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Some times Thomas Hardy has been compared to Dostoevski, but Dostoevski is an
incomparably finer artist. If Dostoevski's works could be compared to some of say, Rubens'
paintings, then Hardy's are neatly finished diagrams drawn on graph paper with ruler and
compass! Compare for instance the tragedy to Tess with that of Sonia, or the culmination
of the forces in Raskolnikoff's confession with the melodramatic ending of "Return of the
Native". "Crime and Punishment" is more superb in its conception than even Hugo's "Les
Miserables". Great as is the tragedy of Raskolnikoff, greater still is the tragedy of Sonia.
She reminds us of Fantine when poverty and starvation forces her to a prostitute's life,of
Ophelia in her tragic devotion of Hamlet, of Cosette in her simplicity, but to whom could
we compare her when, for instance, she reads out the resurrection of Lazarus to her lover.
Dostoevski himself characterizes her most delicately in the words of Raskolnikoff as he threw
himself at her feet, 'I do nit'bow to you personally, but to the suffering humanity in your
person',

--S.CHANDRASEKHAR
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1 Introduction
At the moment quantisation of gravity, called "Quantum gravity" for short, appears to be the last
frontier in Physics. This problem has proved to be formidable both conceptually and technically.
At the core of these difficulties has been the fact that the dynamical degrees of freedom here are
space time geometries. It is believed by many that several difficulties in the structure of physics
like the singularities (space-time) of classical general Relativity theory as well as the infinities
of relativistic quantum field theories would be resolved with a successful quantisation of gravity.
Though some may even question the need for quantising gravity, the widespread perception is that
lack of progress in quantum gravity represents a major void in our understanding of nature.

Currently many apparently diverse approaches to this problem have surfaced. For example there
are the spin-2 graviton theories built around an underlying fiat space where effects conventionally
ascribed to the curvature of space-time are sought to be explained as dynamical manifestations
of the spin-2 quanta. Classically, these theories have been shown to account for all the effects
predicted on the basis of general theory of relativity as long as the gravitational fields are not
too strong or are such as to change the topology of space-time as in the case of black holes,
for example. Quantisation is realised only perturbatively. A more satisfactory, but essentially
equivalent, formulation consists in quantising the Einstein-Hilbert action around a fixed (usually
flat) background. Here too quantisation can be achieved only perturbatively. An important aspect
in which perturbative quantum gravity differs from other successful quantum field theories like
QED, QCD is in the lack of renormalisability. Nevertheless, a regularised version of the quantum
theory exists which is identical, as a formalism, to other regularised quantum gauge field theories.

Though QG based on the Einstein-Hilbert action is non-renormalisable 'in d = 4, the renor-
malisability "improves", in the sense that non-renorrnalisable counter terms begin to appear only
at higher and higher orders of perturbation theory, by the inclusion of appropriate matter with
enhanced symmetries called "supersymrnetry". Of all such supergravity theories, the so called
N = 8 theory is remarkable in many respects. Apart from possible nonrenormalisabiIity appearing
only at seven loops, the matter content of these theories is uniquely fixed, making them attractive
choices not only for 'QG but also for the unification of all fundamental forces. However, here too
quantisation can only be realised perturbatively.

The fact that perturbative schemes for quantum gravity pre-select a background metric around
which the fluctuations are quantised makes them rather unattractive even though they may have
validity in some limited domain. The earliest approach, the canonical quantisation, avoided this
pit fall. However, the technical difficulties of implementing this scheme are rather well known. In a
nutshell, the theory is seen to be a constrained system with the added difficulty that the solution of
the constraints needs the solution to the dynamics itself. Also, the constraints are highly nonlinear
and nonpolynomial. A great ray of hope in this direction is the reformulation in terms of.Ashtekar
variables wherein not only do the constraints become polynomial, but the metric itself becomes a
secondary object. The approach also promises to open new vistas as far as nonperturbative issues
are concerned.

Finally, mention has to be made of approaches to quantum gravity based on string t.heory. As
is well known, consistency with conformal invariance of the two dimensional world sheet theory
automatically incorporates spin-2 gravitons with the added bonus that (perturbative) quantum
gravity is finite in this approach. Still, a satisfactory non perturbative approach is lacking. One
has to await further progress in string field theory. .

The main theme of my talk today is some recent progress made in understanding some nonper-
turbative features of QG by using numerical simulations which I have termed "Quantum gravity
on computers" in a lighter vein. The literature on even this recent development is enormous and I
shall not attempt to give a full bibliographical account of this fascinating area. Instead, I shall give
a few key references from which the interested reader can construct a "path of understanding" .

Though recourse is made to numerics in this approach, it is derived from the finest analytical
r ' .

ingredients from simplicial topology, geometry, statistical mechanics etc. Before discussing the
details of the numerical simulations of quantum gravity, it is worthwhile understanding how the
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concepts work when applied to quantum field theories ·in flat space-time. There are essentially two
approaches to such conventional quantum field theories: a) the Hamiltonian approach where the
dynamical variables at each space point at a given instant of time are operators acting on a huge
Hilbert space a basis for which is the well known Fock space. The short distance behaviour of the
product of field operators is singular

(1)

which is a reflection of the ultraviolet divergences inherent in quantum field theories owing to the
infinitely many degrees of freedom.

The major technical problem of the Hamiltonian formalism is the careful treatment of such sin-
gular operator products while maintaining the basic structure of the field theory like its symmetries
etc.

