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In this paper, we investigate the parameter space in the framework of hilltop supernatural inflation
in which the inflaton field can play the role of Affleck-Dine field to produce successful baryogenesis.
The suitable value of reheating temperature could coincide with the reheating temperature required to
produce lightest supersymmetric particle dark matter. The baryon isocurvature perturbation is shown to be
negligible. We consider p ¼ 3, p ¼ 4, and p ¼ 6 type III hilltop inflation and discuss how to connect the
models to supersymmetric theories.
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I. INTRODUCTION

Recently, Planck has given a strong support in favor of
inflation [1–3] (see, e.g., [4] for a textbook review), the
stage of quasi–de Sitter expansion of the Universe prior to
the conventional hot stage. While the concrete inflationary
scenario realized in nature has not been identified yet, most
models of inflation deal with one or many scalar field(s)
dubbed inflaton(s). During inflation, the inflaton slowly
rolls down the slope of its potential. This potential is
required to be substantially flat, or, otherwise speaking, the
slow-roll parameters must be small. As inflation ends, the
inflaton energy density gets transferred to the Standard
Model species.
Inflation can be naturally realized in supersymmetry

(SUSY)—thanks to the presence of flat directions in
SUSY, along with which inflation can take place. In the
present paper, we consider a supersymmetric realization of
hybrid inflation called supernatural inflation. However, in its
original form, the latter leads to the blue tilted spectrum of
primordial scalar perturbations-in conflict with the Planck
data. This motivates to promote the original scenario to the
hilltop supernatural inflation, which can avoid the conflict
with cosmological observations. The hilltop supernatural
inflation is the focus of the present work.

SUSY also proved to be advantageous for building the
models, which accommodate a dark matter candidate
and/or lead to the baryon asymmetry of the Universe. In
the context of SUSY, baryon asymmetry is most commonly
generated by the Affleck-Dine (AD) mechanism [5,6]. The
latter typically requires the existence of flat directions in the
field space, which is a natural consequence of SUSY. The
dark matter candidate is realized in the form of the lightest
supersymmetric particle (LSP).
The interplay between inflation and Affleck-Dine baryo-

genesis has been covered in the literature, for example,
[7–12]. An interesting possibility is to investigate whether
the inflaton may play the role of the Affleck-Dine field
[13–18]. In the present work, we develop this idea and
apply it to the hilltop supernatural inflation. In this unified
framework, we also discuss the production of LSP, which is
assumed to play the role of dark matter.

II. HILLTOP SUPERNATURAL INFLATION

The potential for conventional hybrid inflation is
given by1

V ¼ 1

2
m2

ψ r
ψ2
r þ g2ψ2

rϕ
2
r þ κ2ðϕ2

r − Λ2Þ2; ð1Þ

where ψ r is the inflaton field and ϕr is the waterfall field.
The effective mass of the waterfall field is

m2
ϕr
≡ V 00ðϕrÞ ¼ 2g2ψ2

r − 4κ2Λ2: ð2Þ
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1Here the subscripts of ψ r and ϕr denote that they are real
fields. In the following, we are going to consider complex fields.
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During inflation, the field value of ψ r gives a large positive
mass to ϕr; therefore, it is trapped to ϕr ¼ 0 and the
potential during inflation is of the form

V ¼ V0 þ
1

2
m2

ψ r
ψ2
r ; ð3Þ

where V0 ¼ κ2Λ4. The end of inflation is determined by
m2

ϕ ¼ 0 when the waterfall field starts to become tachyonic
which implies

ψ r;end ¼
ffiffiffi
2

p
Λκ
g

: ð4Þ

Supernatural inflation is basically hybrid inflation in the
framework of SUSY [19]. During inflation, the potential of
the inflaton ψ with mass m is given by

V ¼ V0 þ
1

2
m2ψ2; ð5Þ

which has the same form as Eq. (3). The advantage of
supernatural inflation is that the tuning of model parameters
is automatic due to SUSY and the model provides more
connections to particle physics. The idea is to consider TeV
scale SUSY breaking which can be realized by V0 ¼ M4

