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Abstract

The NOνA experiment studies neutrino oscillations in the NuMI neutrino beam

from Fermilab. NOνA consists of two liquid scintillator tracking calorimeters placed 14

milliradians off-axis from the beam and 810 km apart. The NOνA experiment started

taking data in 2014. This thesis establishes the neutrino energy estimation procedures

used to determine the oscillation parameters sin2 θ23 and ∆m2
32.
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9.59 Visible hadronic energy in GeV vs. true neutrino energy minus recon-

structed muon energy in GeV. This plot is for the QE population. The

horizontal axis has variable binning. The color axis is arbitrary number
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9.60 Graph points overlaid on 2D histogram of visible hadronic energy in GeV

vs. true neutrino energy minus reconstructed muon energy in GeV. This

plot is for the QE population. The horizontal axis has variable binning.

The color axis is arbitrary number of interactions. This plot was created

using simulated events in the near detector. . . . . . . . . . . . . . . . . 121
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9.61 Graph points overlaid on 2D histogram of visible hadronic energy in GeV

vs. true neutrino energy minus reconstructed muon energy in GeV. This

plot is for the QE population. The horizontal axis has variable binning.

The color axis is arbitrary number of interactions and is display loga-

rithmically. This plot was created using simulated events in the near
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9.62 Best fit line overlaid on graph points used to make the fit. The fit re-

lates visible hadronic energy in GeV to true neutrino energy minus re-

constructed muon energy in GeV. The dashed vertical line indicates the

stitch location of the splines. This plot is for the QE population. The hor-
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9.63 Best fit line overlaid on original 2D histogram. The fit relates visible

hadronic energy in GeV to true neutrino energy minus reconstructed

muon energy in GeV. The dashed vertical line indicates the stitch location

of the splines. This plot is for the QE population. The horizontal axis

has variable binning. The color axis is arbitrary number of interactions.

This plot was created using simulated events in the near detector. . . . 124

9.64 Best fit line overlaid on original 2D histogram. The fit relates visible

hadronic energy in GeV to true neutrino energy minus reconstructed

muon energy in GeV. The dashed vertical line indicates the stitch loca-
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axis has variable binning. The color axis is arbitrary number of interac-

tions and is display logarithmically. This plot was created using simulated
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9.65 Histogram of reconstructed hadronic energy in GeV vs. true neutrino

energy minus reconstructed muon energy in GeV, notated as “desired

hadronic energy.” Red line is 45 degrees - if we did a perfect job, every-

thing would lay on this line. This plot is for the QE population. The
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9.66 Histogram of visible hadronic energy in GeV vs. the relative energy

resolution. The desired hadronic energy is defined as true neutrino energy

minus reconstructed muon energy in GeV. Red line is flat at zero - if we

did a perfect job, everything would lay on this line. This plot is for the

QE population. The color axis is arbitrary number of interactions and is
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9.68 Visible hadronic energy in GeV vs. true neutrino energy minus recon-
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9.69 Graph points overlaid on 2D histogram of visible hadronic energy in GeV

vs. true neutrino energy minus reconstructed muon energy in GeV. This
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9.70 Graph points overlaid on 2D histogram of visible hadronic energy in GeV

vs. true neutrino energy minus reconstructed muon energy in GeV. This

plot is for the non-QE population. The horizontal axis has variable bin-

ning. The color axis is arbitrary number of interactions and is display
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9.71 Best fit line overlaid on graph points used to make the fit. The fit re-

lates visible hadronic energy in GeV to true neutrino energy minus re-

constructed muon energy in GeV. The dashed vertical line indicates the

stitch location of the splines. This plot is for the non-QE population.

The horizontal axis has variable binning. This plot was created using

simulated events in the near detector. . . . . . . . . . . . . . . . . . . . 132

9.72 Best fit line overlaid on original 2D histogram. The fit relates visible

hadronic energy in GeV to true neutrino energy minus reconstructed

muon energy in GeV. The dashed vertical line indicates the stitch location

of the splines. This plot is for the non-QE population. The horizontal axis

has variable binning. The color axis is arbitrary number of interactions.

This plot was created using simulated events in the near detector. . . . 133

9.73 Best fit line overlaid on original 2D histogram with a logarithmic color

axis. The fit relates visible hadronic energy in GeV to true neutrino

energy minus reconstructed muon energy in GeV. The dashed vertical

line indicates the stitch location of the splines. This plot is for the non-

QE population. The horizontal axis has variable binning. The color axis

is arbitrary number of interactions and is display logarithmically. This

plot was created using simulated events in the near detector. . . . . . . 134

9.74 Histogram of visible hadronic energy in GeV vs. true neutrino energy

minus reconstructed muon energy in GeV, notated as “desired hadronic

energy.” Red line is 45 degrees - if we did a perfect job, everything would
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9.75 Histogram of visible hadronic energy in GeV vs. the relative energy

resolution. The desired hadronic energy is defined as true neutrino energy

minus reconstructed muon energy in GeV. Red line is flat at zero - if we
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9.76 Relative energy resolution for reconstructed hadronic energy. The desired

hadronic energy is defined as true neutrino energy minus reconstructed

muon energy in GeV. This plot is for the non-QE population. This plot

only includes events with true neutrino energy less than 5 GeV. This plot

was created using simulated events in the near detector. Red line is a

Gaussian fit to the peak. . . . . . . . . . . . . . . . . . . . . . . . . . . 137
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ergy resolution for the QE population. Red line is flat at zero - if we
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9.79 Relative energy resolution for reconstructed neutrino energy for the QE
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9.81 Histogram of reconstructed neutrino energy in GeV vs. the relative en-

ergy resolution for the non-QE population. Red line is flat at zero - if
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9.82 Relative energy resolution for reconstructed neutrino energy for the non-

QE population. This plot only includes events with true neutrino energy

less than 5 GeV. This plot was created using simulated events in the near

detector. Red line is a Gaussian fit to the peak. . . . . . . . . . . . . . . 143

10.1 Diagram of different far detector configurations. A diblock is 1/14th of

the total detector. In the diagram, blue indicates a live diblock and grey

indicates a diblock not included in the readout. To be used for analysis,

the detector must have had 4 or more contiguous diblocks live. Therefore,

if only 3 diblocks are live (top left) or only two contiguous diblocks are

live (top right), the data was not used. If 4 diblocks are live (bottom

left) or, in the best case, the entire detector is live (bottom right), the

data was used. If the detector had 4 or more contiguous diblocks live as

well as another, not contiguous set of diblocks live, only the data from

the largest contiguous portion would be used. . . . . . . . . . . . . . . . 147

10.2 Diagram of common topologies. The left side of Figure 10.2a shows two

cosmic ray muons, entering from the top of the detector. The right side

of Figure 10.2a shows two cases of νµ CC interactions. Figure 10.2b

displays the reconstructed tracks KalmanTrack would create, given the

underlying topologies. KalmanTrack always defines the start of the track

as the side with the lowest Z position. The end is defined as the side

with the largest Z position. Note that the choice of start and end is

incorrect for the cosmic ray muon on the right. Figure 10.2c displays the

population definitions for each track. . . . . . . . . . . . . . . . . . . . . 152
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10.3 Plot that defines the negative and positive populations. The horizon-

tal axis displays cos θY , where θY is the angle between the primary 3D

Kalman track and the vertical detector axis. A red line is drawn at

cos θY = 0. Candidates with cos θY > 0 are defined as the positive pop-

ulation; otherwise, they are part of the negative population. Simulated

signal is shown in black; cosmic background data is shown in blue. The

simulated signal is unoscillated. Each population is scaled to the expected

levels for 2.76 × 1020 POT. Note that the simulated signal is multiplied

by 10,000 to make it visible on this scale. Basic quality cuts requiring

a 3D Kalman track, at least one valid ReMId object, a valid neutrino

energy, and a valid Live Geometry mask are applied. Data quality cuts

requiring no missing DCMs and that the detector is synced are applied.

The primary Kalman track is required to have at least 5 hits and have a

ReMId value greater than 0.5. . . . . . . . . . . . . . . . . . . . . . . . . 153

10.4 Plot of the number of hits in the slice divided by the number of planes

that the primary Kalman track crossed. Note the logarithmic vertical

axis. A red line is drawn at No. Slice Hits
No. Track P lanes = 3. Candidates with values

greater than 3 are rejected. Simulated signal is shown in black; cosmic

background data is shown in blue. The simulated signal is unoscillated.

Each population is scaled to the expected levels for 2.76 × 1020 POT.

Data quality cuts requiring no missing DCMs and that the detector is

synced are applied. The primary Kalman track is required to have a

ReMId value greater than 0.5. All cuts listed in Tables 10.4, 10.5, and

10.6, except for the cut on No. Slice Hits
No. Track P lanes , are applied. . . . . . . . . . 157
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10.5 Plot of the primary Kalman track start position in detector X and Y

coordinates for the negative population. Note the logarithmic color axis.

Red lines are drawn at the cut location for the start position; candidates

outside the red box are rejected. Simulated signal is shown on the left;

cosmic background data is shown on the right. The simulated signal is

unoscillated. Each population is scaled to the expected levels for 2.76×
1020 POT. Data quality cuts requiring no missing DCMs and that the

detector is synced are applied. The primary Kalman track is required

to have a ReMId value greater than 0.5. All cuts listed in Tables 10.4

and 10.5, except for cuts on the primary Kalman track start position, are

applied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

10.6 Plot of the primary Kalman track start position for the negative pop-

ulation. The horizontal axis is distance, in cm, from the front of the

active detector. The vertical axis is the detector X coordinate. Note the

logarithmic color axis. Red lines are drawn at the cut location for the

start position; candidates outside the red lines are rejected. Simulated

signal is shown on the left; cosmic background data is shown on the right.

The simulated signal is unoscillated. Each population is scaled to the ex-

pected levels for 2.76×1020 POT. Data quality cuts requiring no missing

DCMs and that the detector is synced are applied. The primary Kalman

track is required to have a ReMId value greater than 0.5. All cuts listed

in Tables 10.4 and 10.5, except for cuts on the primary Kalman track

start position, are applied. . . . . . . . . . . . . . . . . . . . . . . . . . . 159
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10.7 Plot of the primary Kalman track start position for the negative pop-

ulation. The horizontal axis is distance, in cm, from the front of the

active detector. The vertical axis is the detector Y coordinate. Note the

logarithmic color axis. Red lines are drawn at the cut location for the

start position; candidates outside the red lines are rejected. Simulated

signal is shown on the left; cosmic background data is shown on the right.

The simulated signal is unoscillated. Each population is scaled to the ex-

pected levels for 2.76×1020 POT. Data quality cuts requiring no missing

DCMs and that the detector is synced are applied. The primary Kalman

track is required to have a ReMId value greater than 0.5. All cuts listed

in Tables 10.4 and 10.5, except for cuts on the primary Kalman track

start position, are applied. . . . . . . . . . . . . . . . . . . . . . . . . . . 160

10.8 Plot of the primary Kalman track start position in detector X and Y

coordinates for the positive population. Note the logarithmic color axis.

Red lines are drawn at the cut location for the start position; candidates

outside the red box are rejected. Simulated signal is shown on the left;

cosmic background data is shown on the right. The simulated signal is

unoscillated. Each population is scaled to the expected levels for 2.76×
1020 POT. Data quality cuts requiring no missing DCMs and that the

detector is synced are applied. The primary Kalman track is required

to have a ReMId value greater than 0.5. All cuts listed in Tables 10.4

and 10.6, except for cuts on the primary Kalman track start position, are

applied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
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10.9 Plot of the primary Kalman track start position for the positive pop-

ulation. The horizontal axis is distance, in cm, from the front of the

active detector. The vertical axis is the detector X coordinate. Note the

logarithmic color axis. Red lines are drawn at the cut location for the

start position; candidates outside the red lines are rejected. Simulated

signal is shown on the left; cosmic background data is shown on the right.

The simulated signal is unoscillated. Each population is scaled to the ex-

pected levels for 2.76×1020 POT. Data quality cuts requiring no missing

DCMs and that the detector is synced are applied. The primary Kalman

track is required to have a ReMId value greater than 0.5. All cuts listed

in Tables 10.4 and 10.6, except for cuts on the primary Kalman track

start position, are applied. . . . . . . . . . . . . . . . . . . . . . . . . . . 162

10.10Plot of the primary Kalman track start position for the positive pop-

ulation. The horizontal axis is distance, in cm, from the front of the

active detector. The vertical axis is the detector Y coordinate. Note the

logarithmic color axis. Red lines are drawn at the cut location for the

start position; candidates outside the red lines are rejected. Simulated

signal is shown on the left; cosmic background data is shown on the right.

The simulated signal is unoscillated. Each population is scaled to the ex-

pected levels for 2.76×1020 POT. Data quality cuts requiring no missing

DCMs and that the detector is synced are applied. The primary Kalman

track is required to have a ReMId value greater than 0.5. All cuts listed

in Tables 10.4 and 10.6, except for cuts on the primary Kalman track

start position, are applied. . . . . . . . . . . . . . . . . . . . . . . . . . . 163
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10.11Plot of the primary Kalman track end position in detector X and Y

coordinates for the negative population. Note the logarithmic color axis.

Red lines are drawn at the cut location for the end position; candidates

outside the red box are rejected. Simulated signal is shown on the left;

cosmic background data is shown on the right. The simulated signal is

unoscillated. Each population is scaled to the expected levels for 2.76×
1020 POT. Data quality cuts requiring no missing DCMs and that the

detector is synced are applied. The primary Kalman track is required

to have a ReMId value greater than 0.5. All cuts listed in Tables 10.4

and 10.5, except for cuts on the primary Kalman track end position, are

applied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

10.12Plot of the primary Kalman track end position for the negative popula-

tion. The horizontal axis is distance, in cm, from the back of the active

detector. The vertical axis is the detector X coordinate. Note the loga-

rithmic color axis. Red lines are drawn at the cut location for the end

position; candidates outside the red lines are rejected. Simulated signal

is shown on the left; cosmic background data is shown on the right. The

simulated signal is unoscillated. Each population is scaled to the ex-

pected levels for 2.76×1020 POT. Data quality cuts requiring no missing

DCMs and that the detector is synced are applied. The primary Kalman

track is required to have a ReMId value greater than 0.5. All cuts listed

in Tables 10.4 and 10.5, except for cuts on the primary Kalman track end

position, are applied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
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10.13Plot of the primary Kalman track end position for the negative popula-

tion. The horizontal axis is distance, in cm, from the back of the active

detector. The vertical axis is the detector Y coordinate. Note the loga-

rithmic color axis. Red lines are drawn at the cut location for the end

position; candidates outside the red lines are rejected. Simulated signal

is shown on the left; cosmic background data is shown on the right. The

simulated signal is unoscillated. Each population is scaled to the ex-

pected levels for 2.76×1020 POT. Data quality cuts requiring no missing

DCMs and that the detector is synced are applied. The primary Kalman

track is required to have a ReMId value greater than 0.5. All cuts listed

in Tables 10.4 and 10.5, except for cuts on the primary Kalman track end

position, are applied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

10.14Plot of the primary Kalman track end position in detector X and Y

coordinates for the positive population. Note the logarithmic color axis.

Red lines are drawn at the cut location for the end position; candidates

outside the red box are rejected. Simulated signal is shown on the left;

cosmic background data is shown on the right. The simulated signal is

unoscillated. Each population is scaled to the expected levels for 2.76×
1020 POT. Data quality cuts requiring no missing DCMs and that the

detector is synced are applied. The primary Kalman track is required

to have a ReMId value greater than 0.5. All cuts listed in Tables 10.4

and 10.6, except for cuts on the primary Kalman track end position, are

applied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
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10.15Plot of the primary Kalman track end position for the positive popula-

tion. The horizontal axis is distance, in cm, from the back of the active

detector. The vertical axis is the detector X coordinate. Note the loga-

rithmic color axis. Red lines are drawn at the cut location for the end

position; candidates outside the red lines are rejected. Simulated signal

is shown on the left; cosmic background data is shown on the right. The

simulated signal is unoscillated. Each population is scaled to the ex-

pected levels for 2.76×1020 POT. Data quality cuts requiring no missing

DCMs and that the detector is synced are applied. The primary Kalman

track is required to have a ReMId value greater than 0.5. All cuts listed

in Tables 10.4 and 10.6, except for cuts on the primary Kalman track end

position, are applied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

10.16Plot of the primary Kalman track end position for the positive popula-

tion. The horizontal axis is distance, in cm, from the back of the active

detector. The vertical axis is the detector Y coordinate. Note the loga-

rithmic color axis. Red lines are drawn at the cut location for the end

position; candidates outside the red lines are rejected. Simulated signal

is shown on the left; cosmic background data is shown on the right. The

simulated signal is unoscillated. Each population is scaled to the ex-

pected levels for 2.76×1020 POT. Data quality cuts requiring no missing

DCMs and that the detector is synced are applied. The primary Kalman

track is required to have a ReMId value greater than 0.5. All cuts listed

in Tables 10.4 and 10.6, except for cuts on the primary Kalman track end

position, are applied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

xli



10.17Plot of the number of candidates that have uncontained secondary tracks

(plotted with value 0) and have no uncontained secondary tracks (plot-

ted with value 1). A red line is drawn at between the two values; those

candidates with value 0 are rejected. Simulated signal is shown in black;

cosmic background data is shown in blue. The simulated signal is un-

oscillated. Each population is scaled to the expected levels for 2.76×1020

POT. Data quality cuts requiring no missing DCMs and that the detec-

tor is synced are applied. The primary Kalman track is required to have

a ReMId value greater than 0.5. All cuts listed in Tables 10.4, 10.5 and

10.6, except for the cut requiring secondary tracks are contained, are

applied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

10.18Plot of the transverse momentum fraction for the negative population.

A red line is drawn at 0.65. Candidates with values more than 0.65 are

rejected. Simulated signal is shown in black; cosmic background data is

shown in blue. The simulated signal is unoscillated. Each population

is scaled to the expected levels for 2.76 × 1020 POT. Data quality cuts

requiring no missing DCMs and that the detector is synced are applied.

The primary Kalman track is required to have a ReMId value greater

than 0.5. All cuts listed in Tables 10.4 and 10.5, except for the cut on

the transverse momentum fraction, are applied. . . . . . . . . . . . . . . 171

10.19Plot of the transverse momentum fraction for the positive population. A

red line is drawn at 0.65. Candidates with values more than 0.65 are

rejected. Simulated signal is shown in black; cosmic background data is

shown in blue. The simulated signal is unoscillated. Each population

is scaled to the expected levels for 2.76 × 1020 POT. Data quality cuts

requiring no missing DCMs and that the detector is synced are applied.

The primary Kalman track is required to have a ReMId value greater

than 0.5. All cuts listed in Tables 10.4 and 10.6, except for the cut on

the transverse momentum fraction, are applied. . . . . . . . . . . . . . . 172
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10.20Diagram of common topologies. The left side of Figure 10.20a shows two

cosmic ray muons, entering from the top of the detector. The right side

of Figure 10.20a shows two cases of νµ CC interactions. Figure 10.20b

displays the reconstructed tracks CosmicTrack would create, given the

underlying topologies. CosmicTrack always defines the start of the track

as the side with the largest Y position. The end is defined as the side

with the smallest Y position. Note that the choice of start and end is

incorrect for the νµ CC interaction on the right. . . . . . . . . . . . . . . 174

10.21The track direction is projected backwards from the start of the track

until it intersects a detector edge. The distance between the edge and

the start of the track is called the backwards projected distance. . . . . 175

10.22Plot of the backwards projected distance to the detector edge for the

CosmicTrack. This is plot only includes the negative population. Note

the logarithmic vertical axis. A red line is drawn at backwards projected

distance equal to 50 cm. Candidates with values less than 50 cm are

rejected. Simulated signal is shown in black; cosmic background data is

shown in blue. The simulated signal is unoscillated. Each population

is scaled to the expected levels for 2.76 × 1020 POT. Data quality cuts

requiring no missing DCMs and that the detector is synced are applied.

The primary Kalman track is required to have a ReMId value greater

than 0.5. All cuts listed in Tables 10.4 and 10.5, except for the cut on

backwards projected distance, are applied. . . . . . . . . . . . . . . . . . 176
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10.23Plot of the backwards projected distance to the detector edge for the

CosmicTrack. This is plot only includes the positive population. Note

the logarithmic vertical axis. A red line is drawn at backwards projected

distance equal to 50 cm. Candidates with values less than 50 cm are

rejected. Simulated signal is shown in black; cosmic background data is

shown in blue. The simulated signal is unoscillated. Each population

is scaled to the expected levels for 2.76 × 1020 POT. Data quality cuts

requiring no missing DCMs and that the detector is synced are applied.

The primary Kalman track is required to have a ReMId value greater

than 0.5. All cuts listed in Tables 10.4 and 10.6, except for the cut on

backwards projected distance, are applied. . . . . . . . . . . . . . . . . . 177

10.24The horizontal axis is the backwards projected distance in cm of the

Cosmic track. The vertical axis is the cos θNuMI for the Cosmic track,

where θNuMI is the angle between the Cosmic track and the direction of

the neutrino beam. This plot is only for the negative population. Note

the logarithmic color axis. Red lines are drawn to define the cut region;

candidates inside the red lines are rejected. Simulated signal is shown on

the left; cosmic background data is shown on the right. The simulated

signal is unoscillated. Each population is scaled to the expected levels for

2.76× 1020 POT. Data quality cuts requiring no missing DCMs and that

the detector is synced are applied. The primary Kalman track is required

to have a ReMId value greater than 0.5. All cuts listed in Tables 10.4

and 10.5, except for cuts on the 2D space of the backwards projected

distance of the Cosmic track and the cosine between the Cosmic track

and the beam direction, are applied. . . . . . . . . . . . . . . . . . . . . 178
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10.25The horizontal axis is the backwards projected distance in cm of the

Cosmic track. The vertical axis is the cos θNuMI for the Cosmic track,
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12.39Plot of the dE/dx ratio for a slice in the near detector. This is for

the two track sample. The simulation distribution is displayed as a red

line. The data distribution is drawn as black points with statistical error
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exposure for the near detector data. All cuts listed in Sections 10.1, 10.2
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13.3 Plot comparing data and simulation reconstructed neutrino energies in

GeV in the near detector for νµ CC interactions. The vertical axis is

plotted logarithmically. The solid red histogram is simulation; the black

points are data. The error bars displayed on the data are statistical only.
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13.15Reconstructed neutrino energy in GeV vs. true neutrino energy in GeV
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plot has been altered to match the extrapolation of near detector data.

The color axis is number of interactions and is plotted logarithmically.

The simulation is scaled down to match the POT of the far detector data

and is unoscillated. This is for the QE population. The true νµ CC

population was created using a proportional decomposition, described in

Section 13.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

13.16Plot comparing unaltered and reweighted-by-data reconstructed neutrino

energies in GeV using simulated events in the far detector for νµ CC in-

teractions. The solid red histogram is unaltered simulation; the solid

blue histogram is the simulation spectrum after reweighting by the ex-

trapolation of near detector data. The extrapolated spectrum is used by

the analysis as its unoscillated prediction. The simulation is scaled down

to match the POT of the far detector data and is unoscillated. This is

for the QE population. The true νµ CC population was created using a

proportional decomposition, described in Section 13.1. . . . . . . . . . 261

13.17Plot comparing unaltered and reweighted-by-data reconstructed neutrino

energies in GeV using simulated events in the far detector for νµ CC in-

teractions. The vertical axis is plotted logarithmically. The solid red his-

togram is unaltered simulation; the solid blue histogram is the simulation

spectrum after reweighting by the extrapolation of near detector data.

The extrapolated spectrum is used by the analysis as its unoscillated

prediction. The simulation is scaled down to match the POT of the far

detector data and is unoscillated. This is for the QE population. The

true νµ CC population was created using a proportional decomposition,

described in Section 13.1. . . . . . . . . . . . . . . . . . . . . . . . . . . 262

lxiii



13.18Plot comparing data and simulation reconstructed neutrino energies in
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13.26Plot comparing unaltered and reweighted-by-data true neutrino energies
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Section 13.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

13.51Plot comparing data and simulation reconstructed neutrino energies in

GeV in the near detector for ν̄µ CC interactions. The vertical axis is

plotted logarithmically. The solid red histogram is simulation; the black

points are data. The error bars displayed on the data are statistical only.

The simulation is scaled down to match the POT of the data. This is for

the nonQE population. The true ν̄µ CC population was created using a

proportional decomposition, described in Section 13.1. . . . . . . . . . 299

13.52Reconstructed neutrino energy in GeV vs. true neutrino energy in GeV

using simulated events in the near detector for ν̄µ CC interactions. This

plot has not been altered to match near detector data. The color axis

is number of interactions. The simulation is scaled down to match the

POT of the data. This is for the nonQE population. The true ν̄µ CC

population was created using a proportional decomposition, described in

Section 13.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
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13.53Reconstructed neutrino energy in GeV vs. true neutrino energy in GeV

using simulated events in the near detector for ν̄µ CC interactions. This

plot has not been altered to match near detector data. The color axis

is number of interactions and is plotted logarithmically. The simulation

is scaled down to match the POT of the data. This is for the nonQE

population. The true ν̄µ CC population was created using a proportional

decomposition, described in Section 13.1. . . . . . . . . . . . . . . . . . 301

13.54Reconstructed neutrino energy in GeV vs. true neutrino energy in GeV

using simulated events in the near detector for ν̄µ CC interactions. This

plot has been altered to match near detector data. The color axis is

number of interactions. The simulation is scaled down to match the

POT of the data. This is for the nonQE population. The true ν̄µ CC

population was created using a proportional decomposition, described in

Section 13.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302

13.55Reconstructed neutrino energy in GeV vs. true neutrino energy in GeV

using simulated events in the near detector for ν̄µ CC interactions. This

plot has been altered to match near detector data. The color axis is

number of interactions and is plotted logarithmically. The simulation

is scaled down to match the POT of the data. This is for the nonQE

population. The true ν̄µ CC population was created using a proportional

decomposition, described in Section 13.1. . . . . . . . . . . . . . . . . . 303

13.56Plot comparing unaltered and reweighted-by-data true neutrino energies

in GeV using simulated events in the near detector for ν̄µ CC interactions.

The solid red histogram is unaltered simulation; the solid blue histogram

is the simulation spectrum after reweighting by data. The simulation

is scaled down to match the POT of the data. This is for the nonQE

population. The true ν̄µ CC population was created using a proportional

decomposition, described in Section 13.1. . . . . . . . . . . . . . . . . . 304
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13.57Plot comparing unaltered and reweighted-by-data true neutrino energies

in GeV using simulated events in the near detector for ν̄µ CC interactions.

The vertical axis is plotted logarithmically. The solid red histogram is

unaltered simulation; the solid blue histogram is the simulation spectrum

after reweighting by data. The simulation is scaled down to match the

POT of the data. This is for the nonQE population. The true ν̄µ CC

population was created using a proportional decomposition, described in

Section 13.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

13.58Plot comparing unaltered and reweighted-by-data true neutrino energies

in GeV using simulated events in the far detector for ν̄µ CC interactions.

The solid red histogram is unaltered simulation; the solid blue histogram

is the simulation spectrum after reweighting by the extrapolation of near

detector data. The simulation is scaled down to match the POT of the far

detector data and is unoscillated. This is for the nonQE population. The

true ν̄µ CC population was created using a proportional decomposition,

described in Section 13.1. . . . . . . . . . . . . . . . . . . . . . . . . . . 306

13.59Plot comparing unaltered and reweighted-by-data true neutrino energies

in GeV using simulated events in the far detector for ν̄µ CC interactions.

The vertical axis is plotted logarithmically. The solid red histogram is

unaltered simulation; the solid blue histogram is the simulation spectrum

after reweighting by the extrapolation of near detector data. The simu-

lation is scaled down to match the POT of the far detector data and is

unoscillated. This is for the nonQE population. The true ν̄µ CC popula-

tion was created using a proportional decomposition, described in Section

13.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

13.60Reconstructed neutrino energy in GeV vs. true neutrino energy in GeV

using simulated events in the far detector for ν̄µ CC interactions. This

plot has not been altered to match the extrapolation of near detec-

tor data. The color axis is number of interactions. The simulation is

scaled down to match the POT of the far detector data and is unoscil-

lated. This is for the nonQE population. The true ν̄µ CC population was

created using a proportional decomposition, described in Section 13.1. . 308
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13.61Reconstructed neutrino energy in GeV vs. true neutrino energy in GeV

using simulated events in the far detector for ν̄µ CC interactions. This

plot has not been altered to match the extrapolation of near detec-

tor data. The color axis is number of interactions and is plotted log-

arithmically. The simulation is scaled down to match the POT of the far

detector data and is unoscillated. This is for the nonQE population. The

true ν̄µ CC population was created using a proportional decomposition,

described in Section 13.1. . . . . . . . . . . . . . . . . . . . . . . . . . . 309

13.62Reconstructed neutrino energy in GeV vs. true neutrino energy in GeV

using simulated events in the far detector for ν̄µ CC interactions. This

plot has been altered to match the extrapolation of near detector data.

The color axis is number of interactions. The simulation is scaled down

to match the POT of the far detector data and is unoscillated. This is

for the nonQE population. The true ν̄µ CC population was created using

a proportional decomposition, described in Section 13.1. . . . . . . . . 310

13.63Reconstructed neutrino energy in GeV vs. true neutrino energy in GeV

using simulated events in the far detector for ν̄µ CC interactions. This

plot has been altered to match the extrapolation of near detector data.

The color axis is number of interactions and is plotted logarithmically.

The simulation is scaled down to match the POT of the far detector data

and is unoscillated. This is for the nonQE population. The true ν̄µ CC

population was created using a proportional decomposition, described in

Section 13.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311

13.64Plot comparing unaltered and reweighted-by-data reconstructed neutrino

energies in GeV using simulated events in the far detector for ν̄µ CC in-

teractions. The solid red histogram is unaltered simulation; the solid blue

histogram is the simulation spectrum after reweighting by the extrapo-

lation of near detector data. The extrapolated spectrum is used by the

analysis as its unoscillated prediction. The simulation is scaled down to

match the POT of the far detector data and is unoscillated. This is for

the nonQE population. The true ν̄µ CC population was created using a

proportional decomposition, described in Section 13.1. . . . . . . . . . 312
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13.65Plot comparing unaltered and reweighted-by-data reconstructed neutrino

energies in GeV using simulated events in the far detector for ν̄µ CC in-

teractions. The vertical axis is plotted logarithmically. The solid red his-

togram is unaltered simulation; the solid blue histogram is the simulation

spectrum after reweighting by the extrapolation of near detector data.

The extrapolated spectrum is used by the analysis as its unoscillated

prediction. The simulation is scaled down to match the POT of the far

detector data and is unoscillated. This is for the nonQE population. The

true ν̄µ CC population was created using a proportional decomposition,

described in Section 13.1. . . . . . . . . . . . . . . . . . . . . . . . . . . 313

13.66Plot comparing data and simulation reconstructed neutrino energies in

GeV in the near detector for NC interactions. The solid red histogram

is simulation; the black points are data. The error bars displayed on the

data are statistical only. The simulation is scaled down to match the POT

of the data. This is for the QE population. The true NC population was

created using a proportional decomposition, described in Section 13.1. . 315

13.67Plot comparing data and simulation reconstructed neutrino energies in

GeV in the near detector for NC interactions. The vertical axis is plotted

logarithmically. The solid red histogram is simulation; the black points

are data. The error bars displayed on the data are statistical only. The

simulation is scaled down to match the POT of the data. This is for the

QE population. The true NC population was created using a proportional

decomposition, described in Section 13.1. . . . . . . . . . . . . . . . . . 316

13.68Plot comparing unaltered and reweighted-by-data reconstructed neutrino

energies in GeV using simulated events in the far detector for NC inter-

actions. The solid red histogram is unaltered simulation; the solid blue

histogram is the simulation spectrum after reweighting by the extrapo-

lation of near detector data. The extrapolated spectrum is used by the

analysis as its prediction. The simulation is scaled down to match the

POT of the far detector data. This is for the QE population. The true NC

population was created using a proportional decomposition, described in

Section 13.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
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13.69Plot comparing unaltered and reweighted-by-data reconstructed neutrino

energies in GeV using simulated events in the far detector for NC inter-

actions. The vertical axis is plotted logarithmically. The solid red his-

togram is unaltered simulation; the solid blue histogram is the simulation

spectrum after reweighting by the extrapolation of near detector data.

The extrapolated spectrum is used by the analysis as its prediction. The

simulation is scaled down to match the POT of the far detector data.

This is for the QE population. The true NC population was created

using a proportional decomposition, described in Section 13.1. . . . . . 318

13.70Plot comparing data and simulation reconstructed neutrino energies in

GeV in the near detector for NC interactions. The solid red histogram

is simulation; the black points are data. The error bars displayed on

the data are statistical only. The simulation is scaled down to match

the POT of the data. This is for the nonQE population. The true NC

population was created using a proportional decomposition, described in

Section 13.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319

13.71Plot comparing data and simulation reconstructed neutrino energies in

GeV in the near detector for NC interactions. The vertical axis is plotted

logarithmically. The solid red histogram is simulation; the black points

are data. The error bars displayed on the data are statistical only. The

simulation is scaled down to match the POT of the data. This is for

the nonQE population. The true NC population was created using a

proportional decomposition, described in Section 13.1. . . . . . . . . . 320

13.72Plot comparing unaltered and reweighted-by-data reconstructed neutrino

energies in GeV using simulated events in the far detector for NC inter-

actions. The solid red histogram is unaltered simulation; the solid blue

histogram is the simulation spectrum after reweighting by the extrapo-

lation of near detector data. The extrapolated spectrum is used by the

analysis as its prediction. The simulation is scaled down to match the

POT of the far detector data. This is for the nonQE population. The

true NC population was created using a proportional decomposition, de-

scribed in Section 13.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
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13.73Plot comparing unaltered and reweighted-by-data reconstructed neutrino

energies in GeV using simulated events in the far detector for NC inter-

actions. The vertical axis is plotted logarithmically. The solid red his-

togram is unaltered simulation; the solid blue histogram is the simulation

spectrum after reweighting by the extrapolation of near detector data.

The extrapolated spectrum is used by the analysis as its prediction. The

simulation is scaled down to match the POT of the far detector data.

This is for the nonQE population. The true NC population was created

using a proportional decomposition, described in Section 13.1. . . . . . 322

14.1 Plot of the reconstructed neutrino energy in GeV with the total beam

simulation systematic error band for the QE sample. The simulation

distribution is drawn as a red line with red systematic error bands, with

neutrino background drawn as blue line. The near detector data is drawn

as black points with statistical error bars. The simulation is scaled down

to match the data POT. For the near detector, this is 1.66× 1020 POT.

For the far detector, it is 3.45×1020 POT. The far detector simulation is

oscillated using the values listed in Table 4.2 and setting θ23 = π/4 and

|∆m2
32| = 2.4× 10−3 eV2. . . . . . . . . . . . . . . . . . . . . . . . . . . 328

14.2 Plot of the reconstructed neutrino energy in GeV with the total beam

simulation systematic error band for the nonQE sample. The simulation

distribution is drawn as a red line with red systematic error bands, with

neutrino background drawn as blue line. The near detector data is drawn

as black points with statistical error bars. The simulation is scaled down

to match the data POT. For the near detector, this is 1.66× 1020 POT.

For the far detector, it is 3.45×1020 POT. The far detector simulation is

oscillated using the values listed in Table 4.2 and setting θ23 = π/4 and

|∆m2
32| = 2.4× 10−3 eV2. . . . . . . . . . . . . . . . . . . . . . . . . . . 329
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14.3 Plot of the reconstructed neutrino energy in GeV with the axial mass

for CC QE interactions systematic error band for the QE sample. The

simulation distribution is drawn as a red line with red systematic error

bands, with neutrino background drawn as blue line. The near detector

data is drawn as black points with statistical error bars. The simulation

is scaled down to match the data POT. For the near detector, this is

1.66 × 1020 POT. For the far detector, it is 3.45 × 1020 POT. The far

detector simulation is oscillated using the values listed in Table 4.2 and

setting θ23 = π/4 and |∆m2
32| = 2.4× 10−3 eV2. . . . . . . . . . . . . . 332

14.4 Plot of the reconstructed neutrino energy in GeV with the axial mass for

CC QE interactions systematic error band for the nonQE sample. The

simulation distribution is drawn as a red line with red systematic error

bands, with neutrino background drawn as blue line. The near detector

data is drawn as black points with statistical error bars. The simulation

is scaled down to match the data POT. For the near detector, this is

1.66 × 1020 POT. For the far detector, it is 3.45 × 1020 POT. The far

detector simulation is oscillated using the values listed in Table 4.2 and

setting θ23 = π/4 and |∆m2
32| = 2.4× 10−3 eV2. . . . . . . . . . . . . . 333

14.5 Plot of the reconstructed neutrino energy in GeV with the axial mass for

CC resonance interactions systematic error band for the QE sample. The

simulation distribution is drawn as a red line with red systematic error

bands, with neutrino background drawn as blue line. The near detector

data is drawn as black points with statistical error bars. The simulation

is scaled down to match the data POT. For the near detector, this is

1.66 × 1020 POT. For the far detector, it is 3.45 × 1020 POT. The far

detector simulation is oscillated using the values listed in Table 4.2 and

setting θ23 = π/4 and |∆m2
32| = 2.4× 10−3 eV2. . . . . . . . . . . . . . 334
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14.6 Plot of the reconstructed neutrino energy in GeV with the axial mass for

CC resonance interactions systematic error band for the nonQE sample.

The simulation distribution is drawn as a red line with red systematic

error bands, with neutrino background drawn as blue line. The near

detector data is drawn as black points with statistical error bars. The

simulation is scaled down to match the data POT. For the near detector,

this is 1.66× 1020 POT. For the far detector, it is 3.45× 1020 POT. The

far detector simulation is oscillated using the values listed in Table 4.2

and setting θ23 = π/4 and |∆m2
32| = 2.4× 10−3 eV2. . . . . . . . . . . . 335

14.7 Plot of the reconstructed neutrino energy in GeV with the vector mass

for CC resonance interactions systematic error band for the QE sample.

The simulation distribution is drawn as a red line with red systematic

error bands, with neutrino background drawn as blue line. The near

detector data is drawn as black points with statistical error bars. The

simulation is scaled down to match the data POT. For the near detector,

this is 1.66× 1020 POT. For the far detector, it is 3.45× 1020 POT. The

far detector simulation is oscillated using the values listed in Table 4.2

and setting θ23 = π/4 and |∆m2
32| = 2.4× 10−3 eV2. . . . . . . . . . . . 336

14.8 Plot of the reconstructed neutrino energy in GeV with the vector mass for

CC resonance interactions systematic error band for the nonQE sample.

The simulation distribution is drawn as a red line with red systematic

error bands, with neutrino background drawn as blue line. The near

detector data is drawn as black points with statistical error bars. The

simulation is scaled down to match the data POT. For the near detector,

this is 1.66× 1020 POT. For the far detector, it is 3.45× 1020 POT. The

far detector simulation is oscillated using the values listed in Table 4.2

and setting θ23 = π/4 and |∆m2
32| = 2.4× 10−3 eV2. . . . . . . . . . . . 337
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14.9 Plot of the reconstructed neutrino energy in GeV with the axial mass for

NC resonance interactions systematic error band for the QE sample. The

simulation distribution is drawn as a red line with red systematic error

bands, with neutrino background drawn as blue line. The near detector

data is drawn as black points with statistical error bars. The simulation

is scaled down to match the data POT. For the near detector, this is

1.66 × 1020 POT. For the far detector, it is 3.45 × 1020 POT. The far

detector simulation is oscillated using the values listed in Table 4.2 and

setting θ23 = π/4 and |∆m2
32| = 2.4× 10−3 eV2. . . . . . . . . . . . . . 338

14.10Plot of the reconstructed neutrino energy in GeV with the axial mass for

NC resonance interactions systematic error band for the nonQE sample.

The simulation distribution is drawn as a red line with red systematic

error bands, with neutrino background drawn as blue line. The near

detector data is drawn as black points with statistical error bars. The

simulation is scaled down to match the data POT. For the near detector,

this is 1.66× 1020 POT. For the far detector, it is 3.45× 1020 POT. The

far detector simulation is oscillated using the values listed in Table 4.2

and setting θ23 = π/4 and |∆m2
32| = 2.4× 10−3 eV2. . . . . . . . . . . . 339

14.11Plot of the reconstructed neutrino energy in GeV with the vector mass

for NC resonance interactions systematic error band for the QE sample.

The simulation distribution is drawn as a red line with red systematic

error bands, with neutrino background drawn as blue line. The near

detector data is drawn as black points with statistical error bars. The

simulation is scaled down to match the data POT. For the near detector,

this is 1.66× 1020 POT. For the far detector, it is 3.45× 1020 POT. The

far detector simulation is oscillated using the values listed in Table 4.2

and setting θ23 = π/4 and |∆m2
32| = 2.4× 10−3 eV2. . . . . . . . . . . . 340
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14.12Plot of the reconstructed neutrino energy in GeV with the vector mass for

NC resonance interactions systematic error band for the nonQE sample.

The simulation distribution is drawn as a red line with red systematic

error bands, with neutrino background drawn as blue line. The near

detector data is drawn as black points with statistical error bars. The

simulation is scaled down to match the data POT. For the near detector,

this is 1.66× 1020 POT. For the far detector, it is 3.45× 1020 POT. The

far detector simulation is oscillated using the values listed in Table 4.2

and setting θ23 = π/4 and |∆m2
32| = 2.4× 10−3 eV2. . . . . . . . . . . . 341

14.13Plot of the reconstructed neutrino energy in GeV with the axial mass for

NC elastic interactions systematic error band for the QE sample. The

simulation distribution is drawn as a red line with red systematic error

bands, with neutrino background drawn as blue line. The near detector

data is drawn as black points with statistical error bars. The simulation

is scaled down to match the data POT. For the near detector, this is

1.66 × 1020 POT. For the far detector, it is 3.45 × 1020 POT. The far

detector simulation is oscillated using the values listed in Table 4.2 and

setting θ23 = π/4 and |∆m2
32| = 2.4× 10−3 eV2. . . . . . . . . . . . . . 342

14.14Plot of the reconstructed neutrino energy in GeV with the axial mass for

NC elastic interactions systematic error band for the nonQE sample. The

simulation distribution is drawn as a red line with red systematic error

bands, with neutrino background drawn as blue line. The near detector

data is drawn as black points with statistical error bars. The simulation

is scaled down to match the data POT. For the near detector, this is

1.66 × 1020 POT. For the far detector, it is 3.45 × 1020 POT. The far

detector simulation is oscillated using the values listed in Table 4.2 and

setting θ23 = π/4 and |∆m2
32| = 2.4× 10−3 eV2. . . . . . . . . . . . . . 343
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14.15Plot of the reconstructed neutrino energy in GeV with the summed GE-

NIE effects systematic error band for the QE sample. The simulation

distribution is drawn as a red line with red systematic error bands, with

neutrino background drawn as blue line. The near detector data is drawn

as black points with statistical error bars. The simulation is scaled down

to match the data POT. For the near detector, this is 1.66× 1020 POT.