The other approach is the so called Path Integral approach. To appreciate this approach consider
the quantum mechanical description of a particle. Though the trajectory of a particle has no
meaning in quantum theory, in the path integral approach, one considers the space of all possible
paths and assigns to each path a weight factor (in fact a phase factor) eiS(X(t» where S(X(t» is
the classical action evaluated for the path X(t). Then one forms the path integral

(2)

where DX is a measure (the Wiener measure) for the sum over all paths. This approach can also
be called the "sum over histories" approach. Every quantity that appears in the above equation
is a so called c-number and the use of mathematically subtle operators is circumvented. However,
the price one has to pay for this is the care required in constructing the measure DX. As shown
by Feynman, this approach is mathematically equivalent to the Hamiltonian (or Schrodinger)
approach at least when the configuration space is topologically trivial. The translation to the
Schrodinger approach is codified by the spectral representation for the Kernel K(Xl' tl; X2, t2)

'K(Xl,tl;X2,t2) = L.,p~(Xl,td.,pn(X2,t2)
n

(3)

A generalisation of this construction for the case of quantum field theory consists of replacing
DX by D¢, the measure for summing over all "histories of field configurations", and S(X) by
S(¢) the action-functional for the particular history of field configuration ¢(x, t). The major
technical problem one faces now is the construction of a meaningful measure D¢ which is an
infinite dimensional analog of the Wiener measure. Even if one were to succeed in finding such a
measure, the technical problem of giving a meaning to the functional integral

z = f D¢ eiS(q,) (4)

still remains because of the oscillatory nature of the integrand. This can be overcome by the so
called Euclideanisation.

t . ,-E-t tA4 is(¢) -t -iSE(¢) (5)

As established by Schwinger, Wightman, Osterwalder, Schrader and others, there is an unique
extrapolation from the results of euclidean field theory to those of Minkowski field theory, at least
when the topology of spacetime is trivial. For most quantum field theories of interest on flat
space-time it follows that

(6)

so that the bothersome oscillatory factor has really been made into a damping factor. In fact, it
appears that as long as the Hamiltonian of the theory is bounded from below, the. euclidean action
is positive semi-definite.
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A notable exception to this is gravity! The euclideanised action here is

SE = J ygRE

and clearly the scalar curvature of a euclidean manifold need not be positive semi-definite. We will
have more to say on this later on.

Finally, the measure D¢ is made meaningful by discretising the euclidean space-time.

(7)

D¢ = IIxd¢x (8)

Now derivatives of fields in the continuum have to be approximated by finite differences, for
example,

8
1J

¢ ~ ¢(i - ¢(i + aelJ))
a

(9)

where a is the lattice spacing.
With these modifications the generating functional, Z, of the quantum field theory, becomes

Z = J IIid¢i e-S({¢;})

and in this form is indistinguishable from the partition function of a classical statistical system in
d + 1 spatial dimensions where d is the spatial dimensionality of the quantum field theory problem.
This exact mapping of quantum field theory onto a classical statistical mechanical problem is at
the heart of the numerical simulations to probe the non perturbative aspects of quantum field
theory.

Clearly there are many choices of discrete lattices one could consider like hypercubic lattice,
triangular lattice and even a random lattice. And for each such choice, there are again many
ways of approximating a derivative by a finite difference. Intuitively it appears reasonable that in
the continuum limit all these differences in choice should become irrelevant. In fact, if one were
to simply take the limit of the lattice spacing, a, to zero in all the mathematical expressions of
the discretised theory, one would recover the formal expressions of the continuous theory. This is
called the 'naive continuum' limit. It is a naive limiting procedure because the resulting continuum
expressions are not mathematically well defined. But it turns out that the lattice theory affords
a much more subtle and meaningful limiting procedure. To appreciate this, note that as the
lattice spacing a tends to zero, physically measurable length scales like Compton wavelengths of
particles etc must remain finite. That is, the ratio of the physical length scale lph to a actually
diverges. By scaling all dimensionful quantities Q with appropriate powers of a to make them
dimensionless QL (for example mL = m.a, areas, = area.a-2 etc) the partition function Z can
the rewritten entirely in terms of the dimensionless quantities except for an irrelevant factor. The
quantity lpha-1 precisely corresponds to one of the many correlation lengt.hs. Thus we see that
the requirement for the existence of a continuum limit is that the classical statistical system onto
which the quantum field theory has been mapped must be such that at least one of its correlation
lengths diverges. But this is precisely the criterion for a statistical system to have a second or
higher order (as distinguished from a first order) phase transition. Now the recipe for finding the
true, as opposed to the naive, continuum limit is clear: treat the parameters of the quantum field
theory like coupling constants, masses (suitably scaled to make them dimensionless) as parameters
of a classical statistical system (temperature, concentration, magnetic field etc) and tune them
till second order phase transition points (critical) are reached. At each of these critical points
a continuum theory can be defined as follows : suppose that as the parameters are tuned to a
particular set of critical values, the correlation function { diverges as

(10)

{~{c(P}) where {c({Ac}) = oo (11)

and let 0 be an observable of mass dimensionality d. then 0 will survive the continuum limit if. . .
and only if

o ~ ~;das{A}~Pc}. (12)
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This is called correlation length scaling. In particular, if there are two observables 01 and O2
of the same mass dimensionality surviving the continuum limit,

~: --+ c(finitenumber) as {.>..} --+ {'>"c} (13)

It is only the set of finite limits {c} that represents the observable content of the continuum theory.
It is quite clear now that the "statistical continuum limit" provides much richer possibilities'

t.han the process of naive continuum limit. For one thing, the classical statistical system equivalent
to the quantum field theory could have many critical points and at each of those critical points one
could define a continuum theory. Even at the same critical point, in principle one could have several
distinct sets of correlation lengths such that all correlation lengths belonging to a given set have
the same scaling behaviour. In such a case, each of the distinct sets can define a continuum limit
resulting in inequivalent cont-inuum limits at the same critical point. This would be a statistical
mechanicalrealisation of inequivalent quantisations. That such a possibility can indeed happen is
evidenced in the case of the three dimensional compact quantum electrodynamics on the lattice
where three distinct continuum limits can be defined at the same critical point corresponding to
fixed string tension, fixed mass gap or the free massless photon phase.

2 Numerical Simulation of Statistical Systems
There are many techniques for numerical simulation of statistical systems chief among them being i)
microcanonical simulations and ii) canonical simulations. Simulations are some times also based on
the grand canonical ensemble. The essence of the numerical simulations is to generate an ensemble
of configurations and perform the so called 'importance sampling' according to which a suitable
selection procedure is adopted such that configurations that dominate the partition function are
randomly generated.

