The T-
dual circle has radius α′/R, and its coordinate z̃ undergoes a shift z̃ → z̃+2πnα′/pR

for a particular integer n which is determined as in [75,80]. This can also be under-
stood in momentum space. The quotient introduces phases dependent on both the
momentum and the winding number on the circle, and dependent on the charges
ei under the action of M; see [75] for further discussion. This then gives an exact
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conformal field theory formulation of the duality twisted theory in its Minkowski
vacuum [63].

Acting on this asymmetric orbifold with a U-duality transformation will take the
monodromy to a conjugate U-duality monodromy that will in general not be a
T-duality. It will then take the phase depending on the winding number to a phase
depending on brane wrapping numbers, giving a non-perturbative construction
similar to the ones given in [75,81].

2.6 Conclusion

In this chapter we have studied duality twists and their effect on black holes in
string theory. Our set-up was type IIB string theory compactified on T 4 and then
further compactified on S1 with a duality twist along the circle. If the twist is with
a diffeomorphism of T 4, this gives T 4 bundle over S1, but for a U-duality twist this
gives a U-fold, which is a non-geometric generalization of this bundle [77].

We have given the relations between the 6D fields of the duality-invariant formulation
of 6D N = 8 supergravity and the 10D fields of type IIB supergravity on a four-
torus explicitly. We then reduced this six-dimensional theory on a circle with a
duality twist. For this reduction we have chosen a monodromy in the R-symmetry,
depending on four independent twist parameters. This reduction yields gauged 5D
N = 8 supergravity, with Minkowski vacua preserving N = 6, 4, 2, 0 supersymmetry.
The amount of supersymmetry that is preserved depends on the number of the
twist parameters that are equal to zero.

This Scherk-Schwarz reduction in supergravity can be embedded in string theory
as a compactification with a duality twist. For such an embedding to exist, the
monodromy must be an element of the discrete U-duality group Spin(5, 5;Z). As
a consequence, the twist parameters were constrained to take certain discrete
values, and could hence be thought of as being quantized. The minimum of the
Scherk-Schwarz potential in such compactifications is a fixed point under the action
of the monodromy. When the duality twist is a T-duality, the theory arising at
the minimum of the potential is an asymmetric orbifold of the type IIB string
theory and so has an exact CFT description. In this case, the stringy quantum
corrections can be calculated exactly. For more general twists in which the twist is
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a non-perturbative symmetry, the result is a generalized orbifold of the type IIB
string theory in which it is quotiented by a U-duality symmetry.

One of our main objectives was to study black holes in this set-up with partially
broken supersymmetry. Here we considered several brane configurations – D1-D5,
F1-NS5 and D3-D3 – that result in five-dimensional black holes after standard
(untwisted) dimensional reduction. In each case, we compactified on T 4 to a 6D
solution and then chose the twist in such a way that all the fields that source the 6D
solution remain massless in 5D. This ensures that the original black hole solution
remains a solution of the twisted theory with partially broken supersymmetry.

Our reduction scheme yielded a rich spectrum of massive modes. In 5D, massive
BPS multiplets can be chiral. For twists that yield chiral BPS multiplets, integrating
out the chiral fields gives quantum corrections to the coefficients of the pure gauge
and mixed gauge-gravitational Chern-Simons terms. This gives an EFT with both
pure gauge and mixed gauge-gravitational Chern-Simons terms and these terms
led to modifications of the BPS black hole solutions and in particular modifies the
expression for the black hole entropy.

Several interesting directions for follow-up research remain. One is to investigate the
microscopic side of the macroscopic story laid out in this work. This would involve
studying the effects of the duality twist on the CFT dual of the black holes in our
set-up. Of these, the D1-D5 CFT has been studied the most in the literature and
therefore seems to be the most practical option for this. In general, one might expect
that similar supersymmetry breaking patterns arise in the dual superconformal CFT,
from (4,4) supersymmetry to e.g. (4,2), (2,2) or (4,0) supersymmetry. D-branes
and their world-volume theories in backgrounds with a duality twist have been
discussed in [98] and it will be interesting to apply the results found there to the
configurations discussed here.

Another open question is the computation of the Chern-Simons coefficients in the
full string theory. That is, including modes that we don’t see from the supergravity
point of view (such as winding modes). For twists that lie in the T-duality group,
this can be worked out in detail as an asymmetric orbifold compactification of
perturbative string theory. As we have seen in this work, it is possible to choose a
T-duality twist that preserves the D1-D5-P black hole in reductions to the N = 4
(0, 2) theory. In this reduction it may be possible to combine the detailed study of
the full string theory with the microscopic calculation.
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Finally, it would be interesting to extend this work to the study of four-dimensional
black holes in string compactifications with duality twists. For this, one could take
for example the four-charge D2-D6-NS5-P black hole of type IIA string theory or a
dual brane configuration.

Appendices

2.A Conventions and notation

Throughout this work, we set c = ~ = kB = 1, and we work in the ‘mostly plus’
convention for the metric, i.e. ηµν = diag(−,+, . . . ,+). The notations that we use
for the coordinates and indices in various dimensions are summarized in the table
below.

Space Coordinate Indices

D = 10 XM =
(
x̂µ̂, ym

)
M,N, . . . = 0, 1, . . . , 9

D = 6 x̂µ̂ = (xµ, z) µ̂, ν̂, . . . = 0, 1, . . . , 5

D = 5 xµ µ, ν, . . . = 0, 1, . . . , 4

T 4 ym m,n, . . . = 1, . . . , 4

In general, we denote form-values fields as A(d)
p , where p is the rank of the form and

d is the dimension in which it lives. We define the Hodge star operator on forms as

∗A(d)
p = 1

p!(d− p)!
√
g(d) εµ1...µpν1...νd−p A

µ1...µp dxν1 ∧ . . . ∧ dxνd−p . (2.165)

We use the subscript or superscript (d) more often to indicate the number of
spacetime dimensions where necessary, e.g. R(d), e(d), etc. In all dimensions, we
normalize Lagrangians such that the corresponding actions are given by

S(d) = 1
2κ2

(d)

∫
L (d) , (2.166)

where κ2
(d) = 8πG(d)

N is the d-dimensional Newton’s constant.

We use A,B, . . . = 1, . . . , 10 to denote Spin(5, 5) indices that transform in τ -
frame (as explained in Appendix 2.B.1), and we use a, b, . . . = 1, . . . , 5 for indices
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transforming under the subgroup GL(5) ⊂ Spin(5, 5). For example, in 6D we have
ten tensor fields (subject to a self-duality constraint), whose field strengths we write
as

G
(6)
3,A =

(
G

(6)
3,a

G̃
(6)a
3

)
. (2.167)

The GL(5) subgroup works on the index a of the (dual) field strengths G(6)
3,a and

G̃
(6)a
3 . For more information on how this subgroup works, see Appendix 2.B.1.

2.B Group theory

2.B.1 The group SO(5, 5) and its algebra

In this appendix we discuss some details and our conventions concerning the
group SO(5, 5) and its algebra so(5, 5). In particular, we construct two bases in
which SO(5, 5) can be written down; we call these the η-frame and the τ -frame.
Furthermore, we build an explicit basis for the algebra that we use to construct a
vielbein V ∈ SO(5, 5) in the main text.

Canonically, an element g ∈ SO(5, 5) is represented by a 10 × 10 matrix, satisfying
the conditions

gT η g = η , η =
(
15 0
0 −15

)
, (2.168)

and det(g) = 1. Henceforth, we refer to group elements satisfying these conditions
as being written in the η-frame of SO(5, 5). In the η-frame, a generator of the Lie
algebra M ∈ so(5, 5) can be written in 5 × 5 blocks as

M =
(
a b

bT c

)
, (2.169)

where a and c are antisymmetric and b is unconstrained.

There is another (isomorphic) way of writing down the group SO(5, 5). We construct
this other basis by conjugating the group elements as g̃ = X−1gX, where X is the
matrix

X = 1√
2

(
15 15

15 −15

)
. (2.170)
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Note that X = X−1 = XT . We can now rewrite (2.168) in terms of g̃, which yields
the following conditions on the conjugated group elements:

g̃T τ g̃ = τ , τ =
(

0 15

15 0

)
. (2.171)

We see that the conjugated matrices g̃ preserve the matrix τ (instead of η), and
therefore we refer to these matrices as being written in the τ -frame of SO(5, 5). It is
clear from the conjugation relation g̃ = X−1gX that the two frames are isomorphic.
The general block structure for generators of the Lie algebra so(5, 5) in the τ -frame
is of the form

M̃ =
(
A B

C −AT

)
. (2.172)

Here A is unconstrained and B and C are antisymmetric.

There is a subgroup GL(5) ⊂ SO(5, 5) that is embedded diagonally in the τ -frame
matrices g̃. Generators of GL(5) can be represented by unconstrained 5×5 matrices,
and these can be embedded diagonally in the block structure (2.172) by taking
B = C = 0 and A equal to the gl(5) generator. By exponentiating, we find the
corresponding group element to be of the form(

P 0
0 (PT )−1

)
∈ GL(5) ⊂ SO(5, 5) , (2.173)

where P is an invertible five by five matrix. The embedding in the η-frame can be
found by conjugating (2.173) with the matrix X given in (2.170).

A basis for the algebra so(5, 5)

Using the general form of M , we build a basis of generators. Since so(5, 5) has rank
five, we have five Cartan generators, denoted by Hn (n = 0, . . . , 4). We choose the
Cartan subalgebra to be block-diagonal in the τ -frame, so that when written in the
form (2.172), they all have B = C = 0. Furthermore, for convenience we choose
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the following form for the A matrices for the Hn:

AH0 = 1
2 diag (0, 0, 0,−1, 1)

AH1 = 1√
2

diag (−1, 0, 0, 0, 0) ,

AH2 = 1√
2

diag (0,−1, 0, 0, 0) ,

AH3 = 1√
2

diag (0, 0,−1, 0, 0) ,

AH4 = 1
2 diag (0, 0, 0,−1,−1) .

Apart from these Cartan generators, there are 20 root generators with B = C = 0.
We denote them by EA,+nm and EA,−nm (n,m = 1, . . . , 5 and n < m). The EA,+nm

together fill the upper triangular part of A and the EA,−nm fill the lower-triangular
part. They do so in such a way that

(
EA,+nm

)T = EA,−nm . For example, we have

AEA,+12
=


0 −1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 and AEA,−12
=


0 0 0 0 0

−1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 .(2.174)

Finally, there are ten root generators EBnm with A = C = 0, and ten root generators
ECnm with A = B = 0. The generators EBnm have

BEB12
=


0 1 0 0 0

−1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , BEB13
=


0 0 1 0 0
0 0 0 0 0

−1 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , etc. (2.175)

The generators ECnm are constructed in the same way as EBnm, but now we have
B = 0 and C 6= 0. The matrix C that corresponds to ECnm is equal to the
matrix B that defined EBnm in the construction above. Note that this implies that(
EBnm

)T = −ECnm.

The set of matrices defined above
{
Hn, E

A,+
nm , EA,−nm , EBnm, E

C
nm

}
gives a complete

basis of generators of so(5,5). When we mention EAmn below we always mean
EA,+mn .
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Let us now discuss the notation TFij used in the text. These matrices T are
certain generators of the so(5,5) algebra described above. In particular if we let
~TFij := (TF12, T

F
13, . . . , T

F
34), then we have the following definitions for T :

~TAij =
(
EC23, E

C
12, −EC13, −(EA13)T , −(EA12)T , −EA23

)
~TBij =

(
EA14, E

A
34, E

A
24, −EC24, E

C
34, −EC14

)
~TCij =

(
EA15, E

A
35, E

A
25, −EC25, E

C
35, −EC15

)
(2.176)

T a = EA45

T b = EC45

2.B.2 The isomorphism usp(4) ∼= so(5)

The group USp(4) is the group of 4 × 4 matrices g satisfying

g† = g−1 , Ω gΩ−1 =
(
g−1)T (2.177)

where Ω is the symplectic metric, given by the block matrix

ΩAB =
(

02×2 12×2

−12×2 02×2

)
. (2.178)

The Lie algebra usp(4) is represented by 4 × 4 matrices M B
A satisfying

M† = −M, ΩM Ω−1 = −MT , (2.179)

The isomorphism USp(4) ∼= Spin(5) can be made explicit by introducing five 4 × 4
gamma matrices, that satisfy the Euclidean Clifford algebra

{Γa,Γb} B
A = 2 δab δBA . (2.180)

Here a, b = 1, . . . , 5 are the indices corresponding to Spin(5), and A,B = 1, . . . , 4 are
the indices corresponding to USp(4). An explicit basis of (Hermitian and traceless)
gamma matrices, that satisfies (2.180), is given by

Γ1 =


0 i 0 0

−i 0 0 0
0 0 0 −i
0 0 i 0

 , Γ2 =


0 0 0 i

0 0 −i 0
0 i 0 0

−i 0 0 0

 , Γ3 =


0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0

 ,
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Γ4 =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 , Γ5 =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 . (2.181)

It can easily be checked that the gamma matrices with upper indices, defined as
(Γ̃a)AB = ΩAC(Γa) B

C , are antisymmetric6, i.e. (Γ̃a)T = −Γ̃a. Using this, we
deduce that

(Γa)T = (Ω−1Γ̃a)T = −Γ̃a (Ω−1)T = Ω Γa Ω−1. (2.182)

Hence, the symplectic metric Ω acts on the gamma matrices as a charge conjugation
matrix. We now define Γab = 1

2 [Γa,Γb]. From (2.182) and the Hermitian property
of the Dirac matrices, it follows directly that Γab satisfies the conditions (2.179).
Furthermore, using the Clifford algebra, it is straightforward to check that the
commutator of Γab reads[

Γab,Γcd
]

= −2 δacΓbd + 2 δadΓbc + 2 δbcΓad − 2 δbdΓac. (2.183)

This is exactly the commutator of the basis elements of the so(5) algebra. We
conclude that the ten matrices Γab form a set of generators of USp(4) ∼= Spin(5).
Using these gamma matrices the explicit form of the isomorphism between the
algebras can be derived [99]

Mab = −1
2 tr

[
M B
A (Γab) C

B

]
. (2.184)

The special orthogonal Lie algebra so(5) consists of real antisymmetric matrices.
We can check these properties for the found generators (2.184). The antisymmetry
follows immediately from the antisymmetry in the gamma matrices Γab = −Γba.
To prove the reality condition we use that both M B

A and (Γab) B
A satisfy the

conditions (2.179). Using these constraints we find

(Mab)∗ = −1
2 tr

[
M ∗(Γab)∗]

= −1
2 tr

[
ΩM Ω−1 Ω Γab Ω−1]

= −1
2 tr

[
M Γab

]
= Mab.

(2.185)

6This property is used in what follows, but it is not generally true for other choices of Ω and
Γa.
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Thus we find that Mab, as given in (2.184), is a real antisymmetric matrix, and
therefore a suitable generator of SO(5). For completeness we also mention the
inverse of the isomorphism (2.184) which maps so(5) to usp(4):

MA
B = 1

4 Mab (Γab)AB . (2.186)

2.C Scalar and tensor masses after Scherk-Schwarz reduction

In this appendix we show the masses of the fields for the various set-ups we
discussed. In particular, we show the scalar and tensor masses for the D1-D5 system
discussed in subsection 2.3.1, and the dual NS5-F1 and D3-D3 systems discussed in
subsection 2.3.2.

Field σ̃i Mass
1√
2 (φ4 + Φ) 0

1
2 (φ4 − Φ +

√
2φ3) |m1 −m2 −m3 +m4|

1
2 (φ4 − Φ −

√
2φ3) |m1 −m2 +m3 −m4|

1√
2 (φ1 + φ2) |m1 +m2 −m3 −m4|

1√
2 (φ1 − φ2) |m1 +m2 +m3 +m4|

1
2 (A12 +A34 + C12 + C34) |m1 +m2 −m3 +m4|
1
2 (A12 +A34 − C12 − C34) |m1 +m2 +m3 −m4|
1
2 (A12 −A34 + C12 − C34) |m1 −m2 +m3 +m4|
1
2 (A12 −A34 − C12 + C34) |m1 −m2 −m3 −m4|
1
2 (A14 +A23 + C14 − C23) |m1 −m2 +m3 +m4|
1
2 (A14 +A23 − C14 + C23) |m1 −m2 −m3 −m4|
1
2 (A14 −A23 + C14 + C23) |m1 +m2 −m3 +m4|

1
2 (−A14 +A23 + C14 + C23) |m1 +m2 +m3 −m4|

A13 |m1 +m2 −m3 −m4|
A24 |m1 +m2 +m3 +m4|
C13 |m1 −m2 +m3 −m4|
C24 |m1 −m2 −m3 +m4|

1√
2 (B12 +B34) |m1 +m2|

1√
2 (B12 −B34) |m3 +m4|

1√
2 (B13 +B24) |m3 −m4|

1√
2 (B13 −B24) |m1 −m2|

1√
2 (B14 +B23) |m1 +m2|

1√
2 (B14 −B23) |m3 +m4|

1√
2 (a+ b) |m1 −m2|

1√
2 (a− b) |m3 −m4|

Table 2.2: The D1-D5 scalar masses.
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Field A
(5)
2,A Mass

C
(5)
2 0

C̃
(5)
2 0

1√
2

(
B

(5)
2 + B̃

(5)
2
)

|m1 −m2|
1√
2

(
B

(5)
2 − B̃

(5)
2
)

|m3 −m4|
1√
2

(
R

(5)
2; 1 + R̃

(5)
2; 1
)

|m1 +m2|
1√
2

(
R

(5)
2; 1 − R̃

(5)
2; 1
)

|m3 +m4|
1√
2

(
R

(5)
2; 2 + R̃

(5)
2; 2
)

|m1 +m2|
1√
2

(
R

(5)
2; 2 − R̃

(5)
2; 2
)

|m3 +m4|
1√
2

(
R

(5)
2; 3 + R̃

(5)
2; 3
)

|m1 −m2|
1√
2

(
R

(5)
2; 3 − R̃

(5)
2; 3
)

|m3 −m4|

Table 2.3: The D1-D5 tensor masses.

Field σ̃i Mass
1√
2 (φ4 − Φ) 0

1
2 (φ4 + Φ +

√
2φ3) |m1 −m2 −m3 +m4|

1
2 (φ4 + Φ −

√
2φ3) |m1 −m2 +m3 −m4|

1√
2 (φ1 + φ2) |m1 +m2 −m3 −m4|

1√
2 (φ1 − φ2) |m1 +m2 +m3 +m4|

1
2 (A12 +A34 +B12 +B34) |m1 +m2 −m3 +m4|
1
2 (A12 +A34 −B12 −B34) |m1 +m2 +m3 −m4|
1
2 (A12 −A34 +B12 −B34) |m1 −m2 +m3 +m4|
1
2 (A12 −A34 −B12 +B34) |m1 −m2 −m3 −m4|
1
2 (A14 +A23 +B14 −B23) |m1 −m2 +m3 +m4|
1
2 (A14 +A23 −B14 +B23) |m1 −m2 −m3 −m4|
1
2 (A14 −A23 +B14 +B23) |m1 +m2 −m3 +m4|

1
2 (−A14 +A23 +B14 +B23) |m1 +m2 +m3 −m4|

A13 |m1 +m2 −m3 −m4|
A24 |m1 +m2 +m3 +m4|
B13 |m1 −m2 +m3 −m4|
B24 |m1 −m2 −m3 +m4|

1√
2 (C12 + C34) |m1 +m2|

1√
2 (C12 − C34) |m3 +m4|

1√
2 (C13 + C24) |m3 −m4|

1√
2 (C13 − C24) |m1 −m2|

1√
2 (C14 + C23) |m1 +m2|

1√
2 (C14 − C23) |m3 +m4|

1√
2 (a+ b) |m3 −m4|

1√
2 (a− b) |m1 −m2|

Table 2.4: The NS5-F1 scalar masses.
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Field A
(5)
2,A Mass

B
(5)
2 0

B̃
(5)
2 0

1√
2

(
C

(5)
2 + C̃

(5)
2
)

|m1 −m2|
1√
2

(
C

(5)
2 − C̃

(5)
2
)

|m3 −m4|
1√
2

(
R

(5)
2; 1 + R̃

(5)
2; 1
)

|m1 +m2|
1√
2

(
R

(5)
2; 1 − R̃

(5)
2; 1
)

|m3 +m4|
1√
2

(
R

(5)
2; 2 + R̃

(5)
2; 2
)

|m1 +m2|
1√
2

(
R

(5)
2; 2 − R̃

(5)
2; 2
)

|m3 +m4|
1√
2

(
R

(5)
2; 3 + R̃

(5)
2; 3
)

|m1 −m2|
1√
2

(
R

(5)
2; 3 − R̃

(5)
2; 3
)

|m3 −m4|

Table 2.5: The NS5-F1 tensor masses.

Field σ̃i Mass
φ1 0

1
2 (Φ +

√
2φ2 + φ4) |m1 +m2 −m3 −m4|

1
2 (Φ +

√
2φ3 − φ4) |m1 −m2 +m3 −m4|

1
2 (Φ −

√
2φ3 − φ4) |m1 −m2 −m3 +m4|

1
2 (Φ −

√
2φ2 + φ4) |m1 +m2 +m3 +m4|

1
2 (b+ a+A12 −A34) |m1 −m2 −m3 −m4|
1
2 (b− a−A12 −A34) |m1 +m2 +m3 −m4|
1
2 (b− a+A12 +A34) |m1 +m2 −m3 +m4|
1
2 (b+ a−A12 +A34) |m1 −m2 +m3 +m4|

1
2 (C23 − C14 −B24 +B13) |m1 −m2 −m3 −m4|
1
2 (C23 + C14 +B24 +B13) |m1 +m2 +m3 −m4|
1
2 (C23 + C14 −B24 −B13) |m1 +m2 −m3 +m4|
1
2 (C23 − C14 +B24 −B13) |m1 −m2 +m3 +m4|

B14 |m1 +m2 +m3 +m4|
B23 |m1 +m2 −m3 −m4|
C13 |m1 −m2 +m3 −m4|
C24 |m1 −m2 −m3 +m4|

1√
2 (C12 + C34) |m3 −m4|

1√
2 (C12 − C34) |m1 −m2|

1√
2 (A13 +A24) |m3 +m4|

1√
2 (A13 −A24) |m1 +m2|

1√
2 (A14 +A23) |m1 −m2|

1√
2 (A14 −A23) |m3 −m4|

1√
2 (B12 +B34) |m3 +m4|

1√
2 (B12 −B34) |m1 +m2|

Table 2.6: The D3-D3 scalar masses.
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Field A
(5)
2,A Mass

R
(5)
2; 1 0

R̃
(5)
2; 1 0

1√
2

(
C

(5)
2 + C̃

(5)
2
)

|m1 +m2|
1√
2

(
C

(5)
2 − C̃

(5)
2
)

|m3 +m4|
1√
2

(
B

(5)
2 + B̃

(5)
2
)

|m1 −m2|
1√
2

(
B

(5)
2 − B̃

(5)
2
)

|m3 −m4|
1√
2

(
R

(5)
2; 2 + R̃

(5)
2; 2
)

|m1 +m2|
1√
2

(
R

(5)
2; 2 − R̃

(5)
2; 2
)

|m3 +m4|
1√
2

(
R

(5)
2; 3 + R̃

(5)
2; 3
)

|m1 −m2|
1√
2

(
R

(5)
2; 3 − R̃

(5)
2; 3
)

|m3 −m4|

Table 2.7: The D3-D3 tensor masses.
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Chapter 3

Rotating black holes in M-theory

There are more things in heaven and earth, Horatio, than are dreamt of in
your philosophy.

– William Shakespeare, Hamlet

In the previous chapter we investigated black hole solutions, in particular the
D1-D5-P solution, in the presence of supersymmetry-breaking backgrounds. We
now turn our attention to rotating black holes. This chapter will focus on the
near-horizons of rotating black holes and how to uplift them into M-theory. Before
we dive into the story, we will use several principles of complex geometry in this
chapter, and we have given a very short review in section 3.A.

One of the motivations for the project is related to a gravitational extremization
principle. The idea of extremizationd principles playing a fundamental role in
physics has a long history since the advent of the Lagrangian and the principle
of least action. More recently extremal problems have also been shown to play a
role in both quantum field theory and supergravity. On the field theory side the
so-called a-maximization [100], F -maximization [101], c-extremization [102, 103]
and I-extremization [104] have been successfully used to compute observables in
SCFTs in 4, 3, 2 and 1 dimension(s) respectively. Via AdS/CFT it is natural to
conjecture that there are dual extremization principles on the gravity side. Indeed,
such geometric extremization principles have been found for all of the field theory
principles mentioned above. In [105,106] a geometric dual to a-maximization and
F -maximization was given whilst in [107] an analogous proposal for c-extremization
and I-extremization was given for certain classes of theories. The classes of solutions
tackled in [107] and in the later works [108–114] are AdS3 solutions in Type IIB and
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3 Rotating black holes in M-theory

AdS2 solutions in 11d supergravity. Subclasses of these arise as the near-horizon of
static black strings and black holes embedded in the respective theories.1

For example, the near-horizon limit of a static asymptotically AdS4 extremal black
hole in 4d gauged supergravity contains an AdS2 factor, see the review [116] and
references therein. The staticity of the black hole requires that the transverse
directions of the geometry are not fibered over AdS2 but merely form a warped
product. If one further restricts to magnetically charged black holes and uplifts the
near-horizon solution to 11d supergravity, one obtains a supersymmetric solution
with an AdS2 factor and electric four-form charge. Solutions of this form were
classified in [117] and later extended in [118,119] to include additional magnetic
flux. The geometries are a warped product of AdS2 with a nine-dimensional internal
manifold which is locally a U(1) bundle over a conformally Kähler space. To
construct these geometries one places M2-branes in an asymptotic geometry of
R × CY5 and wraps them on a curve inside the Calabi–Yau five-fold. The near-
horizon of this setup then gives rise to the AdS2 geometry which in turn is seen to
be the near-horizon of a black hole.

In order to obtain an AdS2 solution it was important that the 4d black hole was
both static and only magnetically charged. Adding rotation to the four-dimensional
black hole leads to the internal space being fibered over the AdS2 in the near-
horizon, which will clearly persist in the uplift. Though not as obvious, if the 4d
black hole has electric charges which are identified as arising from gauged flavour
symmetries, this will also lead to a fibered AdS2 in the 11d uplift. A gauge field
in the truncation can have two sources, either it comes from gauging an isometry
of the compactification manifold, or from the expansion of a p-form potential on
(p− 1)-cycles of the compactification manifold. The former gauge fields are dual
to flavour symmetries whilst the latter are dual to baryonic symmetries. For the
flavour symmetries the uplift will lead to the isometries being fibered over AdS2

in the 11d solution. In summary, in order to incorporate more general black holes
which rotate and have electric charges, one must relax the product structure of
the 11d solution and allow for the internal manifold to be fibered over AdS2. In
contrast, one of the essential ingredients used in the works [117, 119], and more
generally in AdS classifications, is that the AdS factor is a direct product in the
metric.

1See also [115] for an extremization principle for N = (0, 4) AdS2 solutions in Type IIB.

128



3.1 Setup

In this chapter we will lay the groundwork for extending the geometric dual of
I-extremization and c-extremization to theories arising from the near-horizon of
rotating black holes and black strings respectively. Concretely we will classify a
large class of supersymmetric solutions of 11d supergravity containing an internal
manifold arbitrarily fibered over AdS2. With such a general ansatz we cover the
black holes considered in [120–124]. We find that the 9d internal manifold is
a U(1) fibration over an 8d space admitting a balanced metric. The balanced
metric satisfies a master equation which is the analogue of the one found in the
non-rotating case [117, 125], see also [118, 126–128] for further generalizations of
these master equations. Through dualities we also classify a class of rotating black
string near-horizons in Type IIB.

The outline of this chapter is as follows. In section 3.1 we study the necessary
and sufficient conditions for a supersymmetric solution with time fibered over the
transverse directions and consistent with preserving an SO(2, 1) symmetry. In
section 3.2 we give an action from which the equations of motion found in section
3.1 may be derived. In particular we show that when supersymmetry is imposed
on the action it reduces to a simple form which computes the entropy of the
black hole/string. In section 3.3 we exemplify how the electrically charged AdS4

Kerr-Newman black hole is embedded in the classification. Section 3.4 discusses
the conditions on the geometry of rotating black strings in Type IIB by using
dualities with the 11d geometry. We conclude in section 3.5. A discussion on
general black hole near-horizons and computing observables of the solutions is
presented in appendix 3.B.

3.1 Setup

In this section we will explain the general procedure for obtaining the conditions
for preserving supersymmetry of near-horizon solutions of rotating black holes. In
general the conditions we find are necessary and sufficient conditions that must
be satisfied by the near-horizon of any rotating black hole in 11d supergravity
arising from rotating M2-branes. We will determine these conditions by using
the results in [129] which classified all 11d supergravity backgrounds preserving
supersymmetry and admitting a timelike Killing vector. Using [129] we can reduce
the 11d supersymmetry conditions into differential conditions on a 10d base space.
This base space must be non-compact and upon imposing the natural condition
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3 Rotating black holes in M-theory

that the 10d space is a cone we can reduce the conditions further to a compact
9d base, Y9. This 9d base is a U(1) fibration over an 8d base, B. In general the
8d base is not conformally Kähler, which is true for the non-rotating AdS2 case
studied in [117], but instead is a conformally balanced space.

One of the guiding principles that we will use is to impose that the near-horizon
solution possesses an SO(2, 1) symmetry dual to the conformal group in the 1d
superconformal quantum mechanical theory. Generally the ansatz that we will use
when reducing the supersymmetry conditions does not possess this full symmetry
but only a subset of it. However, from the point of view of imposing supersymmetry
it is more convenient to work with this more general setup and then further constrain
the geometry to preserve the full conformal group later. We will find that the
additional constraints that we need to impose for the existence of an SO(2, 1)
symmetry are specified by giving a constant vector with entries corresponding
to each of the Killing vectors of the metric. These constants are related to the
near-horizon angular velocities of the black hole along the Killing directions.

We begin this section by reviewing the conditions for a supersymmetric geometry
in 11d supergravity to admit a timelike Killing vector following [129]. We discuss in
detail the ansatz we will use in performing the reduction and subsequently reduce
the conditions to an 8d base space. Up until this point we have not imposed the
existence of an SO(2, 1) symmetry and in the final part of this section we discuss
the additional constraints one must impose for such a symmetry using the results
in appendix 3.B.