For the far detector, it is 3.45×1020 POT. The far detector simulation is

oscillated using the values listed in Table 4.2 and setting θ23 = π/4 and

|∆m2
32| = 2.4× 10−3 eV2. . . . . . . . . . . . . . . . . . . . . . . . . . . 347

14.16Plot of the reconstructed neutrino energy in GeV with the summed GE-

NIE effects systematic error band for the nonQE sample. The simulation

distribution is drawn as a red line with red systematic error bands, with

neutrino background drawn as blue line. The near detector data is drawn

as black points with statistical error bars. The simulation is scaled down

to match the data POT. For the near detector, this is 1.66× 1020 POT.

For the far detector, it is 3.45×1020 POT. The far detector simulation is

oscillated using the values listed in Table 4.2 and setting θ23 = π/4 and

|∆m2
32| = 2.4× 10−3 eV2. . . . . . . . . . . . . . . . . . . . . . . . . . . 348

14.17Plot of the reconstructed neutrino energy in GeV with the absolute nor-

malization systematic error band for the QE sample. The simulation

distribution is drawn as a red line with red systematic error bands, with

neutrino background drawn as blue line. The near detector data is drawn

as black points with statistical error bars. The simulation is scaled down

to match the data POT. For the near detector, this is 1.66× 1020 POT.

For the far detector, it is 3.45×1020 POT. The far detector simulation is

oscillated using the values listed in Table 4.2 and setting θ23 = π/4 and

|∆m2
32| = 2.4× 10−3 eV2. . . . . . . . . . . . . . . . . . . . . . . . . . . 353
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14.18Plot of the reconstructed neutrino energy in GeV with the absolute nor-

malization systematic error band for the nonQE sample. The simulation

distribution is drawn as a red line with red systematic error bands, with

neutrino background drawn as blue line. The near detector data is drawn

as black points with statistical error bars. The simulation is scaled down

to match the data POT. For the near detector, this is 1.66× 1020 POT.

For the far detector, it is 3.45×1020 POT. The far detector simulation is

oscillated using the values listed in Table 4.2 and setting θ23 = π/4 and

|∆m2
32| = 2.4× 10−3 eV2. . . . . . . . . . . . . . . . . . . . . . . . . . . 354

14.19Plot of the reconstructed neutrino energy in GeV with the relative nor-

malization systematic error band for the QE sample. The simulation

distribution is drawn as a red line with red systematic error bands, with

neutrino background drawn as blue line. The near detector data is drawn

as black points with statistical error bars. The simulation is scaled down

to match the data POT. For the near detector, this is 1.66× 1020 POT.

For the far detector, it is 3.45×1020 POT. The far detector simulation is

oscillated using the values listed in Table 4.2 and setting θ23 = π/4 and

|∆m2
32| = 2.4× 10−3 eV2. . . . . . . . . . . . . . . . . . . . . . . . . . . 356

14.20Plot of the reconstructed neutrino energy in GeV with the relative nor-

malization systematic error band for the nonQE sample. The simulation

distribution is drawn as a red line with red systematic error bands, with

neutrino background drawn as blue line. The near detector data is drawn

as black points with statistical error bars. The simulation is scaled down

to match the data POT. For the near detector, this is 1.66× 1020 POT.

For the far detector, it is 3.45×1020 POT. The far detector simulation is

oscillated using the values listed in Table 4.2 and setting θ23 = π/4 and

|∆m2
32| = 2.4× 10−3 eV2. . . . . . . . . . . . . . . . . . . . . . . . . . . 357
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14.21Plot of the reconstructed neutrino energy in GeV with the near detector

absolute energy scale systematic error band for the QE sample. Figure

14.21b doesn’t have an error band because the near detector systematic

error doesn’t affect the far detector without extrapolation. The simula-

tion distribution is drawn as a red line with red systematic error bands,

with neutrino background drawn as blue line. The near detector data is

drawn as black points with statistical error bars. The simulation is scaled

down to match the data POT. For the near detector, this is 1.66 × 1020

POT. For the far detector, it is 3.45×1020 POT. The far detector simula-

tion is oscillated using the values listed in Table 4.2 and setting θ23 = π/4

and |∆m2
32| = 2.4× 10−3 eV2. . . . . . . . . . . . . . . . . . . . . . . . 367

14.22Plot of the reconstructed neutrino energy in GeV with the near detec-

tor absolute energy scale systematic error band for the nonQE sample.

Figure 14.22b doesn’t have an error band because the near detector sys-

tematic error doesn’t affect the far detector without extrapolation. The

simulation distribution is drawn as a red line with red systematic error

bands, with neutrino background drawn as blue line. The near detector

data is drawn as black points with statistical error bars. The simulation

is scaled down to match the data POT. For the near detector, this is

1.66 × 1020 POT. For the far detector, it is 3.45 × 1020 POT. The far

detector simulation is oscillated using the values listed in Table 4.2 and

setting θ23 = π/4 and |∆m2
32| = 2.4× 10−3 eV2. . . . . . . . . . . . . . 368
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14.23Plot of the reconstructed neutrino energy in GeV with the far detector

absolute energy scale systematic error band for the QE sample. Figure

14.23a doesn’t have an error band because the far detector systematic er-

ror doesn’t affect the near detector. The simulation distribution is drawn

as a red line with red systematic error bands, with neutrino background

drawn as blue line. The near detector data is drawn as black points with

statistical error bars. The simulation is scaled down to match the data

POT. For the near detector, this is 1.66×1020 POT. For the far detector,

it is 3.45× 1020 POT. The far detector simulation is oscillated using the

values listed in Table 4.2 and setting θ23 = π/4 and |∆m2
32| = 2.4× 10−3

eV2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369

14.24Plot of the reconstructed neutrino energy in GeV with the far detector ab-

solute energy scale systematic error band for the nonQE sample. Figure

14.24a doesn’t have an error band because the far detector systematic er-

ror doesn’t affect the near detector. The simulation distribution is drawn

as a red line with red systematic error bands, with neutrino background

drawn as blue line. The near detector data is drawn as black points with

statistical error bars. The simulation is scaled down to match the data

POT. For the near detector, this is 1.66×1020 POT. For the far detector,

it is 3.45× 1020 POT. The far detector simulation is oscillated using the

values listed in Table 4.2 and setting θ23 = π/4 and |∆m2
32| = 2.4× 10−3

eV2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370

14.25Plot of the number of hits in a slice for the near detector. The nominal

simulation distribution is displayed as a red line. The altered simulation

with fewer hadronic hits is drawn as a blue line. The data distribution

is drawn as black points with statistical error bars. The bottom plot

displays the ratio between the data and simulation distributions. The

simulation is scaled down by a factor of 6 to 1.65×1020 POT, the exposure

for the near detector data. All cuts listed in Sections 10.1, 10.2 and 10.3.2

are applied. The cuts listed in Section 10.4, notably a cut to select slices

with muons, are not applied. . . . . . . . . . . . . . . . . . . . . . . . . 373
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14.26Plot of the number of 3D Kalman tracks in a slice for the near detector.

The nominal simulation distribution is displayed as a red line. The al-

tered simulation with fewer hadronic hits is drawn as a blue line. The

data distribution is drawn as black points with statistical error bars. The

bottom plot displays the ratio between the data and simulation distribu-

tions. The simulation is scaled down by a factor of 6 to 1.65×1020 POT,

the exposure for the near detector data. All cuts listed in Sections 10.1,

10.2 and 10.3.2 are applied. The cuts listed in Section 10.4, notably a

cut to select slices with muons, are not applied. . . . . . . . . . . . . . . 374

14.27Plot of the number of hits on the 3D Kalman track with the highest

ReMId value in a slice for the near detector. The nominal simulation

distribution is displayed as a red line. The altered simulation with fewer

hadronic hits is drawn as a blue line. The data distribution is drawn

as black points with statistical error bars. The bottom plot displays the

ratio between the data and simulation distributions. The simulation is

scaled down by a factor of 6 to 1.65 × 1020 POT, the exposure for the

near detector data. All cuts listed in Sections 10.1, 10.2 and 10.3.2 are

applied. The cuts listed in Section 10.4, notably a cut to select slices

with muons, are not applied. . . . . . . . . . . . . . . . . . . . . . . . . 375

14.28Plot of the length, in cm, of the 3D Kalman track with the highest ReMId

value in a slice for the near detector. The nominal simulation distribution

is displayed as a red line. The altered simulation with fewer hadronic hits

is drawn as a blue line. The data distribution is drawn as black points

with statistical error bars. The bottom plot displays the ratio between

the data and simulation distributions. The simulation is scaled down by

a factor of 6 to 1.65×1020 POT, the exposure for the near detector data.

All cuts listed in Sections 10.1, 10.2 and 10.3.2 are applied. The cuts

listed in Section 10.4, notably a cut to select slices with muons, are not

applied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
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14.29Plot of the scattering log-likelihood for the the 3D Kalman track with

the highest ReMId value in a slice. This plot is for the near detector

populations. The nominal simulation distribution is displayed as a red

line. The altered simulation with fewer hadronic hits is drawn as a blue

line. The data distribution is drawn as black points with statistical error

bars. The bottom plot displays the ratio between the data and simulation

distributions. The simulation is scaled down by a factor of 6 to 1.65×1020

POT, the exposure for the near detector data. All cuts listed in Sections

10.1, 10.2 and 10.3.2 are applied. The cuts listed in Section 10.4, notably

a cut to select slices with muons, are not applied. . . . . . . . . . . . . . 378

14.30Plot of the dE/dx log-likelihood for the the 3D Kalman track with the

highest ReMId value in a slice. This plot is for the near detector popu-

lations. The nominal simulation distribution is displayed as a red line.

The altered simulation with fewer hadronic hits is drawn as a blue line.

The data distribution is drawn as black points with statistical error bars.

The bottom plot displays the ratio between the data and simulation dis-

tributions. The simulation is scaled down by a factor of 6 to 1.65× 1020

POT, the exposure for the near detector data. All cuts listed in Sections

10.1, 10.2 and 10.3.2 are applied. The cuts listed in Section 10.4, notably

a cut to select slices with muons, are not applied. . . . . . . . . . . . . . 379

14.31Plot of the non-hadronic plane fraction for the the 3D Kalman track

with the highest ReMId value in a slice. This plot is for the near detector

populations. The nominal simulation distribution is displayed as a red

line. The altered simulation with fewer hadronic hits is drawn as a blue

line. The data distribution is drawn as black points with statistical error

bars. The bottom plot displays the ratio between the data and simulation

distributions. The simulation is scaled down by a factor of 6 to 1.65×1020

POT, the exposure for the near detector data. All cuts listed in Sections

10.1, 10.2 and 10.3.2 are applied. The cuts listed in Section 10.4, notably

a cut to select slices with muons, are not applied. . . . . . . . . . . . . . 380
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14.32Plot of the ReMId value for the the 3D Kalman track with the highest

ReMId value in a slice. This plot is for the near detector populations.

The nominal simulation distribution is displayed as a red line. The al-

tered simulation with fewer hadronic hits is drawn as a blue line. The

data distribution is drawn as black points with statistical error bars. The

bottom plot displays the ratio between the data and simulation distribu-

tions. The simulation is scaled down by a factor of 6 to 1.65×1020 POT,

the exposure for the near detector data. All cuts listed in Sections 10.1,

10.2 and 10.3.2 are applied. The cuts listed in Section 10.4, notably a

cut to select slices with muons, are not applied. . . . . . . . . . . . . . . 381

14.33Plot of the number of hits on the 3D Kalman track with the highest

ReMId value in a slice for the near detector. The nominal simulation

distribution is displayed as a red line. The altered simulation with fewer

hadronic hits is drawn as a blue line. The data distribution is drawn

as black points with statistical error bars. The bottom plot displays the

ratio between the data and simulation distributions. The simulation is

scaled down by a factor of 6 to 1.65 × 1020 POT, the exposure for the

near detector data. All cuts listed in Sections 10.1, 10.2 and 10.3.2 are

applied. A cut requiring a ReMId value ≥ 0.7 is also applied. . . . . . . 382

14.34Plot of the length, in cm, of the 3D Kalman track with the highest ReMId

value in a slice for the near detector. The nominal simulation distribution

is displayed as a red line. The altered simulation with fewer hadronic hits

is drawn as a blue line. The data distribution is drawn as black points

with statistical error bars. The bottom plot displays the ratio between

the data and simulation distributions. The simulation is scaled down

by a factor of 6 to 1.65 × 1020 POT, the exposure for the near detector

data. All cuts listed in Sections 10.1, 10.2 and 10.3.2 are applied. A cut

requiring a ReMId value ≥ 0.7 is also applied. . . . . . . . . . . . . . . . 383
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14.35Plot of the number of hits in the slice not on the 3D Kalman track with

the highest ReMId value for the near detector. The nominal simulation

distribution is displayed as a red line. The altered simulation with fewer

hadronic hits is drawn as a blue line. The data distribution is drawn

as black points with statistical error bars. The bottom plot displays the

ratio between the data and simulation distributions. The simulation is

scaled down by a factor of 6 to 1.65 × 1020 POT, the exposure for the

near detector data. All cuts listed in Sections 10.1, 10.2 and 10.3.2 are

applied. A cut requiring a ReMId value ≥ 0.7 is also applied. . . . . . . 384

14.36Plot of the sum of the visible energy (in GeV) of hits in the slice not

on the 3D Kalman track with the highest ReMId value. This plot is for

the near detector populations. The nominal simulation distribution is

displayed as a red line. The altered simulation with fewer hadronic hits

is drawn as a blue line. The data distribution is drawn as black points

with statistical error bars. The bottom plot displays the ratio between

the data and simulation distributions. The simulation is scaled down

by a factor of 6 to 1.65 × 1020 POT, the exposure for the near detector

data. All cuts listed in Sections 10.1, 10.2 and 10.3.2 are applied. A cut

requiring a ReMId value ≥ 0.7 is also applied. . . . . . . . . . . . . . . . 385

14.37Plot of the sum of the visible energy (in GeV) associated with hadronic

energy in the vertex region of the 3D Kalman track with the highest

ReMId value. This plot is for the near detector populations. The nominal

simulation distribution is displayed as a red line. The altered simulation

with fewer hadronic hits is drawn as a blue line. The data distribution

is drawn as black points with statistical error bars. The bottom plot

displays the ratio between the data and simulation distributions. The

simulation is scaled down by a factor of 6 to 1.65×1020 POT, the exposure

for the near detector data. All cuts listed in Sections 10.1, 10.2 and 10.3.2

are applied. A cut requiring a ReMId value ≥ 0.7 is also applied. . . . . 386
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14.38Plot of the sum of the visible energy (in GeV) for the slice hits divided

by the total number of hits in the slice. Each slice is one entry in the

histogram. This plot is for the near detector populations. The nominal

simulation distribution is displayed as a red line. The altered simulation

with fewer hadronic hits is drawn as a blue line. The data distribution

is drawn as black points with statistical error bars. The bottom plot

displays the ratio between the data and simulation distributions. The

simulation is scaled down by a factor of 6 to 1.65×1020 POT, the exposure

for the near detector data. All cuts listed in Sections 10.1, 10.2 and 10.3.2

are applied. A cut requiring a ReMId value ≥ 0.7 is also applied. . . . . 388

14.39Plot of the sum of the visible energy (in GeV) for the hits associated the

3D Kalman track with the highest ReMId value divided by the number

of hits associated with the primary track. Each primary track is one

entry in the histogram. This plot is for the near detector populations.

The nominal simulation distribution is displayed as a red line. The al-

tered simulation with fewer hadronic hits is drawn as a blue line. The

data distribution is drawn as black points with statistical error bars. The

bottom plot displays the ratio between the data and simulation distribu-

tions. The simulation is scaled down by a factor of 6 to 1.65×1020 POT,

the exposure for the near detector data. All cuts listed in Sections 10.1,

10.2 and 10.3.2 are applied. A cut requiring a ReMId value ≥ 0.7 is also

applied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389
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14.40Plot of the sum of the visible energy (in GeV) for the slice hits not

associated the 3D Kalman track with the highest ReMId value divided

by the number of hits in the slice not associated with the primary track.

Each slice is one entry in the histogram. This plot is for the near detector

populations. The nominal simulation distribution is displayed as a red

line. The altered simulation with fewer hadronic hits is drawn as a blue

line. The data distribution is drawn as black points with statistical error

bars. The bottom plot displays the ratio between the data and simulation

distributions. The simulation is scaled down by a factor of 6 to 1.65×1020

POT, the exposure for the near detector data. All cuts listed in Sections

10.1, 10.2 and 10.3.2 are applied. A cut requiring a ReMId value ≥ 0.7

is also applied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390

14.41Plot of off-track energy ratio for a slice in the near detector. This is for

the one track sample. The nominal simulation distribution is displayed as

a red line. The altered simulation with fewer hadronic hits is drawn as a

blue line. The data distribution is drawn as black points with statistical

error bars. The bottom plot displays the ratio between the data and

simulation distributions. The simulation is scaled down by a factor of 6

to 1.65 × 1020 POT, the exposure for the near detector data. All cuts

listed in Sections 10.1, 10.2 and 10.3.2 are applied. A cut requiring a

ReMId value ≥ 0.7 is also applied. . . . . . . . . . . . . . . . . . . . . . 392

14.42Plot of off-track energy ratio for a slice in the near detector. This is for

the two track sample. The nominal simulation distribution is displayed as

a red line. The altered simulation with fewer hadronic hits is drawn as a

blue line. The data distribution is drawn as black points with statistical

error bars. The bottom plot displays the ratio between the data and

simulation distributions. The simulation is scaled down by a factor of 6

to 1.65 × 1020 POT, the exposure for the near detector data. All cuts

listed in Sections 10.1, 10.2 and 10.3.2 are applied. A cut requiring a

ReMId value ≥ 0.7 is also applied. . . . . . . . . . . . . . . . . . . . . . 393
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14.43Plot of the fractional energy difference for a slice in the near detector.

This is for the one track sample. The nominal simulation distribution is

displayed as a red line. The altered simulation with fewer hadronic hits

is drawn as a blue line. The data distribution is drawn as black points

with statistical error bars. The bottom plot displays the ratio between

the data and simulation distributions. The simulation is scaled down

by a factor of 6 to 1.65 × 1020 POT, the exposure for the near detector

data. All cuts listed in Sections 10.1, 10.2 and 10.3.2 are applied. A cut

requiring a ReMId value ≥ 0.7 is also applied. . . . . . . . . . . . . . . . 394

14.44Plot of the fractional energy difference for a slice in the near detector.

This is for the two track sample. The nominal simulation distribution is

displayed as a red line. The altered simulation with fewer hadronic hits

is drawn as a blue line. The data distribution is drawn as black points

with statistical error bars. The bottom plot displays the ratio between

the data and simulation distributions. The simulation is scaled down

by a factor of 6 to 1.65 × 1020 POT, the exposure for the near detector

data. All cuts listed in Sections 10.1, 10.2 and 10.3.2 are applied. A cut

requiring a ReMId value ≥ 0.7 is also applied. . . . . . . . . . . . . . . . 395

14.45Plot of the fractional energy difference Z-test for a slice in the near detec-

tor. This is for the one track sample. The nominal simulation distribution

is displayed as a red line. The altered simulation with fewer hadronic hits

is drawn as a blue line. The data distribution is drawn as black points

with statistical error bars. The bottom plot displays the ratio between

the data and simulation distributions. The simulation is scaled down

by a factor of 6 to 1.65 × 1020 POT, the exposure for the near detector

data. All cuts listed in Sections 10.1, 10.2 and 10.3.2 are applied. A cut

requiring a ReMId value ≥ 0.7 is also applied. . . . . . . . . . . . . . . . 396
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14.46Plot of the fractional energy difference Z-test for a slice in the near detec-

tor. This is for the two track sample. The nominal simulation distribution

is displayed as a red line. The altered simulation with fewer hadronic hits

is drawn as a blue line. The data distribution is drawn as black points

with statistical error bars. The bottom plot displays the ratio between

the data and simulation distributions. The simulation is scaled down

by a factor of 6 to 1.65 × 1020 POT, the exposure for the near detector

data. All cuts listed in Sections 10.1, 10.2 and 10.3.2 are applied. A cut

requiring a ReMId value ≥ 0.7 is also applied. . . . . . . . . . . . . . . . 397

14.47Plot of the dE/dx ratio for a slice in the near detector. This is for the

two track sample. The nominal simulation distribution is displayed as a

red line. The altered simulation with fewer hadronic hits is drawn as a

blue line. The data distribution is drawn as black points with statistical

error bars. The bottom plot displays the ratio between the data and

simulation distributions. The simulation is scaled down by a factor of 6

to 1.65 × 1020 POT, the exposure for the near detector data. All cuts

listed in Sections 10.1, 10.2 and 10.3.2 are applied. A cut requiring a

ReMId value ≥ 0.7 is also applied. . . . . . . . . . . . . . . . . . . . . . 398

14.48Plot of QePId for a slice in the near detector. This is for the one track

sample. The nominal simulation distribution is displayed as a red line.

The altered simulation with fewer hadronic hits is drawn as a blue line.

The data distribution is drawn as black points with statistical error bars.

The bottom plot displays the ratio between the data and simulation dis-

tributions. When the ratio is too large for the scale, the point and its

error bars are not drawn. The simulation is scaled down by a factor of

6 to 1.65× 1020 POT, the exposure for the near detector data. All cuts

listed in Sections 10.1, 10.2 and 10.3.2 are applied. A cut requiring a

ReMId value ≥ 0.7 is also applied. . . . . . . . . . . . . . . . . . . . . . 399
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14.49Plot of QePId for a slice in the near detector. This is for the two track

sample. The nominal simulation distribution is displayed as a red line.

The altered simulation with fewer hadronic hits is drawn as a blue line.

The data distribution is drawn as black points with statistical error bars.

The bottom plot displays the ratio between the data and simulation dis-

tributions. The simulation is scaled down by a factor of 6 to 1.65× 1020

POT, the exposure for the near detector data. All cuts listed in Sections

10.1, 10.2 and 10.3.2 are applied. A cut requiring a ReMId value ≥ 0.7

is also applied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400

14.50Plot of reconstructed neutrino energy in GeV for a slice in the near de-

tector. This is for the QE sample. The nominal simulation distribution

is displayed as a red line. The altered simulation with fewer hadronic hits

is drawn as a blue line. The data distribution is drawn as black points

with statistical error bars. The bottom plot displays the ratio between

the data and simulation distributions. The simulation is scaled down by

a factor of 6 to 1.65×1020 POT, the exposure for the near detector data.

All cuts listed in Sections 10.1, 10.2, 10.3.2 and 10.4 are applied. . . . . 401

14.51Plot of reconstructed neutrino energy in GeV for a slice in the near detec-

tor. This is for the nonQE sample. The nominal simulation distribution

is displayed as a red line. The altered simulation with fewer hadronic hits

is drawn as a blue line. The data distribution is drawn as black points

with statistical error bars. The bottom plot displays the ratio between

the data and simulation distributions. The simulation is scaled down by

a factor of 6 to 1.65×1020 POT, the exposure for the near detector data.

All cuts listed in Sections 10.1, 10.2, 10.3.2 and 10.4 are applied. . . . . 402
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14.52Plot of the number of hits on the 3D Kalman track with the highest

ReMId value in a slice for the near detector. This is for the QE sample.

The nominal simulation distribution is displayed as a red line. The al-

tered simulation with fewer hadronic hits is drawn as a blue line. The

data distribution is drawn as black points with statistical error bars. The

bottom plot displays the ratio between the data and simulation distribu-

tions. The simulation is scaled down by a factor of 6 to 1.65×1020 POT,

the exposure for the near detector data. All cuts listed in Sections 10.1,

10.2, 10.3.2 and 10.4 are applied. . . . . . . . . . . . . . . . . . . . . . . 404

14.53Plot of the number of hits on the 3D Kalman track with the highest

ReMId value in a slice for the near detector. This is for the nonQE sam-

ple. The nominal simulation distribution is displayed as a red line. The

altered simulation with fewer hadronic hits is drawn as a blue line. The

data distribution is drawn as black points with statistical error bars. The

bottom plot displays the ratio between the data and simulation distribu-

tions. The simulation is scaled down by a factor of 6 to 1.65×1020 POT,

the exposure for the near detector data. All cuts listed in Sections 10.1,

10.2, 10.3.2 and 10.4 are applied. . . . . . . . . . . . . . . . . . . . . . . 405

14.54Plot of the length, in cm, of the 3D Kalman track with the highest ReMId

value in a slice for the near detector. This is for the QE sample. The

nominal simulation distribution is displayed as a red line. The altered

simulation with fewer hadronic hits is drawn as a blue line. The data

distribution is drawn as black points with statistical error bars. The bot-

tom plot displays the ratio between the data and simulation distributions.

The simulation is scaled down by a factor of 6 to 1.65 × 1020 POT, the

exposure for the near detector data. All cuts listed in Sections 10.1, 10.2,

10.3.2 and 10.4 are applied. . . . . . . . . . . . . . . . . . . . . . . . . . 406
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14.55Plot of the length, in cm, of the 3D Kalman track with the highest ReMId

value in a slice for the near detector. This is for the nonQE sample. The

nominal simulation distribution is displayed as a red line. The altered

simulation with fewer hadronic hits is drawn as a blue line. The data

distribution is drawn as black points with statistical error bars. The bot-

tom plot displays the ratio between the data and simulation distributions.

The simulation is scaled down by a factor of 6 to 1.65 × 1020 POT, the

exposure for the near detector data. All cuts listed in Sections 10.1, 10.2,

10.3.2 and 10.4 are applied. . . . . . . . . . . . . . . . . . . . . . . . . . 407

14.56Plot of the reconstructed neutrino energy in GeV with the near detec-

tor number of hadronic hits systematic error band for the QE sample.

Figure 14.56b doesn’t have an error band because the near detector sys-

tematic error doesn’t affect the far detector without extrapolation. The

simulation distribution is drawn as a red line with red systematic error

bands, with neutrino background drawn as blue line. The near detector

data is drawn as black points with statistical error bars. The simulation

is scaled down to match the data POT. For the near detector, this is

1.66 × 1020 POT. For the far detector, it is 3.45 × 1020 POT. The far

detector simulation is oscillated using the values listed in Table 4.2 and

setting θ23 = π/4 and |∆m2
32| = 2.4× 10−3 eV2. . . . . . . . . . . . . . 410

14.57Plot of the reconstructed neutrino energy in GeV with the near detector

number of hadronic hits systematic error band for the nonQE sample.

Figure 14.57b doesn’t have an error band because the near detector sys-

tematic error doesn’t affect the far detector without extrapolation. The

simulation distribution is drawn as a red line with red systematic error

bands, with neutrino background drawn as blue line. The near detector

data is drawn as black points with statistical error bars. The simulation

is scaled down to match the data POT. For the near detector, this is

1.66 × 1020 POT. For the far detector, it is 3.45 × 1020 POT. The far

detector simulation is oscillated using the values listed in Table 4.2 and

setting θ23 = π/4 and |∆m2
32| = 2.4× 10−3 eV2. . . . . . . . . . . . . . 411
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14.58Plot of the reconstructed neutrino energy in GeV with the far detector

number of hadronic hits systematic error band for the QE sample. Figure

14.58a doesn’t have an error band because the far detector systematic er-

ror doesn’t affect the near detector. The simulation distribution is drawn

as a red line with red systematic error bands, with neutrino background

drawn as blue line. The near detector data is drawn as black points with

statistical error bars. The simulation is scaled down to match the data

POT. For the near detector, this is 1.66×1020 POT. For the far detector,

it is 3.45× 1020 POT. The far detector simulation is oscillated using the

values listed in Table 4.2 and setting θ23 = π/4 and |∆m2
32| = 2.4× 10−3

eV2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412

14.59Plot of the reconstructed neutrino energy in GeV with the far detector

number of hadronic hits systematic error band for the nonQE sample.

Figure 14.59a doesn’t have an error band because the far detector sys-

tematic error doesn’t affect the near detector. The simulation distribu-

tion is drawn as a red line with red systematic error bands, with neutrino

background drawn as blue line. The near detector data is drawn as black

points with statistical error bars. The simulation is scaled down to match

the data POT. For the near detector, this is 1.66 × 1020 POT. For the

far detector, it is 3.45 × 1020 POT. The far detector simulation is os-

cillated using the values listed in Table 4.2 and setting θ23 = π/4 and

|∆m2
32| = 2.4× 10−3 eV2. . . . . . . . . . . . . . . . . . . . . . . . . . . 413

14.60Plot of the reconstructed neutrino energy in GeV with the total system-

atic error band for the QE sample. The simulation distribution is drawn

as a red line with red systematic error bands, with neutrino background

drawn as blue line. The near detector data is drawn as black points with

statistical error bars. The simulation is scaled down to match the data

POT. For the near detector, this is 1.66×1020 POT. For the far detector,

it is 3.45× 1020 POT. The far detector simulation is oscillated using the

values listed in Table 4.2 and setting θ23 = π/4 and |∆m2
32| = 2.4× 10−3
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14.61Plot of the reconstructed neutrino energy in GeV with the the total sys-

tematic error band for the nonQE sample. The simulation distribution

is drawn as a red line with red systematic error bands, with neutrino

background drawn as blue line. The near detector data is drawn as black

points with statistical error bars. The simulation is scaled down to match

the data POT. For the near detector, this is 1.66 × 1020 POT. For the

far detector, it is 3.45 × 1020 POT. The far detector simulation is os-

cillated using the values listed in Table 4.2 and setting θ23 = π/4 and

|∆m2
32| = 2.4× 10−3 eV2. . . . . . . . . . . . . . . . . . . . . . . . . . . 416

15.1 Event display of far detector data QE event. This event corresponds

to run 17953, event 256887. Note that the figure is rotated. The view

shows the entire far detector. Colored dots are drawn over hits in the

slice associated with Kalman tracks. The green dots represent a long,

3D Kalman track. This slice also had a short 2D Kalman track, drawn

with blue dots. Hits in the readout window not associated with the slice

are grayed out. The blue box indicates the region of the detector not

considered active. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421

15.2 Event display of far detector data QE event. This event corresponds to

run 17953, event 256887. Note that the figure is rotated. The display is

spatially zoomed in to region of interest. Hits in the readout window not

associated with the slice are not drawn. Hits are colored by their time

relative to the readout window; the left bottom inset relates hit time and
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15.3 Event display of far detector data QE event. This event corresponds to

run 17953, event 256887. Note that the figure is rotated. The display is

spatially zoomed in to region of interest. Colored dots are drawn over

hits in the slice associated with Kalman tracks. The green dots represent

a long, 3D Kalman track. This slice also had a short 2D Kalman track,

drawn with blue dots. Hits in the readout window not associated with

the slice are grayed out. . . . . . . . . . . . . . . . . . . . . . . . . . . . 423
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15.4 Event display of far detector data QE event. This event corresponds

to run 18301, event 413485. Note that the figure is rotated. The view

shows the entire far detector. Colored dots are drawn over hits in the slice

associated with Kalman tracks. The green dots represent a 3D Kalman

track. This slice also had a short 2D Kalman track, drawn with blue

dots. Hits in the readout window not associated with the slice are grayed

out. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424

15.5 Event display of far detector data QE event. This event corresponds to

run 18301, event 413485. Note that the figure is rotated. The display is

spatially zoomed in to region of interest. Hits in the readout window not

associated with the slice are not drawn. Hits are colored by their time

relative to the readout window; the left bottom inset relates hit time and

colors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425

15.6 Event display of far detector data QE event. This event corresponds to

run 18301, event 413485. Note that the figure is rotated. The display is

spatially zoomed in to region of interest. Colored dots are drawn over

hits in the slice associated with Kalman tracks. The green dots represent

a 3D Kalman track. This slice also had a short 2D Kalman track, drawn

with blue dots. Hits in the readout window not associated with the slice

are grayed out. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426

15.7 Event display of far detector data nonQE event. This event corresponds

to run 18791, event 765587. Note that the figure is rotated. The view

shows the entire far detector. Colored dots are drawn over hits in the

slice associated with Kalman tracks. The green dots represent a long,

3D Kalman track. This slice also had a shorter 3D Kalman track, drawn

with blue dots. Hits in the readout window not associated with the slice

are grayed out. The blue box indicates the region of the detector not

considered active. The green boxes indicate DCM boundaries. . . . . . 430
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15.8 Event display of far detector data nonQE event. This event corresponds

to run 18791, event 765587. Note that the figure is rotated. The display

is spatially zoomed in to region of interest. Hits in the readout window

not associated with the slice are not drawn. Hits are colored by their time

relative to the readout window; the left bottom inset relates hit time and

colors. The green boxes indicate DCM boundaries. . . . . . . . . . . . 431

15.9 Event display of far detector data nonQE event. This event corresponds

to run 18791, event 765587. Note that the figure is rotated. The display

is spatially zoomed in to region of interest. Colored dots are drawn over

hits in the slice associated with Kalman tracks. The green dots represent

a long, 3D Kalman track. This slice also had a shorter 3D Kalman track,

drawn with blue dots. Hits in the readout window not associated with

the slice are grayed out. The green boxes indicate DCM boundaries. . . 432

15.10Event display of far detector data nonQE event. This event corresponds

to run 16450, event 93029. Note that the figure is rotated. The view

shows the entire far detector. Colored dots are drawn over hits in the

slice associated with Kalman tracks. The red dots represent the longest

3D Kalman track. Yellow dots are associated with a second 3D Kalman

track. This slice also had two 2D Kalman track, drawn with blue dots

and green dots. Hits in the readout window not associated with the slice

are grayed out. The blue box indicates the region of the detector not

considered active. The green boxes indicate DCM boundaries. . . . . . 433

15.11Event display of far detector data nonQE event. This event corresponds

to run 16450, event 93029. Note that the figure is rotated. The display is

spatially zoomed in to region of interest. Hits in the readout window not

associated with the slice are not drawn. Hits are colored by their time

relative to the readout window; the left bottom inset relates hit time and

colors. The green boxes indicate DCM boundaries. . . . . . . . . . . . 434
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15.12Event display of far detector data nonQE event. This event corresponds

to run 16450, event 93029. Note that the figure is rotated. The display

is spatially zoomed in to region of interest. Colored dots are drawn over

hits in the slice associated with Kalman tracks. The red dots represent

the longest 3D Kalman track. Yellow dots are associated with a second

3D Kalman track. This slice also had two 2D Kalman track, drawn with

blue dots and green dots. Hits in the readout window not associated with

the slice are grayed out. The green boxes indicate DCM boundaries. . . 435

15.13Plot of the number of hits in a slice for the far detector for the QE

population. The total prediction is drawn as a red line with red total

systematic error bands, with neutrino background drawn as a green line

and the cosmic ray background drawn as a magenta line. The cosmic ray

background distribution was determined from the out-of-time data in the

NuMI trigger files. The data distribution is drawn as black points with

statistical error bars. The bottom plot displays the ratio between the data

and simulation distributions. The simulation is oscillated using the values

listed in Table 4.2 and setting sin2 θ23 = 0.61 and |∆m2
32| = 2.49× 10−3

eV2. The simulation is scaled down to match the exposure for the far

detector data, 3.45× 1020 POT. . . . . . . . . . . . . . . . . . . . . . . 437

15.14Plot of the number of hits in a slice for the far detector for the nonQE

population. The total prediction is drawn as a red line with red total

systematic error bands, with neutrino background drawn as a green line

and the cosmic ray background drawn as a magenta line. The cosmic ray

background distribution was determined from the out-of-time data in the

NuMI trigger files. The data distribution is drawn as black points with

statistical error bars. The bottom plot displays the ratio between the data

and simulation distributions. The simulation is oscillated using the values

listed in Table 4.2 and setting sin2 θ23 = 0.61 and |∆m2
32| = 2.49× 10−3

eV2. The simulation is scaled down to match the exposure for the far

detector data, 3.45× 1020 POT. . . . . . . . . . . . . . . . . . . . . . . 438
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15.15Plot of the number of 3D Kalman tracks in a slice for the far detector

for the QE population. The total prediction is drawn as a red line with

red total systematic error bands, with neutrino background drawn as

a green line and the cosmic ray background drawn as a magenta line.

The cosmic ray background distribution was determined from the out-

of-time data in the NuMI trigger files. The data distribution is drawn

as black points with statistical error bars. The bottom plot displays the

ratio between the data and simulation distributions. The simulation is

oscillated using the values listed in Table 4.2 and setting sin2 θ23 = 0.61

and |∆m2
32| = 2.49× 10−3 eV2. The simulation is scaled down to match

the exposure for the far detector data, 3.45× 1020 POT. . . . . . . . . 439

15.16Plot of the number of 3D Kalman tracks in a slice for the far detector

for the nonQE population. The total prediction is drawn as a red line

with red total systematic error bands, with neutrino background drawn

as a green line and the cosmic ray background drawn as a magenta line.

The cosmic ray background distribution was determined from the out-

of-time data in the NuMI trigger files. The data distribution is drawn

as black points with statistical error bars. The bottom plot displays the

ratio between the data and simulation distributions. The simulation is

oscillated using the values listed in Table 4.2 and setting sin2 θ23 = 0.61

and |∆m2
32| = 2.49× 10−3 eV2. The simulation is scaled down to match

the exposure for the far detector data, 3.45× 1020 POT. . . . . . . . . 440
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15.17Plot of the number of hits on the 3D Kalman track with the highest

ReMId value in the slice. This plot is for the far detector QE population.

The total prediction is drawn as a red line with red total systematic error

bands, with neutrino background drawn as a green line and the cosmic

ray background drawn as a magenta line. The cosmic ray background

distribution was determined from the out-of-time data in the NuMI trig-

ger files. The data distribution is drawn as black points with statistical

error bars. The bottom plot displays the ratio between the data and sim-

ulation distributions. The simulation is oscillated using the values listed

in Table 4.2 and setting sin2 θ23 = 0.61 and |∆m2
32| = 2.49 × 10−3 eV2.

The simulation is scaled down to match the exposure for the far detector

data, 3.45× 1020 POT. . . . . . . . . . . . . . . . . . . . . . . . . . . . 441

15.18Plot of the number of hits on the 3D Kalman track with the highest

ReMId value in the slice. This plot is for the far detector nonQE popula-

tion. The total prediction is drawn as a red line with red total systematic

error bands, with neutrino background drawn as a green line and the cos-

mic ray background drawn as a magenta line. The cosmic ray background

distribution was determined from the out-of-time data in the NuMI trig-

ger files. The data distribution is drawn as black points with statistical

error bars. The bottom plot displays the ratio between the data and sim-

ulation distributions. The simulation is oscillated using the values listed

in Table 4.2 and setting sin2 θ23 = 0.61 and |∆m2
32| = 2.49 × 10−3 eV2.

The simulation is scaled down to match the exposure for the far detector

data, 3.45× 1020 POT. . . . . . . . . . . . . . . . . . . . . . . . . . . . 442
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15.19Plot of the start position in the detector X coordinate in m for the 3D

Kalman track with the highest ReMId value in a slice for the far detector

for the QE population. The total prediction is drawn as a red line with

red total systematic error bands, with neutrino background drawn as

a green line and the cosmic ray background drawn as a magenta line.

The cosmic ray background distribution was determined from the out-

of-time data in the NuMI trigger files. The data distribution is drawn

as black points with statistical error bars. The bottom plot displays the

ratio between the data and simulation distributions. The simulation is

oscillated using the values listed in Table 4.2 and setting sin2 θ23 = 0.61

and |∆m2
32| = 2.49× 10−3 eV2. The simulation is scaled down to match

the exposure for the far detector data, 3.45× 1020 POT. . . . . . . . . 443

15.20Plot of the start position in the detector X coordinate in m for the 3D

Kalman track with the highest ReMId value in a slice for the far detector

for the nonQE population. The total prediction is drawn as a red line

with red total systematic error bands, with neutrino background drawn

as a green line and the cosmic ray background drawn as a magenta line.

The cosmic ray background distribution was determined from the out-

of-time data in the NuMI trigger files. The data distribution is drawn

as black points with statistical error bars. The bottom plot displays the

ratio between the data and simulation distributions. The simulation is

oscillated using the values listed in Table 4.2 and setting sin2 θ23 = 0.61

and |∆m2
32| = 2.49× 10−3 eV2. The simulation is scaled down to match

the exposure for the far detector data, 3.45× 1020 POT. . . . . . . . . 444
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15.21Plot of the start position in the detector Y coordinate in m for the 3D

Kalman track with the highest ReMId value in a slice for the far detector

for the QE population. The total prediction is drawn as a red line with

red total systematic error bands, with neutrino background drawn as

a green line and the cosmic ray background drawn as a magenta line.

The cosmic ray background distribution was determined from the out-

of-time data in the NuMI trigger files. The data distribution is drawn

as black points with statistical error bars. The bottom plot displays the

ratio between the data and simulation distributions. The simulation is

oscillated using the values listed in Table 4.2 and setting sin2 θ23 = 0.61

and |∆m2
32| = 2.49× 10−3 eV2. The simulation is scaled down to match

the exposure for the far detector data, 3.45× 1020 POT. . . . . . . . . 445

15.22Plot of the start position in the detector Y coordinate in m for the 3D

Kalman track with the highest ReMId value in a slice for the far detector

for the nonQE population. The total prediction is drawn as a red line

with red total systematic error bands, with neutrino background drawn

as a green line and the cosmic ray background drawn as a magenta line.

