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Abstract
We classify all warped dS5 backgrounds in D= 11 supergravity with enhanced
supersymmetry. We show that backgrounds preserving N= 16 supersymmet-
ries consist of either a stack of M5 branes with transverse space R5, or a
generalized M5-brane configuration with transverse space R×N4, where N4

is a hyper-Kähler manifold and the M5-brane harmonic function is determined
by a hyper-Kähler potential on N4. Moreover, we find that there are no back-
grounds preserving exactly N= 24 supersymmetries. Backgrounds preserving
N= 32 supersymmetries correspond to either R1,10 or AdS7 × S4.

Keywords: supergravity, supersymmetry, M-branes

1. Introduction

Supersymmetry enhancement is known to play a particularly important role in the context
of the geometric properties of supersymmetric black holes. It has been shown that for many
supergravity theories, the near-horizon limits of supersymmetric extremal black holes1 (and
also branes) exhibit supersymmetry enhancement, which in turn imposes additional conditions
on the geometry near to the event horizon. In particular, as a consequence of the enhanced
supersymmetry, the isometry algebra enlarges in the near-horizon limit, containing a subal-
gebra isomorphic to sl(2,R). In the context of D= 11 and type IIA (including massive IIA)
supergravity, it has been shown that near-horizon geometries with smooth fields preserve an
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1 In N= 2, D= 4 and N= 2, D= 5 supergravity, supersymmetric black holes are automatically extreme, however in
D= 11 supergravity this need not be the case.

Original Content from this work may be used under the terms of the Creative Commons Attribution
4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the

title of the work, journal citation and DOI.

1751-8121/22/465401+13$33.00 © 2022 The Author(s). Published by IOP Publishing Ltd Printed in the UK 1

https://doi.org/10.1088/1751-8121/ac9f31
https://orcid.org/0000-0001-8807-3818
mailto:j.gutowski@surrey.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1088/1751-8121/ac9f31&domain=pdf&date_stamp=2022-11-15
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


J. Phys. A: Math. Theor. 55 (2022) 465401 D Farotti and J B Gutowski

even number of supersymmetries [1–3]. The proof for this utilizes Lichnerowicz type theor-
ems for certain generalized Dirac operators defined on the horizon spatial cross-section, which
is assumed to be compact and without boundary. The index of these Dirac operators vanishes,
which then establishes the supersymmetry enhancement.

Alternatively, one may consider the construction of a classification of highly supersymmet-
ric solutions. In theories such as D= 11 supergravity, solutions preserving the minimal N= 1
supersymmetry have rather weak conditions on the geometry [4, 5]. In contrast, it is reason-
able to expect that the classification of solutions with many supersymmetries will produce a
muchmore restricted set of geometries. An important result is the homogeneity theorem,which
states that backgrounds preservingN > 16 supersymmetry are locally homogeneous [6], i.e. the
tangent space at each point is spanned by the Killing vectors which are constructed as bilin-
ears of the Killing spinors. The theorem has been proven for D= 11 supergravity and type II
D= 10 supergravities, and holds for many other theories as well. Using an adaptation of the
homogeneity theorem, combined with an analysis of the associated superalgebras, it has been
shown that there are no N > 16 smooth near-horizon geometries with non-trivial fluxes and
also no warped AdS2 backgrounds in ten or eleven dimensions [7]. This non-existence theorem
applies provided that the horizon section, or the internal manifold, respectively, are compact
and without boundary. Moreover, in [8] homogeneous D= 11 backgrounds which are sym-
metric have been classified up to local isometry. This provides a classification of N > 16 sym-
metric backgrounds inD= 11 supergravity. Furthermore, using spinorial geometry techniques
it has been shown that all D= 11 backgrounds preserving N= 30,31 supersymmetries and
all type IIB backgrounds preserving N > 28 supersymmetries are maximally supersymmetric
[9–11]; also there is a unique plane wave solution in IIB supergravity preserving N= 28
supersymmetry [12]. The spinorial geometry technique is a powerful tool to solve the Killing
spinor equations (KSE) of supergravity theories and can be adapted to backgrounds with near
maximal number of supersymmetries. It is based on the use of the gauge covariance of the
KSE, together with a representation of the Clifford algebra, in an appropriate oscillator basis,
acting on spinors which correspond to differential forms [13, 14].