S
where MS ∼ 1011 GeV is the gravity mediated SUSY
breaking scale and m ∼ TeV is the soft mass.
By assuming V ∼ V0, we can obtain

ψ ¼ ψ ende
Nm2M2

P
V0 ≡ ψ endeNη0 ð6Þ

and

�
ψ

MP

�
2

¼ 1

12π2PR

�
V0

M4
P

�
1

η20
: ð7Þ

The spectral index is given by

ns ¼ 1þ 2η0: ð8Þ

Since η0 > 0, one results with the blue spectral index of
primordial scalar perturbations, i.e., ns > 1 which has
been ruled out by the latest Planck 2018 data [20]. This
motivates us to modify the model and introduce hilltop
supernatural inflation [21–24]. In this model, the spectral
index can be of the observed value. It can also evade both
thermal and nonthermal gravitino problem [24], produce
primordial black holes [25], or induce gravity waves [26].
In the following sections, we will also show that by
modifying supernatural inflation into hilltop supernatural
inflation, the inflaton field value at the end of inflation
becomes larger [compare Eq. (A6) with Eq. (7)]. This
difference is crucial when we discuss baryogenesis.

We now consider a term in the superpotential which is
responsible to reduce the spectral index,

W ¼ a
ψ1ψ2 � � �ψp

Mp−3
P

; ð9Þ

for p different superfields ψp, and D-flat direction for ψ i

ðjψ1j ¼ jψ2j ¼ � � � ¼ jψpjÞ. Here a is a coupling constant
which could be complex with jaj ∼Oð1Þ. The real inflaton
field is a linear combination of the scalar component of the
p fields,

ψ ¼
ffiffiffi
2

p
ðψ1 þ � � � þ ψpÞ=

ffiffiffiffi
p

p
; ψ i ¼ ψ=

ffiffiffiffiffiffi
2p

p
: ð10Þ

The scalar potential during inflation in terms of the kinetic
normalized field ψ is given as

V ¼ V0 þ
1

2
m2

ψψ
2 −

�
aA

ψp

ð2pÞp2Mp−3
P

þ c:c

�

þ pjaj2ψ2ðp−1Þ

ð2pÞpM2ðp−3Þ
P

; ð11Þ

where m2
ψ ¼ P

m2
ψ i
=p for the average of the SUSY

breaking squared masses of ψ i, and A is a SUSY breaking
parameter. The SUSY breaking mass mψ and A are typical
of the order of the gravitino mass m3=2 [5,27]. The detailed
values of these parameters depend on specific mechanisms
of SUSY breaking.
We will neglect the last term on the right-hand side and

approximate the potential as [28]

VðψÞ ¼ V0

�
1þ 1

2
η0

ψ2

M2
P

�
− λ

ψp

Mp−4
P

; ð12Þ

where

η0 ≡m2
ψM2

P

V0

; λ≡ 2aA

ð2pÞp2MP

: ð13Þ

We assume that aA is real and positive in the convention
that all the ψ i configuration is aligned to be real. This
model can be analyzed by slow-roll approximation and
some relevant results are collected in the Appendix.

III. BARYOGENESIS

After inflation, the inflaton field starts to oscillate and
eventually decays when the magnitude of its decay width
reaches the Hubble parameter. An interesting question is
whether the inflaton can play the role of AD field [5,6]. The
possibility was investigated for supernatural inflation in
[19], but it was shown that it does not work for the inflaton
field in that model. A quadratic potential of the inflaton
field for chaotic inflation which plays the role of an AD
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field after inflation is investigated in [13–16]. In [17], a
similar idea is realized in a large field inflation model where
the inflaton is a linear combination of right-handed sneu-
trino fields is considered. Recently, [18] considered the
inflaton field as the Affleck-Dine field by adding a non-
minimal coupling to gravity in order to evade the severe
experimental constraints from tensor to scalar ratio. We
investigate the case for hilltop supernatural inflation in the
framework of small field inflation in this paper.
Our inflaton field is assumed to be a flat direction;