The cosmic ray background distribution was determined from the out-

of-time data in the NuMI trigger files. The data distribution is drawn

as black points with statistical error bars. The bottom plot displays the

ratio between the data and simulation distributions. The simulation is

oscillated using the values listed in Table 4.2 and setting sin2 θ23 = 0.61

and |∆m2
32| = 2.49× 10−3 eV2. The simulation is scaled down to match

the exposure for the far detector data, 3.45× 1020 POT. . . . . . . . . 446
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15.23Plot of the start position in the detector Z coordinate in m for the 3D

Kalman track with the highest ReMId value in a slice for the far detector

for the QE population. The total prediction is drawn as a red line with

red total systematic error bands, with neutrino background drawn as

a green line and the cosmic ray background drawn as a magenta line.

The cosmic ray background distribution was determined from the out-

of-time data in the NuMI trigger files. The data distribution is drawn

as black points with statistical error bars. The bottom plot displays the

ratio between the data and simulation distributions. The simulation is

oscillated using the values listed in Table 4.2 and setting sin2 θ23 = 0.61

and |∆m2
32| = 2.49× 10−3 eV2. The simulation is scaled down to match

the exposure for the far detector data, 3.45× 1020 POT. . . . . . . . . 447

15.24Plot of the start position in the detector Z coordinate in m for the 3D

Kalman track with the highest ReMId value in a slice for the far detector

for the nonQE population. The total prediction is drawn as a red line

with red total systematic error bands, with neutrino background drawn

as a green line and the cosmic ray background drawn as a magenta line.

The cosmic ray background distribution was determined from the out-

of-time data in the NuMI trigger files. The data distribution is drawn

as black points with statistical error bars. The bottom plot displays the

ratio between the data and simulation distributions. The simulation is

oscillated using the values listed in Table 4.2 and setting sin2 θ23 = 0.61

and |∆m2
32| = 2.49× 10−3 eV2. The simulation is scaled down to match

the exposure for the far detector data, 3.45× 1020 POT. . . . . . . . . 448
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15.25Plot of the end position in the detector X coordinate in m for the 3D

Kalman track with the highest ReMId value in a slice for the far detector

for the QE population. The total prediction is drawn as a red line with

red total systematic error bands, with neutrino background drawn as

a green line and the cosmic ray background drawn as a magenta line.

The cosmic ray background distribution was determined from the out-

of-time data in the NuMI trigger files. The data distribution is drawn

as black points with statistical error bars. The bottom plot displays the

ratio between the data and simulation distributions. The simulation is

oscillated using the values listed in Table 4.2 and setting sin2 θ23 = 0.61

and |∆m2
32| = 2.49× 10−3 eV2. The simulation is scaled down to match

the exposure for the far detector data, 3.45× 1020 POT. . . . . . . . . 449

15.26Plot of the end position in the detector X coordinate in m for the 3D

Kalman track with the highest ReMId value in a slice for the far detector

for the nonQE population. The total prediction is drawn as a red line

with red total systematic error bands, with neutrino background drawn

as a green line and the cosmic ray background drawn as a magenta line.

The cosmic ray background distribution was determined from the out-

of-time data in the NuMI trigger files. The data distribution is drawn

as black points with statistical error bars. The bottom plot displays the

ratio between the data and simulation distributions. The simulation is

oscillated using the values listed in Table 4.2 and setting sin2 θ23 = 0.61

and |∆m2
32| = 2.49× 10−3 eV2. The simulation is scaled down to match

the exposure for the far detector data, 3.45× 1020 POT. . . . . . . . . 450
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15.27Plot of the end position in the detector Y coordinate in m for the 3D

Kalman track with the highest ReMId value in a slice for the far detector

for the QE population. The total prediction is drawn as a red line with

red total systematic error bands, with neutrino background drawn as

a green line and the cosmic ray background drawn as a magenta line.

The cosmic ray background distribution was determined from the out-

of-time data in the NuMI trigger files. The data distribution is drawn

as black points with statistical error bars. The bottom plot displays the

ratio between the data and simulation distributions. The simulation is

oscillated using the values listed in Table 4.2 and setting sin2 θ23 = 0.61

and |∆m2
32| = 2.49× 10−3 eV2. The simulation is scaled down to match

the exposure for the far detector data, 3.45× 1020 POT. . . . . . . . . 451

15.28Plot of the end position in the detector Y coordinate in m for the 3D

Kalman track with the highest ReMId value in a slice for the far detector

for the nonQE population. The total prediction is drawn as a red line

with red total systematic error bands, with neutrino background drawn

as a green line and the cosmic ray background drawn as a magenta line.

The cosmic ray background distribution was determined from the out-

of-time data in the NuMI trigger files. The data distribution is drawn

as black points with statistical error bars. The bottom plot displays the

ratio between the data and simulation distributions. The simulation is

oscillated using the values listed in Table 4.2 and setting sin2 θ23 = 0.61

and |∆m2
32| = 2.49× 10−3 eV2. The simulation is scaled down to match

the exposure for the far detector data, 3.45× 1020 POT. . . . . . . . . 452
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15.29Plot of the end position in the detector Z coordinate in m for the 3D

Kalman track with the highest ReMId value in a slice for the far detector

for the QE population. The total prediction is drawn as a red line with

red total systematic error bands, with neutrino background drawn as

a green line and the cosmic ray background drawn as a magenta line.

The cosmic ray background distribution was determined from the out-

of-time data in the NuMI trigger files. The data distribution is drawn

as black points with statistical error bars. The bottom plot displays the

ratio between the data and simulation distributions. The simulation is

oscillated using the values listed in Table 4.2 and setting sin2 θ23 = 0.61

and |∆m2
32| = 2.49× 10−3 eV2. The simulation is scaled down to match

the exposure for the far detector data, 3.45× 1020 POT. . . . . . . . . 453

15.30Plot of the end position in the detector Z coordinate in m for the 3D

Kalman track with the highest ReMId value in a slice for the far detector

for the nonQE population. The total prediction is drawn as a red line

with red total systematic error bands, with neutrino background drawn

as a green line and the cosmic ray background drawn as a magenta line.

The cosmic ray background distribution was determined from the out-

of-time data in the NuMI trigger files. The data distribution is drawn

as black points with statistical error bars. The bottom plot displays the

ratio between the data and simulation distributions. The simulation is

oscillated using the values listed in Table 4.2 and setting sin2 θ23 = 0.61

and |∆m2
32| = 2.49× 10−3 eV2. The simulation is scaled down to match

the exposure for the far detector data, 3.45× 1020 POT. . . . . . . . . 454
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15.31Plot of cos θNuMI , where θNuMI is the angle between the 3D Kalman

track with the highest ReMId value in the slice and the NuMI beam

direction. This plot is for the far detector QE population. The total

prediction is drawn as a red line with red total systematic error bands,

with neutrino background drawn as a green line and the cosmic ray back-

ground drawn as a magenta line. The cosmic ray background distribution

was determined from the out-of-time data in the NuMI trigger files. The

data distribution is drawn as black points with statistical error bars. The

bottom plot displays the ratio between the data and simulation distribu-

tions. When the ratio is too large for the scale, the point and its error

bars are not drawn. The simulation is oscillated using the values listed

in Table 4.2 and setting sin2 θ23 = 0.61 and |∆m2
32| = 2.49 × 10−3 eV2.

The simulation is scaled down to match the exposure for the far detector

data, 3.45× 1020 POT. . . . . . . . . . . . . . . . . . . . . . . . . . . . 455

15.32Plot of cos θNuMI , where θNuMI is the angle between the 3D Kalman

track with the highest ReMId value in the slice and the NuMI beam di-

rection. This plot is for the far detector nonQE population. The total

prediction is drawn as a red line with red total systematic error bands,

with neutrino background drawn as a green line and the cosmic ray back-

ground drawn as a magenta line. The cosmic ray background distribution

was determined from the out-of-time data in the NuMI trigger files. The

data distribution is drawn as black points with statistical error bars. The

bottom plot displays the ratio between the data and simulation distribu-

tions. When the ratio is too large for the scale, the point and its error

bars are not drawn. The simulation is oscillated using the values listed

in Table 4.2 and setting sin2 θ23 = 0.61 and |∆m2
32| = 2.49 × 10−3 eV2.

The simulation is scaled down to match the exposure for the far detector

data, 3.45× 1020 POT. . . . . . . . . . . . . . . . . . . . . . . . . . . . 456
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15.33Plot of the scattering log-likelihood for the 3D Kalman track with the

highest ReMId value in the slice. This plot is for the far detector QE

population. The total prediction is drawn as a red line with red total

systematic error bands, with neutrino background drawn as a green line

and the cosmic ray background drawn as a magenta line. The cosmic ray

background distribution was determined from the out-of-time data in the

NuMI trigger files. The data distribution is drawn as black points with

statistical error bars. The bottom plot displays the ratio between the data

and simulation distributions. The simulation is oscillated using the values

listed in Table 4.2 and setting sin2 θ23 = 0.61 and |∆m2
32| = 2.49× 10−3

eV2. The simulation is scaled down to match the exposure for the far

detector data, 3.45× 1020 POT. . . . . . . . . . . . . . . . . . . . . . . 457

15.34Plot of the scattering log-likelihood for the 3D Kalman track with the

highest ReMId value in the slice. This plot is for the far detector nonQE

population. The total prediction is drawn as a red line with red total

systematic error bands, with neutrino background drawn as a green line

and the cosmic ray background drawn as a magenta line. The cosmic ray

background distribution was determined from the out-of-time data in the

NuMI trigger files. The data distribution is drawn as black points with

statistical error bars. The bottom plot displays the ratio between the data

and simulation distributions. The simulation is oscillated using the values

listed in Table 4.2 and setting sin2 θ23 = 0.61 and |∆m2
32| = 2.49× 10−3

eV2. The simulation is scaled down to match the exposure for the far

detector data, 3.45× 1020 POT. . . . . . . . . . . . . . . . . . . . . . . 458
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15.35Plot of the dE/dx log-likelihood for the 3D Kalman track with the highest

ReMId value in the slice. This plot is for the far detector QE population.

The total prediction is drawn as a red line with red total systematic error

bands, with neutrino background drawn as a green line and the cosmic

ray background drawn as a magenta line. The cosmic ray background dis-

tribution was determined from the out-of-time data in the NuMI trigger

files. The data distribution is drawn as black points with statistical error

bars. The bottom plot displays the ratio between the data and simulation

distributions. When the ratio is too large for the scale, the point and its

error bars are not drawn. The simulation is oscillated using the values

listed in Table 4.2 and setting sin2 θ23 = 0.61 and |∆m2
32| = 2.49× 10−3

eV2. The simulation is scaled down to match the exposure for the far

detector data, 3.45× 1020 POT. . . . . . . . . . . . . . . . . . . . . . . 459

15.36Plot of the dE/dx log-likelihood for the 3D Kalman track with the high-

est ReMId value in the slice. This plot is for the far detector nonQE

population. The total prediction is drawn as a red line with red total

systematic error bands, with neutrino background drawn as a green line

and the cosmic ray background drawn as a magenta line. The cosmic

ray background distribution was determined from the out-of-time data

in the NuMI trigger files. The data distribution is drawn as black points

with statistical error bars. The bottom plot displays the ratio between

the data and simulation distributions. When the ratio is too large for

the scale, the point and its error bars are not drawn. The simulation is

oscillated using the values listed in Table 4.2 and setting sin2 θ23 = 0.61

and |∆m2
32| = 2.49× 10−3 eV2. The simulation is scaled down to match

the exposure for the far detector data, 3.45× 1020 POT. . . . . . . . . 460
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15.37Plot of the ReMId value for the 3D Kalman track with the highest ReMId

value in the slice. This plot is for the far detector QE population. The

total prediction is drawn as a red line with red total systematic error

bands, with neutrino background drawn as a green line and the cosmic

ray background drawn as a magenta line. The cosmic ray background

distribution was determined from the out-of-time data in the NuMI trig-

ger files. The data distribution is drawn as black points with statistical

error bars. The bottom plot displays the ratio between the data and sim-

ulation distributions. The simulation is oscillated using the values listed

in Table 4.2 and setting sin2 θ23 = 0.61 and |∆m2
32| = 2.49 × 10−3 eV2.

The simulation is scaled down to match the exposure for the far detector

data, 3.45× 1020 POT. . . . . . . . . . . . . . . . . . . . . . . . . . . . 461

15.38Plot of the ReMId value for the 3D Kalman track with the highest ReMId

value in the slice. This plot is for the far detector nonQE population.

The total prediction is drawn as a red line with red total systematic error

bands, with neutrino background drawn as a green line and the cosmic

ray background drawn as a magenta line. The cosmic ray background dis-

tribution was determined from the out-of-time data in the NuMI trigger

files. The data distribution is drawn as black points with statistical error

bars. The bottom plot displays the ratio between the data and simulation

distributions. When the ratio is too large for the scale, the point and its

error bars are not drawn. The simulation is oscillated using the values

listed in Table 4.2 and setting sin2 θ23 = 0.61 and |∆m2
32| = 2.49× 10−3

eV2. The simulation is scaled down to match the exposure for the far

detector data, 3.45× 1020 POT. . . . . . . . . . . . . . . . . . . . . . . 462
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15.39Plot of the sum of the visible energy (in GeV) of hits in the slice not on

the 3D Kalman track with the highest ReMId value. This plot is for the

far detector QE population. The total prediction is drawn as a red line

with red total systematic error bands, with neutrino background drawn

as a green line and the cosmic ray background drawn as a magenta line.

The cosmic ray background distribution was determined from the out-

of-time data in the NuMI trigger files. The data distribution is drawn
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Chapter 1

Introduction

Neutrinos are fundamental particles of the Standard Model. They have no electric

charge; they do not interact via the strong force. They have almost no mass, so usually

travel at almost the speed of light. Neutrinos can easily pass through the entire earth

and never interact. These ghost-like particles are incredibly interesting in their own

right; they can also shed light on the wider field of particle physics.

The NOνA (NuMI Off-axis νe Appearance) experiment is designed to measure some

of the most important properties of neutrinos, such as the differences between mass

states and amount of oscillation between flavor states. It consists of two detectors

placed 810 km apart: the near detector, located at Fermilab in Batavia, IL, and the far

detector, located at Ash River, MN. They detect the neutrinos from the Neutrinos at

the Main Injector (NuMI) beam created at Fermilab.

Neutrinos are created at Fermilab in a state of definite flavor but a mixture of mass

states. As they travel through time and space, quantum mechanics allows the mixture

of mass states to change, giving a probability of observing a different flavor state. This

behavior is called neutrino oscillation.

The NOνA near detector measures the initial state of the neutrinos in the NuMI

beam. The beam travels 810 km to the NOνA far detector. Over this distance, the

neutrinos oscillate. By comparing the difference between what is seen in the near detec-

tor and the far detector, one can measure the parameters which govern this oscillation.

This thesis presents the first results from NOνA which measure two of these parameters,

θ23 and ∆m2
32, from studying muon flavor neutrinos changing into tau flavor neutrinos.

1
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Chapter 2 introduces the Standard Model, the framework particle physicists use to

describe the fundamental particles and forces that govern the universe. Neutrinos are

one of these fundamental particles.

Chapter 3 describes the historical developments, theoretical and experimental, that

have lead to the current understanding of neutrinos and provides a framework for this

experiment.

The physics that governs neutrino oscillations is the subject of Chapter 4. Section

4.1.2 reports the current measurements of the parameters of neutrino oscillation, as well

as what NOνA hopes to contribute to this understanding.

Chapter 5 details the NuMI beam and the NOνA detectors. It also describes the

topologies of interactions seen in the NOνA detectors.

Chapter 6 describes the simulation used to model physics interactions in the NOνA de-

tectors.

Chapter 7 details the process used to reconstruct data from the detector signals or

simulation into higher-level information, such as tracks and neutrino energies.

Chapter 8 describes the calibration process used to translate signals seen in the

NOνA detectors into energy units of GeV. This process also removes channel-by-channel

variations and dependence of the signal on distance to readout.

Chapter 9 details how this analysis reconstructs neutrino energies from the visible

charged particle energy in the detector, as well as the resolutions achieved for these

energies.

Chapter 10 lists the selection criteria used to define the sampled used for analysis,

such as those required for ensuring data quality, beam quality, containment and cosmic

ray rejection. The selection criteria used to identify νµ charged current events and to

classify them as quasielastic and non-quasielastic interactions are also described.

Chapter 12 presents comparisons of data and simulation distributions in the near

detector for reconstructed quantities relevant to the analysis.

Chapter 13 describes the extrapolation procedure used. Extrapolation uses the

data seen in the near detector to alter the predicted spectra for the far detector. This

procedure allows many systematic errors to cancel.

Chapter 14 details the systematic errors considered for this analysis.

Chapter 15 presents the final results of the analysis.
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Finally, Chapter 16 discusses possible future analysis improvements.



Chapter 2

The Standard Model

The Standard Model is a physics theory that describes the fundamental building blocks

of the universe and how they interact. It is the primary framework used by high-energy

physicists to understand the world. See Figure 2.1 for a diagram of the Standard Model

components.

Elementary particles are those believed to be the building blocks of all matter.

Within the Standard Model, these elementary particles are not composed of smaller

things. They are the smallest divisions of matter currently known to physics. These el-

ementary particles are grouped into three types: the quarks, the leptons and the bosons.

Quarks are the building blocks of nuclear particles, such as protons and neutrons. The

most well-known lepton, the electron, orbits nuclear particles to make an atom. Bosons

are the force-carrying particles, like the photon.

Each particle also has an antiparticle. Antiparticles have the same mass as the

particle but opposite electrical charge and other properties, such as spin or color. For

instance, the antiparticle of an electron would be a position, which has the same mass as

the electron, but a positive electric charge instead of a negative electric charge. As far as

we know, all ordinary matter in the Universe is composed of particles, not antiparticles.

Antiparticles can be produced in radioactive decays or at particle accelerators, but are

not the building blocks of a human body. Physicists do not know why there are so many

more particles vs. antiparticles.

There are six types of quarks and six types of leptons. Physicists call these different

types flavor - that is, that there are six flavors of quark and six flavors of lepton.

4
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Figure 2.1: The Standard Model describes the fundamental particles of the universe.

Each group of six is actually organized into three pairs, called generations. The first

generation of particles is the lightest and most stable. The second generation has higher

mass and is less stable (shorter lived) than the first. The final generation, the third, is

the heaviest and least stable of all. Because the higher generations decay quickly into

lighter particles, stable matter is composed of the first generation.

Physicists do not know why there are three generations of matter. Since ordinary

matter is composed of only the first generation of matter, why do any other generations

exist? And if other generations exist, why are there three, instead of some other number?

Physicists hope to one day answer these questions.

For quarks, the first generation consists of the up quark and down quark. The

second generation is composed of the charm quark and the strange quark. The third

generation consists of the top quark and the bottom quark.

The mass of the first generation of quarks is on the order of 1 MeV/c2. The mass

of the second generation of quarks is on the order of 100 to 1,000 MeV/c2. The mass

of the bottom quark is about 4,000 MeV/c2 and the top quark has a mass of almost

200,000 MeV/c2.

For each pair of quarks, the first (up, charm, and top) has an electric charge equal
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to +2/3 the electric charge of an electron, written as 2/3 e. The second of the pair

(down, strange, and bottom) has an electric charge of -1/3 e.

Quarks have another property called color charge. This color is not the visual color

experienced in everyday life; instead, it is simply a property physicists find convenient to

name color. This color charge has three possible values: red, green, and blue. Antiquarks

carry anticolor, like antired. A composite particle made up of a red quark and an antired

antiquark would be colorless. A composite particle made up of a red, a green, and a

blue quark would also be considered colorless (as would one made up of an antired, an

antigreen, and an antiblue quark).

For leptons, each generation pair consists of one electrically charged particle and one

electrically neutral particle. The electrically neutral particle is called a neutrino (ν).

Neutrinos have flavors that correspond to the paired lepton. For the first generation,

the charged lepton is the electron (e) and it is paired to the electron neutrino (νe).

The second generation consists of a muon (µ) and a muon neutrino (νµ). The third

generation is composed of a tau particle (τ) and a tau neutrino (ντ ).

The mass of the electron is 0.5 MeV/c2, lighter than the lightest quark. The muon

has a mass of 100 MeV/c2 and the tau particle has a mass of almost 2,000 MeV/c2. The

mass of the neutrinos is much lighter than even the electron, but although limits on the

values exist, the precise values are unknown. The mass of the neutrino is probably on

the order of 1 × 10−7 MeV/c2. The mass of the neutrino will be discussed further in

Chapter 4.

Physicists do not understand why the fundamental particles of the universe have

mass values over such a wide range. Why should they not be more similar? Why is the

neutrino so much lighter than the rest of the particles? Physicists hope to one day have

insight into these mysteries.

The charged leptons of each generation (e, µ, and τ) all have an electrical charge of

-1 e. All neutrinos are electrically neutral.

Besides fundamental particles, there are also fundamental forces in the universe. In

the Standard Model, these are the electromagnetic force, strong force, and the weak

force. Although gravity is also a fundamental force, it does not currently fit into the

framework of the Standard Model. Physicists certainly hope to one day have a theory

that successfully combines the concepts of the Standard Model and gravity.
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The electromagnetic force is the same one encountered in every day life; it is respon-

sible for electricity which powers our homes and magnets sticking to the fridge. The

strong force is responsible for binding quarks together into structures, like a proton.

The weak force is responsible for things like radioactive decay and the fusion reaction

in the sun.

Each force represented in the Standard Model has corresponding force carrier parti-

cles. Matter, made up of constituent particles like quarks and leptons, experiences these

forces by exchanging force carrier particles. Imagine two people sitting on rolling chairs.

If one threw a basketball at the other, the chairs would move. Force carrier particles

are similar to the basketball; by transferring them, constituent matter particles change

energy and momentum.

The force carrier particle for the electromagnetic force is the photon (γ). It is

electrically neutral and has no mass. For particles to experience the electromagnetic

force, they must have an electric charge. Electrons, with an electrical charge of -1 e, do

experience the electromagnetic force, while the electrically neutral neutrinos do not.

The strong force has the gluon (g) as its force carrier particle. Gluons have no

electric charge and are massless. They do have color charge; in fact, they carry both a

color and an anticolor, like green and antiblue. For a particle to experience the strong

force, it must have color. Therefore, quarks experience the strong force and leptons do

not.

The weak force has two force carrier particles, the W and the Z. The W and Z have

masses of almost 100,000 MeV/c2. The W particle has an electric charge of either +1 or

-1 e, written as either the W+ or W− particle. The Z particle has no electric charge and

is sometimes written as Z0. The weak force acts on particles that have flavor, quarks

and leptons.

The four fundamental forces have different strengths and different ranges. Both

gravity and electromagnetism can act across infinite distance. The strong force and the

weak force, however, only act over short distances. 10−15 meters is called a Fermi and

written as fm. The radius of an atomic nucleus is roughly 1 fm. The strong force has a

typical range of a few fm, while the weak force has a range of 10−3 fm.

The strong force only acts over nuclear distances, but it is the strongest of the forces.

The electromagnetic force is the next strongest, with a strength 1000 times less than
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the strong force. The weak force, as the next strongest force, is 1016 times less than the

strong force. Finally, gravity has a strength 1041 times less than the strong force.

These radical differences in strength and range of forces often allows one to simplify

problems involving elementary particles. For instance, gravity is so much weaker than

the other forces that it can often be ignored. This allows physicists to solve many

problems using the Standard Model framework, despite the fact that it doesn’t include

gravity.



Chapter 3

History of Neutrino Research

Neutrinos were first proposed by Wolfgang Pauli in 1930 as a solution to the mystery

of beta decay[12]. In beta decay, a neutron decays into a proton and, to conserve

electric charge, also emits an electron. If this is all that were emitted, then experimental

evidence showed both conservation of energy and angular momentum were violated by

this process. Instead, Pauli suggested that another particle was also emitted, what we

now call a neutrino1, that happened to be very hard to detect experimentally. This

would constrain a neutrino to being a lightweight, electrically neutral particle. Since its

interactions would be so weak, Pauli speculated that it would never be detected.

Nevertheless, in 1956, the Cowan-Reines experiment found the first direct evidence

for the existence of neutrinos[13]. In their experiment, the source of neutrinos was

beta decays taking place in a nuclear reactor. They placed nuclei in the path of these

neutrinos and were able to detect neutrons and positrons from the resulting interaction2.

It was discovered that three flavors of neutrinos existed. The previously observed

neutrinos turned out to be what we now call electron neutrinos. In 1962 Leon Lederman,

Melvin Schwartz, and Jack Steinberger worked on an experiment at Brookhaven which

discovered the muon neutrino[14]. They were awarded a Nobel Prize in 1988 for this

work. In 1989, LEP (Large Electron-Positron Collider) at CERN3 began making precise

1Pauli initially called this particle a neutron.
2Neutron decay generated the neutrinos through n → p+ e− ν̄e. The proton interaction with the

escaping neutrino took the form p+ ν̄e → e+ n. The positron annihilated with an electron in the
material, creating two photons. Meanwhile, a nucleus captured the neutron, also emitting a photon. It
was this double photon followed by a single photon signature that was detected.

3CERN stands for the European Organization for Nuclear Research

9
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measurements of the mass of the Z boson, which led to the conclusion that only three

light neutrinos could exist[15]. Finally, in 2000, the DONUT collaboration at Fermilab

made the first detection of tau neutrinos[16]. Parallel to the direct detection of three

neutrino flavors, measurements of the width of the Z boson have led to limit on the

number of light neutrinos4. Over time, the measurements of the width of the Z boson

and its partial decays have become incredibly precise. The current limit on the number

of light neutrinos is 2.984±0.008[1][17].

In parallel to the discovery of three flavors of neutrinos, efforts were being made

to determine the neutrino mass. The Standard Model, in its strictest form, assumes

massless neutrinos. If this were the case, a neutrino of one flavor would always be a

neutrino of that particular flavor. If neutrinos do have mass, then a neutrino of given

flavor could become a neutrino of a different flavor (called neutrino oscillations).

In 1957, Bruno Pontecorvo first hypothesized the possibility of neutrino mixing and

proposed that it could occur between electron neutrinos and electron anti-neutrinos[18].

Of course, at this time, the other flavors of neutrinos had not been discovered. Since

these were the only two types of neutrinos known to exist, they were also the only

two types that one could imagine oscillating into each other. As knowledge of multiple

flavors of neutrinos developed, Ziro Maki, Masami Nakagawa, and Shoichi Sakata, in

1962, proposed instead that oscillations occur between different flavors of neutrinos (as

opposed to neutrino and antineutrino)[19]. This work eventually developed into the

theory of three neutrino flavor oscillations.

Experimentally, hints pointing to neutrino oscillation first arose in the 1960’s when

fewer than predicted electron neutrinos were found to be radiating from the sun by Ray

Davis and John Bahcall at the Homestake Experiment[20]. The question of neutrino

oscillations began to be addressed more directly in the latter part of 1990’s with experi-

ments such as Super-Kamiokande (Super-K) and Sudbury Neutrino Observatory (SNO),

that found direct evidence that solar neutrinos do oscillate and solved the problem of

4By measuring the total decay width of the Z boson and comparing it with the measured visible
partial decay widths of the Z boson to charged leptons and quarks, one can determine the invisible
particle decay width. The invisible particle decay width is attributable to decays of the Z boson to
neutrinos; the width of the decay determines the number of neutrinos. Any neutrinos with mass greater
than that of the Z boson wouldn’t be counted; however, the neutrinos known to exist all have masses
much less than the Z boson.
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missing neutrinos from the sun[21, 22]. Kamioka Liquid scintillator Anti-Neutrino De-

tector (KamLAND) investigated these oscillations terrestrially, using nuclear reactors

as the source of the neutrinos[23].



Chapter 4

Neutrino Physics

4.1 Neutrino Oscillation

The weak force has three neutrino flavor states (electron (e), muon (µ), or tau (τ)

flavor). The neutrino also has three mass states (m1, m2, and m3). These states, flavor

or mass, are eigenstates1. Eigenstates are states with a quantifiable characteristic. For

example, a flavor eigenstate has a definite, determined flavor.

The flavor states and mass states do not correspond one-to-one; instead, they are a

superposition of each other. This means that whenever a neutrino interacts weakly, it

must be in one of the three flavor states. But whenever a neutrino is traveling through

time and space, it evolves as energy eigenstates, which are the mass states. Thus, a

neutrino is created from a weak force interaction in a definite state of flavor, then travels

a long distance, during which the superposition of mass states are evolving separately

(changing the relative probabilities of being found in a certain flavor state), and then

interact again through the weak force, now possibly finding a different state of flavor.

What does this mean concretely? We can write each flavor eigenstate as a superpo-

sition of mass eigenstates, where να is a flavor eigenstate, ci is a numerical coefficient,

and νi is a mass eigenstate.

|να〉 =

3∑
i=1

ci|νi〉

1The word eigenstate is derived from the German word “eigen,” which means “characteristic.”

12
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We require for normalization that
∑3

i=1 c
2
i = 1. Let us rewrite this equation by replac-

ing the coefficients ci with the matrix element U∗αi, where the star indicates complex

conjugation.

|να〉 =
3∑
i=1

U∗αi|νi〉 (4.1)

This matrix, Uαi, is referred to as the Pontecorvo–Maki–Nakagawa–Sakata (PMNS)

matrix in deference to those who first formulated it. This matrix is 3x3 if there are

only three types of neutrinos in any basis. There is no prediction of what values should

fill in this matrix. Instead, experimental results must determine them for now. If

experiments found that neutrinos did not oscillate, then the PMNS matrix would be

the identity matrix. A particular mass state would always correspond to a particular

flavor state. However, this is not the case.

How many free parameters does the PMNS matrix have? A complex 3x3 matrix

would in general have 18 parameters, but luckily, many of these are not free in our

case. Between constraints such as normalization and unitarity, and factors that will

be ignored because they do not affect oscillations, we can reduce the PMNS matrix

to three independent angles, θ12, θ13, θ23, and one phase, δ, that, if non-zero, would

indicate charge-parity (CP) violation. It is conventionally written as:

Uαi =


c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 (4.2)

where cij = cos θij and sij = sin θij .

Leaving for now the question of what these four values are, let us first ask how to use

this matrix. From quantum mechanics, it is easy to write down the plane-wave solution

for a free particle of given mass propagating. It is:

|νi(t)〉 = e−i(Eit−~pi.~x)|νi(0)〉, (4.3)

where t is the time, Ei is the energy of the neutrino, ~pi is the momentum of the ith mass

state, and ~x is the position of the neutrino. The neutrino is created in a state of definite

energy, so we can write Ei = E. Next, we will take the ultra-relativistic limit. This
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limit is appropriate because the current limit on neutrino mass is below 2 eV[24]. Since

experiments like NOνA can only detect neutrinos of energies at least above 0.1 GeV,

neutrino velocities essentially equal c. We can then equate t ' L using natural units,

where L is the distance the neutrino travels before being detected. This allows us to

write:

|νi(L)〉 = e−iL(E−pi)|νi(0)〉. (4.4)

Since the neutrinos are traveling at almost the speed of light, we can also make

the approximations pi >> mi and pi ' E. When we take a Taylor’s expansion of the

momentum, we obtain:

E − pi = E −
√
E2 −m2

i ' E − E
(

1− m2
i

2E2

)
=
m2
i

2E
.

Plugging these approximations into Equation 4.4 we find:

|νi(L)〉 = e
−im2

i L

2E |νi(0)〉. (4.5)

A neutrino is created from a weak force interaction in a state of definite flavor, α.

This flavor state is a linear superposition of mass states, give by Equation 4.1. Equation

4.5 tells us how each of these mass states propagates as the neutrino moves through

space. When we detect a neutrino, it is projected into a state of definite flavor, β. We

now have the pieces required the construct Pα→β, the probability of observing flavor

state β given initial flavor state α after traveling a distance L:

Pα→β = |〈νβ |O(L)|να 〉|2 ,

where O(L) describes the evolution of the state. We can now insert identity, to write:

Pα→β =

∣∣∣∣∣
3∑
i=1

〈νβ |O(L)|νi〉〈νi|να 〉

∣∣∣∣∣
2

.
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Using Equation 4.5, we can rewrite the evolution of the mass state as:

Pα→β =

∣∣∣∣∣
3∑
i=1

〈νβ |νi〉〈νi|να 〉 e
−im2

i L

2E

∣∣∣∣∣
2

.

Using Equation 4.1, we now can write:

Pα→β =

∣∣∣∣∣
3∑
i=1

U∗αiUβie
−im2

i L

2E

∣∣∣∣∣
2

.

Squaring this result, we get:

Pα→β =
3∑
i=1

3∑
j=1

UαjU
∗
βjU

∗
αiUβje

im2
jL

2E e
−im2

i L

2E .

Finally, we will use the notation ∆m2
ij ≡ m2

i −m2
j , so we can write the more familiar

form:

Pα→β =

3∑
i=1

3∑
j=1

UαjU
∗
βjU

∗
αiUβje

−i∆m2
ijL

2E . (4.6)

From here, we can go on to write this expression in terms of the real and imaginary parts,

expanding the exponential into sine and cosine components as well as using trigonometry

identities to obtain2 [25]:

Pα→β = δαβ − 4
∑
i>j

Re
(
UαjU

∗
βjU

∗
αiUβj

)
sin2

(
∆m2

ijL

4E

)
(4.7)

+2
∑
i>j

Im
(
UαjU

∗
βjU

∗
αiUβj

)
sin

(
∆m2

ijL

2E

)
.

The first term is simply the Kronecker delta. Regarding the third term, the only complex

phase in the PMNS matrix is eiδ. If δ = 0, there is no imaginary part, the third term is

zero, and it corresponds to no CP violation. The second term is of primary importance

to neutrino oscillation. For each term in the sum, Re
(
UαjU

∗
βjU

∗
αiUβj

)
is just a constant

2The difference between denominators in the two sine terms results from taking the first term,
originally a cosine, and using the “half angle” identity 2 sin2 u

2
= 1− cosu.
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that depends on the properties of neutrinos. However, the value of sin2

(
∆m2

ijL

4E

)
alters

based on the neutrino energy as well as the distance of the measurement point from the

creation location. We can now clearly see that as one’s detector moves farther away,

the probability of measuring a certain flavor change.

Let us write the oscillation phase in the form usually used by long-baseline neutrino

experiments, like NOνA . It is currently written in natural units, but let us restore the

c and ~ factors. Then
∆m2

ijL

4E
→

∆m2
ijLc

3

4E~
.

We want to input our variables in convenient units. This means that we want to

measure ∆m2
ij in eV2, E in GeV, and L in km. Using the appropriate unit conversions

and numerically evaluating ~c, we find that

∆m2
ijLc

3

4E~
∼ 1.27

∆m2
ijL

E
≡ ∆ij (4.8)

for variables of the listed units.

4.1.1 Two Neutrino Approximation

In many experimental cases, one need not consider the full effect of three neutrino flavor

mixing, but instead can consider the approximation of two neutrino mixing. If neutrinos

had only two flavor states and two mass states, the mixing matrix could be written as:

Uαi =

(
cos θ sin θ

− sin θ cos θ

)
. (4.9)

The probability of observing flavor state β given initial flavor state α (where β 6= α)

that has evolved distance L is:

Pα→β,α 6=β = sin2 2θ sin2 ∆m2L

4E
. (4.10)

Similarly, the probability of observing flavor state α given initial flavor state α that has

evolved distance L is:

Pα→α = 1− sin2 2θ sin2 ∆m2L

4E
. (4.11)
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For a experiment like NOνA , the probability of observing a muon neutrino given

a beam composed of initial state muon neutrinos can be described, to first order, by

Equation 4.11. In this approximation, θ and ∆m2 can be parametrized as [26][27]:

sin2 2θ = 4 sin2 θ23 cos2 θ13(1− sin2θ23 cos2 θ13) (4.12)

and

∆m2 = ∆m2
32 + ∆m2

21 sin2 θ12 + ∆m2
21 cos δCP sin θ13 tan θ23 sin 2θ12. (4.13)

This approximation allows one to see, to first order, how the probability depends on the

θij , ∆m2
ij , and δCP values. For the analysis presented in this thesis, the full probability

from three neutrino oscillation is used. θ23 and ∆m2
32 are the measured quantities; all

other parameters are fixed. Table 4.2 displays the fixed values used.

4.1.2 Parameter Values

Now that we understand the physics framework of neutrino oscillations, we can finally

return to the question of what has already been experimentally determined. Table 4.1

lists the best-fit values for the parameters which govern neutrino oscillation. The two

mass differences are measured. The three mixing angles are measured, although more

precise values could help to illuminate underlying symmetries to theorists. If sin2(2θ23)

doesn’t equal exactly 1, physicists would want to measure if θ23 is greater than or less

than 45◦. This is called determining the octant. The CP violating phase factor, δCP , is

still relatively unknown, although recent results have lead to a weak constraint on its

value.

The actual masses of neutrinos, besides just the mass differences, need to be de-

termined experimentally. Upper limits have been placed on neutrino masses[24]. Even

without an absolute mass value, one would like to know the relative order in magnitude

of the mass states. Experiment has determined that mass state ν1 is lighter than mass

state ν2 and that the difference between these states is small relative to the third state.

However, it is still undetermined if ν3 is much heavier or much lighter than the other

states. The case where ν3 is much heavier is called normal hierarchy, while the other
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Parameter Best-Fit Value

∆m2
21 [10−5 eV2] 7.53± 0.18

|∆m2
32| [10−3 eV2] 2.44 ± 0.06 (2.52 ± 0.07)

sin2(2θ12) 0.846 ± 0.021

sin2(2θ23) 0.999+0.001
−0.018 (1.000+0.000

−0.017)

sin2(2θ13) 0.093± 0.008

δCP /π 1.39+0.38
−0.27 (1.31+0.29

−0.33)

Table 4.1: Best-fit values for the parameters of neutrino oscillation from the Particle
Data Group[1]. When the value is different under the assumptions of normal hierarchy
(m1 < m2 < m3) and inverted hierarchy (m3 < m1 < m2), the normal assumption is
given first and the inverted is listed next in parenthesis. The best-fit value is listed with
±1σ errors.

case is inverted hierarchy. The two hierarchies are diagrammed in Figure 4.1.

NOνA was primarily designed to measure θ13 and determine the mass hierarchy.

NOνA will also eventually make precise measurements of θ23 and ∆m2
32; this thesis

presents the first measurements of these two parameters. If sin2(2θ23) doesn’t equal 1,

NOνA could determine the octant. NOνA will also limit the allowed CP phase values.

4.2 Weak Interactions

Neutrinos are created and destroyed through weak force interactions. An understanding

of these physics processes is crucial for performing a neutrino oscillation experiment.

A weak force interaction consists of an exchange of either a W or Z boson. A W

boson has an electrical charge of ±1, while a Z boson is electrically neutral. Interac-

tions that involve a W boson are therefore called a charged-current interaction (CC

interaction), while those that are mediated by a Z boson are called a neutral-current

interaction (NC interaction).

In CC interactions, a charged lepton (e, µ, τ) can interact with a W and produce a

neutrino, which is electrically neutral. The flavor of the neutrino created will correspond

to the type of charged lepton destroyed. This process can also happen in reverse, where
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Figure 4.1: The two possible mass orderings for neutrinos. The normal hierarchy (m1 <
m2 < m3) is on the left; the inverted hierarchy (m3 < m1 < m2) is on the right. The
vertical axis is increasing mass. The relative proportion of flavor states in each mass
state is indicated by ve corresponding to the solid black, νµ is teal with right-leaning
hashes, and ντ is red with left-leaning hashes. The ve proportion in the third mass state
is exaggerated[5].
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Parameter Value

∆m2
21 [10−5 eV2] 7.53

sin2(2θ12) 0.846

sin2(2θ13) 0.084

δCP /π 0

L [km] 810

ρ [g/cm3] 2.84

Hierarchy Assumption Normal

Table 4.2: Parameter values used in NOνA νµ disappearance analysis. The values of
∆m2

21 and sin2(2θ12) match the values from the Particle Data Group. The value of
sin2(2θ13) was chosen to match the Neutrino 2014 Daya Bay results[2]. δCP has little
impact on this analysis; zero was picked for simplicity. L is the distance the neutrinos
travel between the near detector and far detector. ρ is the density of the earth; this
parameter is necessary for the matter effects discussed in Section 4.3. Appendix B
discusses the value of ρ. The hierarchy assumption used makes no difference to this
analysis; for simplicity, the normal assumption was used.
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Figure 4.2: The left figure is a diagram of one type of CC interaction. In this example,
a νµ interacts with a neutron. They exchange a W , creating a proton and a muon. The
right figure is a diagram of a NC interaction. In it, a neutrino of any flavor exchanges a
Z with either a proton or a neutron. The neutrino leaves with the same flavor and the
particle type in the nucleus remains unchanged.

a neutrino absorbs a W to produce a corresponding charged lepton. See Figure 4.2a for

a diagram.

In NC interactions, only energy and momentum is exchanged and charged leptons

(e, µ, τ) can not create neutrinos or vice versa. See Figure 4.2b for a diagram.

In CC interactions, the NOνA detector would typically observe the charged lep-

ton created by the incoming neutrino, as well as hadronic energy from the interacting

nucleus. By determining the type of charged lepton, one can measure the flavor compo-

sition of the neutrino beam at that location. On the other hand, in a NC interaction,

one would only expect to see the hadronic energy resulting from the nuclear interaction

with the Z, while the outgoing neutrino would invisibly carry away much of the energy

of the initial neutrino. NC interactions do not depend on the flavor composition of a

neutrino beam; they depend only on the number of neutrinos and their momentum. NC

interactions can be useful in understanding the total flux of neutrinos.

For CC interactions between neutrinos and nuclear matter, one can further subdivide

the interactions into roughly elastic and inelastic types. The roughly elastic case is called

a quasielastic (QE) interaction, while the other type of interaction will be referred to

as a non-quasielastic (non-QE) interaction.