3.1.1 Timelike structures in 11d supergravity

In [129] the conditions for a solution of 11d supergravity to admit a timelike Killing
spinor were derived. Here we summarize the most important results for our purposes.
The metric takes the general form

ds2
11 = −∆2(dt+ a)2 + ∆−1e2φds2

10 (3.1)

where ∆ and e2φ are functions defined on the 10d base. Note that we use a rescaling
e2φ of the 10d metric compared to [129]. The 10d base admits a canonical SU(5)
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3.1 Setup

structure which we denote by (j, ω)2. We normalize this structure such that

ω ∧ ω̄ = (−2i)5 j
5

5! . (3.2)

The exterior derivatives of the structure forms satisfy

dj = 1
8w1y Im[ω] + w3 + 1

4w4 ∧ j , (3.3)

d Re[ω] = 1
3w1 ∧ j2

2! + w2 ∧ j − 1
8w5 ∧ Re[ω] . (3.4)

Here the wi are the torsion modules of the SU(5) structure: w1 is a real (2, 0)+(0, 2)-
form, w2 a real primitive (3, 1)+(1, 3)-form, w3 a real primitive (2, 1)+(1, 2)-form
and w4 and w5 are real one-forms. The 11d four-form flux is decomposed into 10d
fluxes as

G4 = (dt+ a) ∧ f3 + h4 . (3.5)

Following the results of [129], imposing supersymmetry yields the following condi-
tions relating the fluxes to the structure forms

d(e2φj) = f3 , (3.6)

d
(
∆−3/2e5φ Re[ω]

)
= e2φ ?10 h4 − e2φ h4 ∧ j − e4φ da ∧ j2

2 . (3.7)

Moreover it follows that the 11d flux takes the form

G4 = (dt+ a) ∧ d(e2φj) −
[3

4 da(0)j + da(2,0) + da(0,2) + 1
3 da(1,1)

0

]
∧ e2φj

+ 1
2e−2φ ?10 d

(
∆−3/2e5φ Re[ω]

)
− 1

2e−2φ ?10

[
j ∧ d

(
∆−3/2e5φ Re[ω]

)]
∧ j

− 1
16∆−3/2e3φ ?10 ([w5 + 4w4 − 8dφ] ∧ Re[ω]) + h

(2,2)
0 ,

(3.8)

where da decomposes as da = da(0)j + da(1,1)
0 + da(2,0) + da(0,2), and h

(2,2)
0 is the

primitive (2, 2) part of h4 and is unconstrained by supersymmetry. Additionally
the torsion module w5 is fixed by supersymmetry to be

w5 = −12 d log ∆ + 40 dφ . (3.9)

2In comparison to [129] one should identify (a, e2φj, e5φω, e5φ Re[ω])here ↔ (ω,Ω, θ, χ)there. In par-
ticular this transforms the torsion modules as (eφw1, e3φw2, e2φw3, w4 + 8 dφ,w5 − 40 dφ)here ↔
(w1, w2, w3, w4, w5)there.
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3 Rotating black holes in M-theory

For a supersymmetric solution to exist these conditions must be supplemented by
the Bianchi identity and Maxwell equation

dh4 = −da ∧ d(e2φj) , (3.10)

d
(
∆−3e4φ ?10 d(e2φj)

)
= e2φ da ∧ ?10 h4 + 1

2h4 ∧ h4 . (3.11)

The set of equations as given above are both necessary and sufficient for a solution
to admit a timelike Killing spinor.

Our main motivation is to obtain the near-horizon geometries of rotating M2-branes
wrapped on Riemann surfaces, which may give rise to the near-horizon of rotating
black holes. It is also possible to engineer black holes using M5-branes, see for
example [124, 130–133] however we will not consider this possibility in this work
and restrict exclusively to solutions without M5 branes. This implies that we must
make some assumptions about the form of the solution. It would be interesting in
the future to relax these assumptions. To engineer such solutions one should place
the rotating M2-branes in an asymptotic geometry of the form Rt n CY5 and then
wrap the M2-brane on a Riemann surface inside the Calabi–Yau five-fold. Note that
the rotation of the M2-brane leads to the non-trivial fibration of the 11d spacetime,
with the time direction fibered over the five-fold. Since the asymptotic geometry
is Calabi–Yau it is natural to expect that our 10d base space is complex, which
requires that w1 = w2 = 0. This is indeed how the rotating M2-brane solution is
embedded in the classification of [129] however we have not been able to prove that
restricting to just M2-branes implies the complex condition. We will be satisfied
with using the complex condition as a well-motivated ansatz in the following though
it would certainly be interesting to lift this restriction. In addition to requiring
the complex condition we also want to eliminate the possibility of having flux
sourcing M5-branes. For this reason we will remove any terms appearing in the flux
which are of Hodge type (4, 0)+(0, 4), since these would not come from M2-branes
wrapped on a Riemann surface.3 From (3.8) and (3.9) we see that this assumption
implies w4 = 3 d log ∆ − 8 dφ.

3Lifting this assumption would open up the possibility of studying the near-horizon of rotating
asymptotically AdS7 black holes [130] arising from wrapping M5-branes on SLAG five-cycles
in the Calabi–Yau five-fold. This would give the 11d geometric setting for the computations
performed in [124,131–133].
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3.1 Setup

Under these assumptions the 10d torsion conditions are

d(e2φ j) = f3 ,

d(∆−3e8φ j4) = 0 ,

d(∆−3/2e5φ ω) = 0 .

(3.12)

The last unspecified torsion module is given by the primitive part of the three-form
flux: w3 = e−2φ f3,0. The 11d flux can now be succinctly written as

G4 = (dt+ a) ∧ d(e2φj) −
[3

4 da(0)j + da(2,0) + da(0,2) + 1
3 da(1,1)

0

]
∧ e2φj + h

(2,2)
0

= − d
[
(dt+ a) ∧ e2φj

]
+ h̃(2,2) , (3.13)

where we define the shifted four-form flux

h̃(2,2) = h4 + da ∧ e2φj ,

= h
(2,2)
0 + 1

2 e2φ da(0) j
2

2! + 2
3 e2φ da(1,1)

0 ∧ j . (3.14)

The Bianchi identity (3.10) and Maxwell equation (3.11) can now be rewritten in
terms of h̃(2,2) as

dh̃(2,2) = 0 , (3.15)

d
(
∆−3e4φ ?10 d(e2φj)

)
= 1

2 h̃
(2,2) ∧ h̃(2,2) . (3.16)

For future reference, we give a few useful identities containing h̃(2,2):

?10 h̃
(2,2) = h̃(2,2) ∧ j − e2φ da(0) j

3

3! − 2 e2φ da(1,1)
0 ∧ j2

2! , (3.17)

jy h̃(2,2) = 2e2φ da(1,1) . (3.18)

Here da(1,1) = da(0)j + da(1,1)
0 , i.e. we omit the (0, 2) and (2, 0) contributions.

3.1.2 Ansatz

To proceed we must now insert an ansatz for the 10d base space. It was shown in [129]
that the base is necessarily non-compact (the argument uses some smoothness
conditions but these should hold in the present setting), and so we impose that the
base is conformally a cone. The metric we take is

ds2
11 = −∆2(dt+ a)2 + ∆−1e2φ(dr2 + r2ds2

9
)
. (3.19)
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3 Rotating black holes in M-theory

Next we need to specify how the scalar fields ∆, φ, connection one-form a and
fluxes scale with respect to the radial coordinate. Ultimately we want to be able to
recover a warped AdS2 factor and an r-independent 9d space. This fixes the scaling
of ∆ and φ to be

∆ = eB+C

r
, e2φ = e3B+C

r3 , (3.20)

where we have introduced two new scalars B and C which are independent of the
radial coordinate. For general scalar C this will not lead to a geometry admitting
an SO(2, 1) isometry generating the conformal group in 1d. As discussed earlier
one must impose additional constraints. Rather than imposing them now it is
more convenient to impose them later and leave the scalar C unconstrained for the
moment.

The conical geometry naturally gives rise to an R-symmetry vector ξ defined by

ξ = j · (r∂r) . (3.21)

As can be easily checked by explicit computation the norm squared of the vector is
r2. On the link of the cone at r = 1 this translates to the existence of a unit-norm
vector generating a holomorphic foliation over an 8d base admitting an SU(4)
structure inherited from the parent SU(5) structure. We denote this 8d base by B.
Introducing coordinates for this vector

ξ = ∂z , (3.22)

we can write the dual one-form as

η = dz + P , (3.23)

where P is a one-form on B. We may now decompose the SU(5) structure (j, ω) in
terms of the SU(4) structure, which we denote by (J,Ω), as

j = rη ∧ dr + r2 e−3B−C/3 J ,

ω = r4 e−6B−2C/3 eiz(dr − irη) ∧ Ω .
(3.24)

Here we include a scaling e−3B−C/3 of the 8d base, and a phase along the z-direction.
The choice of scaling has been chosen so that the two form is balanced rather than
conformally balanced as will become clear in the following section. While the phase
is required by supersymmetry and implies that the holomorphic volume form has
unit charge under the vector ξ.
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3.1 Setup

The scaling of the connection one-form appearing in the time-fibration is fixed to
be

a = r(αη +A) , (3.25)

where α and A denote an 8d scalar and one-form respectively. Note that we did not
include a term with a leg on dr in this decomposition because such a term could
be absorbed by redefinitions and coordinate changes for a near-horizon geometry.
It will turn out that imposing the SO(2, 1) symmetry will further constrain the
one-form a and scalar C however we postpone this discussion to later. The field
strength da is

da = α dr ∧ η + dr ∧A− r η ∧ dα+ r (α dη + dA) . (3.26)

With these ansätze the 11d metric becomes

ds2
11 = e2B

[
− e2C

(dt
r

+ αη +A
)2

+ dr2

r2 + η2 + e−3B−C/3 ds2
8

]
. (3.27)

We recover the non-rotating case by setting α = 0, A = 0 and e2C = 1.4

Finally we must fix the r-scaling of the flux. The scaling is fixed by regularity as
r → 0 and preserving the SO(2, 1) symmetry which requires the radial dependence
to only appear in the one-forms

dt
r

and dr
r
. (3.28)

It follows that the 10d fluxes f3 and h̃(2,2) decompose in terms of 8d fluxes as

f3 = r−1
[dr
r

∧ η ∧ F1 + dr
r

∧ F2 + F3

]
, (3.29)

h̃(2,2) = H(2,2) + dr
r

∧ (H(2,1) +H(1,2)) + η ∧ i(H(2,1) −H(1,2))

+ dr
r

∧ η ∧H(1,1) . (3.30)

In principle one could include a piece of f3 with one leg on η and two legs on B,
but we omit it here because it will be put to zero by supersymmetry. Note that we
keep track of the Hodge type of the components of h̃(2,2), where the holomorphic
and anti-holomorphic one-form associated with dr and η are given by e1 = dr− irη
and its conjugate respectively.
4In comparison to [117] we identify Bhere ↔ Athere, and comparing with [134] we identify
Bhere ↔ −Bthere/3.
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3 Rotating black holes in M-theory

3.1.3 8d supersymmetry conditions

We can now derive the 8d conditions by reducing their 10d counterparts using
the ansätze presented in the previous section. Let us begin by reducing the SU(5)
structure torsion conditions to SU(4) structure conditions. From decomposing
(3.12) we find

F1 = − de3B+C , (3.31)

F2 = e3B+C dη − e2C/3 J , (3.32)

F3 = d(e2C/3 J) , (3.33)

dJ3 = 0 , (3.34)

dη ∧ J3

3! = e−3B−C/3 J
4

4! , (3.35)

de−3B−C/3 ∧ J4 = 0 , (3.36)

dΩ = i
(
P + 1

3 dcC
)

∧ Ω . (3.37)

Recall that Ω has unit charge under the vector ∂z which is evident from (3.24).
From these equations we can deduce the SU(4) torsion modules Wi. From (3.37)
we immediately see that the 8d base is complex: W1 = W2 = 0. Furthermore,
from (3.34) we see that W4 = 0, i.e. the base is balanced. Fixing the two-form
to be balanced as opposed to conformally balanced fixed the choice of scaling
of the 8d base in (3.24). In particular the base is not Kähler: the third torsion
module is related to the primitive part of F3 as W3 = e−2C/3 F3,0. However, for
the Kerr–Newman electrically charged black hole that we consider in section 3.3
this part of the flux vanishes, and the 8d base is therefore Kähler. From (3.37) we
find W5 = −4J · P − 4

3 dC and this fixes the Ricci-form of the base in terms of the
connection P and the scalar C as we show below. Before proceeding it is useful to
rewrite the three-form flux f3 as

f3 = r−1
[dr
r

∧ F̂ − dF̂
]
, where F̂ = −e2C/3J + d(e3B+Cη) (3.38)

which puts it into a form more reminiscent of the non-rotating case [117].

Let us turn our attention to the other identities following from (3.31)-(3.37). Firstly,
from (3.36) we find

Lξe−3B−C/3 = 0 . (3.39)

136



3.1 Setup

In fact, we will take ξ to be a symmetry of each of the scalars B,C individually,
though supersymmetry does not require this. This assumption is natural since
we want ξ to play the role of the R-symmetry vector of the solution. Note that
these conditions imply that it is a Killing vector of the 10d space and by imposing
Lξα = 0, it is in fact a Killing vector for the full 11d metric. Taking the exterior
derivative of (3.37) implies

dη ∧ Ω = 0 , (3.40)

hence dη is a (1, 1)-form on the base. Moreover from (3.35) we find that

Jydη = e−3B−C/3 . (3.41)

Finally from (3.37) we can read off the Ricci form ρ on the 8d space to be

ρ = dη + 1
3 ddcC . (3.42)

Note that the second term is exact since we require the scalar C to be globally
well-defined.
This in turn allows us to compute the Chern–Ricci scalar5

RC ≡ 2Jy ρ = 2e−3B−C/3 − 2
3�C . (3.43)

The Chern–Ricci scalar is related to the more common 8d Ricci scalar via6

R8 = RC − 1
2 |dJ |2 . (3.44)

It is clear from the above relation that the two scalars coincide when the manifold
is Kähler.

So far we have only imposed supersymmetry and not the equations of motion.
Integrability of the Killing spinor equations implies that the Einstein equations
are satisfied so long as the Bianchi identity (3.15) and Maxwell equation (3.16) are
imposed. Imposing these gives us additional constraints on the geometry and fluxes.

5Here we find the d’Alembertian operator through the short computation:

Jy ddcC = ∗(ddcC ∧ ∗J) = ∗ d (dcC ∧ ∗J) = ∗ d ∗ (dcCy J) = − ∗ d ∗ dC = −�C ,

where we use that 1
3! dJ3 = d ∗ J = 0.

6Note that this is equivalent to the identity R8 = RC − 1
2 |dcJ |2 that is also used in the literature.
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From reducing the Bianchi identity we find

dH(2,2) = −idη ∧ (H(2,1) −H(1,2)) ,

∂H(2,1) = ∂̄H(1,2) = 0 ,

∂̄H(2,1) = ∂H(1,2) = − 1
2 dη ∧H(1,1) ,

dH(1,1) = 0 .

(3.45)

From this decomposition it is simple to show that the R-symmetry vector ξ is not
just a symmetry of the metric, but also for the 10d flux h̃(2,2), i.e.

Lξh̃(2,2) = 0 . (3.46)

In fact, we find that ξ is a symmetry for the full 11d flux G4 as well, since by using
(3.26) and that the scalar α has vanishing Lie-derivative along ξ one can show that

LξG4 = 0 . (3.47)

This is then consistent with our interpretation of ξ as being the Killing vector dual
to the R-symmetry of a putative dual field theory.
From the 10d Maxwell equation we find the set of equations

−d ∗8 de−3B−C + e−2C/3 dη ∧ dη ∧ J2

2! = 1
2H

(2,2) ∧H(2,2) , (3.48)

e−4C/3 dη ∧ ∗8 d(e2C/3J) = H(2,2) ∧ (H(2,1) +H(1,2)) , (3.49)

−dη ∧ d
(

e−2C/3 J
2

2!

)
= H(2,2) ∧ i(H(2,1) −H(1,2)) , (3.50)

−ddc
(

e−2C/3 J
2

2!

)
= H(2,2) ∧H(1,1) + 2iH(2,1) ∧H(1,2) . (3.51)

It can be shown that the second and third equation are equivalent by acting with
the operator J · which acts by contracting the complex structure into each index of
the form. For a (p, q)-form this acts by multiplying the form by ip−q. By applying
the 8d Hodge star to (3.48), and by inserting (3.42) and (3.43), we can rewrite it
as

e2C/3 ∗8 (H(2,2) ∧H(2,2)) = −e2C/3�
(
e−2C/3(RC + 2

3�C)
)

+ 1
2
(
RC + 2

3�C
)2 − 2

∣∣ρ− 1
3 ddcC

∣∣2 (3.52)

This is the rotating version of the master equation [117, 125]. It reduces to the
familiar non-rotating master equation of [117] by setting e2C = 1, H(2,2) = 0 and
dJ = 0 (so that RC = R8).
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One can be slightly more explicit with the form of the flux terms and determine
them up to primitive pieces. From (3.26) and by decomposing da in term of its
Hodge type we find

da(0) = 4
5 r

−1e3B+C/3 dA(0) ,

da(2,0) = 1
2e

1 ∧ (A(1,0) − i∂α) + r dA(2,0) ,

da(0,2) = 1
2 ē

1 ∧ (A(0,1) + i∂̄α) + r dA(0,2) ,

da(1,1)
0 = dr ∧ η

(
α+ 4

5 e3B+C/3 dA(0))+ r
(
α dη + 1

5 dA(0)J + dA(1,1)
0

)
+ 1

2 dr ∧ (A− dcα) + 1
2rη ∧ (J ·A− dα) .

(3.53)

We can use these decompositions to reduce (3.18) which implies:

e−2C/3 JyH(1,1) = 2α ,

e−2C/3 JyH(2,1) = i∂α+A(1,0) ,

e−2C/3 JyH(2,2) − e−3B−C H(1,1) = 2dA(1,1) + 2αdη .

(3.54)

Therefore we may rewrite the fluxes as

H(1,1) = 1
2e

2C/3αJ +H
(1,1)
0 ,

H(2,1) = 1
3e

2C/3J ∧ (i∂α+A(1,0)) +H
(2,1)
0 ,

H(2,2) = 1
2J ∧

(
e−3B−C/3H(1,1) + 2e2C/3(dA(1,1) + αdη)

)
− 1

3 (2e2C/3dA(0) + e−3B+C/3α)J2 +H
(2,2)
0 ,

(3.55)

where H(p,q)
0 denotes the primitive piece. In principle one could now substitute

these expressions into the Bianchi identities and Maxwell equations however this is
not particularly enlightening and so we refrain from presenting them here. Note
that the primitive pieces are essential for satisfying the Bianchi identities.

3.1.4 Imposing the SO(2,1) isometry

So far our analysis has been for general scalars C, α and one-form A. However, in
order to construct the near-horizon of a black hole we need to impose that there
is an SO(2, 1) isometry, which leads to constraints on these fields. In appendix
3.B we have given the general metric for the near-horizon of a rotating black hole
with a manifest AdS2 factor over which the internal manifold is fibered and seen
the constraints that this imposes on the geometry. In particular the fibration is
governed by a vector of constants ki associated to each Killing vector of the internal
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3 Rotating black holes in M-theory

manifold fibered over AdS2. As we reviewed in the appendix the necessity for these
parameters to be constant arises in order that there is an SO(2, 1) isometry. From
the analysis of appendix 3.B we find that the scalar and one-form take the form7

αη +A = −kig(∂φi , ·) , e−2C = 1 + |αη +A|29 , (3.56)

where ∂φi are the Killing vectors of the internal manifold and the metric gij is the
metric on ds2

9, as defined in (3.19), restricted to the angular coordinates. Denoting
by

ηi ≡ g(∂φi , ·) , (3.57)

the dual one-form of the Killing vector ∂φi using the metric on ds2
9. Then the

one-form a is simply
a ≡ r(αη +A) = −rkiηi . (3.58)

In the remainder of this section let us assume that the 8d base is Kähler since this
will allow for more explicit expressions. In addition we will assume that the base is
toric, with the 9d space Y9 admitting a U(1)5 action with Killing vectors ∂φi .8 We
may write the one form η as9

η = 2
∑
i

widφi , (3.59)

where the wi are the moment map coordinates of the cone restricted to Y9. Moreover
the Kähler two-form on the base may be expanded as

J =
∑
i

dxi ∧ dφi , (3.60)

where xi are global functions on Y9 since b1(Y9) = 0 for a toric contact structure.
Note that

∂φiy J = −dxi . (3.61)

7We use the math literature notation such that g(∂φi , ·) is a one-form.
8We need not require the full space to be toric for our arguments to hold, we merely do
so for simplicity of exposition. An interesting case to consider, which requires a minor
generalization, is to consider a Riemann surface embedded into Y9 as Y9 ≡ O(~n)Σg ×U(1)4 Y7

with ~n a four-vector of constant twist parameters which are the Chern numbers of the U(1)
bundle over the Riemann surface [108].

9We follow the toric geometry notational conventions of [108].
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3.2 Action for the theory

With this short (and very incomplete) review of toric geometry we may proceed
with writing the scalars and one-form in terms of the global functions of the toric
geometry defined above. It follows that

α = −ki∂φiy η = −2kiwi . (3.62)

Next consider A, we find the simple result

A = −e−3B−C/3kidcxi . (3.63)

Finally we may evaluate (3.56) which implies

e−2C = 1 + (2kiwi)2 + e−3B−C/3|kidcxi|28 , (3.64)

where | · |28 is the norm with respect to the Kähler metric. In principle one could
try to solve this for the scalar C, however this is a sextic equation to solve. One
could use (3.64) as defining the combination e−3B−C/3 which appears ubiquitously
in the geometry.

Note that this last comment only applies when the gauge field A is non-zero. When
it vanishes and the fibration is only along the R-symmetry direction, it turns out
that C is constant. To see this it is more insightful to use the parametrization
employed in appendix 3.B where the z-coordinate is assigned its own constant kz,
i.e. we do not use the basis ∂φi used previously in this section. In this basis the
Killing vectors are the four U(1) isometries of the base and the R-symmetry vector
∂z. It is then clear that for A to vanish each of the four constants associated to
the U(1)’s of the base must be zero. It follows from (3.176) that α is precisely the
constant −kz. Moreover e−2C takes the constant value,

e−2C = 1 + (kz)2 . (3.65)

The natural interpretation of this subcase is that of the near-horizon of a non-
rotating black hole equipped with an electric component for the graviphoton and
possibly including magnetic charges for each of the gauge fields in the 4d theory.

3.2 Action for the theory

One of the essential ingredients for performing the extremization in [107] was the
existence of an action which gave rise to the equations of motion of the theory. This
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action was derived in [134] for the near-horizon geometry of static black holes and
strings in M-theory and Type IIB respectively. As a first step towards performing
the extremization in the rotating case we will construct the analogous rotating
action. Thereafter we impose the supersymmetry constraints on this action and
show that it reduces to a simple and familiar form. The action computes the entropy
of these black holes.

3.2.1 Non-supersymmetric action

The simplest method for constructing an action for the 9d geometry is to reduce
the 11d action using our ansätze. By construction the equations of motion of the
resulting 9d action will match the ones obtained in the section 3.1.3. We start from
the action of eleven-dimensional supergravity

S11 = 1
2κ2

11

∫
R11 ∗111 − 1

2 G4 ∧ ∗11 G4 − 1
6 C3 ∧ G4 ∧ G4 . (3.66)

Here C3 is the three-form potential and G4 = dC3 is its field strength. Using the
ansätze

ds2
11 = −∆2(dt+ a)2 + ∆−1e2φ ds2

10 ,

G4 = ∆−1e0 ∧ f3 + h4 ,
(3.67)

we reduce this action to 10d. The Bianchi identity dG4 = 0 implies that

df3 = 0 , dh4 + da ∧ f3 = 0 . (3.68)

We write these field strengths in terms of their potentials as

f3 = dc2 , h4 = dc3 − da ∧ c2 . (3.69)

Now we can write G4 into the convenient form

G4 = − d
[
(dt+ a) ∧ c2

]
+ h̃(2,2) , (3.70)

where we introduce the shifted four-form field strength

h̃(2,2) = h4 + da ∧ c2 = dc3 . (3.71)

Note that although we add a superscript to indicate that upon imposing super-
symmetry this field strength is a (2, 2)-form, at the moment we have not imposed
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3.2 Action for the theory

supersymmetry yet so we have to treat h̃(2,2) as a general four-form. The 11d
potential C3 can now be expressed in terms of the 10d potentials as

C3 = −(dt+ a) ∧ c2 + c3 . (3.72)

By using these ansätze and definitions, we find the 10d Lagrangian

L10 = ∆−3e8φ(R10 − 72(∂µφ)2 − 18 ∇2φ

− 12(∂µ log ∆)2 + 7 ∇2 log ∆ + 56 ∂µφ∂µ log ∆
)

∗10 1

+ 1
2 e

6φ da ∧ ∗10 da+ 1
2 ∆−3e4φ f3 ∧ ∗10 f3 − 1

2 e
2φ h̃(2,2) ∧ ∗10 h̃

(2,2)

+ e2φ c2 ∧ da ∧ ∗10 h̃
(2,2) − 1

2 e
2φ c2 ∧ da ∧ ∗10 (c2 ∧ da)

+ 1
2 c2 ∧ h̃(2,2) ∧ h̃(2,2) − 1

2 (c2)2 ∧ da ∧ h̃(2,2) + 1
6 (c2)3 ∧ (da)2 .

(3.73)

Next we want to consider the reduction of this Lagrangian to 9d, by using the
cone ansatz presented in (3.1.2). In addition, we want to split off the η-direction
from the 8d space B so that we end up with a 9d Lagrangian density of the form
L9 = η ∧ (. . .) where the dots represent an expression in terms of fields defined on
B. The relevant ansätze for this reduction are10

ds2
10 = dr2 + r2η2 + r2 e−3B−C/3 ds2

8 ,

e2φ = r−3 e3B+C ,

∆ = r−1 eB+C ,

da = r (α dη + dA) + dr ∧A− r η ∧ dα+ α dr ∧ η , (3.74)

c2 = r−1 C2 + r−1 η ∧ C1 + r−2 C0 dr ∧ η ,

f3 = r−1 F3 + r−2 dr ∧ F2 + r−1 η ∧ F̂2 + r−2 dr ∧ η ∧ F1 ,

h̃(2,2) = H(2,2) + r−1dr ∧ (H(2,1) +H(1,2)) + iη ∧ (H(2,1) −H(1,2)) ,

+ r−1dr ∧ η ∧H(1,1) .

10Note that we omitted the part of c2 that has one leg on dr and one leg on B only. The
reason for this is that such a term can be absorbed in C2 by a gauge transformation.
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3 Rotating black holes in M-theory

Performing this reduction is a lengthy but in principle straightforward calculation.
We find the 9d Lagrangian11

L9 = η ∧
[(
R8 − 9

2 (∂µB)2 − 7
6 (∂µC)2 − 3 ∂µB ∂µC − 2 e−3B−C/3) ∗8 1 − 1

2 e
3B+C/3 dη ∧ ∗8dη

+ 1
2 e

−3B+5C/3α2 ∗8 1 + 1
2 e

2CA ∧ ∗8A+ 1
2 e

2Cdα ∧ ∗8dα+ 1
2 e

3B+7C/3(α dη + dA) ∧ ∗8(α dη + dA)

+ 1
2 e

−6B−2CF1 ∧ ∗8F1 + 1
2 e

−3B−5C/3F2 ∧ ∗8F2 + 1
2 e

−3B−5C/3F̂2 ∧ ∗8F̂2 + 1
2 e

−4C/3F3 ∧ ∗8F3

− 1
2 e

3B+C H(2,2) ∧ ∗8H
(2,2) − 2e2C/3H(2,1) ∧ ∗8H

(1,2) − 1
2 e

−3B+C/3H(1,1) ∧ ∗8H
(1,1)

+ e3B+C C2 ∧ (α dη + dA) ∧ ∗8H
(2,2) + ie2C/3(C1 ∧ (α dη + dA) − C2 ∧ dα

)
∧ ∗8(H(2,1) −H(1,2))

+ e2C/3C2 ∧A ∧ ∗8(H(2,1) +H(1,2)) + e−3B+C/3(αC2 + C1 ∧A+ C0 (α dη + dA)
)

∧ ∗8H
(1,1)

− 1
2 e

3B+C C2 ∧ (α dη + dA) ∧ ∗8(C2 ∧ (α dη + dA)) − 1
2 e

2C/3C2 ∧A ∧ ∗8(C2 ∧A)

− 1
2 e

2C/3(C1 ∧ (α dη + dA) − C2 ∧ dα
)

∧ ∗8
(
C1 ∧ (α dη + dA) − C2 ∧ dα

)
− 1

2 e
−3B+C/3(αC2 + C1 ∧A+ C0 (α dη + dA)

)
∧ ∗8

(
αC2 + C1 ∧A+ C0 (α dη + dA)

)
− C2 ∧H(2,2) ∧H(1,1) − 2iC2 ∧H(2,1) ∧H(1,2) − 1

2 C0 H
(2,2) ∧H(2,2) − C1 ∧H(2,2) ∧ (H(2,1) +H(1,2))

+ 1
2 (C2)2 ∧ αH(2,2) − 1

2 (C2)2 ∧ dα ∧ (H(2,1) +H(1,2)) − 1
2 i(C2)2 ∧A ∧ (H(2,1) −H(1,2))

+ 1
2 (C2)2 ∧ (α dη + dA) ∧H(1,1) + C0 C2 ∧ (α dη + dA) ∧H(2,2) + C2 ∧ C1 ∧A ∧H(2,2)

+ C2 ∧ C1 ∧ (α dη + dA) ∧ (H(2,1) +H(1,2)) − (C2)2 ∧ C1 ∧A ∧ (α dη + dA)

− 1
3 (C2)3 ∧ α (α dη + dA) − 1

3 (C2)3 ∧A ∧ dα− 1
2 C0 (C2)2 ∧ (α dη + dA)2

]
.

(3.75)

From this action one can derive the equation of motions that define the solutions
discussed in the previous section 3.1.3. Note that we have not imposed any
supersymmetry in deriving this action.

3.2.2 Supersymmetric action

Here we consider the restriction of the Lagrangian obtained above to off-shell
supersymmetric geometries. We say these 9d geometries are off-shell because we do
not impose the equations of motion such as (3.52), and supersymmetric since we
do impose the supersymmetry constraints discussed in section 3.1. We will see that
the Lagrangian (3.75) becomes quite simple once supersymmetry has been imposed.
The simplest method is to impose supersymmetry in 10d and subsequently reduce
to 9d, instead of starting from the 9d Lagrangian (3.75). We begin with the 10d
non-supersymmetric Lagrangian in (3.73). There we can readily plug in the susy
conditions

c2 = e2φ j , f3 = d(e2φ j) . (3.76)

11We split off the r-coordinate as L10 = L9 ∧ r−2dr. Splitting off dr on the left side would
give an overall minus sign.
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Furthermore, we use the decompositions

da = da(0) j + da(1,1)
0 + da(2,0) + da(0,2) , (3.77)

h̃(2,2) = h̃
(2,2)
0 + 1

2 e2φ da(0) j
2

2! + 2
3 e2φ da(1,1)

0 ∧ j , (3.78)

to write out the Hodge stars

∗10 da = da(0) j
4

4! − da(1,1)
0 ∧ j3

3! +
(
da(2,0) + da(0,2)) ∧ j3

3! , (3.79)

∗10 (j ∧ da) = 2 da(0) j
3

3! − da(1,1)
0 ∧ j2

2! +
(
da(2,0) + da(0,2)) ∧ j2

2! , (3.80)

∗10 h̃
(2,2) = h̃(2,2) ∧ j − e2φ da(0) j

3

3! − 2 e2φ da(1,1)
0 ∧ j2

2! . (3.81)

By combining all these results, we find the 10d supersymmetric Lagrangian

L SUSY
10 = ∆−3e8φ(R10 − 80(∂µφ)2 − 12(∂µ log ∆)2 + 62 ∂µφ∂µ log ∆

− ∇2(18φ− 7 log ∆)
)

∗10 1 + 1
2 ∆−3e8φ dj ∧ ∗10 dj .