therefore, it may play the role of Affleck-Dine field and
produce baryon asymmetry if it carries nonzero B − L.2 We
consider the cases p ¼ 3, p ¼ 4, and p ¼ 6.3 If the inflaton
carries nonzero baryon (or lepton) number, baryon number
density is produced when the inflaton starts to oscillate. The
oscillation in general is accompanied by a spiral motion due
to the potential for the angular direction. The baryon
number density nB is given by the angular motion of ψ as

nB ¼ iqðψ _ψ� − _ψψ�Þ ¼ qjψ j2 _θ; ð14Þ

where q is the baryon number carried by the AD field, and
we have defined ψ ¼ jψ jeiθ. The evolution of the baryon
number density is given by

_nB þ 3HnB ¼ 2qIm
�
ψ
∂VAðψÞ
∂ψ

�
; ð15Þ

where VA ¼ aA
Qp

i¼1 ψ i=M
p−3
P . In order to solve the above

equation, we multiply both sides of the equality by the cube
of the scale factor RðtÞ3 and integrating with respect to the
time t to obtain

nB ¼ 2q
RðtÞ3

Z
tsp

tend

RðtÞ3Im
�
ψ
∂VAðψÞ
∂ψ

�
dt ð16Þ

¼
X 2qi

RðtÞ3
Z

tsp

tend

RðtÞ3 aA

Mp−3
P

Im½ψp� 1

ð2pÞp=2 dt; ð17Þ

where qi is a charge of ψ i. The integration is done in a short
period of time from the end of inflation to the onset of the
spiral motion of the AD field. Because first, we have
assumed that baryon number has been diluted during
inflation. Second, the contribution to the integral is small
after the onset of spiral motion, since the sign of Im½ψp�
changes rapidly and the amplitude of jψ j would shrink due
to its decay into other particles (with the baryon number
conserved). Just after the end of inflation, the Universe is
matter dominated and the scale factor goes like RðtÞ ∝ t2=3.
Unlike the common case where the amplitude of the AD

field jψ jp decreases with time as Hp=ðp−2Þ ∝ r−p=ðp−2Þ due
to its trapping by a large negative Hubble induced mass,
our AD field is the inflaton field. Therefore, its energy
density is dominated by the oscillation of the quadratic
potential which behaves like matter jψ j2 ∝ RðtÞ−3 ∝ t−2;
thus, jψpj ∝ t−p. Hence, the integrand is proportional to
tð2−pÞ. By using ψ ¼ jψ jeiθ, the integration gives4

nB ¼
X

2qiaA

� jψp
spj

Mp−3

�
sin½pθsp þ argðAÞ�

×
1

3 − p
tsp

1

ð2pÞp=2 : ð18Þ

Note that if sin½pθsp þ argðAÞ� ¼ 0, there will be no
baryon number generated. Here we will assume sin½pθsp þ
argðAÞ� ∼ 1 and ψ sp ∼ ψ end. In the matter dominated

universe, we have RðtÞ∝ t2=3 and H ¼ _RðtÞ=RðtÞ ∼ 2
3
t−1.

Therefore, we obtain

nB ¼
X

2qiaA

�jψp
endj

Mp−3

�
×

2

3ð3 − pÞH
1

ð2pÞp=2 ; ð19Þ

where the Hubble parameter is evaluated at the end of
inflation when the inflaton (as the AD field) starts to
oscillate. By using the definition of λ from Eq. (13), the
above equation can be written as

nB ¼
X

qiλ
ψp
end

HMp−4
P

×
2

3ð3 − pÞ : ð20Þ

In general, it can be expressed as

nB ∼ qAλ
ψp
end

HMp−4
P

; ð21Þ

when the inflaton (AD field) starts to oscillate. Here qA is
the charge carried by VA. For simplicity, in the following,
we will set qA ∼ 1. In our model, the mechanism of
inflation determines the initial conditions of the AD field
and there is no need to assume it in some ad hoc way.
The A-term, which induces the first kick for the rotation,

breaks the CP conservation, and the direction of the
rotation breaks the baryon number. Thus, an initial con-
dition of the initial kick breaks both of them in a Hubble
patch. Since the initial kick, the produced baryon number
has been conserved. The baryon number density will
then be diluted due to the expansion of the Universe.
The Universe will then expand until reheating through the
baryon-conserving decay of the inflaton. When reheating

2It is the relevant quantum number for a nonvanishing B after
sphaleron.

