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Physics Preliminary Summary:
D0 meson yields as a function of the underlying event activity in pp

collisions at
√

s = 13 TeV

The ALICE Collaboration*

Abstract

This public note presents the first measurement by the ALICE experiment of D0 production as a
function of the transverse event activity classifier RT in pp collisions at

√
s = 13 TeV at central

rapidity (|η | < 0.8). Events containing a leading particle with plead
T > 5 GeV/c that have above-

average underlying event activity suggest a higher per-event D0 yield in the toward region than events
with below-average underlying event activity for 2 < pD0

T < 5 GeV/c. However, for pD0

T > 5 GeV/c
there is no observable dependence on RT in the production of D0 mesons. The results are also
compared to PYTHIA 8 simulations with and without colour string junctions. Expectations for the
transverse region from PYTHIA 8 simulations are also shown to allow for a cross-check with a future
measurement using data from the Run 3 data taking period currently underway.

*See Appendix A for the list of collaboration members
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1 Introduction

In recent years, the ALICE experiment, as well as other experiments at the LHC, found signatures of
collectivity in events with a high final-state charged-particle multiplicity in small collision systems such
as proton–proton (pp) and proton–lead (p–Pb) [1, 2]. Recently, similar effects were seen in pp collisions
with low multiplicity [3]. While this phenomenon had already been observed previously in heavy-ion
collisions and attributed to the quark–gluon plasma (QGP) in such events, the presence of QGP in small
collision systems is debated due to much lower energy densities. Several theoretical works attempt to ex-
plain the collective behaviour in small systems with vacuum quantum chromodynamics (QCD) processes
at the soft–hard boundary, such as mini-jet production [4] or multiple-parton interactions (MPI) [5, 6].

An event containing a large momentum-transfer scattering can be separated into the leading hard parton–
parton interaction (jetty) part and the underlying event (UE), which includes all the secondary soft pro-
cesses, as well as beam remnants. In most analyses, the leading hard scattering is treated as independent
of the UE [7]. The underlying event can therefore be measured in the region far away from the jets. A
simple but effective way to quantify the UE is via the introduction of the transverse event classifier RT [8].
In models that rely on MPI to simulate particle production, a strong correlation is observed between the
transverse activity RT and the number of MPI processes in an event [9]. Measurements of UE proper-
ties using unidentified charged particles by the CDF experiment at the Tevatron in pp collisions, as well
as by the ALICE and CMS collaborations at the LHC in pp and p–Pb collisions show that the particle
production in the azimuthal regions that are distant from the leading process is virtually independent of
the momentum scale of the hard process above a certain transverse momentum (pT) threshold [10–13].
Recently, the ALICE collaboration also published the RT-dependent production yields of identified light
charged hadrons [14].

Heavy-flavour probes at LHC energies provide powerful means to test perturbative QCD calculations [15]
as well as to address fragmentation properties [16]. Besides that, pp collisions act as a reference for
heavy-ion measurements, therefore it is essential to thoroughly understand the production of heavy
quarks in these compact systems. The ALICE collaboration has carried out precise measurements of
charm- and beauty-hadron production in both the meson and the baryon sectors [17, 18], as well as
the production of jets [19, 20]. Production and fragmentation of heavy flavour is different from that
of light-flavour partons because of both colour-charge and mass-related effects. While the majority of
light-flavour jets are initiated by hard gluons, heavy-flavour jets predominantly stem from quarks pro-
duced during the initial hard process. Additionally, quark mass can affect not only the initial production
but also the parton shower, through the dead-cone effect [21, 22]. Investigating and modelling the cre-
ation of heavy-flavour hadrons at the semi-soft boundary can aid in distinguishing between colour-charge
and mass-related effects. The study of heavy-flavour production in pp collisions as a function of event
properties such as final-state charged-particle multiplicity allows us to investigate the interplay between
hard and soft QCD processes responsible for particle production in hadronic collisions and provides
information on the role of MPI in the heavy-flavour sector. Multiplicity-dependent measurements of
production and correlation of charmed hadrons have also been carried out by the ALICE collaboration to
constrain the effect of MPI [23, 24]. By analysing heavy-flavour particle production with respect to the
UE activity, the connection between the leading processes and the UE can be characterised [25]. Hadron-
and jet-triggered events containing heavy-flavour have been thoroughly analysed in simulations, where a
strong dependence of low-pT heavy-flavour production on RT is predicted, while no such dependence is
expected for hard heavy flavour associated with the leading process [26].