The Monte Carlo simulation of this system consists of choosing an initial configuration and a
so called move (update)- that yields another configuration for each initial configuration. Denoting
a move that takes the configuration Cl to C2 by W (Cl --+ C2), there are various restrictions on
HI (Cl --+ C2) if the Monte Carlo simulation is to be reliable.

i) given a configuration Cl, all configurations of the system must be eventually reachable by a
sequence of moves. This property is called "ergodicity". If this property is not satisfied, parts of
the configuration space are never sampled.

ii) since W(CI --+ cz) represents the probability of getting the configuration C2 starting from the
configuration Cl, the following must hold:

(14)

LW(CI --+ C2) = 1
Cl

(15)

Given the above two properties, it follows from an application of the Frobenius-Perron theorem
that HI viewed as a matrix, has maximum eigenvalue of unity, and the eigenfunction corresponding
to this largest eigenvalue is the equilibrium distribution Peq (C). That is

LW(CI --+ cz)Peq(cd = Peq(CZ)
Cl

(16)

It then follows that any initial ensemble of configurations eventually evolves into the equilib-
rium ensemble distribution Peq(C). How quickly the initial ensemble evolves into the equilibrium
ensemble distribution depends inversely on the gap between the largest eigenvalue of unity and the
next largest eigenvalue.
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In principle any W(CI -+ C2) that satisfies these requirements should result in a reliable Monte
Carlo simulation of the system. In practice, however, an additional requirement is made on vV (c, -+
C2) called the property of "detailed balance". This requirement is

Peq(C)W(C -+ c') = Peq(c') W(c' -t c) (17)

There are two obvious solutions to the requirement of detailed balance: i) heat bath: W(c-+
c') = Peq(c') irrespective of c. ii) Metropolis: if we write Peq(c) as e-S(c), the metropolis algorithm
for going from a configuration c to c' is as follows : Pick the configuration c' randomly at first : if
S(c') is less than S(c) accept the configuration c' as the final configuration. If on the other hand,
if S(c') is greater than S(c), accept c' with the probability P e-S(c').

Thus a practical implementation of the Monte Carlo simulation starts with an initial configu-
ration on which one applies a sequence of moves. Two extremes for the initial configuration are
the so called cold and hot starts. In the coldstart, the dynamical degree of freedom takes the same
value at each lattice site while in the hot start the dynamical degree of freedom takes completely
random values at the lattice sites. After applying the moves a number of times, one monitors the
approach to thermal equilibrium by measuring some observable. The onset of thermal equilibrium
is heralded by the constancy of the average (local) of the observable with fluctuations following
the characteristics of thermal fluctuations. The constant average value should be independent of
the initial configuration one started with.

Once thermal equilibrium has been reached, one again generates a sequence of configurations
by making sweeps of moves throughout the lattice and computes the average values of various
observables. The estimation of the statistical errors is subtle as there is no a priori guarantee that
the sequence of configurations used for making measurements are statistically independent. The
degree of statistical independence of subsequent configurations is estimated by the "autocorrelation
time" -r, Essentially, r is also the time scale that governs the speed with which the system reaches
equilibrium (time in Monte Carlo simulations is simply the total number of sweeps carried out on
the initial configuration). A practical way of estimating theautocorrelation time is by measuring
the so called "integrated autocorrelation time". First, one measures the autocorrelation function

. for some observable 0
A(T) = < O(t)O(t + T) > - < O(t) >2

< 02(t) > - < O(t) >2

The integrated autocorrelation time is given by

1 00

rint = 2 + 2 L A(T')
T'=l

(18)

(19)

In practice, a lot of care has to be exercised in employing this method. Because of inherent
noise, A(T) for large T only goes to a constant rather than vanishing exponentially. Because of
this, a naive application of the method yields diverging rint. Experience has shown that cutting
off T' "" 6rint gives reliable estimates. It is fair to say that understanding autocorrelation times is
more an art than a science! If the autocorrelation time is r ; then in a sequence of N sweeps only
N [r are statistically independent.

Since the continuum limit resides only at the critical point, where the correlation lengths
diverge, autocorrelation times register dramatic increase. This is quantified by so called 'dynamic
critical exponent' r "" LZ ,where L is the system size. Off criticality z "" 0 while at criticality z '" 2.
Thus as we go to larger and larger systems to avoid finite size effects, the autocorrelation times
at criticality become L2 times autocorrelation times off criticality which are of order unity. Thus
to improve statistical accuracy one would need unrealistically largecomputer resources. Special
algorithms are needed that drastically reduce the dynamic critical exponent z: Examples of such
algorithms are the cluster algorithm, multigrid algorithm etc. In terms of the eigenvalue spectrum
associated with W«c -+ c'), what happens as we approach criticality is that the second largest
eigenvalue begins to approach the largest eigenvalue (1). This means that the thermalisation times
also become very large. .
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In addition to the autocorrelation effects, effects of finite size often have a critical bearing on
the reliability of the results.

3 Quantum gravity
The dynamical degrees of freedom for the gravitational system are the metric components with the
restriction that two metrics that are related to each other by a general coordinate transformation
are to be identified as the same metric. Of course, when Fermionic matter is coupled to gravity, the
appropriate degrees of freedom are the Vierbeins (in d = 4) or tetrads, now with the restriction that '1

two tetrads related by either general coordinate transformation or local Lorentz transformation are
to be regarded as being physically equivalent. In the present discussion, we shall restrict attention
to gravitational systems with utmost bosonic matter.