3If R-parity is conserved, there is no flat direction with nonzero
B − L in the case p ¼ 5. See [29] for a review of flat directions.

4Here the result is obtained for p ≠ 3. When p ¼ 3, a factor
∝ lnðMP

ϕsp
Þ is obtained which is not very sensitive to the value

of ϕsp.
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happens, Γ ∼H and hence the reheating temperature is
given by TR ∼

ffiffiffiffiffiffiffiffiffiffi
ΓMP

p
. The strength of baryon-conserving

interactions of the inflaton field is connected to the
reheating temperature through the decay width Γ. At
reheating, the baryon number density is given by

nB ∼
λ

H
ψp
end

Mp−4
P

×

�
Γ
H

�
2

ð22Þ

¼ λ

H
ψp
end

Mp−4
P

π2g�T4
R

90M2
PH

2
: ð23Þ

The baryon asymmetry Y ¼ nB=s ¼ nB=ð2π2g�T3
R=45Þ ¼

0.9 × 10−10 as required by big bang nucleosynthesis and
cosmic microwave background (CMB) gives

nB
T3
R
¼ λ

H
ψp
end

Mp−2
P H2

TR ¼ 1.2 × 10−10: ð24Þ

The reheating temperature is given by

TR ¼ 1.2 × 10−10 ×
H3Mp−2

P

λψp
end

: ð25Þ

We assume the SUSY breaking scale such thatmψ and A
are between 1 TeV and 100 TeV. We will see that CMB
constraints require η0 ≡m2

ψ=V0 ∼ 0.01 or so; therefore,
10−26 ≲ V0

M4
P
≲ 10−24. As we will see in the following

section, in general, higher SUSY breaking scale makes
baryogenesis easier, but we do not wish to deviate from
TeV scale too much. This is the reason behind choosing this
range of energy scales.
In the analysis so far, we were assuming that the AD

condensate evolves homogeneously after it is formed. In
general, there is a possibility that the AD condensate
becomes unstable with respect to spacial perturbations
and turns into nontopological solitons called Q-balls
[30–34]. If Q-balls are formed, our scenario for the evolution
of the Universe may need to be modified. Q-balls are not
formed if mψ ≫ m1=2, where m1=2 is the mass scale for the
gauginos [35]. In order for the Q-balls to be formed, it is
necessary that the potential for the AD scalar is flatter than
jψ j2 at large field values. After taking account the one-loop
correction, the potential for the AD scalar looks like

VAD;1-loopðψÞ ∼m2
ψ jψ j2

�
1þ K ln

jψ j2
M2

�
þ…; ð26Þ

where the coefficient K is determined from the renormal-
ization group equations; see, e.g., [33,36,37]. Loops con-
taining gauginos make a negative contribution proportional
to m2

1=2, while loops containing sfermions make a positive

contribution proportional to m2
AD. Thus, when the spectrum

is such that the gauginos are much lighter than the sfermions,
i.e.,mAD ≫ m1=2, K is likely to be positive and thus Q-balls
will not be formed. A more complete analysis of the Q-balls
is beyond the scope of the current paper and is left to future
investigations.