(3.82)

Here we also used that w4 = jydj = 3 d log ∆ − 8 dφ.

We reduce this Lagrangian to 9d using the ansätze

ds2
10 = dr2 + r2η2 + r2 e−3B−C/3 ds2

8 ,

e2φ = r−3 e3B+C ,

∆ = r−1 eB+C ,

j = r η ∧ dr + r2 e−3B−C/3 J ,

(3.83)

and find (again using L10 = L9 ∧ r−2dr)

L SUSY
9 = η ∧

[(
R8 − 3

2 (∂µ(3B + 1
3C))2 − 11 e−3B−C/3) ∗8 1 + 2 J ∧ ∗8 dη

+ 2 e−3B−C/3 J ∧ ∗8 J + 1
2 e6B+2C/3 d(e−3B−C/3 J) ∧ ∗8 d(e−3B−C/3 J)

]
.

(3.84)

We simplify this expression using the supersymmetry conditions

Jydη = e−3B−C/3 ,

W4 = JydJ = 0 ,

RC = 2 e−3B−C/3 − 2
3 �C ,

(3.85)
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as well as the relation between the Ricci and the Chern–Ricci scalar

RC = R8 + 1
2 |dJ |2 . (3.86)

This yields the surprisingly simple result

L SUSY
9 = η ∧ e−3B−C/3 ∗8 1

= η ∧ dη ∧ J3

3! .
(3.87)

Note that this is the same expression for the 9d supersymmetric action as was
obtained in the non-rotating case in [107]. A subtle difference is that dη 6= ρ here,
but rather ρ = dη + 1

3ddcC. However since the forms ρ and dη are in the same
cohomology class this distinction does not matter. Observe that∫

Y9

η ∧ ddcC ∧ J3

3! =
∫
Y9

η ∧

(
d
(

dcC ∧ J3

3!

)
+ dcC ∧ dJ3

3!

)
= 0 , (3.88)

where the first term equality uses the fact that J,dJ and dcC are basic12 with
respect to to the R-symmetry vector ξ, and the second equality follows since the
first term is a total derivative and the second vanishes because J is balanced. We
conclude that we may replace dη by ρ in expression (3.87) and therefore the integrals
for computing the supersymmetric action, and therefore the entropy

SBH = 1
4G11

∫
Y9

L SUSY
9 , (3.89)

in both the rotating and non-rotating cases are exactly the same.

Later in section 3.4 we will discuss how one can obtain near-horizon geometries
of rotating black strings in Type IIB from the 11d setup considered so far. In
anticipation of this, let us reduce the 9d action for geometries on the M-theory
side to a 7d action for geometries on the Type IIB side. These 7d geometries can
be obtained from the 9d geometries by requiring that the 9d geometry admits a
two-torus. By using the ansatz (3.132) we find the supersymmetric Lagrangian for
the 7d geometry to be

L SUSY
7 = η ∧ dη ∧

J2
(6)

2! . (3.90)

Let us point out that one can replace dη by ρ(6) in the 7d Lagrangian only when τ
is constant. Namely, for a non-trivial axio-dilaton profile the term dQ appearing in
12A form β is basic with respect to ξ if it satisfies both ξyβ = 0 and Lξβ = 0.
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(3.136) is only locally exact, and therefore cannot be interpreted as a total derivative
term as was the case for the ddcC term. As studied in [114] it is more convenient
to view these near-horizon geometries from an 11d perspective rather than a 10d
one. The central charge of the dual 2d SCFT is given by

c = 3
(2π)6g2

s`
8
s

∫
Y7

η ∧ dη ∧
J2

(6)

2! . (3.91)

3.3 Embedding of the AdS4 Kerr–Newman black hole

Here we study the embedding of the supersymmetric limit of the AdS4 Kerr–Newman
(KN) black hole solution found in [135] and further studied in [136,137] into our
classification by using the uplift of minimal gauged supergravity on an arbitrary
7d Sasaki–Einstein manifold. Note that we could have taken one out of the zoo
of supersymmetric rotating AdS4 solutions, e.g. [130,138–140]. We choose the KN
solution since it is the simplest yet contains all the necessary ingredients. Note
that the Kerr–Newman black hole is one of two classes of possible black holes [141],
the other being the magnetic black holes. We have checked that an example of
the second class also fits into the classification however we will not present the
results here.13 In future work we will investigate how the 11d solution differentiates
between the two classes of solution in 4d.

3.3.1 Kerr–Newman solution

We begin by first considering the black hole in four dimensions before studying the
full eleven-dimensional solution. The four-dimensional black hole is given by

ds2 = −∆r

W

(
dt− γ sin2 θ

Ξ dφ
)2

+W

(
dr2

∆r
+ dθ2

∆θ

)
+ ∆θ sin2 θ

W

(
γdt− r̃2 + γ2

Ξ dφ
)2

,

A = 2mr̃ sinh2 δ

W

(
dt− γ sin2 θ

Ξ dφ
)

+ αgaugedt , (3.92)

13We thank K. Hristov and S. Hosseini for discussions on this point.
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where

r̃ = r + 2m sinh2 δ ,

∆r = r2 + γ2 − 2mr + r̃2(r̃2 + γ2) ,

∆θ = 1 − γ2 cos2 θ , (3.93)

W = r̃2 + γ2 cos2 θ ,

Ξ = 1 − γ2 .

The solution is characterised by three constants (γ, δ,m) whilst the parameter
αgauge is related to a pure gauge transformation and is therefore not a parameter of
the solution. The solution describes a non-extremal black hole provided that γ2 < 1
and m is bounded from below. The exact value of the bound is not important
for our purposes, but it is derived in [142]. Without loss of generality we have
m, δ, γ > 0. The black hole is characterized by its energy E, electric charge Q and
momentum J :

E = m

G(4)Ξ2 cosh 2δ , Q = m

G(4)Ξ
sinh 2δ , J = mγ

G(4)Ξ2 cosh 2δ . (3.94)

The Bekenstein-Hawking entropy of the black hole can be found by computing the
area of the outer horizon, resulting in

S = π(r̃2 + γ2)
G(4)Ξ

∣∣∣∣
r=r+

, (3.95)

where r+ denotes the largest positive root of ∆r = 0, and therefore describes the
location of the outer horizon. For arbitrary values of the parameters (γ, δ,m), the
black hole is neither extremal nor supersymmetric. The BPS limit is defined by first
imposing supersymmetry and then extremality. The supersymmetry is attained by
imposing

e4δ = 1 + 2
γ
. (3.96)

The solution is now supersymmetric but not extremal, in fact it has timelike closed
curves and a naked singularity. To remedy this and obtain an extremal black hole
we further identify

m = γ(1 + γ)
√

2 + γ . (3.97)

There is now only a single parameter left in the theory, namely γ. With these
identifications the function ∆r acquires a double root at

r∗ = γ
√

2 + γ
(

1 + γ −
√
γ(2 + γ)

)
, (3.98)

with the other two roots becoming complex.
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3.3.2 Near-horizon limit

We now want to take the near-horizon limit of the solution. It is convenient through
a change of coordinates to shift the double root location in ∆r to 0 and to rewrite
the function as

∆r = ρ2f(ρ) , f(ρ) = (ρ+ r∗ − r−)(ρ+ r∗ − r+) , (3.99)

where
ρ = r − r∗ . (3.100)

Since we will need to evaluate the function f at the horizon often, we note that

f(0) = 1 + γ (6 + γ) . (3.101)

In the metric, the change of the r to ρ coordinate results only in changes in
the functions (3.93), since the dr term is invariant. To simplify notation we will
therefore shift the functions such that an argument of 0 means we evaluate at the
horizon. In particular we now take

r̃(ρ) = ρ+ r∗ + 2m sinh2 δ , (3.102)

such that r̃(0) is evaluating the function r̃ at the horizon. Similarly W (0, θ)
evaluates W at the horizon; for notational convenience we denote the functions
W (0, θ) = W (θ) and f(0) = f0. Furthermore, in the BPS limit one can derive that
r̃(0) = √

γ. To take the near-horizon limit we perform the change of coordinates

ρ → ερ , t → t

ε
, φ → φ+ βt

ε
, (3.103)

where β is a constant that we will determine shortly an then send ε → 0. The near-
horizon limit is now obtained by taking ε → 0 after making the above substitutions.
The dθ2 term will clearly be sent to W (θ)/∆θ, and we can ignore this term for time
being. We find

∆r

W (r, θ)

(
dt− γ sin2 θ

Ξ dφ
)2

→ ρ2f0

W (θ)

(
1 − βγ sin2 θ

Ξ

)2

dt2 ,

W (r, θ)
∆r

dr2 → W (θ)
f0

dρ2

ρ2 , (3.104)

∆θ sin2 θ

W (r, θ)

(
γdt− r̃2 + γ2

Ξ dφ
)2

→ ∆θ sin2 θ

W (θ)

[
dt
ε

(
γ − r̃(ερ)2 + γ2

Ξ β
)

− γ + γ2

Ξ dφ
]2

.
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In the last line we can expand r̃(ερ) ∼ √
γ + ερr̃′(0) + O(ε2), resulting in a term

which diverges as ε−1, proportional to the constant

1 − 1 + γ

Ξ β . (3.105)

The existence of this term is the reason we introduced the shift in the φ coordinate,
and it can be set to zero by fixing the constant β in the shift as

β = Ξ
1 + γ

. (3.106)

Including this factor of β we can combine the results from above and write down
the final result for the near-horizon solution

ds2|NH = W (θ)
f0

(
− ρ2dt2 + dρ2

ρ2

)
+ W (θ)

∆θ
dθ2 + sin2 θ∆θ

W (θ)

(γ + γ2

Ξ

)2
(

dφ+
2√

γ Ξ
(1 + γ)f0

ρdt
)2

,

(3.107)

where, in order to make the AdS2 factor manifest, we rescaled the time-coordinate

t → γ(1 + γ)
f0

t . (3.108)

Consider now the gauge field. Performing the same near-horizon limit and imposing
the BPS limit, we find a divergent term in the gauge field, proportional to

dt

ε
(αgauge − 2) . (3.109)

This term is purely gauge and we can remove it without problem by making a
suitable choice for the gauge parameter. The resulting near-horizon vector field is

A|NH =
2 √

γ (1 + γ)
W (θ)

(
2γ −W (θ)

f0
ρdt+

γ
√
γ sin2 θ

Ξ dφ
)
, (3.110)

where of course the time coordinate has been rescaled with the same factor (3.108)
as in the metric.

3.3.3 Uplift to 11d

Now that we have derived the near-horizon metric and gauge field of the AdS4 KN
solution in minimal supergravity we can consider the uplift to 11d supergravity.
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3.3 Embedding of the AdS4 Kerr–Newman black hole

The uplift of the metric and flux to eleven dimensions are given by

ds2
11 = ds2

4 +
(
η + 1

4A
)2 + ds2

6 ,

G4 = 3
8 dvol(AdS4) − 1

4 ?4 F ∧ J ,
(3.111)

where F = dA is the field strength of A, ds2
4 is the near-horizon metric we just

derived in (3.107) and ds2
6 is the base of the Sasaki-Einstein manifold with η = dz+σ

dual to the Reeb-vector ∂z. The conventions are chosen such that dη = 2J , where
J is the Kähler form on ds2

6.

We now want to rewrite the metric and flux appearing in (3.111) in the form of our
classification as presented in section 3.1.3. To recover this form, we write the metric
in (3.111) such that it becomes a time-fibration over a base. It is also necessary to
perform some coordinate redefinitions

z → γ (3 + γ)
2 f0

z ,

φ → φ− Ξ
f0
z .

(3.112)

After completing the straightforward but tedious rotations of the vielbeins and
shifting the coordinates, the metric we find is of the following form

ds2
11 = e2B

[
− e2C

r2 (dt+a)2 + dr2

r2 + η2 +Y (θ) Dφ2 + f0

∆θ
dθ2 + e−2Bds2

6

]
. (3.113)

We will now clarify the several notational conventions used in this metric. Firstly,
we have renamed the coordinate ρ to r, in order to conform with the conventions of
the classification. We have also introduced the function Y , Dφ and redefined η as

Y (θ) = γ2 (3 + γ)2 f0 (1 − γ2 cos2 θ) sin2 θ

Ξ2 cos2 θ (2γ +W (θ))2 ,

Dφ = dφ+ 2 Ξ
γ (3 + γ) σ ,

η = dz + 2 f0

γ (3 + γ) σ + f0 (γ sin θ)2

Ξ (2γ +W (θ)) Dφ .

(3.114)

Note that the coordinate shift we made in (3.112) was necessary to ensure that
the metric ends up with dz2, with its coefficient being exactly equal to one. The
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scalars eC and eB are found to be

eC = γ(1 + γ) cos θ (W (θ) + 2γ)
W (θ)

√
f0 W (θ)

, (3.115)

eB =

√
W (θ)
4 f0

. (3.116)

Recall that these scalars can also be used to compute ∆ in (3.20). The last remaining
puzzle-piece in the metric is the fibration a, which is given by

a = √
γ r

(
2 γ2 cos2 θ − γ2 − 1

(1 + γ) (W (θ) + 2γ) η + γ (3 + γ) tan2 θ (γ2 cos2 θ − 1)f0

(1 + γ) Ξ (W (θ) + 2γ)2 Dφ
)
. (3.117)

The fibration is of the expected form a = r(αη + A), and this specification of a
completes the endeavour of writing the metric in the classification form. Now we
can move on to consider the flux; recall that in the classification we wrote it as

G4 = −d
(
(dt+ a) ∧ e2φj

)
+ h̃(2,2) ,

h̃(2,2) = dc3 .
(3.118)

We have already found the fibration a in (3.117) and e2φ is given in terms of the
scalars eB and eC , by making use of (3.20). The ten-dimensional complex structure
form j can be found from the vielbeins of the metric we found in (3.113). Our
remaining tasks thus consists of finding an expression for h̃(2,2), which in its turn
is determined by the potential c3. The only form we have thus not yet specified
is the potential c3. After carefully rewriting the flux we obtain from (3.111), the
resulting potential is given by

c3 =
γ2√

γ (3 + γ)
8 Ξ (2γ +W (θ))

(
sin θ dθ ∧ η ∧ Dφ+ (3 + γ)(2γ −W (θ))

γ Ξ cos θ Dφ ∧ d(Dφ)

+sin2 θ (2γ −W (θ))
r f0 γ cos θ dr ∧ Dφ ∧ η

)
.

(3.119)

From the above expression we can immediately determine that all components of
the flux in (3.29) are turned on. Having obtained the potential, and thus its field
strength, we have completed our mission of embedding the AdS4 black hole solution
into the classification. We have checked that the solution satisfies all the conditions
of our classification, which is a non-trivial check of the correctness of our results.

Another useful way to write the metric consists of explicitly showing the AdS2

factor we also obtained in (3.107), which will allow us to read off the values of the
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3.3 Embedding of the AdS4 Kerr–Newman black hole

near-horizon angular velocities, denoted by ki. These ki are needed to define the
killing vectors, over which we should integrate to find the angular momentum of
the black hole. To obtain the particular form of the metric, we undo the rotation
of the vielbeins (or simply do not rotate them in the first place). Instead of the
time-fibration we then find a metric reminiscent of the one written in (3.162)

ds2 = e2B
(

−r2dt2 + dr2

r2

)
+ γθθ dθ2 + ds2

6

+ γµν (dψµ +Mµ(θ)σ + kµrdt) (dψν +Mν(θ)σ + kνrdt) ,
(3.120)

where the AdS2 is now clearly visible. As before, ds6 denotes the base of the Sasaki-
Einstein manifold and the one-form σ is still defined on the Kähler-Einstein space
ds6 such that dσ = 2J . Apart from these already familiar notions we established
several new notational conventions; first of all we have introduced γθθ and Mµ(θ)
as

γθθ = W (θ)
4 ∆θ

, (3.121)

Mz = 2 f0

γ (3 + γ) , (3.122)

Mφ = 2 Ξ
γ (3 + γ) . (3.123)

Besides these coefficients we introduced indices µ, ν ∈ {z, φ}, along with a metric
γµν we will specify below and, finally, defined dψ as

dψµ = (dz, dφ) . (3.124)

The metric (3.120) shows that only the φ and z coordinates are gauged over the
AdS2 space. We could have expected this, since the original AdS4 black hole had
rotation only in the φ direction, and in (3.111) we have gauged the Reeb-vector
with respect to the four-dimensional gauge vector. The metric, γµν , we introduced
for these two coordinates has the following components

γzz = κ2 − γ2 (1 + γ) sin2 θ

f0 W (θ)

(
κ− γ (1 + γ)N(θ)

4 f0 W (θ)

)
, (3.125)

γzφ = γ2 (1 + γ) sin2 θ

2 ΞW (θ)

(
κ− γ (1 + γ)N(θ)

2 f0 W (θ)

)
, (3.126)

γφφ = γ3 (1 + γ)2 sin2 θ N(θ)
4 Ξ2 W (θ)2 , (3.127)
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where, to alleviate the notational clutter, we have introduced the constant κ and
the function N(θ) as

κ = γ (3 + γ)
2 f0

,

N(θ) = 1 + γ − γ2 cos2 θ − γ3 cos4 θ .

(3.128)

Now that we have specified the γµν in (3.120), the description of the metric is
almost complete. The last remaining unknowns are the constants ki which specify
the gauging over the AdS2. We find

kz = kφ = 1 − γ
√
γ (3 + γ) . (3.129)

Note that the precise value of kφ depends on how we scale the φ coordinate; the
fact that both ki are equal arises due to our conventions for the coordinates. Since
the above ki are the only non-zero ones, it follows that the AdS4 black hole rotates
only in the z and φ directions. We can now check the identifications (3.62) and
(3.63). In order to do this we need to compute the scalars wi and xi appearing in
(3.59) and (3.60) for our solution. For simplicity we use the basis of Killing vectors
{z, φ, ψ1, ψ2, ψ3}, with the ψ1,2,3 the Killing vectors of the 6d Kähler-Einstein base
of the Sasaki–Einstein space. In the following we need only compute the scalars for
z and φ since the solution only rotates in the z and φ directions. We find

xφ = −γ5/3(3 + γ)(1 + γ)1/3(3 + γ cos2 θ)1/3

8Ξf2/3
0

, xz = 0 ,

wφ = γf0 sin2 θ

2Ξ(3 + γ cos2 θ) , wz = 1
2 .

(3.130)

It is then a simple matter of substituting these and the constants ki found in
(3.129) to see that both (3.62) and (3.63) are satisfied. Moreover using the results
of section 3.2.2 and appendix 3.B we can compute the entropy. With a little care
in the definitions of the periods it follows that the integral (3.89) is the same as
(3.95) and therefore this serves as another consistency check of our identification of
the entropy and the supersymmetric action in (3.89).

3.4 Black strings in Type IIB

Having studied our 11d setup we now turn our attention to rotating black string
solutions in Type IIB supergravity. We take our 11d setup and require that the
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internal space admits a two-torus, T 2. The 8d balanced manifold then breaks up as
a semidirect product of this torus and a 6d manifold. Wherever 8d quantities split
up in components on the torus and the 6d manifold, we simply denote this with the
subscripts (2) and (6). Under this assumption of a torus in the internal space we
can apply dualities to arrive in Type IIB, where we find a classification of rotating
black string solutions that can be interpreted as rotating D3-branes wrapped on a
Riemann surface.

If we add a warp factor acting homogeneously on the torus, the balanced condition
of the 8d manifold implies that the 6d manifold is conformally balanced. For
simplicity we do not take into account such a warping which gives a balanced 6d
manifold. As such we take the metric ansatz

ds2
11 = e2B

[
− e2C

(dt
r

+ αη +A(6) +A(2)

)2
+ dr2

r2 + η2

+ e−3B−C/3
(

ds2
6 + 1

τ2
(dx+ τ1dy)2 + τ2dy2

)]
,

(3.131)

where τ1 and τ2 are scalars valued on the 6d base and the complex combination
τ = τ1 + iτ2 is a holomorphic function (∂̄τ = 0). In principle we can take the two
U(1)’s of the two-torus to be fibered over AdS2, i.e. in the language of appendix
3.B we can introduce constants kx, ky which are related to the angular momenta
in these directions. However, introducing these parameters leads to the system
becoming unreasonably complicated14 once we arrive in Type IIB, and therefore we
shall just proceed with these parameters set to zero, which in (3.131) implies that
A(2) = 0. In addition, we also assume that η has no dependence on the T 2. The
final piece of the solution we need to specify is the dependence of the flux on the
torus: we take h̃(2,2) to have no legs along the torus directions.15 Note that this is
consistent with setting the rotation of the solution along the torus directions to
zero, through the condition (3.18). In addition to this, we assume that the scalars

14In Type IIB these extra parameters will lead to a further warping of the metric. In particular,
the dilaton will not be simply the dilaton one would get from the F-theory picture, i.e. τ−1

2 .
In addition, since we must satisfy (3.18) it is clear that turning these on will lead to turning
on additional fluxes other than the self-dual five-form in Type IIB. It would be interesting
to fully work out the details of this more general case, but it deserves more than this small
section in this chapter and a full treatment of the most general construction.

15The primitive piece of this part of flux (with legs on the torus) will give rise to a transgression
term like in [118,143]. Again for our purposes such a term is an unnecessary complication,
and so we set it to zero here, although it is certainly interesting to consider.
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B,C are independent of the torus coordinates, and are hence defined on the 6d
base.

We now reduce the 8d conditions from section 3.1.3 with this assumption of a torus
in the internal space onto a set of conditions on the inherited 6d base space that
has an SU(3) structure. We decompose the two-form as

J = J(6) + J(2) , J(2) = dx ∧ dy , (3.132)

which (using (3.34)) implies that J(6) is a balanced two-form: dJ2
(6) = 0. Further-

more from (3.35) we find that

dη ∧
J2

(6)

2! = e−3B−C/3 J
3
(6)

3! , (3.133)

which implies J(6)ydη = e−3B−C/3. We write the holomorphic four-form as

Ω = Ω(6) ∧ Ω(2) , Ω(2) = 1
√
τ2

(
dx+ τdy

)
. (3.134)

From (3.37) it now follows that

dΩ(6) = i
(
P + 1

3 dcC −Q
)

∧ Ω(6) , (3.135)

where Q = − 1
2τ2

dτ1 and we have used the holomorphicity of τ . This gives us the
Ricci form on the 6d space as

ρ(6) = dη + 1
3 ddcC − dQ , (3.136)

which is the generalization of equation (2.57) of [126] to the rotating case. The
additional term changes the expression for the Chern–Ricci scalar to

RC(6) = 2e−3B−C/3 − 2
3�6C + 1

2τ2
2

|dτ |2 . (3.137)

With our ansatz the 8d Bianchi identities (3.45) for the fluxes H(p,q) remain the
same but should be understood as 6d conditions. The expansions of these fluxes as
in (3.55) require slight modifications in the numerical coefficients but are otherwise
the same after the replacement J → J(6). From reducing the Maxwell equations
(3.48 – 3.51) we find

−d ?6 de−3B−C + e−2C/3dη ∧ dη ∧ J(6) = 0 ,

dη ∧ d(e−2C/3J(6)) = 0 ,

ddc(e−2C/3J(6)) = 0 ,

d ?6 de−2C/3 = H(2,2) ∧H(1,1) + 2iH(2,1) ∧H(1,2) .

(3.138)
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We can now proceed by reducing along the A-cycle (dx+ τ1dy) of the torus to Type
IIA supergravity. Note that the Ricci form is independent of the T 2-coordinates
and therefore so is the one-form η. This leads to a standard reduction of 11d
supergravity to massless Type IIA. One finds that the metric in string frame is
given by

ds2
IIA = e2B+2φIIA/3

[
− e2C

(dt
r

+ αη +A(6)

)2
+ dr2

r2 + η2

+ e−3B−C/3(ds2
6 + τ2dy2)] , (3.139)

and is supplemented by

e4φIIA/3 = 1
τ2

e−B−C/3 , (3.140)

CIIA
1 = τ1dy , (3.141)

CIIA
3 = c3 − e3B+C

(dt
r

+ αη +A(6)

)
∧
(
η ∧ dr

r
+ e−3B−C/3J(6)

)
, (3.142)

BIIA
2 = e2C/3

(dt
r

+ αη +A(6)

)
∧ dy . (3.143)

Recall that we can decompose the 11d gauge potential as (3.72), where c3 is the
potential corresponding to h̃(2,2), and c2 = e2φj is fixed by supersymmetry.

By performing a T-duality along the y-direction we land in Type IIB. The metric
in Einstein frame reads

ds2
IIB = e3B/2−C/6

[
− e2C

(dt
r

+ αη +A(6)

)2
+ e2C/3

(
dy + e2C/3

(dt
r

+ αη +A(6)

))2

+ 1
r2

(
dr2 + r2(η2 + e−3B−C/3 ds2

6
))]

. (3.144)

Here we have made explicit a cone in the geometry. It is useful to redefine the
scalar B in the form B = −B̃/3 + C/9 which puts the metric in the form

ds2
IIB = e−B̃/2

[
− e2C

(dt
r

+ αη +A(6)

)2
+ e2C/3

(
dy + e2C/3

(dt
r

+ αη +A(6)

))2

+ dr2

r2 + η2 + eB̃−2C/3 ds2
6

]
. (3.145)

If we take C = α = A(6) = 0, the first line gives precisely the metric for AdS3

written as a U(1) fibration over AdS2. The effect of a non-trivial scalar C and
connection pieces α,A(6) is to make the black string rotate. Note that this is
precisely the form of the near-horizon of the black string found in [123] uplifted to
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a 10d solution of Type IIB. The fluxes consist of an axio-dilaton and five-form flux
given by

CIIB
0 + ie−φIIB = τ1 + iτ2 ,

F IIB
5 = (1 + ?10) d

[
c3 ∧

(
dy + e2C/3

(dt
r

+ αη +A(6)

))
(3.146)

− e−B̃+4C/3
(dt
r

+ αη +A(6)

)
∧
(
η ∧ dr

r
+ eB̃−2C/3J(6)

)
∧ dy

]
.

Having given the metric and fluxes we now specify the supersymmetry conditions
that the geometry must satisfy. These can be derived from the 11d supergravity
ones by reducing them on the torus. Note that the cone appearing in the metric
in (3.144) has an SU(4) structure which is inherited from the SU(5) structure of
our 11d solutions. We denote the corresponding two-form by j(8), and we can
decompose it as

j(8) = rη ∧ dr + r2eB̃−2C/3 J(6) , (3.147)

where J(6) is the two-form that we found in the decomposition (3.132). This two-
form corresponds to the balanced SU(3) structure of the 6d space. On this SU(3)
structure, we previously found the conditions:

dJ2
(6) = 0 , (3.148)

dΩ(6) = i
(
P + 1

3 dcC −Q
)

∧ Ω(6) . (3.149)

The geometry must in addition satisfy the Bianchi identities and Maxwell equations
that we discussed earlier in this section subject to the potential c3 satisfying

j(8)ydc3 = 2r−3e−B̃+4C/3da(1,1) . (3.150)

The first of the Maxwell equations (3.138) is the master equation, which can be
rewritten as

e2C/3 �6
(
e−2C/3(RC(6) + 2

3�6C − 1
2τ2

2
|dτ |2

))
+ 2
∣∣ρ(6) − 1

3 ddcC + dQ
∣∣2

− 1
2
(
RC(6) + 2

3�6C − 1
2τ2

2
|dτ |2

)2 = 0 .
(3.151)

Note that the master equation is independent of the fluxes here. Further, notice
that the conditions reduce to those of [125] if one sets C = α = A(6) = c3 = 0.

The solutions in this classification may be interpreted as the near-horizon geometries
of rotating black strings. When one inserts a Riemann surface into the balanced 6d
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base it is natural to interpret these as arising from the compactification of rotating
D3-branes on the Riemann surface. Moreover, this is not the most general setup
that can be considered and it would be interesting to further investigate extensions.
A possible method for doing this is to reduce the 11d setup studied here on a torus
which is also fibered over the AdS2, as we alluded to at the beginning of this section.
This will necessarily lead to two free constants in the Type IIB solution and also to
more general fluxes. However, such solutions are far more involved than the ones
presented in this section.

3.5 Conclusions and future directions

In this chapter we studied the geometry of supersymmetric solutions which may
be interpreted as the near-horizon of rotating black holes and strings embedded in
11d supergravity and Type IIB respectively. This generalizes the results of [117]
and [125]. Due to the generality of our ansatz the black holes covered by our
classification can include both electric and magnetic flavour fluxes and angular
momentum when viewed from 4d. Note that this does not translate into magnetic
fluxes in 11d but rather into fibrations of the manifold.16 Similar statements apply
for the 5d black strings in Type IIB that we considered.

One natural extension of our work is to consider a more general classification of the
black strings in Type IIB. In performing the duality chain we aimed for a simplified
solution consisting of only five-form flux and axio-dilaton. One could in fact include
a complex three-form flux in the setup. This may be achieved from 11d by allowing
the flux components of h̃(2,2) to have legs along the torus directions. The minimal
extension would be adding in a transgression term of the form discussed in [118],
however we expect that one can be more general by also allowing for rotation along
the T 2-directions. A preliminary analysis showed that this case is rather involved
with all fluxes turned on and a non-holomorphic axio-dilaton. For the sake of
presentation we have given only the simpler case.

It would be interesting to formulate an extremization principle for these geometries
along the lines of [107]. This seems quite challenging though there are glimpses of
hope. The entropy of the black hole and string can be seen to be given by the same

16The role of baryonic symmetries is slightly more mysterious but we believe that these should
also be covered by our work.
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formula as in the non-rotating case. In particular the actions presented in section
3.2.2 reduce to simple integrals (3.89) and (3.91) which can easily be computed
in the toric case. The difficulty arises in evaluating the integrals which impose
flux quantisation. One should be able to compare with the field theory results
in [122, 123] for rotating black holes and black strings. We have preliminary results
on this extremization problem and plan to present these in the future.

Some alternative and intriguing avenues are to attempt to perform a similar analysis
for Euclidean black saddles [144], for other rotating black hole solutions and to
include higher derivative corrections [145–147]. There are many results with which
one could compare for black holes in other theories, for example [148–155]. It would
also be desirable to understand the connection with Sen’s entropy function [156–158]
and whether one can perform a similar classification for near extremal black
holes [159–161].

Appendices

3.A Complex Geometry

But in my opinion, all things in nature occur mathematically.

– Rene Descartes, Correspondence with Mersenne

In this chapter we have described the embedding of near horizons of rotating black
holes into M-theory. In order to describe the geometries that arise when considering
such rotating black holes, we made frequent use of complex geometry. In this section
we give a lighting-review of a few tools from complex geometry that we have used.
If this overview is not enough, a more elaborate review can be found in [162].