In this paper, we shall classify the warped product dS5 ×wM6 solutions inD= 11 supergrav-
ity which exhibit enhanced supersymmetry. In [15] it was shown that supersymmetric warped
product dS5 ×wM6 solutions must preserveN= 8k supersymmetries for k= 1,2,3,4.Minimal
supersymmetry therefore corresponds to N= 8 supersymmetry—these were fully classified in
[15]. Furthermore, it was also noted that the only possible N= 32 warped-product dS5 ×wM6

solutions are R1,10 with vanishing four-form, or the maximally supersymmetric AdS7 × S4

solution. Hence, in this paper we shall primarily be concerned with the N= 16 and N= 24
cases. We shall prove that there are no exactly N= 24 solutions. This is somewhat analogous
to the analysis for warped product AdS5 ×wM6 solutions in [16], in which it was proven that
there are no N= 24 warped product AdS5 solutions. However, there are differences between
the AdS5 and dS5 analysis. The non-existence of N= 24 AdS5 solutions was established via
an adapted version of the homogeneity theorem in [6], together with a maximum principle
argument which utilizes certain (assumed) global properties of the internal space. In contrast,
for the dS5 solutions, the local geometric conditions are sufficiently strong to allow an explicit
integration of the Killing spinor equation along two of the directions ofM6. The analysis of the
Killing spinor equation then simplifies significantly to the counting of certain parallel spinors
on a hyper-Kähler manifold. This enables the case of N= 24 supersymmetries to be excluded
by direct inspection. Moreover, this notable simplification also allows for the full classifica-
tion of the N= 16 dS5 solutions. We find two classes of N= 16 dS5 ×wM6 backgrounds. The
first is a special class of solutions constructed in [15] for which the four-form is parallel; the
geometry is a generalizedM5-brane configuration with transverse spaceR×N4, whereN4 is a
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hyper-Kähler manifold and theM5-brane harmonic function is determined by a hyper-Kähler
potential on N4. The second class is a stack of M5 branes with transverse space R5 [17]. Fur-
ther recent progress towards classifying the N= 16 AdS5 warped product solutions has been
made in [18], which develops a systematic examination of spacetimes, and other fields, which
are invariant under the action of certain R-symmetry groups.

It is known that there are many no-go theorems which imply non-existence of de Sitter solu-
tions in supergravity [19–21], in cases for which the warp factor and fluxes and are smooth, and
the internal manifold is smooth and compact without boundary. Our motivation is therefore to
construct a systematic classification of supersymmetric de Sitter solutions in supergravity the-
ories from a purely local perspective. In addition, we shall not assume that the spinors factorize
into products of spinors on dSn and on the internal space, as it is known that such factoriza-
tions can produce a miscounting of supersymmetries [22]. This classification programme has
already been fully completed in the case of heterotic supergravity, including the first order
corrections in α ′ [23]. For heterotic warped product de Sitter geometries, the warped product
dS2 solutions are in 1–1 correspondence with the direct product AdS3 solutions classified in
[24]; moreover all warped product dSn solutions for 3⩽ n⩽ 9 are direct product R1,n×M9−n

backgrounds. This is consistent with the restrictions on heterotic dSn solutions for n⩾ 4 found
in [25]; it is also clear from the analysis of [23] that the warped product dS2 and dS3 solu-
tions are also highly restricted in heterotic supergravity. The warped product dSn solutions in
D= 11 supergravity exhibit similar foliation properties for 5⩽ n⩽ 10. In the case of n= 5, dS5
arises as a (conformal) foliation of R1,5, corresponding to the directions along the M5-brane
worldvolume. In contrast, the warped product dS4 solutions with minimal N= 8 supersym-
metry have been classified in [26], and there is no analogous foliation of dS4 into AdS5 or R1,4