For a QE interaction, the nucleus stays relatively intact from the interaction. QE
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interactions are the primary type of CC interaction at lower energies, up to roughly 1

GeV. This is because there isn’t enough energy available to create more complicated final

states. Once an energy threshold is reached, resonance production becomes available and

contributes significantly to the total cross section. For resonance production, enough

energy is transferred to create particles like a ∆. At slightly higher energies, deep

inelastic scattering from individual quarks takes over as the predominant type of CC

interaction. This is likely to cause nuclear breakup and create many particles, often

referred to as a hadronic shower. The NOνA experiment measures neutrinos at the

energy where all three types of CC interaction contribute. It is a particularly challenging,

but exciting, region to understand, simulate, and interpret.

QE interactions are prized because they are easier to model. Also, because of the

relatively simple topology of usually one or two final state particles, one can recon-

struct the initial neutrino energy with higher precision. This helps to make a precise

measurement of the oscillation parameters.

Since QE interactions are the predominant CC interaction only in NOνA’s low-

est energy region, non-QE interactions are also important to the oscillation analysis.

Although harder to model and with a worse neutrino energy resolution, these interac-

tions represent a significant amount of statistics. Especially in early analyses where the

number of events is small, it would be foolish to ignore this category of events.

4.2.1 Final State Interactions

There is an important complication to the situation described. The interactions de-

scribed take place within a nucleus. However, experiments are sensitive only to parti-

cles that leave a nucleus. The interactions that can happen between the initial, weak

interaction and particles leaving the nucleus are called final state interactions. They

occur through the strong force and can significantly alter the interaction.

In a general QE interaction, one expects to see a proton in addition to the outgoing

charged lepton. However, the proton often does not have enough energy to emerge

from the nucleus and isn’t visible to the experimentalist. On the other hand, a non-QE

interaction could create a pion, but this particle might be absorbed before it exists the

nucleus. If one is not able to detect elevated hadronic activity, one might mistakenly

classify it as “QE.” Because different detector technologies have differing abilities to
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detect and distinguish low energy final state hadrons, the results from different detectors

are sensitive to the simulations of low energy hadron production and the detector’s

response.

Final state interactions are difficult to simulate. They involve strong force interac-

tions that are not well-understood. This is a challenge for the experimentalist; in general,

the simulation should not be overly trusted in the precise details of the hadronic system

for non-QE interactions. Data-driven methods to understand the detector response are

crucial.

For a more complete picture of neutrino interactions, see the excellent thesis by

Scully[28].

4.3 Matter Effects

When neutrinos travel through a vacuum, they simply oscillate in the manner described

in Section 4.1. However, when neutrinos travel through a large amount of matter, like

the earth or the sun, their oscillation is not so straightforward. These complications

are called matter effects. Matter is composed almost entirely of electrons, protons, and

neutrons. When traveling though matter, νe can have charged current interactions with

the electrons. But νµ and ντ cannot participate in similar interactions since muons and

tau particles are not components of the earth. Instead, νµ and ντ can only interact

through the neutral current interactions that νe also participate in. This asymmetry

leads to an alteration of the oscillation probabilities. From the vacuum probability given

in equation 4.7 and remembering the notation of equation 4.8, the matter effect gives

[5]:

sin ∆ij −−−−→
matter

∆ij

∆ij ∓ aL
sin (∆ij ∓ aL) (4.14)

where the top sign refers to neutrinos and the bottom to antineutrinos. Also,

a =
GFρe√

2

where GF is the Fermi constant and ρe is the electron density in the matter traversed.

For the normal mass hierarchy, this would increase the oscillation probability of νµ → νe

while simultaneously decreasing the oscillation probability of ν̄µ → ν̄e. However, for the
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inverted mass hierarchy, the opposite is true and the neutrino probability would be

decreased while the antineutrino probability would be increased.

This effect alters the vacuum expectations by about 30% in the NOνA experiment[5],

which amplifies the mass hierarchy signal. However, the relatively-unknown CP phase

complicates the picture. Depending on what values are measured for neutrino and an-

tineutrino oscillation probabilities, an ambiguity might exist where each mass hierarchy

could be responsible for the observed values if it corresponding to a different CP phase.

If this is the case, another independent experiment will be needed to resolve the issue.

Figure 4.3 demonstrates this ambiguity.
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P(ν̄e) vs. P(νe) for sin2(2θ23) = 1
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Figure 4.3: Plot comparing the appearance probability of νe, shown on the horizontal
axis, with the appearance probability of ν̄e, shown on the vertical axis. The blue ellipse
traces out the probabilities for the normal hierarchy; the red ellipse is for the inverted
hierarchy. Locations on the ellipse correspond to different values of δCP . The open
circle corresponds to δCP = 0, the solid circle corresponds to δCP = π/2, the open
square corresponds to δCP = π, and the solid square corresponds to δCP = 3π/2. Since
the ellipses cross, for some combinations of hierarchy and δCP , NOνA will be unable
to resolve the parameters. However, if nature happens to correspond to the normal
hierarchy and δCP = 3π/2, for instance, then NOνA would be able to determine both
the hierarchy and the value of δCP . The probabilities are evaluated for 2 GeV neutrinos
and antineutrinos which have traveled 810 km. The oscillation parameters used are
listed on the plot.
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The NOνA Experiment

The NOνA (NuMI Off-axis νe Appearance) experiment consists of two detectors. The

near detector is located at Fermilab in Batavia, IL, and the far detector is located at

Ash River, MN near the Canadian border and Voyageurs National Park. The detectors

are composed of a repeated cellular structure and are almost identical, except in overall

size (the near detector is much smaller than the far detector) and a few other details,

discussed further in Section 5.1. They are placed to intercept the neutrinos from the

Neutrinos at the Main Injector (NuMI) beam created at Fermilab. See Figure 5.1 for a

map of the detector locations and beam center.

The NuMI neutrinos are created by smashing protons from Fermilab’s accelerator

ring onto a fixed graphite target, shown in Figure 5.3. This collision creates a myriad

of particles, many of which are pions and kaons and often carry an electric charge.

Magnetic horns are placed to focus one sign of these charged particles into a beam.

The particles then decay in flight, creating neutrinos that travel in essentially the same

direction as the parent particle. Of these neutrinos, the majority are muon neutrinos

from pion decay. These pass through the near detector, which can then determine the

initial composition of the neutrino beam. The neutrino beam continues to the NOνA far

detector in northern Minnesota. NOνA’s far detector and near detector both sit 14 mil-

liradians off-axis from the beam line, as this provides an approximately monoenergetic

beam more amenable to a θ13 measurement (described in Section 5.2).

The near detector sits 105 m underground in a cavern. The far detector site also

had to be excavated, but instead of being underground, the top of the far detector is

26
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Figure 5.1: Map that shows the location of the NOνA detectors. The Near Detector
is located at Fermilab, near Batavia, Illinois. The Far Detector is located at Ash
River, Minnesota, near the Canadian border. It is 810 km from Fermilab. The NuMI
beamline points at Soudan, Minnesota, where the MINOS Far Detector is located. The
NOνA detectors are placed 14 milliradians off-axis from the beam center.

Figure 5.2: Diagram that shows the location of the NOνA detectors. The NuMI beam-
line is created at Fermilab, near Batavia, Illinois. The neutrinos travel through the
Earth and emerge at the NOνA far detector, in northern Minnesota. The NOνA near
detector is located near the source of the NuMI beamline to measure the initial prop-
erties of the beam.
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Figure 5.3: The NuMI beam decay pipe. Protons from the Main Injector are directed
at graphite target. Charged pions and kaons are created and one sign is focused, using
the magnetic focusing horns. These charged particles then decay in the decay pipe,
producing primarily muons and muon neutrinos. The muons are absorbed in the rock,
while the neutrinos travel onwards, creating the NuMI beam.[9].

Far Detector Near Detector

Angle Off-Axis [mrad] 14.6 14.6

Distance from Beam [km] 810 1

Depth Underground [m] 0 105

Effective Depth Underground [m of rock] 3 105

Table 5.1: Locations of the NOνA detectors relative to the NuMI beam and the surface
of the earth. Values obtained from [3], [4], [5].

approximately level with the ground. The roof of the far detector hall is covered with

concrete and barite, which is effectively equivalent to having 3 m of rock above it. Table

5.1 lists the relative positions of the NOνA detectors. A consequence of the differing

depths of the two detectors is that the near detector sees significantly fewer cosmic rays

than the far detector. This is discussed further in Sections 5.3 and 10.3.

5.1 The NOνA Detectors

The NOνA detectors are composed of many cells. Each cell is a reflective PVC tube

that is filled with liquid scintillator (mineral oil doped with 5.23% pseudocumene1 [29]).

11,2,3-Trimethylbenzene
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Within the cell is a loop of 0.7 mm wave-length shifting fiber whose ends are connected

to an Avalanche Photodiode (APD). This is illustrated in Figure 5.4. These cells are

contained in PVC extrusions making up flat modules of 32 cells. As shown in figure 5.5,

these modules are then glued together into blocks.

The far detector contains 12 modules per plane and 32 planes create a block. The

far detector has 28 blocks. The near detector has a slightly more complicated structure.

The fully-active region of the near detector consists of 3 modules per plane. There are

6 blocks of 32 planes in the fully-active region. The near detector also has a muon

catcher. Because of its relatively short length, it can be hard for muons of interesting

energies to be contained within the fully-active region of the near detector . The muon

catcher allows for muons of a higher energy to be contained. It consists of 4 inch steel

planes interleaved with two active planes2. For more information about the steel plates,

see this document[30]. The muon catcher is also shorter than the fully-active region

of the near detector; it is 3 modules wide but only 2 tall. The muon catcher has 10

steel planes intermixed with 22 active planes. For more details about the muon catcher

dimensions and spacing, see the technical drawings[31]. Table 5.2 lists parameter values

for the near and far detectors.

The detector planes are always orientated approximately perpendicular to the di-

rection of the neutrino beam, but each plane alternates between being horizontally or

vertically aligned. This allows for three-dimensional track reconstruction.

When a neutrino interacts within the detector volume, visible charged particles are

usually created. These then travel through the detector and have further interactions.

These interactions, although varied, often result in the creation of photons. These

photons are frequently created within the cell (since 63% of the detector mass is liquid

scintillator [32][33]) and bounce around, reflecting off the PVC walls. Eventually some

photons hit the wave-length shifting fiber running the length of the cell. The fiber

absorbs light primarily in the blue and UV range and re-emits photons in the green

range isotropically. Some of these green photons are then trapped inside the fiber by

internal reflection and travel to the fiber end where they are measured by the APD.

2This helps to contain muons because they lose proportionally much more energy in steel than in the
active detector. Interleaving with active planes allows one to still track the muon somewhat, although
at coarser resolution than in the fully-active region.
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Far Detector Near Detector

Cells per Module 32 32

Modules per Plane 12 3 (3, 2)

Cells per Plane 384 96 (96, 64)

Planes per Block 32 32 (n/a)

Number of Blocks 28 6 (2)

Number of Cells 344,064 18,432 (1,760)

Number of Planes 896 192 (22 + 10 steel)

Cell Depth [cm] 5.64 5.64

Cell Width [cm] 3.6 3.6

Cell Length [cm] 1550 399 (399, 274)

Detector X Dimension Extents [cm] -780 to 780 -200 to 200

Detector Y Dimension Extents [cm] -780 to 780 -200 to 200 (-200 to 70)

Detector Z Dimension Extents [cm] 0 to 5,962 0 to 1,280 (1,280 to 1,560)

Detector Mass [ton] 14,363 293

Liquid Scintillator [gal] 2,674,000 41,140

Wavelength-shifting Fiber [km] 11,116 188

Table 5.2: Detector parameter values obtained from [3], [6]. In cases where the muon
catcher has different values from the active region of the near detector, values in paren-
thesis correspond to muon catcher values. In cases where the vertically-orientated planes
in the muon catcher have a different value from the horizontally-orientated planes in
the muon catcher, the value for the vertically-orientated planes is listed first, followed
by a comma and the value for the horizontally-orientated planes.
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Figure 5.4: Diagram of a NOνA cell. The cell walls are composed of PVC. A loop of
wave-length shifting fiber is read out by one APD pixel. The fiber is contained in a
bath of liquid scintillator. When a charged particle travels through the cell, the liquid
scintillator is excited and emits photons, primarily in the blue and UV range. Some
of these photons are absorbed by the fiber, which re-emits photons isotropically in the
green range. Some are captured within the fiber and travel its length, eventually being
read out by the APD. The dimensions of a cell are 3.9 cm by 6.6 cm by a length of 15.6
m.
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Figure 5.5: Diagram of the Far and Near NOνA Detectors. The far detector is 15.6
m by 15.6 m on the front face, with a depth of 60.0 m. The near detector has a front
face of 4.2 m by 4.2 m. The fully active region is 12.7 m long. This is followed by a
muon catcher, which has a front face with a width of 4.2 m and a height of 2.6 m. It
has a depth of 3.1 m. The near detector has a total depth of 15.8 m. The inset figure
illustrates that each plane has a rotated orientation relative to the one next to it. This
allows for 3D reconstruction.

The APD reads these relatively small levels of photons3 and amplifies the signal

by a factor of one hundred into a level capable of being read by sensitive, low-noise

electronics. The amplified signal is read by a Front End Board (FEB). There is one

FEB for each APD. The FEB reads the analog signal from the APD and converts it into

digital hits above threshold. The hit information from the FEB is collected by a Data

Concentrator Module (DCM). One DCM reads 64 FEBs. The system encompassing

the FEBs, DCMs, and buffer nodes (described next) is called a data acquisition (DAQ)

system. For a diagram of this system, see Figure 5.6.

There are many DCMs on each detector; they send all the collected hit information

for a 5 millisecond time window to a single buffer node. The buffer node then executes

triggering decision code that decides if any portion of the hits should be written out

to a file. NOνA employs a round-robin system with its buffer nodes. This means that

there are many buffer nodes, arranged in a ring. The first set of 5 millisecond data

is sent to the first buffer node in the ring. The next set of 5 millisecond data is sent

to the second buffer node and so forth, until all the buffer nodes have received a set

of 5 millisecond data. Then the first buffer node gets its second set of 5 millisecond

3An average value in the far detector is about 30 photoelectrons[34]
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Figure 5.6: A PVC module consists of 32 cells. Each cell is read out by a pixel of an
APD. Each APD has 32 pixels. Each APD has a corresponding FEB, which digitizes
the signal from the APD. A DCM reads 64 FEBs and sends the information to the
buffer node farm.

data. This second set overwrites the first; therefore, the triggering decision code has a

limited amount of time to decide if hits should be save to file before the hits are lost.

Currently, the software has about 3 seconds to decide. This will be longer in the future.

Without the round-robin system, this time would be much shorter. 3 seconds is enough

processing time for fairly complicated data-driven trigger algorithms to complete. For

the oscillation experiment, this time isn’t necessary, since trigger decisions are driven

by a beam signal. However, it is crucial for detector abilities such as self-triggering on

supernova.

Triggered readout windows are organized by runs and subruns, which are subdivi-

sions of a run. During a run, manually-set detector configurations do not change. A

run ends when it has 64 subruns, when the total run duration is 24 hours, or when the

detector stops taking data. A subrun ends when it has a duration of 1 hour, the file size

is 1 GB, or the detector stops taking data. For the near detector , subruns are often 1

hour; for the far detector, the actual duration is about 3 minutes.
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Figure 5.7: NOνA event display of a charged current muon neutrino event from Monte
Carlo simulation. The longer track is a muon; the shorter track is a proton. Muons
tend to make long, straight tracks in a NOνA detector.

5.1.1 The Event Display

An event display visualizes collected hit information by overlaying hits on a schematic of

the detector. A typical event display shows two views. The top view shows a view of the

detector as seen from above; the bottom view shows the detector from the side. Each hit

is represented in only one view and can be colored by signal intensity (charge) or by time.

The example event displays included are colored by charge. Event displays also include

two small plots on the bottom of the display. The left plot shows the hit distribution

in time across the span of the event. The right plot shows the charge distribution of

the hits. See Figures 5.7, 5.8, and 5.9 for three representative event displays. Since the

cellular orientation alternates between planes, if a charged particle (like a muon) travels

through the detector and excites photons in multiple cells, a three dimensional track

can be recreated for the particle. Based on track length, energy depositions and other

characteristics, particle identifications and energies can be assigned.
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Figure 5.8: NOνA event display of a charged current electron neutrino event from Monte
Carlo simulation. The primary activity is from an electron shower. In general, electron
showers in a NOνA detector are much more diffuse than a muon track.
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Figure 5.9: NOνA event display of a neutral current neutrino event from Monte Carlo
simulation. Most of the activity is from π0 showers. π0 showers can look similar to
electron showers and are a primary background for the electron neutrino appearance
analysis.
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Finally, for each potential neutrino interaction, the particle information can indicate

the flavor and energy of the parent neutrino. By comparing near detector and far

detector data, NOνA will be able to determine not only how many muon neutrinos

oscillated to another flavor (seen as a deficit in the number of muon neutrinos) but also

how many electron neutrinos appeared from oscillations.

5.2 An Off-Axis Detector

The far detector , as well as the near detector, is placed 14.6 milliradians off-axis from

the NuMI beam line, which determines the energy spectrum of neutrinos it detects[5].

NOνA’s neutrinos are created primarily from pion and kaon decays. Within the rest

frame of the parent particle, the two-body decay4 happens isotropically. However, in the

lab view, the parent particle is moving and this boosts the neutrinos into a cone-shaped

distribution. The neutrino energy, Eν , from the decay of a pion with energy, Eπ, with

angle θ between the neutrino and pion is given by:

Eν =
0.43Eπ

1 + 1
m2
π
E2
πθ

2
. (5.1)

We can see that if θ = 0, Eν is linearly proportional to Eπ. Also, the highest possible

values of Eν will be found when θ = 0. If θ 6= 0, then the factor of E2
π in the denominator

competes with the Eπ of the numerator. This leads to a relatively flat relationship

between Eπ and Eν . Figure 5.10 plots neutrino energy versus pion energies for a few

values of θ.

From Figure 5.11, one can see that by being off-axis 14 milliradians, one gains

about five times as many events near the 2 GeV energy range compared to on-axis,

while significantly limiting the number of events with energy higher than 3 GeV. This

is crucial - the oscillation maximum (seen in Figure 5.11 as a dip in the νµ energy

distribution) is expected to be located at about 1.6 GeV5. To increase our ability to

measure the oscillation parameters, we want to maximize the number of events we will

see near this energy.

4π orK → µ νµ
5For ∆m2

23 = 2.4× 10−3eV2
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Figure 5.10: A plot of neutrino energy as a function of pion energy for different values of
θ, the angle between the neutrino direction and the pion direction. For θ = 0 (on-axis),
there is a direct correlation between pion energy and neutrino energy. When θ = 14
mrad (the off-axis location of NOνA), neutrino energy is relatively independent of pion
energy. Plot from [5].
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Figure 5.11: Left: The event rate of charged current νu interactions without oscillations
for Far Detectors at 810 km and varying radial positions. This plot was created using
the medium energy NuMI beam configuration[5]. Right: Energy distributions for the
νµ CC events both with and without oscillation assumed, for νe events from the initial
beam makeup and from oscillations, and for NC events. These distributions are from
simulations and use ∆m2

32 = 2.5× 10−3eV2, sin2 (2θ23) = 1, and sin2 (2θ13) = 0.10[5].
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Being off-axis also helps with NC background suppression. Since the outgoing neu-

trino carries away energy that will not be detected, NC events look like lower-energy

events than they really are, called the feed-down effect. High-energy NC events are the

main background to identifying lower-energy electron neutrino CC events. By severely

reducing the number of high-energy neutrinos that our detector will see, we will cut

down on the number of NC events that can appear as electron neutrino CC events in

our signal region. Therefore, by placing the NOνA detector off-axis, we increase our

signal by a factor of five, while reducing our background and overall improving our

signal/background ratio. Limiting high-energy NC events also helps reduce background

for the muon neutrino analysis, by reducing the charged pion background. For more

information on NC backgrounds, see the next section.

5.3 Interactions in NOνA

There are two types of charged current (CC) events that we need to distinguish - those

of the muon neutrino and those of the electron neutrino. Also, we need to identify

neutral current (NC) events because they are a primary background for the oscillation

analyses.

Muon neutrino CC events are relatively easy to spot in the NOνA detector; they

consist of a long, straight track from the muon, often with some shower activity at the

initial vertex. Electron neutrino CC events do not have a long muon track and look like

an electromagnetic shower, often accompanied by other shower activity. Differentiation

between long tracks and electromagnetic showers is fairly easy. However, a NC event

can sometimes look like an electron neutrino CC event. For a NC, no corresponding

electron or muon is created. Instead, it simply leaves dispersed shower activity in the

detector. Occasionally, a NC event contains a π0 particle that immediately decays into

two photons. These photons then each create electromagnetic showers, much like an

electron. Careful analysis is able to differentiate between the shower activity of NC

events and CC νe events in many cases, notably by looking for two showers displaced

from the initial vertex (for NC) instead of one shower beginning at the vertex (νe CC).

Sometimes a charged pion is created in a NC event. Charged pions can create long

tracks in the detector that mimic a muon; this is a background for the νµ analysis.
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Charged pions can experience hard scatters, which look like sharp kinks in the track.

This can help to distinguish them from muon tracks.

The νµ disappearance analysis divides its signal more finely than simply a νµ CC

event. Instead, we attempt to divide the quasielastic (QE) and non-quasielastic (nonQE)

populations. The physics underlying each population is different, as is the model used

to simulate these events (see Chapter 6 for more information about NOνA simulation).

This can lead to different systematic errors and uncertainties in each population; differ-

entiating the populations helps to understand these errors. Perhaps more importantly,

though, the neutrino energy resolution of the two populations is different. By dividing

populations, one is able to take advantage of the better energy resolutions of the QE

events while not losing valuable statistics.

QE interactions typically consist of a muon track and a small to zero amount of

other activity at the interaction vertex. This other activity can be a visible proton

track, but often, the proton does not have enough energy to produce a reconstructed

track. NonQE interactions, on the other hand, have more activity at the interaction

vertex that is not part of a muon track. Characterizing the vertex activity allows the

analysis to define a primarily QE population.

Because the far detector is near the surface of the earth, it sees a large number of

cosmic rays. These cosmic rays are primarily muon tracks, which could be a problem for

the νµ analysis. However, we know the time of the beam spills, so a timing cut requiring

the activity to be within the beam spill reduces the cosmic ray flux. The muon track

direction gives another important way to eliminate these cosmic rays. Cosmic rays are

the result of high energy interactions in the atmosphere so they primarily travel from the

top to the bottom of the detector, while muons created from beam neutrino interactions

are relatively aligned with the beam direction, from the front of the detector toward the

back. For more details on cosmic ray rejection in this analysis, see Section 10.3.1.

Bad detector conditions can cause cosmic ray background to be more of a problem.

If a part of the detector doesn’t read out properly, it can make cosmic rays traveling

through the entire detector appear to be well-contained. The detector can fail to read out

hits normally if certain DCMs have a wrong time or if the DCMs became overwhelmed

and failed to report all of the hits received to the buffer node. It is important to have

data quality cuts that remove problematic detector conditions.



Chapter 6

Simulation

To understand what physics interactions look like in a detector, physicists create simu-

lation files. These are often called Monte Carlo files, in reference to the famous Monte

Carlo Casino in Monaco. Monte Carlo files use random sampling to mimic the com-

plexity and randomness that occurs when processes happen in a detector. In NOνA,

we simulate neutrino interactions and what happens to the daughter particles as they

travel through the detector. These signals are turned into simulated detector signals

that imitate what we expect to see in real data-taking. The benefit of simulation files,

as opposed to data from the detector, is that we know the “truth” information from our

simulated files. Truth information includes things like the flavor of the neutrino which

interacted, what energy each daughter particle started with, and how much energy

each particle lost in each section of the detector. This truth information can be used

to understand phenomenon such as how the visible energy left by a hadronic shower

corresponds to the true energy of the hadronic shower.

Creating Monte Carlo files for the NOνA experiment is a multi-step process. A

simulation of the neutrino beam is created. Then neutrinos from the beam are simu-

lated interacting initially with the NOνA detector. Next, the daughter particles of the

neutrino interaction must be propagated through the detector. The computed energy

depositions are turned into simulated photon signals. These signals are then interpreted

as they would have been if read by the DAQ system. Finally, one has a collection of

detector hits1 (just as our detector data in its initial stages is just a collection of detector

1These are also known as raw digits and are discussed further in Section 7.1.
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hits), along with truth information about the underlying, simulated physics interactions.

To simulate the neutrino beam, NOνA uses FLUKA and FLUGG[35][36]. The NuMI

beamline is simulated, including the target and horns. The output of the simulation is

a flux of simulated neutrinos, with parent information preserved. These flux files are

handed to the next step of the neutrino simulation.

To generate the initial neutrino interactions, NOνA has multiple simulators that it

uses, depending on the type of physics to study. The most commonly used is GENIE

(currently using v2.8.0i)[37], which is used to generate all of the neutrino physics in-

teractions that NOνA studies. To study cosmic ray interactions, NOνA uses CRY[38].

Finally, for specialized studies, one can generate single particles at user-defined energies,

directions, and locations in the detector.

Next, whatever the initial source of particles from a generator, the particles prop-

agate through the detector using Geant4 (currently using v4.9.6.p03(c), with physics

list QGSP BERT HP)[39][40]. This step includes the NOνA detector geometry and

material composition. Geant4 steps particles through the detector environment, while

simulating the energy loss and particle interactions. The primary outputs from this step

are called FLShits, which are the computed energy depositions, and the hierarchy of

particle daughters, mothers, and what physics process created each daughter. For more

information on the Geant4 simulation step, see Section 6.1.

Next, a NOνA-specific module, called PhotonTransport, takes FLShits and deter-

mines how many photons would be seen at the APD readout. It takes into account the

fiber capture probability, signal attenuation in the fiber, edge effects at the ends of the

cells, and Poisson statistics.

Lastly, another NOνA-specific module, ReadoutSim, takes the photon signals as

input. In channels with physics-signal photons, it overlays the photon signal with back-

ground noise fluctuations. In channels without physics-signals, it can create noise hits

by sampling a histogram of noise hits from the physical detector. This total electronic

signal is then parsed through the algorithm our DAQ system uses to decide if a chan-

nel had a hit or not. These hits are the starting point that NOνA uses to begin its

reconstruction, discussed in Chapter 7.
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6.1 Geant4 Simulation Details

To simulate the propagation of particles through the NOνA detector, we use Geant4.

This analysis uses version 4.9.6.p03(c) with physics list QGSP BERT HP. This config-

uration uses the quark gluon string (QGS) model[41] for high energy interactions of

protons, neutrons, pions, kaons and nuclei. Here, high energy means greater than 20

GeV. The Bertini cascade (BERT) model[42][43] is used to simulate primary protons,

neutrons, pions and kaons with energies below 10 GeV. The low energy parametrized

(LEP) model is used for intermediate energies and for low energy particles not mod-

eled by BERT. Using BERT instead of LEP for all lower energy hadronic modeling

results in better agreement to data. In general, it creates more secondary protons and

neutrons than LEP. To simulate the de-excitation of nuclei, the G4Precompound (P)

model is used. To simulate proton and neutron inelastic interactions, the Axen-Wellisch

parametrization of cross sections is used. To simulate pion inelastic interactions, a

table of Barashenkov cross sections is used. A data-driven high precision neutron (Neu-

tronHP) simulation is used to model the interactions of neutrons with energies less than

20 MeV down to thermal energies. For more information about the Geant4 simulation,

see the Geant website[44].

6.2 Accessing Truth Information

Having Monte Carlo files that simulate data is nice; being able to access the truth infor-

mation contained within the files is nicer. To this end, a service called BackTracker was

developed. BackTracker connects the various types of truth information properly and

efficiently, allowing the user to get answers to common physics questions. BackTracker

functions are documented in the code viewer[45].

There are few subtleties that the user should be aware of when asking questions of

the BackTracker. Sometimes the NOνA implementation of Geant4 decides processes

are too complicated. Instead of giving individual particle ids to each daughter particle

in, say, an electron shower, it gives the whole chain the mother particle id. The PDG

value, however, matches that of the depositing particle. That means that one can look

at many FLShits from the same particle id and they might have different PDG values.

This isn’t a bug; rather, it is considered a feature.
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Naively, one would think that each detector hit could be tied in a perfect way to the

FLShits which created it. However, because NOνA simulates the noise on the channel

and turns the complicated, simulated electronic trace into detector hits, it isn’t quite

that simple. Instead, we try to relate the time of the photon signals to the time of the

hit. This is almost always correct, but not always. Technically, every photon signal that

came before the detector hit could in some small way contribute to its creation. The

answer depends on the interplay between the random noise, the previous history of the

channel, and the cuts we use to determine that a detector hit has occurred. For most

users, the simple cut on time should be sufficient. For more information, see [46].



Chapter 7

Event Reconstruction

Reconstructing an interaction event in data or simulation is a multi-step process. Each

step has an associated module, with each module run in sequence. A module is a C++

class which performs a specific task on the input file. In order, the required modules to

perform the νµ CC contained analysis presented in this thesis are:

1. DAQ2RawDigit (data only) - converts raw data to a convenient format for further

processing

2. CalHit - writes hit information in a form more convenient for analysis

3. Slicer - groups hits in time and space

4. KalmanTrack and KalmanTrackMerge - takes slice hits and makes tracks

5. CosmicTrack - an alternative method that takes slice hits and makes tracks

6. ReMId - produces a metric for how muon-like a track is

7. NumuEnergy - determines the neutrino energy of a slice under a νµ CC assumption

8. QePId - produces a metric for how quasi-elastic the interaction was

9. CAFMaker - writes a summary file of physics variables

Each of these processes will be explained in a following section.
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7.1 DAQ2RawDigit

This module is only run over data files from the NOνA detectors and is unnecessary for

simulation files. For data from a detector, the information recorded is initially saved

in a format that is a convenient and compact format for the data acquisition system.

To make the data accessible to the data analysis software, one must run the module

DAQ2RawDigit over an input .raw file to get out a file with a .root extension. The

primary information contained in the output file is a collection of raw digits for each

event. Raw digits are hits which know only their location in electronic coordinates, a

pulse-height determined by each cell’s analog-to-digital converter (ADC), and a time

determined by each cell’s time-to-digital converter (TDC). Simulation files are created

in the form of raw digits and this extra step of translation is not required.

7.2 CalHit

This is a module that takes in raw digits and creates cell hits. It removes hits that

come from channels deemed bad by the BadChannel service, software that monitors

detector performance. A channel is considered bad for a period of detector running if

it has either too many or too few hits. Too many hits can indicate that the channel

has excessive noise; too few hits can indicate that the electronics system is not properly

reading out. For each channel, a hit rate in Hz is determined. A good channel has a

hit rate between 3.2 Hz and 3,200 Hz. For more details, see the BadChannel technical

note[47].

CalHit associates each hit with a detector plane and cell within the plane. It uses

calibration information to convert pulse height measurements to the energy deposited

in the cell, as described in Chapter 8. This process also determines the time of the hit

more precisely and in units of ns.
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7.3 Slicer

Data from NOνA is packaged in 500 µs readout windows1. This data is for the entire

detector. However, physic interactions within the detector take place over much shorter

time periods and are often confined to specific regions of the detector. Slicer is a module

that groups hits within a readout window in time and space. The clusters of hits that

are roughly contiguous in time and space are called slices. If Slicer worked perfectly,

each slice would correlate to one physics interaction (neutrino interaction or cosmic ray).

Slicer also identifies cell hits from noise and puts them into a single junk slice.

The beam spill (the length of time that we expect neutrino interactions from the

beam to occur within) is only 10 µs. The 500 µs readout window allows the synchro-

nization of the detector to the beam spill to drift slightly without losing data. Also, the

time outside the beam spill allows a background determination to be made. Finally,

the longer livetime allows one to determine the data quality close to the time the data

signal occurred.

Physics interactions in the detector can be 10’s of meters long and a few meters

wide. A particle moving at the speed of light takes 10’s of ns to traverse the detector.

Propagating the light signal through different lengths of wavelength shifting fiber and

electronics paths can add another 100 ns to the time duration of a typical interaction in

the detector. The Slicer algorithm clusters contiguous hits together in time and space

using the variations expected. Slices have an average duration of 130 ns, which is much

finer grained than either the 10 µs beam spill or the 500 µs readout window.

To group cell hits into clusters, Slicer uses a score function to determine the distance

between cell hits in space and time. The algorithm attempts to group hits that could

be causally linked by particles traveling at the speed of light. Any point that does not

get clustered is defined as a noise hit. For more information, see Appendix C and the

technical note[48].

1This is a configurable parameter - for many data driven triggers, we record only a 50 µs readout
window.
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7.4 KalmanTrack and KalmanTrackMerge

KalmanTrack is a module which takes in clusters of hits from Slicer and groups the

cell hits from either the vertical or horizontal cells into 2D tracks. KalmanTrackMerge

takes the 2D tracks from each view and attempts to merge them into 3D tracks. The

information from the 3D tracks and unmatched 2D tracks are written out to the file.

This information includes the position of the most upstream (lowest z) part of the

track, called the start position, the position of the most downstream (highest z) part of

the track, called the end position, the all the hits associated with each track, and the

trajectory points determined to exist along the path of the track. The tracker is based on

Kalman filtering, described here[49][50]. A track is defined as a mostly continuous string

of cells that would result from the energy deposited by a single, non-showering particle.

This tracker uses linear, piecewise segments to describe a trajectory and assumes the

scatter is consistent with a muon. For more information on what particle tracks look

like in the NOνA detector, see Section 5.1. This analysis focuses primarily on 3D tracks,

since 2D tracks have less information and are often more poorly reconstructed than 3D

tracks.

To make 2D tracks, KalmanTrack starts with all the hits in the cluster corresponding

to a single view (either XZ or YZ). Seeds are created, where a seed is a pair of hits that

are less than 3 planes apart within that view. These seeds then form test tracks that

are propagated to the next plane using the current value of the track position and slope.

Any hits found in the next plane consistent with being on the test track are added to

the track, the slope and intercept of the track are updated, and the process continues

to the next plane. See Figure 7.1 for a diagram of this process. Hits are determined to

be consistent with the track by requiring that the ∆χ2 of the track fit after including

this hit is less than 8.0. Tracks are allowed to continue propagation until they cross 3

consecutive planes in a view without adding a hit. If the projected track indicates that

it would encounter a bad channel while crossing the plane, that plane is not counted as

a missed plane. This allows the tracker to successfully cross known gaps of bad channels

within the detector. After a complete track is found, the procedure is redone, starting

at the other end of the found track and without trying to add new hits, to determine if

any of the previously added hits should now be rejected.
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Figure 7.1: Diagram of the creation of 2D Kalman tracks. Each colored rectangle is a
hit. The green hits are already included on the track. The track estimate of position
and slope is shown as the dotted line. The red hit is inconsistent with the track, while
the blue hit is consistent and will be added. This process is then repeated for the next
plane.

A test track is promoted to being a valid track if it contains at least 4 track hits.

After a valid track has been identified, the method uses the remaining seeds not included

on an existing track and continues the procedure of creating more 2D tracks. The opti-

mization process for the definition of a good track was primarily based on maximizing

the efficiency of reconstructing long tracks typical of muons, while limiting the number

of junk tracks created.

After all the 2D tracks have been made in each view independently, KalmanTrack-

Merge looks at the consistency between 2D tracks of different views and tries to create

one 3D track from two 2D tracks. The score that determines the consistency is defined

as:

score =
|zlow of xz track − zlow of yz track|+ |zhigh of xz track − zhigh of yz track|

length of overlap in z

Lowest scores are matched first. In some cases, a long 2D track in one view is matched

to multiple 2D tracks from the other view. This is necessary when a scatter breaks

a track into two pieces in one view. See Figure 7.2 for an example. Track merging

continues until no more 2D tracks with overlapping z positions exist. The merging

algorithm balances the desire to have tracks not broken into segments with the ability to

reconstruct multiple tracks emerging from the same vertex. For more information on the

tracking algorithms, see this internal NOνA document[51] or this thesis by Raddatz[52].
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Figure 7.2: Event display showing Kalman tracks. Here, the muon scatter is large
enough that KalmanTrack created 2 2D tracks in the yz view. If KalmanTrackMerge
could only match individual 2D tracks to each other, the red 3D KalmanTrack represents
the best match that could be accomplished. However, KalmanTrackMerge would instead
merge the green 2D track with the red 3D track, resulting in a single reconstructed muon
track.
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7.5 CosmicTrack

CosmicTrack is an alternative method for reconstructing tracks from slice hits. It is a

less complicated algorithm than KalmanTrack and is optimized for finding high energy

vertical tracks. It makes, at most, one 3D Cosmic track for each slice. This track is

precisely linear. CosmicTrack is a quick algorithm to run and works well for cosmic

rays, which are dominated by slices with one long muon. The analysis presented in this

thesis uses CosmicTrack only for a few cosmic rejection cuts, discussed in Section 10.3.

7.6 ReMId

ReMId (Reconstructed Muon Identification) is an algorithm that attempts to identify

a muon track. A νµ charged current interaction is then identified if it has a 3D muon

track, as determined by ReMId.

ReMId uses a k-Nearest Neighbors (kNN) algorithm to make its determination.

For more information about kNN algorithms, see [53]. The input variables are: log-

likelihoods which use the dE
dx of the track, log-likelihoods based on the scattering ob-

served in the track, the track length, and the fraction of planes used to created the dE
dx

log-likelihood.

To use the dE
dx information of a track, ReMId determines the log-likelihood (LLE)

that a particle of type j created the track, where:

LLEj =
1

Nplane

∑
i

P ji

For LLE , the dE
dx of the track is measured at plane i and the probability, P ji , of a particle

of type j to have the measured dE
dx at this distance from the end of the track is calculated

from a histogram created using simulated events under the assumption of particle type

j. The number of planes for which dE
dx is measured on the track is Nplane and is used to

normalize the LL. The difference in the values of the LL under the pion and the muon

assumptions is taken to form the final dE
dx LL variable input into the ReMId kNN.

To use the scattering information of a track, the LLscat is defined as:



53

LLscatj =
1

Nscat

∑
i

P ji

where P ji is the probability that a particle of type j has the measured scatter at a

distance of i from the end of the track, as determined by a histogram created using

simulated events under the assumption of particle type j. Nplane is used to normalize

the LL. The measured scatter s is defined as:

s =
θ2

d

where θ is the measured scattering angle for that trajectory point and d is the distance

from the last measured scatter.

The kNN returns a value between 0 and 1, 1 being muon-like and 0 being background-

like. The analysis uses a cut of 0.7 to determine if the track is deemed muonic. This

cut was optimized to create the smallest statistical error on the oscillation parameters

sin2 θ23 and ∆m2
32. Figure 7.3 demonstrates the ability of this metric to differentiate

between νµ charged current interactions and other types of neutrino interactions. For

more information, see the technical note[54] or the thesis by Raddatz[52].

7.7 NumuEnergy

NumuEnergy attempts to determine the energy of the initial neutrino, under the as-

sumption that the interaction was a νµ charged current interaction. It treats the 3D

KalmanTrack with the highest ReMId value as the muon. All other energy in the slice

is treated as hadronic energy. The muon energy is determined using a linear spline fit of

the reconstructed track length of the muon to true muon energy. The hadronic energy

is determined using a linear spline fit of visible hadronic energy to true neutrino energy

minus reconstructed muon energy. The fits used are created using simulation files and

truth information. For full details of this energy estimator, see Chapter 9.
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Figure 7.3: Plot of the ReMId value for the 3D Kalman track with the highest ReMId
value in a slice. This is for the far detector. The distribution for νµ charged current
events is drawn in black; the distribution for other types of neutrino interactions is
drawn in blue. Candidates with values greater than 0.7 are used by the analysis. The
simulation is oscillated using the values listed in Table 4.2 and setting θ23 = π/4 and
∆m2

32 = 2.4×10−3 eV2. Each population is scaled to the expected levels for 3.52×1020

POT. All cuts listed in Tables 10.4, 10.5, and 10.6 are applied.
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7.8 QePId

QePId (Quasielastic Particle Identification) is an algorithm that attempts to identify

an interaction as either quasielastic (QE) or non-quasielastic (non-QE), given the as-

sumption that it is a νµ charged current interaction. In general, it reports a PID value

between 0 and 1, where 1 is likely to be a QE interaction and 0 is unlikely. It only tries

to identify an interaction as QE if there are one or two Kalman tracks (of which only

one is required to be 3D) in the slice; if there are more tracks (either 2D or 3D), it is

unlikely to be QE and is given a PID score of -1.

For slices with one or two tracks, QePId uses the variables described below as inputs

to a k-Nearest Neighbors (kNN) algorithm to create the PID value. It relies on values

determined by NumuEnergy and described in Chapter 9. The input variables are: the

ratio of the energy in the slice not associated with a track to the sum of the energy in

the slice on tracks, the relative difference in neutrino energies using the reconstructed

QE neutrino energy for this analysis and the reconstructed QE neutrino energy using

the angle formula, an energy difference z-test variable that takes into account the un-

certainties associated with the calculation of QE neutrino energy when using the angle

formula, and, in the case of two tracks, the dE
dx ratio between the muonic and nonmuonic

tracks. The analysis uses a cut of 0.4 for the one-track sample and 0.45 for the two-track

sample to determine that a slice is QE. Figure 7.4 demonstrates the ability of this metric

to differentiate between νµ QE charged current interactions and other types of neutrino

interactions in the one track sample. Figure 7.5 is for the two track sample. For more

information, see the technical note[55] or the thesis by Raddatz[52].

7.9 CAFMaker

It is convenient to have small files that are extremely quick to process that contain

only summary information required for a final analysis. These files are called CAF files.