The first and foremost consideration about complex geometry is that it is complex,
which in formal terms means that there exists a complex structure. The complex
structure, usually denoted by J , can act upon vectors. Due to the complex
coordinates, the tangent spaces (where vectors reside) are split up into holomorphic
(L) and anti-holomorphic (L̄) parts. The complex structure can locally be written
in complex coordinates za as

J = i
∂

∂za
⊗ dza − i

∂

∂z̄a
⊗ dz̄a . (3.152)
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If we were to act upon vectors of the (anti) holomorphic sector with J , it would
yield an eigenvalue of (-)i. Let us describe this story for the dual tangent spaces
more formally: the complex structure splits the cotangent bundle of rank d into
two subbundles of rank d/2 as

Λ1T ∗M ⊗ C = Λ(1,0)T ∗M ⊕ Λ(0,1)T ∗M , (3.153)

where now θ ∈ Λ(1,0)T ∗M if and only if θ(X) = 0 for all X ∈ L̄.17 The differential
operator also splits, into Dolbeault operators

d = ∂ + ∂̄ , (3.154)

where the operators thus work on sections of the bundles by

∂ : Γ(Λ(p,q)T ∗M) → Γ(Λ(p+1,q)T ∗M) ,

∂̄ : Γ(Λ(p,q)T ∗M) → Γ(Λ(p,q+1)T ∗M) .
(3.155)

If we have a manifold M along with a complex structure J , we call (M,J) a complex
manifold. Now let us introduce the metric, g, into the playing-field. We will require
the metric to be Hermitic with respect to the complex structure which, in local
coordinates, means

gµν = J ρ
µ J

σ
ν gρσ . (3.156)

Using the metric and the complex structure we can define another two-form which,
by following our conventions of chapter 3, we call j:

jµν = J ρ
µ gρν . (3.157)

By using the Hermiticity of the metric along with (3.152) it can be checked that
j is a (1,1) form. This (1,1) form is usually called the fundamental two-form or
the Kähler form, although the latter name is best reserved for the case in which
our manifold is actually Kähler. When is the manifold Kähler? This depends on
properties of the fundamental form; suppose we have a complex manifold of complex
dimension n along with a Hermitian metric, we then call the manifold

• Kähler if dj = 0 ,

• Balanced if djn−1 = 0 .
17Similar decompositions hold for higher-rank forms, e.g. a 2-form decomposes to (2,0) +

(0,2) + (1,1).
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3 Rotating black holes in M-theory

The mathematical structures we will use in chapter 3 to describe the geometries
are called G-structures, where the G stands for a Lie group. In our scenarios we
will always consider SU(5) or SU(4) structures; in this introductory section we will
discuss the SU(5) structure, but the principles also hold for other groups. Following
the conventions we use later on, the SU(5) structure can be described by two
structure forms: a (1,1)-form denoted by j and a (5,0)-form denoted by ω.18 The
structure has a normalisation that we choose to be

ω ∧ ω̄ = (−2i)5 j
5

5! , (3.158)

where the prefactors allow us to write the structure forms in terms of a local basis
of (1,0)-forms θa by

j = − i

2
∑
a

θa ∧ θ̄a , ω = θ1 ∧ · · · ∧ θd/2 . (3.159)

The SU(5) structure can be used to investigate the geometry by considering the
exterior derivatives on its structure forms. In general these exterior derivatives
have the following form:

dj = 1
8w1y Im[ω] + w3 + 1

4w4 ∧ j , (3.160)

d Re[ω] = 1
3w1 ∧ j2

2! + w2 ∧ j − 1
8w5 ∧ Re[ω] , (3.161)

where the wi are called the torsion modules, w1 is a real (2,0) + (0,2) form, w2 a
real primitive (3,1) + (1,3) form, w3 a real primitive (2,1) + (1,2) form, w4 and
w5 are real one-forms. These torsion modules prove their worth by specifying the
geometry as seen in the table below. In the chapter we dealt mostly with balanced

Torsion Classes Geometry
w1 = w2 = 0 Complex

w1 = w3 = w4 = 0 Symplectic
w1 = w2 = w4 = 0 Balanced

w1 = w2 = w3 = w4 = 0 Kähler
w1 = w2 = w3 = w4 = w5 = 0 Calabi-Yau

manifolds.
18 For an SU(n) structure, ω is a (n,0) form.
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3.B Black hole near-horizons and observables

In this appendix we will study the general form of the near-horizon of a black hole.
This analysis serves two purposes. Firstly it will motivate the ansatz we take in
section 3.1.2 for the 11d supergravity solution, in particular the warping of the
metric and the temporal fibration. Despite this, in the main text we will use a more
general ansatz to the one motivated here purely for convenience of the notation.
It is understood that one must impose an additional constraint on the geometry
in order for it to be the near-horizon of a black hole as we will show later in this
section.

The second purpose for this analysis is to determine how to evaluate the physical
observables for our solution. The parametrization of the metric which is most useful
for obtaining the conditions arising from supersymmetry is not the one that is most
useful for defining the observables such as the entropy and angular momentum of
the black hole where an explicit AdS2 factor is used. The analysis of this section
will allow us to translate between the two view-points and compute observables
easily from the form of the metric obtained from supersymmetry.

3.B.1 General near-horizon metric

Following [163, 164] (see also [116] and references therein) consider a spacetime
containing a smooth degenerate Killing horizon, with future directed Killing field
K̃. Let the cross section of the Killing field be H and let the unique past-directed
vector field be Û . The vector field Û is tangent to the null geodesics orthogonal
to the horizon cross section and can be normalised so that K̂ · Û = 1. We will
consider rotating black holes which imply that the solution must admit at least one
rotational U(1) symmetry, i.e. it is axisymmetric. If, in addition, the spacetime
has a U(1)m isometry group which acts transitively on the horizon the black hole
near-horizon takes the form19

ds2 = Γ(y)
[

− r2dt2 + dr2

r2 +GMN (y)dyMdyN + γµν(y)(dφµ + kµrdt)(dφν + kνrdt)
]
. (3.162)

Here φ are periodic coordinates and kµ are constants related to the near-horizon
value of the chemical potentials of the angular momentum of the black hole. The

19We have made some trivial redefinitions to the form of the metric appearing in [164], in
particular we have changed coordinates on AdS2 from Gaussian Null coordinates to Poincaré
coordinates and extracted an overall factor from each of the sub metrics.
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3 Rotating black holes in M-theory

functions of the metric all depend on the y coordinates and are independent of the
φ’s. We do not need to specify the ranges of the indices M and µ for the argument
but let the range of µ ∈ {1, . . . ,m}20. Note that the first two entries of the metric
are precisely the metric on AdS2 with unit radius. Moreover it is clear from this
form that there is an SO(2, 1) × U(1)m isometry.21

The metric in this form is useful for computing the observables of the black hole
however it is not as useful when trying to impose supersymmetry. Due to the
gauging over AdS2 it is finicky to try to implement SUSY preservation in this form.
It is known that supersymmetry in 11d supergravity imposes that a metric admits
either a timelike or null Killing vector [129,165]. Since the form of the metric we
are considering above has a timelike Killing vector we will focus on this case22. It
is then useful to rewrite the metric so that the timelike Killing vector is manifest.
This will lead to the time-direction being fibered over the remaining directions. A
small rearrangement puts the metric into the form

ds2 =Γ(y)
[

− (1 − γτκk
τkκ)

(
rdt− kµγµνdφν

1 − γσρkσkρ

)2
+ dr2

r2 +Gmn(y)dymdyn

+
(
γµν + kσγσµk

ργρν
1 − γκτkτkκ

)
dφµdφν

]
. (3.163)

The metric now exhibits the timelike Killing vector in a simple form. It is then

20Note that n cannot be zero otherwise the black hole is not rotating and we fall into the
class of solutions given in [117].

21The SO(2, 1) algebra of the metric in these coordinates is realised by the three Killing
vectors

H = ∂t , D = t∂t + r∂r , K = (t2 + r−2)∂t − 2tr∂r − 2r−1ki∂ψi ,

where the ψi denote the U(1) symmetries of the internal manifold. Note that the generators
are twisted with respect to the U(1) symmetries of the internal manifold which are gauged
over the AdS2. It is important that the twisting parameters, the ki’s are constant otherwise
the SO(2, 1) algebra is broken. The Killing vectors satisfy the algebra

[H,D] = H , [K,D] = −K , [H,K] = 2D

which is precisely the algebra of the conformal group in 1d and commutes with the isometries
of the internal manifold.

22One could also have attacked the problem using the null Killing vector of AdS2. The benefit
of using the timelike Killing vector is that it is transferable to the case of black strings in
Type IIB and so we pursue this choice here.
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natural to take as ansatz23

ds2 = e2B
[

− e2C
(dt
r

+ Â
)2

+ dr2

r2 + ds2
9

]
(3.164)

for the near-horizon, with Â an r-independent one-form on the 9d base. In this
rotated form the AdS2 factor is obscured, however as we mentioned previously this
form is far more amenable to imposing supersymmetry. However this ansatz does
come with some downsides. Firstly computing observables, such as the horizon
area are not nearly as clear as in the form given in the ansatz (3.162). Moreover it
is not clear which solutions can be identified with the near-horizon of a rotating
black hole from the form in (3.164), in particular the scalar C is arbitrary in our
ansatz whilst its analogue in (3.163) is constrained. We shall study this constraint
shortly however in the main text we shall refrain from imposing it for as long as
possible. We will see that we can proceed unabated in the classification without
needing to impose such a condition.

3.B.2 Constraints from the near-horizon

In this section we shall look at the additional constraints imposed on the metric
ansatz used in the main text which follow from it being the near-horizon of a black
hole. We shall compare our ansatz with the general form of the near-horizon given
in the previous section, rewriting the expressions in terms of quantities adapted
to the metric in the form of the classification. The classification implies that the
metric takes the form

ds2 = e2B
[

− e2C
(dt
r

+αη+A
)2

+ dr2

r2 +Gmn(y)dymdyn + gµνdφµdφν
]

(3.165)

where we have written the metric with the same splitting as earlier. We can then
identify

e2B = Γ(y) ,

e2C = 1 − |k|2γ ,

−e−2Ckµγµνdφν = αη +A ,

gµν = γµν + kσγσµk
ργρν

1 − γκτkτkκ
.

(3.166)

23We change the radial coordinate as r → r−1 in order to write the transverse directions to
the timelike foliation as a cone in the main text.
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Note that we have defined | · |γ to be the norm with respect to the metric γ,
similarly we let | · |g denote the norm with respect to g. Simple manipulations of
these definitions gives

gµνk
ν = e−2Cγµνk

ν , |k|2g = e−2C |k|2γ , e2C = (1 + |k|2g)−1 . (3.167)

Note that this implies we can constrain the scalar C in terms of data of the fibration,
in particular

e−2C = 1 + |αη +A|29 . (3.168)

Finally rewriting this in terms of the full metric of the classification we find the
condition

e−2C = 1 + α2 + e3B+C/3|A|2 (3.169)

where the final norm is with respect to the metric on the balanced manifold. Let
us further analyse the condition on the fibration in the time-direction. We have

αη +A = −kµgµνdφν . (3.170)

Therefore in order to specify α and A we should specify η, the metric gµν and a set
of constants kµ. These constants kµ are related to the near-horizon values of the
chemical potentials of the angular momentum of the black hole (when viewed from
11d). As a final step let us rewrite the metric used in the arguments above so that
the R-symmetry vector is manifest. We want to identify

Gmndymdyn + gµνdφµdφν ≡ (dz + P )2 + eDds2
8 . (3.171)

Clearly the Gmn part fits in trivially after extracting out the required warp factor.
The angular part can be written as

gµνdφµdφν = gzzdz2 + 2gzµ̂dzdφµ̂ + gµ̂ν̂dzµ̂dzν̂ (3.172)

= (dz + gzµ̂dφµ̂)2 + (gµ̂ν̂ − gzµ̂gzν̂)dφµ̂dφν̂ (3.173)

where we have used that gzz = 1 and we should identify gzµ̂dφµ̂ = P . Therefore we
have

ds2 = (dz+P )2+eDds2
8 = (dz+P )2+Gmndymdyn+(gµ̂ν̂−Pµ̂Pν̂)dφµ̂dφν̂ . (3.174)

Inserting the decomposition into the connection piece of the timelike fibration we
have

kµgµνdφν = kzdz + kµ̂gµ̂zdz + kµ̂gµ̂ν̂dφν̂ + kzgzµ̂dφµ (3.175)
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from which we find

−α(dz+P )−A = kµgµνdφν = (kz+kµ̂Pµ̂)(dz+P )+(gµ̂ν̂−Pµ̂Pν̂)kµ̂dφν̂ . (3.176)

Therefore given a vector of constants parametrising the rotation and the internal
metric one can construct αη+A. In fact if one imposes that the internal manifold is
toric one may write the gauge field in a simple way as we have explained in section
3.1.4.

3.B.3 Observables

Let us now use the near-horizon solution to study what observables we can compute.
The three main observables are the entropy of the black hole, the angular momentum
and its electric/magnetic charges, all of which can be computed in the near-horizon.
One may also ask if it is possible to compute the electrostatic potential and angular
velocity, however these observables require some knowledge of the UV data since
they are defined as

OBH = ONH − O∞ . (3.177)

In this section we will focus on rephrasing the computation of the entropy, electric
charges and angular momentum in terms of integrals over various cycles of the
internal manifold.

Entropy

First consider the entropy of the black hole. The entropy is given up to normalization
by the area of the horizon of the black hole. In order to compute the horizon area
one should write the metric so that a bona-fide AdS2 factor appears in the metric
and the internal manifold is fibered over this. Clearly in order to compute the
entropy in this way the metric of use to us is the one given in (3.162) and not the
one that naturally comes out from supersymmetry. With this rewriting the horizon
is manifest and the entropy is given simply the surface area of the horizon which
implies

SBH = 1
4G2

, (3.178)

where the Newton’s constant is that of a 2d theory admitting the AdS2 near-horizon
as a vacuum solution. In order to compute the Newton’s constant (at leading order,
we will not make any comments about subleading corrections though these are
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certainly very interesting) we should look at reducing the 11d Einstein-Hilbert term
of 11d supergravity on the AdS2 background in (3.162). We have24

1
G11

∫
M11

RdvolM11 = 1
G11

∫
M2

R2dvol2
∫
Y9

Γ(y)
9
2
√

det(G)
√

det(γ)dy ∧ dφ

≡ 1
G2

∫
M2

R2dvol2 , (3.179)

from which we identify

1
G2

= 1
G11

∫
Y9

Γ(y)
9
2
√

det(G)
√

det(γ)dy ∧ dφ

= 1
G11

∫
Y9

Γ(y)
9
2 dvol9 .

(3.180)

Let us now translate this result into the notation of the metric arising from
supersymmetry, namely (3.163). We expect that the difference is precisely a
warping of the volume form which indeed turns out to be the case. To this end let
us compute the volume of the internal manifold. We distinguish between the two
volume forms by writing dvolSUSY for the volume form in the form natural from
supersymmetry. We have

dvolSUSY = Γ(y)
9
2
√

det(G)

√
det
(
γµν + kσγσµkργρν

1 − γκτkτkκ

)
dy ∧ dφ . (3.181)

We can expand the determinant second determinant. Using the fact that for an
invertible matrix A and vectors v, w one has

det(A+ vwT ) = det(A)(1 + wTA−1v) , (3.182)

we have

det
(
γµν + kσγσµk

ργρν
1 − γκτkτkκ

)
= det(γµν)

(
1 + 1

1 − γκτkτkκ
kσγσµγ

µνkργρν

)
= det(γµν)

1 − γκτkτkκ
. (3.183)

It follows that

dvolSUSY =
Γ(y)

9
2
√

det(G)
√

det(γ)√
1 − γκγτγκτ

dy ∧ dφ , (3.184)

24To save cluttering the notation we let dy ∧ dφ denote
∧

dym ∧
∧

dφµ.
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and therefore
1
G2

=
∫
Y9

Γ(y)
9
2
√

1 − γκτkκkτdvolSUSY . (3.185)

Our proposal for computing the entropy is therefore

SBH = 1
4G11

∫
Y9

e−3B−C/3η ∧ J4

4!

= 1
4G11

∫
Y9

η ∧ dη ∧ J3

3! ,
(3.186)

where we used (3.41) in the final equality. As discussed in section 3.2.2 this is
precisely the same formula as the entropy in the non-rotating case. One should
view this section as a proof that the quantity computed in section 3.2.2 really is
the entropy of the black hole.

Electric charges

Next let us consider the quantization of the four-form flux which will give rise to
the electric charges of the theory. In the presence of a Chern–Simons term there
is more than one definition of a charge. One can consider the gauge-invariant but
non-conserved charge

Q = 1
(2π`p)6

∫
Σ7

∗11G4 , (3.187)

where we integrate over all compact seven-cycles of the geometry. Alternatively the
Page charge

Q = 1
(2π`p)6

∫
Σ7

(
∗11 G4 + 1

2C3 ∧G4

)
, (3.188)

is conserved by application of the Maxwell equation but is not gauge invariant due
to the bare potential appearing in the definition. In the following we will consider
only the Page charge since it defines a conserved charge. In order to be able to
write this charge we must be able to at least locally write the four-form flux in
terms of a potential three-form. This is equivalent to the requirement that h̃(2,2) as
defined in (3.14) can be written (at least locally) in terms of a potential. In fact, if
we demand that it is exact, i.e. that the potential is a globally defined three-form,
it follows that there is no M5-brane charge. Substituting our ansatz into the Page
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charge we find

Q = 1
(2π`p)6

∫
Σ7

η ∧
[
e−2C/3dη ∧ J2

2 − 1
2

(
C(2) ∧H(2,2) + C(3) ∧ dC(2)

+ e2C/3J ∧
(
C(3) ∧ dα− C(2) ∧ (αdη + dA)

))]
, (3.189)

where we have introduced the potentials

H(1,1) = dC(1) ,

i(H(2,1) −H(1,2)) = dC(2) , (3.190)

H(2,2) = dC(3) = dη ∧ C(2) .

Angular momentum

We now want to find a similar formulation for computing the angular momentum
of the black hole. To such an end we may use the results of [166], (see also [167]
for the analogous computation for 5d black rings), which gives the formula for
computing the Komar integral for the Noether current of a Killing vector, ξ in 11d
supergravity. By an abuse of notation we will also call the dual one-form ξ. The
angular momentum is then given by

Jξ = 1
§SUSY

∫
Y9

[
∗11 dξ + (ξ · C3) ∧ ∗11G4 + 1

3(ξ · C3) ∧ C3 ∧G4

]
(3.191)

where the three-form potential C3 should be chosen so that it has vanishing Lie
derivative along the given isometry. Since this formula is dependent on the choice
of Killing vector we will refrain from writing this more explicitly and just include it
for completeness.
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Part II

Sachdev-Ye-Kitaev Models

The second part of the thesis concerns a new class of the Sachdev-Ye-Kitaev (SYK)
models. We will investigate a model where instead of only fermions, we also add
auxiliary bosonic fields. We investigate the various properties of the model as a
function of the ratio of bosons to fermions. We will discuss the relation of this
class of models to the N = 1 supersymmetric SYK model and the original SYK
model. Furthermore, we derive the effective action for the model and compute the
Lyapunov exponent for the model.
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Chapter 4

A new class of SYK-models

In this chapter we will discuss a generalisation of the SYK model. In the previous
chapter we have focussed on specific black hole solutions in string theories; here
we will take a different approach. By virtue of the AdS/CFT duality, we can
learn things about gravitational objects (e.g. black holes) by studying the dual
conformal field theory. The dual of SYK is though to be the two-dimensional
Jackiw-Teitelboim gravity. In this chapter we will, however, focus completely on the
field theory side, and we refer to e.g. [168] for an overview of the two-dimensional
models.

The SYK model was introduced by Kitaev [33], based on the original Sachdev-Ye
model [32, 169, 170]. We discussed this SYK model at length in section 1.3. We
saw that one of the characterizing features of the model is the appearance of
maximal chaos, which strongly suggests a relation to black holes, which also show
this chaotic behaviour [34,171–174]. The SYK model is a (nearly) conformal field
theory (CFT) in the infrared, and as we mentioned before it is expected to have
a nearly anti de sitter (AdS) dual in this regime [175, 176]. For low energies the
SYK model can be described by a Schwarzian [177], which also appears on the
bulk side in the AdS2 dilaton gravity. There exist many generalisations of SYK
including higher dimensions [42, 178–181], flavours [39, 43], tunable chaos [182],
supersymmetry [41,42] and many more.

In this chapter we consider a particular model closely related to the N = 1
supersymmetric extension of SYK. Instead of having an equal number, N , of
fermions and bosons we consider the case where we have M bosons and N fermions
and study its behaviour as a function of the ratio M/N . In section 4.1 we will
introduce the model and discuss in more detail the relation to the (supersymmetric)
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SYK model. Afterwards, in section 4.2, we consider the effective action. We derive
the equations of motion and consider the solutions at strong coupling. We find two
families of solutions that we label by their conformal dimensions at M = N , which
we call rational and irrational. Afterwards we elaborate on the behaviour of the
conformal dimensions at different regimes, e.g. as M/N → ∞ we obtain the same
behaviour as in the original SYK model. In section 4.3 we compare the entropy of
both solutions and perform some numerical investigations to figure out which is the
dominant saddle for all M/N . In section 4.4 we compute the Lyapunov exponent
and find that is independent of M/N due to a subtle cancellation.

4.1 Bosons and Fermions

The model consists out of N Majorana fermions obeying {ψi, ψj} = δij and M

(auxiliary) bosons. We will use indices a, b to denote the bosons and i, j, k for the
fermions (no ambiguity will arise). The Lagrangian is given as follows:

L = 1
2

N∑
i=1

ψi∂τψ
i − 1

2

M∑
a=1

φa φa + i

M∑
a=1

N∑
i<j=1

Caijφ
a ψi ψj , (4.1)

where ψ denote the Majorana fermions and φ the bosons. The coupling Caij is
defined to be antisymmetric in the last two indices, which are contracted with the
Majorana fermions. In [183] a similar term was studied as a perturbation upon the
ordinary SYK model. The fermions are dimensionless, whereas the bosons φ and
couplings C have dimension of E1/2.
Notice that we have two parameters M and N . We are interested in taking the
limits of both M and N going to infinity but keeping M/N fixed. In other words
we have that M = αN for some fixed α. From now on we will always assume that
two a indices are summed up to M whilst the other i, j, k, .. are summed up to N .
We let the coupling be disordered averaged by the following distribution:

〈Caij〉 = 0 , (4.2)

〈C2
aij〉 = 2J

N3/2M1/2 . (4.3)

Here J has the dimension of energy and is larger than zero. We can now compute
some basic one-loop diagrams for both the fermions and the bosons. We show the
one-loop corrections to the two point functions in Figure 4.1, which are proportional
to some power of M/N (that can easily be checked). In fact one can check that
any boson loop adds a factor of

√
M
N and each fermion loop

√
N
M .
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4.1 Bosons and Fermions

(a) Proportional to
√

N
M

. (b) Proportional to
√

M
N

.

Figure 4.1: In this figure we show the two one-loop corrections to the two point
functions. The solid lines indicate fermions, the wiggly lines the bosons and the
dotted line shows the disorder average. Below the diagrams we show the power of
M/N to which they are proportional.

4.1.1 Relation to SYK

Let us first examine the relation to the original SYK model [33,37] with Hamilto-
nian

HSYK = − 1
4!Jijkl ψ

i ψj ψk ψl . (4.4)

To check the similarity we start by plugging in the algebraic equation of motion for
φa back into the Lagrangian. The equation of motion is found to be φa = i

2C
a
ij ψ

i ψj .
After plugging it into (4.1) we obtain the Hamiltonian:

H = 1
8 Caij Cakl ψ

i ψj ψk ψl. (4.5)

This is also the presentation that one can see in [183]. We can then use the
antisymmetry in the last two indices of Caij and the commutation relations of the
Majorana fermions to rewrite this to:

H = 1
4!

1
8 Ca[ij C|a|kl] ψ

i ψj ψk ψl + E0 , (4.6)

where we defined the constant E0 = − 1
16C

2
aij (recall that a is summed to M and

i, j up to N). Comparing now to the standard SYK Hamiltonian, (4.4), we find:

Jijkl = −
M∑
a=1

1
8Ca[ij C|a|kl] . (4.7)

The notation indicates that the asymmetry on the right hand side is only in i, j, k

and l, which in turn of course means that Jijkl is completely asymmetric. The
above expression for the J coupling shows us that the model is essentially obtained
by performing a Hubbard-Stratonovich (HS) transformation on SYK. Of course
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apart from this HS transformation we have also chosen a different distribution
(see (4.2)) compared to SYK. This means that Jijkl are no longer the independent
Gaussian variables and this is the cause of the differences between the models.

4.1.2 Relation to supersymmetric SYK

The N = 1 supersymmetric SYK model was introduced in [41], the Lagrangian
density is given by:

L =
N∑
i=1

1
2ψ

i∂τψ
i − 1

2φ
iφi + i

∑
1≤j<k≤N

Cijkφ
iψjψk

 . (4.8)

There are two important differences compared to the model described in (4.1). The
first important aspect is that there are N bosons, which is the same as the number
of fermions (which has to be true for supersymmetry). Secondly the coupling Cijk
in the supersymmetric case has to be completely antisymmetric. Note that the
equal number of bosons and fermions is also necessary for the antisymmetry in the
coupling.

In other words, starting from (4.1) we can obtain the supersymmetric model by
setting M = N and making the coupling completely antisymmetric. It is precisely
when the coupling is completely antisymmetric (and hence M = N) that the
Lagrangian is invariant under supersymmetry transformations.

4.2 Effective action and conformal dimensions

To find the effective action we will follow the standard procedure of averaging over
the disorder in Caij by using the replica trick (see appendices in [39,184]). As in the
usual SYK case we will assume replica diagonal matrices. To justify this we have
to compare logZ and logZ since assuming replica diagonal matrices corresponds
to evaluating the latter instead of the former. The usual argument (see [184])
is to consider diagrams that are in logZ but not in logZ. The leading diagram
belonging to the former but not the latter is shown in Figure 4.2 and as can be
verified it is suppressed by 1

N M . Thus in the large N limit these contributions
will be subdominant. Using replica symmetry, the result of the disorder average
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Figure 4.2: This is the leading diagram that contributes to interactions between
replicas. In the figure the top three lines would be associated with a different
replica index than the other three below. One can check that this figure is pro-
portional to 1/N .

becomes:

Seff = 1
2

∫
dτ

(
N∑
i=1

ψi ∂τ ψ
i −

M∑
a=1

φa φa

)
(4.9)

−
√
N

M

J

2N2

∫
dτ1dτ2

∑
a,(j,k)

(φa(τ1)φa(τ2))
(
ψj(τ1)ψj(τ2)

) (
ψk(τ1)ψk(τ2)

)
.

For the last term we introduced brackets below the sum to indicate that j, k sum
up to N whilst a sums up to M . We now introduce bilocal fields for both the
fermions and bosons as follows:

δ

(
Gψ(τ1, τ2) − 1

N

N∑
i=1

ψi(τ1)ψi(τ2)

)
=

=
∫
dΣψ(τ1, τ2) exp

{
−N

2 Σψ(τ1, τ2)

(
Gψ(τ1, τ2) − 1

N

N∑
i=1

ψi(τ1)ψi(τ2)

)}
,

δ

(
Gφ(τ1, τ2) − 1

M

M∑
a=1

φa(τ1)φa(τ2)

)
=

=
∫
dΣφ(τ1, τ2) exp

{
−M

2 Σφ(τ1, τ2)

(
Gφ(τ1, τ2) − 1

M

M∑
i=1

φi(τ1)φi(τ2)

)}
.

(4.10)

We insert them into the partition function by Lagrange multipliers. Afterwards we
are only left with Gaussian integrals for both the fermions and bosons. Completing
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4 A new class of SYK-models

these leads to:

Seff

N
= − log pf (∂τ − Σψ(τ)) + M

2N log det (−1 − Σφ(τ))

+ 1
2

∫
dτ1dτ2

[
Σψ(τ1, τ2)Gψ(τ1, τ2) + M

N
Σφ(τ1, τ2)Gφ(τ1, τ2)

−J
√
M

N
Gφ(τ1, τ2)G2

ψ(τ1, τ2)
]
.

(4.11)

On the left hand side we divided out a factor of N , but could just as well have
taken out M , since M/N is fixed. Let us now vary with respect to Gφ and Gψ to
obtain the self energies:

Σψ = J

√
M

N
GφGψ , (4.12)

Σφ = J

√
N

M
G2
ψ . (4.13)

These equations can also be obtained using the melonic structure of the Feynman
diagrams at large N and M , just as in ordinary SYK. The Schwinger-Dyson
equations are obtained by varying with respect to the Σ (we assume time translation
symmetry and go to Fourier space):

G−1
ψ (iω) = −iω − Σψ(iω) , (4.14)

G−1
φ (iω) = −1 − Σφ(iω) . (4.15)

4.2.1 Two saddle points

In order to solve the above equations we have to assume the strong coupling limit
βJ � 1. This implies that in (4.14) we can ignore the first terms on the right hand
side. Hence we can write the equations as follows (we have Fourier transformed
back to time):

2J
√
M

N

∫
dτ ′Gψ(τ, τ ′)Gφ(τ ′, τ ′′)Gψ(τ ′, τ ′′) = −δ(τ − τ ′′) ,

J

√
N

M

∫
dτ ′Gφ(τ, τ ′)G2

ψ(τ ′, τ ′′) = −δ(τ − τ ′′) .
(4.16)
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4.2 Effective action and conformal dimensions

We then use the following (conformal) form for the two point functions:

Gψ(τ) = A
sgn(τ)
|τ |2∆ψ

, (4.17)

Gφ(τ) = B
1

|τ |2∆φ
. (4.18)

To obtain conditions on the conformal dimensions we plug these into the saddle
point equations above (4.16). Afterwards we Fourier transform using∫

dτei ω τ
sgn(τ)
|τ |2∆ = 2i cos(π∆) Γ(1 − 2∆) sgn(ω) |ω|2∆−1, (4.19)∫

dτei ω τ
1

|τ |2∆ = 2 sin(π∆) Γ(1 − 2∆) |ω|2∆−1. (4.20)

Some other useful relations for Γ functions are

Γ(1 − 2∆) = 2−2∆ √
π

cos(π∆)
Γ(1 − ∆)
Γ
( 1

2 + ∆
) , (4.21)

Γ(1 − ∆) Γ(∆)
Γ
( 1

2 + ∆
)

Γ
( 3

2 − ∆
) = 2

1 − 2∆
cos(π∆)
sin(π∆) . (4.22)

After plugging this all in we obtain the following relations:

A2B

√
M

N

4π J
1 − 2∆ψ

cos(π∆ψ)
sin(π∆ψ) |ω|2(2∆ψ+∆φ)−2 = 1 , (4.23)

A2B

√
N

M

2π J
1 − 4∆ψ

tan(2π∆ψ)|ω|2(2∆ψ+∆φ)−2 = 1 . (4.24)

By comparing the frequency dependent parts we obtain the first condition on the
conformal dimensions:

2∆ψ + ∆φ = 1 . (4.25)

As a side note, under this condition the saddle point equations have the conformal
symmetry, very analogous to the original SYK model:

Gψ(τ, τ ′) = |f ′(τ) f ′(τ ′)|∆ψ Gψ (f(τ), f(τ ′)) , (4.26)

Gφ(τ, τ ′) = |f ′(τ) f ′(τ ′)|∆φ Gφ (f(τ), f(τ ′)) ,

where f(τ) a smooth function (in one dimension Conf(R) ∼= Diff(R)). To obtain
results for finite temperature we use this symmetry with f being the exponential
map for example.
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4 A new class of SYK-models

Coming back to (4.23), we can obtain another constraint by taking the quotient,
which yields the (transcendental) equation:

N

M
tan(π∆ψ) tan(2π∆ψ) = 2(1 − 4 ∆ψ)

1 − 2∆ψ
. (4.27)

This result, for M = N , is also obtained in [41]. In [183] it is also shown for M 6= N ,
albeit in a different form. The second condition, (4.27), can also be recast to an
equation for ∆φ using (4.25):

−4 + 2
∆φ

− N

M

tan(π∆φ)
tan( 1

2π∆φ)
= 0 . (4.28)

4.2.1.1 The case M = N

First we solve (4.27) for M being equal to N . This case overlaps with supersymmet-
ric SYK (as commented upon in the introduction) and we find the same solutions
as in [41]. The first solution is given by:

∆ψ = 1
6 ,

∆φ = 2
3 , (4.29)

A2B = 1
6π J

√
3
.