The relevant functional integral is

z = f Dge-S(g) (20)

where S(9) is some general coordinate invariant action and has the form

S(g) = Q f dv + j3 f REdv + r J RJ1.URJ1.1'dv + ... (21)

dv being the scalar volume element (.j9dnx). The Einstein-Hilbert action corresponds to only
having the second term. Thus quantising general relativity would correspond to dealing with

z = f Dge-f3 J dvRE (22)

Unlike the flat space quantum field theories discussed earlier, the euclideanised action now
is not positive definite because even for euclidean manifolds the scalar curvature can have any
sign. There has been a variety of responses to this situation. Some of these are motivated by the
observation that this instability can essentially be attributed to the so called conformal mode. To
understand this, consider some fiducial metric g+ such that the scalar curvature is positive. Then
a metric 9 can be found that is related to 9+ by a conformal factor, g' = ecPg+, such that the scalar
curvature corresponding to g' is nega.tive. In this manner the lack of positive semi-definiteness of
the Einstein-Hilbert action can be seen to be solely due to the action of the conformal mode whose
kinetic term has the wrong sign.

Some of the suggestions made to overcome this situation are: i) throwaway the conformal
mode altogether, ii) rotate the conformal mode into purely imaginary values thereby making the
kinetic term of the rotated mode of the right sign. But both these change the theory so it is not
clear that it is general relativity that one is quantising. Another tantalising suggestion, made by
Greensite, is to "stabilise" the action. In effect, this amounts to a non perturbative modification
of the theory whose perturbative content is exactly the same as that of the original theory. But
here too one is changing the theory.

Whether the unboundedness of the action is really a sickness that ought to be cured by mod-
ifying the theory, or a feature essential to the physics of quantum gravity is something that we
are yet to find out. Some have argued that though the action is bounded, the entropy factor
could overcome this. For this to happen, the entropy of configurations with large negative scalar
curvature has to become very small. I do not see how this is possible as one can always find a
conformal factor for every positive scalar curvature configuration that would map it to a negative
scalar curvature configuration. In d = 2, the unboundedness problem does not exist as J J9R is
the Euler characteristic of the manifold.

With these provisos, we define the problem of quantum gravity "'to be eqn(20). To carry out
numerical simulations of this problem, we need a discretisation that still keeps the geometrical
essence of the problem.
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In analogy with QFT on flat spacetime, one could attempt a discretisation that would consider
g/lV at discrete lattice points as the basic variables. Already in the case of non-Abelian gauge
theories on flat space-time, such a naive discretisation is incompatible with any discrete version
of the non-Abelian gauge transformation. It is well known that gravity theory has many essential
features of a non-Abelian gauge theory and consequently one expects the same kind of difficulties in
implementing any discrete version of general covariance. In the case of flat spacetime non-Abelian
gauge theories, discretisation compatible with gauge invariance is achieved by constructing the
action out of elements of the holonomy of the Yang-Mills connection around closed loops of the
discretised manifold. Often, the holonomy group elements are composed of elementary group
elements called "Link" variables. Such a formulation of discretised quantum gravity is certainly
possible. But here we shall follow a path to discretisation that is very elegant and intrinsically
geometric. Further, there is a whole body of very powerful analytical work related to it that
would be indispensable to both the implementation and the subsequent interpretation of numerical
simulations.

3.1 Geometric discret isation - Simplicial decomposition
The spirit behind this approach is that any manifold can be approximated with "arbitrary accu-
racy" by a so called simplicial manifold. A d-dimensional simplicial manifold is a collection of
d-simplices glued along the d - 1 dimensional boundary simplices.

Some simplices are shown in the next figure:

0- Simplex t , Simrle~

3 - SilTlj11ex

Figure 1: Some d - Simplices

A d-dimensional simplex has as its boundary (d + 1) sub simplices of dimensionality d - l.
As David has pointed out there are certain subtleties about gluing simplices to get a simplicial
manifold. This is illustrated by the following example:

Consider the tetrahedron UNWSED and join EW. Then make the following 2-simplicial identi-
fications: UWS +7 UEN ,UNW +7 UES, DNW +7 DES, DWS +7 DEN. What one gets this way is
a two dimensional simplicial complex where 2-simplices are glued to each other along l-simplices
(edges). Nevertheless, this simplicial complex is not a simplicial manifold because the neighbour-
hood of every vertex does not have the same topology. In fact, the boundary of the neighbourhood
of U and D is T2 and not 52. Thus one has to subject the simplicial complex to a "manifold test".

An example of a two dimensional simplicial manifold is given in the next figure. The simplicial
decomposition of manifolds can be used to two rather different approaches to discretised quantum
gravity. These are: i) Regge calculus, and ii) dynamical triangulation (DTR).
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Figure 2: A simplicial complex which is not a simplicial manifold

Figure 3: A simplicial complex which is a simplicial manifold

3.1.1 Regge calculus

In this approach one fixes the incidence number for each vertex (which for the two-dimensional
example considered in figure 4 is simply the number of neighbours of each vertex). The length of
each edge is considered as a dynamical variable and curvature' is measured via deficit angles.

Figure 4: A Regge calculus configuration

The quantum gravity functional integral is now replaced by

(23)

f(li) is the measure. As is well known, the issue of the functional measure in quantum gravity
is still not very well understood. In quantum Regge calculus, this issue of the measure is further
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complicated by the fact that (infinitely) many different edge length configurations correspond to the
same physical manifold .. This is most easily demonstrated by the example of the two dimensional
flat manifold for which infinitely many Regge discretisations are possible. Starting with any given
edge length configuration, one can generate all the rest by simply moving the vertices around while
maintaining the various triangle-like identities. In fact, this example can be generalised to the case
of any maximally symmetric space.

Numerical simulations based on Regge calculus in the case of two dimensional quantum gravity
has recently been criticised for its inability to reproduce known analytical results for the so called
"string susceptibility" (see discussions later in the text) for quantum gravity coupled to conformal
matter. On the other hand Kawai and his coworkers have shown that some of the universal features
like loop length distributions are correctly reproduced by Regge calculus method. As remarked
earlier, the correct measure has not been identified and this could be at the heart of the matter.
Resolution of these issues is clearly an important task for the future. For the rest of the talk I
shall mainly emphasise the DTR approach.