In this public note, the first measurement of D0 production in pp collisions at
√

s = 13 TeV as a function
of the transverse activity classifier RT is presented. A more detailed overview of the underlying event
observables is shown in Sec. 2, which is followed by the description of the performance of the ALICE
detector and the analysed datasets in Sec. 3. The analysis procedures are outlined in Sec. 4, while the
estimation of systematic uncertainties is detailed in Sec. 5. The results are presented and discussed in
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Fig. 1: Division of the transverse plane into toward, transverse and away regions. The azimuthal angles are
determined with respect to the leading (highest-pT) particle.

Sec. 6, in which comparisons to Monte Carlo model predictions are also shown.

2 Characterising the Underlying Event

The underlying event at central rapidity can be studied in the azimuthal range of the transverse plane
which is distant from the jets stemming from the hardest scattering [27]. The direction of the hard
process is identified with the direction of the leading (highest-pT) charged particle in the final state. This
definition is used for compatibility with the earlier results from the ALICE collaboration [12, 13]. The
transverse plane is subdivided into three equally sized regions that depend on the azimuthal distance
from the leading particle, as shown in Fig. 1. The region around the leading particle (|∆φ |< 60o), called
the toward region, is expected to contain one of the most energetic jets. The away region is located at the
opposite side of the transverse plane (|∆φ |> 120o) and contains the recoil jet in an ordinary back-to-back
jet event. The transverse region, composed of two halves at 60o < |∆φ |< 120o, is less influenced by jets
and sensitive to the UE. It is to be noted that in case of a higher charged-hadron transverse-momentum
threshold (pT > 0.5 GeV/c), the influence of jets by gluon radiation into the transverse region may not
be negligible [28]. Measurements at the Tevatron and the LHC [10–13] show that the particle production
in the toward and away regions increases with the transverse momentum of the leading charged particle,
while in the transverse region the particle production reaches plateau at plead

T ≳ 5 GeV/c. This further
reinforces the assumption that the particle production in the transverse region is disconnected from the
leading process and is influenced almost solely by the UE. To ensure that the plateau region is sampled,
only events containing a leading particle with plead

T > 5 GeV/c were considered for the analysis.

To quantify the underlying event in the analysis, the relative transverse activity RT was used. This is
defined as the ratio between the charged-particle multiplicity in the transverse region, Nch

T , in a given
event and the event-averaged multiplicity in the same region,

RT =
Nch

T

⟨Nch
T ⟩

. (1)

In the context of models relying on MPI to simulate particle production, a strong correlation is observed
between the transverse activity RT and the number of MPI processes in an event [8]. Low-RT events
correspond to an MPI-suppressed environment, where jetty events are expected to resemble those in
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e+e− collisions more closely than an average pp event. The high-RT case, on the other hand, represents
high UE activity, where non-trivial vacuum-QCD effects such as MPI may become important.

3 Experimental setup and datasets

A complete description of the ALICE detector setup in LHC Run 2 and its performance can be found
in Ref. [29]. In this analysis, the particle tracking and identification was performed by the combination
of the Inner Tracking System (ITS) and the Time Projection Chamber (TPC) detectors, which both
cover the pseudorapidity interval |η | < 0.9 and are placed in a magnetic field of B = 0.5 T provided
by a cylindrical solenoid. The ITS detector, which is the innermost subsystem of the ALICE detector
composed of six cylindrical layers of silicon detectors, is involved in the tracking of emerging particles
close to the interaction point (primary vertex) [30]. It also plays a crucial role in the reconstruction
of the decay point of the heavy-flavour hadrons (secondary vertex). The TPC is a gaseous detector
outside the ITS that serves as the main tracking device of the ALICE experiment and also provides
means for charged-particle identification by measuring the specific ionisation energy loss (dE/dx) [31].
The identification of the charm-hadron decay products is further improved by the Time-Of-Flight (TOF)
detector [32]. The trigger signal is provided by the V0 detector, consisting of two scintillator arrays
covering the pseudorapidity intervals −3.7 < |η | < −1.7 and 2.8 < |η | < 5.1 on the two sides of the
nominal collision point [33].