appearing.
In order to construct the classification of allD= 11 dS5 solutions with enhanced supersym-

metry, we begin by taking the necessary conditions obtained for a supersymmetric solution to
preserve (at least) the minimal N= 8 possible supersymmetry, which were obtained in [15].
Such conditions imply the existence of two preferred co-ordinates s and t in the internal man-
ifold, and also impose certain conditions on the four-form flux, when written in terms of these
co-ordinates. We then consider the conditions imposed on an arbitrary parallel (with respect to
the supercovariant connection of D= 11 supergravity) spinor ε in such a background. Using
the conditions on the flux and the geometry imposed by minimal N= 8 supersymmetry, we
explicitly integrate up the Killing spinor equation along the dS5 directions, as well as the s and
t directions onM6. After some manipulation, which depends on whether or not the Hessian of
the warp factor satisfies a particular condition, this allows us, in all possible cases, to explicitly
write the spinor ε in terms of certain covariantly constant spinors σ± on a four-dimensional
hyper-Kähler manifold which is embedded in M6. By counting such spinors, we show that
the case of exactly N= 24 supersymmetries is excluded. Moreover, it also enables a complete
classification of all solutions which preserve exactly N= 16 supersymmetries. If the Hessian
of the warp factor satisfies the condition mentioned above, then we prove that for a N= 16
solution, there must be eight σ+ spinors, and also eight σ− spinors. The resulting conditions
on the flux and geometry imply that such N= 16 solutions correspond to the class of solutions
obtained in [15] for which the four-form is parallel. If, however, the Hessian of the warp factor
does not satisfy the condition, then for a N= 16 solution, it follows that there must be 16 lin-
early independent σ+ spinors on the hyper-Kähler manifold, which implies that this manifold
must be R4. This case corresponds to the N= 16 solution which is a stack of M5-branes with
transverse spaceR5 [17]. Full details of the integration of the Killing spinor equation are given
in section 3.
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The plan of this paper is as follows: in section 2 we summarize some key aspects of the
classification of warped product dS5 solutions, dS5 ×wM6, preserving the minimal amount of
N= 8 supersymmetry constructed in [15], in which it is shown that all such solutions are gener-
alizedM5-brane solutions for which the five-dimensional transversemanifold isR×N4, where
N4 is a hyper-Kähler manifold. A particularly useful special case, which turns out to have
enhanced supersymmetry, for which the four-form F is covariantly constant, is also presented.
In section 3, we use the results presented in section 2 to explicitly integrate the Killing spinor
equations, acting on a generic spinor, alongM6. This produces a gravitino type equation, and an
algebraic condition. The analysis then splits into two subcases, depending on the properties of
the algebraic condition. In each of these subcases, the Killing spinor equations can ultimately
be reduced to counting parallel spinors on the hyper-Kähler manifold N4, enabling all of the
solutions with enhanced supersymmetry to be fully classified. The results are summarized in
section 4.

2. D=11 warped product dS5 backgrounds

In this section, we summarize the key results about warped dS5 ×wM6 backgrounds in D= 11
supergravity [15], which were derived for solutions preserving the minimal N= 8 supersym-
metry. First of all, the 11-dimensional metric is given by

ds2(M11) = A2ds2(dS5)+ ds2(M6) (1)

where A is a function of the co-ordinates of the internal Riemannian manifold M6 and

ds2(dS5) =
1(

1+ k
4 |x|2

)2 ηµνdxµdxν , µ,ν = 0,1, . . . ,4 (2)

is the metric of five-dimensional de-Sitter spacetime, with |x|2 = ηµνxµxν and k= 1
ℓ2 . We

require that the Lie derivative of the four-form flux F with respect to all of the isometries
of dS5 vanishes, and consequently

F= X (3)

where X is a four-form on M6 whose components depend only on the co-ordinates of M6.
Moreover, as we have mentioned previously, in what follows we do not make any assumption
on smoothness of A or the four-form flux, neither do we require the internal manifold to be
smooth or compact without boundary. Rather, the analysis is entirely local.