3.1.2 Dynamical Triangulation (DTR)

In this approach all simplices are taken to be equilateral i.e. the edge lengths are all the same. The
interior and the boundaries of all simplices and sub simplices, as in the case of Regge calculus, are
considered to be flat. The manifold one gets is so called "piecewise linear". Nontrivial curvature
is produced by letting the incidence number fluctuate dynamically. The functional integral over
metrics is replaced by a summation over triangulations, with some measure:

JD9~ L~
. T CT

(24)

,
Again, there is no guiding principle to determine the measure, CT ;nevertheless, results have not

shown any sensitive dependence on CT. Also, the DTR simulations in d= 2 case have reproduced
many of the' exact analytical results.

3.2 Sum over topologies

In both these approaches, the issue of the topology of the manifold has to be addressed. Here
again there does not appear to be any guiding principle at present. In the case of string theory
represented as two dimensional quantum gravity coupled to matter, a sum over all topologies is
mandatory. If on the other hand, one wishes to investigate some statistical mechanical system on
a manifold with fixed topology but fluctuating metric, then one would not sum over topologies.
With this in mind, the relevant functional integral will be taken to be either with a fixed topology
or summed over different topologies with appropriate weight factors as the case may be.

3.3 Alexander Moves (updates)

With the understanding that the quantum gravity functional integral is to be replaced by a sum
over all possible simplicial decompositions (also called "triangulation" from now onwards), we
need to specify a move, or an update, that would take one triangulation to another. The so called
"Alexander moves" provide the answer. The issue of ergodicity will be discussed shortly.

The Alexander move (ij, x) is defined as follows: take any link (ij) of the complex. Insert
a new site x in the interior of (~j) and divide up the simplexes which contain (ij) into twice as
many simplices, half of which replace i by x and half of which replace j by x. The inverse of this
Alexander move is defined accordingly. We illustrate the Alexander move in two dimensions in the
next figure,

A related concept is that of (k, l)d moves which are defined as follows: consider a (d+l) - simplex
Sd+! whose boundary is the collection L:d of d-simplices. Now partition 2::dinto collections L:1' L:2
such that L: 1 UL:2 = L:d and 2:1 nL:2 = rf>. Since 2:d is the boundary of Sd+! (2:d = aSd+1),
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Figure 5: An Alexander move in two dimensions

the boundaries of Ll and Lz are the same but with opposite orientation. This follows from the
deeper result that the "boundary of a boundary is zero" (8Ld = 82Sd+l = 0 ::}8L 1 = -8 L2)'
If Ll has k d-simplices and L:l has I d-simplices, k + e = d + 2. The move (k, e)d amounts to
replacing k simplices of Ll by I simplices of L2' The volume of the d-dimensional simplicial
manifold is the total number of d-simplices in it ; thus, the (k, l)d move leads to the volume change
~ l/ = I - k. The maximum possible change of volume is d.

Let us illustrate the (k, l)d moves by a 2-dimensional example. So we need to start with a
3-simplex which is a tetrahedron.

A

B c

Figure 6:

The boundary of the tetrahedron ABCD is spanned by the triangles (2-simplices) ABD, BDC,
DCA, ABC. thus

L = {ABD,BDC,DCA,ABC} (25)
d

The inequivalent partitions of Ld we should consider are a) into 1+3, b) into 2+2. In the
latter case the move leads to no change in volume.

a) 1 H 3 :
Let Ll = ABD ; L2 = {BDC,DCA., ABC}
<1Ll = loop (A, B, D); <1Lz = loop (A, B, D) with opposite orientation.
Move 1 -+ 3 is to start with ABD, erect the 3-simplex ABCD on ABD as base and remove

ABD leading to a 2-manifold finally. This move corresponds to A V = 2 and an increase in the
number of vertices by l.

The inverse of this move is to locate a vertex with coordination number 3 (say D), remove the
3 triangles incident at D leaving a gap which is filled by adding the triangle ABD.

b) 2 -+ 2 :
This can be accomplished by, say, the partition

~1 = {..lBD, A.BC} ; ~2 = {BDC, ADC}

<1~1 = {AD,DB,BC,C.-1}; <1~2 = -<1~1

(26)

(27)
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A B - A B

cc
Figure 7: 2 -+ 2 move in two dimensions

4 The Dual Picture
It is often useful to introduce the dual of a simplicial manifold. Suppose we are working in 0
dimensions and have a simplicial manifold approximating the manifold. The simplicial manifold.is
obtained by gluing together D-simplices along the (D-l)-dimensional boundary simplices. Each of
the (D-l)-dimensional boundary simplices has (D-2}dimensional simplices as its boundary and so
on. The O-simplices are the vertices or sites of the discretised manifold.

The manifold dual to this is constructed as follows: to each p -simplex of the original manifold,
a (D-p)-simplex of the Dual manifold is associated. If in, the original manifold, two D-simplices
Vb and Vb are connected along the (D-l)-simplex Vb:'l' in the dual manifold the O-simplices
(Vertices) corresponding to them will be connected by a l-slmplex (edge) that is dual to Vb:'l.
This is illustrated below by a 2-dimensional example where the original edges are shown by bold
lines and the dual edges in dotted lines :

Figure 8:

Itis clear that the incidence number of the dual graph is exactly (0+1).
The (k,l)d moves get increasingly more complex as we go to higher and higher dimensions. For
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example in d = 3, the possible moves are:

Figure 9:

-
Figure 10:

These moves can be represented in a transparent manner in terms of the change in the connec-
tivity of the dual graph. For example, the (2,2) move in 2-dimensions (the triangles are numbered)

-

Figure 11:

has the dual representation:
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Figure 12:

Likewise, the (1,3) move

Figure 13:

has the dual representation:

Figure 14:

A, ,, ,
" ,, ,

, v, ,, ,, ,, ', ,

The advantage of representing the (k, l)d movesby their dual representation. becomes noticeable
in higher dimensions. For example, in d~4, the (3,3) move which is quite clumsy to be represented

215



in terms of the original simplices has the dual representation:

/

Figure 15:

5 Ergodicity
For the (k, l)d moves to be useful in the Monte Carlo simulations of Quantum Gravity through the
simplicial decompositions, it is necessary that they are ergodic i.e starting with some triangulation
it should be possible to reach any arbitrary triangulation through a sequence of (k, l)d moves.