In this analysis, data from the pp collisions at
√

s = 13 TeV from the data collection periods of 2016-
2018 were used. This data sample contains about 1.7 billion recorded minimum-bias events, collected
by requiring a coincidence between the two sides of the V0 detector, corresponding to an integrated
luminosity Lint = 29.4 nb−1. However, the condition for a leading particle with plead

T > 5 GeV/c brought
the total number of the analysed events down to 17 million. Due to the relatively small sample size,
the analysis was performed only in the toward region. Note that for D0 mesons with pD0

T ≲ 5 GeV/c
the leading particles with plead

T > 5 GeV/c cannot originate from the D0-meson decay, while at pD0

T ≳ 5
GeV/c about 90–95% of the leading particles with plead

T > 5 GeV/c are directly from D0 decay products
in the toward region.

4 Analysis procedure

The D0 candidates were reconstructed from the D0 →K−π+ (and charge conjugates) decay channel with
a branching ratio of 3.86 ± 0.04% [34]. To reduce the combinatorial background and optimise statistical
significance, selections were applied on the secondary vertex topology similarly to earlier analyses (see
e.g. Refs. [17, 35]). The selection requirements were mainly based on the displacement of the tracks from
the primary vertex (d0), the distance of closest approach (DCA) between the D-meson decay products,
and the cosine of the pointing angle of the reconstructed D-meson momentum to the primary vertex
cos(θpointing). Additionally, the kaon–pion pairs corresponding to the D0-meson candidate were required
to be within 400 MeV around the D0-meson mass and of at least 0.7 GeV/c transverse momentum each.
The D0 mesons were reconstructed in the 2 < pD0

T < 24 GeV/c transverse momentum range. Charged-
particle tracks were considered within the central rapidity range |η |< 0.8, with a transverse momentum
of ptrack

T > 0.15 GeV/c. The same condition was applied for charged particles that were used for the RT
estimation. The analysed set of events was split into two RT classes: a low-RT class containing events
with below-average transverse activity (0 < RT < 1) and a high-RT class containing events with above-
average transverse activity (1 < RT < 10; note that there are no events observed above RT = 10). The
raw yields were determined by fitting the invariant-mass distributions of D0 candidates with a Gaussian
function describing the peak region, and an exponential function to reproduce the background. Examples
of the invariant-mass distributions are shown in Fig. 2 for D0 mesons in different pD0

T and RT regions.

To account for the detection efficiency of the daughter particles, as well as for the geometrical properties
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Fig. 2: Invariant mass distributions of D0 candidates with 5 < pD0

T < 8 GeV/c in RT < 1 events (left) and with
12 < pD0

T < 18 GeV/c for RT > 1 (right).

of the detector, an acceptance-times-efficiency correction was applied to the raw yields. This correction
was determined by simulating the D0-meson production with the PYTHIA 8 Monte Carlo event gener-
ator [36] with the Monash tune [37] and then propagating the particles through a model of the detector
system implemented in GEANT3 [38]. To obtain the acceptance-times-efficiency, the number of D0 can-
didates passing the same set of topological selections as for the data was compared to the total number of
generated D0 mesons. The applied correction is presented in Fig. 3. It can be observed that the detection
efficiency is independent of the transverse activity RT both for prompt D0 mesons (coming directly from
charm hadronisation) and feed-down D0 mesons (coming from beauty-hadron decays). The values of
the acceptance-times-efficiency correction range between 6% and 40% depending on the origin and the
transverse momentum of the D0 mesons.
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Fig. 3: Acceptance-times-efficiency corrections for prompt and feed-down D0 mesons as a function of the pD0

T for
RT < 1 case in blue, RT > 1 case in red, as well as for the RT-integrated case in black.