They are easily readable by ROOT[56], ROOT macros, and code written to work in the

cafe environment. CAF files do not contain information at the hit level, so can not be

used for all analysis tasks or for creating event displays. For more information about

CAF files and cafe, please see [57][58].
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Figure 7.4: Plot of the QePId value for slices in the one track sample. This is for the far
detector. The distribution for νµ quasielastic charged current events is drawn in black;
the distribution for other types of neutrino interactions, including νµ non-quasielastic
charged current events, is drawn in blue. Candidates with values greater than 0.4 are
part of the QE population; slices with values less than 0.4 are considered part of the
nonQE population. The simulation is oscillated using the values listed in Table 4.2
and setting θ23 = π/4 and ∆m2

32 = 2.4 × 10−3 eV2. Each population is scaled to the
expected levels for 3.52 × 1020 POT. All cuts listed in Tables 10.4, 10.5, and 10.6 are
applied, along with the ReMId cut listed in Table 10.8.
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Figure 7.5: Plot of the QePId value for slices in the two track sample. This is for the far
detector. The distribution for νµ quasielastic charged current events is drawn in black;
the distribution for other types of neutrino interactions, including νµ non-quasielastic
charged current events, is drawn in blue. Candidates with values greater than 0.45 are
part of the QE population; slices with values less than 0.45 are considered part of the
nonQE population. The simulation is oscillated using the values listed in Table 4.2
and setting θ23 = π/4 and ∆m2

32 = 2.4 × 10−3 eV2. Each population is scaled to the
expected levels for 3.52 × 1020 POT. All cuts listed in Tables 10.4, 10.5, and 10.6 are
applied, along with the ReMId cut listed in Table 10.8.



Chapter 8

Calibration

Calibration is necessary to understand how to translate a hit in a specific cell at a

specific depth into an energy deposition. Calibration has sequential stages that allow

this translation:

1. Wavelength Shifting Fiber Attenuation Correction

2. Absolute Energy Correction

Each step will be covered in its own section.

8.1 Attenuation Correction

Attenuation calibration corrects cell-to-cell differences. To do this, a collection of hits

is formed. Hits are required to be on well-reconstructed muon cosmic rays. If possible,

the tri-cell criteria is also required; that is, that a hit is only used if the cells above and

below it in the plane were also on the track. This allows for the most precise knowledge

of path length in the central cell. In cases where there isn’t enough statistics to make

the tri-cell criterion (such as having bad channels next to a good channel), one can

instead require that the cells in the planes before and after the hit were also hit. In the

worst cases, such as corner cells, there is no requirement and instead an average path

length over all the directions that the track can have is used.

Given a collection of hits in a cell with known path length, one can make populations

that have relatively the same path length. Next, a 2D plot of distance down the length
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Figure 8.1: The final attenuation calibration fit for a channel in the physical near
detector (plane 151, a vertical plane, and cell 51). This fit, drawn as a blue line, is
considered good. The horizontal axis is distance along the cell depth, measured in cm
away from the central depth. The vertical axis is average photo-electrons per path
length in cm. Dashed vertical lines indicate the ends of the cell.

of the cell vs. (ADC/cm) is constructed. The profile of this plot is taken and fit to

determine the attenuation correction for this cell.

For most of the length of the fiber, the shape of the attenuation correction is approx-

imated to be that of two exponentials. Near the top and bottom of the cells, the data

shows a strong roll-off effect due to the end structure of the cells. This is not seen as

strongly in the Monte Carlo, since the Monte Carlo doesn’t accurately simulate struc-

ture of the ends of the module properly. Also, some channels show strong deviations

from the double exponential fit that are not related to roll-off effects. In some cases,

this was due to extremely noisy channels located nearby in space, allowing fake cosmic

tracks to be produced. However, most of the time noisy behavior is not in evidence

and the source of the discrepancy is unknown. An interpolation fit is applied on top of

the double exponential fit. If the interpolation fit is more than 15% different from the

original fit, the channel is marked as uncalibrated. Figure 8.1 displays the attenuation

fit for a typically good channel in the near detector; Figure 8.2 displays the same for a

typically good channel in the far detector. For more information about the attenuation

calibration, see the technical note[59].
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Figure 8.2: The final attenuation calibration fit for a channel in the physical far detector
(plane 419, a vertical plane, and cell 219). This fit, drawn as a blue line, is considered
good. The horizontal axis is distance along the cell depth, measured in cm away from
the central depth. The vertical axis is average photo-electrons per path length in cm.
Dashed vertical lines indicate the ends of the cell.

8.2 Absolute Energy Correction

After cell-to-cell differences are removed, one needs to set an absolute scale for the

energy. This allows one to translate a hit’s energy deposition into a reconstructed GeV.

To set the absolute energy scale, a population of muon cosmic tracks that stop within

the detector is used. Since muon energy loss in the detector is well understood, one

can start at the end of the track (where the muon energy is zero) and work backwards

with the Bethe-Bloch formula to determine the dE
dx along the track. The MIP region of

the track, where dE
dx is approximately constant, is found. Figure 8.3 displays the MIP

region for stopping muon tracks in the far detector. A scale factor is then determined

that translates the energy units given by the attenuation calibration into GeV. For more

information about the absolute energy calibration, see the technical note[60].
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Figure 8.3: Plot used to create absolute energy calibration for the physical far detector.
Each energy in the histogram is a tri-cell hit on a cosmic ray muon which stopped inside
the detector. The horizontal axis is the distance of the hit from the end of the track
in cm. The vertical axis is the attenuation-corrected energy per path length in cm.
The black fit points show the mean of the fit to the distribution for each horizontal bin.
Values between 100 and 200 cm from the end of the track are considered the MIP region
and used for the absolute energy calibration.



Chapter 9

Neutrino Energy Reconstruction

The software module NumuEnergy attempts to determine the energy of the initial neu-

trino, under the assumption that the interaction was a νµ charged current interaction.

It treats the 3D KalmanTrack with the highest ReMId value as the muon. All other

energy in the slice is treated as hadronic energy. No attempt is made to remove noise

hits from consideration as hadronic energy. Energy fits are created using unoscillated

simulation files and truth information.

This module creates three primary estimates of the neutrino energy; two use the

muon track length and visible hadronic energy to create a neutrino energy, while the

other uses the muon track length and muon angle relative to the beam direction un-

der the assumption of a quasielastic interaction to compute the neutrino energy. The

first two energies are called TrkQEE (Track Quasielastic Energy) and TrkNonQEE

(Track Non-quasielastic Energy). The third energy is referred to as AngleQEE (Angle

Quasielastic Energy).

The fitting techniques used for NumuEnergy depend on generating a large statistics

simulation sample and creating various 2D histograms. These 2D histograms are then

turned into graphs of points that can be fit with a series of straight line segments. The

fit values are then turned into functions that allow one to translate from the measured

quantity to the desired reconstructed quantity. For detailed information about how the

2D histograms are turned into graphs, please see Appendix D. For information about

the functional form of the spline fits used, see Appendix E. For information about the

populations used to create the fit, see Appendix F.
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For all three reconstructed neutrino energies, the muon energy is determined from

the track length of the 3D Kalman track with the highest ReMId value. This track

length is converted into a reconstructed muon energy using a spline fit. The spline fit

was determined using simulation files to compared the reconstructed muon track length

to the true muon energy. This is described further in Section 9.1 for the far detector

and Section 9.4 for the near detector.

Although the muon energy does not depend on any assumption as to whether the

event is considered QE or non-QE, the hadronic energy does. Visible hadronic energy

is defined as the sum of the energy deposited by all hits not on the muon track as well

as the energy on the muon track in the vertex region that exceeds minimum ionizing

values. For information about the hadronic model used by the simulation, see Chapter

6. For more information about determining hadronic energy contamination on the muon

track, see the technical note[61]. No attempt is made to remove noise hits contained

within the slice from consideration as hadronic energy. The visible hadronic energy is

then converted into a reconstructed hadronic energy using a spline fit. The spline fit

was determined using simulation files to compare the visible hadronic energy to the

true neutrino energy minus the reconstructed muon energy. This is described further in

Section 9.2 for the far detector and Section 9.5 for the near detector.

For TrkQEE and TrkNonQEE, the final neutrino energy is a sum of the reconstructed

muon and hadronic energies. This is described further in Section 9.3 for the far detector

and Section 9.6 for the near detector. For AngleQEE, the neutrino energy is calculated

using a formula described in Section 9.7.

9.1 Muon Energy in the Far Detector

Muons created in neutrino interactions travel through the NOνA detectors, losing energy

until they stop. These muons are primarily minimum ionizing particles. See Figure 9.1

for a plot of muon momentum to average energy loss. Minimum ionizing particles

have a roughly flat average energy loss as they travel through a medium. This means

that over a wide range of momenta, encountered as the muon slows down, the muon

still loses the same amount of energy per path length in the detector. At the lowest

values of momentum, the muon loses much more energy per path length in the detector.
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When one considers the final range of such particles, it is a mostly linear relationship

between track length and initial muon energy. For very low energy muons, however,

this relationship deviates from linear. Low energy muons proportionally have less track

length in the minimum ionizing regime and more track length in lower momentum

regimes. To account for these deviations from linear, we use multiple linear splines. A

more proper treatment would use an curve that integrates the relationship shown in

Figure 9.1. See Chapter 16 for a discussion about future improvements to muon energy

reconstruction.

NumuEnergy uses a four spline fit is to describe the relationship between muon track

length to true muon energy, determined using simulation files. For more information

on the spline fit functional form, see Appendix E. Figure 9.2 is the 2D histogram that

relates reconstructed muon track length in cm to true muon energy in GeV. For more

information on the population used to fill this histogram, see Appendix F. This is then

transformed into a graph, using the method described in Appendix D. Figures 9.3 and

9.4 show the graph overlaid with the 2D histogram. Figure 9.4 has a logarithmic color

scale.

I chose four splines because it markedly improved the χ2/NDF . The three spline

fit had a χ2/NDF = 3368.8 / 141 = 23.9, while the four spline fit had a χ2/NDF =

1169.98 / 139 = 8.42. Further improvement could be made by using either more splines

or a better functional form. See Chapter 16 for more discussion of improvements. See

Table 9.1 for the final fit parameters. Figure 9.5 shows the fit splines overlaid on the

graph points used to find the fit. Figure 9.6 shows the fit splines overlaid on the original

2D histogram. Figure 9.7 is the same as Figure 9.6, except that it has a logarithmic

color axis.

Having obtained a fit which allows translation from reconstructed track length to a

reconstructed muon energy, one can now consider the muon energy resolutions. All of

the following plots were produced using a statistically independent sample from the one

used to find the fit. Figure 9.8 is a 2D histogram which compares reconstructed muon

energy to true muon energy. Then one can consider the relative energy resolution:

ReconstructedEnergy − TrueEnergy
TrueEnergy

. (9.1)



65

Muon momentum

1

10

100

S
to

p
p
in

g
 p

o
w

er
 [

M
eV

 c
m

2
/g

]

L
in

d
h
ar

d
-

S
ch

ar
ff

Bethe Radiative

Radiative
effects

reach 1%

Without δ

Radiative
losses

βγ
0.001 0.01 0.1 1 10 100

1001010.1

1000 10
4

10
5

[MeV/c]
100101

[GeV/c]
100101

[TeV/c]

Minimum
ionization

Eµc

Nuclear
losses

µ−

µ+ on Cu

Anderson-
Ziegler

Figure 9.1: This figure was created by the Particle Data Group[1]. The logarithmic
horizontal axis displays the muon momentum. The stopping power for a muon, otherwise
known as the average loss of energy per path length (〈−dE/dx〉), is shown on the
logarithmic vertical axis. A muon in the NOνA detectors typically has a momentum in
the minimum ionizing range, although as the muon stops, the momentum lowers. When
a particle is in the minimum ionizing regime, it looses approximately a constant amount
of energy per amount of detector traveled.

Parameter Value Units

Offset 0.1503 GeV

Slope 1 0.001910 GeV/cm

Slope 2 0.001987 GeV/cm

Slope 3 0.002039 GeV/cm

Slope 4 0.002159 GeV/cm

Stitch 1 334 cm

Stitch 2 539 cm

Stitch 3 1064 cm

Table 9.1: Fit parameters used to determine the far detector muon reconstructed energy.
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Figure 9.2: Reconstructed muon track length in cm vs. true muon energy in GeV.
The color axis is arbitrary number of interactions. This histogram was created using
simulated events in the far detector.
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Figure 9.3: Graph points overlaid on 2D histogram of reconstructed muon track length
in cm vs. true muon energy in GeV. The color axis is arbitrary number of interactions.
This plot was created using simulated events in the far detector.
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Figure 9.4: Graph points overlaid on 2D histogram of reconstructed muon track length
in cm vs. true muon energy in GeV. The color axis is arbitrary number of interactions
and is display logarithmically. This plot was created using simulated events in the far
detector.
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Figure 9.5: Best fit line overlaid on graph points used to make the fit. The fit relates
reconstructed muon track length in cm to true muon energy in GeV. The dashed vertical
lines indicate the stitch locations of the splines. This plot was created using simulated
events in the far detector.
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Figure 9.6: Best fit line overlaid on original 2D histogram. The fit relates reconstructed
muon track length in cm to true muon energy in GeV. The dashed vertical lines indicate
the stitch locations of the splines. The color axis is arbitrary number of interactions.
This plot was created using simulated events in the far detector.

Figure 9.9 plots muon track length in cm vs. the relative energy resolution. One

can also consider a 1D histogram of the relative energy resolution, Figure 9.10.
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Figure 9.7: Best fit line overlaid on original 2D histogram with a logarithmic color axis.
The fit relates reconstructed muon track length in cm to true muon energy in GeV.
The dashed vertical lines indicate the stitch locations of the splines. The color axis is
arbitrary number of interactions and is display logarithmically. This plot was created
using simulated events in the far detector.
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Figure 9.8: Histogram of reconstructed muon energy in GeV vs. true muon energy in
GeV. Red line is 45 degrees - if we did a perfect job, everything would lay on this line.
The color axis is arbitrary number of interactions and is display logarithmically. This
plot was created using simulated events in the far detector.
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Figure 9.9: Histogram of reconstructed muon track length in cm vs. the relative energy
resolution. Red line is flat at zero - if we did a perfect job, everything would lay on this
line. The color axis is arbitrary number of interactions and is display logarithmically.
This plot was created using simulated events in the far detector.
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Figure 9.10: Relative energy resolution for reconstructed muon energy. Red line is a
Gaussian fit to the peak. This plot only includes events with true neutrino energy less
than 5 GeV. This plot was created using simulated events in the far detector.
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9.2 Hadronic Energy in the Far Detector

After one has the far detector muon spline fit, one moves on to considering far detector

hadronic energy spline fits. Visible hadronic energy is defined as the sum of the energy

deposited by all hits not on the muon track as well as the energy on the muon track

in the vertex region that exceeds minimum ionizing values. For information about the

hadronic model used by the simulation, see Chapter 6. For more information about de-

termining hadronic energy contamination on the muon track, see the technical note[61].

No attempt is made to remove noise hits contained within the slice from consideration

as hadronic energy.

Both the QE and non-QE populations in the far detector were fit with a four spline

fit. For more information on the spline fit functional form, see Appendix E. For both

populations, variable binning was employed for the underlying 2D histograms of visible

hadronic energy in GeV vs. true neutrino energy minus reconstructed muon energy in

GeV. For more information on the population used to fill these histograms, see Appendix

F. The 2D histograms are then transformed into a graph, using the method described

in Appendix D.

9.2.1 QE Events

The results for the QE population will be presented first. Figure 9.11 is the 2D histogram

that relates visible hadronic energy in GeV to true neutrino energy minus reconstructed

muon energy in GeV. This is then transformed into a graph, using the method described

in Appendix D. Figures 9.12 and 9.13 show the graph to be fit overlaid with the 2D

histogram. Figure 9.13 has a logarithmic color scale.

I looked at the effect of using various numbers of splines in the fit. The χ2/NDF

values for each fit is reported in Table 9.2. Visually, only the four spline fit captured

most of the structure. The four spline fit was chosen for the final fit; in the future, using

more splines could be investigated. See Table 9.3 for the final fit parameters. Figure

9.14 shows the fit line overlaid on the graph points used to find the fit. Figure 9.15

shows the fit line overlaid on the original 2D histogram. Figure 9.16 is the same as

Figure 9.15, except that it has a logarithmic color axis.

Having obtained a fit which allows translation from visible hadronic energy to a
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Figure 9.11: Visible hadronic energy in GeV vs. true neutrino energy minus recon-
structed muon energy in GeV. This plot is for the QE population. The horizontal axis
has variable binning. The color axis is arbitrary number of interactions. This plot was
created using simulated events in the far detector.
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Figure 9.12: Graph points overlaid on 2D histogram of visible hadronic energy in GeV
vs. true neutrino energy minus reconstructed muon energy in GeV. This plot is for the
QE population. The horizontal axis has variable binning. The color axis is arbitrary
number of interactions. This plot was created using simulated events in the far detector.
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Figure 9.13: Graph points overlaid on 2D histogram of visible hadronic energy in GeV vs.
true neutrino energy minus reconstructed muon energy in GeV. This plot is for the QE
population. The horizontal axis has variable binning. The color axis is arbitrary number
of interactions and is display logarithmically. This plot was created using simulated
events in the far detector.

No. of Splines χ2/NDF

One 10,600 / 75 = 141

Two 1,340 / 73 = 18.3

Three 440 / 71 = 6.19

Four 298 / 69 = 4.31

Table 9.2: χ2/NDF values for differing numbers of splines used to fit the far detector
QE hadronic reconstructed energy.
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Parameter Value Units

Offset 0.0515 GeV

Slope 1 0.621 unitless

Slope 2 1.47 unitless

Slope 3 1.81 unitless

Slope 4 2.06 unitless

Stitch 1 0.0597 GeV

Stitch 2 0.139 GeV

Stitch 3 0.800 GeV

Table 9.3: Fit parameters used to determine the far detector QE hadronic reconstructed
energy.
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Figure 9.14: Best fit line overlaid on graph points used to make the fit. The fit relates
visible hadronic energy in GeV to true neutrino energy minus reconstructed muon energy
in GeV. The dashed vertical lines indicate the stitch locations of the splines. This plot is
for the QE population. The horizontal axis has variable binning. This plot was created
using simulated events in the far detector.
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Figure 9.15: Best fit line overlaid on original 2D histogram. The fit relates visible
hadronic energy in GeV to true neutrino energy minus reconstructed muon energy in
GeV. The dashed vertical lines indicate the stitch locations of the splines. This plot
is for the QE population. The horizontal axis has variable binning. The color axis is
arbitrary number of interactions. This plot was created using simulated events in the
far detector.
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Figure 9.16: Best fit line overlaid on original 2D histogram. The fit relates visible
hadronic energy in GeV to true neutrino energy minus reconstructed muon energy in
GeV. The dashed vertical lines indicate the stitch locations of the splines. This plot
is for the QE population. The horizontal axis has variable binning. The color axis is
arbitrary number of interactions and is display logarithmically. This plot was created
using simulated events in the far detector.
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Figure 9.17: Histogram of reconstructed hadronic energy in GeV vs. true neutrino
energy minus reconstructed muon energy in GeV, notated as “desired hadronic energy.”
Red line is 45 degrees - if we did a perfect job, everything would lay on this line. This
plot is for the QE population. The color axis is arbitrary number of interactions and is
display logarithmically. This plot was created using simulated events in the far detector.

reconstructed hadronic energy, one can now consider the hadronic energy resolutions.

All of the following plots were produced using a statistically independent sample from

the one used to find the fit. Figure 9.17 is a 2D histogram which compares recon-

structed hadronic energy to desired hadronic energy, defined as true neutrino energy

minus reconstructed muon energy. Figure 9.18 plots reconstructed hadronic energy vs.

the relative energy resolution. One can also consider a 1D histogram of the relative

energy resolution, Figure 9.19.
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Figure 9.18: Histogram of visible hadronic energy in GeV vs. the relative energy resolu-
tion. The desired hadronic energy is defined as true neutrino energy minus reconstructed
muon energy in GeV. Red line is flat at zero - if we did a perfect job, everything would
lay on this line. This plot is for the QE population. The color axis is arbitrary number
of interactions and is display logarithmically. This plot was created using simulated
events in the far detector.
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Figure 9.19: Relative energy resolution for reconstructed hadronic energy. The desired
hadronic energy is defined as true neutrino energy minus reconstructed muon energy
in GeV. This plot is for the QE population. This plot only includes events with true
neutrino energy less than 5 GeV. This plot was created using simulated events in the
far detector. Red line is a Gaussian fit to the peak.
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Figure 9.20: Visible hadronic energy in GeV vs. true neutrino energy minus recon-
structed muon energy in GeV. This plot is for the non-QE population. The horizontal
axis has variable binning. The color axis is arbitrary number of interactions. This plot
was created using simulated events in the far detector.

9.2.2 Non-QE Events

For the non-QE population, Figure 9.20 is the 2D histogram that relates visible hadronic

energy in GeV to true neutrino energy minus reconstructed muon energy in GeV. For

more information on the population used to fill these histograms, see Appendix F. This

is then transformed into a graph, using the method described in Appendix D. Figures

9.21 and 9.22 show the graph to be fit overlaid with the 2D histogram. Figure 9.22 has

a logarithmic color scale.

For this population,the four spline fit did a good job visually. It had a lower

χ2/NDF , which was 818.403 / 121 = 6.76, than fits using less splines did. See Table

9.4 for the final fit parameters. In the future, using more splines could be investigated.

Figure 9.23 shows the fit line overlaid on the graph points used to find the fit. Figure

9.24 shows the fit line overlaid on the original 2D histogram. Figure 9.25 is the same as

Figure 9.24, except that it has a logarithmic color axis.

Having now obtained a fit which allows translation from visible hadronic energy
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Figure 9.21: Graph points overlaid on 2D histogram of visible hadronic energy in GeV
vs. true neutrino energy minus reconstructed muon energy in GeV. This plot is for
the non-QE population. The horizontal axis has variable binning. The color axis is
arbitrary number of interactions. This plot was created using simulated events in the
far detector.

Parameter Value Units

Offset 0.241 GeV

Slope 1 0.94 unitless

Slope 2 1.21 unitless

Slope 3 1.78 unitless

Slope 4 2.20 unitless

Stitch 1 0.132 GeV

Stitch 2 0.223 GeV

Stitch 3 0.964 GeV

Table 9.4: Fit parameters used to determine the far detector non-QE hadronic recon-
structed energy.
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Figure 9.22: Graph points overlaid on 2D histogram of visible hadronic energy in GeV
vs. true neutrino energy minus reconstructed muon energy in GeV. This plot is for
the non-QE population. The horizontal axis has variable binning. The color axis is
arbitrary number of interactions and is display logarithmically. This plot was created
using simulated events in the far detector.
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Figure 9.23: Best fit line overlaid on graph points used to make the fit. The fit relates
visible hadronic energy in GeV to true neutrino energy minus reconstructed muon energy
in GeV. The dashed vertical lines indicate the stitch locations of the splines. This plot
is for the non-QE population. The horizontal axis has variable binning. This plot was
created using simulated events in the far detector.
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Figure 9.24: Best fit line overlaid on original 2D histogram. The fit relates visible
hadronic energy in GeV to true neutrino energy minus reconstructed muon energy in
GeV. The dashed vertical lines indicate the stitch locations of the splines. This plot is
for the non-QE population. The horizontal axis has variable binning. The color axis is
arbitrary number of interactions. This plot was created using simulated events in the
far detector.
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Figure 9.25: Best fit line overlaid on original 2D histogram with a logarithmic color
axis. The fit relates visible hadronic energy in GeV to true neutrino energy minus re-
constructed muon energy in GeV. The dashed vertical lines indicate the stitch locations
of the splines. This plot is for the non-QE population. The horizontal axis has variable
binning. The color axis is arbitrary number of interactions and is display logarithmically.
This plot was created using simulated events in the far detector.
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Figure 9.26: Histogram of visible hadronic energy in GeV vs. true neutrino energy
minus reconstructed muon energy in GeV, notated as “desired hadronic energy.” Red
line is 45 degrees - if we did a perfect job, everything would lay on this line. This plot
is for the non-QE population. The color axis is arbitrary number of interactions and is
display logarithmically. This plot was created using simulated events in the far detector.

to a reconstructed hadronic energy, one can now consider the hadronic energy resolu-

tions. All of the following plots were produced using a statistically independent sample

from the one used to find the fit. Figure 9.26 is a 2D histogram which compares recon-

structed hadronic energy to true hadronic energy, defined as true neutrino energy minus

reconstructed muon energy. Figure 9.27 plots reconstructed hadronic energy vs. the

relative energy resolution. One can also consider a 1D histogram of the relative energy

resolution, Figure 9.28.
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Figure 9.27: Histogram of visible hadronic energy in GeV vs. the relative energy resolu-
tion. The desired hadronic energy is defined as true neutrino energy minus reconstructed
muon energy in GeV. Red line is flat at zero - if we did a perfect job, everything would
lay on this line. This plot is for the non-QE population. The color axis is arbitrary num-
ber of interactions and is display logarithmically. This plot was created using simulated
events in the far detector.
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Figure 9.28: Relative energy resolution for reconstructed hadronic energy. The desired
hadronic energy is defined as true neutrino energy minus reconstructed muon energy in
GeV. This plot is for the non-QE population. This plot only includes events with true
neutrino energy less than 5 GeV. This plot was created using simulated events in the
far detector. Red line is a Gaussian fit to the peak.
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Figure 9.29: Histogram of reconstructed neutrino energy in GeV vs. true neutrino
energy in GeV for the QE population. Red line is 45 degrees - if we did a perfect job,
everything would lay on this line. The color axis is arbitrary number of interactions
and is display logarithmically. This plot was created using simulated events in the far
detector.

9.3 Neutrino Energy in the Far Detector

For each population (QE or non-QE), one can now look at neutrino energies and their

resolutions. The reconstructed neutrino energy TrkQEE or TrkNonQEE is just defined

as the sum of the reconstructed muon energy and the reconstructed hadronic energy.

All of the following plots were produced using a statistically independent sample from

the one used to find the fits.

For the QE population, Figure 9.29 is a 2D histogram which compares reconstructed

neutrino energy to true neutrino energy. Figure 9.30 plots reconstructed neutrino energy

vs. the relative energy resolution. Figure 9.31 is a 1D histogram of the relative energy

resolution.

Figure 9.32 is a 2D histogram of the nonQE population which compares recon-

structed neutrino energy to true neutrino energy. Figure 9.33 plots reconstructed neu-

trino energy vs. the relative energy resolution. One can also consider a 1D histogram

of the relative energy resolution, Figure 9.34.
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Figure 9.30: Histogram of reconstructed neutrino energy in GeV vs. the relative energy
resolution for the QE population. Red line is flat at zero - if we did a perfect job,
everything would lay on this line. The color axis is arbitrary number of interactions
and is display logarithmically. This plot was created using simulated events in the far
detector.
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Figure 9.31: Relative energy resolution for reconstructed neutrino energy for the QE
population. This plot only includes events with true neutrino energy less than 5 GeV.
This plot was created using simulated events in the far detector. Red line is a Gaussian
fit to the peak.
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Figure 9.32: Histogram of reconstructed neutrino energy in GeV vs. true neutrino
energy in GeV for the non-QE population. Red line is 45 degrees - if we did a perfect
job, everything would lay on this line. The color axis is arbitrary number of interactions
and is display logarithmically. This plot was created using simulated events in the far
detector.
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Figure 9.33: Histogram of reconstructed neutrino energy in GeV vs. the relative energy
resolution for the non-QE population. Red line is flat at zero - if we did a perfect job,
everything would lay on this line. The color axis is arbitrary number of interactions
and is display logarithmically. This plot was created using simulated events in the far
detector.
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Figure 9.34: Relative energy resolution for reconstructed neutrino energy for the non-
QE population. This plot only includes events with true neutrino energy less than 5
GeV. This plot was created using simulated events in the far detector. Red line is a
Gaussian fit to the peak.
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9.4 Muon Energy in the Near Detector

The near detector is composed of a fully active region and a muon catcher. The fully

active region is composed of the same cells as the far detector; the muon catcher inter-

sperses steel planes with active cells. See Section 5.1 for more information about the

near detector and its composition.

For muons contained in the fully active region, the same functional relationship used

in the far detector to convert reconstructed track length in cm into reconstructed muon

energy in GeV should be valid. Section 9.4.1 evaluates the efficacy of applying the far

detector muon fit to the near detector fully active population. For more information on

the population used to fill these histograms, see Appendix F.

Another useful population for analysis consists of muons which start in the fully

active region and end in the muon catcher. The rate of energy loss is radically different

for the muon catcher portion of the detector, compared to the fully active region. For

these muons, the reconstructed track length is divided into the length in the fully active

region and the length in muon catcher. A linear fit is created from a 2D plot of recon-

structed muon track length in the muon catcher vs. the true muon energy at the point

where the muon entered the muon catcher. For more information on the population

used to fill this histogram, see Appendix F. The 2D histogram is transformed into a

graph, using the method described in Appendix D.

One can then use the linear fit to determine the muon reconstructed energy as it

enters the muon catcher. By inverting the far detector muon spline fit, one can determine

the effective track length of the muon in the muon catcher in units of track length in a

fully active detector. This is added to the track length in the fully active region for a

total track length. This final track length is converted into reconstructed muon energy

using the far detector muon spline fit. See Section 9.4.2 for more information.

Finally, these two populations of muons are combined for a total muon population

in the near detector. The total muon resolution is presented in Section 9.4.3.

9.4.1 Fully Active Population

For muons contained in the fully active region, the same functional relationship used in

the far detector to convert reconstructed track length in cm into reconstructed muon
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Figure 9.35: Reconstructed muon track length in cm vs. true muon energy in GeV for
the fully active population. The color axis is arbitrary number of interactions. This
histogram was created using simulated events in the near detector.

energy in GeV should be valid. For more information on the fit used for far detector

muons, see Section 9.1.

A four spline fit is used to describe the relationship between muon track length

to true muon energy, determined using simulation files of the far detector. For more

information on the spline fit functional form, see Appendix E. Figure 9.35 is the 2D

histogram that relates reconstructed muon track length in cm to true muon energy

in GeV for the near detector fully active population. For more information on the

population used to fill this histogram, see Appendix F. This is then transformed into

a graph, using the method described in Appendix D. Figures 9.36 and 9.37 show the

graph overlaid with the 2D histogram. Figure 9.37 has a logarithmic color scale.

Table 9.1 lists the far detector muon fit parameters. Figure 9.38 shows the far

detector fit splines overlaid on the near detector graph points. Figure 9.39 shows the

far detector fit splines overlaid on the near detector 2D histogram. Figure 9.40 is the

same as Figure 9.39, except that it has a logarithmic color axis.

One can now consider the muon energy resolutions for the fully active population.

Figure 9.41 is a 2D histogram which compares reconstructed muon energy to true muon
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Figure 9.36: Graph points overlaid on 2D histogram of reconstructed muon track length
in cm vs. true muon energy in GeV for the fully active population. The color axis is
arbitrary number of interactions. This plot was created using simulated events in the
near detector.
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Figure 9.37: Graph points overlaid on 2D histogram of reconstructed muon track length
in cm vs. true muon energy in GeV for the fully active population. The color axis is
arbitrary number of interactions and is display logarithmically. This plot was created
using simulated events in the near detector.
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Figure 9.38: Far detector best fit line overlaid on graph points for the near detector fully
active population. The fit relates reconstructed muon track length in cm to true muon
energy in GeV. The dashed vertical lines indicate the stitch locations of the splines.
This plot was created using simulated events in the near detector.

energy. Figure 9.42 plots muon track length in cm vs. the relative energy resolution.

One can also consider a 1D histogram of the relative energy resolution, Figure 9.43.
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Figure 9.39: Far detector best fit line overlaid on 2D histogram for the near detector fully
active population. The fit relates reconstructed muon track length in cm to true muon
energy in GeV. The dashed vertical lines indicate the stitch locations of the splines. The
color axis is arbitrary number of interactions. This plot was created using simulated
events in the near detector.
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Figure 9.40: Far detector best fit line overlaid on 2D histogram for the near detector
fully active population with a logarithmic color axis. The fit relates reconstructed muon
track length in cm to true muon energy in GeV. The dashed vertical lines indicate the
stitch locations of the splines. The color axis is arbitrary number of interactions and
is display logarithmically. This plot was created using simulated events in the near
detector.
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Figure 9.41: Histogram of reconstructed muon energy in GeV vs. true muon energy in
GeV for the fully active population. Red line is 45 degrees - if we did a perfect job,
everything would lay on this line. The color axis is arbitrary number of interactions
and is display logarithmically. This plot was created using simulated events in the near
detector.
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Figure 9.42: Histogram of reconstructed muon track length in cm vs. the relative energy
resolution for the fully active population. Red line is flat at zero - if we did a perfect
job, everything would lay on this line. The color axis is arbitrary number of interactions
and is display logarithmically. This plot was created using simulated events in the near
detector.
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Figure 9.43: Relative energy resolution for reconstructed muon energy for the fully
active population. Red line is a Gaussian fit to the peak. This plot only includes events
with true neutrino energy less than 5 GeV. This plot was created using simulated events
in the near detector.
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Figure 9.44: Reconstructed muon track length in the muon catcher in cm vs. true muon
energy when entering the muon catcher in GeV for the active and catcher population.
The color axis is arbitrary number of interactions. This histogram was created using
simulated events in the near detector.

9.4.2 Active and Catcher Population

Another useful population for analysis consists of muons which start in the fully active

region and end in the muon catcher. The rate of energy loss is radically different for

the muon catcher portion of the detector, compared to the fully active region. For these

muons, the reconstructed track length is divided into the length in the fully active region

and the length in muon catcher. A linear fit is created from a 2D plot of reconstructed

muon track length in the muon catcher vs. the true muon energy at the point where the

muon entered the muon catcher, Figure 9.44. For more information on the population

used to fill this histogram, see Appendix F. The 2D histogram is transformed into a

graph, using the method described in Appendix D. Figures 9.45 and 9.46 show the graph

overlaid with the 2D histogram. Figure 9.46 has a logarithmic color scale.

Table 9.5 lists the muon catcher fit parameters. Figure 9.47 shows the muon catcher

fit overlaid on the graph points. Figure 9.48 shows the muon catcher fit overlaid on the

2D histogram. Figure 9.49 is the same as Figure 9.48, except that it has a logarithmic

color axis.
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Figure 9.45: Graph points overlaid on 2D histogram of reconstructed muon track length
in the muon catcher in cm vs. true muon energy when entering the muon catcher in GeV
for the active and catcher population. The color axis is arbitrary number of interactions.
This plot was created using simulated events in the near detector.

Parameter Value Units

Offset 0.152 GeV

Slope 0.00536 GeV/cm

Table 9.5: Fit parameters used to determine the near detector muon reconstructed
energy for track length in the muon catcher.
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Figure 9.46: Graph points overlaid on 2D histogram of reconstructed muon track length
in the muon catcher in cm vs. true muon energy when entering the muon catcher in GeV
for the active and catcher population. The color axis is arbitrary number of interactions
and is display logarithmically. This plot was created using simulated events in the near
detector.
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Figure 9.47: Best fit line overlaid on graph points for the active and catcher population.
The fit relates reconstructed muon track length in the muon catcher in cm to true muon
energy when entering the muon catcher in GeV. This plot was created using simulated
events in the near detector.

One can now consider the muon energy resolutions in the muon catcher for the active

and catcher population. All of the following plots were produced using a statistically

independent sample from the one used to find the fit. Figure 9.50 is a 2D histogram

which compares reconstructed muon energy in the muon catcher to true muon energy

in the muon catcher. Figure 9.51 plots muon track length in the muon catcher in cm

vs. the relative energy resolution. One can also consider a 1D histogram of the relative

energy resolution, Figure 9.52.

One can then use the linear fit to determine the muon reconstructed energy as it

enters the muon catcher. By inverting the far detector muon spline fit, one can determine

the effective track length for the muon catcher in units of track length in a fully active

detector. This is added to the track length in the fully active region for a total track

length. This final track length is converted into reconstructed muon energy using the

far detector muon spline fit.

Total muon energy resolutions for the active and catcher population can be plotted.

All of the following plots were produced using a statistically independent sample from
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Figure 9.48: Best fit line overlaid on 2D histogram for the near detector active and
catcher population. The fit relates reconstructed muon track length in the muon catcher
in cm to true muon energy when entering the muon catcher in GeV. The color axis is
arbitrary number of interactions. This plot was created using simulated events in the
near detector.
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Figure 9.49: Best fit line overlaid on 2D histogram for the near detector active and
catcher population with a logarithmic color axis. The fit relates reconstructed muon
track length in the muon catcher in cm to true muon energy when entering the muon
catcher in GeV. The color axis is arbitrary number of interactions and is display loga-
rithmically. This plot was created using simulated events in the near detector.
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Figure 9.50: Histogram of reconstructed muon energy in the muon catcher in GeV vs.
true muon energy in the muon catcher in GeV for the active and catcher population.
Red line is 45 degrees - if we did a perfect job, everything would lay on this line. The
color axis is arbitrary number of interactions and is display logarithmically. This plot
was created using simulated events in the near detector.
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Figure 9.51: Histogram of reconstructed muon track length in the muon catcher in cm
vs. the relative energy resolution for the active and catcher population. Red line is flat
at zero - if we did a perfect job, everything would lay on this line. The color axis is
arbitrary number of interactions and is display logarithmically. This plot was created
using simulated events in the near detector.
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Figure 9.52: Relative energy resolution for reconstructed muon energy in the muon
catcher for the active and catcher population. Red line is a Gaussian fit to the peak.
This plot only includes events with true neutrino energy less than 5 GeV. This plot was
created using simulated events in the near detector.

the one used to find the fit. Figure 9.53 is a 2D histogram which compares the total

reconstructed muon energy to the total true muon energy. Figure 9.54 plots total

effective muon track length in cm vs. the relative energy resolution. One can also

consider a 1D histogram of the relative energy resolution, Figure 9.55.
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Figure 9.53: Histogram of the total reconstructed muon energy in GeV vs. the total true
muon energy in GeV for the active and catcher population. Red line is 45 degrees - if we
did a perfect job, everything would lay on this line. The color axis is arbitrary number
of interactions and is display logarithmically. This plot was created using simulated
events in the near detector.
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Figure 9.54: Histogram of the total reconstructed muon track length in cm vs. the
relative energy resolution for the active and catcher population. Red line is flat at
zero - if we did a perfect job, everything would lay on this line. The color axis is
arbitrary number of interactions and is display logarithmically. This plot was created
using simulated events in the near detector.
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Figure 9.55: Relative energy resolution for the total reconstructed muon energy for the
active and catcher population. Red line is a Gaussian fit to the peak. This plot only
includes events with true neutrino energy less than 5 GeV. This plot was created using
simulated events in the near detector.
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Figure 9.56: Histogram of reconstructed muon energy in GeV vs. true muon energy in
GeV. Red line is 45 degrees - if we did a perfect job, everything would lay on this line.
The color axis is arbitrary number of interactions and is display logarithmically. This
plot was created using simulated events in the near detector.

9.4.3 Total Muon Near Detector Population

Finally, one can combine the two near detector populations of muons and evaluate the

total muon resolution. All of the following plots were produced using a statistically

independent sample from the one used to determine fits. Figure 9.56 is a 2D histogram

which compares the reconstructed muon energy to the true muon energy. Figure 9.57

plots muon track length in cm vs. the relative energy resolution. One can also consider

a 1D histogram of the relative energy resolution, Figure 9.58.
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Figure 9.57: Histogram of the reconstructed muon track length in cm vs. the relative
energy resolution. Red line is flat at zero - if we did a perfect job, everything would lay on
this line. The color axis is arbitrary number of interactions and is display logarithmically.
This plot was created using simulated events in the near detector.
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Figure 9.58: Relative energy resolution for reconstructed muon energy. Red line is a
Gaussian fit to the peak. This plot only includes events with true neutrino energy less
than 5 GeV. This plot was created using simulated events in the near detector.
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9.5 Hadronic Energy in the Near Detector

After one has the fits to create reconstructed muon energy in the near detector, one

creates near detector hadronic energy spline fits. Visible hadronic energy is defined as

the sum of the energy deposited by all hits not on the muon track as well as the energy

on the muon track in the vertex region that exceeds minimum ionizing values. For

information about the hadronic model used by the simulation, see Chapter 6. For more

information about determining hadronic energy contamination on the muon track, see

the technical note[61]. No attempt is made to remove noise hits contained within the

slice from consideration as hadronic energy.

The far and near detectors need to have different hadronic energy fits. This is

driven primarily by the small size of the near detector; it is much easier for hadronic

energy to escape and not be visible in the near detector. The small size also means

that all hits in the near detector are relatively close to the electronics readout and less

likely to fall below threshold than in the far detector. Finally, only lower energy events

can be contained in the near detector. Because of the limited energy range, only two

splines have been used to capture the structure in the visible hadronic energy. In the

far detector, four were used.

If one wanted to account for large amounts of hadronic energy in the muon catcher,

special care and extra fits would be required. This has not been done at this time. In-

stead, the containment criteria require that very little visible hadronic energy is present

in the muon catcher. This allows events with a few noise hits in the muon catcher to

still be included in the sample.

Both the QE and non-QE populations in the near detector were fit with a two spline

fit. For more information on the spline fit functional form, see Appendix E. For both

populations, variable binning was employed for the underlying 2D histograms of visible

hadronic energy in GeV vs. true neutrino energy minus reconstructed muon energy in

GeV. For more information on the population used to fill these histograms, see Appendix

F. The 2D histograms are then transformed into a graph, using the method described

in Appendix D.
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Figure 9.59: Visible hadronic energy in GeV vs. true neutrino energy minus recon-
structed muon energy in GeV. This plot is for the QE population. The horizontal axis
has variable binning. The color axis is arbitrary number of interactions. This plot was
created using simulated events in the near detector.

9.5.1 QE Events

The results for the QE population will be presented first. Figure 9.59 is the 2D histogram

that relates visible hadronic energy in GeV to true neutrino energy minus reconstructed

muon energy in GeV. This is then transformed into a graph, using the method described

in Appendix D. Figures 9.60 and 9.61 show the graph to be fit overlaid with the 2D

histogram. Figure 9.61 has a logarithmic color scale.

Table 9.6 displays the final fit parameters. Figure 9.62 shows the fit line overlaid

on the graph points used to find the fit. Figure 9.63 shows the fit line overlaid on the

original 2D histogram. Figure 9.64 is the same as Figure 9.63, except that it has a

logarithmic color axis.

Having obtained a fit which allows translation from visible hadronic energy to a

reconstructed hadronic energy, one can now consider the hadronic energy resolutions.