A. p= 3 case

For p ¼ 3, we have

VA ¼ λMPψ
3: ð27Þ

From Eq. (A5), by imposing CMB normalization P1=2
R ¼

5 × 10−5 and ns ¼ 0.96, we have

λ ¼ 1.51 × 10−5
V1=2
0

M2
P
ðη20 − 0.0004Þ: ð28Þ

For the case V1=2
0 ¼ 10−12 which corresponds to 100 TeV

SUSY breaking scale, the parameter λ as a function of η0 is
plotted in Fig. 1. We can see from the plot that a small value
of λ and a value of η0 which is not far from unity are
required. Therefore, even if there is a Hubble induced mass,
as long as it is not very large, our results are not affected. As
we will see, this also applies to p ¼ 4 and p ¼ 6 cases.
As an example, if we take η0 ¼ 0.03, we need λ ¼

aA ∼ 10−20.5 If we assume A ∼ 100 TeV ∼ 10−13MP, we
need the coupling constant a ∼ 10−7. Interestingly, such
small coupling is also required in order to evade rapid
proton decay if the p ¼ 3 flat direction breaks B − L
symmetry. For the case V1=2

0 ¼ 10−14 which corresponds to

10-22

10-21

10-20

10-19

10-18

 0.021  0.03  0.04  0.05  0.06  0.07  0.08 0.09 0.1

λ

η0

FIG. 1. λ as a function of η0 for V1=2
0 ¼ 10−12 for p ¼ 3.

5It seems we can make λ arbitrarily small by fine-tuning η0 to
approach η0 ¼ 0.02 because when η0 ¼ 0.02, λ ¼ 0 as can be
seen from Eq. (28). However, this is not correct since when λ ¼ 0
the inflaton potential is concave upward and the condition
ns ¼ 0.96 cannot be achieved. The reason behind this discrep-
ancy is that in this case the small field approximation breaks
down and Eq. (28) is no longer valid.
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TeV SUSY breaking scale, the corresponding λ is 0.01
times smaller.
From Eq. (25), for p ¼ 3, we have

TR ¼ 1.2 × 10−10
H3MP

λψ3
end

: ð29Þ

From Eqs. (A6) and (A7), we have

�
ψ

MP

�
¼

�
V0

M4
P

�
η0 þ 0.02

6λ
ð30Þ

and

ψ end ¼
2η0

ðη0 − 0.02Þe60η0 þ η0 þ 0.02
ψðN ¼ 60Þ: ð31Þ

B. p = 4 case

For p ¼ 4, we have

VA ¼ λψ4: ð32Þ

From Eq. (A5), by imposing CMB normalization P1=2
R ¼

5 × 10−5 and ns ¼ 0.96, we have

λ ¼ 1.10 × 10−8ðη0 þ 0.02Þðη0 − 0.01Þ2: ð33Þ

Note that for p ¼ 4, λ does not depend on V0. The
parameter λ as a function of η0 is plotted in Fig. 2. We
can see from the plot that a small value of λ is required.
However, since λ is the ratio of SUSY breaking A-term and
the Planck mass, its value is naturally small.

From Eq. (25), for p ¼ 4, we have

TR ¼ 1.2 × 10−10
H3M2

P

λψ4
end

: ð34Þ

From Eqs. (A6) and (A7), we have

�
ψ

MP

�
2

¼
�
V0

M4
P

�
η0 þ 0.02

12λ
ð35Þ

and

ψ2
end ¼

3η0
ð2η0 − 0.02Þe120η0 þ η0 þ 0.02

ψ2ðN ¼ 60Þ: ð36Þ

C. p= 6 case

For p ¼ 6, we have

VA ¼ aA
MP

ψ6

M2
P
≡ λ

ψ6

M2
P
: ð37Þ

From Eq. (A5), by imposing CMB normalization P1=2
R ¼

5 × 10−5 and ns ¼ 0.96, we have

λ ¼ 7.46 × 10−17
�
M4

P

V0

�
ðη0 þ 0.02Þð2η0 − 0.01Þ4: ð38Þ

For the case V1=2
0 ¼ 10−12 which corresponds to 100 TeV

SUSY breaking scale, the parameter λ as a function of η0 is
plotted in Fig. 3. From the plot, we can see that λ is not
necessarily a small number and can be quite large depend-
ing on η0. It may be interesting to note that λ ∼Oð1Þ can be
achieved. On the other hand, from Eq. (37), we can see that
it seems for TeV < A < 100 TeV, λ has to be very small

10-16

10-15

10-14

10-13

10-12

10-11

10-10

 0.011  0.02  0.03  0.04  0.05  0.06 0.07  0.1

λ

η0

FIG. 2. λ as a function of η0 for p ¼ 4. Note that here λ is
independent of V0.