For this purpose one introduces the ideas of "Alexander equivalence" and "Combinatorial
equivalence" of simplicial manifolds. Two simplicial manifolds are said to be Alexander equivalent
if one can go from one of them to the other through a sequence of Alexander moves. On the
other hand, two simplicial decompositions are said to be combinatorially equivalent if they have a
common subdivision. Now two important theorems will be stated without proof:

a) Alexander moves and (k, l)d moves are equivalent for d :S 4; for d ~ 5 the proof requires
some additional technical assumptions( "d - 2-spheres are local constructive")

b) two simplicial complexes are Alexander equivalent iff they are combinatorially equivalent.
One of the corollaries of the last statement is that any complex combinatorial1y equivalent to

a simplicial manifold is itself a simplicial manifold.
Combining these two theorems one concludes that in d :S 4 the (k, l)cl moves are ergodic in the

space of combinatorially equivalent simplicial manifolds.

5.1 Computational Ergodicity

There are a class of so called "cornputationally non-recognisable" simplicial manifolds in the sense
that there is no algorithm to recognise them. For triangulations of such manifolds it can be shown
that if the number of four simplices N4 of two triangulations T, and T2 are bounded by N, the
number of steps in a finite algorithm to get from T, to T2 cannot be bounded by a recursive
definable function (examples of recursive definable functions are N!,N!N! .. ). This for all practical
purposes is a breakdown of ergodicity. But in simulations performed so far this has not caused any
problems, but is potentially worrisome,

6 Action
Now that we have introduced a discretisation and a set of moves to go from one discretisation to
another, we have to introduce the discrete analog of actions. Some typical actions that are general
coordinate invariant are:
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s = J y'g[aR + fJR2 + 8/-LRfY'R + A + ] (28)

In two dimensions J vgR is a topological invariant, the Euler characteristic and its only effect is to
give a weight factor depending on topology. Also, J Jg is the volume of the manifold, and in the
context of DTR is simply the number of triangles. Therefore, for microcanonical simulationsjfixed
area) neither of the two terms is relevant for fixed topology simulations of random surfaces with no
matter couplings. This means every configuration is equally weighted. The other terms in eqn(28)
can also serve as invariant observables. To construct the discrete analogs of these terms one uses,
for example,

R = 271" (6 - qi) y'g = q;j3 (29)
qi

In more than two dimensions all these terms are important as candidate actions: One can also
think of the number of various p-simplices Np as dynamical variables. However, not all these are
independent. For example, in two dimensions Nl = 3N212. In four dimensions, one can choose N2
and N4 as independent, and a candidate action for discretised quantum gravity is

6.1 Two dimensional case

(30)

We shall give a very detailed account of the simulations in two dimensions as this is a very important
testing ground by virtue of the availability of many different formulations as well as of exact
analytical results. Before that it is instructive to consider some important aspects of the different
analytical approaches available. First, let us consider the formulation according to Polyakov as
well as some of the exact analytical results due to Polyakov, Knizhnik and Zamolodchikov(K.PZ)
on the one hand, and due to David, Distler and Kawai (DDK) on the other. The object of interest
is

(31)

In the above equation /-L, v take values l...~d,where d is the dimensionality of the Euclidean space
in which the two dimensional surface is embedded. d has also the interpretation of the total central
charge of the matter coupled to d = 2 quantum gravity.

This model was solved exactly by Polyakov in the so called light-cone gauge, and these exact
results were subsequently extended by KPZ to essentially derive all correlation functions and hence
various critical exponents. It was found that the model was well defined only for d :S 1or d 2: 25.

Of particular interest is the so called "fixed area partition function" Z(A) defined as

(32)

This is essentially the number of configurations with fixed Area A. In DTR, this is studied by
keeping the number of triangles fixed. The large area behaviour of Z(A) for c < 1 is expected to
be

The "string susceptibility" is defined to be

'Y = 3-b.

According to K P Z and D D K, for pure surfaces (c = 0)

'Y = -2 + -5X
4
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More generally, for the central charge of the matter equal to. C,

( ) = 2 _ 25 - c ± )(25 - c)(l - c)
'Y c, 24 X (36)

where X is the Eular character.
The analysis of DDK also showed that in the conformal gauge, the partition function (31) is

the same as that of the quantum Liouville theory:

(37)

where a and b depend on the central charge c. For c < 1, all correlation functions of the quantum
Liouville theory are known.

7 Matrix 'Models
As has already been remarked upon, the graph dual to the DTRgraph in d = 2 has fixed incidence
number of 3. Therefore, the dual graphs are Feynman graphs of </>3 theory. The topology (Euler
characteristic) of the dual graph is the same as that of the original DTR manifold. The important
observation is that the generator of the </>3 graphs with arbitrary topology can be identified with
the partition function of the Hermitian N x N - Matrix Model:

ZM = / dMe-tr(!M2+/;rM3
) == e-F' (38)

dM is the Haar measure. The asymptotic b~haviour of F for large Nis of the form',

F -vN2FO + Fl + N-2 F2' + ... (39)

All F; are singular at some 9 = gc inthe sense that some derivatives of F; w.r.t. 9 blow up at
9 = gc· A Taylor expansion of F(g) around 9 = 0 has the form

r. = L (!L)n a~)
n=O gc "

Now the connection between this matrix model free energy and the fixed area partition function
Zx(A) for manifolds with Euler characteristic X is

(40)

. (41)

with X = 2 - i. It is clear that F, can also be thought of as either the free energy for a canonical
ensemble of random surfaces with the area A. playing the role of energy and - log 9 playing the role
of kl.r, or as a grand canonical ensemble with the number of vertices playing the role of member of
particles, and 9 playing the role of fugacity.

The mapping of the DTR problem onto that of the matrix model can be done for central charges
c.~ 1. Let us illustrate this with the example of the Ising model (c = 1/2).