We label this solution as the ‘rational’ solution. In the supersymmetric model this
solution is the one that preserves supersymmetry. In that case, the supersymmetric
Ward identity Gφ = ∂τGψ, together with (4.17) implies ∆φ = ∆ψ+ 1

2 [41], obviously
obeyed by (4.29).
There is another solution with positive conformal dimensions, it is however irra-
tional:

∆ψ = 0.350585... ,

∆φ = 0.29883... , (4.30)

A2B = 0.589161...
4πJ .

As one can easily check this does not satisfy ∆φ = ∆ψ + 1
2 and hence would break

supersymmetry. A similar situation arises in [185] where there are also two solutions,
one preserving and one breaking the supersymmetry.
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Figure 4.3: This figure shows the conformal dimensions as a function of M/N .
The two solutions are labelled by their (ir)rational behaviour at M = N (which
may differ for other values), see (4.29) and (4.30). The green line represents
this point where M/N = 1.

4.2.1.2 Arbitrary M and N

Let us now vary the ratio M/N and find the conformal dimensions as a function of
this ratio. We solve (4.27) numerically and show the results in Figure 4.3. There
are two branches (or families) of solutions, labelled by their behaviour at M = N .
The rational solution was also found in [183].

When M/N becomes large the rational and irrational flow to the same point. This
can be understood by considering the defining equations (4.27) and (4.28). When
one takes the limit of M/N going to infinity there is only one solution left:

∆ψ = 1
4 ,

∆φ = 1
2 .

(4.31)

This is an interesting point, since we find that the conformal dimension of the
fermion is exactly that which one finds in the original SYK model [37]. In particular
they find that the conformal dimension for an arbitrary number of interactions
qSYK is given by 1

qSYK
. Let us consider our model with q interactions as described

in appendix 4.A. We derive there the relation (q − 1) = 1
2qSYK and furthermore
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4 A new class of SYK-models

that the solution for ∆ψ in the general q case (4.90):

∆ψ = 1
2(q − 1) = 1

qSYK
. (4.32)

We find thus in the M/N → ∞ limit that we obtain the same behaviour as SYK,
and conclude that the two models have the same infrared fixed point.

The behaviour for small M/N can be understood by taking the small M/N limits
in the defining equations. This is equivalent to considering the limit N/M going to
infinity in (4.28). Consider the following two limits:

lim
∆φ→ 1

tan (π∆φ)
tan

(
π
2 ∆φ

) = 0 , lim
∆φ→ 0

tan (π∆φ)
tan

(
π
2 ∆φ

) = 2 . (4.33)

Applying these in (4.28) shows us that for small M/N we either need to consider the
case where ∆φ is very small or the case where it goes to one. The latter corresponds
to the rational family. For the irrational ∆φ � 1 case we find from (4.28) that for
small M/N it behaves as:

∆φ = M

N
. (4.34)

The corresponding dimensions for the fermion can be found by (4.25). Lastly let us
investigate the rational ∆ψ for small M/N . Observing Figure 4.3, we assume that
∆ψ is small and consider (4.23) and (4.27). We can then solve as follows:

A2B = 1
4πJ , ∆ψ = 1

π

√
M

N
. (4.35)

The solution corresponding with ∆ψ going to zero might be understood from
Figure 4.1, since in this limit the right diagram corresponding with the self energy
corrections to the fermion vanishes. We then expect the fermion to reduce to its
free propagator, i.e. with ∆ψ = 0. Such an argument can however not be made for
the case where instead ∆φ goes to zero.

4.3 Dominant saddle

In this section we will investigate the dominant saddle by comparing the entropies
of both solutions for arbitrary M/N . For the case M/N = 1 in the rational branch,
we can do the computation analytically. For the computation we will follow [41]
and use the model for a q-interaction (meaning a vertex with one boson and q − 1
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4.3 Dominant saddle

fermions, with q odd), see appendix 4.A for an overview of the changes. The free
energy becomes

log(Z)
N

= log pf (∂τ − Σψψ(τ)) − M

2N log det (−1 − Σφφ(τ))

− 1
2

∫
dτ1dτ2

[
Σψψ(τ1, τ2)Gψψ(τ1, τ2) + M

N
Σφφ(τ1, τ2)Gφφ(τ1, τ2)

−J
√
M

N
Gφφ(τ1, τ2)Gq−1

ψψ (τ1, τ2)

]
.

(4.36)

Now we derive with respect to q (we continue the values of q to the reals) such
that we don’t have to evaluate the first terms. We take the fields to be on-shell
such that we only need to explicitly take the partial derivative of the last term

∂q
log(Z)
N

= J

2

√
M

N

∫
dτ dτ ′Gφ(τ − τ ′) log (Gψ(τ − τ ′)) Gq−1

ψ (τ − τ ′) , (4.37)

where we take the Gs to be the finite temperature versions that we obtained in
(4.26):

Gψ(τ) = A sgn(τ) ,

 π

β sin
(
πτ
β

)
2∆ψ

, Gφ(τ) = B

 π

β sin
(
πτ
β

)
2∆φ

.

(4.38)
The integral can then be computed straightforwardly (using the periodicity in the
τ variables):

∂q
log(Z)
N

=
√
M

N

J

2A
q−1 B π2 [2∆ψ + β C] , (4.39)

where C is a constant independent of β. The constant C is a diverging quantity
independent of q contributing to the ground state energy, but will not contribute
to the zero temperature entropy, similar to the scenario in [41]. It is important
to note that apart from the overall factor, the M/N dependence is also in Aq−1B

((4.88)) and the conformal dimension ∆ψ (Figure 4.3).

The zero temperature entropies SR and SI are labelled by their rational or irrational
origin, see (4.29) and (4.30) respectively, and given by:

Si

N
= J π2

√
M

N

∫
dq Aq−1 B∆i

ψ , (4.40)
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4 A new class of SYK-models

where then i ∈ {I,R}, depending on the branch we consider. We will call the
integrands (including the constants) also i(q) and r(q). The expression for Aq−1B

is shown in (4.88) and is also dependent on the conformal dimensions. Since we
don’t know the analytical expressions for ∆ψ at arbitrary M/N we will solve this
problem numerically and afterwards fit these as a function of q. In particular we
proceed as follows:

• Fix a value for M/N

• Solve ∆R
ψ and ∆I

ψ numerically

• Fit these conformal dimensions as a power series in 1
q

• Find the irrational integrand i(q) and the rational integrand r(q)

After we have the integrands we can compare both the entropies by integration.
There are a couple remarks regarding the power series for the ∆ψ. First of all, we
already obtain good fits for the numerical solution when going up to order 1/q4.
Secondly, the leading power of all the numerically computed ∆ψ behave as 1

2q . In
order to illustrate the described process we will first work it out for a particular
value M/N ≈ 10−1. As it turns out the other values of M/N follow qualitatively
the same behaviour. Afterwards we have a short discussion for M/N = 1, in which
case there is some more analytical control for the rational case.

4.3.1 An example: M/N ≈ 10−1

We have done the above procedure for a range of values of M/N , in particular at
M/N being of order 10−2, 10−1, 1, 101 and 102. As it turns out the behaviour is
very similar at all of these values, so let us just describe one of them, 10−1.

Having fixed the value of M/N and proceed with the next step, to solve the equation
for ∆ψ as a function of q (see (4.90)):

N

M
tan(π∆ψ) tan(π(q − 1)∆ψ) = (q − 1)1 − 2(q − 1)∆ψ

1 − 2∆ψ
. (4.41)
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Figure 4.4: This plot shows the conformal dimension ∆ψ for both the irrational
and the rational case as a function of q. The points indicate the numerical
values, whilst the lines are the fits found in (4.42). We only show a small
amount of these points such that the fits can be clearly distinguished. As can be
seen, the power series up to 1/q4 describes the results with high accuracy.

This equation is first solved numerically for both branches. Afterwards we fitted
the data with the following power series:

∆R
ψ = 0.500 . . .

q
− 0.507 . . .

q2 + 0.127 . . .
q3 + 0.163 . . .

q4 + O
(

1
q5

)
, (4.42)

∆I
ψ = 0.500 . . .

q
+ 1.477 . . .

q2 + 3.723 . . .
q3 − 3.936 . . .

q4 + O
(

1
q5

)
. (4.43)

The results can be seen in Figure 4.4. Note that we plotted only a small region of q
for clarity, we solved all the cases from q = 3 at least up to q = 300; in the plot we
only show some of these data points for clarity.

As mentioned before, we can see that both the ∆ψ have a leading order term equal
(to our numerical precision) to 1

2q . Motivated by this numerical result and the exact
analytical result for M/N = 1 (which we discuss in the next section) we take the
leading coefficient to be 1

2q for both the rational and irrational cases. It means that
in the strict q → ∞ limit the two branches coincide, and we can already expect
their entropies to be the same in that limit. This might have been expected, since
the large q limit in (supersymmetric) SYK is a limit in which the models become
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4 A new class of SYK-models

solvable with self energies proportional to 1/q [41]. In the strict q → ∞ limit, the
model becomes a free theory in which it is exactly solvable, and there should clearly
not be any difference between the branches.

Let us now compute the integrands from (4.40), which we first do numerically and
then compare those with the obtained fits. We show the results in Figure 4.5. For
clarity we show again only a subset of the computed q values. It becomes clear
that i(q) > r(q) (which also holds outside the plotted range of q), i.e. the slope of
the irrational entropy is always larger than the rational one. We can then expand
the integrands for large q to find also the leading behaviour of the actual entropies.
This yields (we plugged in the expression for Aq−1B):

i(q) = π

2

(
1 − 2 ∆I

ψ

)
tan

(
π∆I

ψ

)
q − 1 ∆I

ψ ≈ 1.233 . . .
q3 + 7.388 . . .

q4 + O
(

1
q5

)
, (4.44)

r(q) = π

2

(
1 − 2 ∆R

ψ

)
tan

(
π∆R

ψ

)
q − 1 ∆R

ψ ≈ 1.233 . . .
q3 − 2.456 . . .

q4 + O
(

1
q5

)
.

(4.45)

The fact that the first terms are the same is no coincidence, it arises from the equality
of the leading order terms in (4.42). Now we can find the entropies behaviour at
large q:

1
N

(
SR − SI

) q�1
≈ 3.281 . . .

q3 + O
(

1
q4

)
. (4.46)

The first thing to notice is that we find in the strict q → ∞ that the entropies
coincide. Apart from this we see that for q � 1 (where the above approximation is
valid) the entropy of the rational branch dominates the one of the irrational branch.
But we can extend this now to arbitrary q, using the behaviour of the derivatives of
the entropies (i(q) and r(q)). The numerical results shown in Figure 4.5 show that
i(q) > r(q). This means that the slope of the rational entropy is always smaller
than the irrational one and hence we have SR > SI for all (finite) q, indicating
that the rational branch is the dominant saddle.

4.3.2 Other M/N values

The procedure outlined in the previous section we have followed also for the other
values of M/N around 10−2, 101 and 102. As it turns out the behaviour is always
(qualitatively) similar. We indeed find that the rational branch is the dominant
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Figure 4.5: Here we show the integrands from (4.40) for both branches. The
dots indicate the numerical evaluation of these quantities, whilst the solid lines
indicate the integrands with the fitted ∆ψ behaviour of q. We only plot a subset
of the computed q values for clarity.

saddle for all the M/N values. The larger the value of M/N the smaller the
difference between the entropies becomes. This can be deduced from Figure 4.3,
where the branches flow to the same point as we increase M/N . Let us in this
section mention the M/N = 1 case, where we have more analytical control for the
rational branch.

Let us first consider this rational branch: in this case we can always solve the exact
dependence of the conformal dimension on q (see appendix 4.A):

∆R
ψ = 1

2q , (4.47)

which coincides with the leading order behaviour that we found for other M/N

values. Plugging this expression for the conformal dimension into the integrand
r(q), see (4.40), yields

r(q) = π

4q2 tan
(
π

2q

)
, (4.48)

and hence we can compute the zero temperature entropy for the rational case:

SR

N
= 1

2 log
(

cos
(
π

2q

))
+ C . (4.49)
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To fix the integration constant C we will consider the limit q → ∞. We can follow
exactly [41], section II.C. There the results in a large q expansion are obtained:

Gψ = 1
2 sgn(τ) + 1

2q gψ(τ) , (4.50)

Gφ = −δ(τ) + 1
2q gφ(τ) , (4.51)

logZ
N

= 1
2 log 2 + 1

4q2

(
−v2

4 + v tan v2

)
. (4.52)

Note that v is an integration constant related to βJ [41]. The q → ∞ limit reduces
the model to free fermions. It also allows us to fix the constant C since:

lim
q→∞

1
2 log

(
cos
(
π

2q

))
= 0 , (4.53)

which, in combination with (4.49), yields

lim
q→∞

SR

N
= C = 1

2 log 2 , (4.54)

where we used the above observation that it should reduce to a free fermion entropy
in this limit. We will see that the irrational entropy also behaves similarly as
C2 + f

(
1
q

)
and hence for q → ∞ we find that it has the same integration constant,

i.e. C2 = C.

Just as in the M/N 6= 1 cases, we can’t solve analytically the q dependence of
the irrational solution. We did manage to find a good fit by ∆I

ψ = − 1
2q + 1

q−1 ,
which matches the numerical results well. Note it also reduces to 1

2q for large q. In
Figure 4.6 we plot the numerical results for both the rational and irrational cases.
To conclude which of the entropies is bigger (i.e. which is the dominant saddle) we
will investigate again the integrands as a function of q, see Figure 4.7. From this
plot we can see that the irrational integrand is (as in all the M/N cases) bigger
than the rational one and as q increases their difference decreases.

We now investigate the behaviour for large q. By using the approximate solution
(see Figure 4.6) we can obtain an expression for i(q) at large q. This is done by
using the approximate solution in the integrand and expanding:

i(q) q�1=
π(q + 1)((q − 2)q − 1) tan

(
π(q+1)
2(q−1)q

)
4(q − 1)3q2 = π2

8q3 + π2

2q4 + O
(

1
q5

)
. (4.55)
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Figure 4.6: Here we plot the dependence of the conformal dimensions on the
number of interactions q. Although we do not have the exact results for the
irrational case, it is well approximated by the guessed solution in green. it can
be seen that for large enough q the solutions approach one another.
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Figure 4.7 This plot shows the dependence of the integrands at M/N = 1 on the
number of interactions q. We can see that the irrational integrand (i(q)) is
larger than the rational one (r(q)).
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From this we can find the leading order behaviour in the difference between the
entropies:

1
N

(
SR − SI

) q�1
≈ π2

6q3 + O
(

1
q4

)
, (4.56)

where the integration constants cancelled each other, such that only q dependent
terms remain (recall that as q → ∞ we should obtain the free fermion entropy).
We also used the rational entropy behaviour for large q, which can be obtained
from (4.49):

1
2 log

(
cos
(
π

2q

))
= − π2

16q2 − π4

384q4 + O
(

1
q5

)
. (4.57)

We can then conclude that for large q: SI < SR. Further more since the slope of
SR is always smaller than that of SI (since i(q) > r(q)) we find that this conclusion
holds for any q. So, as for the other values of M/N , we find that the rational
branch is the dominant saddle.

4.4 Chaos

In this section we will investigate the chaos or Lyapunov exponent of the model
as a function of the ratio M/N . We will first review shortly the basics of such
a computation and then move on to our model. The main tool for quantifying
quantum chaos are so called Out of Time Order Correlators (OTOC) [171,186–189].
For a more elaborate review of chaos and calculating these correlators see chapter
8 in [42], the first section of [34] and a discussion in [184].

From a quantum mechanical point of view we can take two arbitrary Hermitian
operators V and W and consider the commutator [W (it), V (0)] (with real time
t ∈ R). The argument of the operator is imaginary since we consider it to be
Euclidean time, as will be the case for our operators later on. The commutator
describes the influence of small changes of V on later measurements of W (or the
other way around). One particular indicator of these effects of chaos, which we will
also use, puts the operators on the thermal circle [34]:

〈 [V (0),W (it)] [V (β/2) ,W (β/2 + it)] 〉 , (4.58)

where the brackets 〈〉 denote the thermal trace, the precise factors of β will not be
important for us. For late enough times t (to be precise, between the dissipation
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and scrambling time [34]), quantum chaos dictates that this correlator will grow
exponentially. By considering all the terms that arise in the above correlator one can
show [34] that the exponential growth of the correlator arises due to the exponential
behaviour of the related correlator:

F (t) = 〈V (0)W (β/4 + it)V (β/2)W (3β/4 + it) 〉 . (4.59)

These out of time order correlators F (t) are usually studied in the context of
quantum chaos, and we will use these as well. Schematically the OTOC (4.59)
behaves as [34,42,188]:

F (t) = 1 − 1
N
eλLt + . . . (4.60)

The exponent λL is called the Lyapunov exponent and it quantifies the chaos of the
system. In the coming section our goal is to extract this Lyapunov exponent from
the OTOCs. In general one can follow two approaches. The most obvious one is to
compute the full four point function and continue these Euclidean correlators to
real time. An easier option, however, is to consider the so called retarded kernel and
its eigenfunctions [33,37,188]. In the context of ladder diagrams, kernels are the
operators that add one more ladder to the diagram. For the OTOCs it has to be the
retarded kernel due to the complex time contours specified by OTOCs similar to
(4.58). For a review of this procedure including the complex time contours, ladder
diagrams and the application to ordinary SYK see [42].

The key idea of this procedure is to consider an exponentially growing OTOC on
which the kernel(s) are acting. Under the assumption of this exponential growth
one can find that it is precisely the eigenfunctions of the kernel with eigenvalue one
that govern the chaotic behaviour. More intuitively, the growth rate of OTOC is
determined by the demand that adding another ladder should not change the total
sum. In the rest of this section we explain this procedure in more detail.

4.4.1 Retarded kernels

Let us now turn to our model and consider the four point functions (or OTOCs)
that we want to compute. We will consider the four point functions 〈ψ ψ ψ ψ 〉,
〈ψ ψ φφ 〉, 〈φφψ ψ 〉 and 〈φφφφ 〉. This is because acting with kernels on these
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t1 t3

t2 t4

(a) K11 kernel

t1 t3

t2 t4

(b) K21 kernel

t1 t3

t2 t4

(c) K12 kernel

Figure 4.8: Here we show the relevant kernels for the chaos computation. The
subscripts of the kernels denote that they are elements of a matrix. The total
matrix acts on a vector consisting of diagrams which starts with either two ψ

or two φ lines.

diagrams will result in mixing between them and hence we can not consider them
separately. The explicit OTOCs we will consider are of the form:

Fψψ(t1, t2) = Tr [y ψ(t1) y ψ(0) y ψ(t2) y ψ(0)] , (4.61)

where y is defined as y4 = ρ(β). Diagrammatically these OTOCs are four point
functions (ladder diagrams) with an arbitrary large amount of rungs. The other
combinations of ψ and φ listed above have similar expressions and are denoted by
Fψφ, Fφψ and Fφφ. The two subscripts of Fij denote the two incoming and two
outgoing species, respectively.

Let us now consider all the (retarded) kernels necessary for our model, which we
draw in Figure 4.8. Note that there is no kernel K22 since there is no such interaction
in the Lagrangian. It then becomes clear that acting with the K12 and K21 kernels
causes mixing between the four point functions. To get expressions for them we
need first the necessary propagators in the diagrams. For the horizontal propagators
we need the retarded ones (due to the complex time contours, see [42]):

GψR(t) =
(
〈ψi(it)ψi(0)〉 + 〈ψi(0)ψi(it)〉

)
θ(t) , (4.62)

GφR(t) = (〈φa(it)φa(0)〉 − 〈φa(0)φa(it)〉) θ(t) .

Recall that the arguments are imaginary since we consider complex Euclidean time.
We can then use the finite temperature two point functions from (4.38) (at τ > 0)
to find:

GψR(t) = 2A cos(π∆ψ)π2∆ψ(
β sinh

(
πt
β

))2∆ψ
θ(t) . (4.63)
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And similarly for φ:

GφR(t) = −2i B sin(π∆φ)π2∆φ(
β sinh

(
πt
β

))2∆φ
θ(t) . (4.64)

Lastly we need the ladder rung (lr) propagator,1 which is obtained by simply
continuing the Euclidean propagator τ 7→ it+ β

2 :

Gxlr(t) = bx
π2∆x(

β cosh
(
πt
β

))2∆x
. (4.65)

Here x denotes ψ or φ and bx denotes A or B respectively. The form of this
propagator is the same for fermions and scalars since we only need to consider
τ > 0 here.
We can then write down the expressions for the kernels. Note that each vertex gets
a factor i from inserting it on a Lorentzian time fold in the contour and apart from
this we also give K11 and K21 an additional minus sign due to the ordering of the
contour (see also [44,190]). The resulting form of the kernels is:

K11 = 2
√
M

N
J GψR(t13)GψR(t24)Gφlr(t34) ,

K12 = −2
√
M

N
J GψR(t13)GψR(t24)Gψlr(t34) , (4.66)

K21 = 2
√
N

M
J GφR(t13)GφR(t24)Gψlr(t34) .

The times tij = ti − tj are shown in Figure 4.8.

4.4.2 Integral matrix equation

Now that we have obtained the retarded kernels we go back to our four out of time
order correlators. All together they obey an integral matrix equation as shown
in Figure 4.9, this is a generalization of the one particle version seen for example
in [42]. In the figure we have put all the OTOCs in a four component vector seen
on the very left (and right) side. These are exactly the OTOCs we named Fψψ,
Fψφ, Fφψ and Fφφ before. Our (drawing) conventions are such that for the very

1These are also called left-right propagators since often the ladder diagrams are drawn verti-
cally instead of horizontally, in which case the ladder rung propagates from left to right.
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0

0
= +

0

0

0

0 0

0

0 0

0 0

Figure 4.9: Here we show the matrix integral equation that the OTOCs obey.
The black boxes indicate the arbitrary large amount of rungs in the ladder dia-
grams. The very left vector consists out of all the OTOCs, the first vector on
the right hand side denotes the zeroth order contributions to these and the last
term is the kernel acting upon the vector of the four point functions. The matrix
product also includes a convolution between the kernels and the OTOCs. Notice
that the 4 × 4 kernel matrix has a 2 × 2 block diagonal structure.

left vector the times t1 and t2 are on the top left and bottom left of each four point
function, respectively.

The first vector on the right hand side denotes the free contributions to the four
point functions. Clearly Fψφ and Fφψ don’t have these since there is no such free
propagator. The matrix consists out of the retarded kernels discussed above and
depicted in Figure 4.8. Note that the matrix product in the last term also has an
implicit convolution (which we will explicitly compute later on).

Quantum chaos implies that for late enough times these OTOCs will show expo-
nentially growing behaviour, as discussed shortly in the introduction of this section.
So let us make the following exponential growth ansatz:

Fij(t1, t2) = fij(t1 − t2) e
λL

2 (t1+t2) , (4.67)

where i, j can denote ψ or φ and fij denote functions of the time difference. Under
the assumption of exponential growth the matrix equation Figure 4.9 will simplify
due to suppression of the zeroth order contributions. In fact, as one can easily
check, the free diagrams will exponentially vanish compared to the exponential
growth of the other terms. We are then left with the following equation:

Fψψ

Fφψ

Fψφ

Fφφ

 =


K11 K12 0 0
K21 0 0 0

0 0 K11 K12

0 0 K21 0



Fψψ

Fφψ

Fψφ

Fφφ

 . (4.68)
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The F s now obey the ansatz (4.67) and the matrix multiplication still involves the
convolutions. However, we see that the problem can in fact be reduced to two
identical problems because of the block diagonal structure. Hence we don’t have
to refer to the outgoing lines of the OTOCs (the second subscript of the Fij) and
consider simply: (

Fψ

Fφ

)
=
(
K11 K12

K21 0

)(
Fψ

Fφ

)
. (4.69)

This leads to the following equations:

Fψ(t1, t2) =
t1∫

−∞

dt3

t2∫
−∞

dt4[K11(t1, t2; t3, t4)Fψ(t3, t4) (4.70)

+K12(t1, t2; t3, t4)Fφ(t3, t4)] ,

Fφ(t1, t2) =
t1∫

−∞

dt3

t2∫
−∞

dt4 K21(t1, t2; t3, t4)Fψ(t3, t4) , (4.71)

where we have now explicitly written out the convolutions. The two equations are
mixed and can be combined to give:

Fψ(t1, t2) = (K11 ∗ Fψ)(t1, t2) + (K12 ∗ (K21 ∗ Fψ))(t1, t2) . (4.72)

4.4.3 Lyapunov exponents

To actually solve the integrals we need to find the functions fi(t12) in (4.67)
such that (4.69) is satisfied. We take the following form of the functions, similar
to [37,42,44,190]:

Fψ(t1, t2) = Cψ
e−πh

β (t1+t2)(
β
π cosh

(
πt12
β

))2∆ψ−h , (4.73)

Fφ(t1, t2) = Cφ
e−πh

β (t1+t2)(
β
π cosh

(
πt12
β

))2∆φ−h .

Here the Ci denote non-zero real constants, and we have h as the free exponential
growth parameter. The Lyapunov exponent can be found by λL = − 2πh

β .
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The crucial integral for the computations is as follows2

t1∫
−∞

dt3

t2∫
−∞

dt4 (fs(t13) fs(t24)) 2
d fc(t34)2− 2

d−h e−πh
β (t3+t4) =

=
Γ
(
d−2
d

)2 Γ
( 2
d − h

)
Γ
(
−h− 2

d + 2
) fc(t12) 2

d−h e−πh
β (t1+t2) ,

(4.74)

where d is, for now, variable and we have defined

fs(tij) = π

β sinh
(
πtij
β

) , fc(tij) = π

β cosh
(
πtij
β

) . (4.75)

Using the above integral identity we can then calculate the following integrals,
reminiscent of eigenvalue equations:∫

dt3 dt4 K11(t1, t2; t3, t4)Fψ(t3, t4) = k11 F
ψ(t1, t2) ,∫

dt3 dt4 K12(t1, t2; t3, t4)Fφ(t3, t4) = Cφ
Cψ

k12 F
ψ(t1, t2) ,∫

dt3 dt4 K21(t1, t2; t3, t4)Fψ(t3, t4) = Cψ
Cφ

k21 F
φ(t1, t2) .

(4.76)

The eigenvalues kij are found to be

k11 = 8
√
M

N
J A2B cos2

(π
d

) Γ
(
d−2
d

)2 Γ
( 2
d − h

)
Γ
(
−h− 2

d + 2
) ,

k12 = −8
√
M

N
J A3 cos2

(π
d

) Γ
(
d−2
d

)2 Γ
( 2
d − h

)
Γ
(
−h− 2

d + 2
) ,

k21 = −8
√
N

M
J AB2 sin2

(
π

(
1 − 2

d

)) Γ
( 4
d − 1

)2 Γ
(

2 (d−2)
d − h

)
Γ
( 4
d − h

) .

(4.77)

where, importantly, d is now fixed by virtue of our expressions for F and G as

d = 1
∆ψ

(4.78)

We can now use the above kij along with (4.76) in the integral equation (4.72), to
get:

Fψ(t1, t2) = (k11 + k21 k12)Fψ(t1, t2) . (4.79)
2As a side note, one could use substitutions of the form z = eiτ to simplify the integrals,
making it easier to solve them. This is done in e.g. [37, 42].
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Of course, one could also have used the eigenfunctions ((4.76)) first in (4.70) and
afterwards solved the mixing. Either way the equation resulting from the chaos
regime is:

k11 + k21 k12 = 1 . (4.80)

We pick then some fixed M/N (which fixes ∆ψ and A2B) and numerically solve
this equation for the Lyapunov exponent λL = − 2π h

β , which yields the solution
h = −1. As it turns out, for h = −1 all the M/N dependence drops out and we
find in fact maximal chaos for all values of M/N :

λL = 2π
β

. (4.81)

Motivated by these numerical results we analytically checked whether k11+k21 k12 =
1 for h = −1. To do so we use the identities from (4.21) and also the following:

sin(πz) = π

Γ(z) Γ(1 − z) . (4.82)

Using these identities and the expressions for A2B, we obtain the following simplified
expressions, valid at h = −1:

k11 = ∆ψ

1 − ∆ψ
, (4.83)

k12 k21 = 1 − ∆ψ

1 − ∆ψ
. (4.84)

Hence even though k11 and k12 k21 individually depend on M/N (since ∆ψ does),
the combined result exactly cancels.

Lastly let us shortly mention another method of obtaining the chaos, outlined
in [44,190]. In these articles the approach is to take the matrix of kernel eigenvalues,
the kij , and diagonalize it. Afterwards one of the eigenvalues is set to one. Let us
consider this matrix: (

k11 k12

k21 0

)
, (4.85)

for which the resulting eigenvalues are k± = 1
2

(
k11 ±

√
k2

11 + 4 k21 k12

)
. The

growing behaviour is found when k+ = 1, which amounts to k11 + k21k12 = 1,
consistent with our method.
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4.5 Discussion

In this article we have investigated new SYK-like models with M bosons and N

fermions. The parameter M/N determines the behaviour of the model and for
M = N our model is related to the supersymmetric SYK model. We have found that
there are two families of solutions in the model, distinguished by their conformal
dimensions which we plotted as a function of M/N in Figure 3. For M = N the
rational solution coincides with the supersymmetric solution found in [41]. Another
interesting regime is the M/N → ∞ limit. We have shown that the solution of the
fermionic conformal dimension in this limit is given by:

∆ψ = 1
qSYK

.

This shows us that in this limit our model and SYK have the same behaviour, i.e.
they have the same infrared fixed point.
We have shown that the rational branch is the dominant saddle for arbitrary values
of M/N (and arbitrary q) . For the generic values of M/N we have shown this
by first solving the problem numerically and then fitting it (with high accuracy).
When M = N it can be done in a more analytical manner.

Apart from this we investigated the Lyapunov exponent and found it to be λL = 2πT ,
independent of M/N . This is due to some non trivial cancellations in the M/N

dependences. Due to the maximal chaos the model has a holographic interpretation
as a black hole. It would be interesting to understand the role of M/N in this
holographic description. Concretely it would be interesting to find the Schwarzian
for this model, in particular the coefficient in front of the Schwarzian action, related
to the heat capacity, and its dependence on M/N .