All of the following plots were produced using a statistically independent sample from

the one used to find the fit. Figure 9.65 is a 2D histogram which compares recon-

structed hadronic energy to desired hadronic energy, defined as true neutrino energy
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Figure 9.60: Graph points overlaid on 2D histogram of visible hadronic energy in GeV vs.
true neutrino energy minus reconstructed muon energy in GeV. This plot is for the QE
population. The horizontal axis has variable binning. The color axis is arbitrary number
of interactions. This plot was created using simulated events in the near detector.

Parameter Value Units

Offset 0.0450 GeV

Slope 1 1.567 unitless

Slope 2 1.822 unitless

Stitch 0.0820 GeV

Table 9.6: Fit parameters used to determine the near detector QE hadronic recon-
structed energy.



122

Visible Hadronic E (GeV)
0 0.5 1 1.5 2

T
ru

e 
N

eu
tr

in
o 

E
 -

 R
ec

o 
M

uo
n 

E
 (

G
eV

)

0

1

2

3

4

5

1

10

210

310

Figure 9.61: Graph points overlaid on 2D histogram of visible hadronic energy in GeV vs.
true neutrino energy minus reconstructed muon energy in GeV. This plot is for the QE
population. The horizontal axis has variable binning. The color axis is arbitrary number
of interactions and is display logarithmically. This plot was created using simulated
events in the near detector.
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Figure 9.62: Best fit line overlaid on graph points used to make the fit. The fit relates
visible hadronic energy in GeV to true neutrino energy minus reconstructed muon energy
in GeV. The dashed vertical line indicates the stitch location of the splines. This plot is
for the QE population. The horizontal axis has variable binning. This plot was created
using simulated events in the near detector.
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Figure 9.63: Best fit line overlaid on original 2D histogram. The fit relates visible
hadronic energy in GeV to true neutrino energy minus reconstructed muon energy in
GeV. The dashed vertical line indicates the stitch location of the splines. This plot
is for the QE population. The horizontal axis has variable binning. The color axis is
arbitrary number of interactions. This plot was created using simulated events in the
near detector.
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Figure 9.64: Best fit line overlaid on original 2D histogram. The fit relates visible
hadronic energy in GeV to true neutrino energy minus reconstructed muon energy in
GeV. The dashed vertical line indicates the stitch locations of the splines. This plot
is for the QE population. The horizontal axis has variable binning. The color axis is
arbitrary number of interactions and is display logarithmically. This plot was created
using simulated events in the near detector.
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Figure 9.65: Histogram of reconstructed hadronic energy in GeV vs. true neutrino
energy minus reconstructed muon energy in GeV, notated as “desired hadronic energy.”
Red line is 45 degrees - if we did a perfect job, everything would lay on this line. This
plot is for the QE population. The color axis is arbitrary number of interactions and
is display logarithmically. This plot was created using simulated events in the near
detector.

minus reconstructed muon energy. Figure 9.66 plots reconstructed hadronic energy vs.

the relative energy resolution. One can also consider a 1D histogram of the relative

energy resolution, Figure 9.67.
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Figure 9.66: Histogram of visible hadronic energy in GeV vs. the relative energy resolu-
tion. The desired hadronic energy is defined as true neutrino energy minus reconstructed
muon energy in GeV. Red line is flat at zero - if we did a perfect job, everything would
lay on this line. This plot is for the QE population. The color axis is arbitrary number
of interactions and is display logarithmically. This plot was created using simulated
events in the near detector.
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Figure 9.67: Relative energy resolution for reconstructed hadronic energy. The desired
hadronic energy is defined as true neutrino energy minus reconstructed muon energy
in GeV. This plot is for the QE population. This plot only includes events with true
neutrino energy less than 5 GeV. This plot was created using simulated events in the
near detector. Red line is a Gaussian fit to the peak.
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Figure 9.68: Visible hadronic energy in GeV vs. true neutrino energy minus recon-
structed muon energy in GeV. This plot is for the non-QE population. The horizontal
axis has variable binning. The color axis is arbitrary number of interactions. This plot
was created using simulated events in the near detector.

9.5.2 Non-QE Events

For the non-QE population, Figure 9.68 is the 2D histogram that relates visible hadronic

energy in GeV to true neutrino energy minus reconstructed muon energy in GeV. For

more information on the population used to fill these histograms, see Appendix F. This

is then transformed into a graph, using the method described in Appendix D. Figures

9.69 and 9.70 show the graph to be fit overlaid with the 2D histogram. Figure 9.70 has

a logarithmic color scale.

Table 9.7 displays the final fit parameters. Figure 9.71 shows the fit line overlaid

on the graph points used to find the fit. Figure 9.72 shows the fit line overlaid on the

original 2D histogram. Figure 9.73 is the same as Figure 9.72, except that it has a

logarithmic color axis.

Having now obtained a fit which allows translation from visible hadronic energy

to a reconstructed hadronic energy, one can now consider the hadronic energy resolu-

tions. All of the following plots were produced using a statistically independent sample
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Figure 9.69: Graph points overlaid on 2D histogram of visible hadronic energy in GeV
vs. true neutrino energy minus reconstructed muon energy in GeV. This plot is for
the non-QE population. The horizontal axis has variable binning. The color axis is
arbitrary number of interactions. This plot was created using simulated events in the
near detector.

Parameter Value Units

Offset 0.254 GeV

Slope 1 1.080 unitless

Slope 2 1.889 unitless

Stitch 0.169 GeV

Table 9.7: Fit parameters used to determine the near detector non-QE hadronic recon-
structed energy.
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Figure 9.70: Graph points overlaid on 2D histogram of visible hadronic energy in GeV
vs. true neutrino energy minus reconstructed muon energy in GeV. This plot is for
the non-QE population. The horizontal axis has variable binning. The color axis is
arbitrary number of interactions and is display logarithmically. This plot was created
using simulated events in the near detector.
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Figure 9.71: Best fit line overlaid on graph points used to make the fit. The fit relates
visible hadronic energy in GeV to true neutrino energy minus reconstructed muon energy
in GeV. The dashed vertical line indicates the stitch location of the splines. This plot
is for the non-QE population. The horizontal axis has variable binning. This plot was
created using simulated events in the near detector.
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Figure 9.72: Best fit line overlaid on original 2D histogram. The fit relates visible
hadronic energy in GeV to true neutrino energy minus reconstructed muon energy in
GeV. The dashed vertical line indicates the stitch location of the splines. This plot is
for the non-QE population. The horizontal axis has variable binning. The color axis is
arbitrary number of interactions. This plot was created using simulated events in the
near detector.
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Figure 9.73: Best fit line overlaid on original 2D histogram with a logarithmic color
axis. The fit relates visible hadronic energy in GeV to true neutrino energy minus
reconstructed muon energy in GeV. The dashed vertical line indicates the stitch location
of the splines. This plot is for the non-QE population. The horizontal axis has variable
binning. The color axis is arbitrary number of interactions and is display logarithmically.
This plot was created using simulated events in the near detector.
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Figure 9.74: Histogram of visible hadronic energy in GeV vs. true neutrino energy
minus reconstructed muon energy in GeV, notated as “desired hadronic energy.” Red
line is 45 degrees - if we did a perfect job, everything would lay on this line. This plot
is for the non-QE population. The color axis is arbitrary number of interactions and
is display logarithmically. This plot was created using simulated events in the near
detector.

from the one used to find the fit. Figure 9.74 is a 2D histogram which compares recon-

structed hadronic energy to true hadronic energy, defined as true neutrino energy minus

reconstructed muon energy. Figure 9.75 plots reconstructed hadronic energy vs. the

relative energy resolution. One can also consider a 1D histogram of the relative energy

resolution, Figure 9.76.
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Figure 9.75: Histogram of visible hadronic energy in GeV vs. the relative energy resolu-
tion. The desired hadronic energy is defined as true neutrino energy minus reconstructed
muon energy in GeV. Red line is flat at zero - if we did a perfect job, everything would
lay on this line. This plot is for the non-QE population. The color axis is arbitrary num-
ber of interactions and is display logarithmically. This plot was created using simulated
events in the near detector.
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Figure 9.76: Relative energy resolution for reconstructed hadronic energy. The desired
hadronic energy is defined as true neutrino energy minus reconstructed muon energy in
GeV. This plot is for the non-QE population. This plot only includes events with true
neutrino energy less than 5 GeV. This plot was created using simulated events in the
near detector. Red line is a Gaussian fit to the peak.
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Figure 9.77: Histogram of reconstructed neutrino energy in GeV vs. true neutrino
energy in GeV for the QE population. Red line is 45 degrees - if we did a perfect job,
everything would lay on this line. The color axis is arbitrary number of interactions
and is display logarithmically. This plot was created using simulated events in the near
detector.

9.6 Neutrino Energy in the Near Detector

For each population (QE or non-QE), one can now look at neutrino energies and their

resolutions. The reconstructed neutrino energy TrkQEE or TrkNonQEE is just defined

as the sum of the reconstructed muon energy and the reconstructed hadronic energy.

All of the following plots were produced using a statistically independent sample from

the one used to find the fits.

For the QE population, Figure 9.77 is a 2D histogram which compares reconstructed

neutrino energy to true neutrino energy. Figure 9.78 plots reconstructed neutrino energy

vs. the relative energy resolution. Figure 9.79 is a 1D histogram of the relative energy

resolution.

Figure 9.80 is a 2D histogram of the nonQE population which compares recon-

structed neutrino energy to true neutrino energy. Figure 9.81 plots reconstructed neu-

trino energy vs. the relative energy resolution. One can also consider a 1D histogram

of the relative energy resolution, Figure 9.82.



139

Reco Neutrino Energy (GeV)
0 1 2 3 4 5(R

ec
o 

- 
T

ru
e 

N
eu

tr
in

o 
E

)/
T

ru
e 

N
eu

tr
in

o 
E

1−

0.5−

0

0.5

1

1−10

1

10

Figure 9.78: Histogram of reconstructed neutrino energy in GeV vs. the relative energy
resolution for the QE population. Red line is flat at zero - if we did a perfect job,
everything would lay on this line. The color axis is arbitrary number of interactions
and is display logarithmically. This plot was created using simulated events in the near
detector.
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Figure 9.79: Relative energy resolution for reconstructed neutrino energy for the QE
population. This plot only includes events with true neutrino energy less than 5 GeV.
This plot was created using simulated events in the near detector. Red line is a Gaussian
fit to the peak.
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Figure 9.80: Histogram of reconstructed neutrino energy in GeV vs. true neutrino
energy in GeV for the non-QE population. Red line is 45 degrees - if we did a perfect
job, everything would lay on this line. The color axis is arbitrary number of interactions
and is display logarithmically. This plot was created using simulated events in the near
detector.
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Figure 9.81: Histogram of reconstructed neutrino energy in GeV vs. the relative energy
resolution for the non-QE population. Red line is flat at zero - if we did a perfect job,
everything would lay on this line. The color axis is arbitrary number of interactions
and is display logarithmically. This plot was created using simulated events in the near
detector.
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Figure 9.82: Relative energy resolution for reconstructed neutrino energy for the non-
QE population. This plot only includes events with true neutrino energy less than 5
GeV. This plot was created using simulated events in the near detector. Red line is a
Gaussian fit to the peak.
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9.7 QE Energy using the Angle Formula

AngleQEE should only be used for QE interactions. It uses Equation 9.2 to relate the

muon energy and the angle between the muon and the incoming neutrino to calculate

the neutrino energy:

Eν =
2M ′n −

(
M ′n

2 +M2
µ +M2

p

)
2
(
M ′n − Eµ +

√
E2
µ −M2

µ cos θ
) , (9.2)

where Eν is the reconstructed neutrino energy, M ′n is the modified mass of the neutron

(M ′n = Mn −Ebinding), Ebinding is the binding energy of nucleus, Mµ is the mass of the

muon, Mp is the mass of the proton, Eµ is the energy of the muon, and θ is the angle

between the muon and the incoming neutrino. The muon track is chosen to be the 3D

Kalman track with the highest ReMId value and its energy is reconstructed in the same

manner as in TrkQEE (discussed in Section 9.1). The nuclear binding energy is set to

be 25 MeV. This is consistent with what was used in the NOνA νµ QE cross-section

analysis[62] and what GENIE uses in the simulation.

The AngleQEE energy is not as robust to reconstruction failures as TrkQEE. Some

phase space of track length and angle can cause crazy energy values, including negative

ones. Also, its resolution is limited by the Fermi momentum in the nucleus.



Chapter 10

Event Selection

Selection criteria were developed to increase sensitivity to the measurement of the os-

cillation parameters sin2 θ23 and |∆m2
32|. Basic quality checks were imposed to ensure

the detector was performing normally and that the event was able to be reconstructed.

Then, criteria designed to maximize the amount of signal (νµ CC interactions) and

minimize the amount of background were applied. Two main sources of background ex-

ist: beam neutrino interactions that are not νµ CC interactions interactions and cosmic

ray interactions. The beam neutrino interactions that are not νµ CC interactions are

primarily NC interactions (Section 4.2). These are primarily removed by requiring a

reconstructed track in the event to be identified as a muon. The cosmic ray interactions

are a large background for the far detector, which is relatively close to the surface of the

earth, but not the near detector, which is deep underground (Chapter 5). By requiring

that the event occurred at the same time that the NuMI beam was on, we reduce the

cosmic ray background by a factor of 105. Criteria applied only to the far detector

events that require containment and alignment with the NuMI beam direction reduce

this background by a further factor of 107. The final reconstructed neutrino energy

spectra and event counts for the expected signal and background in the far detector is

given in Chapter 11.

Good neutrino energy resolution is also necessary to make precision measurements of

the oscillation parameters. This will be discussed further in Chapter 11. To ensure that

all the energy of the neutrino interaction is visible, we applied containment criteria to

both the near and far detector samples. Since the near detector has a muon catcher with
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coarse energy resolution, criteria restricting the type of energy deposition in the muon

catcher were developed. Finally, we divided the analysis population into two categories:

a population of QE-like events and a population of nonQE-like events. QE events have

better neutrino energy resolution than nonQE events. By dividing into two populations,

we don’t dilute the precise energy information but can still take advantage of the larger

statistics of the nonQE population. This chapter gives a detailed description of all of

the criteria used to select events.

10.1 File Selection

Data for the measurement of sin2 θ23 and |∆m2
32| presented in this thesis corresponds

to Run Periods 1, 2a and 2b1. Run Period 1 corresponded to when the far detector

was in the process of being built. Far detector data was taken with partial detector

configurations. For the first 9 months of this period, the near detector had not yet been

constructed. For the final month of the period, the near detector was operational. The

NuMI beam was shut down for three months for upgrades from the end of Run Period

1 to the start of Run Period 2. For Run Period 2, the far detector data mostly corre-

sponded to the full detector configuration. Run Period 2a corresponded to 5 months.

The near detector data from Run Period 2b, a period of 2 months, was not used due to

time constraints.

For a data subrun file to be used, it must first pass basic criteria. It must have

successfully been reconstructed through the CAF stage2. It must contain at least one

neutrino beam spill. For the far detector, the amount of live detector must equal 4

diblocks or larger. This allows for containment of νµ CC interactions and reduces the

ratio of cosmic background to contained signal events. Figure 10.1 contains diagrams

showing which types of variable detector configurations were used. The far detector was

1Run Period 1 is from before the beam shutdown in fall 2014, between October 25th, 2013 to August
5th, 2014. For the near detector, the run period started July 18th, 2014. Run Period 2a occurred after
the beam shutdown, from October 24th, 2014 until March 13th, 2015. Run Period 2b is the data from
March 13th, 2015 to May 15th, 2015. Run Period 1 corresponds to far detector runs 11496-17078 and
near detector runs 10377-10407. Run Period 2a corresponds to far detector runs 17967-19096 and near
detector runs 10496-10824. Only far detector runs from Run Period 2b were used in this analysis; they
corresponded to runs 19097-19586.

2Files can fail to be reconstructed for various reasons. Some events can exceed the allowed memory
usage of the grid. Some files can fail to have proper information in the database.
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Figure 10.1: Diagram of different far detector configurations. A diblock is 1/14th of
the total detector. In the diagram, blue indicates a live diblock and grey indicates a
diblock not included in the readout. To be used for analysis, the detector must have
had 4 or more contiguous diblocks live. Therefore, if only 3 diblocks are live (top left)
or only two contiguous diblocks are live (top right), the data was not used. If 4 diblocks
are live (bottom left) or, in the best case, the entire detector is live (bottom right), the
data was used. If the detector had 4 or more contiguous diblocks live as well as another,
not contiguous set of diblocks live, only the data from the largest contiguous portion
would be used.

being constructed during the data taking period, so much of the data was taken with

only a portion of the detector active. For the near detector, the entire detector must

be live to be used for analysis. The near detector is too small to make partial detector

configurations useful. The subrun must have passed the criteria applied to remove bad

running conditions. For details on the data quality cuts applied, see [63],[64].

10.2 Spill Cuts

Once the subrun file is selected, one then selects beam spills which have good data.

The first category of far detector spill cuts are those made to ensure data quality.

These are listed in Table 10.1. The first cut requires that every data concentrator

module (DCM, for more information see Section 5.1) in the active detector has at least

one hit during the time window. When DCMs receive too much information in too

short of a time period, they can become overwhelmed and fail to send their data to the

buffer nodes (Section 5.1) . This results in missing data that can cause the DCM to
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have no hits. Secondly, the mask applied to create the active detector by Live Geometry

must be valid3. The mask is used to define the boundaries of the active, usable portion

of the far detector. These are needed since far detector data corresponds to variable

detector configurations. The third cut ensures that the DCMs are synchronized relative

to each other. To detect DCM synchronization failures, the DCM edge metric software

examines all the cosmic tracks (reconstructed with the Cosmic Tracker, Section 7.5)

within the readout time window. It determines when these tracks are near boundaries

in the detector that are readout out by different DCMs and determines the fraction of

tracks that successfully cross the DCM boundary. If all DCMs are not synchronized

relative to one another, this metric has a low value.

These metrics are not all applied to the near detector. Live Geometry doesn’t apply

a mask to the near detector, so we can not check the status of the mask. We only

use near detector data that corresponds to the full detector, so a mask is not needed.

The DCM edge metric can not be applied to the near detector, because it relies on a

high flux of cosmic rays. Since the near detector is underground, it doesn’t have a high

enough flux.

Instead, a different set of spill cuts is applied to the near detector data. A different

software algorithm from the one used in the far detector is used to determine if any of

the DCMs in the near detector are missing. Before the 2014 beam shutdown, the near

detector was sometimes run in with the detector hall lights on. This allowed light to

leak into the electronics and create many noise hits, which could confuse reconstruc-

tion attempts or obscure physics interactions. During the beam shutdown, extra light

protection was added to the electronics to prevent this failure mode. A metric was de-

veloped to remove data with light pollution. A study was done to find cells affected by

the light pollution. It looked for channels with high noise rates correlated with light-on

running. The light pollution metric creates a ratio between the number of hits in af-

fected cells not associated with the beam spill and the number of hits in the horizontal

cells associated with the beam spill. For more information on the light pollution metric,

see the technical note[65].

3Mask status must equal 1. If not, this could indicate that database problems caused an incorrect
mask.
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Table 10.1: Far Detector Data Quality Spill Cuts

Cut Description

Number of Missing DCMs = 0 Require that all DCMs have at least one hit for the read-

out time window

Good Mask = 1 Require Live Geometry have a valid diblock mask

DCM Edge Metric > 0.2 The DCMs are synchronized relative to each other

Table 10.2: Near Detector Data Quality Spill Cuts

Cut Description

Number of Missing DCMs = 0 Require that all DCMs have at least one hit for the time

window

Light Pollution Metric > 0.45 The electronic readout didn’t have excess light pollution

The second type of spill cuts that can be made relate to the quality of the beam.

These are listed in Table 10.3. First, the trigger time recorded by the detector must

be within 0.5 sec of a NuMI beam trigger time listed in the Intensity Frontier beam

DataBase (IFDB).4 Since the NuMI beam typically has a spill roughly every second,

this cut ensures that we have properly matched the detector data to the beam spill. The

protons on target (POT) for the spill must be greater than 2× 1012. The current inside

the focusing horns5 must be within the acceptable range of current, given in Table 10.3.

The range was determined by looking at values of the current corresponding to normal

running. All of the normal beam running used in the study was within the cut range.

Also, the beam position6 must at the expected location and with the expected width.

Again, the cut values listed in Table 10.3 were determined by examining normal beam

running and placing cuts to encompass the bulk of the normal running period. For more

information, see this document[66].

4This database is filled by Fermilab every time the accelerator sends POT to the NuMI beam.
5Calculated using the sum of 4 calibrated stripline values: NSLINA, NSLINB, NSLINC, and NSLIND
6As measured by the beam position monitors
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Table 10.3: Beam Quality Spill Cuts

Cut Description

|∆SpillT ime| < 0.5 sec Time of trigger recorded on detector to be within 0.5 sec of a

trigger time in IFDB

POT of spill > 2× 1012 Protons on target for the spill must be greater than 2× 1012

−202 < Horn Current <

−198

The current within the focusing horns must be between -202

and -198 kAmps

0.02 < X Position < 2.00 The horizontal position of the beam must be between 0.02

and 2.00 mm

0.02 < Y Position < 2.00 The vertical position of the beam must be between 0.02 and

2.00 mm

0.57 < X Width < 1.58 The horizontal width of the beam must be between 0.57 and

1.58 mm

0.57 < Y Width < 1.58 The vertical height of the beam must be between 0.57 and

1.58 mm

10.3 Slice Cuts

The next level of cuts is on the slice level. Slices correspond to individual physics

interactions; for more detail, see Section 7.3. These cuts have three main purposes:

first, to ensure that all the necessary reconstruction, particle identification, and energy

information exists in the CAF file and is valid7; second, to ensure that the interaction

is contained within the detector; and third, to reject cosmic ray backgrounds. For an

analysis that uses an uncontained sample, see Raddatz’s thesis[52]. These cuts vary

somewhat between the far and near detectors; for instance, the cosmic ray background

in the near detector is so low that no cosmic rejection cuts need to be applied. Section

10.3.1 discusses the slice cuts for the far detector population; Section 10.3.2 discusses

the slice cuts for the near detector.

7For instance, a low energy event could fail to have any tracks reconstructed. Then we would not be
able to identify if a track was a muon or create a reconstructed neutrino energy.
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10.3.1 Far Detector Slice Cuts

This analysis defines two populations: those that have downgoing primary Kalman

tracks (called the negative population) and those that have upgoing primary Kalman

tracks (called the positive population). For more information about Kalman tracks, see

Section 7.4. The primary Kalman track for each slice is defined as the 3D Kalman

track with the highest ReMId value, that is, the track most likely to be a muon. For

more information about ReMId, see Section 7.6. Two populations are created to more

effectively cut the cosmic muon background. See Figure 10.2 for diagrams that define

these populations and Figure 10.3 for a plot of the populations.

Cosmic ray muons primarily start at the top of the detector and travel downwards.

Muons created by NuMI neutrino interactions, instead, tend to start at the front of the

detector and travel to the back of the detector. For this reason, KalmanTrack always

defines the most upstream Z position as the start of the track and the most downstream

Z position as the end of the track. For cosmic ray muons, however, this definition

of start and end of the track is wrong roughly half of the time. For downward-going

cosmic ray muons, the negative population corresponds to cases where the KalmanTrack

definitions of start and end of the track are probably correct. The positive population

corresponds to cases where the background muons probably have start and end of the

tracks opposite to that which KalmanTrack defines. If one, for instance, were to cut on

the true start position of the cosmic background, one would cut on the start Z position

of the negative population and the end Z position of the positive population. See Figure

10.2 for diagrams that define these populations.

Slice cuts which are applied to both populations are listed in Table 10.4. Cuts which

are applied only to the negative population are listed in Table 10.5, while those applied

only to the positive population are listed in Table 10.6.

To take advantage of the fact that we know when the NuMI beam occurs relative to

the triggered time window, we cut on the mean time of the slice to be within the window

of the beam spill. The readout window is typically 500 µs long and the beam spill is

10 µs long.8 For the early running period, a malfunction in the timing system caused

the beam spill to have the possibility of being shifted +64µs relative to the readout

8We add 2 µs of padding to the beam spill cut to ensure it is fully contained within our cut.
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(a) Common topologies for cosmic ray muons, on the left, and νµ CC interactions, on the
right.

(b) Red lines represent reconstructed Kalman tracks for the topologies in Figure 10.2a. The
start and end positions defined by KalmanTrack are labeled.

(c) The Kalman tracks from Figure 10.2b are sorted into negative and positive populations,
based on the angle between the Y detector axis and the track.

Figure 10.2: Diagram of common topologies. The left side of Figure 10.2a shows two
cosmic ray muons, entering from the top of the detector. The right side of Figure 10.2a
shows two cases of νµ CC interactions. Figure 10.2b displays the reconstructed tracks
KalmanTrack would create, given the underlying topologies. KalmanTrack always de-
fines the start of the track as the side with the lowest Z position. The end is defined as
the side with the largest Z position. Note that the choice of start and end is incorrect
for the cosmic ray muon on the right. Figure 10.2c displays the population definitions
for each track.
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Figure 10.3: Plot that defines the negative and positive populations. The horizontal
axis displays cos θY , where θY is the angle between the primary 3D Kalman track and the
vertical detector axis. A red line is drawn at cos θY = 0. Candidates with cos θY > 0 are
defined as the positive population; otherwise, they are part of the negative population.
Simulated signal is shown in black; cosmic background data is shown in blue. The
simulated signal is unoscillated. Each population is scaled to the expected levels for
2.76 × 1020 POT. Note that the simulated signal is multiplied by 10,000 to make it
visible on this scale. Basic quality cuts requiring a 3D Kalman track, at least one valid
ReMId object, a valid neutrino energy, and a valid Live Geometry mask are applied.
Data quality cuts requiring no missing DCMs and that the detector is synced are applied.
The primary Kalman track is required to have at least 5 hits and have a ReMId value
greater than 0.5.

window. Therefore, for these runs, we have two beam spill windows. This doubles the

cosmic ray background for this period. For more information on the malfunction, see

the summary by Messier[67].

For basic quality cuts, we required that the slice has at least one 3D Kalman track, at

least one Cosmic track, at least one valid ReMId object9, and a valid neutrino energy10.

These are all required because later cuts make use of their presence. To ensure that the

reconstructed track is not an artifact, we require that the primary Kalman track have

more than five hits.

9Vector index isn’t equal to 999, a default value used when no ReMId objects are found. This might
happen, for instance, if no 3D Kalman track existed.

10Neutrino energy isn’t equal to -5, a default value used when no neutrino energy could successfully
be calculated. This might happen, for instance, if no 3D Kalman track existed.
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Table 10.4: Far Detector Slice Cuts

Cut Description

218.1 <Slice Time < 230.1 Require slice time, in µs relative to the start of the readout

window, coincident with beam spill11

Number of 3D Kalman

Tracks 6= 0

Require at least one 3D Kalman track

Number of Cosmic Tracks

6= 0

Require at least one Cosmic track

Number of ReMId Objects

6= 0

Require at least one ReMId value

Best ReMId Index 6= 999 Require the vector index of highest ReMId track is valid

Neutrino Energy 6= -5 Require a valid neutrino energy value

No. Track Hits > 5 Track has more than 5 hits

No. Slice Hits
No. Track P lanes < 3.0 The ratio of the number of hits in the slice to the number of

planes that the track crosses is less than 3.0

|StartX| < 740 Track x start position absolute value less than 740 cm

StartY > −750 Track y start position greater than -750 cm

|EndX| < 740 Track x end position absolute value less than 740 cm

EndY > −750 Track y end position greater than 750 cm

|StartOtherX| < 740 For all other Kalman tracks within the slice, track x start

position absolute value less than 740 cm

−750 < StartOtherY <

725

For all other Kalman tracks within the slice, track y start

position greater than -750 cm and less than 725 cm

StartOtherZ >

Det. Front+ 20

For all other Kalman tracks within the slice, track z start

position greater than 20 cm from the front face of the active

detector

|EndOtherX| < 740 For all other Kalman tracks within the slice, track x end po-

sition absolute value less than 740 cm

Continued on next page

11 For runs numbers less than 17500, slice times between 282.1 and 294.1 µs are also allowed
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Table 10.4 – continued from previous page

Cut Description

−750 < EndOtherY <

725

For all other Kalman tracks within the slice, track y end po-

sition greater than -750 cm and less than 725 cm

EndOtherZ >

Det. Back − 20

For all other Kalman tracks within the slice, track z end po-

sition greater than 20 cm from the front face of the active

detector

Transverse Momentum

Frac. < 0.65

The fraction of the vector of the mean position of the slice

relative to the start position of the track transverse to the

NuMI beam direction

Cosmic Track Proj. Back

Dist. > 50

Projected backwards distance of the track from CosmicTrack

is more than 50 cm from the detector edge

Table 10.5: Far Detector Negative Population Slice Cuts

Cut Description

DirY < 0 Track initial direction has a negative cosine with respect to

the y axis

StartY < 650 Track y start position less than 650 cm

StartZ > Det. Front+40 Track z start position greater than 40 cm from the front face

of the active detector

EndY < 725 Track y end position less than 725 cm

EndZ < Det. Back − 20 Track z end position less than 20 cm from the back face of

the active detector

Cosmic Track Proj. Back

Dist. and Comic Track

DirBeam not within cer-

tain values

The values of the projected backwards distance of the track

from CosmicTrack and the initial track direction cosine with

respect to the NuMI beam direction doesn’t fall within a for-

bidden region.12

12 In the 2D space of the CosmicTrack parameters of BeamDir and backwards projected distance,
make a rectangle cut: 0.2 < BeamDir < 0.65 and backwards projected distance < 725 cm. If the
track has values within the box, then consider parameter y, where y = 0.65 − (9.0/14500.0)∗projected
backwards distance. If y > BeamDir, then the track falls into the forbidden region. Another forbidden
region is defined by the box cut of −0.3 < BeamDir < 0.2 and backwards projected distance < 1500
cm
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Table 10.6: Far Detector Positive Population Slice Cuts

Cut Description

DirY ≥ 0 Track initial direction has a positive cosine with respect to

the y axis

StartY < 725 Track y start position less than 725 cm

StartZ > Det. Front+20 Track z start position greater than 20 cm from the front face

of the active detector

EndY < 650 Track y end position less than 650 cm

EndZ < Det. Back − 40 Track z end position less than 40 cm from the back face of

the active detector

Cosmic Track Proj. Back

Dist. and Comic Track

DirBeam not within cer-

tain values

The values of the projected backwards distance of the track

from CosmicTrack and the initial track direction cosine with

respect to the NuMI beam direction doesn’t fall within a for-

bidden region.13

A cut is introduced to remove background due to front end board (FEB; for more

information, see Section 5.1) ringing. When a very high-energy particle travels through

the detector, it can saturate the avalanche photodiode (APD; for more information, see

Section 5.1). As the APD recovers from this saturation, false hits on other pixels can

be created. The time scale of these false hits is 10’s of µsec. These false hits can create

slices that do not include the initial high-energy particle. Slices of false hits often look

contained and often have many hits on each APD. These can sometimes mimic nonQE

interactions. To remove these slices, one calculates the ratio of the number of slice hits

to the number of planes crossed by the primary Kalman track. This ratio is defined as

the flasher metric. If the ratio is greater than or equal to 3, it can be a case of FEB

ringing. Figure 10.4 shows the effect of this cut.

13 In the 2D space of the CosmicTrack parameters of BeamDir and backwards projected distance,
make a rectangle cut: −0.85 < BeamDir < −0.2 and backwards projected distance < 725 cm. If the
track has values within the box, then consider parameter y, where y = −0.85−(13.0/14500.0)∗projected
backwards distance. If y < BeamDir, then the track falls into the forbidden region. Another forbidden
region is defined by the box cut of −0.2 < BeamDir < 0.2 and backwards projected distance < 1500
cm
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Figure 10.4: Plot of the number of hits in the slice divided by the number of planes
that the primary Kalman track crossed. Note the logarithmic vertical axis. A red line
is drawn at No. Slice Hits

No. Track P lanes = 3. Candidates with values greater than 3 are rejected.
Simulated signal is shown in black; cosmic background data is shown in blue. The
simulated signal is unoscillated. Each population is scaled to the expected levels for
2.76 × 1020 POT. Data quality cuts requiring no missing DCMs and that the detector
is synced are applied. The primary Kalman track is required to have a ReMId value
greater than 0.5. All cuts listed in Tables 10.4, 10.5, and 10.6, except for the cut on
No. Slice Hits

No. Track P lanes , are applied.
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Figure 10.5: Plot of the primary Kalman track start position in detector X and Y
coordinates for the negative population. Note the logarithmic color axis. Red lines are
drawn at the cut location for the start position; candidates outside the red box are
rejected. Simulated signal is shown on the left; cosmic background data is shown on the
right. The simulated signal is unoscillated. Each population is scaled to the expected
levels for 2.76× 1020 POT. Data quality cuts requiring no missing DCMs and that the
detector is synced are applied. The primary Kalman track is required to have a ReMId
value greater than 0.5. All cuts listed in Tables 10.4 and 10.5, except for cuts on the
primary Kalman track start position, are applied.

To eliminate background from cosmic rays and ensure that the interaction is well

contained within the detector, a series of cuts are applied to the start and end position

of the primary Kalman track. The y and z cuts differ somewhat between the two

populations, for the reasons described earlier in this section. Figures 10.5, 10.6, and

10.7 show the effect of cutting on primary Kalman track start position for the negative

population. Figures 10.8, 10.9, and 10.10 display the same information, but for the

positive population. Figures 10.11, 10.12, and 10.13 show the effect of cutting on the

primary Kalman track end position for the negative population. Figures 10.14, 10.15,

and 10.16 display the same information, but for the positive population.
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Figure 10.6: Plot of the primary Kalman track start position for the negative popula-
tion. The horizontal axis is distance, in cm, from the front of the active detector. The
vertical axis is the detector X coordinate. Note the logarithmic color axis. Red lines
are drawn at the cut location for the start position; candidates outside the red lines are
rejected. Simulated signal is shown on the left; cosmic background data is shown on the
right. The simulated signal is unoscillated. Each population is scaled to the expected
levels for 2.76× 1020 POT. Data quality cuts requiring no missing DCMs and that the
detector is synced are applied. The primary Kalman track is required to have a ReMId
value greater than 0.5. All cuts listed in Tables 10.4 and 10.5, except for cuts on the
primary Kalman track start position, are applied.
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Figure 10.7: Plot of the primary Kalman track start position for the negative popula-
tion. The horizontal axis is distance, in cm, from the front of the active detector. The
vertical axis is the detector Y coordinate. Note the logarithmic color axis. Red lines
are drawn at the cut location for the start position; candidates outside the red lines are
rejected. Simulated signal is shown on the left; cosmic background data is shown on the
right. The simulated signal is unoscillated. Each population is scaled to the expected
levels for 2.76× 1020 POT. Data quality cuts requiring no missing DCMs and that the
detector is synced are applied. The primary Kalman track is required to have a ReMId
value greater than 0.5. All cuts listed in Tables 10.4 and 10.5, except for cuts on the
primary Kalman track start position, are applied.
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Figure 10.8: Plot of the primary Kalman track start position in detector X and Y
coordinates for the positive population. Note the logarithmic color axis. Red lines are
drawn at the cut location for the start position; candidates outside the red box are
rejected. Simulated signal is shown on the left; cosmic background data is shown on the
right. The simulated signal is unoscillated. Each population is scaled to the expected
levels for 2.76× 1020 POT. Data quality cuts requiring no missing DCMs and that the
detector is synced are applied. The primary Kalman track is required to have a ReMId
value greater than 0.5. All cuts listed in Tables 10.4 and 10.6, except for cuts on the
primary Kalman track start position, are applied.
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Figure 10.9: Plot of the primary Kalman track start position for the positive population.
The horizontal axis is distance, in cm, from the front of the active detector. The vertical
axis is the detector X coordinate. Note the logarithmic color axis. Red lines are drawn
at the cut location for the start position; candidates outside the red lines are rejected.
Simulated signal is shown on the left; cosmic background data is shown on the right.
The simulated signal is unoscillated. Each population is scaled to the expected levels for
2.76 × 1020 POT. Data quality cuts requiring no missing DCMs and that the detector
is synced are applied. The primary Kalman track is required to have a ReMId value
greater than 0.5. All cuts listed in Tables 10.4 and 10.6, except for cuts on the primary
Kalman track start position, are applied.
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Figure 10.10: Plot of the primary Kalman track start position for the positive popula-
tion. The horizontal axis is distance, in cm, from the front of the active detector. The
vertical axis is the detector Y coordinate. Note the logarithmic color axis. Red lines
are drawn at the cut location for the start position; candidates outside the red lines are
rejected. Simulated signal is shown on the left; cosmic background data is shown on the
right. The simulated signal is unoscillated. Each population is scaled to the expected
levels for 2.76× 1020 POT. Data quality cuts requiring no missing DCMs and that the
detector is synced are applied. The primary Kalman track is required to have a ReMId
value greater than 0.5. All cuts listed in Tables 10.4 and 10.6, except for cuts on the
primary Kalman track start position, are applied.
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Figure 10.11: Plot of the primary Kalman track end position in detector X and Y
coordinates for the negative population. Note the logarithmic color axis. Red lines
are drawn at the cut location for the end position; candidates outside the red box are
rejected. Simulated signal is shown on the left; cosmic background data is shown on the
right. The simulated signal is unoscillated. Each population is scaled to the expected
levels for 2.76× 1020 POT. Data quality cuts requiring no missing DCMs and that the
detector is synced are applied. The primary Kalman track is required to have a ReMId
value greater than 0.5. All cuts listed in Tables 10.4 and 10.5, except for cuts on the
primary Kalman track end position, are applied.
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Figure 10.12: Plot of the primary Kalman track end position for the negative popula-
tion. The horizontal axis is distance, in cm, from the back of the active detector. The
vertical axis is the detector X coordinate. Note the logarithmic color axis. Red lines
are drawn at the cut location for the end position; candidates outside the red lines are
rejected. Simulated signal is shown on the left; cosmic background data is shown on the
right. The simulated signal is unoscillated. Each population is scaled to the expected
levels for 2.76× 1020 POT. Data quality cuts requiring no missing DCMs and that the
detector is synced are applied. The primary Kalman track is required to have a ReMId
value greater than 0.5. All cuts listed in Tables 10.4 and 10.5, except for cuts on the
primary Kalman track end position, are applied.
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Figure 10.13: Plot of the primary Kalman track end position for the negative popula-
tion. The horizontal axis is distance, in cm, from the back of the active detector. The
vertical axis is the detector Y coordinate. Note the logarithmic color axis. Red lines
are drawn at the cut location for the end position; candidates outside the red lines are
rejected. Simulated signal is shown on the left; cosmic background data is shown on the
right. The simulated signal is unoscillated. Each population is scaled to the expected
levels for 2.76× 1020 POT. Data quality cuts requiring no missing DCMs and that the
detector is synced are applied. The primary Kalman track is required to have a ReMId
value greater than 0.5. All cuts listed in Tables 10.4 and 10.5, except for cuts on the
primary Kalman track end position, are applied.
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Figure 10.14: Plot of the primary Kalman track end position in detector X and Y
coordinates for the positive population. Note the logarithmic color axis. Red lines
are drawn at the cut location for the end position; candidates outside the red box are
rejected. Simulated signal is shown on the left; cosmic background data is shown on the
right. The simulated signal is unoscillated. Each population is scaled to the expected
levels for 2.76× 1020 POT. Data quality cuts requiring no missing DCMs and that the
detector is synced are applied. The primary Kalman track is required to have a ReMId
value greater than 0.5. All cuts listed in Tables 10.4 and 10.6, except for cuts on the
primary Kalman track end position, are applied.
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Figure 10.15: Plot of the primary Kalman track end position for the positive population.
The horizontal axis is distance, in cm, from the back of the active detector. The vertical
axis is the detector X coordinate. Note the logarithmic color axis. Red lines are drawn
at the cut location for the end position; candidates outside the red lines are rejected.
Simulated signal is shown on the left; cosmic background data is shown on the right.
The simulated signal is unoscillated. Each population is scaled to the expected levels for
2.76 × 1020 POT. Data quality cuts requiring no missing DCMs and that the detector
is synced are applied. The primary Kalman track is required to have a ReMId value
greater than 0.5. All cuts listed in Tables 10.4 and 10.6, except for cuts on the primary
Kalman track end position, are applied.
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Figure 10.16: Plot of the primary Kalman track end position for the positive population.
The horizontal axis is distance, in cm, from the back of the active detector. The vertical
axis is the detector Y coordinate. Note the logarithmic color axis. Red lines are drawn
at the cut location for the end position; candidates outside the red lines are rejected.
Simulated signal is shown on the left; cosmic background data is shown on the right.
The simulated signal is unoscillated. Each population is scaled to the expected levels for
2.76 × 1020 POT. Data quality cuts requiring no missing DCMs and that the detector
is synced are applied. The primary Kalman track is required to have a ReMId value
greater than 0.5. All cuts listed in Tables 10.4 and 10.6, except for cuts on the primary
Kalman track end position, are applied.
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Figure 10.17: Plot of the number of candidates that have uncontained secondary tracks
(plotted with value 0) and have no uncontained secondary tracks (plotted with value
1). A red line is drawn at between the two values; those candidates with value 0 are
rejected. Simulated signal is shown in black; cosmic background data is shown in blue.
The simulated signal is unoscillated. Each population is scaled to the expected levels for
2.76 × 1020 POT. Data quality cuts requiring no missing DCMs and that the detector
is synced are applied. The primary Kalman track is required to have a ReMId value
greater than 0.5. All cuts listed in Tables 10.4, 10.5 and 10.6, except for the cut requiring
secondary tracks are contained, are applied.

For well-contained neutrino interactions, no Kalman tracks from the interaction

should touch the detector edge. Therefore, we require that all 2D and 3D Kalman

tracks associated with the slice pass containment cuts on their start and end positions.

This also helps to remove a particular type of reconstruction failure for cosmic muons.

Sometimes a cosmic muon is reconstructed as multiple tracks. If an interior section

has the highest ReMId value, it can look contained. However, by requiring that all the

Kalman tracks within the slice are contained, this failure mode can be rejected. Figure

10.17 displays the power of this cut.