Let us introduce the space-time vielbein

eµ =
A

1+ k
4 |x|2

dxµ, ea = eaΘ(y)dy
Θ (4)

where a= 5,6, . . . , ♯ is a frame index on M6 and we have denoted by yα the co-ordinates on
M6. The bosonic field equations of D= 11 supergravity

RAB =
1
12
FAL1L2L3F

L1L2L3
B − 1

144
gABF

2 (5)

d ⋆11 F−
1
2
F∧F= 0 (6)

and the Bianchi identities

dF= 0 (7)
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can be reduced on M6 yielding

4kA−2 −A−1∇̃a∇̃aA− 4A−2(∇̃A)2 + 1
12
G2 = 0 (8)

R̃ab = 5A−1∇̃a∇̃bA+
1
6
G2δab−

1
2
GcbG

c
a (9)

d̃(A5G) = 0 (10)

d̃ ⋆6G= 0 (11)

where ∇̃ denotes the Levi-Civita connection on M6, d̃ is the exterior derivative on M6, and

G= ⋆6X. (12)

Furthermore, the KSE of D= 11 supergravity(
∇A−

1
288

Γ B1B2B3B4
A FB1B2B3B4 +

1
36
FAB1B2B3Γ

B1B2B3

)
ϵ= 0 (13)

can be integrated along the de-Sitter directions yielding2

ϵ=

(
1+

k
4
|x|2

)− 1
2
(
1+ xµΓµ

(
−1
2
∇̃/A+ A

288
X/

))
ψ (14)

where ψ is a 32-component Majorana spinor on M6 which satisfies

∇̃aψ =

(
− 1

12
GabΓ

b+
1
12

Γ bc
a Gbc

)
Γ(7)ψ (15)

and

Γ(7) =
1
6!
ϵa1a2...a6Γ

a1a2...a6 (16)

is the highest rank Gamma matrix onM6. As shown in [15], we can pick co-ordinates {t,s,zi},
with i= 1,2,3,4 on M6 such that

ds2(M6) = f−4(s,z)ds2 +
1
k
f 2(s,z)dt2 + f−4(s,z)ds2(N4) (17)

where N4 is a four-dimensional hyperKähler manifold, with metric tensor

ds2(N4) = hij(z)dz
idz j. (18)

Moreover, the warp factor A is given by

A= t · f(s,z) (19)

and the two-form flux G is

G=
6√
k
df∧ dt. (20)

Setting f= H− 1
6 , and using (17) and (19), the 11-dimensional metric tensor (1) is given by

ds2(M11) = H− 1
3 ds2(R1,5)+H

2
3 ds2(R×N4) (21)

and the Einstein equation (8) simplifies to

□5H= 0 (22)

2 If ω is a p-form on M6 then ω/= ωa1...apΓ
a1...ap .
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where □5 denotes the Laplacian on R×N4. Moreover, (20) yields

F= ⋆5dH (23)

where ⋆5 is the Hodge dual on R×N4. The geometry given by (21)–(23) corresponds to that
of a generalized M5-brane configuration, with transverse space R×N4 [27].