10-10

10-8

10-6

10-4

10-2

100

102

104

106

 0.0051  0.01  0.02  0.03  0.04 0.05 0.06  0.1

λ

η0

FIG. 3. λ as a function of η0 for V1=2
0 ¼ 10−12 for p ¼ 6.
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unless coupling a is very large.6 From Eq. (25), for p ¼ 6,
we have

TR ¼ 1.2 × 10−10
H3M4

P

λψ6
end

: ð39Þ

From Eqs. (A6) and (A7), we have

�
ψ

MP

�
4

¼
�
V0

M4
P

�
η0 þ 0.02

30λ
ð40Þ

and

ψ4
end ¼

5η0
ð4η0 − 0.02Þe240η0 þ η0 þ 0.02

ψ4ðN ¼ 60Þ: ð41Þ

D. Discussion

For the case V1=2
0 ¼ 10−12 which corresponds to

100 TeV SUSY breaking scale, the field values ψ=MP
both atN ¼ 60 and at the end of inflation as a function of η0
are plotted in Figs. 4, 8, and 9. We also plot the field value
at the end of supernatural inflation by using Eqs. (6) and (7)
for comparison. As can be seen from the plot, ψ end of
supernatural inflation is smaller than ψ end of hilltop
supernatural inflation. Since the produced baryon number
is proportional to ψp

end from Eq. (23), this is the reason why
AD baryogenesis can work better in the framework of
hilltop supernatural inflation. By using Eqs. (29), (31),
(34), (36), (39), (41), the relations V1=2

0 ¼ mψMP=
ffiffiffiffiffi
η0

p
, and

H ¼ V1=2
0 =ð ffiffiffi

3
p

MPÞ, we can obtain the required reheating

temperature for successful AD baryogenesis as a function
of the inflaton massmψ . The results are shown in Figs. 5–7.
We also include upper and lower bounds for the reheating
temperature that correspond, respectively, to thermal and
nonthermal gravitino production [24,38–44]. Here it is
assumed that mψ ¼ m3=2. In SUSY breaking scenarios
where the gravitino mass is much larger than squark/
slepton masses, the plots of the constraints would shift
to the left and tend to become weaker. Therefore, the
constraint we use here is conservative. As we can see from
the figure, generally speaking, for higher soft mass and
SUSY breaking scale, the required reheating temperature is
lower. Note that if we choose a larger η0 which corresponds
to a smaller ψ end=MP, we will need a larger reheating
temperature. We can also note from the figure, the reheating
temperature predicted for p ¼ 4 appears to be higher than
that for p ¼ 3 or p ¼ 6.

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

 0.021  0.03  0.04  0.05  0.06  0.07  0.08 0.09 0.1

ψ

η0

ψend
ψ(N=60)

supernatural ψend

FIG. 4. ψ=MP as a function of η0 for V
1=2
0 ¼ 10−12 and p ¼ 3.

The field value at the end of supernatural inflation is plotted for
comparison.

102

103

104

105

106

107

108

109

1010

1011

 1  10  100

T
R

 (
G

eV
)

mψ (TeV)

mLSP=1000 GeV
η0=0.021

η0=0.0201
Thermal

Non-thermal

FIG. 5. TR as a function of mψ for η0 ¼ 0.03 and η0 ¼ 0.021 in
the case of p ¼ 3. Here it is assumed that mψ ¼ m3=2. If
mψ < m3=2, the gravitino bound shifts to the left and becomes
weaker or even negligible. We also include a bound of LSP
production from Eq. (48).

10-11

10-10

10-9

10-8

10-7

10-6

10-5

 0.011  0.02  0.03  0.04  0.05  0.06 0.07  0.1

ψ

η0

ψend
ψ(N=60)

supernatural ψend

FIG. 6. ψ=MP as a function of η0 for V
1=2
0 ¼ 10−12 and p ¼ 4.