νµ CC interactions are usually well-aligned with the beam direction. Cosmic ray

background is typically not well-aligned with the beam direction. The fraction of trans-

verse momentum of a νµ CC interaction relative to the beam should not be large. To

calculate the fraction of transverse momentum, we first make a unit vector that corre-

sponds to the difference between the average position of the slice and the start position
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Figure 10.18: Plot of the transverse momentum fraction for the negative population. A
red line is drawn at 0.65. Candidates with values more than 0.65 are rejected. Simulated
signal is shown in black; cosmic background data is shown in blue. The simulated signal
is unoscillated. Each population is scaled to the expected levels for 2.76 × 1020 POT.
Data quality cuts requiring no missing DCMs and that the detector is synced are applied.
The primary Kalman track is required to have a ReMId value greater than 0.5. All cuts
listed in Tables 10.4 and 10.5, except for the cut on the transverse momentum fraction,
are applied.

of the primary Kalman track. The sine of this vector relative to the beam direction

represents the fraction of the momentum of the visible interaction which is transverse

to the beam. We require that this fraction is less than 0.65. Figure 10.18 shows the

effect of this cut for the negative population; Figure 10.19 shows the effect of this cut

for the positive population.
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Figure 10.19: Plot of the transverse momentum fraction for the positive population. A
red line is drawn at 0.65. Candidates with values more than 0.65 are rejected. Simulated
signal is shown in black; cosmic background data is shown in blue. The simulated signal
is unoscillated. Each population is scaled to the expected levels for 2.76 × 1020 POT.
Data quality cuts requiring no missing DCMs and that the detector is synced are applied.
The primary Kalman track is required to have a ReMId value greater than 0.5. All cuts
listed in Tables 10.4 and 10.6, except for the cut on the transverse momentum fraction,
are applied.
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Cosmic rejection can be improved by using information from a second, independent

tracking algorithm. Any tracking algorithm can have failure modes; by using two dif-

ferent algorithms which have different strengths and weaknesses, one is more robust to

the failure modes of any particular tracker. For this analysis, we use information from

CosmicTrack (Section 7.5) as well as KalmanTrack (Section 7.4). CosmicTrack creates,

at most, one 3D track per slice. The track is entirely linear and does not follow curves.

The end closest to the top of the detector is defined as the start of the track; the end

farthest from the top of the detector is defined as the end of the track. For cosmic ray

tracks, these definitions of start and end of the track are usually correct. Figure 10.20

diagrams how CosmicTrack defines track start and end positions.



174

(a) Common topologies for cosmic ray muons, on the left, and νµ CC interactions, on the
right.

(b) Red lines represent reconstructed Cosmic tracks for the topologies in Figure 10.20a. The
start and end positions defined by CosmicTrack are labeled.

Figure 10.20: Diagram of common topologies. The left side of Figure 10.20a shows two
cosmic ray muons, entering from the top of the detector. The right side of Figure 10.20a
shows two cases of νµ CC interactions. Figure 10.20b displays the reconstructed tracks
CosmicTrack would create, given the underlying topologies. CosmicTrack always defines
the start of the track as the side with the largest Y position. The end is defined as the
side with the smallest Y position. Note that the choice of start and end is incorrect for
the νµ CC interaction on the right.
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Figure 10.21: The track direction is projected backwards from the start of the track
until it intersects a detector edge. The distance between the edge and the start of the
track is called the backwards projected distance.

A useful cut can be made on the backwards projected distance of the Cosmic track.

The backwards projected distance is calculated by projecting the track direction back-

wards from the start position to the edge of the detector. See Figure 10.21 for a diagram

of this variable. We require that this distance is more than 50 cm. Figure 10.22 displays

the effect of this cut on the negative population; Figure 10.23 shows the effect of this

cut for the positive population.
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Figure 10.22: Plot of the backwards projected distance to the detector edge for the
CosmicTrack. This is plot only includes the negative population. Note the logarithmic
vertical axis. A red line is drawn at backwards projected distance equal to 50 cm.
Candidates with values less than 50 cm are rejected. Simulated signal is shown in
black; cosmic background data is shown in blue. The simulated signal is unoscillated.
Each population is scaled to the expected levels for 2.76× 1020 POT. Data quality cuts
requiring no missing DCMs and that the detector is synced are applied. The primary
Kalman track is required to have a ReMId value greater than 0.5. All cuts listed in
Tables 10.4 and 10.5, except for the cut on backwards projected distance, are applied.
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Figure 10.23: Plot of the backwards projected distance to the detector edge for the
CosmicTrack. This is plot only includes the positive population. Note the logarithmic
vertical axis. A red line is drawn at backwards projected distance equal to 50 cm.
Candidates with values less than 50 cm are rejected. Simulated signal is shown in
black; cosmic background data is shown in blue. The simulated signal is unoscillated.
Each population is scaled to the expected levels for 2.76× 1020 POT. Data quality cuts
requiring no missing DCMs and that the detector is synced are applied. The primary
Kalman track is required to have a ReMId value greater than 0.5. All cuts listed in
Tables 10.4 and 10.6, except for the cut on backwards projected distance, are applied.
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Figure 10.24: The horizontal axis is the backwards projected distance in cm of the
Cosmic track. The vertical axis is the cos θNuMI for the Cosmic track, where θNuMI is
the angle between the Cosmic track and the direction of the neutrino beam. This plot is
only for the negative population. Note the logarithmic color axis. Red lines are drawn
to define the cut region; candidates inside the red lines are rejected. Simulated signal
is shown on the left; cosmic background data is shown on the right. The simulated
signal is unoscillated. Each population is scaled to the expected levels for 2.76 × 1020

POT. Data quality cuts requiring no missing DCMs and that the detector is synced are
applied. The primary Kalman track is required to have a ReMId value greater than 0.5.
All cuts listed in Tables 10.4 and 10.5, except for cuts on the 2D space of the backwards
projected distance of the Cosmic track and the cosine between the Cosmic track and
the beam direction, are applied.

Many cosmic background candidates can be rejected when one cuts in the 2D space

of the backwards projected distance of the Cosmic track and the direction cosine between

the Cosmic track and the beam direction. The exact values of box and triangle cuts

vary between the positive and negative populations. See Figure 10.24 for a pictorial

representation of the cut for the negative population; see Figure 10.25 for the positive

population.
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Figure 10.25: The horizontal axis is the backwards projected distance in cm of the
Cosmic track. The vertical axis is the cos θNuMI for the Cosmic track, where θNuMI is
the angle between the Cosmic track and the direction of the neutrino beam. This plot
is only for the positive population. Note the logarithmic color axis. Red lines are drawn
to define the cut region; candidates inside the red lines are rejected. Simulated signal
is shown on the left; cosmic background data is shown on the right. The simulated
signal is unoscillated. Each population is scaled to the expected levels for 2.76 × 1020

POT. Data quality cuts requiring no missing DCMs and that the detector is synced are
applied. The primary Kalman track is required to have a ReMId value greater than 0.5.
All cuts listed in Tables 10.4 and 10.6, except for cuts on the 2D space of the backwards
projected distance of the Cosmic track and the cosine between the Cosmic track and
the beam direction, are applied.
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10.3.2 Near Detector Slice Cuts

The near detector event selection doesn’t need to reject cosmic background; the flux

that reaches the underground near detector is small. However, the near detector does

have a more complicated geometry than the far detector. The near detector is much

smaller than the far detector; this makes proportionally more of the detector near an

edge. Also, the near detector has a muon catcher with steel plates. The muon catcher

has coarser resolution than the active portion of the detector. Finally, the muon catcher

is shorter in height than the active region. We avoid events which travel through the

uninstrumented notch. For more information on the near and far detectors, see Section

5.1. These differences must be taken into account when creating containment cuts to

optimize neutrino energy resolution. Slice cuts which are applied to the near detector

population are listed in Table 10.7.

For basic quality cuts, we required that the slice has at least one 3D Kalman track, at

least one Cosmic track, at least one valid ReMId object14, and a valid neutrino energy15.

These are all required for later cuts, except the Cosmic track. This is simply required

to mirror the reconstruction requirements for the far detector population. We do not

require that the mask created by Live Geometry is valid; this masking is only done for

the far detector. For the near detector, we only use events where the entire detector is

active.

Table 10.7: Near Detector Slice Cuts

Cut Description

Number of 3D Kalman

Tracks 6= 0

Require at least one 3D Kalman track

Number of Cosmic Tracks

6= 0

Require at least one Cosmic track

Continued on next page

14Vector index isn’t equal to 999, a default value used when no ReMId objects are found. This might
happen, for instance, if no 3D Kalman track existed.

15Neutrino energy isn’t equal to -5, a default value used when no neutrino energy could successfully
be calculated. This might happen, for instance, if no 3D Kalman track existed.



181

Table 10.7 – continued from previous page

Cut Description

Number of ReMId Objects

6= 0

Require at least one ReMId value

Best ReMId Index 6= 999 Require the vector index of highest ReMId track is valid

Neutrino Energy 6= -5 Require a valid neutrino energy value

No. Slice Hits > 20 Slice has more than 20 hits

No. Slice Cont. Planes >

4

Slice has more than 4 contiguous planes

No. Cells From Edge > 2

for Slice

Slice is more than 2 cells away from XY edge of detector

First Slice Plane > 2 First plane of slice is not plane 0, 1 or 2

Last Slice Plane < 211 Last plane of slice is not plane 211, 212 or 213, last active

planes of detector

StartZ < 1150 Track z start position less than 1150 cm

EndZ < 1275 or

TranY < 55

Track z end position less than 1275 cm or has a y position

less than 55 cm when crossing the transition plane

Proj. Forward Cell > 5 Projected forward number of cells to edge of detector from

end of track is more than 5

Proj. Backwards Cell > 8 Projected backwards number of cells to edge of detector from

start of track is more than 8

Off-track Energy in Muon

Catcher < 0.03 GeV

Visible energy in transition plane and muon catcher not as-

sociated with the muon track is less than 0.03 GeV

To ensure the slice isn’t junk, we require that the slice has more than 20 hits. To

remove primarily vertical events, which might be cosmic background, we require that

the slice has hits in a least 5 contiguous planes.

For containment, we want to make sure that the slice doesn’t have hits in the outside

layers of the detector. We require that the slice hit closest to a detector X or Y edge is

more than 2 cells away from the edge. We require that the plane number of the lowest

detector Z slice hit is not 0, 1 or 2, the first three planes in the detector. We require

that the plane number of the highest detector Z slice hit is not 211, 212 or 213, the last
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Figure 10.26: Diagram of the notch between the active region and the muon catcher
region of the near detector. We require that muon tracks do not travel through the air
gap of the notch.

three active planes of the detector. These planes are in the muon catcher. The start

position of the 3D Kalman track with the highest ReMId value must have a detector Z

value of less than 1,150 cm. This keeps the vertex of the event in the fully active region

of the detector.

The fully active region of the detector is taller than the muon catcher and we do

not want the muon track to leave the detector at this transition. See Figure 10.26 for

a diagram of the shorter muon catcher in the near detector. We require that either the

3D Kalman track with the highest ReMId value has a stop detector Z position less than

1,275 cm or that the detector Y position in the transition plane is less than 55 cm. The

transition plane is defined as the last full-height plane in the fully active region before

the muon catcher.

Finally, we require that the start and end position of the 3D Kalman track with the

highest ReMId value are contained. To do this, we project the track forwards from the

end of the track along the direction of the track. We count the number of cells crossed

by this projection before it intersects the edge of the detector. The number of cells

crossed is required to be more than 5. We also project the track direction backwards

from the start of the track and count the number of cells crossed before the edge of the

detector. This number of cells must be less than 8.

The neutrino energy reconstruction does not attempt to account for hadronic energy

loss in the muon catcher. We make a cut to ensure that the hadronic energy is mostly

contained in the fully active region. We sum the visible energy of the slice not associated

with the muon track in the transition plane and muon catcher. This energy must be less
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than 0.03 GeV. This allows for a few noise hits in the muon catcher but not significant

hadronic energy.

10.4 Analysis Cuts

Now that one has a population of contained slices, one can make the final analysis

cuts, listed in Table 10.8. To be considered a νµ CC candidate, we require the primary

Kalman track to have a ReMId value greater than 0.7. This ensures that the event has

a muon-like track. For more information on Kalman tracks, see Section 7.4. For more

information on ReMId, see Section 7.6. Figure 7.3 demonstrates the power of this cut.

Within the contained, νµ CC population, we make one further division. Using

QePId, which identifies quasielastic(QE)-like events, we separate candidates into a QE

and nonQE population. For more information on QePId, see Section 7.8. To be con-

sidered QE, the slice must have either one or two Kalman tracks. One of these Kalman

tracks must be 3D; the other can be either 2D or 3D. For the one track sample, we

require a QePId value greater than 0.45. For the two track sample, the QePId value

must be greater than 0.4. Figure 7.4 shows the power of this cut for the one track

sample; Figure 7.5 is for the two track sample.

Table 10.8: Analysis Cuts

Cut Description

Highest ReMId Value

> 0.7

The track with the highest ReMId value is consistent with a

muon hypothesis

QE Population If the slice is consistent with a QE hypothesis, use in QE

population. Otherwise, use in nonQE population. 16

16 The QE population consists of two samples. For slices with precisely one 3D Kalman track and no
other Kalman tracks, require the QePId value to be > 0.45. Otherwise, for slices with one 3D Kalman
track and precisely one other Kalman track (either 2D or 3D), require the QePId value to be > 0.4.



Chapter 11

Expected Signal and Background

Having defined an event selection procedure in the previous chapter, we can now evaluate

how many signal and background events we expect. The far detector data corresponds

to 3.45 × 1020 POT with variable detector configurations. Our predicted results are

scaled to this exposure.

11.1 Signal Events

Maximal mixing is defined as θ23 = π/4. If θ23 is slightly larger or smaller in value, we

would expect slightly more neutrino interactions, hence the name “maximal”. Max-

imal mixing is consistent with the world’s current understanding of the oscillation

parameters[1]. See Section 4.1.2 for more information about the current measurements

of the oscillation parameters. We will use it as a convenient approximation of what

we expect to see in our data, along with setting |∆m2
32| = 2.4 × 10−3 eV2. If no neu-

trino oscillations occurred, we would expect many events in each analysis population.

However, in the case of maximal mixing, we would expect fewer events.

Table 11.1 lists the predicted event counts for each population for no neutrino os-

cillations and maximal mixing. To be counted, the event must have a reconstructed

neutrino energy between 0 and 5 GeV. This analysis can easily determine if neutrino

oscillations occur by simply noting if our total event count is less than that expected

with no oscillation, roughly 200 events.

Figure 11.1 displays the different energy spectra expected for the assumptions of no

184
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Table 11.1: Predicted and measured event counts for the far detector. The total POT
for the far detector is 3.45×1020 POT and this corresponds to variable detector configu-
rations. The counts for each population only include events with reconstructed neutrino
energy between 0 and 5 GeV. The predicted total event count for each population under
the hypothesis of no neutrino oscillations is given first. The next line correspond to the
hypothesis of maximal mixing, setting θ23 = π/4 and |∆m2

32| = 2.4× 10−3 eV2 as well
as using the oscillation parameters listed in Table 4.2.

QE NonQE

Total Events (no osc.) 89.2 122.3

Total Events (max. mix) 14.3 24.2

neutrino oscillations and maximal mixing. The measurement of the dip in the energy

spectra seen around 1.5 GeV allows us to determine θ23 and |∆m2
32|. The depth of

the dip tells us the value of θ23 and the location of the dip along the horizontal axis

tells us the value of |∆m2
32|. Having good neutrino energy resolution and a precise

understanding of the absolute energy scale are key to measuring these parameters.
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(b) NonQE Population

Figure 11.1: Plot of the reconstructed neutrino energy in GeV. Figure 11.1a is for
the QE population in the far detector; Figure 11.1b is for the nonQE population. The
blue line represents the predicted spectrum from simulation if no neutrino oscillations
occurred. The red line represents the predicted spectrum from simulation under the
assumption of maximal mixing. For maximal mixing, the simulation is oscillated using
the values listed in Table 4.2 and setting θ23 = π/4 and |∆m2

32| = 2.4× 10−3 eV2. The
simulation is scaled down to match the data POT, 3.45× 1020 POT.
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11.2 Cosmic Ray Background

Cosmic ray interactions at the far detector are an important source of background for

this analysis. By requiring that an event is in time with a NuMI beam spill, we reduce

this background by a factor of 105. With our selection cuts (Section 10.3.1), especially

the containment cuts and cuts requiring that the event is aligned with the NuMI beam

direction, we reduce this background by a further factor of 107.

This section discusses how the remaining cosmic ray background is modeled. The

cosmic ray background that we examined which passes all the analysis cuts is relatively

small. If we studied enough cosmic background events, the predicted cosmic background

shape for the reconstructed neutrino energy should be relatively smooth. We did not

want the analysis to use a spiked cosmic background shape determined by the accidents

of low statistics. Instead of looking at an even larger statistics sample of cosmic ray

background, we fit a smooth shape to the reconstructed neutrino energy for the cosmic

ray background seen. We then determined a normalization for this shape and used that

as our predicted cosmic ray background.

This analysis has two source of data which represent the cosmic background. First,

it has data from cosmic trigger files. These readout windows are written at a rate of

10 or 40 Hz, depending on the running period. Initially, 40 Hz was used to rapidly

acquire statistics useful for the calibration procedure. Later, 10 Hz was used to reduce

the amount of data requiring transfer to and storage at Fermilab. A filter is used to

ensure that these readout windows do not include beam spills.

The second source is from the out-of-time data in the NuMI trigger files. These

readout windows correspond to NuMI beam spills and contain the neutrino interaction

data for this analysis. However, the beam spill is only 10 µs long, while the readout

window is 500 µs long. Using appropriate cuts to remove the beam spill, one can treat

the out-of-time data as a cosmic background estimate.

The cosmic trigger files have the advantage of much larger statistics - the NuMI

triggers occur at 1.33 Hz. Large statistics is crucial for understanding the shape and

characteristics of the cosmic ray background. However, the out-of-time NuMI data

is useful because it exactly replicates the running conditions of the NuMI data. For

instance, by having a mix of 40 Hz and 10 Hz running in the cosmic trigger files, some
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detector configurations are oversampled compared to others. Also, the NuMI beam

might have only sent beam spills for part of a run, but we would have cosmic trigger

files for the whole run. With effort, these differences could be mitigated, but in the

interest of time, they were not.

A large statistics sample of cosmic trigger files was processed. For every run used

in the analysis, the cosmic trigger files corresponding to every 4th subrun was used.

More subruns could have been processed for a larger sample, but were not due to time

constraints. The cosmic ray plots presented in Chapter 10 used this dataset.

Normalizing to the expected livetime of the analysis, reconstructed energy spectra

for the cosmic ray background for each population were made using the cosmic trigger

data. Although the statistics of the initial sample was large, the number of cosmic ray

events which pass the analysis event selection was relatively small. Therefore, a fit was

made to the shape of the energy spectrum for each population. This fit was then used

to create a histogram for each population representing the shape of the expected cosmic

ray background. The fit used a Landau distribution with a constant offset. Figure

11.2 displays the cosmic trigger data for the QE population, along with the fit and the

histogram created using the fit. Figure 11.3 is for the nonQE population.

Having determined the shape of the cosmic ray background for each population, we

must determine a method of normalizing the shape. First, we used the relative size of

the events in the QE population and nonQE population seen in the cosmic trigger data

to normalize the shape histograms. Looking at all the cosmic ray background events

which passed our analysis cuts, 20% were classified as part of the QE population and

80% were classified as part of the nonQE population. Therefore, the QE histogram was

normalized to have an area of 0.2, while the nonQE histogram was normalized to have

an area of 0.8.

The cosmic trigger data could be used to determine an absolute normalization, but

it suffers from not exactly matching the running conditions seen in the analysis. Instead,

the out-of-time NuMI trigger data was used. This sample had 80 total background events

which passed the analysis cuts. It was decided that 80 was a large-enough number to

have a small-enough statistical error for the absolute normalization; however, it wasn’t

large enough to use for the relative normalizations between samples.

The 80 events in the out-of-time NuMI trigger data was multiplied by a scale factor
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that accounted for the roughly 20-to-1 longer livetime seen in the out-of-time data

compared to the amount of livetime used for the in-time sample.1 This resulted in an

expectation of 3.4 cosmic ray background events for the analysis. For the QE sample,

the expected cosmic ray background is 0.7 events. For the nonQE sample, the expected

cosmic ray background is 2.7 events.

1The readout window is 500 µs long and the beam spill is 10 µs long. We use a 12 µs cut to define
the beam spill to ensure the beam spill is fully captured. The first and last 52 µs of the readout window
is not used because physics interactions might have only been partially captured by the readout window.
9 µs on either side of the beam spill are not used for either the in-time or out-of-time sample to ensure
there is no overlap. For far detector data taken before October 2014, a second beam timing window was
also used. After all these effects are taken into account, the out-of-time exposure is roughly 20 times
longer than the in-time data.
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0.10 Cosmic Trigger Data

Landau Fit

(a) Plot of the expected cosmic ray background, as determined using the cosmic trigger files.
A fit was made of this data, using a Landau distribution and a constant offset. The fit is
drawn in red.
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(b) Histogram created using the fit from Figure 11.2a.

Figure 11.2: Plot of the expected cosmic ray background for the QE population in the
far detector. Figure 11.2a displays the data from the cosmic trigger files and the fit to
the data. Figure 11.2b displays the histogram created from the fit.
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(a) Plot of the expected cosmic ray background, as determined using the cosmic trigger files.
A fit was made of this data, using a Landau distribution and a constant offset. The fit is
drawn in red.
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Figure 11.3: Plot of the expected cosmic ray background for the nonQE population in
the far detector. Figure 11.2a displays the data from the cosmic trigger files and the fit
to the data. Figure 11.2b displays the histogram created from the fit.
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11.3 Signal and Background Events

We have now discussed the expected signal and cosmic ray background event counts

for this analysis. We can also count the expected number of events in our analysis

from neutrino interactions that are not νµ CC interactions. These are primarily NC

interactions. This count is done using the extrapolated far detector prediction, discussed

in Chapter 13. Table 11.2 lists the total expected events under the assumptions of no

neutrino oscillations as well as maximal mixing. It also lists the expected number of

background events for each sample under the assumption of maximal mixing. For the

QE population, we expect about 14 total events, with 1 background event. For the

nonQE population, we expect about 24 events with 5 background events.

Table 11.2: Predicted and measured event counts for the far detector. The total POT
for the far detector is 3.45×1020 POT and this corresponds to variable detector configu-
rations. The counts for each population only include events with reconstructed neutrino
energy between 0 and 5 GeV. The predicted total event count for each population under
the hypothesis of no neutrino oscillations is given first. The rest of the lines correspond
to the hypothesis of maximal mixing, setting θ23 = π/4 and |∆m2

32| = 2.4×10−3 eV2 as
well as using the oscillation parameters listed in Table 4.2. The expected background
event counts are given for each population, with neutrino interactions that are not νµ
CC interactions and cosmic ray backgrounds separated.

QE NonQE

Total Events (no osc.) 89.2 122.3

Total Events (max. mix) 14.3 24.2

Neutrino Background 0.2 2.1

Cosmic Ray Background 0.7 2.7



Chapter 12

Near Detector Comparisons

Having defined a set of cuts to select events for analysis (in Chapter 10), we can now

compare the data in the near detector to our simulation for the near detector. The

near detector simulation models multiple beam neutrino interactions per spill, including

interactions occurring in the surrounding rock that enter the detector. The simulation

uses two different noise models; a more complicated one for electronic channels with

energy depositions from physics interactions and a simple, histogram-based one for

electronic channels without energy from physics interactions. There is no cosmic ray

background included in the near detector simulation, since the background rate is so

low. For more information on the simulation, see Chapter 6.

If the distributions comparing the near detector data and simulation align well, we

can have some confidence in the framework and process we are using. Distributions that

disagree can point to areas of future work and investigation.

12.1 Contained Slices

The first set of plots looks at characteristics of the slices which pass our selection criteria.

The criteria applied include file selection, detailed in Section 10.1, spill cuts, listed

in Section 10.2, and near detector slice cuts, from Section 10.3.2. The analysis level

cuts, Section 10.4, have not been applied at this stage. Primarily, this means that the

ReMId cut, used to identify slices with a reconstructed muon, is not present. For more

information on slices, see Section 7.3.
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By looking at lower-level plots before our final analysis cuts, we can understand

if the detector and simulation are working on the most basic level. We can evaluate

if the geometry of the detector is simulated correctly. Also, by working from lower-

level plots to higher-level analysis plots, we have a better chance of understanding any

discrepancies seen in the final plots. We will understand what lower-level quantities

agree and what could be the source of the problem.

Figure 12.1 plots the number of hits for each slice. This agrees fairly well, both

in shape and overall normalization. The next three plots, Figures 12.2, 12.3 and 12.4,

show the minimum X, Y and Z detector hit positions for the slice. Figures 12.5, 12.6

and 12.7 show the maximum X, Y and Z detector hit positions for the slice. These show

that we understand the distribution of activity in our detector fairly well, although we

consistently see differences at the X and Y the edges of the detector. This might point

to more compact activity in our detector than our simulation suggests.
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Figure 12.1: Plot of the number of hits in a slice for the near detector. The simulation
distribution is displayed as a red line. The data distribution is drawn as black points
with statistical error bars. The bottom plot displays the ratio between the data and
simulation distributions. The simulation is scaled down by a factor of 6 to 1.65× 1020

POT, the exposure for the near detector data. All cuts listed in Sections 10.1, 10.2 and
10.3.2 are applied. The cuts listed in Section 10.4, notably a cut to select slices with
muons, are not applied.
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Figure 12.2: Plot of the minimum position in the detector X coordinate in cm for hits
in a slice for the near detector. The simulation distribution is displayed as a red line.
The data distribution is drawn as black points with statistical error bars. The bottom
plot displays the ratio between the data and simulation distributions. The simulation
is scaled down by a factor of 6 to 1.65× 1020 POT, the exposure for the near detector
data. All cuts listed in Sections 10.1, 10.2 and 10.3.2 are applied. The cuts listed in
Section 10.4, notably a cut to select slices with muons, are not applied.
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Figure 12.3: Plot of the minimum position in the detector Y coordinate in cm for hits
in a slice for the near detector. The simulation distribution is displayed as a red line.
The data distribution is drawn as black points with statistical error bars. The bottom
plot displays the ratio between the data and simulation distributions. The simulation
is scaled down by a factor of 6 to 1.65× 1020 POT, the exposure for the near detector
data. All cuts listed in Sections 10.1, 10.2 and 10.3.2 are applied. The cuts listed in
Section 10.4, notably a cut to select slices with muons, are not applied.
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Figure 12.4: Plot of the minimum position in the detector Z coordinate in cm for hits
in a slice for the near detector. The simulation distribution is displayed as a red line.
The data distribution is drawn as black points with statistical error bars. The bottom
plot displays the ratio between the data and simulation distributions. The simulation
is scaled down by a factor of 6 to 1.65× 1020 POT, the exposure for the near detector
data. All cuts listed in Sections 10.1, 10.2 and 10.3.2 are applied. The cuts listed in
Section 10.4, notably a cut to select slices with muons, are not applied.
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Figure 12.5: Plot of the maximum position in the detector X coordinate in cm for hits
in a slice for the near detector. The simulation distribution is displayed as a red line.
The data distribution is drawn as black points with statistical error bars. The bottom
plot displays the ratio between the data and simulation distributions. The simulation
is scaled down by a factor of 6 to 1.65× 1020 POT, the exposure for the near detector
data. All cuts listed in Sections 10.1, 10.2 and 10.3.2 are applied. The cuts listed in
Section 10.4, notably a cut to select slices with muons, are not applied.
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Figure 12.6: Plot of the maximum position in the detector Y coordinate in cm for hits
in a slice for the near detector. The simulation distribution is displayed as a red line.
The data distribution is drawn as black points with statistical error bars. The bottom
plot displays the ratio between the data and simulation distributions. The simulation
is scaled down by a factor of 6 to 1.65× 1020 POT, the exposure for the near detector
data. All cuts listed in Sections 10.1, 10.2 and 10.3.2 are applied. The cuts listed in
Section 10.4, notably a cut to select slices with muons, are not applied.
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Figure 12.7: Plot of the maximum position in the detector Z coordinate in cm for hits
in a slice for the near detector. The simulation distribution is displayed as a red line.
The data distribution is drawn as black points with statistical error bars. The bottom
plot displays the ratio between the data and simulation distributions. The simulation
is scaled down by a factor of 6 to 1.65× 1020 POT, the exposure for the near detector
data. All cuts listed in Sections 10.1, 10.2 and 10.3.2 are applied. The cuts listed in
Section 10.4, notably a cut to select slices with muons, are not applied.
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Figure 12.8: Plot of the number of 3D Kalman tracks in a slice for the near detector.
The simulation distribution is displayed as a red line. The data distribution is drawn
as black points with statistical error bars. The bottom plot displays the ratio between
the data and simulation distributions. The simulation is scaled down by a factor of 6
to 1.65× 1020 POT, the exposure for the near detector data. All cuts listed in Sections
10.1, 10.2 and 10.3.2 are applied. The cuts listed in Section 10.4, notably a cut to select
slices with muons, are not applied.

12.2 Contained Tracks

The next set of plots looks at characteristics of the 3D Kalman tracks which pass our

selection criteria. The criteria applied include file selection, detailed in Section 10.1,

spill cuts, listed in Section 10.2, and near detector slice cuts, from Section 10.3.2. The

analysis level cuts, Section 10.4, have not been applied at this stage. Primarily, this

means that the ReMId cut, used to identify slices with a reconstructed muon, is not

present. For more information on Kalman tracks, see Section 7.4. For more information

on ReMId, see Section 7.6.

By understanding the tracks that we will apply a ReMId cut to, we can better un-

derstand any features seen in the ReMId selection. First, we can look at the multiplicity

of the tracks. Figure 12.8 shows the number of reconstructed 3D Kalman tracks for each
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slice. We see that the data has more single track events (which tend to be defined as

QE) and slightly fewer 2 and 3 track events (which tend to be defined as nonQE). This

should be kept in mind when we later make QE and nonQE selections.

The rest of the contained track plots have an entry only for the primary 3D Kalman

track, defined as the track with the highest ReMId value. Figure 12.9 shows the number

of hits on the primary track; Figure 12.10 shows the track length distribution for the

primary tracks. We see that, before selecting for muon tracks, the data has fewer short

primary tracks than the simulation predicts. Figures 12.11, 12.12 and 12.13, show the

X, Y and Z detector coordinate positions for start of the primary track. Figures 12.14,

12.15 and 12.16, show the X, Y and Z detector coordinate positions for end of the

primary track. These plots show that we are modeling the track geometry fairly well.

There are a few differences between the data and the simulation that could probably be

improved with a detector geometry simulation that matched the physical detector even

better than the one we are using. We can also look at the initial track direction. Figures

12.17, 12.18 and 12.19 plot the cosine of the angle between the initial track direction and

the detector X, Y and Z axes. Figure 12.20 is the cosine of the angle between the initial

track direction and the NuMI beam direction. In general, these show good agreement

and give us confidence that we are modeling the track angular distributions well.
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Figure 12.9: Plot of the number of hits on the 3D Kalman track with the highest
ReMId value in a slice for the near detector. The simulation distribution is displayed
as a red line. The data distribution is drawn as black points with statistical error bars.
The bottom plot displays the ratio between the data and simulation distributions. The
simulation is scaled down by a factor of 6 to 1.65×1020 POT, the exposure for the near
detector data. All cuts listed in Sections 10.1, 10.2 and 10.3.2 are applied. The cuts
listed in Section 10.4, notably a cut to select slices with muons, are not applied.
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Figure 12.10: Plot of the length, in cm, of the 3D Kalman track with the highest
ReMId value in a slice for the near detector. The simulation distribution is displayed
as a red line. The data distribution is drawn as black points with statistical error bars.
The bottom plot displays the ratio between the data and simulation distributions. The
simulation is scaled down by a factor of 6 to 1.65×1020 POT, the exposure for the near
detector data. All cuts listed in Sections 10.1, 10.2 and 10.3.2 are applied. The cuts
listed in Section 10.4, notably a cut to select slices with muons, are not applied.
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Figure 12.11: Plot of the start position in the detector X coordinate in cm for the
3D Kalman track with the highest ReMId value in a slice for the near detector. The
simulation distribution is displayed as a red line. The data distribution is drawn as
black points with statistical error bars. The bottom plot displays the ratio between the
data and simulation distributions. The simulation is scaled down by a factor of 6 to
1.65 × 1020 POT, the exposure for the near detector data. All cuts listed in Sections
10.1, 10.2 and 10.3.2 are applied. The cuts listed in Section 10.4, notably a cut to select
slices with muons, are not applied.
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Figure 12.12: Plot of the start position in the detector Y coordinate in cm for the
3D Kalman track with the highest ReMId value in a slice for the near detector. The
simulation distribution is displayed as a red line. The data distribution is drawn as
black points with statistical error bars. The bottom plot displays the ratio between the
data and simulation distributions. The simulation is scaled down by a factor of 6 to
1.65 × 1020 POT, the exposure for the near detector data. All cuts listed in Sections
10.1, 10.2 and 10.3.2 are applied. The cuts listed in Section 10.4, notably a cut to select
slices with muons, are not applied.
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Figure 12.13: Plot of the start position in the detector Z coordinate in cm for the
3D Kalman track with the highest ReMId value in a slice for the near detector. The
simulation distribution is displayed as a red line. The data distribution is drawn as
black points with statistical error bars. The bottom plot displays the ratio between the
data and simulation distributions. The simulation is scaled down by a factor of 6 to
1.65 × 1020 POT, the exposure for the near detector data. All cuts listed in Sections
10.1, 10.2 and 10.3.2 are applied. The cuts listed in Section 10.4, notably a cut to select
slices with muons, are not applied.
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Figure 12.14: Plot of the end position in the detector X coordinate in cm for the
3D Kalman track with the highest ReMId value in a slice for the near detector. The
simulation distribution is displayed as a red line. The data distribution is drawn as
black points with statistical error bars. The bottom plot displays the ratio between the
data and simulation distributions. The simulation is scaled down by a factor of 6 to
1.65 × 1020 POT, the exposure for the near detector data. All cuts listed in Sections
10.1, 10.2 and 10.3.2 are applied. The cuts listed in Section 10.4, notably a cut to select
slices with muons, are not applied.
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Figure 12.15: Plot of the end position in the detector Y coordinate in cm for the
3D Kalman track with the highest ReMId value in a slice for the near detector. The
simulation distribution is displayed as a red line. The data distribution is drawn as
black points with statistical error bars. The bottom plot displays the ratio between the
data and simulation distributions. The simulation is scaled down by a factor of 6 to
1.65 × 1020 POT, the exposure for the near detector data. All cuts listed in Sections
10.1, 10.2 and 10.3.2 are applied. The cuts listed in Section 10.4, notably a cut to select
slices with muons, are not applied.
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Figure 12.16: Plot of the end position in the detector Z coordinate in cm for the
3D Kalman track with the highest ReMId value in a slice for the near detector. The
simulation distribution is displayed as a red line. The data distribution is drawn as
black points with statistical error bars. The bottom plot displays the ratio between the
data and simulation distributions. The simulation is scaled down by a factor of 6 to
1.65 × 1020 POT, the exposure for the near detector data. All cuts listed in Sections
10.1, 10.2 and 10.3.2 are applied. The cuts listed in Section 10.4, notably a cut to select
slices with muons, are not applied.
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Figure 12.17: Plot of cos θX , where θX is the angle between the 3D Kalman track
with the highest ReMId value in a slice and the detector X axis. This plot is for the
near detector populations. The simulation distribution is displayed as a red line. The
data distribution is drawn as black points with statistical error bars. The bottom plot
displays the ratio between the data and simulation distributions. The simulation is
scaled down by a factor of 6 to 1.65 × 1020 POT, the exposure for the near detector
data. All cuts listed in Sections 10.1, 10.2 and 10.3.2 are applied. The cuts listed in
Section 10.4, notably a cut to select slices with muons, are not applied.
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Figure 12.18: Plot of cos θY , where θY is the angle between the 3D Kalman track
with the highest ReMId value in a slice and the detector Y axis. This plot is for the
near detector populations. The simulation distribution is displayed as a red line. The
data distribution is drawn as black points with statistical error bars. The bottom plot
displays the ratio between the data and simulation distributions. The simulation is
scaled down by a factor of 6 to 1.65 × 1020 POT, the exposure for the near detector
data. All cuts listed in Sections 10.1, 10.2 and 10.3.2 are applied. The cuts listed in
Section 10.4, notably a cut to select slices with muons, are not applied.
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Figure 12.19: Plot of cos θZ , where θZ is the angle between the 3D Kalman track
with the highest ReMId value in a slice and the detector Z axis. This plot is for the
near detector populations. The simulation distribution is displayed as a red line. The
data distribution is drawn as black points with statistical error bars. The bottom plot
displays the ratio between the data and simulation distributions. The simulation is
scaled down by a factor of 6 to 1.65 × 1020 POT, the exposure for the near detector
data. All cuts listed in Sections 10.1, 10.2 and 10.3.2 are applied. The cuts listed in
Section 10.4, notably a cut to select slices with muons, are not applied.
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Figure 12.20: Plot of cos θNuMI , where θNuMI is the angle between the 3D Kalman
track with the highest ReMId value in a slice and the NuMI beam direction. This plot is
for the near detector populations. The simulation distribution is displayed as a red line.
The data distribution is drawn as black points with statistical error bars. The bottom
plot displays the ratio between the data and simulation distributions. The simulation
is scaled down by a factor of 6 to 1.65× 1020 POT, the exposure for the near detector
data. All cuts listed in Sections 10.1, 10.2 and 10.3.2 are applied. The cuts listed in
Section 10.4, notably a cut to select slices with muons, are not applied.
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Figure 12.21: Plot of the scattering log-likelihood for the the 3D Kalman track with
the highest ReMId value in a slice. This plot is for the near detector populations. The
simulation distribution is displayed as a red line. The data distribution is drawn as
black points with statistical error bars. The bottom plot displays the ratio between the
data and simulation distributions. The simulation is scaled down by a factor of 6 to
1.65 × 1020 POT, the exposure for the near detector data. All cuts listed in Sections
10.1, 10.2 and 10.3.2 are applied. The cuts listed in Section 10.4, notably a cut to select
slices with muons, are not applied.

12.3 ReMId Inputs

To make our analysis sample, we need to apply a ReMId cut. First, let us understand the

inputs to ReMId. The criteria applied to create our populations include file selection,

detailed in Section 10.1, spill cuts, listed in Section 10.2, and near detector slice cuts,

from Section 10.3.2. The analysis level cuts, Section 10.4, have not been applied at

this stage. Primarily, this means that the ReMId cut, used to identify slices with a

reconstructed muon, is not present. For more information on ReMId and the inputs to

ReMId, see Section 7.6. Each plot has one entry per slice, corresponding to the metric

for the 3D Kalman track with the highest ReMId value in the slice.

By looking at the inputs to ReMId, we will be able to better understand our final
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selected population. Figure 12.10, the track length of the 3D Kalman track with the

highest ReMId value, shown in the previous section, is one input. We already noted

that this plot showed some difference between the data and the simulation. Figures

12.21, 12.22 and 12.23 display the other three inputs to ReMId. We can see that these

distributions do not match perfectly between the data and the simulation. For the

scattering log-likelihood, we see the the peak structure is somewhat different. It is

possible that an improved geometry simulation would help this distribution to agree

better. For the dE/dx log-likelihood, the data shows a different peak and tail shape

from the simulation. Having the absolute calorimetric energy scale set exactly the same

in the data and simulation is key for this distribution to show close agreement. Finally,

the non-hadronic plane fraction shows that the data sees less hadronic contamination

than the simulation. This could point to less hadronic energy or more compact hadronic

energy in the data.

Finally, Figure 12.24 shows the ReMId distribution. The shape of the data and

simulation agree well, except at the very lowest values of ReMId (which correspond to

things that look the least like a muon). However, there is 10% more data than simulation

candidates for most of the ReMId distribution. After making a ReMId cut, the data

population will be larger than the simulation population. A cut at 0.7 is made on this

distribution to select slices with a reconstructed muon for our analysis. The rest of the

plots in this chapter will have this cut applied.
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Figure 12.22: Plot of the dE/dx log-likelihood for the the 3D Kalman track with the
highest ReMId value in a slice. This plot is for the near detector populations. The
simulation distribution is displayed as a red line. The data distribution is drawn as
black points with statistical error bars. The bottom plot displays the ratio between the
data and simulation distributions. The simulation is scaled down by a factor of 6 to
1.65 × 1020 POT, the exposure for the near detector data. All cuts listed in Sections
10.1, 10.2 and 10.3.2 are applied. The cuts listed in Section 10.4, notably a cut to select
slices with muons, are not applied.
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Figure 12.23: Plot of the non-hadronic plane fraction for the the 3D Kalman track
with the highest ReMId value in a slice. This plot is for the near detector populations.
The simulation distribution is displayed as a red line. The data distribution is drawn
as black points with statistical error bars. The bottom plot displays the ratio between
the data and simulation distributions. The simulation is scaled down by a factor of 6
to 1.65× 1020 POT, the exposure for the near detector data. All cuts listed in Sections
10.1, 10.2 and 10.3.2 are applied. The cuts listed in Section 10.4, notably a cut to select
slices with muons, are not applied.
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Figure 12.24: Plot of the ReMId value for the the 3D Kalman track with the highest
ReMId value in a slice. This plot is for the near detector populations. The simulation
distribution is displayed as a red line. The data distribution is drawn as black points
with statistical error bars. The bottom plot displays the ratio between the data and
simulation distributions. The simulation is scaled down by a factor of 6 to 1.65× 1020

POT, the exposure for the near detector data. All cuts listed in Sections 10.1, 10.2 and
10.3.2 are applied. The cuts listed in Section 10.4, notably a cut to select slices with
muons, are not applied.
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Figure 12.25: Plot of the number of hits on the 3D Kalman track with the highest
ReMId value in a slice for the near detector. The simulation distribution is displayed
as a red line. The data distribution is drawn as black points with statistical error bars.
The bottom plot displays the ratio between the data and simulation distributions. The
simulation is scaled down by a factor of 6 to 1.65 × 1020 POT, the exposure for the
near detector data. All cuts listed in Sections 10.1, 10.2 and 10.3.2 are applied. A cut
requiring a ReMId value ≥ 0.7 is also applied.