2.1. Solutions with parallel four-form

A sub-class of these solutions corresponds to those backgrounds for which the four-form F is
covariantly constant with respect to the 11-dimensional Levi-Civita connection; as we shall
prove in the section 3.1, this class of solutions actually has enhanced supersymmetry. These
backgrounds satisfy

∇̃G= 0. (24)

Note that (24) implies

G2 = c2 (25)

with c constant. The condition (24) yields the following set of PDEs

∂2f
∂s2

+ f−1

(
∂f
∂s

)2

− 2f−1hij
∂f
∂zi

∂f
∂zj

= 0 (26)

∂f
∂s∂zi

+ 3f−1 ∂f
∂s

∂f
∂zi

= 0 (27)

◦
∇i

◦
∇ j f+ 3f−1 ∂f

∂zi
∂f
∂zj

− 2f−1hij

((
∂f
∂s

)2

+ hkl
∂f
∂zk

∂f
∂zl

)
= 0. (28)

Equations (26)–(28), supplemented by (25), are equivalent to

f(s,z) =
√
2

(
c2s2 +P(z)

) 1
4

(29)

(
◦
∇P)2 = 4c2P (30)

◦
∇i

◦
∇jP= 2c2 hij (31)

where
◦
∇ denotes the Levi-Civita connection onN4. In particular, by taking c= 0 andN4 = R4,

we recover the maximally supersymmetric solution R1,10 with vanishing four-form3. In par-
ticular, (31) implies that P

2c2 is a hyper-Kähler potential for N4 [28].

3. Integration of the KSE on M6

In this section, we integrate the KSE (15) along two of the directions ofM6, corresponding to
the co-ordinates s and t. The resulting reduced Killing spinor equations ultimately are, after
some further manipulation, equivalent to requiring the existence of certain parallel spinors on
N4. As we shall see, this enables to classify dS5 backgrounds with extended supersymmetry.
First of all, let us introduce the vielbein on M6

3 The other maximally supersymmetric solution which is a warped product dS5 solution is AdS7 × S4, which arises as
the near-horizon limit of the standard M5-brane, with transverse space R5.
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ẽ5 = f−2ds, ẽ6 =
1√
k
fdt, ẽI = f−2 ◦

e
I

(32)

where
◦
e
I
=

◦
e
I

i dz
i and

hij = δIJ
◦
e
I

i
◦
e
J

j . (33)

Using (32), equation (17) reads

ds2(M6) = (ẽ5)2 +(ẽ6)2 + δIJẽ
IẽJ. (34)

The non-vanishing components of the spin connection on M6 with respect to the frame (32)
are given by

Ω̃6,65 = f
∂f
∂s

(35)

Ω̃6,6I =−1
2
Ω̃5,5I = f

◦
eI f (36)

Ω̃I,5J = 2f
∂f
∂s
δIJ (37)

Ω̃I,JK = f 2
◦
ΩI,JK −4fδI[J

◦
eK] f (38)

where
◦
ΩI,JK is the spin connection on N4.

Using (35)–(38) and (20), the KSE (15) read

∂ψ

∂t
=

1

2
√
k

(
f 2
∂f
∂s

Γ5 + f 2
◦
∇I f Γ

I

)(
Γ6 +Γ(7)

)
ψ (39)

∂ψ

∂s
= f−1

◦
∇I f Γ

6Γ5Γ I
(
Γ6 +Γ(7)

)
ψ− 1

2
f−1 ∂f

∂s
Γ6Γ(7)ψ (40)

◦
∇I ψ = f−1 ∂f

∂s
Γ6ΓIΓ

5
(
Γ6 +Γ(7)

)
ψ+ f−1

◦
∇J f Γ

6Γ J
I

(
Γ6 +Γ(7)

)
ψ

− 1
2
f−1

◦
∇I f Γ

6Γ(7)ψ. (41)

Since f does not depend on t, equation (39) can be easily integrated, yielding

ψ = etX η,
∂η

∂t
= 0 (42)

where η is a 32-component Majorana spinor and

X :=
1

2
√
k

(
f 2
∂f
∂s

Γ5 + f 2
◦
∇I f Γ

I

)(
Γ6 +Γ(7)

)
. (43)

Notice that X 2 = 0, thus etX = 1+ tX and (42) yields

ψ = η+
t

2
√
k

(
f 2
∂f
∂s

Γ5 + f 2
◦
∇I f Γ

I

)(
Γ6 +Γ(7)

)
η. (44)

