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Abstract. Database replication is a key topic in the framework of the LHC Computing Grid to 
allow processing of data in a distributed environment. In particular, the LHCb computing 
model relies on the LHC File Catalog, i.e. a database which stores information about files 
spread across the GRID, their logical names and the physical locations of all the replicas. The 
LHCb computing model requires the LFC to be replicated at Tier-1s. The LCG 3D project 
deals with the database replication issue and provides a replication service based on Oracle 
Streams technology. This paper describes the deployment of the LHC File Catalog replication 
to the INFN National Center for Telematics and Informatics (CNAF) and to other LHCb Tier-1 
sites. We performed stress tests designed to evaluate any delay in the propagation of the 
streams and the scalability of the system. The tests show the robustness of the replica 
implementation with performance going much beyond the LHCb requirements. 

1.  Introduction 
In the framework of the High Energy Physics computing, databases are commonly used for a variety 
of purposes, notably including the storage and access of detector configuration information and data 
taking conditions, and the book-keeping of the content of data files. The usage of resources spread 
over the Grid requires discovering the location of physical data files, i.e. starting from a so-called 
Logical File Name (LFN) one needs to convert it to a Physical File Name (PFN), hence allowing the 
applications to address one or more storage resources hosting the single file or a dataset of files. This 
task is accomplished by means of file catalog services, e.g. the LHC File Catalog (LFC) [3]. The file 
catalog service is basically realized by a front-end interface authenticating the user and processing the 
specific request, and a backend database hosting the catalog data. 

     For high performance as well as for fault tolerance purposes, the replication of the file catalog 
service at different sites, hence in particular the replication of the backend database, is a key topic in 
the LHC Computing Grid environment. In particular, the computing model of the LHCb experiment 
foresees a LFC service to be replicated at each LHCb Tier-1 computing centre. The LCG 3D project is 
responsible for the database replication, and implements it by means of the Oracle Streams 
technology. 

     In the following sections we will first introduce some basic concepts concerning the LFC 
service, how the replication is actually realized and what is the usage of the LFC by LHCb. Then we 
will discuss the deployment of the LFC replication to the various computing sites involved, and finally 
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we will present the results of a series of stress tests performed to understand the efficiency of the 
database replication and the effective scalability of the system.  

2.  LCG File Catalog 
LHC users and applications which need to locate files on various sites exploit the LFC service. The 
LFC maintains mappings between Logical File Names (LFNs), Grid Unique IDentifiers (GUIDs) and 
Storage URLs (SURLs). At present it is the only officially supported catalog in WLCG/EGEE. 

The LFC architecture consists of an application frontend and a database backend. The frontend is a 
multi-threaded daemon written in C. It accepts user connections, performs user authentication, 
stores/retrieves/deletes entries in the catalog according to user requests and sends the query results 
back to the client, logging any operation. The database backend stores the catalog entries in a 
relational structure. Supported backends are MySQL and Oracle, but in the case catalog replication is 
needed only Oracle is supported.  

Clients can access the LFC through a Command Line Interface (CLI) which provides a POSIX-like 
semantics. An Application Program Interface (API) is also available for allowing the development of 
specific applications.   

The catalog contains a GUID as an identifier for logical files, and stores both logical and physical 
mappings for the file in the same database. There is a global hierarchical namespace of LFNs mapped 
to the GUIDs. GUIDs are mapped to the physical locations of file replicas in the physical storage 
(Storage File Names or SFNs). System attributes of the files (such as creation time, last access time, 
file size and checksum) are stored as attributes with the LFN. Multiple LFNs per GUID are allowed as 
symbolic links to the primary LFN. A sketch of the LFC database entries and their relationships is 
shown in Fig. 1. 

 

 

Figure 1: Sketch of the LFC database entries and their relationships. 

3.  LFC replication 
The replication model implemented is a Master-Slave replication based on Oracle Streams. Namely 
only one LFC is the master catalog and allows read-write access. Other LFC servers can be deployed 
as replicas of the master one. LFC replicas are read-only catalogs containing all the entries present in 
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the LFC master. Users who need to write an entry must access the master catalog, the entries are then 
propagated to the read-only replicas. Users who need to access the catalog in read only mode can 
contact either the master or a replica LFC. This configuration enables the LFC to address geographical 
redundancy, high availability and scalability for read-only operations.  

The Oracle Streams technology consists in a set of queues and background processes accessing 
them.  

 
 

 

Figure 2: Graphical description of the Oracle Streams replication: processes and queues. 
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operation, then each LCR encapsulates a row change resulting from the DML operation to a 
shared table in the source database. If the change was a DDL operation, then the LCR 
encapsulates the DDL change that was made to a shared database object in the source 
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• Staging phase: Streams publishes captured LCRs into a staging area implemented as a queue. 
A propagation process propagates the staged LCR to another queue, which resides in the 
destination database.  

• Apply phase:  at the destination database, an apply process dequeues the LCRs and applies 
changes to the appropriate object.  