Appendices

4.A The model for a q-point interaction

In this appendix we will shortly show how the model and some results change when
we consider an interaction vertex of degree q, so an interaction with one boson and
q − 1 fermions. The integer q is supposed to be odd, but later we will continue it
to arbitrary real values. The model we consider in the main text has q = 3. When
we apply this, the coupling i

2Caijφ
aψiψj goes to i

(q−1)!Cai1i2...iq−1φ
aψi1 ...ψiq−1 .
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Integrating out the bosons would lead to a Hamiltonian with a vertex containing
2(q−1) fermions. One can thus relate this to the interaction parameter qSYK in [37]
by (q − 1) = 1

2qSYK. The disorder average is now chosen as follows:

〈C2〉 = (q − 1)!J
N−3/2+qM1/2 . (4.86)

Once again we can take the conformal form (see (4.17)) for the two point functions.
By following the computations done for the q = 3 case we find that the conformal
symmetry is present under the condition that (compare to (4.25)):

∆φ + (q − 1)∆ψ = 1 . (4.87)

The equations for the constants in the two point functions, Aq−1B, yield (compared
to (4.23)):

Aq−1B =
√
N

M

(1 − 2∆ψ) tan(π∆ψ)
2π(q − 1)J , (4.88)

Aq−1B =
√
M

N

(1 − 2(q − 1)∆ψ)
2πJ tan(π(q − 1)∆ψ) . (4.89)

The resulting transcendental equation for the conformal dimensions reads:

N

M
tan(π∆ψ) tan(π(q − 1)∆ψ) = (q − 1)1 − 2(q − 1)∆ψ

1 − 2∆ψ
. (4.90)

One may check that the rational value ∆ψ = 1
2q is a solution atM = N . Furthermore

as we take the limit M/N → ∞ we see that we find the solution:

∆ψ = 1
2(q − 1) . (4.91)

Using the above found relation (q−1) = 1
2qSYK we see that this is equal to 1

qSYK
.
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Part III

Quark-Gluon Plasmas

The third part of the thesis concerns magnetohydrodynamics at heavy ion collisions.
In particular, we discuss heavy ion collisions in the presence of strong electromagnetic
fields. During the heavy ion collisions a quark-gluon plasma is formed, and we study
how its expansion is affected by the electromagnetic fields by investigating flow coef-
ficients. This is done using a combination of semi analytical and numerical methods.

201





Chapter 5

Magnetohydrodynamics at Heavy Ion Col-
lisions

In the beginning the Universe was created. This has made many people
very angry and has been widely regarded as a bad move.

– Douglas Adams, The Restaurant at the End of the Universe

Shortly after the big bang, up to a few microseconds afterwards to be more precise,
the universe is thought to have been in a quark gluon plasma state. It is no surprise
then, that such plasmas are widely studied, mostly in order to investigate the early
nature of the universe.1 In this chapter we will discuss such quark gluon plasmas,
which also arise in heavy-ion collisions. In particular, we will investigate them in
the presence of large electromagentic fields, which are present during the heavy-ion
collisions. We will be studying very practical aspects of the quark gluon plasma
(QGP) and its expansion. This also means that we will have a more vague link
to black hole physics, which we have so far been discussing in the thesis. There
is, however, a relation by the AdS/QCD correspondence. Similar to the SYK
model of the previous chapter, it is expected that the field theory (in this case
QCD) has a gravitational dual. This was also the point of study in [31], where the
authors managed to compute quantities relevant for the QGP using five-dimensional
black hole physics. Furthermore, there is a correspondence between fluids and
gravity [191]. In essence this correspondence tells us that the holographic description
of fluids can be recast to the hydrodynamic gradient expansion.

A quick overview of this chapter: we will start by a long introduction, in which
we explain the different kinds of electromagnetic fields are present in non-central
1The quark gluon plasma might also exist in other places, such as the interior of neutron stars.
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heavy-ion collisions. In the second section we discuss the numerical model setup, the
computation of the electromagnetic fields and the different hydrodynamic flows we
will compute. In the result section, we show the different flows and their dependence
on parameters used in the model.

5.1 Introduction

In fact, large magnetic fields ~B are produced in all non-central heavy-ion collisions
(those with nonzero impact parameter) by the moving and positively charged
spectator nucleons that “miss”, flying past each other rather than colliding, as
well as by the nucleons that participate in the collision. Estimates obtained by
applying the Biot-Savart law to collisions with an impact parameter b = 4 fm yield
e| ~B|/m2

π ≈ 1-3 about 0.1-0.2 fm/c after a RHIC collision with
√
s = 200 AGeV

and e| ~B|/m2
π ≈ 10-15 at some even earlier time after an LHC collision with

√
s = 2.76 ATeV [56, 192–198]. The interplay between these magnetic fields and

quantum anomalies has been of much interest in recent years, as it has been predicted
to lead to interesting phenomena including the chiral magnetic effect [192, 199] and
the chiral magnetic wave [200,201]. This makes it imperative to establish that the
presence of an early-time magnetic field can, via Faraday’s Law and the Lorentz
force, have observable consequences on the motion of the final-state charged particles
seen in the detectors [56]. Since the plasma produced in collisions of positively
charged nuclei has a (small) net positive charge, electric effects – which is to say the
Coulomb force – can also yield observable consequences to the motion of charged
particles in the final state. These electric effects are distinct from the consequences
of a magnetic field first studied in Ref. [56], but comparable in magnitude. Our goal
in this chapter will be a qualitative, perhaps semi-quantitative, assessment of the
observable effects of both magnetic and electric fields, arising just via the Maxwell
equations and the Lorentz force law, so that experimental measurements can be
used to constrain the strength of the fields and to establish baseline expectations
against which to compare any other, possibly anomalous, experimental consequences
of ~B.

In previous work [56] three of the authors noted that the magnetic field produced in
a heavy-ion collision could result in a measurable effect in the form of a charge-odd
contribution to the directed flow coefficient ∆v1. This contribution has the opposite
sign for positively vs. negatively charged hadrons in the final state and is odd
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in rapidity. However, the authors of [56] neglected to observe that a part of this
charge-odd, parity-odd effect originates from the Coulomb interaction. In particular
it originates from the interaction between the positively charged spectators that
have passed by the collision and the plasma produced in the collision, as will be
explained in detail below.

The study in Ref. [56] was simplified in many ways, including in particular by
being built upon the azimuthally symmetric solution to the equations of relativistic
viscous hydrodynamics constructed by Gubser in Ref. [202]. Because this solution
is analytic, various practical simplifications in the calculations of Ref. [56] followed.
In reality magnetic fields do not arise in azimuthally symmetric collisions. The
calculations of Ref. [56] were intended to provide an initial order of magnitude
estimate of the ~B-driven, charge-odd, rapidity-odd contribution to ∆v1 in heavy-ion
collisions with a nonzero impact parameter, but the authors perturbed around
an azimuthally symmetric hydrodynamic solution for simplicity. Also, the radial
profile of the energy density in Gubser’s solution to hydrodynamics is not realistic.
Here, we shall repeat and extend the calculation of Ref. [56], this time building
the perturbative calculation of the electromagnetic fields and the resulting currents
upon numerical solutions to the equations of relativistic viscous hydrodynamics
simulated within the iEBE-VISHNU framework [203] that provide a good description
of azimuthally anisotropic heavy-ion collisions with a nonzero impact parameter.

The idea of Ref. [56] is to calculate the electromagnetic fields, and then the
incremental contribution to the velocity fields of the positively and negatively
charged components of the hydrodynamic fluid (aka the electric currents) caused
by the electromagnetic forces, in a perturbative manner. A similar conclusion have
been reached in [204] and [205]. One first computes the electric and magnetic fields
~E and ~B using the Maxwell equations as we describe further below. Then, at each
point in the fluid, one transforms to the local fluid rest frame by boosting with the
local background velocity field ~vflow. Afterwards one computes the incremental drift
velocity ~vdrift caused by the electromagnetic forces in this frame by demanding that
the electromagnetic force acting on a fluid unit cell with charge q is balanced by
the drag force. One then boosts back to the lab frame to obtain the total velocity
field that now includes both ~vflow and ~vdrift, with ~vdrift taking opposite signs for
the positively and negatively charged components of the fluid. The authors of
Ref. [56] then use a standard Cooper-Frye freeze out analysis to show that the
electromagnetic forces acting within the hydrodynamic fluid result in a contribution
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to the charge-odd directed flow parameter ∆v1 ≡ v1(h+)−v1(h−). We shall provide
the (standard) definition of the directed flow v1 in Section 5.2. The charge-odd
contribution ∆v1 is small but distinctive: in addition to being anti-symmetric under
the flip of charge, it is also antisymmetric under flipping the rapidity. That the
contribution has opposite sign for oppositely charged hadrons is easy to understand:
it results from an electric current in the plasma. The fact that it has opposite sign
at positive and negative rapidity can also easily be understood, as we explain in
Figure 5.1 and below.

As illustrated in Figure 5.1, there are three distinct origins for a sideways push on
charged components of the fluid, resulting in a sideways current:

1. Faraday: as the magnetic field decreases in time (see the bottom panel of
Figure 5.3 below), Faraday’s law dictates the induction of an electric field and,
since the plasma includes mobile charges, an electric current. We denote this
electric field by ~EF . Since ~EF curls around the (decreasing) ~B that points in
the y-direction, the sideways component of EF points in opposite directions
at opposite rapidity, see Figure 5.1.

2. Lorentz: since the hydrodynamic fluid exhibits a strong longitudinal flow
velocity ~vflow denoted by ~u in Figure 5.1, which points along the beam
direction (hence perpendicular to ~B), the Lorentz force exerts a sideways push
on charged particles in opposite directions at opposite rapidity. Equivalently,
upon boosting to the local fluid rest frame in which the fluid is not moving, the
lab frame ~B yields a fluid frame ~E whose effects on the charged components
of the fluid are equivalent to the effects of the Lorentz force in the lab frame.
We denote this electric field by ~EL. Both ~EF and ~EL are of magnetic origin.

3. Coulomb: The positively charged spectators that have passed the collision
zone exert an electric force on the charged plasma produced in the collision,
which again points in opposite directions at opposite rapidity. We denote
this electric field by ~EC . As we noted above, the authors of Ref. [56] did
not identify this contribution, even though it was correctly included in their
numerical results.

As is clear from their physical origins, all three of these electric fields — and the
consequent electric currents — have opposite directions at positive and negative
rapidity. It is also clear from Figure 5.1 that ~EF and ~EC have the same sign, while
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x

z
B

s s

Figure 5.1: Schematic illustration of how the magnetic field ~B in a heavy-ion
collision results in a directed flow of electric charge, ∆v1. The collision occurs
in the z-direction, meaning that the longitudinal expansion velocity ~u of the
conducting QGP produced in the collision points in the +z (−z) direction at
positive (negative) z. We take the impact parameter vector to point in the +x
direction, choosing the nucleus moving toward positive (negative) z to be located at
negative (positive) x. The trajectories of the spectators that “miss” the collision
because of the nonzero impact parameter are indicated by the red and blue arrows.
This configuration generates a magnetic field ~B in the +y direction, as shown.
The directions of the electric fields (and hence currents) due to the Faraday,
Lorentz and Coulomb effects are shown. The two different Coulomb contributions
are indicated, one due to the force exerted by the spectators and the other coming
from Coulomb forces within the plasma. The dashed arrows indicate the direction
of the directed flow of positive charge in the case where the Faraday + spectator
Coulomb effects are on balance stronger than the Lorentz effect. Hence, the total
directed flow in this example corresponds to v1 < 0 (v1 > 0) for positive charges
at spacetime rapidity ηs > 0 (ηs < 0), and opposite for negative charges.
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~EL opposes them. Hence, the sign of the total rapidity-odd, charge-odd, ∆v1 that
results from the electric current driven by these electric fields depends on whether
~EF + ~EC or ~EL is dominant.

In this chapter we make three significant advances relative to the exploratory study
of Ref. [56]. First, as already noted we build our calculation upon a realistic
hydrodynamic description of the expansion dynamics of the droplet of matter
produced in a heavy-ion collision with a nonzero impact parameter.

Second, we find that the same mechanism that produces the charge-odd ∆v1 also
produces a similar charge-odd contribution to all the odd flow coefficients. The
azimuthal asymmetry of the almond-shaped collision zone in a collision with nonzero
impact parameter, its remaining symmetries under x ↔ −x and y ↔ −y, and the
orientation of the magnetic field ~B perpendicular to the beam and impact parameter
directions together mean that the currents induced by the Faraday and Lorentz
effects (illustrated in Figure 5.1) make a charge-odd and rapidity-odd contribution
to all the odd flow harmonics, not only to ∆v1. We compute the charge-odd
contribution to ∆v3 in addition to ∆v1 in this chapter.

Last but not least, we identify a new electromagnetic mechanism that generates
another type of sideways current which generates a charge-odd, rapidity-even,
contribution to the elliptical flow coefficient ∆v2. Although it differs in its symmetry
from the three sources of sideways electric field above, it should be added to our
list:

4. Plasma: As is apparent from the left panel of Figure 5.2 in Section 5.3 and as
we show explicitly in that Section, there is a non-vanishing outward-pointing
component of the electric field already in the lab frame, because the plasma
(and the spectators) have a net positive charge. We denote this component of
the electric field by ~EP , since its origin includes Coulomb forces within the
plasma.

At the collision energies that we consider, ~EP receives contributions both from the
spectator nucleons and from the charge density deposited in the plasma by the
nucleons participating in the collision. As illustrated below by the results in the left
panel of Figure 5.2, the electric field will push an outward-directed current. As this
field configuration is even in rapidity and odd under x ↔ −x (which means that
the radial component of the field is even under x ↔ −x), the current that it drives
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will yield a rapidity-even, charge-odd, contribution to the even flow harmonics,
see Figure 5.1. We shall demonstrate this by calculating the charge-dependent
contribution to the radial flow, ∆〈pT 〉 (which can be thought of as ∆v0) and to
the elliptic flow, ∆v2, that result from the electric field ~EP . Furthermore, we
discover that these observables also receive a contribution from a component of
the spectator-induced contribution to the electric field ~EF + ~EL + ~EC that is odd
under x ↔ −x and even in rapidity.

In the next Section we set up our model. In particular, we explain the densities of
the nucleons, the computation of the drift velocity, and the freezeout procedure
from which we read off the charge-dependent contributions to the radial 〈pT 〉 and
to the anisotropic flow parameters v1, v2 and v3. In Section 5.3 we start by solving
the Maxwell equations as analytically as possible. Afterward, we present numerical
results for the (integrated) electromagnetic fields. Then in Section 5.4 we move on
to the calculation of the flow coefficients, for collisions with both RHIC and LHC
energies, for pions and for protons, for varying centralities and ranges of pT , and for
several values of the electrical conductivity σ of the plasma and the drag coefficient
µm. The latter two being the properties of the plasma to which the effects that we
analyse are sensitive. Finally in Section 5.5 we discuss the validity of the various
approximations used in our calculations, discuss other related work, and present an
outlook.

5.2 Model Setup

We simulate the dynamical evolution of the medium produced in heavy-ion collisions
using the iEBE-VISHNU framework described in full in Ref. [203]. We take event-
averaged initial conditions from a Monte-Carlo-Glauber model, obtaining the initial
energy density profiles by first aligning individual bumpy events with respect to
their second-order participant plane angles (the appropriate proxy for the reaction
plane in a bumpy event) and then averaging over 10,000 events. The second order
participant plane of the averaged initial condition, ΨPP

2 , is rotated to align with
the x-axis, which is to say we choose coordinates such that the averaged initial
condition has ΨPP

2 = 0 and an impact parameter vector that points in the +x
direction. The hydrodynamic calculation that follows assumes longitudinal boost-
invariance and starts at τ0 = 0.4 fm/c.2 We then evolve the relativistic viscous
2Starting hydrodynamics at a different thermalization time, between 0.2 and 0.6 fm/c, only
changes the hadronic observables by few percent. [206]
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hydrodynamic equations for a fluid with an equation of state based upon lattice
QCD calculations, choosing the s95p-v1-PCE equation of state from Ref. [207]
which implements partial chemical equilibrium at Tchem = 150 MeV. The kinetic
freeze-out temperature is fixed to be 105 MeV to reproduce the mean pT of the
identified hadrons in the final state. Specifying the equations of relativistic viscous
hydrodynamics requires specifying the temperature dependent ratio of the shear
viscosity to the entropy density, η/s(T ), in addition to specifying the equation of
state. Following Ref. [208], we choose

η

s
(T ) =


(
η
s

)
min + 0.288

(
T
Ttr

− 1
)

+ 0.0818
((

T
Ttr

)2 − 1
)

for T > Ttr(
η
s

)
min + 0.0594

(
1 − T

Ttr

)
+ 0.544

(
1 −

(
T
Ttr

)2
)

for T < Ttr
. (5.1)

We choose (η/s)min = 0.08 at Ttr = 180 MeV. These choices result in hydrodynamic
simulations that yield reasonable agreement with the experimental measurements
over all centrality and collision energies, see for example Figure 5.5 in Section 5.4
below.

The electromagnetic fields are generated by both the spectators and participant
charged nucleons. The transverse distribution of the right-going (+) and left-
going (−) charge density profiles ρ±

spectator(~x⊥) and ρ±
participant(~x⊥) are generated

by averaging over 10,000 events using the same Monte-Carlo-Glauber model used
to initialize the hydrodynamic calculation. The external charge and current sources
for the electromagnetic fields are then given by

ρext(~x⊥, ηs) = ρ+
ext(~x⊥, ηs) + ρ−

ext(~x⊥, ηs) , ~Jext(~x⊥, ηs) = ~J+
ext(~x⊥, ηs) + ~J−

ext(~x⊥, ηs)
(5.2)

with

ρ±
ext(~x⊥, ηs) = ρ±

spectator(~x⊥)δ(ηs ∓ ybeam) + ρ±
participant(~x⊥)f±(ηs) (5.3)

~J±
ext(~x⊥, ηs) = ~β±(ηs)ρ±

ext(~x⊥, ηs) with ~β± = (0, 0,± tanh(ηs)). (5.4)

Here we are making the Bjorken approximation: the space-time rapidities ηs of
the external charges are assumed equal to their rapidity. The spectators fly with
the beam rapidity ybeam and the participant nucleons lose some rapidity in the
collisions; their rapidity distribution in Eq. (5.3) is assumed to be [56,192,209]

f±(y) = 1
4 sinh(ybeam/2)e

±y/2 for − ybeam < y < ybeam. (5.5)
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The electromagnetic fields generated by the charges and currents evolve according
to the Maxwell equations

(∇2 − ∂2
t − σ∂t) ~B = −~∇ × ~Jext (5.6)

(∇2 − ∂2
t − σ∂t) ~E = 1

ε
~∇ρext + ∂t ~Jext , (5.7)

which we will discuss in more detail in the next section. Here σ is the electrical
conductivity of the QGP plasma. As in Ref. [56], we shall make the significant
simplifying assumption of treating σ as if it were a constant. We make this
assumption only because it permits us to use a semi-analytic form for the evolution
of the electromagnetic fields rather than having to solve Eqs. (5.6) and (5.7) fully
numerically. This simplification therefore significantly speeds up our calculations.
In reality, σ is certainly temperature dependent: just on dimensional grounds it is
expected to be proportional to the temperature of the plasma, meaning that σ should
be a function of space and time as the plasma expands and flows hydrodynamically,
with σ decreasing as the plasma cools. Furthermore, during the pre-equilibrium
epoch σ should rapidly increase from zero to its equilibrium value. Taking all of
this into consideration would require a full, numerical, magnetohydrodynamical
analysis, something that we leave for the future. Throughout most of this chapter,
we shall follow Ref. [56] and set the electrical conductivity to the constant value
σ = 0.023 fm−1 which, according to the lattice QCD calculations in Refs. [210–214],
corresponds to σ in three-flavor quark-gluon plasma at T ∼ 250 MeV.

With the evolution of the electromagnetic fields in hand, the next step is to compute
the drift velocity ~v drift that the electromagnetic field induces at each point on the
freeze-out surface. Because this drift velocity is only a small perturbation compared
to the background hydrodynamic flow velocity, |~vdrift| � |~vflow|, we can obtain
~v drift by solving the force-balance equation [56]

m
d~v lrf

drift
dt

= q~v lrf
drift × ~B lrf + q ~E lrf − µm~v lrf

drift = 0 (5.8)

in its non-relativistic form in the local rest frame of the fluid cell of interest. The
last term in (5.8) describes the drag force on a fluid element with mass m on which
some external (in this case electromagnetic) force is being exerted, with µ the drag
coefficient. The calculation of µm for quark-gluon plasma in QCD remains an open
question. In the N = 4 supersymmetric Yang-Mills (SYM) theory plasma it should
be accessible via a holographic calculation. At present its value is known precisely
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only for heavy quarks in N = 4 SYM theory, in which [57–59],

µm = π
√
λ

2 T 2 (5.9)

with λ ≡ g2Nc the ’t-Hooft coupling, g being the gauge coupling and Nc the
number of colors. For our purposes, throughout most of this chapter we shall follow
Ref. [56] and use (5.8) with λ = 6π. We investigate the consequences of varying this
choice in Section 5.4.2. Finally, the drift velocity ~v lrf

drift in every fluid cell along the
freeze-out surface is boosted by the flow velocity to bring it back to the lab frame,
V µ = (Λflow)µ ν(ulrf

drift)ν , where (Λflow)µ ν is the Lorentz boost matrix associated
with the hydrodynamic flow velocity uµflow.

With the full, charge-dependent, fluid velocity V µ — including the sum of the flow
velocity and the charge-dependent drift velocity induced by the electromagnetic
fields — in hand, we now use the Cooper-Frye formula [215],

dN

dypT dpT dφ
= g

(2π)3

∫
Σ
pµdσµ

[
f0 + f0(1 ∓ f0) pµpνπµν

2T 2(e+ P )

]
(5.10)

to integrate over the freezeout surface (the spacetime surface at which the matter
produced in the collision cools to the freezeout temperature that we take to be 105
MeV) and obtain the momentum distribution for hadrons with different charges.
Here, g is the hadron’s spin degeneracy factor and the equilibrium distribution
function is given by

f0 = 1
exp((p · V )/T ) ± 1 . (5.11)

With the momentum distribution for hadrons with different charge in hand, the
final step in the calculation is the evaluation of the anisotropic flow coefficients as
function of rapidity:

vn(y) ≡
∫
dpT dφ pT

dN
dypT dpT dφ

cos [n(φ− Ψn)]∫
dpT dφ pT

dN
dypT dpT dφ

(5.12)

where Ψn = 0 is the event-plane angle in the numerical simulations. In order
to define the sign of the rapidity-odd directed flow v1, we choose the spectators
at positive x to fly toward negative z, as illustrated in Figure 5.1. We can then
compute the odd component of v1(y) according to

vodd
1 = 1

2(v1(Ψ+) − v1(Ψ−)), (5.13)
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Experimentally, the rapidity-odd directed flow vodd
1 is measured [216] by correlating

the directed flow vector of particles of interest, QPOI
1 =

∑MPOI

j=1 eiφj , with the flow
vectors from the energy deposition of spectators in the zero-degree calorimeter
(ZDC), QZDC

± =
∑
j E

±
j rje

iφj . The directed flow is defined using the scalar-product
method:

v1(Ψ±) = 1
〈MPOI〉ev

〈 QPOI
1 · ( QZDC

± )∗〉ev√
〈| QZDC

+ · ( QZDC
− )∗|〉ev

. (5.14)

In the definition of QZDC
± , the index j runs over all the segments in the ZDC and

Ej denotes the energy deposition at xj = rje
iφj . In our notation, the flow vector

angle Ψ+ = π in the forward (+z direction) ZDC and Ψ− = 0 in the backward (−z)
direction ZDC. The odd component of v1(y) that we compute according to Eqs.
(5.12) and (5.13) can be directly compared to v odd

1 defined from the experimental
definition of v1(Ψ±) in (5.14).

In order to isolate the small contribution to the various flow observables that was
induced by the electromagnetic fields, separating it from the much larger background
hydrodynamic flow, we compute the difference between the value of a given flow
observable for positively and negatively charged hadrons:

∆〈pT 〉 ≡ 〈pT 〉(h+) − 〈pT 〉(h−) (5.15)

and
∆vn ≡ vn(h+) − vn(h−), (5.16)

are the quantities of interest.

5.3 Electromagnetic fields

In this Section we will first investigate the Maxwell equations for our heavy-ion
collision using analytical methods as much as possible. We will see that the final
integrations of the electromagnetic fields have to be done numerically; we will show
the results of these numerical integrations along with the time-evolution in the last
part of the Section.

5.3.1 Analytical Computations

The story’s starting point is the Maxwell equations for a single charge; later on
we will integrate over the different particles producing such fields. First, we will
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write down the Maxwell equations, including the conductivity σ, discussed in the
previous section. To model the moving charge density, we use Dirac delta functions.
One delta function for the ẑ direction, in which the particle is moving, and one
for the location in the transverse plane, denoted with ~x⊥ and ~x′

⊥; these last two
vectors denote the location where we calculate the ~B and the location of the particle,
respectively. The electromagnetic fields are thus functions of the variables ~x⊥, ~x′

⊥,
z and t. Besides the charge density we incorporate the conductivity by Ohm’s law
J = σ ~E, resulting in

~∇ · ~B = 0 ,

~∇ × ~E = −∂ ~B

∂t
,

~∇ · ~E = eδ(z − vt)δ(~x⊥ − ~x′
⊥) ,

~∇ × ~B = ∂ ~E

∂t
+ σ ~E + e v ẑδ(z − vt)δ(~x⊥ − ~x′

⊥) .

(5.17)

We can rewrite these equations to a second order equation for the ~B field by taking
the cross product of the last equation for ~B again to obtain

~∇ × (~∇ × ~B) = ~∇(~∇ · ~B) − ~∇2 ~B , (5.18)

which can be further simplified using the expressions of (5.17) to

∇2 ~B − ∂2
t
~B − σ∂t ~B = −e v ~∇ × (ẑδ(z − vt)δ(~x⊥ − ~x′

⊥)) . (5.19)

In a similar manner we can obtain an equation for the electric field:

∇2 ~E − ∂2
t
~E − σ∂t ~E = −e ~∇(δ(z − vt)δ(~x⊥ − ~x′

⊥))

+ evẑ∂t(δ(z − vt)δ(~x⊥ − ~x′
⊥)) .

(5.20)

To solve such equations we can use Green’s functions; here we will demonstrate
the computation for the magnetic field. Using such a Green’s function we get a
solution for ~B as

~B(z,~b, t) =
∫
d4x′ G(z − z′,~b−~b′, t− t′) e v ~∇ ×

(
(ẑδ(z′ − vt′)δ(~b′)

)
, (5.21)

where our Green’s function G must now satisfy our linear differential operator from
Equation 5.19:

~∇2 ~G− ∂2 ~G

∂t2
− σ

∂ ~G

∂t
= −δ(z − z′)δ(~b−~b′)δ(t− t′) . (5.22)
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This equation can be solved by Fourier transforming the coordinates such that
the derivatives become less of a nuisance. The resulting solution in the Fourier
transformed space reads

Gf (kz,~k⊥, ω) = e−ikzz′
e−i~k⊥·~b′

eiωt
′

k2
z + k2

⊥ − ω2 − iσω
, (5.23)

where kz,~k⊥, ω are the Fourier transforms of z,~b, t, respectively. We can then
Fourier transform back to plug the result back into (5.21). This procedure results
in

~B(z,~b, t)
2πev =

∫
d2k⊥

(2π)2 e
i~b·~k⊥

∫
dkz
2π e

ikzz

∫
dω

2π e
−iωt (i~k × ẑ)δ(ω − kzv)

k2
z + k2

⊥ − ω2 − iσω
. (5.24)

From this point on, we will focus on the y-component of the ~B field; the other
components can be calculated similarly. To get this y component, we take the inner
product with ŷ:

(~k⊥ × ẑ) · ŷ = −k⊥ cos(φ) . (5.25)

When we complete the integral over kz in (5.24) we find

~By
e

= ŷ

(2π)2

∫
d2k⊥dω

−ik⊥ cos(φ)
(ω/v)2 + k2

⊥ − ω2 − iσω
e−ibk⊥ cos(φ) eiω( zv−t) , (5.26)

where d2k⊥ = k⊥dk⊥dφ. We can solve the φ integral by∫ 2π

0
dφ− ik⊥ cos(φ)e−ibk⊥ cos(φ) = (2π)2k⊥J1(bk⊥) , (5.27)

where J1 denotes a Bessel function; applying this to our expression for By yields

e ~By = αem
π

ŷ

∫ ∞

0
dk⊥

∫ ∞

−∞
dω

J1(bk⊥) k2
⊥

ω2

v2 + k2
⊥ − ω2 − iσω

eiω( zv−t) , (5.28)

where we introduced the electromagnetic coupling strength αem = e2

4π . The next
integral we will solve is the ω integral. To solve it we use a contour integral, and
see that we have poles at

ω± = i σ γ2 v2

2

(
1 ±

(
1 + 4 k2

⊥
σ2 γ2 v2

) 1
2
)
, (5.29)
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where γ = 1√
1−v2 . We close the contour in the lower half of the complex plane, and

we pick up ω−. Using the residue theorem we complete the integral over ω and get
the following expression for the integral

I :=
∫ ∞

0
dk⊥

∫ ∞

−∞
dω

J1(bk⊥) k2
⊥

ω2

v2 + k2
⊥ − ω2 − iσω

eiω( zv−t) (5.30)

= 2π
∫ ∞

0

dk⊥ J1(bk⊥) k2
⊥ e−|ω−|(t− z

v )

σ
(

1 + 4k2
⊥

σ2 γ2 v2

) 1
2

(5.31)

= 2π (γ2 σ2 v2)
4

γ v

2 e(t− z
v ) σ γ2 v2

2

√
2
π
β(α2 + β2)− 3

4 K 3
2
(
√
α2 + β2) , (5.32)

where, in the second step, we completed the contour integral, and in the last step
we used an integral identity. We have defined α = (t− z

v ) σ γ2 v2

2 and β = b σ γ v
2 .