We can rewrite (40), (41) and (44) covariantly on R×N4 as follows

Dαψ = f−1Dβ f Γ
6Γ β

α (Γ6 +Γ(7))ψ− 1
2
f−1Dα f Γ

6Γ(7)ψ (45)

and

ψ = η+
t

2
√
k
f 2Dαf Γ

α
(
Γ6 +Γ(7)

)
η (46)
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whereD is the Levi-Civita connection onR×N4 and α,β are frame indices onR×N4. Insert-
ing (46) into (45), the vanishing of the t-independent terms and the terms linear in t yields

Dαη = f−1Dβ fΓ
6Γ β

α (Γ6 +Γ(7))η− 1
2
f−1Dα f Γ

6Γ(7)η (47)

and

HαβΓ
β(Γ6 +Γ(7))η = 0 (48)

respectively, where we have defined

Hαβ := f 2DαDβ f+ 3fDα fDβ f− 2f(Df)2δαβ . (49)

Two distinct cases must be considered, depending on whetherHαβ vanishes or not.

3.1. Hαβ = 0

If Hαβ = 0, then (48) is automatically satisfied and (49) implies

f 2DαDβ f+ 3fDα fDβ f− 2f(Df)2δαβ = 0. (50)

Decomposing (50) on N4, we find (26)–(28), hence ∇̃G= 0 and equations (29)–(31) hold. In
the following, it is convenient to write η as

η = η+ + η− (51)

where

Γ6Γ(7)η± =±η±. (52)

Using (51) and (52), equation (47) yields

Dαη
+ = 2f−1Dβ fΓ

β
α η+ − 1

2
f−1Dα fη

+ (53)

and

Dαη
− =

1
2
f−1Dα fη

−. (54)

Let us perform two different conformal transformations on the spinors η+ and η− as follows

η̂+ = f
1
2 η+, η̂− = f−

1
2 η−. (55)

Implementing (55) into (53) and (54), we find

Dαη̂
+ = 2f−1Dβ fΓ

β
α η̂+ (56)

and

Dαη̂
− = 0 (57)

respectively. Equation (57) implies that

η̂− = σ− (58)

where σ− is a 32-component Majorana spinor independent of s which is covariantly constant
on N4, i.e.

◦
∇I σ

− = 0. (59)

8
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Let us now analyze (56). The five-component of (56) yields

∂η̂+

∂s
=

1
2(c2s2 +P(z))

◦
∇I PΓ

1Γ Iη̂+ (60)

where we have implemented (29). We shall explicitly integrate this condition by setting

η̂+ = exp

(
u(s,z)

◦
∇I PΓ

1Γ I

)
ϕ+,

∂ϕ+

∂s
= 0. (61)

On substituting this into (60), one obtains

∂u
∂s

=
1

2(c2s2 +P(z))
. (62)

Notice that P is positive by means of (30). Hence, a solution to equation (62) is given by

u(s,z) =
1

2c
√
P(z)

arctan

(
cs√
P(z)

)
. (63)

Moreover, equation (61) implies

η̂+ =

{
cos

(
2c
√
P(z)u(s,z)

)
I

+
1

2c
√
P(z)

sin

(
2c
√
P(z)u(s,z)

)
◦
∇I PΓ

1Γ I

}
ϕ+.

(64)

Substituting (63) into (64), we get

η̂+ =
1√

c2s2 +P(z)

(√
P(z)I+

s

2
√
P(z)

◦
∇I PΓ

1Γ I

)
ϕ+.