Let us consider the case where at each dual graph vertex we attach an Ising variable a taking
the values ±l. The Hamiltonian for the Ising system can be taken to be .

(42)

where < ij > represents the sum over all the edges of the dual-graph. It should be kept in mind
that as the surfaces are updated the set of edges of the dual graph also changes dynamically. As
shown by Boulatov and Kazakov, this model even in the presence of an external magnetic field is
'mapped onto

(43)
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The temperature, and the magnetic field of the Ising system are given respectively by c = (C--2). and
gd g2 :=;e-2H. Both the 'matrix models represented above are exactly solvable for Fi,

Before we give the results of DTR for various observables of interest it is instructive to recall
a few features of two dimensional geometry: any metric can locally be brought to the form ).(~).
flat metric, with the help of general coordinate transformations. Naively, one'would expect that if
the classical action is also Weyl invariant, i.e invariant under the transformation 9 ~ ).(x)" g, the
metric can everywhere be brought to the flat form. However, this is not true as it is impossible
to find measures 'OgX and 'Og which are invariant under both general coordinate transformations
as well as Weyl transformations. Also, on purely geometric grounds it .can be shown that there
are "conformal classes" of metrics so that a metric belonging to oneclass can not be 'transformed
into a metric of another class by a globally well-defined Weyl transformation. When the genus 9
is greater than two, there are 2g - 2 complex parameters describing the conformal classes, For
genus one (Euler characteristic zero) case, the conformal class is parametrised by a single complex
parameter called moduli, and the partitib~'func~ion takes the form ,,'

-' r. ;i.

i z =//~if(:) (44)
;.' f ..'

The function f (T) is calculable.

8 Observables
j f . ' .

There -are several observables of Interest fhat can be studied underD'I'R. Let us start with the
String Susceptibility T It has alreadyrbeen defined in eqn(34). Both the continuum theory as
well as the matrix model predict that :1 = -1/2 for the pure surface theory (c = 0), and that
{ = -1/3 for the Ising model cbupled t# random surfaces at the critical point of the Ising system
(these results are for the zerg:genusGicle). As the Ising-model-couplingis vari~d what one finds in
DTR are: for J> Je and J < Je, {:§'iays at -0.5 ~d at J = Je it reaches -1/3. Of course there
is a well defined cross-over region.

It is interesting that the Ising model coupled to random surfaces is exactly solvable in the
presence of an external magnetic field also, while the analogous problem in.flat space remains
unsolved. ". ,

In addition to ,the string susceptibility, onecan study various critical exponents 0:, (3, 8, II for
the Ising system. One can also study the magnetic susceptibility and exponents associated with it(
the precise manner the magnetic susceptibility diverges with the system size at the critical point,
for example). In flat space it is well known that there are scaling relations among these various
exponents that are dimension dependent. It is also known that the dependence on dimensionality
appears only through the combination yd. The exact results based both on the continuum theory
and the Matrix models predict the exponents (3 = 1/2,{ = 2 and 8 = 5 while the Onsager values
are (3 = 1/8,{ = 7/4 and 8 = 15. DTR has indeed confirmed these predictions and the validir;y
of the scaling relations. While for the flat-space case vd = 2 with v = 1, for random surface
case ud = 3. However,v is not known for the random surface case. It appears as if the relevant
dimensionality is the "Hausdorff dimensionality". '".

It is puzzling that simulations based on Regge calculus do not seem to be reproducing the exact
results of the continuum and Matrix models.

8.1 Hausdorff Dimension

This is another quantity of interest and perhaps one of the most important lessons one has learnt
from numerical simulations is that quantum fluctuations can drastically alter the. scaling dimension
of space-time. In flat two dimensional space through the relation area = 7r . R2 for a circle, one
identifies the staling dimension tobe 2. F0I' the case of fluctuating geometry one expects A~ 7r Rdu

where dn is the Hausdorff dimension. The way to measure dn in D'rR is best illustrated with the

219



dual graph: One starts at some site of the dual graph which is marked 'zero' to denote the 'origin'.
Then, one marks all the neighbouring sites of the origin as '1' 7 arid all the distinct neighbours of
the l-sites as '2' and so on. The marking on the sites is analogous to 'radius' and the total number
of sites with markings ~ R is taken as a measure of the area. One has to make sure that it is a
connected domain. The typical results for the-measurement offractal dimensions are shown in the
next figure.

Figure 16: The numerical results of fractal dimensions measured in the real and dual spaces
consisting 400,000 triangles. r represents an averaged geodesic distance.

The fractal dimension starts off at some low value, reaches a peak and starts falling off. This
fall off to zero is a purely finite size effect as eventually all the triangles (dual sites ) get visited.
It is expected that as the system size increases, the measured fractal dimension approaches dn-
From the present simulations it appears that dn = 4 for all c ~ 1.

8.2 Spectral Dimension
Another intrinsically geometric quantity of interest is the so called "spectral dimension". This is
defined through the return time for a random walk. One essentially computes the kernel K(X, T =
0; X, T == T) and study it in the limit T -7 0-

< TrK(T) > :::T-d./2 as T -7 0 (45)

Simulations indicate that d. = 2.

8.3 Loop Length Distributions
Recall the introduction of the 'radial 'distance in connection with the definition of the Hausdorff
dimension. What one finds typically at a given radial distance is not just one connected domain
but many, as shown in the figure below. Kawai and coworkers have shown for the pure surface
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Figure 17:

case that the number of loops N(D) of perimeter L(D) at radial distan
distribution

N(D)D2 = f(L(D)/D2

they were also able to compute the function f. Next figure shows the agreement
simulations. Though the Regge calculus simulations have not been successfuli

JO~

Number of Triangles = 20000
(genus = 0) .