Furthermore, K 3
2

is a modified Bessel function and has an exact form:

K 3
2
(z) =

√
2
π
e−z (1 + 1

z
) . (5.33)

At this point we reintroduce ~b = (~x⊥ − ~x′
⊥) and we shall also make the coordinate

transformations

t = cosh(ηs) τ ,

z = sinh(ηs) τ , (5.34)

v = sinh(Y )
cosh(Y ) ,

where ηs is the pseudorapidity and Y is the rapidity. In principle we have solved
the integrals for the B-field; we can however place it in a more aesthetically pleasing
form. We take x⊥ = |~x⊥|, which means we can express ~x⊥ = x⊥ cos(φ) with φ

the azimuthal angle (the same applies for ~x′
⊥). After some manipulations with the

above expressions and coordinate transformations we reach the following expression
for the B-field:

e ~B+
y (τ, η, x⊥, φ) = αem ŷ sinh(Y ) (x⊥ cos(φ) − x′

⊥ cos(φ′))

×

(
σ | sinh(Y )|

2

√
∆ + 1

)
∆ 3

2
eA ,

(5.35)
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where the + indicates the fact that it is a positively moving (+ẑ) particle. We have
defined A and ∆ as follows

A = σ

2 (sinh(Y ) sinh(Y − η) − | sinh(Y )|
√

∆) , (5.36)

∆ = τ2 sinh2(Y − η) + (x⊥)2 + (x′
⊥)2 − 2x⊥ x

′
⊥ cos(φ− φ′) . (5.37)

With this result, we conclude the computation of the single-particle magnetic field
(in the y-direction). The last task that thus remains is the integration over the
different particles. To get the complete contribution in either case, we need to add
up the fields created by particles moving in both + and − z direction. So, the total
B-field would look like ~Btot = ~B+

s + ~B−
s + ~B+

p + ~B−
p . Here ~B+

s , e.g., denotes the B
field due to a spectator moving in the + direction; the ~Bp denote the participants.
Considering only the spectators for the moment, we can write down the expression
for the total magnetic field in the y-direction as

eBy,s(τ, η, x⊥, φ) = −Z
∫
dφ′ dx′

⊥ x′
⊥ (5.38)

× (ρ+(x′
⊥) eB+

y (τ, η, x⊥, π − φ) + ρ−(x′
⊥) eB+

y (τ,−η, x⊥, φ)) ,

where Z is the charge of the nucleus; for LHC, the used nuclei are lead such that
Z = 82. The densities ρ± are, in this case, the numerically modelled spectator
densities that we discussed last section. When doing the computations for the
participants, we replace them by the respective distributions for the participating
particles.
Similar calculations can be done for the other components of the electromagnetic
fields, and for the participants. As we mentioned in the previous section, for the
participants we should also include a distribution for the change in rapidity due to
the collisions; it is given in (5.5).

5.3.2 Numerical Integration

The integrations over the different particles in (5.38) have to be done numerically.
The numerical code that we have used to compute these, and the evolution of
the electromagnetic fields can be found at https://github.com/chunshen1987/
Heavy-ion_EM_fields. In the remainder of this Section we will analyze the spatial
distribution and evolution of the electromagnetic fields. Figure 5.2 presents our
calculation of the magnitude and direction of the electromagnetic fields, both
electric and magnetic, in the lab frame across the z = 0 transverse plane at a proper
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Figure 5.2: The electric (left) and magnetic (right) fields in the transverse
plane at z = 0 in the lab frame at a proper time τ = 1 fm/c after a Pb+Pb col-
lision with 20-30% centrality (corresponding to impact parameters in the range
6.24 fm < b < 9.05 fm) and with a collision energy

√
s = 2.76 ATeV. The fields

are produced by the spectator ions moving in the +z (−z) direction for x < 0
(x > 0) as well as by the ions that participate in the collision. In both panels, the
contribution from the spectators is larger, however. We see that the magnetic
field is strongest at the center of the plasma, where it points in the +y direction
as anticipated in Figure 5.1. The electric field points in a generally outward
direction and is strongest on the periphery of the plasma. Its magnitude is not
azimuthally symmetric: the field is on average stronger where it is pointing in
the ±y directions than where it is pointing in the ±x directions.
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time τ = 1fm/c after a Pb+Pb collision with 20-30% centrality and a collision
energy of

√
s = 2.76 ATeV. These electric and magnetic fields are produced by

both spectator and participant ions in the two incoming nuclei. We outlined the
calculation in Section 5.2; it follows Ref. [56]. The spectator nucleons give the
dominant contributions to the ~B field. The beam directions for the ions at x > 0
(x < 0) are chosen as −z (+z), as in Figure 5.1.

The left panel in Figure 5.2 includes three of the four different components of
the electric field that we discussed in the Introduction, namely the electric field
generated by Faraday’s law ~EF , the Coulomb field sourced by the spectators ~EC ,
and the Coulomb field sourced by the net charge in the plasma ~EP . Their sum
gives the total electric field in the lab frame, which is what is plotted. When we
transform to the local rest frame of a moving fluid cell, namely the frame in which
we calculate the electromagnetically induced drift velocity of positive and negative
charges in that fluid cell, there is an additional component originating from the
Lorentz force law, ~EL, as explained in the Introduction. The total electric field in
the rest frame, which now also includes the EL component, is shown below in the
left panel of Figure 5.4 as a function of time.

The magnetic field in the right panel of Figure 5.2 indeed decays as a function of
time as shown in the bottom panel of Figure 5.3. Via Faraday’s law this induces a
current in the same direction as the current pushed by the Coulomb electric field
coming from the spectators, and it opposes the current caused by the Lorentz force
on fluid elements moving in the longitudinal direction, as sketched in Figure 5.1
and seen in Figure 5.4.

When solving the force-balance equation, Eq. (5.8), we find that the drift velocity
is mainly determined by the electric field in the local local fluid rest frame. To
understand how the Coulomb, Lorentz and Faraday effects contribute to the drift
velocity on the freeze-out surface it is instructive to study how the different effects
contribute to the electric field in the local fluid rest frame. We do so at ηs = 0 in
the top panel of Figure 5.3. At ηs = 0, only the Coulomb effect contributes. This
means that when in Section 5.4 we compute the charge-odd contribution to the
even flow harmonics at ηs = 0 this will provide an estimate of the magnitude of
the Coulomb contribution to the flow coefficients. In Figure 5.4 we look at the
different contributions to the electric field in the local fluid rest frame at ηs = 1 and
ηs = 3. We see that the Coulomb + Faraday and Lorentz effects point in opposite
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Figure 5.3: Top: The x-component of the electric field in the local fluid rest
frame at points on the freezeout surface at spacetime rapidity ηs = 0, as a
function of proper time. Each cross corresponds to a single fluid cell on the
freezeout surface, with the vertical line of crosses at any single τ corresponding
to different points on the freezeout surface at that τ . Only the Coulomb electric
field generated by the net charge in the plasma contributes at ηs = 0, and by
symmetry there for every point where E lrf

x > 0 there is a point where E lrf
x < 0.

Bottom: Time dependence of the y-component of the magnetic field in the lab
frame at ηs = 0. Again, each cross corresponds to a single point on the freeze-
out surface. We see that By > 0 as diagrammed in Figure 5.1 and shown in
Figure 5.2, and here we can see how By decreases with time.
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Figure 5.4: Contributions to the electric field in the local rest frame of a unit
cell in the fluid on the freezeout surface at a specified, non-vanishing, spacetime
rapidity ηs: ηs = 1 in the left panel and ηs = 3 in the right panel. Each unit cell
is represented in the figure by a black cross, a red cross, and a green cross. Black
crosses denote the contribution to the electric field at a given fluid cell in its local
rest frame coming from the Coulomb and Faraday effects. Red crosses denote
the contribution from the Lorentz force. And, green crosses represent the total
electric field at the fluid cell, namely the sum of a black cross and a red cross.
We observe that the Coulomb+Faraday and Lorentz contributions to the electric
field point in opposite directions, as sketched in Figure 5.1, and furthermore
see that the two contributions almost cancel at large ηs, as we shall discuss in
Section 5.4.1. We shall see there that the Coulomb+Faraday contribution is
slightly larger in magnitude than the Lorentz contribution.
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Figure 5.5: To get a sense of how well the solution to relativistic viscous
hydrodynamics upon which we build our calculation of electromagnetic fields
and currents describes heavy-ion collisions, we compare our results for charged
hadron multiplicities (left) and elliptic flow coefficients (right) to experimental
measurements at the top RHIC and LHC energies from Refs. [217–219] and
Refs. [220–222], respectively.

directions, and almost cancel at large spacetime rapidity. We discuss the origin and
consequences of this cancellation in Section 5.4.1 below.

5.4 Results

In this Section we present our results for the charge-dependent contributions to the
anisotropic flow induced by the electromagnetic effects introduced in Section 5.1. As
we have described in Section 5.2, to obtain the anisotropic flow coefficients we input
the electromagnetic fields in the local rest frame of the fluid, calculated in Section 5.3,
into the force-balance equation (5.8) which then yields the electromagnetically
induced component of the velocity field of the fluid. This velocity field is then input
into the Cooper-Frye freezout procedure [215] to obtain the distribution of particles
in the final state and, in particular, the anisotropic flow coefficients [56].

To provide a realistic dynamical background on top of which to compute the
electromagnetic fields and consequent currents, we have calibrated the solutions to
relativistic viscous hydrodynamics that we use by comparing them to experimental
measurements of hadronic observables. To give a sense of the agreement that we
have obtained, in Figure 5.5 we show our results for the centrality dependences of
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charged hadron multiplicity and elliptic flow coefficients are shown for heavy-ion
collisions at three collision energies as well as data from STAR, PHENIX and
ALICE Collaborations [217–222]. Since we do not have event-by-event fluctuations
in our calculations, we compare our results for the elliptic flow coefficent v2 to
experimental measurements of v2 from the 4-particle cumulant, v2{4} [223]. With
the choice of the specific shear viscosity η/s(T ) that we have made in Eq. (5.1), our
model provides a reasonable agreement with charged hadron v2{4} for heavy-ion
collisions with centralities up to the 40-50% bin.

To isolate the effect of electromagnetic fields on charged hadron flow observables,
we study the difference between the vn of positively charged particles and the vn of
negatively charged particles as defined in Eq. (5.16). We also study the difference
between the mean transverse momentum 〈pT 〉 of positively charged hadrons and
that of negatively charged hadrons. This provides us with information about the
modification in the hydrodynamic radial flow induced by the electromagnetic fields.
The difference between the charge-dependent flow of light pions and heavy protons
is also compared. Hadrons with different masses have different sensitivities to the
underlying hydrodynamic flow and to the electromagnetic fields.

We should distinguish the charge-odd contributions to the odd flow moments, ∆v1,
∆v3, . . ., from the charge-dependent contributions to the even ones, ∆v2, ∆v4,
. . ., as they have qualitatively different origins. The charge-odd contributions to
the odd flow coefficients induced by electromagnetic fields, ∆v2n−1, are rapidity-
odd: ∆v2n−1(ηs) = −∆v2n−1(−ηs). This can easily be understood by inspecting
Figure 5.1, where we describe different effects that contribute to the total the
electric field in the plasma. This can also be proven analytically by studying the
transformation property of ∆vn under η → −η. As we have seen in Section 5.1,
there are three basic effects that contribute. First, there is the electric field produced
directly by the positively charged spectator ions. They generate electric fields in
opposite directions in the z > 0 and z < 0 regions. We call this the Coulomb
electric field ~EC , as the resulting electric current in the plasma is a direct result of
the Coulomb force between the spectators and charges in the plasma. Then there
are the two separate magnetically induced electric fields, as discussed in Ref. [56].
The Faraday electric field ~EF results from the rapidly decreasing magnitude of the
magnetic field perpendicular to the reaction plane, see Figure 5.1, as a consequence
of Faraday’s law. Note that ~EF and ~EC point in the same directions. Finally, there
is another magnetically induced electric field, the Lorentz electric field ~EL that
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5 Magnetohydrodynamics at Heavy Ion Collisions

can be described in the lab frame as the Lorentz force on charges that are moving
because of the longitudinal expansion of the plasma and that are in a magnetic
field. Upon transforming to the local fluid rest frame, the lab-frame magnetic field
becomes an electric field that we denote ~EL.3 As shown in Figure 5.1, ~EL points in
the opposite direction to ~EF and ~EC .

On the other hand, the charge-dependent contributions to the even order anisotropic
flow coefficients v2n are even under ηs → −ηs. Obviously this cannot arise from
the rapidity-odd electric fields described above. Instead, we find that although the
electromagnetic contribution to the v2n receives some contribution from components
of the electric fields above that are rapidity-even and that are odd under x → −x,
it also receives an important contribution from the Coulomb force between the net
positive electric charge in the plasma. This arises as a result of the Coulomb force
exerted on the charges in the plasma by each other — as opposed to the Coulomb
force exerted on charges in the plasma by the spectator ions. This electric field is
non-trivial even at z = 0 as shown in Figure 5.2 (left). We call this field the plasma
electric field and denote it by ~EP . This contributes to the net ∆v2 and it is clear
from the geometry that it makes no contribution to the odd flow harmonics.

In Figure 5.6, we begin the presentation of our principal results. This figure shows
∆vn, the charge-odd contribution to the anisotropic flow harmonics induced by
electromagnetic fields, for pions in 20-30% Au+Au collisions at 200 GeV. It also
shows the difference in the mean-pT of particles with positive and negative charge,
which shows how the electromagnetic fields modify the hydrodynamic radial flow.
The radial outward pointing electric fields in Figure 5.2 increase the radial flow for
positively charged hadrons while reducing the flow for negative particles. We see
that the effect is even in rapidity. Figure 5.6 shows that these fields also make a
charge-odd, rapidity-even contribution to v2.

We compare the red dashed curves, arising from electromagnetic effects by spectators
only, with the solid black curves that show the full calculation including the
participants. Noting that the lines are significantly different it follows that the
Coulomb force exerted on charges in the plasma by charges in the plasma makes a
large contribution to ∆〈pT 〉 and ∆v2. The induced ∆〈pT 〉 is larger at forward and
backward rapidities, because the electric fields from the spectators and from the

3This electric field was called the Hall electric field in Ref. [56].
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Figure 5.6: The solid black curves display the principal results of our calcu-
lations for 20-30% centrality Au+Au collisions at 200 GeV, as at RHIC. We
show the contribution to the mean-pT of charged pions and the first three vn

coefficients induced by the electromagnetic fields that we have calculated, isolat-
ing the electromagnetically induced effects by taking the difference between the
calculated value of each observable for π+ and π− mesons, namely the charge-
odd or charge-dependent contributions that we denote ∆〈pT 〉 and ∆vn. We see
rapidity-odd contributions ∆v1 and ∆v3 and rapidity-even contributions ∆〈pT 〉
and ∆v2. The red dashed curves show the results we obtain when we calculate
the same observables in the presence of the electromagnetic fields produced by
the spectators only. We see that the dominant contribution to the odd vn’s is
generated by these spectator-induced fields, whereas the even vn’s also receive a
significant contribution from the Coulomb force exerted on charges in the plasma
by other charges in the plasma, originating from the participant nucleons.

charge density in the plasma deposited according to the distribution (5.5) are both
stronger there.

The electromagnetically induced elliptic flow ∆v2 originates from the Coulomb
electric field in the transverse plane, depicted in Figure 5.2. We see there that the
Coulomb field is stronger along the y-direction than in the x-direction. This reduces
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5 Magnetohydrodynamics at Heavy Ion Collisions

the elliptic flow v2 for positively charged hadrons and increases it for negatively
charged hadrons. Hence, ∆v2 is negative.

Note that ∆〈pT 〉 and ∆v2 are much smaller than 〈pT 〉 and v2; in the calculation
of Figure 5.6, 〈pT 〉 ≈ 0.47 GeV and v2 ≈ 0.048 for both the π+ and π−. The
differences between these observables for π+ and π− that we plot are much smaller,
with ∆〈pT 〉 smaller than 〈pT 〉 by a factor of O(10−3) and ∆v2 smaller than v2 by a
factor of O(10−2) in Au+Au collisions at 200 GeV. This reflects, and is consistent
with, the fact that the drift velocity induced by the electromagnetic fields is a
small perturbation compared to the overall hydrodynamic flow on the freeze-out
surface.

The electromagnetically induced contributions to the odd flow harmonics ∆v1 and
∆v3 are odd in rapidity. In our calculation, which neglects fluctuations, v1 and
v3 both vanish in the absence of electromagnetic effects. We see from Figure 5.6
that the magnitudes of ∆v1 and ∆v3 are controlled by the electromagnetic fields
due to the spectators, namely ~EF , ~EC and ~EL. By comparing the sign of the
rapidity-odd ∆v1 that we have calculated in Fig. 5.6 to the illustration in Figure 5.1,
we see that the rapidity-odd electric current flows in the direction of ~EF and ~EC ,
opposite to the direction of ~EL, meaning that | ~EF + ~EC | is greater than | ~EL|. Our
results for ∆v1 are qualitatively similar to those found in Ref. [56], although they
differ quantitatively because of the differences between our realistic hydrodynamic
background and the simplified hydrodynamic solution used in Ref. [56]. Here, we
find a nonzero ∆v3 in addition, also odd in rapidity, and with the same sign as ∆v1

and a similar magnitude. This is natural since ∆v3 receives a contribution from the
mode coupling between the electromagnetically induced ∆v1 and the background
elliptic flow v2.

In Figure 5.7 we see that the heavier protons have a larger electromagnetically
induced shift in their mean pT compared to that for the lighter pions. Because a
proton has a larger mass than a pion, its velocity is slower than that of a pion with
the same transverse momentum, pT . Thus, when we compare pions and protons with
the same pT , the hydrodynamic radial flow generates a stronger blue shift effect for
the less relativistic proton spectra, which is to say that the proton spectra are more
sensitive to the hydrodynamic radial flow [224]. Similarly, when the electromagnetic
fields that we compute induce a small difference between the radial flow velocity
of positively charged particles relative to that of negatively charged particles, the
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Figure 5.7: The electromagnetically induced difference between the mean pT

and vn coefficients of π+ and π− mesons (solid lines) and between protons and
antiprotons (dashed lines) as a function of particle rapidity for 20-30% Au+Au
collisions at 200 GeV. Three different pT integration ranges are shown for each
of the ∆vn as a function of particle rapidity.

resulting difference between the mean pT of protons and antiprotons is greater than
the difference between the mean pT of positive and negative pions. Turning to
the ∆vn’s, we see in Figure 5.7 that the difference between the electromagnetically
induced ∆vn’s for protons and those for pions are much smaller in magnitude. We
shall also see below that these differences are modified somewhat by contributions
from pions and protons produced after freezeout by the decay of resonances. For
both these reasons, these differences cannot be interpreted via a simple blue shift
argument. Figure 5.7 also shows the charge-odd electromagnetically induced flow
coefficients ∆vn computed from charged pions and protons+antiprotons in three
different pT ranges. The ∆v1, ∆v2 and ∆v3 all increase as the pT range increases,
in much the same way that the background v2 does. In the case of ∆v1, this agrees
with what was found in Ref. [56].

In Figure 5.8 we study the centrality dependence of the electromagnetically induced
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Figure 5.8: The centrality dependence of the electromagnetically induced flow
difference in π+ vs π− as a function of particle rapidity in Au+Au collisions at
200 GeV.

flow in Au+Au collisions at 200 GeV. The difference between the flow of positive and
negative pions, both the radial flow and the flow anisotropy coefficients, increases as
one goes from central toward peripheral heavy-ion collisions. However, the increase
in ∆〈pT 〉 and ∆v2 is smaller than the increase in the odd ∆vn’s. This further
confirms that the odd ∆vn’s are induced by the electromagnetic fields produced
by the spectator nucleons only – since the more peripheral a collision is the more
spectators there are.

Compared to any of the anisotropic flow coefficients ∆vn, the ∆〈pT 〉 shows the
least centrality dependence because, as we saw in Figure 5.6, ∆〈pT 〉 originates
largely from the Coulomb field of the plasma, coming from the charge of the
participants, with only a small contribution from the spectators. The increase of
∆v2 with centrality is intermediate in magnitude, since it originates both from the
participants and from the spectators, as seen in Figure 5.6. Another origin for the
increase in electromagnetically induced effects in more peripheral collisions is that
the typical lifetime of the fireball in these collisions is shorter compared to that in
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Figure 5.9: The centrality dependence of the electromagnetically induced dif-
ferences in the radial flow and anisotropic flow coefficients for positively and
negatively charged hadrons, here at a fixed rapidity y = −1.

central collisions. This gives less time for the electromagnetic fields to decay by
the time of peak particle production in more peripheral collisions. In the case of
∆〈pT 〉, which is dominantly controlled by the plasma Coulomb field which is less in
more peripheral collisions where there is less plasma, this effect partially cancels
the effect of the reduction in the fireball lifetime, and results in ∆〈pT 〉 being almost
centrality independent.

Figure 5.9 further shows the centrality dependence of the electromagnetically
induced difference between flow observables for positive and negative particles at a
fixed rapidity. We observe that ∆〈pT 〉 does not vanish in central collisions. This
further confirms that it is largely driven by the Coulomb field created by a net
positive charge density in the plasma itself, as this Coulomb field is present in
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Figure 5.10: The collision energy dependence of the electromagnetically in-
duced charge-odd contributions to flow observables. The difference of particle
mean pT and vn between π+ and π− are plotted as a function of particle rapid-
ity for collisions at the top RHIC energy of 200 GeV and at two LHC collision
energies.

collisions with zero impact parameter whereas all spectator-induced effects vanish
when there are no spectators. This charge density creates an outward electric field
that generates an outward flux of positive charge in the plasma and leads to a
non-vanishing charge-identified radial flow.

In Figure 5.10, we study the collision energy dependence of the effects of electro-
magnetic fields on charged hadron flow. The electromagnetically induced effects
on the differences between flow observables for positive and negative particles are
larger at the top RHIC energy than at LHC energies. This can be understood as
arising from the fact that because the spectators pass by more quickly in higher
energy collisions the spectator-induced electromagnetic fields decrease more rapidly
with time in LHC collisions than in RHIC collisions. Furthermore, in higher energy
collisions at the LHC the fireball lives longer, further reducing the magnitude of
the electromagnetic fields on the freeze-out surface. The results illustrated in Fig-
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Figure 5.11: The solid curves include the contributions to the electromagneti-
cally induced charge-dependent flow observables of pions and protons produced
after freeze-out by resonance decay, often referred to as resonance feed-down
contributions. In the dashed curves, pions and protons produced from resonance
feed-down are left out.

ure 5.10 motivate repeating our analysis for the lower energy collisions being done
in the RHIC Beam Energy Scan, although doing so will require more sophisticated
underlying hydrodynamic calculations and we also note that in such collisions there
are other physical effects that contribute significantly to ∆〈pT 〉 and ∆v2 [225–231],
in the case of ∆v2 for protons making a contribution with opposite sign to the one
that we have calculated. For both these reasons, we leave such investigations to
future work.

Finally, in Figure 5.11, we investigate the contribution of resonance decays to the
electromagnetically induced charge-dependent contributions to flow observables
that we have computed. These contributions are included in all our calculations
with the exception of those shown as the dashed lines in Figure 5.11, where we
include only the hadrons produced directly at freezeout, leaving out those produced
later as resonances decay. We see that the feed-down contribution from resonance

231



5 Magnetohydrodynamics at Heavy Ion Collisions

decays does not significantly dilute the effects we are interested in. To the contrary,
the magnitudes of the ∆vn for protons are slightly increased by feed-down effects,
in particular the significant contribution to the final proton yield coming from the
decay of the ∆++ [232]. Because the ∆++ resonance carries 2 units of the charge,
its electromagnetically induced drift velocity is larger than those of protons.

This concludes the presentation of our central results. In the remainder of this
Section, in two subsections we shall present a qualitative argument for why ∆v1 is
as small as it is, and then take a brief look at how our results depend on the value
of two important material properties of the plasma, namely the drag coefficient and
the electrical conductivity.

5.4.1 A qualitative argument for the smallness of ∆v1

As we have seen, the net effect on ∆v1 of the various contributions to the electric
field turns out to be rather small in magnitude. This is because even though the
contributions ~EC + ~EF and ~EL with opposite sign, shown separately in Figure 5.4,
are each relatively large in magnitude they cancel each other almost precisely. This
leaves only a small net contribution that generates the charge-odd contributions
to the odd flow harmonics that we have computed, ∆v1 and ∆v3. We see in
Figure 5.4 that this cancellation becomes more and more complete at larger ηs. In
this subsection we provide a qualitative argument for this near-cancellation and
explain why the cancellation becomes more complete at larger ηs.

One can find an expression for the total Faraday+Coulomb electric field ~EF+C ≡
~EF + ~EC by solving the Maxwell equations sourced by the spectator (and partici-
pant4) charges. In general this determines both the electric and the magnetic fields
in terms of the sources. However, we only need to express ~EF+C in terms of ~B for
the argument. In particular, we are interested in the x component of this field as
shown in Figure 5.1. This is given by solving Faraday’s law ∇× ~EF+C = −∂ ~B/∂t to
obtain EF+C,x = By coth(Y0−ηs), where Y0 is the rapidity of the beam and ηs is the
spacetime rapidity. Since for both RHIC and LHC we have Y0 � ηs, one can safely
ignore the ηs-dependence everywhere in the plasma, finding EF+C,x ≈ By coth(Y0).
For the same reason, as Y0 � 1, one can further approximate EF+C,x ≈ By every-
where in the plasma. The effect of this electric field on the drift velocity of the
plasma charges is found by solving the null-force equation (5.8) by boosting it to the

4To a very good approximation, one can in fact ignore the participant contribution [56].
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local fluid rest frame in a given unit cell in the plasma. This gives the contribution
E lrf
F+C,x ≈ γ(u)By where γ(u) is the Lorentz gamma factor of the plasma moving

with velocity u. On the other hand, the x-component of the Lorentz contribution
to the force in the local fluid rest frame is to a very good approximation given
by E lrf

L,x = −γ(u)uzBy, where uz = tanh ηs is the z-component of the background
flow velocity. As is clear from Figure 5.1, the directed flow coefficient v1 receives
its largest contribution from sufficiently large ηs where uz ≈ 1. We now see that
in the regime 2 . ηs � Y0 there is an almost perfect cancellation between E lrf

L,x

and E lrf
F+C,x, with E lrf

L,x slightly smaller on account of the fact that uz is slightly
smaller than 1. This means that the main contribution to ∆v1 should come from the
mid-rapidity region where the cancellation is only partial as illustrated in Figure 5.4,
meaning that ∆v1 is bound to be small in magnitude.

5.4.2 Parameter dependence of the results

Throughout this chapter, we have chosen fixed values for the two important material
parameters that govern the magnitude of the electromagnetically induced contri-
butions to flow observables, namely the drag coefficient µm defined in Eq. (5.9)
and the electrical conductivity σ. Here we explore the consequences of choosing
different values for these two parameters.

In Figure 5.12, we study the effect of varying the drag coefficient µm on the the
magnitude of the electromagnetically induced differences between the flow of protons
and antiprotons. We change the value of the drag coefficient in Eq. (5.9) by choosing
different values of the ’t Hooft coupling λ. (The consequences of varying µm for
the differences between the flow of π+ and π− are similar, although the magnitude
of the ∆vn’s is less for pions than for protons.) We see in Figure 5.12 that all of
the charge-dependent contributions to the flow that are induced by electromagnetic
fields become larger when the drag coefficient µm becomes smaller, as at weaker
coupling. This is because the induced drift velocity v lrf

drift in equation (5.8) is larger
when the drag coefficient µm is smaller. Since throughout the chapter we have
used a value of µm that is motivated by analyses of drag forces in strongly coupled
plasma, meaning that we may have overestimated µm, it is possible that in so
doing we have underestimated the magnitude of the charge-odd electromagnetically
induced contributions to flow observables.

In Figure 5.13, we study the effect of varying the electrical conductivity σ on
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Figure 5.12: The dependence of the electromagnetically induced differences
between the flow of protons and antiprotons on the choice of the drag coefficient
µm defined in Eq. (5.9). Elsewhere in this chapter, we fix µm by choosing the
’t-Hooft coupling in Eq. (5.9) to be 6π. Here we explore the consequences of
varying this parameter by factors of 2 and 1/2, thus varying µm by factors of√

2 and 1/
√

2.

the magnitude of the electromagnetically induced differences between the flow of
protons and antiprotons. Note that, throughout, we are treating µm and σ as
constants, neglecting their temperature dependence. This is appropriate for µm,
since what matters in our analysis is the value of µm at the freezeout temperature.
However, σ matters throughout our analysis since it governs how fast the magnetic
fields sourced initially by the spectator nucleons decay away. The value of σ that
we have used throughout the rest of this chapter is reasonable for quark-gluon
plasma with a temperature T ∼ 250 MeV, as we discussed in Section 5.2. In a more
complete analysis, σ should depend on the plasma temperature and hence should
vary in space and time. We leave a full-fledged magnetohydrodynamic study like
this to the future. Here, in order to get a sense of the sensitivity of our results to
the choice that we have made for σ we explore the consequences for our results of
doubling σ, and of setting σ = 0.
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Figure 5.13: The dependence of the electromagnetically induced differences
between the flow of protons and antiprotons on the choice the electrical conduc-
tivity σ in the Maxwell equations (5.6) and (5.7).

The electromagnetically induced charge-odd contributions to the flow observables
∆〈pT 〉 and ∆v2 increase in magnitude if the value of σ is increased. This is because
the magnetic fields in the plasma decay more slowly when σ is large [56]. And, a
larger electromagnetic field in the local fluid rest frame at the freezeout surfaces
induces a larger drift velocity which drives the opposite contribution to proton and
antiproton flow observables. We see, however, that the increase in the charge-odd,
rapidity-odd, odd ∆vn’s with increasing σ is very small, suggesting a robustness
in our calculation of their magnitudes. This would need to be confirmed via a full
magnetohydrodynamical calculation in future. Since ∆〈pT 〉 and the even ∆vn’s
are to a significant degree driven by Coulomb fields, it makes sense that they are
closer to proportional to σ: increasing σ means that a given Coulomb field pushes
a larger current, and it is the current in the plasma that leads to the charge-odd
contributions to flow observables. Although not physically relevant, it is also
interesting to check the consequences of setting σ = 0. What remains are small but
nonzero contributions to ∆〈pT 〉 and the ∆vn. With σ = 0 the electric fields do not
have any effects during the Maxwell evolution; the small remnant fields at freezeout
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are responsible for these effects.

5.5 Discussion and Outlook

We have described the effects of electric and magnetic fields on the flow of charged
hadrons in non-central heavy-ion collisions by using a realistic hydrodynamic evolu-
tion within the iEBE-VISHNU framework. The electromagnetic fields are generated
mostly by the spectator ions. These fields induce a rapidity-odd contribution to
∆v1 and ∆v3 of charged particles, namely the difference between v1 (and v3) for
positively and negatively charged particles. Three different effects contribute: the
Coulomb field of the spectator ions, the Lorentz force due to the magnetic field
sourced by the spectator ions, and the electromotive force induced by Faraday’s law
as that magnetic field decreases. The ∆v1 and ∆v3 in sum arise from a competition
between the Faraday and Coulomb effects, which point in the same direction, and
the Lorentz force, which points in the opposite direction. These effects also induce a
rapidity-even contribution to ∆〈pT 〉 and ∆v2, as does the Coulomb field sourced by
the charge within the plasma itself, deposited therein by the participant ions. We
have estimated the magnitude of all of these effects for pions and protons produced
in heavy-ion collisions with varying centrality at RHIC and LHC energies. Our
results motivate the experimental measurement of these quantities with the goal of
seeing observable consequences of the strong early time magnetic and electric fields
expected in ultrarelativistic heavy-ion collisions.

In our calculations, we have treated the electrodynamics of the charged matter
in the plasma in a perturbative fashion, added on top of the background flow,
rather than attempting a full-fledged magnetohydrodynamical calculation. The
smallness of the effects that we find supports this approach. However, we caution
that we have made various important assumptions that simplify our calculations:
(i) we treat the two key properties of the medium that enter our calculation, the
electrical conductivity σ and the drag coefficient µm, as if they are both constants
even though we know that both are temperature-dependent and hence in reality
must vary in both space and time within the droplet of plasma produced in a
heavy-ion collision; (ii) we neglect event-by-event fluctuations in the shape of the
collision zone; (iii) rather than full-fledged magnetohydrodynamics, we follow a
perturbative calculation where we neglect backreaction of various types, including
the rearrangement of the net charge in response to the electromagnetic fields; (iv)
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we assume that the force-balance equation (5.8) holds at any time and at any point
on the plasma, meaning that we assume that the plasma equilibrates immediately
by balancing the electromagnetic forces against drag. As we shall discuss in turn,
relaxing these assumptions could have interesting consequences, and is worthy of
future investigation. But, relaxing any of these assumptions would result in a
substantially more challenging calculation.