(65)

The I-component of (56) is given by

◦
∇I η̂

+ =
c2s

c2s2 +P(z)
ΓIΓ

1η̂+ +
1

2(c2s2 +P(z))

◦
∇J PΓ

J
I η̂

+. (66)

Substituting (65) into (66) and using (31), we get

◦
∇I σ

+ = 0 (67)

where σ+ is given by

ϕ+ =
1√
P(z)

Γ I
◦
∇I Pσ

+. (68)

Substituting (68) in (65), we obtain

η̂+ =
1√

c2s2 +P(z)

(
Γ I

◦
∇I P+ 2c2sΓ5

)
σ+. (69)

Moreover, (46) is equivalent to

ψ = η+ + η− +
1√
2k
t(c2s2 +P(z))−

1
4

(
2c2sΓ5 +Γ I

◦
∇I P

)
Γ6η+ (70)

9
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where we have used (51) and (52). Using (55), (58) and (69), equation (70) yields

ψ = 2−
1
4
(
c2s2 +P(z)

)− 5
8

(
2c2sΓ5 +Γ I

◦
∇I P

)
σ+ + 2

1
4
(
c2s2 +P(z)

) 1
8σ−

− 2
5
4 c2√
k
t
(
c2s2 +P(z)

) 1
8Γ6σ+. (71)

Defining σ̌+ := 2−
1
4σ+ and σ̌− := 2

1
4σ− and dropping the check for simplicity, (71) is

equivalent to

ψ =
(
c2s2 +P(z)

)− 5
8

(
2c2sΓ5 +Γ I

◦
∇I P

)
σ+ +

(
c2s2 +P(z)

) 1
8σ−

− 2c2
√

2
k
t
(
c2s2 +P(z)

) 1
8Γ6σ+. (72)

Let us count the number of supersymmetries preserved by these backgrounds. To this end,
define

S± := span{σ±} (73)

where σ± satisfy Γ6Γ(7)σ± =±σ± and
◦
∇I σ

± = 0. (74)

Notice that if σ± ∈ S±, then Γµνσ
± ∈ S±, where µ,ν denote the de-Sitter directions. Hence,

using the argument of section 2.2 of [15], it follows that

dim S± = 8k±, k± = 1,2. (75)

Moreover, if σ+ ∈ S+, then Γµσ
+ ∈ S−, hence

dim S+ = dim S− (76)

that is k+ = k− := k. Using (72), (75) and (76), it follows that the number of supersymmetries
is

N= dim S+ + dim S− = 16k k= 1,2. (77)

Notice that equation (77) implies that in this class of solutions there are no backgrounds pre-
serving exactly N= 24 supersymmetries.

To summarize, for this class of solutions, the metric is given by

ds2(M11) = H− 1
3 ds2(R1,5)+H

2
3 ds2(R×N4) (78)

where N4 is a hyperKähler manifold and H satisfies (50), that is

−3HDαDβH+ 5DαHDβH− (DH)2δαβ = 0. (79)

where the functions f and H are related by f= H− 1
6 . In particular, (79) implies that H is har-

monic on R×N4, (22). Moreover, the four-form is given by (23) and is covariantly constant
with respect to the Levi-Civita connection of 11-dimensional spacetime. In this case, it fol-
lows that the geometry is that of a generalized M5-brane configuration, for which the trans-
verse space is R×N4, and the harmonic function H on R×N4 is determined in terms of a
hyper-Kähler potential P on N4 via

H=
1
8

(
c2s2 +P(z)

)− 3
2 (80)

where P satisfies (31).

10
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3.2. Hαβ ̸= 0

If Hαβ ̸= 0, then (48) yields

(Γ6 +Γ(7))η = 0 (81)

hence η = η−. Using (81), (47) simplifies to

Dαχ
− = 0, (82)

where we have defined χ− := f−
1
2 η−. Equation (82) implies that

χ− = σ− (83)

where σ− is a spinor independent of s which satisfies
◦
∇I σ

− = 0. (84)

Using (83), equation (46) yields

ψ = f
1
2σ−. (85)

Equations (75) and (85) imply that the number of supersymmetries preserved by these
backgrounds is

N= 8k−, k− = 1,2. (86)

For this class of solutions, the metric tensor is given by

ds2(M11) = H− 1
3 ds2(R1,5)+H

2
3 ds2(R×N4) (87)

where N4 is a hyperKähler manifold and H is harmonic on R×N4. i.e. it satisfies (22).
Moreover, the four-form is given by (23).