A sketch of the Streams replication mechanism is depicted in Fig. 2. 
Each queue is composed by a buffer in a shared memory and a persistent part, stored in an 

Oracle Data Dictionary table. LCRs are queued in the buffered part of the queues. Hence they are 
usually kept in memory and written to disk only when the total memory consumption of buffered 
messages approaches the available shared memory limit.  The event of writing LCRs into disk is 
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Since spilling causes a degradation of performances, one of the main goals for Streams 
administrators is to adequately size the queue buffers in order to prevent spilling. In particular the 
Oracle instance parameter to be tuned is called STREAMS_POOL_SIZE.  

4.  LFC usage in the LHCb computing model 
CERN is the central production centre and will be responsible for distributing the RAW data in quasi-
real time to the Tier-1 centers. CERN will also act as a Tier-1 centre. Other 6 Tier-1 centres are 
involved for LHCb: INFN-CNAF (Italy), FZK (Germany), IN2P3 (France), NIKHEF (The 
Netherlands), PIC (Spain) and RAL (United Kingdom). LHCb will also exploit about 14 Tier-2 
centres. CERN and the national Tier-1 centres will be responsible for all the production processing 
phases associated with the real data. The RAW data will be stored at CERN, with another copy 
distributed across the 6 Tier-1s. A schematic view of the hierarchical tier structure with the tasks of the 
various centres according to the LHCb computing model is given in Fig. 3.  

 

 

Figure 3: Schematic view of the tier structure of the LHCb  Computing Model. 

 
The LHCb computing model foresees a single LFC central catalog hosted at CERN and various 

read-only replicas located at each LHCb Tier-1. The LFC is used as a central catalog and stores 
informations about all files and file replicas stored at the Tier-0 and Tier-1s.  

Each LFC entry is inserted at CERN and automatically replicated at the database backend level at 
each Tier-1.   

The LFC comes into play in different contexts:  
• Data processing: send the job to the Tier-1 site where the data are available and produce an 

output to be registered (read/write). 
• Data transfer: find the replica to transfer, perform the transfer and register the new destination 

(read/write).  
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• Monte Carlo simulation: transfer output from a Monte Carlo job to one or more Storage 
Elements and register the file in the catalog (write). 

• Conditions data: the Condition Database is also replicated to Tier-1s. The various Condition 
Database replicas are inserted in the LFC in the same way as the file replicas. In order to 
locate the right Condition Database replica, the CORAL middleware needs to ask the LFC for 
the list of the replicas.  

In order to efficiently use the replicated LFC it is mandatory that the master and replica databases are 
synchronized with low latency. LHCb requirements are not dramatically strict: less than 30 minutes. 

5.  LFC Replica Deployment 
The first LHCb LFC replica has been setup in November 2006 at the CNAF Tier-1 and it has been 
running without relevant problems since then. Its deployment required the joint collaboration of the 
CERN and CNAF database teams in order to install the Oracle Streams and start the replication. 

The process of replicating the LFC schema required a careful study of the implications on the LFC 
behavior in order to guarantee consistency and functionalities at the application layer. This process can 
be subdivided in three main phases: database schema replication, LFC front-end configuration and 
high availability setup.  

5.1.  Database schema replication 
Streams one-way replication requires that no write is performed on the replica because it bases its 
consistency mechanism on SCN ordering. Each LCR propagated via Streams contains a SCN 
indicating the timestamp of the action. The LCRs are applied to the destination database in SCN 
ascending order. Should a write operation be done on a replica database, the SCN is incremented 
locally, interfering with Streams LCR ordering. 

The LFC schema contains 2 tables which need to be updated by the LFC front-end even if the LFC 
is the replicated one. These tables are: 

• CNS_USERINFO which stores information about users accessing the catalog (user id, X.509 
certificate distinguish name). 

• CNS_GROUPINFO which stores information about user groups (group id, group name). 
The first time a user tries to read the catalog (master or replica), it is registered in these tables.  The 
CNS_USERINFO and CNS_GROUPINFO tables are then excluded from the replication. This is 
achieved through the definition of a negative rule set for the propagation level on the source database 
with a statement like the following [5]: 

DBMS_STREAMS_ADM.ADD_TABLE_PROPAGATION_RULES( 
tab l e_name              => ‘CNS_USERINFO’, 
streams_name            => ‘CAPTURE’, 
source_queue_name       => ‘lfcmaster_queue’, 
destination_queue_name  => ‘lfcreplica_queue‘, 
include_dml             => true, 
include_ddl             => true, 
include_tagged_lcr      => false, 
source_database         => ‘lfc_master_service_name’, 
dml_rule_name           => ‘my_dml_rulename’, 
ddl_rule_name           => ‘my_ddl_rulename’, 
inclusion_rule          => false, 
and_condition           => NULL); 

5.2.  LFC read-only front-end configuration 
In order to guarantee that no write operation is performed on the replica site, the LFC front-end 
daemon has to be configured as read-only catalog (the default is read-write) [3]. This configuration is 
quite simple: the LFC administrator needs only to modify /etc/sysconfig/lfcdaemon file setting 
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the parameter RUN_READONLY="yes". Any further attempt to write to the catalog will return an 
error: 
$ lf c-mkdir /grid/dteam/hello 
cannot create /grid/dteam/hello: Read-only file system. 