The field value at the end of supernatural inflation is plotted for
comparison.

6A larger effective λ may be obtained if we introduce a singlet
χ with the superpotentialWψ ;χ ¼ a

MP
ψ3χ þ 1

2
Mχχ

2. We will leave
the detailed model building in our future work.

CHIA-MIN LIN and KAZUNORI KOHRI PHYS. REV. D 102, 043511 (2020)

043511-6



For p ¼ 3, if we choose η0 approaches 0.02, ψ end=MP
can be bigger and a lower reheating temperature results.
However, as η0 approaches 0.02, ψ end=MP becomes
sensitive to η0. As can be seen from Eqs. (28) and (40),
η0 ¼ 0.02 cannot be achieved because the formula becomes
singular and our small field approximation breaks down.
Similar behavior occurs for p ¼ 4 and p ¼ 6 when η0
approaches 0.01 and 0.005, respectively.

IV. BARYON ISOCURVATURE PERTURBATION

Since the AD field (as the inflaton in our model) is a
complex field, it is possible that during inflation the
quantum fluctuations of the phase would induce isocurva-
ture perturbation. The fluctuations of the phase of the AD
field are given by

δθ ¼ H
2πψ

; ð42Þ

where H and ψ are the values obtained during inflation at
N ¼ 60. The baryon isocurvature perturbation is defined as

Sbγ ≡ δρB
ρB

−
3

4

δργ
ργ

¼ δ log

�
ρB
s

�
; ð43Þ

where ρB and ργ are the energy densities of the baryons and
photons. From Eq. (23), we have

Sbγ ¼ p cot½pθsp þ argðAÞ� H
2πψ

∼ p
H
2πψ

: ð44Þ

In the second equality of the above equation, we assume
cot½pθsp þ argðAÞ� ∼Oð1Þ. From the latest Planck 2018
data for dark matter isocurvature perturbation Scγ [20],

Scγ ¼
Ωb

Ωc
Sbγ ≲

�
βiso

1 − βiso
PR

�1
2 ¼ 10−5; ð45Þ

where βiso < 0.038 is used. We can obtain

Sbγ ≲ 5.33 × 10−5; ð46Þ

where we have used Ωc=Ωb ¼ 5.33. By using Eq. (44) and

V
1
2

0 ¼
ffiffiffi
3

p
HMP ¼ 10−12, we obtain

ψðN ¼ 60Þ≳ 1.7 × 10−9p: ð47Þ

From Figs. 4, 8, and 9, we can see that in our parameter
space, Eq. (47) is satisfied and there is no observable
baryon isocurvature perturbation produced.
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FIG. 7. TR as a function of mψ for η0 ¼ 0.02 and η0 ¼ 0.011
in the case of p ¼ 4. Here it is assumed that mψ ¼ m3=2. If
mψ < m3=2, the gravitino bound shifts to the left and becomes
weaker or even negligible. We also include a bound of LSP
production from Eq. (48).
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The field value at the end of supernatural inflation is plotted for
comparison.
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production from Eq. (48).
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V. DARK MATTER PRODUCTION

If the reheating temperature required for successful AD
baryogenesis is high, and the parameter space is such that
thermal gravitino problem is evaded, e.g., large gravitino
mass, there is another upper bound for the reheating
temperature from LSP production given by

TR < 2 × 1010 GeV

�
100 GeV
mLSP

�
: ð48Þ

It suggests an interesting possibility that when the reheating
temperature required for successful baryogenesis is high,
dark matter can also be generated.
There is another possible way to generate dark matter in

our model. For higher scale SUSY breaking, the required
reheating temperature is lower; this helps to evade gravitino
problem and if we choose a 100 TeV inflaton mass, the
decay could lead to a nonthermal origin for dark matter
[45–50]. In addition to the nonthermal production of the
LSP from the decaying gravitino, there should be a
component of the LSP produced in the thermal plasma.
If TR > mLSP=25, there is a component to be the standard
thermal relic. If TR < mLSP=25, we need a nonthermal
annihilation with the cross section which is much larger
than the canonical one (hσvi ∼ 3 × 10−26 cm3= sec).
A candidate of CDM can be Wino (or gaugino). Even for