Notice that equation (86) implies that N= 24 is excluded in this class of solutions as well,
hence there are no D= 11 warped dS5 backgrounds preserving exactly N= 24 supersymmet-
ries. Moreover, the case N= 8 has already been analyzed in [15]. Hence, we are left to con-
sider N= 16. In this case, (86) implies that there are 16 linearly independent negative chirality
spinors σ− which are covariantly constant on N4. Using (76), it follows that there are also 16
positive chirality spinors σ+ which are covariantly constant on N4. Hence there are 32 linearly
independent covariantly constant spinors on N4. This implies N4 = R4, and (87), (23) and (22)
yield

ds2(M11) = H− 1
3 ds2(R1,5)+H

2
3 ds2(R5)

F= ⋆5dH

□5H= 0. (88)

The configuration (88) corresponds to the standard M5-brane, which indeed preserves 16
supersymmetries in the bulk [17].

4. Conclusion

In this work, we have fully classified thewarped product dS5 backgrounds inD= 11 supergrav-
ity with enhanced supersymmetry. It is known from [15] that supersymmetric warped product
backgrounds must preserve N= 8k supersymmetries for k= 1,2,3,4. As the exactly N= 8
and N= 32 solutions were considered in [15], we remark that the analysis here completes the
classification, by including the N= 16 and N= 24 cases. The classification is complete, as
we have obtained necessary and sufficient conditions on all parallel spinors preserving N > 8

11
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supersymmetry, by integrating up the covariant constancy condition along the directions s and
t on M6, which were shown to exist for all supersymmetric warped product dS5 solutions in
[15]. The resulting conditions are sufficiently strong, when rewritten in terms of covariantly
constant spinors on a hyper-Kähler manifold, to exclude the case of N= 24 supersymmetry,
and also to reduce the N= 16 case to two possible sub-cases, found in the previous section
and listed below.

The summary of the conditions on the warped product dS5 backgrounds corresponding to
the different possible proportions of supersymmetry which we have established is as follows:

• N= 8: the N= 8 solutions were classified in [15], and the results for this case are sum-
marized in section 2. The geometries are generalized M5-brane solutions, for which the
transverse space is R×N4, where N4 is a hyper-Kähler manifold.

• N= 16: there are two possibilities for N= 16 supersymmetry, corresponding to whether
Hαβ = 0, where Hαβ is defined in (49).
∗ IfHαβ = 0 then the N= 16 solutions have the property that the four-form F is covariantly
constant with respect to the 11-dimensional Levi-Civita connection and is given by (23).
Such solutions have been discussed in section 5.4 of [15]; here we establish that these
solutions actually have enhanced supersymmetry. The geometry corresponds to a gener-
alized M5-brane configuration (78), with transverse space R×N4 for which the harmonic
functionH onR×N4 is determined in terms of a hyper-Kähler potential P on N4 via (80).

∗ If however,Hαβ ̸= 0 then we find that the bosonic fields are given by (88). This configur-
ation corresponds to a stack of M5-branes with transverse space R5 [17].

• N= 24: there are no warped product dS5 solutions preserving exactly N= 24
supersymmetries.

• N= 32: this case has been considered in [15] and it has been shown that the only possibilities
are R1,10 with vanishing four-form, or the maximally supersymmetric AdS7 × S4 solution.

We remark that the result that there are no warped product dS5 solutions preserving exactly
N= 24 supersymmetries is somewhat analogous to a similar non-existence theorem forN= 24
warped product AdS5 solutions established in [16], where it was also noted that this is consist-
ent with the results of [29]. In particular it is known that there are no exactly N = 3 theories
which admit exactlymarginal deformations, and in particular there are no such theories defined
perturbatively in terms of a Lagrangian, though non-Lagrangian theories are permitted [30]. It
would be interesting to understand the absence of N= 24 warped product dS5 solutions in the
context of any proposed dS5/CFT4 duality.
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