5.3.  High availability setup 
The LFC setup was carefully studied to implement a highly available service both at CERN and Tier-1 
sites. In Fig. 4 a graphical description of the setup is shown. 

 
 

 

Figure 4: Schematic view of the LFC service realized for the LHCb experiment. 
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As far as the LFC front-end is concerned, we exploit DNS load balancing in order to assure a 
redundant, scalable and reliable service. Again, a virtual service name is configured in the DNS which 
is resolved to all IPs assigned to the LFC front-end machines. The DNS server is in charge of 
implementing a round-robin load-balancing policy through all IPs assigned to the virtual service name. 
If a LFC server becomes unreachable, a monitoring script updates the DNS in order to delete its IP 
from the virtual service name resolution.  
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6.  LFC replication tests 
Tests have been performed in two different scenarios: single replica and multi-replica. We measured 
replication throughput and latency with the single replica setup and repeated the same tests on the 
multi-replica setup in order to find out if enhancing the number of replicas would have had an impact 
performance.  

6.1.  Monitoring tool 
Most of the measurements and plots shown are taken from Strmmon, the official Streams monitoring 
tool of the LCG 3D project [7].  This tool is designed to access the Oracle data dictionary views and 
collect all information about latency and throughput in all the phases of the Oracle Streams replication 
process. It stores the values in a dedicated repository database.  

The most interesting metrics taken into account are:  
• Total LCR latency: time elapsed between the creation of the LCR in the master DB and the 

LCR apply operation in the destination database. 
• LCR replication rate: number of captured LCRs, queued LCRs, dequeued LCRs and applied 

LCRs per second. 

6.2.  Single replica setup: functionality, scalability and stability tests 
Two different tests have been realized in order to evaluate the time latency between the master and 
replicated database and the performance of the LFC front-end with write/delete operations as a 
function of increasing number of clients. 

Some python scripts were developed using LFC API functions lfc_creatg, lfc_unlink, 

lfc _addreplica, lfc_delreplica in order to insert files and file replicas into the master 
database. In order to test scalability and to simulate different access patterns, the tests were repeated 
increasing the number of simultaneously writing or deleting clients and changing the number of files 
and file replicas  inserted. The two tests specifically consisted in:  

• Test I: insert 8k files and 10 replicas per each file. This access pattern is similar to the LHCb 
usage. The test was run with 10, 20, 40 and 76 clients.  

• Test II: insert 16k files and 25 replicas per each file. This is beyond the LHCb requirements 
and is run to prove LFC stability and scalability. This test was also run with 10, 20, 40 and 76 
clients. 

 
 
 
 
 

 
 
 
 
 
 
 
 
 

Figure 5: Test I: average LCR/s and latency as function of the number of clients. 
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As it is shown in Fig. 5, the increase of the number of clients slightly enhances the LCR replication 
speed for both add and delete operations.  Add operations are quite slower than delete ones because of 
some overhead inside the LFC code. Due to this reason, delete operations can take more advantage 
from the addition of LFC clients than the add ones. On the other hand, latency is pretty much constant 
for both add and delete operations.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Test II: average LCR/s and latency as function of the number of clients. 
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seconds is still much better than LHCb requirements (1800 seconds). 
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Figure 7: LHCb LFC database Tier-0 � Tier-1s replication. 
 

Test I and Test II were ran again in the new environment. Replication speed is the same as in the 
single replica setup. All Tier-1s are monitored and all plots are similar in shape. An example is shown 
in Fig. 8a, in which the replication speed at PIC during Test II is depicted. Peaks and valleys are due to 
Streams queues filling up and emptying. LCR speed varies between 300 and 1000 LCR/s. 

 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 8a: Replication speed versus time at PIC.  Figure 8b: Replication latency versus time at RAL. 
 
During the longest test, the replication rate was sustained for 1 hour and half and no spilling was 
detected at any Tier-1. This means that Streams replication is not a bottleneck for the LFC. LCR 
latency is still pretty stable at about 20 seconds with peaks of 55 seconds as shown in Fig. 8b.  
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7.  Conclusions and future work 
High Availability is a key issue for database services and is well addressed by present Oracle 
technologies. The LCG 3D project has successfully been deployed with such technologies achieving 
good stability and reliability of the replications, first at CNAF as a pilot site, now at all the other   
Tier-1 centres. Adding replicas to the setup did not impact Streams replication performances, i.e. 
latency did not grow and replication speed did not decrease. Moreover, all the Tier-1s behaved in the 
same way, all the results about replication speed and latency were pretty much the same. Streams 
replication is not a bottleneck on LFC performances and the LHCb requirements about latency and 
performances are largerly met.  
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