the freeze-out scenario, the canonical annihilation cross
section (hσvi ∼ 3 × 10−26 cm3= sec) is realized only at one
point (mLSP ¼ 3 TeV). Except for that point, the thermal
relic for wino cannot explain the 100% of CDM.
For mLSP < 3 TeV, we need an additional component

by nonthermal production of Wino by a decaying long-
lived particle such as gravitino (this scenario) because
the thermal relic through the freeze-out is short to the
observed ΩCDM.
FormLSP > 3 TeV, we need entropy production to dilute

the thermal relic of wino by sizable amount of decaying
gravitino or modulus and so on.

VI. CONCLUSION

In this paper, we have shown that it is possible for the
inflaton field to play the role of the Affleck-Dine field to
produce successful baryogenesis in the model of hilltop
supernatural inflation. We have considered the cases
realized via SUSY flat directions p ¼ 3, p ¼ 4, p ¼ 6.
Since hilltop supernatural inflation belongs to the category
of small field inflation, the tensor-to-scalar ratio would not
be observable in near future experiments. We have to find
further experimental results to distinguish which case
would be better, perhaps from particle physics since these
different cases can be connected to different particle
physics phenomena. Depending on the parameters and
the resulting reheating temperature, both the thermal and
nonthermal gravitino bound can be satisfied. We calculated

the baryon isocurvature perturbation and found that it can
be neglected for all the cases throughout the parameter
space. We also explore the interesting possibility that the
reheating temperature for successful baryogenesis can also
be responsible for LSP dark matter production. If the
inflaton mass is around 100 TeV, dark matter could have
been produced nonthermally via inflaton decay. Generally
speaking, the scenario of dark matter production depends
on the mass of the candidate of CDM. Comparing with
other inflation models, we have shown that hilltop super-
nature inflation has a rich connection to particle physics
which can be further explored in the future research.
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APPENDIX: ANALYSIS OF HILLTOP
SUPERNATURAL INFLATION

For hilltop supernatural inflation with the potential given
by Eq. (12), the field value during inflation is

�
ψ

MP

�
p−2

¼
�
V0

M4
P

�
η0eðp−2ÞNη0

η0xþ pλðeðp−2ÞNη0 − 1Þ ðA1Þ

x≡
�
V0

M4
P

��
MP

ψ end

�
p−2

: ðA2Þ

The spectrum and the spectral index are

PR ¼ 1

12π2

�
V0

M4
P

�p−4
p−2
e−2Nη0

½pλðeðp−2ÞNη0 − 1Þ þ η0x�
2p−2
p−2

η
2p−2
p−2
0 ðη0x − pλÞ2

;

ðA3Þ

ns ¼ 1þ 2η0

�
1 −

λpðp − 1Þeðp−2ÞNη0

η0xþ pλðeðp−2ÞNη0 − 1Þ

�
: ðA4Þ

We can compare Eq. (A4) with Eq. (8). From the above
equations, we can obtain

λ ¼ ð12π2PRÞ
p−2
2

p½2ðp − 1Þ�ðp−1Þ
�
V0

M4
P

�
−p−4

2 ð2η0 − ns þ 1Þ

× ð2ðp − 2Þη0 þ ns − 1Þðp−2Þ: ðA5Þ

The field value during inflation and at the end of inflation
can be obtained from Eqs. (A1), (A2), and (A4) as
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�
ψ

MP

�
p−2

¼
�
V0

M4
P

�
η0 þ 1−ns

2

λpðp − 1Þ ðA6Þ

and

�
ψ

ψ end

�
p−2

¼ ½2η0p − 4η0 þ ðns − 1Þ�eðp−2ÞNη0 þ 2η0 − ns þ 1

2η0ðp − 1Þ : ðA7Þ
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