Figure 18: Loop-length distributions with Double-Log scales. The total number of triangles is
20,000 and is averaged over 500 configurations. X = f(D)/ D2 is a scaling variable, where D rep-
resents the geodesic distance (it was measured at steps D = 15,20,25 and 30) and L(D) represents
each loop length at step D. The small circles, triangles and quadrangles indicate the results of the
numerical simulations, and the solid line indicates that of string field theory.

critical exponents, they have been reasonably successful in reproducing the loop length distributions
for small loops. Thus Regge calculus is perhaps not all together on the wrong track. There is also
perhaps a connection between the failure of the Regge calculus in reproducing the critical exponents
and its inability to capture the correct loop length distribution for large loops.

221



8.4 Baby Universes
A typical configuration produced in DTR simulations looks nothing like a smooth surface; in fact,
what one finds often are various surfaces connected to each other through "necks" as illustrated
in the next figure. The minimum neck size in DTR is of course a triangle and it is in fact just

Figure 19:

a matter of counting, as shown by Jain and Mathur, to estimate the number of "minimum neck
baby universes" (MINBU) once the fixed area partition sum Z(A) is known

(B A) = 3(A - B + 1) Z(A - B +l)(B + 1) Z(B + 1)
n , Z(.1) (47)

where n(B, A) is the probability of finding a MINBJ,Jof area B in a surface of total area A. This
follows from the fact that a triangle can be located on a surface of area (B + 1) (1represents the
neck) in Z(B+1) ways and this can be glued at any of the (A + B-1) locations of the surface
with area (.4 - B + 1) along with 3 ways of.ghiing a triangle onto atriangle.

It is clear that counting the MINBUdistribution is a very practical way of measuring the string
susceptibility -y. However, one has to.becareful about the influence of finite size corrections. From
the definition of'Y (eqns. 33,34) it{sclear that when 'Y :S 0, the average MINBU size goes to a
constant as the area of the configuration becomes larger and larger, whereas for 'Y~ 0 the average
MINBU size grows withA.

As was mentioned earlier update algorithms should be able to effectively overcome critical
slowing down. In simulations of spin systems on fixed geometry this is achieved through cluster
algorithms and the like. In random surface simulations this problem of large autocorrelation lengths
is quite serious. Ambjorn and coworkers have suggested "MINBU surgery" as a way of overcoming
this. This amounts to cutting away the MINBU's and stitching them ontothe surface in arbitrary
ways.

Among other observables of interest one could think of various powers of the incidence number
qi. Of course it follows rather trivially that the average coordination number is 6, in other words
the average curvature (scalar) is zero.

~.5 Resistivity
Kawai and coworkers have proposed the use of resistivity measurements as a probe of both the
smoothness of a surface as well as for determining its complex structure. For the sphere topology
for which the complex structure is trivial, consider the arrangement shown in the figure. Each
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Figure 20: A resistive network

edge of the dual graph is treated as a resistor of some given resistance say 1 ohm. At the point P
a current of 1 Amp flows into the surface and at the point Q a current of 1 Amp flows.out. The
action is modified through the addition of ..

(48)

V can be thought of as an external (non dynamical) scalar field. Now one solves the discrete
version of Poisson's equation for the values of V at the sites of the dual graph. One compares this
with ~hat is expected of a continuous surface

(z - zp)
V (z) = canst log ( )z-zQ

the constant being a measure of the resistivity. This enables one to attach complex coordinates
z .also. Since y'9gl'V is independent of the conformal factor, this method is sensitive only to the
complex structure. ..

If the surface is a smooth surface one expects a peaking in the observed resistivity whereas for
a structure like a branched polymer(to which the surface is conjectured to degenerate into when
c > 1) the distribution in resistivity is expected to be broad. In the next figure some typical
DTR data for resistivity is shown: (The vertical axis is the number of configurations with average
resistivity, r.)

(49)

.j

Figure 21:

8.6 Complex Structure
Kawai has also proposed a way of determining complex structure through resistivity measurements.
First let us briefly discuss what complex' structure means in the case of genus 1 topology(torii).
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In the continuum picture the torus is equipped with a 'homology basis' of a-cycles and b-cycles as
shown in the figure;

. , ,. ,. ,
I :b

:~"· .
• I· .'\ .,'"

Figure 22:

Now there exists a so called Abelian differential satisfying

O:.W = 0 (50)

where W is a one form. The complex moduli T is defined as the ratio

fbW
T = faw

The proposal for determining T through DTR is as follows: first locate the a. and b cycles on the
configuration. This is 'done by starting at t = 0 with a triangle and evolving it in 'radial time'
as described in the context of the Hausdorff dimension. As D increases, this elementary loop will
split into other loops or stays as a single loop. If the topology is that of a. sphere, all the loops
will eventually shrink to their minimum size(triangle), and there will never be an instance of two
loops merging into a single loop as shown in figure 23.

(51)

Figure 23:

On the other hand, in the case of torus topology; two loops will merge. This is shown in the
figure 24:

Figure 24:
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The point where two loops merge will be a point on the, say, a-cycle. One of the two loops
merging there can then be identified with the other(b) cycle. The entire a-cycle can now be
reconstructed by following the history of the two loops that merged.

After locating the a, b-cycles, now apply a potential difference across the a-cycle and solve for
the voltage distribution. On identifying

(52)

then
(53)

Now the dual of the one form j is given by

(54)

The holomorphic one-form j + J is seen to be an Abelian differential (care should be taken to include
some resistivity dependent factors). Now the moduli r can be measured and the function f(r)
determined. This way, Kawai, Tsuda and Yukawa have determined the bosonic string partition
function for the c = 0 case and it is reproducing the expected features.

8.7 Other Results
There are too many interesting results to report on here for lack of time, so I will just include a few
examples. For example, Tsuda and Yukawa have studied the phase diagram for two dimensional
gravity in the coupling constant space a, {3where

(55)

The phase diagram obtained is shown in the next figure:

oo

~yQ, a

V "~
-----.--(~~,:~:\~--~~;;<----i """'"'"

8run..:Jlo:t.I Polymer

Figure 25: A phase diagram for 2d gravity

There are also some preliminary results that have been obtained by Bakker and Smit for four
dimensional gravity. There is also some recent interesting work on the meaning of fixed geodesic
distance in d = 2 quantum gravity by H. Aoki et al.
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