Relaxing (i) necessitates solving the Maxwell equations on a medium with time-
and space-dependent parameters, which would result in a more complicated profile
for the electromagnetic fields. We expect that this would modify our results in
a quantitative manner without altering main qualitative findings. We have tried
to choose a value for σ corresponding roughly to a time average over the lifetime
of the plasma and a value of µm corresponding roughly to its value at freezeout,
which is where it is relevant to our analysis. The values of each could be revisited,
of course, but our investigation in Section 5.4.2 indicates that this would not affect
any qualitative results.

Relaxing (ii), which is to say adding event-by-event fluctuations in the initial
conditions for the hydrodynamic evolution of the matter produced in the collision
zone, as well as for the distribution of spectator charges, would have quite significant
effects on the values of the charge-averaged 〈pT 〉 and vn’s, for example introducing
nonzero v1 and v3. Solving the Maxwell equations on such a medium would of
course be much more complicated. Furthermore we expect that consequences would
appear in all four of the electromagnetic effects that we have analysed (the Faraday
~EF , the Lorentz ~EL, the Coulomb field of the spectators ~EC and the Coulomb
field of the plasma ~EP ) resulting in each contributing at some level to each of the
four observables that we have analysed (∆〈pT 〉, ∆v1, ∆v2 and ∆v3). However, we
expect that the electromagnetically induced contributions that we have found using
a smooth hydrodynamic background without fluctuations, and whose magnitudes
we have estimated, will remain the largest contributions.

Relaxing assumption (iii) may bring new effects and, as we shall explain, could
potentially flip the sign of the odd flow coefficients ∆v1 and ∆v3. One particular
physical effect that we neglect is the shorting, or partial shorting, of the Coulomb
electric fields in the plasma, both the ~EC sourced by the spectators and the ~EP

sourced by the plasma itself. These Coulomb fields will push charges in the plasma to
rearrange in a way that reduces the electric field within the conducting plasma. We
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have neglected this, and all, back reaction in our calculation. However, although it
would require a fully dynamical calculation of the currents and electric and magnetic
fields to estimate its extent, some degree of shorting must occur. There may, in fact,
be experimental evidence of this effect: ∆v2 for pions has been measured in RHIC
collisions with 30-40% centrality and collision energy

√
s = 200 AGeV by the STAR

collaboration [233], and although it turns out to be negative as our calculations
predict it is substantially smaller in magnitude than what we find. Because there
are other effects (unrelated to Coulomb fields) that can contribute to ∆v2 and that
are known to contribute significantly to ∆v2 in lower energy collisions [225–231], it
would take substantially more analysis than we have done to use the experimentally
measured results for ∆v2 to constrain the magnitude of ~EC and ~EP quantitatively.
However, it does seem likely that, due to back reaction, they have been at least
partially shorted, making them weaker in reality than in our calculation.

The likely reduction in the magnitude of ~EC , in turn, has implications for the odd
∆vn’s. Recall that they arise from the sum of three effects, in which there is a near
cancellation between ~EF + ~EC and ~EL, which point in opposite directions. The sign
of the rapidity-odd ∆v1 and ∆v3 that we have found in our calculation corresponds
to | ~EF + ~EC | being slightly greater than | ~EL|. If | ~EC | is in reality smaller than
in our calculation, this could easily flip the sign of ∆v1 and ∆v3. In this context,
it is quite interesting that a preliminary analysis of ALICE data [216] indicates
a measured value of ∆v1 for charged particles in LHC heavy-ion collisions with
5%-40% centrality and collision energy

√
s = 5.02 ATeV that is indeed rapidity-odd

and is comparable in magnitude to the pion ∆v1 for collisions with this energy that
we have found in Fig.10, but is opposite in sign.

Finally, let us consider relaxing our assumption (iv). This corresponds to considering
a more general version of (5.8) with a non-vanishing acceleration on the right-hand
side. The drift velocity that would be obtained in such a calculation would decay to
the one that we have found by solving the force-balance equation (5.8) exponentially,
with an exponent controlled by the drag coefficient µ. Thus, for very large µ we
do not expect any significant deviation from our results. However, at a conceptual
level relaxing assumption (iv) would change our calculation significantly, since it is
only by making assumption (iv) that we are able to do a calculation in which µ

enters only through the value of µm at freezeout. If we relax assumption (iv), the
actual drift velocity would always be lagging behind the value obtained by solving
(5.8), and determining the drift velocity at freezeout would, in principle, retain a
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memory of the history of the time evolution of µ. If we use the estimate (5.9) for
µ and focus only on light quarks, and hence pions and protons, as we have done
we do not expect that relaxing assumption (iv) would have a qualitative effect on
our results. However, µ may in reality not be as large as that in (5.9) at freezeout.
And, furthermore, it is also very interesting to extend our considerations to consider
heavy charm quarks, as in Ref. [234]. The charm quarks receive a substantial initial
kick from the strong early time magnetic [234] and electric fields, and because
they are heavy µ may not be large enough to slow them down and bring them
into alignment with the small drift velocity that (5.8) predicts for heavy quarks.
Hence, consideration of heavy quarks requires relaxing our assumption (iv) in a
way that alters our conclusions significantly, and indeed the authors of Ref. [234]
find a substantially larger ∆v1 for mesons containing charm quarks than the ∆v1

that we find for pions and protons. These considerations motivate the (challenging)
experimental measurement of ∆v1 for D mesons. In [235] there is a discussion on
the (mis)match between the theory and experiment.
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In this thesis, we have discussed a wide array of topics, split up into three parts.
In the first part of the thesis, we focussed explicitly on black hole solutions within
string theory and M-theory. In chapter 2 we focussed on black holes in string theory
with duality twists. One motivation for the project was to study black holes in
supersymmetry-breaking background theories. To break the supersymmetry, we
made use of Scherk-Schwarz reductions on a circle. These reductions introduce a
monodromy on the fields as they move around the circle, and the monodromies, in
their turn, result in mass terms in the lower dimensional theory. When (some of)
the gravitini get a mass in this manner, the supersymmetry is broken.
The chapter started by discussing the Type IIB supergravity theory in ten di-
mensions, subsequently reduced on T 4 to obtain a six-dimensional theory with
N = (2, 2) supersymmetry and a Spin(5,5) duality group. Our first goal was to
write this six-dimensional theory in an explicitly Spin(5,5)-covariant manner, such
that we can let the monodromies act on the fields. We could then reduce on the
Scherk-Schwarz circle; the monodromies were chosen to lie in the maximal torus
U(1)4 of the R-symmetry subgroup of the total Spin(5,5) duality group. This choice
meant that there are four mass parameters mi that can be tuned to our preference;
depending on which of the mi we choose non-zero, we can end up in five-dimensions
with N ∈ {8, 6, 4, 2, 0} supersymmetry.
The subsequent ingredients were the black holes themselves; we presented first the
10D solutions of the D1-D5-P, F1-NS5-P, and the D3-D3-P systems. Reducing these
to six dimensions followed the straightforward procedure, but for the reduction on
the Scherk-Schwarz circle, we had to pay close attention to the choice of monodromy.
This is because each of the brane configurations is charged by different fields, and
to preserve the solution, these fields must remain massless. The case where the
monodromy lies within the T-duality subgroup SO(4,4) received particular attention
since, in these scenarios, the theory could also be described by orbifold constructions.
In particular, the case where we end up with N = 4 (2, 0) supersymmetry, achieved
by m1 = m2, is of interest since it lies in the T-duality subgroup and simultaneously

241



Summary and Outlook

preserves both the F1-NS5 and D1-D5 systems.
After completing the reductions, we considered the theories as effective theories
and integrated out the massive fields in the theory. This procedure generates
corrections to the Chern-Simons terms of the theory, and we subsequently studied
the effects the integrating has on the black hole entropy, which changes due to both
the gravitational and mixed Chern-Simons terms. Lastly, we discussed the uplift of
the procedure to string theory and showed that when the mi are suitably quantized,
the procedure can be embedded into string theory.

In chapter 3 we studied the geometry of supersymmetric solutions that can be
interpreted as the near-horizons of rotating black holes and black strings. The
near-horizon of rotating black holes is characterized by the presence of a fibration
over an AdS2 space. From the eleven-dimensional viewpoint, this means we want to
consider rotating M2-branes wrapped on a Riemann surface since such geometries
may give rise to near horizons of black holes. To find the geometries, we started by
discussing the conditions for an 11D geometry admitting a timelike Killing vector.
Preservation of supersymmetry imposes conditions on the allowed terms in the
four-form flux and the SU(5) structure present on the 10D space.
The next step was to specify the ten-dimensional space conformally as a cone,
under the conditions that we to recover a warped AdS2 space along with a 9D
space that is independent of the radial coordinate. The conical geometry naturally
yields an R-symmetry vector, which in its turn allows us to create a holomorphic
foliation of an 8D space that admits an SU(4) structure, which it inherits from
the 10D SU(5) structure. We reduced the SU(5) structure to the 8D base and
found that the 8D space is, in general, a balanced manifold, not necessarily Kähler.
Furthermore, we reduced the fluxes to eight dimensions and derived their Bianchi
identities and Maxwell equations. The first Maxwell equation is also known as the
‘master equation’, which we thus generalized to the rotating case.
We also give a (non-supersymmetric) Lagrangian description, from which the
equations of motion can be derived. Afterward, we applied supersymmetry to the
Lagrangian and showed to what extent it coincides with the non-rotating case. As
an example of the classification, we embedded the asymptotically AdS4, electrically
charged, Kerr-Newman black hole in 4D N = 2 into the classification. Lastly,
assuming that the internal space admits a two-torus, we used dualities to end up in
Type IIB theory and discussed the near-horizon geometries of rotating black strings
similar to the black holes preceding them.
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In the second part of the thesis, we switched our focus away from explicit black
hole solutions and their implementations in string theory and supergravity. Instead,
we focussed first on a one-dimensional conformal field theory, whose dual theory
describes black holes. In this second part, we considered a generalization to
the Sachdev-Ye-Kitaev model, a one-dimensional field theory. Instead of only
considering N Majorana fermions, as is the case in the original SYK model, we also
introduced M auxiliary bosons. We considered the model while taking both the
large N and the large M limits but keeping the ratio M/N fixed. If we were to take
M = N , we find that the model essentially reduces to the N = 1 supersymmetric
SYK model. In order to properly investigate the dynamics of the model, we
derived the effective action and the corresponding equations of motion for the
bilocal fields in the effective action. For general M/N , the equations of motion
yield two solutions; we label them by their behavior for M = N as ‘rational’ and
‘irrational’. The rational branch has, for M = N , the same conformal dimensions as
the supersymmetric SYK model. As we take the limit M/N → ∞, we find that
the branches coincide, and only one solution remains. In this limit, the conformal
dimension of the fermions coincides with that of vanilla SYK, and we can consider
them to have the same infrared fixed points.
To figure out which of the branches is the dominant saddle one, we performed
a numerical analysis on the entropies and found that for general M/N that the
rational branch dominates. Finally, we concluded the chapter by investigating the
chaos in the model and found that the model is still maximally chaotic for all M/N ,
necessary for a possible dual interpretation as black holes.

The last part of the thesis considered heavy-ion collisions, quark-gluon plasmas,
and electromagnetic fields. The relation between these three is as follows: the
heavy-ion collisions, at large enough speeds (for example, at the LHC), produce the
quark-gluon plasma. Not all ions collide with one another, however, and when these
charged particles fly by the collision, they result in powerful electromagnetic fields.
This chapter aimed to investigate the effects of the electromagnetic fields on the
hydrodynamic expansion of the quark-gluon plasma. The first part of the chapter
focussed on explaining the different electromagnetic fields and their origins. Firstly,
the ‘spectating’ particles that fly by the collision cause a diminishing magnetic field
in the y direction, from the plasma’s point of view. Faraday’s law causes an electric
field EF that curls around the decreasing magnetic field. The Lorentz force causes
a second effect, also caused by the magnetic field. Lastly, there are Coulomb forces,
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both from the spectators and the participants of the collision.
The setup we used consisted of a combination of numerical models. The electro-
magnetic fields could be solved semi-analytically by assuming that the conductivity
is constant and independent of temperature. The hydrodynamic evolution was sim-
ulated using iEBE-VISHNU framework, where the initial conditions were determined
by averaging over Monte-Carlo-Glauber events.
The effects of the electromagnetic fields were investigated using flow coefficients vn.
Specifically we considered the directed flow v1, the elliptic flow v2 and the triangular
flow v3. The odd flow coefficients receive an odd contribution in rapidity, while
the even flow coefficients are even in rapidity. The effects of the electromagnetic
fields are several orders of magnitudes smaller than the overall hydrodynamic flow
of the plasma, which is consistent with the expectation that electromagnetic effects
should yield a small perturbation on the expansion. In the last part of the chapter,
we considered the influence of parameters on the resulting flow. We investigated
the effects of centrality, the drag coefficient µm, and the conductivity σ on the
resulting flow coefficients.

Outlook

Let me now discuss my broad outlook on the field and what I see as exciting and
promising future directions. All of my projects were, in some way, related to black
holes. Even more so than when I started my Ph.D., I believe that black holes make
for a fascinating challenge in physics research; our understanding is genuinely tested
under such extreme circumstances. For that reason, I think that research focussed
on black holes is bound to bring us further in our knowledge. More concretely, the
duality between quark-gluon plasmas and black hole physics remains one of the only
ways to examine our theories experimentally. Due to the tremendous importance of
experimental falsification, I sincerely hope that research will continue to blossom in
this direction, both theoretically and experimentally.1 A more in-depth study of the
magnetically induced transport in the plasma can have far-reaching consequences.
One of these consequences is, for example, a better understanding of the baryon
asymmetry in the early universe using CP-violation. The relation between the two
phenomena was made by Sakharov in 1967 [236] when he listed C- and CP-violation
as one of the necessary ingredients of baryogenesis. These violations occur due

1Fortunately, my co-promoter has, at the time of writing, just received a Vici grant for pursuing
exactly such interests.
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to quantum effects in the topologically non-trivial vacuum of the standard model.
Heavy-ion collisions reproduce the early universe several microseconds after the
big bang; however, they cannot directly probe the topological vacuum transitions
responsible for baryogenesis. Fortunately, QCD allows for a similar situation with
different topological vacuum sectors when considering the chirality in heavy-ion
collisions. In these chirally asymmetric situations, an imbalance between the left-
and right-handed quarks exists. Since the left- and right-handed quarks are related
by parity P, the vacuum transitions violate a combination of C and CP-symmetries;
analogous to the baryogenesis before, we now get a ‘chirogenesis’ effect.

As for the string theoretical research into black holes presented, there are a few
obvious and exciting follow-up directions. First, a field theory dual to the duality
compactifications is bound to shed light on the microscopic details of the remaining
brane systems and thus black holes. It would be fascinating to see if the black
hole entropies could be reproduced in the microscopic setting. Secondly, regarding
the rotating black holes: a complete understanding of the extremization for our
classification would extend the current framework to a large class of rotating black
holes. This extension would allow us, for example, to calculate the entropies of such
black holes using only topological properties. Let me now make some more general
comments about encouraging directions in the black hole physics field. Although I
have not actively researched it as much as I wanted, quantum information and black
holes remains, to me, a captivating subject. At the interplay between those two,
we should probably learn more about both; perhaps we can even make progress
in understanding the foundations of quantum mechanics. In particular, a better
understanding of the information paradox seems vital for improving our under-
standing of black holes; the recent ‘island’ proposals seem to make good progress
in this direction. Finally, the study of quantum information principles in string
theory and holography also seems a significant field of interest. Significant steps
here have already been made with, for example, holographic entanglement entropy
or holographic complexity, which allow for another construction of fundamental
information principles.
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Samenvatting en Vooruitzicht

In dit proefschrift hebben we een breed scala aan onderwerpen besproken, opgesplitst
in drie delen. In het eerste deel van het proefschrift hebben we ons expliciet gefocust
op zwarte gat oplossingen binnen snaartheorie en M-theorie. In hoodstuk twee
hebben we ons gericht op zwarte gaten in snaartheorie met dualiteits-draaiingen. Een
motivatie voor het project was het bestuderen van zwarte gaten in supersymmetrie-
brekende achtergrondtheorieën. Om de supersymmetrie te breken hebben we
gebruik gemaakt van Scherk-Schwarz reducties op een cirkel. Deze reducties
introduceren een monodromie op de velden terwijl ze rond de cirkel bewegen, en
deze monodromieën resulteren in massa termen in de lager-dimensionale theorie.
Wanneer (een deel van) de gravitini op deze manier een massa krijgen, wordt de
supersymmetrie broken.
Het hoofdstuk begon met een bespreking van de Type IIB supergravitatie-theorie in
tien dimensies, welke vervolgens gereduceerd werd op T 4 om een zes-dimensionale
theorie te verkrijgen met N = (2, 2) supersymmetrie en een Spin(5,5) dualiteitsgroep.
Ons eerste doel was om deze zes-dimensionale theorie expliciet Spin(5,5)-invariant
te schrijven, zodat we de monodromieën op de velden konden laten werken. Daarna
kunnen we reduceren op de Scherk-Schwarz cirkel: de mondoromieën zijn gekozen
om te liggen in de maximale torus U(1)4 van de R-symmetrie subgroep van de totale
Spin(5,5) dualiteitsgroep. Deze keuze betekende dat er vier massa parameters mi

zijn die kunnen worden afgestemd op onze voorkeur; afhankelijk van welke van de
mi we niet-nul kiezen, kunnen we eindigen in vijf dimensies met N ∈ {8, 6, 4, 2, 0}
supersymmetrie.
De volgende ingrediënten waren de zwarte gaten zelf; we presenteerden eerst de 10D-
oplossingen van de D1-D5-P, F1-NS5-P en de D3-D3-P systemen. Het terugbrengen
van deze oplossingen tot zes dimensies volgde de standaard procedure, maar voor
de reductie op de Scherk-Schwarz-cirkel moesten we goed letten op de keuze voor
monodromie. Elk van de braan configuraties wordt geladen door verschillende
velden en om de oplossing te behouden, moeten deze velden massavrij blijven.
Het geval waarin de monodromie binnen de T-dualiteit subgroep SO(4,4) ligt
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kreeg speciale aandacht, aangezien in deze scenario’s de theorie ook door orbifold
constructies beschreven kan worden. In het bijzonder het geval waarin we eindigen
met N = 4 (2, 0) supersymmetrie, bereikt door m1 = m2, is interessant omdat het
in de T-dualiteit-subgroep ligt en tegelijkertijd het zowel de F1-NS5 als de D1-D5
systemen behoudt.
Na het voltooien van de reducties beschouwden we de theorieën als effectieve
theorieën en integreerden we de massieve velden uit de theorie. Deze procedure
genereert correcties op de Chern-Simons-termen van de theorie, en we hebben
vervolgens de effecten bestudeerd die de integratie heeft op de entropieën van de
zwarte gaten, die veranderen als gevolg van zowel de zwaartekracht- als de gemengde-
Chern-Simons termen. Ten slotte hebben we de ophijsing van de procedure naar de
snaartheorie besproken en laten zien dat een juiste kwantisatie van de mi ervoor
zorgt dat de procedure kan worden ingebed in snaartheorie.

In het derde hoofdstuk hebben we de meetkunde van supersymmetrische oplossingen
bestudeerd die kunnen worden geïnterpreteerd als de nabije horizon van roterende
zwarte gaten en zwarte snaren. De nabije horizon van roterende zwarte gaten wordt
gekenmerkt door de aanwezigheid van een fibratie over een AdS2 ruimte. Vanuit
het elf-dimensionale gezichtspunt betekent dit dat we roterende M2-branen willen
plaatsen, gewikkeld op een Riemann-oppervlak, aangezien dergelijke geometrieën
aanleiding kunnen geven tot nabije horizons van zwarte gaten. Om de geometrieën
te vinden, zijn we begonnen met het bespreken van de voorwaarden voor een 11D-
geometrie die een tijdachtige Killing-vector toelaat. Behoud van supersymmetrie
stelt voorwaarden aan de toegestane termen in de vier-vorm flux en de SU(5)-
structuur die aanwezig is op de 10D-ruimte.
De volgende stap was om de tien-dimensionale ruimte conform te specificeren als
een kegel, onder de voorwaarden dat we een kromgetrokken AdS2 ruimte willen
herkennen, samen met een 9D-ruimte die onafhankelijk is van de radiale coördinaat.
De conische meetkunde levert een R-symmetrievector op, die ons in staat stelt een
holomorfe foliatie te creëren van een 8D-ruimte die een SU(4)-structuur toelaat, die
hij erft van de 10D SU(5)-structuur. We hebben de SU(5)-structuur teruggebracht
tot de 8D-basis en ontdekten dat de 8D-ruimte in het algemeen een gebalanceerde
variëteit is, niet noodzakelijk Kähler. Verder hebben we de fluxen teruggebracht
tot acht dimensies en hun Bianchi-identiteiten en Maxwell-vergelijkingen afgeleid.
De eerste Maxwell-vergelijking staat ook bekend als de ‘hoofdvergelijking’, die we
dus gegeneraliseerd hebben naar het roterende geval.
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We geven ook een (niet-supersymmetrische) Lagrangiaanse beschrijving, waaruit de
bewegingsvergelijkingen kunnen worden afgeleid. Daarna hebben we supersymmetrie
toegepast op de Lagrangiaan en laten zien in hoeverre deze samenvalt met het
niet-roterende geval. Als voorbeeld van de classificatie hebben we het asymptotisch
AdS4, elektrisch geladen, Kerr-Newman zwarte gat in 4D N = 2 in de classificatie
geplaatst. Ten slotte, ervan uitgaande dat de interne ruimte een twee-torus toelaat,
gebruikten we dualiteiten om in Type IIB theorie terecht te komen en bespraken
we de nabije horizon geometrieën van roterende zwarte snaren op een gelijkaardige
manier als de zwarte gaten die eraan voorafgingen.

In het tweede deel van het proefschrift hebben we onze focus verlegd van de expliciete
zwart-gatoplossingen en hun relaties tot snaartheorie en superzwaartekracht tot
een één-dimensionale conforme veldentheorie. In het bijzonder hebben we een
generalisatie naar het Sachdev-Ye-Kitaev-model beschouwd, een één-dimensionale
veldtheorie. In plaats van alleen N Majorana-fermionen te beschouwen, zoals het
geval is in het originele SYK-model, hebben we ook M hulp-bosonen geïntroduceerd.
We hebben het model bekeken terwijl we zowel de grote N als de grote M limieten
namen, maar de verhouding M/N vast hielden. Als we M = N zouden nemen, zien
we dat het model in wezen reduceert tot het N = 1 supersymmetrische SYK-model.
Om de dynamiek van het model goed te onderzoeken hebben we de effectieve
actie en de bijbehorende bewegingsvergelijkingen afgeleid voor de bilocale velden
in de effectieve actie. De bewegingsvergelijkingen leveren voor algemene M/N

twee oplossingen op; we bestempelen ze op basis van hun gedrag voor M = N als
‘rationeel’ en ‘irrationeel’. De rationele tak heeft voor M = N dezelfde conforme
dimensies als het supersymmetrische SYK-model. Als we de limiet M/N → ∞
nemen, zien we dat de vertakkingen samenvallen en dat er maar een enkele oplossing
overblijft. In deze limiet valt de conforme dimensie van de fermionen samen met die
van ‘normale’ SYK, en we kunnen ervan uitgaan dat ze hetzelfde infrarood vaste
punt hebben.
Om erachter te komen welke van de takken het dominante zadel is, hebben we een
numerieke analyse van de entropieën uitgevoerd en vastgesteld dat voor algemene
M/N de rationele tak domineert. We sloten het hoofdstuk af met een onderzoek
naar de chaos in het model en ontdekten dat het model nog steeds maximaal
chaotisch is voor alle M/N , wat ook nodig is voor een mogelijke duale interpretatie
als zwarte gaten.

Het laatste deel van het proefschrift behandelde zware ionen botsingen, quark-gluon-
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plasma’s en elektromagnetische velden. De relatie tussen deze drie is als volgt: de
zware ionen botsingen, bij voldoende hoge snelheden (bijvoorbeeld bij de LHC),
produceren het quark-gluon plasma. Niet alle ionen komen echter met elkaar in
botsing, en wanneer deze geladen deeltjes door de botsing vliegen, resulteren ze
in zeer sterke elektromagnetische velden. Het doel van dit hoofdstuk was om de
effecten van de elektromagnetische velden op de hydrodynamische expansie van
het quark-gluon plasma te onderzoeken. Het eerste deel van het hoofdstuk was
gericht op het uitleggen van de verschillende elektromagnetische velden en hun
oorsprong. Ten eerste veroorzaken de ‘toekijkende’ deeltjes die de botsing voorbij
vliegen, een afnemend magnetisch veld in de y richting, vanuit het oogpunt van het
plasma. Volgens de wet van Faraday veroorzaakt dit een elektrisch veld EF dat
rond het afnemende magnetische veld krult. Een tweede effect wordt veroorzaakt
door de Lorentz-kracht, ook veroorzaakt door het magnetische veld. Ten slotte
zijn er Coulomb-krachten, zowel van de toeschouwers als van de deelnemers aan de
botsing.
De opstelling die we gebruikten, bestond uit een combinatie van numerieke modellen.
De elektromagnetische velden zouden semi-analytisch kunnen worden opgelost door
aan te nemen dat de geleidbaarheid constant en temperatuur onafhankelijk is.
De hydrodynamische evolutie werd gesimuleerd met behulp van het iEBE-VISHNU
-raamwerk, waarbij de initiële condities werden bepaald door middeling over Monte-
Carlo-Glauber events.
De effecten van de elektromagnetische velden zijn onderzocht met behulp van
stroomcoëfficiënten vn. We hebben specifiek gekeken naar de gerichte stroom v1, de
elliptische stroom v2 en de driehoekige stroom v3. De oneven stroomcoëfficiënten
ontvangen een bijdrage die in de rapiditeit oneven is, terwijl de even stroomcoëfficiën-
ten ook een even contributie geven. De effecten van de elektromagnetische velden
zijn enkele ordes van grootte kleiner dan de algehele hydrodynamische stroming van
het plasma, wat consistent is met de verwachting dat elektromagnetische effecten
een kleine verstoring van de expansie zouden opleveren. In het laatste deel van het
hoofdstuk hebben we gekeken naar de invloed van parameters op de resulterende
stroming. We onderzochten de effecten van centraliteit, de weerstandscoëfficiënt
µm en de geleidbaarheid σ op de resulterende stromingscoëfficiënten.
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Laat me nu mijn brede kijk op het veld bespreken en mijn visie op uitdagende
en veelbelovende toekomstige richtingen. Al mijn projecten waren, op de een of
andere manier, gerelateerd aan zwarte gaten. Nog meer dan toen ik aan mijn
doctoraat begon, geloof ik dat zwarte gaten een fascinerende uitdaging vormen voor
natuurkundig onderzoek; ons begrip wordt echt op de proef gesteld onder zulke
extreme omstandigheden. Om die reden denk ik dat onderzoek gericht op zwarte
gaten ons zeker verder zal brengen in onze kennis. Concreet blijft de dualiteit tussen
quark-gluon plasma’s en de fysica van zwarte gaten één van de weinige manieren
om onze theorieën experimenteel te onderzoeken. Vanwege het enorme belang van
experimentele falsificatie hoop ik dat het onderzoek in deze richting zal blijven
bloeien, zowel theoretisch als experimenteel.1 Een meer diepgaande studie van
het magnetisch geïnduceerde transport in het plasma kan verstrekkende gevolgen
hebben. Één van deze gevolgen is, bijvoorbeeld, een beter begrip van de baryon-
asymmetrie in het vroege heelal, met behulp van CP-symmetrie schending. De
relatie tussen de twee fenomenen werd gelegd door Sacharov in 1967 [236] toen hij C-
en CP-schending noemde als één van de noodzakelijke ingrediënten van baryogenese.
Deze schendingen treden op vanwege kwantumeffecten in het topologisch niet-
triviale vacuüm van het standaardmodel. Botsingen met zware ionen reproduceren
het vroege heelal enkele microseconden na de oerknal; ze kunnen echter niet direct
de topologische vacuümovergangen onderzoeken die verantwoordelijk zijn voor
baryogenese. Gelukkig zorgt QCD voor een vergelijkbare situatie met verschillende
topologische vacuümsectoren als we kijken naar de chiraliteit bij botsingen met
zware ionen. In deze chiraal asymmetrische situaties bestaat er een onbalans tussen
de links- en rechtshandige quarks. Aangezien de links- en rechtshandige quarks
verwant zijn door pariteit P, schenden de vacuümovergangen een combinatie van
C- en CP-symmetrieën; analoog aan de baryogenese voorheen, krijgen we nu een
‘chirogenesis’-effect.

Wat betreft het gepresenteerde snaartheoretisch onderzoek naar zwarte gaten, zijn
er een paar voor de hand liggende en uitnodigende vervolgrichtingen. Ten eerste,
zal een veldtheorie die duaal is aan de dualiteits-compactificaties ongetwijfeld
licht werpen op de microscopische details van de resterende braansystemen en

1Gelukkig heeft mijn copromotor, op het moment van schrijven, zojuist een Vici-beurs ontvangen
voor precies zulke interesses.
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dus zwarte gaten. Het zou fascinerend zijn om te zien of de entropieën van
het zwarte gat kunnen worden gereproduceerd in de microscopische omgeving.
Ten tweede, met betrekking tot de roterende zwarte gaten: een volledig begrip
van de extremisering voor onze classificatie zou het huidige raamwerk uitbreiden
tot een grote klasse van roterende zwarte gaten. Met deze uitbreiding zouden
we bijvoorbeeld de entropie van dergelijke zwarte gaten kunnen berekenen met
alleen topologische eigenschappen. Laat me nu wat meer algemene opmerkingen
maken over bemoedigende richtingen op het gebied van de fysica van zwarte gaten.
Hoewel ik het niet zoveel heb onderzocht als ik wilde, blijft kwantuminformatie
in relatie tot zwarte gaten een erg boeiend onderwerp. Bij de wisselwerking
tussen die twee zouden we waarschijnlijk meer over beide moeten leren; misschien
kunnen we zelfs vooruitgang boeken in het begrijpen van de fundamenten van de
kwantummechanica. Met name een beter begrip van de informatieparadox lijkt
essentieel voor het verbeteren van ons begrip van zwarte gaten; de recente ’eiland’-
voorstellen lijken in deze richting goede vooruitgang te boeken. Ten slotte lijkt de
studie van kwantuminformatie-principes in de snaartheorie en holografie ook een
belangrijk aandachtsgebied. Hier zijn al belangrijke stappen gezet met bijvoorbeeld
holografische verstrengelingsentropie of holografische complexiteit, welke een andere
constructie van fundamentele informatieprincipes mogelijk maken.
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