A fraction of the reconstructed D0 mesons originates from the decay of beauty hadrons, which needs to
be subtracted from the total yield. The fraction of prompt D0 mesons was calculated based on the input
from FONLL perturbative QCD calculations [39] as
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fprompt = 1−
(

d2σ

dydpT

)FONLL

feed-down
× (Acc× ε)feed-down ×∆y∆pT ×BR×Lint

NDraw/2
, (2)

where
(

d2σ

dydpT

)FONLL

feed-down
is the cross section of B mesons determined from the FONLL calculations [40]

with the respective branching ratios (BR) of decays into D0 mesons, (Acc×ε)feed-down is the acceptance-
times-efficiency correction for feed-down D0 mesons, ∆y is the rapidity window, ∆pT is the width of the
transverse momentum interval, Lint is the integrated luminosity and NDraw is the raw yield obtained from
the data. The factor of 1/2 in the denominator is used as the cross section is measured as an average
of D0 and D0. Note that the FONLL spectrum for feed-down D0 mesons is calculated for minimum-
bias data, while the current analysis uses an additional condition of plead

T > 5 GeV/c. To account for
this, an efficiency correction was applied to the FONLL spectrum. This correction was determined from
PYTHIA 8 simulations, by calculating the pD0

T -dependent ratio of D0 mesons in events with a plead
T > 5

GeV/c leading particle to those of minimum-bias events.

In the event sample considered in this analysis, the fraction of prompt D0 mesons with pD0

T < 5 GeV/c
is approximately 60%, significantly lower than what is obtained in the minimum-bias event sample [35].
For D0 mesons having pD0

T > 5 GeV/c, the fraction is in the range of 85–90%, similarly to other D0

measurements.

5 Systematic uncertainties

In the analysis, several sources of systematic uncertainties were investigated, accounting for detection
and reconstruction efficiencies, data fitting stability, and the uncertainty from the simulated spectral
shapes.

The systematic uncertainty of the reconstruction of D0 candidates from their decay products originates
from imperfections in the description of the D0-meson kinematic properties and of the detector resolution
and alignment in the simulation. This systematic uncertainty was estimated by comparing the corrected
yields obtained by repeating the analysis with different sets of topological selection criteria, resulting in
a significant modification of the raw yields, signal-to-background ratios, and efficiencies. The contri-
bution of this systematic uncertainty was estimated in the range of 1–7% depending on the transverse
momentum of the D0 and RT of an event.

The extracted D0 yields depend on the fitting of invariant mass distributions, therefore an additional sys-
tematic uncertainty was determined by varying the fitting parameters. The variations included changing
the lower and upper limits of the invariant mass distributions, rebinning the invariant mass histograms,
as well as changing the background fitting function to the second-order polynomial. Apart from these,
fixing of the Gaussian width was also applied. These resulted in a systematic uncertainty of 1–5%.

Another major source of systematic uncertainty was the classification of events by RT. The RT classifier,
being determined from the charged-particle multiplicity in the transverse region, is very sensitive to
particle detection at the boundary of two RT bins, since events around RT = 1 can be assigned to the
wrong RT bin. To determine the magnitude of the systematic uncertainty caused by bin migration, a ratio
was calculated between results from reconstructed data and the results from Monte Carlo simulations,
where the RT calculation of events is exact. The bin migration uncertainty varies between 5 and 11%.

The systematic uncertainty of the feed-down contribution to D0 yields was determined by taking into
account the uncertainty of the FONLL spectrum associated with factorisation and renormalisation scale
variations, heavy quark mass variation, and the uncertainty associated with parton distribution functions.
The results obtained with maximum and minimum FONLL predictions were compared to the default
results, yielding an uncertainty of 1–27% depending on pD0

T .
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The systematic uncertainty from the shape of the simulated pD0

T spectrum is estimated by using FONLL
as an alternative generator with respect to PYTHIA to simulate the pD0

T distribution. The effect of this
uncertainty was found to be negligible [35].

The uncertainty from the identification of charged hadrons stemming from D0 decays is assessed by
changing the track selection cuts. This source of systematic uncertainty was also considered negligi-
ble [35].

As the individual sources of systematic uncertainties were considered to be uncorrelated with each other,
they were added in quadrature to obtain the total systematic uncertainty for each data point in the final
result. The summary of all the systematic uncertainties is presented in Table 1.

Table 1: Contributions of the systematic uncertainty sources to the total systematic uncertainties for the below-
average and above-average underlying event activity classes.

RT pD0

T (GeV/c) D0 selection Raw yield extraction Bin migration Feed-down Total

0–1

2–5 6% 2% 11% 27% 30%
5–8 3% 1% 6% 5% 8%
8–12 1% 1% 6% 3% 7%
12–18 2% 1% 6% 2% 7%
18–24 2% 3% 6% 1% 7%

1–10

2–5 7% 5% 9% 20% 24%
5–8 4% 1% 5% 8% 10%
8–12 1% 1% 5% 5% 7%
12–18 2% 3% 5% 3% 7%
18–24 2% 4% 5% 3% 7%

6 Results and conclusion

The RT-dependent production yield of D0 mesons in the toward region is presented in Fig. 4. The yields
are normalised with the number of events containing a plead

T > 5 GeV/c leading particle. The two RT

intervals are divided by the RT-integrated yields. For pD0

T > 5 GeV/c the results are consistent with unity
within uncertainties in the case of both RT intervals. This indicates that D0 mesons with high trans-
verse momenta are created in connection to the leading process. However, for D0 mesons in the lowest
transverse-momentum interval 2 < pD0

T < 5 GeV/c, a dependence on RT is suggested by the data. It has
to be noted that the leading particle condition plead

T > 5 GeV/c influences the transition between the RT-
dependent and the RT-independent regions of D0 spectrum. The results are also compared to PYTHIA
8 simulations with SoftQCD settings [36] using two different tunes. The first one is the default Monash
tune [37], which mainly focuses on describing the minimum-bias and underlying event distributions ac-
curately. The other is a model with colour reconnection beyond leading colour approximation (CR-BLC)
Mode 2 [41], which adds junctions to PYTHIA colour strings and is capable of adequately reproducing
heavy-flavour baryon-to-meson ratios [42]. Both models describe the data within uncertainties, with
Monash showing a slightly larger difference between the two RT classes at low pD0

T than CR-BLC. How-
ever, simulations also show a dependence on RT in the 5 < pD0

T < 8 GeV/c interval, whereas there is no
such hint in the data. Future more precise measurements may help determine the kinematic region where
D0 production becomes independent of RT in the toward region.

The simulation expectations with PYTHIA 8 in the transverse region, where the D0 meson production
is not influenced by the leading particle selection, are also shown for comparison (Fig. 5) [26]. There is
a clear separation between the low-RT and high-RT classes in the full pD0

T range. The effect is slightly
stronger for the CR-BLC Mode 2 than for the Monash tune, which is caused by the difference in the
predicted underlying event by the two models. The increased data sample from the ongoing Run 3 data
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8 Monash and CR-BLC Mode 2 tunes. Boxes represent the total systematic uncertainty on the result.
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Fig. 5: Ratio of the RT-dependent per-event D0 meson yields to the RT-integrated yield in the transverse region, as
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T , in simulations of pp collisions at
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s = 13 TeV from the PYTHIA 8 Monash and CR-BLC Mode
2 tunes.

collection period will allow for the measurement of RT-dependent D-meson production in the transverse
region.

In summary, the first measurement of D0 production in pp collisions at
√

s = 13 TeV at central rapidity
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(|η | < 0.8), as a function of the transverse event activity classifier RT, by the ALICE experiment is
presented in this note. In the 2 < pD0

T < 5 GeV/c region, events with above-average underlying event
activity hint at a higher rate of D0-meson production in the toward region than events with below-average
underlying event activity, while there is no significant difference from unity for either case if pD0

T >
5 GeV/c. The results are consistent with PYTHIA 8 using both the Monash tune and a model with
color reconnection beyond leading colour approximation. The integrated luminosity expected from the
ongoing Run 3 data taking period will make it feasible to carry out RT-differential studies of heavy-
flavour production with the ALICE apparatus down to even lower transverse momentum, focusing on the
transverse region which is representative of the underlying event.
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