12.4 νµ CC Sample

Having made a ReMId cut, we now have a sample which is primarily composed of

contained νµ CC interactions. We can look again at the properties of the primary tracks

in this sample and inspect the hadronic component of the slice. The criteria applied to

create our populations include file selection, detailed in Section 10.1, spill cuts, listed in

Section 10.2, and near detector slice cuts, from Section 10.3.2. The analysis level cuts,

Section 10.4, have not been fully applied at this stage. A ReMId cut requiring a value

of greater than 0.7 has been applied, but the samples have not been divided into QE

and non-QE populations. For more information on ReMId, see Section 7.6. Each plot

has one entry per slice. When track properties are plotted, only the 3D Kalman track

with the highest ReMId value, defined as the reconstructed muon track, is used.
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Figure 12.25 shows the number of hits on the primary track; Figure 12.26 shows

the track length distribution for the primary tracks. These shapes disagree somewhat;

we see that the excess data events tend to have short to medium length tracks. For

the longer tracks, the data actually has slightly fewer tracks. Next, we can look at the

properties of the hadronic part of the slice. Figure 12.27 plots the number of hits in the

slice not on the primary track. These hits are defined as the hadronic hits. This plot

shows one of the largest data and simulation discrepancies in the near detector. The

discrepancy and its implications will be discussed further in Section 14.12. We can also

look at the visible calorimetric energy of the hadronic sector. Figure 12.28 plots the

visible energy, in GeV, for the hadronic hits. Figure 12.29 plots the visible energy, in

GeV, associated with hadronic energy in the vertex region of the muon track. These

hadronic energies have not had the fits, discussed in Chapter 9, applied. For more

information on the visible hadronic energy, see Section 9.5. Here, the trend seen in the

number of hadronic hits continues. The data has significantly less hadronic energy than

the simulation.

Average energy per hit can tell us if the energy per hit is modeled correctly. Figure

12.30 displays, for each slice, the total visible energy in GeV divided by the total number

of hits in the slice. Each slice has one entry in the plot. We can see the overall excess

in the data, as well as a slight shift to lower energy per hit. Figure 12.31 plots the total

visible energy in GeV for hits on the muon track divided by the total number of hits

associated with the muon track. Again, each slice has one entry in the plot. We again

see a slight shift to lower energies in the data. This could indicate an offset between

than data and simulation absolute calorimetric energy scale. The hadronic energy sector

has more structure; Figure 12.32 plots the total visible energy in GeV for hits in the

slice not associated with the muon track, divided by the total number of hadronic hits.

Noise hits, which can be reconstructed as part of the hadronic cluster, tend to have

low energy values. Much of the disagreement in the distributions below 0.005 GeV is

probably due to problems in the noise simulation. However, because these hits have

very little energy, the overall effect on the analysis is limited.
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Figure 12.26: Plot of the length, in cm, of the 3D Kalman track with the highest
ReMId value in a slice for the near detector. The simulation distribution is displayed
as a red line. The data distribution is drawn as black points with statistical error bars.
The bottom plot displays the ratio between the data and simulation distributions. The
simulation is scaled down by a factor of 6 to 1.65 × 1020 POT, the exposure for the
near detector data. All cuts listed in Sections 10.1, 10.2 and 10.3.2 are applied. A cut
requiring a ReMId value ≥ 0.7 is also applied.
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Figure 12.27: Plot of the number of hits in the slice not on the 3D Kalman track with
the highest ReMId value for the near detector. The simulation distribution is displayed
as a red line. The data distribution is drawn as black points with statistical error bars.
The bottom plot displays the ratio between the data and simulation distributions. The
simulation is scaled down by a factor of 6 to 1.65 × 1020 POT, the exposure for the
near detector data. All cuts listed in Sections 10.1, 10.2 and 10.3.2 are applied. A cut
requiring a ReMId value ≥ 0.7 is also applied.
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Figure 12.28: Plot of the sum of the visible energy (in GeV) of hits in the slice not on
the 3D Kalman track with the highest ReMId value. This plot is for the near detector
populations. The simulation distribution is displayed as a red line. The data distribution
is drawn as black points with statistical error bars. The bottom plot displays the ratio
between the data and simulation distributions. The simulation is scaled down by a
factor of 6 to 1.65× 1020 POT, the exposure for the near detector data. All cuts listed
in Sections 10.1, 10.2 and 10.3.2 are applied. A cut requiring a ReMId value ≥ 0.7 is
also applied.
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Figure 12.29: Plot of the sum of the visible energy (in GeV) associated with hadronic
energy in the vertex region of the 3D Kalman track with the highest ReMId value. This
plot is for the near detector populations. The simulation distribution is displayed as
a red line. The data distribution is drawn as black points with statistical error bars.
The bottom plot displays the ratio between the data and simulation distributions. The
simulation is scaled down by a factor of 6 to 1.65 × 1020 POT, the exposure for the
near detector data. All cuts listed in Sections 10.1, 10.2 and 10.3.2 are applied. A cut
requiring a ReMId value ≥ 0.7 is also applied.
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Figure 12.30: Plot of the sum of the visible energy (in GeV) for the slice hits divided
by the total number of hits in the slice. Each slice is one entry in the histogram. This
plot is for the near detector populations. The simulation distribution is displayed as
a red line. The data distribution is drawn as black points with statistical error bars.
The bottom plot displays the ratio between the data and simulation distributions. The
simulation is scaled down by a factor of 6 to 1.65 × 1020 POT, the exposure for the
near detector data. All cuts listed in Sections 10.1, 10.2 and 10.3.2 are applied. A cut
requiring a ReMId value ≥ 0.7 is also applied.
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Figure 12.31: Plot of the sum of the visible energy (in GeV) for the hits associated the
3D Kalman track with the highest ReMId value divided by the number of hits associated
with the primary track. Each primary track is one entry in the histogram. This plot is
for the near detector populations. The simulation distribution is displayed as a red line.
The data distribution is drawn as black points with statistical error bars. The bottom
plot displays the ratio between the data and simulation distributions. The simulation
is scaled down by a factor of 6 to 1.65× 1020 POT, the exposure for the near detector
data. All cuts listed in Sections 10.1, 10.2 and 10.3.2 are applied. A cut requiring a
ReMId value ≥ 0.7 is also applied.
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Figure 12.32: Plot of the sum of the visible energy (in GeV) for the slice hits not
associated the 3D Kalman track with the highest ReMId value divided by the number
of hits in the slice not associated with the primary track. Each slice is one entry in the
histogram. This plot is for the near detector populations. The simulation distribution
is displayed as a red line. The data distribution is drawn as black points with statis-
tical error bars. The bottom plot displays the ratio between the data and simulation
distributions. The simulation is scaled down by a factor of 6 to 1.65 × 1020 POT, the
exposure for the near detector data. All cuts listed in Sections 10.1, 10.2 and 10.3.2 are
applied. A cut requiring a ReMId value ≥ 0.7 is also applied.
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QePId Input: Off-track Energy Ratio
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Figure 12.33: Plot of off-track energy ratio for a slice in the near detector. This is
for the one track sample. The simulation distribution is displayed as a red line. The
data distribution is drawn as black points with statistical error bars. The bottom plot
displays the ratio between the data and simulation distributions. The simulation is
scaled down by a factor of 6 to 1.65 × 1020 POT, the exposure for the near detector
data. All cuts listed in Sections 10.1, 10.2 and 10.3.2 are applied. A cut requiring a
ReMId value ≥ 0.7 is also applied.

12.5 QePId Inputs

To make our final analysis sample, we need to apply a QePId cut to create a QE and a

nonQE population. First, let us understand the inputs to QePId. The criteria applied

to create our populations include file selection, detailed in Section 10.1, spill cuts, listed

in Section 10.2, and near detector slice cuts, from Section 10.3.2. A ReMId cut requiring

a value of greater than 0.7 has been applied, but the samples have not been divided into

QE and non-QE populations. For more information on ReMId, see Section 7.6. For

more information on QePId, see Section 7.8. Each plot has one entry per slice. Plots

are either for the one track or two track sample. For more information on these samples,

see Section 7.8.

By looking at the inputs to QePId, we will better understand any differences in our
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final analysis populations. Figure 12.33, the off-track energy ratio for the one track

sample, is one input to QePId. Figure 12.34 displays the off-track energy ratio, but for

the two track sample. We see that the data simply has more candidates for the one

track sample than the simulation predicts. This makes sense given the general trend

of less hadronic energy seen overall. For the two track sample, we see that the data

has an excess at low values of non-muon energy. Again, this is consistent with our

previous observations. Figure 12.35 shows the fractional energy difference for the one

track sample and Figure 12.36 is for the two track sample. Again, we note the overall

excess in data for the one track sample. The fractional energy difference Z-test for the

one track sample is plotted in Figure 12.37; the two track sample is shown in Figure

12.38. The shapes agree somewhat for these distributions. Figure 12.39 plots the dE/dx

ratio, only applicable to the two track sample. Here we see some shape differences in

the lower region, although the disagreement isn’t catastrophic.

Finally, Figure 12.40 shows the QePId distribution for the one track sample and

Figure 12.41 shows the QePId distribution for the two track sample. For the one track

sample, a cut is made at 0.45. Slices with higher values are considered part of the QE

sample; slices with lower values are part of the nonQE sample. Again, we note the

overall excess in data of one track candidates. For the two track sample, the cut is

made at 0.4. We see a clear trend in the data towards events being more QE-like. The

rest of the plots in this chapter will include either the QE or the nonQE population.
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Figure 12.34: Plot of off-track energy ratio for a slice in the near detector. This is
for the two track sample. The simulation distribution is displayed as a red line. The
data distribution is drawn as black points with statistical error bars. The bottom plot
displays the ratio between the data and simulation distributions. When the ratio is too
large for the scale, the point and its error bars are not drawn. The simulation is scaled
down by a factor of 6 to 1.65× 1020 POT, the exposure for the near detector data. All
cuts listed in Sections 10.1, 10.2 and 10.3.2 are applied. A cut requiring a ReMId value
≥ 0.7 is also applied.
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QePId Input: Fractional Energy Difference
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Figure 12.35: Plot of the fractional energy difference for a slice in the near detector.
This is for the one track sample. The simulation distribution is displayed as a red line.
The data distribution is drawn as black points with statistical error bars. The bottom
plot displays the ratio between the data and simulation distributions. The simulation
is scaled down by a factor of 6 to 1.65× 1020 POT, the exposure for the near detector
data. All cuts listed in Sections 10.1, 10.2 and 10.3.2 are applied. A cut requiring a
ReMId value ≥ 0.7 is also applied.
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QePId Input: Fractional Energy Difference
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Figure 12.36: Plot of the fractional energy difference for a slice in the near detector.
This is for the two track sample. The simulation distribution is displayed as a red line.
The data distribution is drawn as black points with statistical error bars. The bottom
plot displays the ratio between the data and simulation distributions. The simulation
is scaled down by a factor of 6 to 1.65× 1020 POT, the exposure for the near detector
data. All cuts listed in Sections 10.1, 10.2 and 10.3.2 are applied. A cut requiring a
ReMId value ≥ 0.7 is also applied.



235

QePId Input: Fractional Energy Difference Z-test
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Figure 12.37: Plot of the fractional energy difference Z-test for a slice in the near
detector. This is for the one track sample. The simulation distribution is displayed as
a red line. The data distribution is drawn as black points with statistical error bars.
The bottom plot displays the ratio between the data and simulation distributions. The
simulation is scaled down by a factor of 6 to 1.65 × 1020 POT, the exposure for the
near detector data. All cuts listed in Sections 10.1, 10.2 and 10.3.2 are applied. A cut
requiring a ReMId value ≥ 0.7 is also applied.
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QePId Input: Fractional Energy Difference Z-test
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Figure 12.38: Plot of the fractional energy difference Z-test for a slice in the near
detector. This is for the two track sample. The simulation distribution is displayed as
a red line. The data distribution is drawn as black points with statistical error bars.
The bottom plot displays the ratio between the data and simulation distributions. The
simulation is scaled down by a factor of 6 to 1.65 × 1020 POT, the exposure for the
near detector data. All cuts listed in Sections 10.1, 10.2 and 10.3.2 are applied. A cut
requiring a ReMId value ≥ 0.7 is also applied.
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QePId Input: dE/dx Ratio
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Figure 12.39: Plot of the dE/dx ratio for a slice in the near detector. This is for
the two track sample. The simulation distribution is displayed as a red line. The
data distribution is drawn as black points with statistical error bars. The bottom plot
displays the ratio between the data and simulation distributions. The simulation is
scaled down by a factor of 6 to 1.65 × 1020 POT, the exposure for the near detector
data. All cuts listed in Sections 10.1, 10.2 and 10.3.2 are applied. A cut requiring a
ReMId value ≥ 0.7 is also applied.
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Figure 12.40: Plot of QePId for a slice in the near detector. This is for the one track
sample. The simulation distribution is displayed as a red line. The data distribution
is drawn as black points with statistical error bars. The bottom plot displays the ratio
between the data and simulation distributions. The simulation is scaled down by a
factor of 6 to 1.65× 1020 POT, the exposure for the near detector data. All cuts listed
in Sections 10.1, 10.2 and 10.3.2 are applied. A cut requiring a ReMId value ≥ 0.7 is
also applied.
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Figure 12.41: Plot of QePId for a slice in the near detector. This is for the two track
sample. The simulation distribution is displayed as a red line. The data distribution
is drawn as black points with statistical error bars. The bottom plot displays the ratio
between the data and simulation distributions. The simulation is scaled down by a
factor of 6 to 1.65× 1020 POT, the exposure for the near detector data. All cuts listed
in Sections 10.1, 10.2 and 10.3.2 are applied. A cut requiring a ReMId value ≥ 0.7 is
also applied.
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Figure 12.42: Plot of reconstructed neutrino energy in GeV for a slice in the near
detector. This is for the QE sample. The simulation distribution is displayed as a
red line. The data distribution is drawn as black points with statistical error bars.
The bottom plot displays the ratio between the data and simulation distributions. The
simulation is scaled down by a factor of 6 to 1.65×1020 POT, the exposure for the near
detector data. All cuts listed in Sections 10.1, 10.2, 10.3.2 and 10.4 are applied.

12.6 Reconstructed Neutrino Energy

Having made our final analysis populations, we can now look at the reconstructed

neutrino energy for each population. The reconstructed neutrino energy distributions

for the far detector will be fit to make our measurement of the oscillation parameters.

Figure 12.42 displays the reconstructed neutrino energy for the QE sample. We can see

that the data has an excess compared to the simulated prediction. Also, the data is

shifted towards lower neutrino energies. Figure 12.43 displays the reconstructed neutrino

energy for the nonQE sample. Again, we see the shift towards lower neutrino energies.

This is primarily due to the differences in the number of hadronic hits seen between the

data and the simulation. The differences in these samples will be addressed further in

Section 14.12.
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Figure 12.43: Plot of reconstructed neutrino energy in GeV for a slice in the near
detector. This is for the nonQE sample. The simulation distribution is displayed as
a red line. The data distribution is drawn as black points with statistical error bars.
The bottom plot displays the ratio between the data and simulation distributions. The
simulation is scaled down by a factor of 6 to 1.65×1020 POT, the exposure for the near
detector data. All cuts listed in Sections 10.1, 10.2, 10.3.2 and 10.4 are applied.



Chapter 13

Extrapolation

NOνA consists of two detectors. We can compare the near detector data and simulation.

Then, the differences between the data and simulation in the near detector can be used

to alter the far detector simulated prediction. This procedure is called extrapolation.

Figure 13.1 is a diagram of the extrapolation procedure. This process reduces the

need for perfect simulation and results in lower systematic errors. By using our near

detector data to “fix” our far detector simulation prediction, we reduce our dependence

on modeling things like the beam flux and neutrino interactions.

We perform the extrapolation procedure individually on different samples. Dividing

our analysis sample into parts to be extrapolated is the process of decomposition. For

this analysis, we extrapolate the QE and nonQE analysis samples separately. We de-

compose each of these samples into a νµ CC sample, a ν̄µ CC sample, and a NC sample.

Section 13.1 details the decomposition.

For each sample which we extrapolate, we compare the reconstructed neutrino energy

spectrum between the near detector data and simulation. We alter the near detector

simulation to match the data. Then, using a 2D histogram created from the simula-

tion that relates reconstructed neutrino energy to true neutrino energy, we can create

an altered true neutrino energy spectrum for the near detector. Taking into account

the differences between the far and near detector, like different neutrino beam fluxes

and detector sizes, we create an extrapolated true neutrino energy spectrum for the far

detector. Finally, using another 2D histogram created from the far detector simula-

tion that relates true neutrino energy and reconstructed neutrino energy, we create an

242
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Figure 13.1: Diagram of the extrapolation procedure. For each sample, compare the
near detector data and simulation reconstructed neutrino energy spectra. Alter the
near detector reconstructed neutrino energy spectrum to match the data. Using a 2D
histogram from the simulation which relates reconstructed neutrino energy and true
neutrino energy, determine the reweighted true neutrino energy spectrum for the near
detector. Taking into account the differences in the predicted true neutrino spectrum
of the far and near detectors (see different solid angle of the beam, different detector
sizes, etc), use the reweighted true neutrino energy spectrum at the near detector to
create an extrapolated true neutrino energy spectrum at the far detector. Finally,
because we measure reconstructed neutrino energy and not true neutrino energy, we
use a 2D histogram from the far detector simulation that relates true neutrino energy
and reconstructed neutrino energy to create a final, extrapolated far detector predicted
neutrino energy spectrum. The figures used correspond to the νµ CC interactions for
the QE population.
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extrapolated far detector reconstructed neutrino energy spectrum. Section 13.2 gives

more details about the extrapolation. Section 13.3 contains the plots used to create

an altered far detector prediction spectrum for the νµ CC interactions. Section 13.4

contains the plots for the ν̄µ CC interactions; section 13.5 contains the plots for NC

interactions.

13.1 Near Detector Decomposition

Decomposition is the procedure we use to divide our sample into different parts that are

extrapolated individually. Decomposition allows us to create populations of different

types of neutrino interactions and extrapolate them using methods best suited for each

type. The event selection described in Chapter 10 for the near detector is applied to

both the data and the simulation. NonQE and QE populations are created. These pop-

ulations are decomposed separately. The decomposition is done in bins of reconstructed

neutrino energy.

We do a proportional decomposition for true νµ CC interactions, true ν̄µ CC inter-

actions, and true NC interactions. We do not decompose or extrapolate true νe CC

interactions, true ν̄e CC interactions, true ντ CC interactions, or true ν̄τ CC interac-

tions. These are ignored because they represent such a small background to the analysis

that simply using the simulation far detector prediction is a negligible systematic error.

For each type of interaction for which we will make a decomposition, we make a

spectrum of reconstructed neutrino energy with simulation events of the correct type

that pass the event selection cuts. For data, we do not know what type of true interac-

tion each event corresponds to. Instead, for each bin in reconstructed neutrino energy,

we know the proportion of the total sample in simulation that corresponds to the cor-

rect interaction type. We apply this proportion bin-by-bin to the near detector data

spectrum to create a near detector interaction-type data spectrum. If, for instance, one

bin of reconstructed neutrino energy in the simulation was composed of 80% true νµ

CC interactions, then the data spectrum would be scaled by 0.8 in that bin.

Having reconstructed neutrino energy spectra for the near detector data and simula-

tion corresponding to a single interaction type, we can now perform the extrapolation.
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13.2 Extrapolation

For true νµ CC interactions and true ν̄µ CC interactions, the altered reconstructed neu-

trino energy spectrum is used to construct an altered true neutrino energy spectrum.

From the unaltered simulation, a 2D histogram is created of reconstructed neutrino en-

ergy vs. true neutrino energy. The simulated reconstructed neutrino energy spectrum

is changed to match the data spectrum. This change is propagated, using the 2D his-

togram, to create a reweighted true neutrino energy spectrum. If a bin of reconstructed

neutrino energy in the simulation is reduced by 10%, then this is also applied to each

true neutrino energy bin in the 2D histogram which corresponds to that bin of recon-

structed neutrino energy. By collapsing the altered 2D histogram onto the true neutrino

energy axis, we can create a spectrum of altered true neutrino energy simulation for the

near detector.

The altered true neutrino energy spectrum for the near detector is used to alter

the predicted true neutrino energy spectrum for the far detector. This is then applied

to a 2D histogram of reconstructed neutrino energy vs. true neutrino energy for the

far detector simulation. This can then be collapsed to create an altered reconstructed

neutrino energy prediction spectrum for far detector.

For true NC interactions, there is not a strong correlation between the reconstructed

neutrino energy spectrum and the true neutrino energy spectrum. Therefore, the ex-

tra step of translation to true neutrino energy spectrum is not taken. Instead, the

altered reconstructed neutrino energy spectrum for the near detector is used to alter

the predicted reconstructed energy spectrum for the far detector.

For more details, see the extrapolation technical note[68].

13.3 νµ CC Interactions

This section contains the plots which illustrate how the far detector simulated prediction

for νµ CC interactions is altered due to the near detector data and simulation differences.

The true νµ CC population is created from the analysis population by performing a

proportional decomposition. This decomposition uses the simulation to determine the

proportion of true νµ CC interactions within our analysis sample. See Section 13.1 for

more details. This is done independently for the QE and nonQE populations; Section
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13.3.1 contains the plots for the QE population and section 13.3.2 contains the plots for

the nonQE population.

13.3.1 QE Population

This section presents the plots for the QE population (as defined by the event selection

in Chapter 10, specifically Section 10.4). The first step is to compare the reconstructed

neutrino energy spectrum for νµ CC interactions in the near detector data and simu-

lation. Figure 13.2 plots this comparison; Figure 13.3 has a logarithmic vertical axis.

A 2D histogram of reconstructed neutrino energy vs. true neutrino energy for the near

detector is created from the simulation. Figure 13.4 is the unaltered 2D histogram.

Figure 13.5 is the same as Figure 13.4, except that it has a logarithmic color axis. The

2D histogram is then altered to make the reconstructed neutrino energy spectrum in

the simulation match the near detector data. Figure 13.6 is the adjusted 2D histogram.

Figure 13.7 is the same as Figure 13.6, except that it has a logarithmic color axis. The

adjusted 2D histogram is projected onto the true neutrino energy axis to create an al-

tered spectrum. Figure 13.8 compares the altered true neutrino energy spectrum and

the original true neutrino energy spectrum from simulation. Figure 13.9 is the same as

Figure 13.8, except that the vertical axis is displayed logarithmically.

Having an altered true neutrino energy spectrum in the simulation for the near

detector, we now use it to change our far detector prediction. Figure 13.10 compares

the original true neutrino energy spectrum for the far detector with one altered to match

the extrapolated near detector data. Figure 13.11 is the same, except that it features

a logarithmic vertical axis. A 2D histogram of reconstructed neutrino energy vs. true

neutrino energy for the far detector is created from the simulation. Figure 13.12 is the

unaltered 2D histogram. Figure 13.13 is the same as Figure 13.12, except that it has

a logarithmic color axis. The 2D histogram is then altered to make the true neutrino

energy spectrum in the simulation match the extrapolated near detector data. Figure

13.14 is the adjusted 2D histogram. Figure 13.15 is the same as Figure 13.14, except

that it has a logarithmic color axis. The altered 2D histogram is then projected onto

the reconstructed neutrino energy axis. This is the unoscillated prediction used for the

analysis. It is compared to the unaltered simulation prediction in Figure 13.16. Figure

13.17 is the same comparison, but featuring a logarithmic vertical axis.
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Figure 13.2: Plot comparing data and simulation reconstructed neutrino energies in
GeV in the near detector for νµ CC interactions. The solid red histogram is simulation;
the black points are data. The error bars displayed on the data are statistical only. The
simulation is scaled down to match the POT of the data. This is for the QE population.
The true νµ CC population was created using a proportional decomposition, described
in Section 13.1.
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Figure 13.3: Plot comparing data and simulation reconstructed neutrino energies in GeV
in the near detector for νµ CC interactions. The vertical axis is plotted logarithmically.
The solid red histogram is simulation; the black points are data. The error bars displayed
on the data are statistical only. The simulation is scaled down to match the POT of
the data. This is for the QE population. The true νµ CC population was created using
a proportional decomposition, described in Section 13.1.
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Figure 13.4: Reconstructed neutrino energy in GeV vs. true neutrino energy in GeV
using simulated events in the near detector for νµ CC interactions. This plot has not
been altered to match near detector data. The color axis is number of interactions. The
simulation is scaled down to match the POT of the data. This is for the QE population.
The true νµ CC population was created using a proportional decomposition, described
in Section 13.1.
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Figure 13.5: Reconstructed neutrino energy in GeV vs. true neutrino energy in GeV
using simulated events in the near detector for νµ CC interactions. This plot has not
been altered to match near detector data. The color axis is number of interactions
and is plotted logarithmically. The simulation is scaled down to match the POT of the
data. This is for the QE population. The true νµ CC population was created using a
proportional decomposition, described in Section 13.1.
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Figure 13.6: Reconstructed neutrino energy in GeV vs. true neutrino energy in GeV
using simulated events in the near detector for νµ CC interactions. This plot has been
altered to match near detector data. The color axis is number of interactions. The
simulation is scaled down to match the POT of the data. This is for the QE population.
The true νµ CC population was created using a proportional decomposition, described
in Section 13.1.
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Figure 13.7: Reconstructed neutrino energy in GeV vs. true neutrino energy in GeV
using simulated events in the near detector for νµ CC interactions. This plot has been
altered to match near detector data. The color axis is number of interactions and
is plotted logarithmically. The simulation is scaled down to match the POT of the
data. This is for the QE population. The true νµ CC population was created using a
proportional decomposition, described in Section 13.1.



253

True Energy (GeV)
0 1 2 3 4

E
ve

nt
s

0

0.002

0.004

0.006

0.008

0.01

0.012

610×
 ND True Energy Spectrumµν → µν

Reweighted
MC

 ND True Energy Spectrumµν → µν

Figure 13.8: Plot comparing unaltered and reweighted-by-data true neutrino energies in
GeV using simulated events in the near detector for νµ CC interactions. The solid red
histogram is unaltered simulation; the solid blue histogram is the simulation spectrum
after reweighting by data. The simulation is scaled down to match the POT of the
data. This is for the QE population. The true νµ CC population was created using a
proportional decomposition, described in Section 13.1.
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Figure 13.9: Plot comparing unaltered and reweighted-by-data true neutrino energies
in GeV using simulated events in the near detector for νµ CC interactions. The vertical
axis is plotted logarithmically. The solid red histogram is unaltered simulation; the solid
blue histogram is the simulation spectrum after reweighting by data. The simulation is
scaled down to match the POT of the data. This is for the QE population. The true
νµ CC population was created using a proportional decomposition, described in Section
13.1.
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Figure 13.10: Plot comparing unaltered and reweighted-by-data true neutrino energies
in GeV using simulated events in the far detector for νµ CC interactions. The solid red
histogram is unaltered simulation; the solid blue histogram is the simulation spectrum
after reweighting by the extrapolation of near detector data. The simulation is scaled
down to match the POT of the far detector data and is unoscillated. This is for the QE
population. The true νµ CC population was created using a proportional decomposition,
described in Section 13.1.
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Figure 13.11: Plot comparing unaltered and reweighted-by-data true neutrino energies
in GeV using simulated events in the far detector for νµ CC interactions. The vertical
axis is plotted logarithmically. The solid red histogram is unaltered simulation; the solid
blue histogram is the simulation spectrum after reweighting by the extrapolation of near
detector data. The simulation is scaled down to match the POT of the far detector data
and is unoscillated. This is for the QE population. The true νµ CC population was
created using a proportional decomposition, described in Section 13.1.
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Figure 13.12: Reconstructed neutrino energy in GeV vs. true neutrino energy in GeV
using simulated events in the far detector for νµ CC interactions. This plot has not been
altered to match the extrapolation of near detector data. The color axis is number of
interactions. The simulation is scaled down to match the POT of the far detector data
and is unoscillated. This is for the QE population. The true νµ CC population was
created using a proportional decomposition, described in Section 13.1.
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Figure 13.13: Reconstructed neutrino energy in GeV vs. true neutrino energy in GeV
using simulated events in the far detector for νµ CC interactions. This plot has not
been altered to match the extrapolation of near detector data. The color axis is number
of interactions and is plotted logarithmically. The simulation is scaled down to match
the POT of the far detector data and is unoscillated. This is for the QE population.
The true νµ CC population was created using a proportional decomposition, described
in Section 13.1.
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Figure 13.14: Reconstructed neutrino energy in GeV vs. true neutrino energy in GeV
using simulated events in the far detector for νµ CC interactions. This plot has been
altered to match the extrapolation of near detector data. The color axis is number of
interactions. The simulation is scaled down to match the POT of the far detector data
and is unoscillated. This is for the QE population. The true νµ CC population was
created using a proportional decomposition, described in Section 13.1.
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Figure 13.15: Reconstructed neutrino energy in GeV vs. true neutrino energy in GeV
using simulated events in the far detector for νµ CC interactions. This plot has been
altered to match the extrapolation of near detector data. The color axis is number of
interactions and is plotted logarithmically. The simulation is scaled down to match the
POT of the far detector data and is unoscillated. This is for the QE population. The
true νµ CC population was created using a proportional decomposition, described in
Section 13.1.
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Figure 13.16: Plot comparing unaltered and reweighted-by-data reconstructed neutrino
energies in GeV using simulated events in the far detector for νµ CC interactions. The
solid red histogram is unaltered simulation; the solid blue histogram is the simulation
spectrum after reweighting by the extrapolation of near detector data. The extrapolated
spectrum is used by the analysis as its unoscillated prediction. The simulation is scaled
down to match the POT of the far detector data and is unoscillated. This is for the QE
population. The true νµ CC population was created using a proportional decomposition,
described in Section 13.1.
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Figure 13.17: Plot comparing unaltered and reweighted-by-data reconstructed neutrino
energies in GeV using simulated events in the far detector for νµ CC interactions. The
vertical axis is plotted logarithmically. The solid red histogram is unaltered simulation;
the solid blue histogram is the simulation spectrum after reweighting by the extrap-
olation of near detector data. The extrapolated spectrum is used by the analysis as
its unoscillated prediction. The simulation is scaled down to match the POT of the
far detector data and is unoscillated. This is for the QE population. The true νµ CC
population was created using a proportional decomposition, described in Section 13.1.
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13.3.2 NonQE Population

This section presents the plots for the nonQE population (as defined by the event

selection in Chapter 10, specifically Section 10.4). The first step is to compare the

reconstructed neutrino energy spectrum for νµ CC interactions in the near detector data

and simulation. Figure 13.18 plots this comparison; Figure 13.19 has a logarithmic

vertical axis. A 2D histogram of reconstructed neutrino energy vs. true neutrino energy

for the near detector is created from the simulation. Figure 13.20 is the unaltered 2D

histogram. Figure 13.21 is the same as Figure 13.20, except that it has a logarithmic

color axis. The 2D histogram is then altered to make the reconstructed neutrino energy

spectrum in the simulation match the near detector data. Figure 13.22 is the adjusted

2D histogram. Figure 13.23 is the same as Figure 13.22, except that it has a logarithmic

color axis. The adjusted 2D histogram is projected onto the true neutrino energy axis

to create an altered spectrum. Figure 13.24 compares the altered true neutrino energy

spectrum and the original true neutrino energy spectrum from simulation. Figure 13.25

is the same as Figure 13.24, except that the vertical axis is displayed logarithmically.

Having an altered true neutrino energy spectrum for the near detector, we now use it

to change our far detector prediction. Figure 13.26 compares the original true neutrino

energy spectrum for the far detector with one altered to match the extrapolated near

detector data. Figure 13.27 is the same, except that it features a logarithmic vertical

axis. A 2D histogram of reconstructed neutrino energy vs. true neutrino energy for the

far detector is created from the simulation. Figure 13.28 is the unaltered 2D histogram.

Figure 13.29 is the same as Figure 13.28, except that it has a logarithmic color axis.

The 2D histogram is then altered to make the true neutrino energy spectrum in the

simulation match the extrapolated near detector data. Figure 13.30 is the adjusted

2D histogram. Figure 13.31 is the same as Figure 13.30, except that it has a loga-

rithmic color axis. The altered 2D histogram is then projected onto the reconstructed

neutrino energy axis. This is the unoscillated prediction used for the analysis. It is

compared to the unaltered simulation prediction in Figure 13.32. Figure 13.33 is the

same comparison, but featuring a logarithmic vertical axis.
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Figure 13.18: Plot comparing data and simulation reconstructed neutrino energies in
GeV in the near detector for νµ CC interactions. The solid red histogram is simulation;
the black points are data. The error bars displayed on the data are statistical only.
The simulation is scaled down to match the POT of the data. This is for the nonQE
population. The true νµ CC population was created using a proportional decomposition,
described in Section 13.1.



265

Non-QE Neutrino Energy (GeV)
0 1 2 3 4 5

E
ve

nt
s

210

310

410

Data
MC

 ND Reco Spectrumµν → µν

Figure 13.19: Plot comparing data and simulation reconstructed neutrino energies in
GeV in the near detector for νµ CC interactions. The vertical axis is plotted logarith-
mically. The solid red histogram is simulation; the black points are data. The error
bars displayed on the data are statistical only. The simulation is scaled down to match
the POT of the data. This is for the nonQE population. The true νµ CC population
was created using a proportional decomposition, described in Section 13.1.
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Figure 13.20: Reconstructed neutrino energy in GeV vs. true neutrino energy in GeV
using simulated events in the near detector for νµ CC interactions. This plot has not
been altered to match near detector data. The color axis is number of interactions.
The simulation is scaled down to match the POT of the data. This is for the nonQE
population. The true νµ CC population was created using a proportional decomposition,
described in Section 13.1.
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Figure 13.21: Reconstructed neutrino energy in GeV vs. true neutrino energy in GeV
using simulated events in the near detector for νµ CC interactions. This plot has not
been altered to match near detector data. The color axis is number of interactions
and is plotted logarithmically. The simulation is scaled down to match the POT of the
data. This is for the nonQE population. The true νµ CC population was created using
a proportional decomposition, described in Section 13.1.
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Figure 13.22: Reconstructed neutrino energy in GeV vs. true neutrino energy in GeV
using simulated events in the near detector for νµ CC interactions. This plot has been
altered to match near detector data. The color axis is number of interactions. The sim-
ulation is scaled down to match the POT of the data. This is for the nonQE population.
The true νµ CC population was created using a proportional decomposition, described
in Section 13.1.
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Figure 13.23: Reconstructed neutrino energy in GeV vs. true neutrino energy in GeV
using simulated events in the near detector for νµ CC interactions. This plot has been
altered to match near detector data. The color axis is number of interactions and is
plotted logarithmically. The simulation is scaled down to match the POT of the data.
This is for the nonQE population. The true νµ CC population was created using a
proportional decomposition, described in Section 13.1.
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Figure 13.24: Plot comparing unaltered and reweighted-by-data true neutrino energies
in GeV using simulated events in the near detector for νµ CC interactions. The solid red
histogram is unaltered simulation; the solid blue histogram is the simulation spectrum
after reweighting by data. The simulation is scaled down to match the POT of the
data. This is for the nonQE population. The true νµ CC population was created using
a proportional decomposition, described in Section 13.1.
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Figure 13.25: Plot comparing unaltered and reweighted-by-data true neutrino energies
in GeV using simulated events in the near detector for νµ CC interactions. The vertical
axis is plotted logarithmically. The solid red histogram is unaltered simulation; the solid
blue histogram is the simulation spectrum after reweighting by data. The simulation
is scaled down to match the POT of the data. This is for the nonQE population. The
true νµ CC population was created using a proportional decomposition, described in
Section 13.1.
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Figure 13.26: Plot comparing unaltered and reweighted-by-data true neutrino energies
in GeV using simulated events in the far detector for νµ CC interactions. The solid
red histogram is unaltered simulation; the solid blue histogram is the simulation spec-
trum after reweighting by the extrapolation of near detector data. The simulation is
scaled down to match the POT of the far detector data and is unoscillated. This is for
the nonQE population. The true νµ CC population was created using a proportional
decomposition, described in Section 13.1.
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Figure 13.27: Plot comparing unaltered and reweighted-by-data true neutrino energies
in GeV using simulated events in the far detector for νµ CC interactions. The vertical
axis is plotted logarithmically. The solid red histogram is unaltered simulation; the solid
blue histogram is the simulation spectrum after reweighting by the extrapolation of near
detector data. The simulation is scaled down to match the POT of the far detector data
and is unoscillated. This is for the nonQE population. The true νµ CC population was
created using a proportional decomposition, described in Section 13.1.
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Figure 13.28: Reconstructed neutrino energy in GeV vs. true neutrino energy in GeV
using simulated events in the far detector for νµ CC interactions. This plot has not been
altered to match the extrapolation of near detector data. The color axis is number of
interactions. The simulation is scaled down to match the POT of the far detector data
and is unoscillated. This is for the nonQE population. The true νµ CC population was
created using a proportional decomposition, described in Section 13.1.
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Figure 13.29: Reconstructed neutrino energy in GeV vs. true neutrino energy in GeV
using simulated events in the far detector for νµ CC interactions. This plot has not
been altered to match the extrapolation of near detector data. The color axis is number
of interactions and is plotted logarithmically. The simulation is scaled down to match
the POT of the far detector data and is unoscillated. This is for the nonQE population.
The true νµ CC population was created using a proportional decomposition, described
in Section 13.1.
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Figure 13.30: Reconstructed neutrino energy in GeV vs. true neutrino energy in GeV
using simulated events in the far detector for νµ CC interactions. This plot has been
altered to match the extrapolation of near detector data. The color axis is number of
interactions. The simulation is scaled down to match the POT of the far detector data
and is unoscillated. This is for the nonQE population. The true νµ CC population was
created using a proportional decomposition, described in Section 13.1.
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Figure 13.31: Reconstructed neutrino energy in GeV vs. true neutrino energy in GeV
using simulated events in the far detector for νµ CC interactions. This plot has been
altered to match the extrapolation of near detector data. The color axis is number of
interactions and is plotted logarithmically. The simulation is scaled down to match the
POT of the far detector data and is unoscillated. This is for the nonQE population.
The true νµ CC population was created using a proportional decomposition, described
in Section 13.1.
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Figure 13.32: Plot comparing unaltered and reweighted-by-data reconstructed neutrino
energies in GeV using simulated events in the far detector for νµ CC interactions. The
solid red histogram is unaltered simulation; the solid blue histogram is the simulation
spectrum after reweighting by the extrapolation of near detector data. The extrapo-
lated spectrum is used by the analysis as its unoscillated prediction. The simulation is
scaled down to match the POT of the far detector data and is unoscillated. This is for
the nonQE population. The true νµ CC population was created using a proportional
decomposition, described in Section 13.1.
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Figure 13.33: Plot comparing unaltered and reweighted-by-data reconstructed neutrino
energies in GeV using simulated events in the far detector for νµ CC interactions. The
vertical axis is plotted logarithmically. The solid red histogram is unaltered simulation;
the solid blue histogram is the simulation spectrum after reweighting by the extrapo-
lation of near detector data. The extrapolated spectrum is used by the analysis as its
unoscillated prediction. The simulation is scaled down to match the POT of the far
detector data and is unoscillated. This is for the nonQE population. The true νµ CC
population was created using a proportional decomposition, described in Section 13.1.
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13.4 ν̄µ CC Interactions

This section contains the plots which illustrate how the far detector simulated prediction

for ν̄µ CC interactions is altered due to the near detector data and simulation differences.

The ν̄µ CC interactions come from wrong-sign beam contamination; in future analyses,

with data from the beam running in the antineutrino mode, we will have many more

ν̄µ CC interactions. The true ν̄µ CC population is created from the analysis population

by performing a proportional decomposition. This decomposition uses the simulation

to determine the proportion of true ν̄µ CC interactions within our analysis sample.

See Section 13.1 for more details. This is done independently for the QE and nonQE

populations; Section 13.4.1 contains the plots for the QE population and section 13.4.2

contains the plots for the nonQE population.

13.4.1 QE Population

This section presents the plots for the QE population (as defined by the event selection

in Chapter 10, specifically Section 10.4). The first step is to compare the reconstructed

neutrino energy spectrum for ν̄µ CC interactions in the near detector data and simula-

tion. Figure 13.34 plots this comparison; Figure 13.35 has a logarithmic vertical axis.

A 2D histogram of reconstructed neutrino energy vs. true neutrino energy for the near

detector is created from the simulation. Figure 13.36 is the unaltered 2D histogram.

Figure 13.37 is the same as Figure 13.36, except that it has a logarithmic color axis. The

2D histogram is then altered to make the reconstructed neutrino energy spectrum in the

simulation match the near detector data. Figure 13.38 is the adjusted 2D histogram.

Figure 13.39 is the same as Figure 13.38, except that it has a logarithmic color axis.

The adjusted 2D histogram is projected onto the true neutrino energy axis to create

an altered spectrum. Figure 13.40 compares the altered true neutrino energy spectrum

and the original true neutrino energy spectrum from simulation. Figure 13.41 is the

same as Figure 13.40, except that the vertical axis is displayed logarithmically.

Having an altered true neutrino energy spectrum for the near detector, we now use it

to change our far detector prediction. Figure 13.42 compares the original true neutrino

energy spectrum for the far detector with one altered to match the extrapolated near

detector data. Figure 13.43 is the same, except that it features a logarithmic vertical
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Figure 13.34: Plot comparing data and simulation reconstructed neutrino energies in
GeV in the near detector for ν̄µ CC interactions. The solid red histogram is simulation;
the black points are data. The error bars displayed on the data are statistical only. The
simulation is scaled down to match the POT of the data. This is for the QE population.
The true ν̄µ CC population was created using a proportional decomposition, described
in Section 13.1.

axis. A 2D histogram of reconstructed neutrino energy vs. true neutrino energy for the

far detector is created from the simulation. Figure 13.44 is the unaltered 2D histogram.

Figure 13.45 is the same as Figure 13.44, except that it has a logarithmic color axis.

The 2D histogram is then altered to make the true neutrino energy spectrum in the

simulation match the extrapolated near detector data. Figure 13.46 is the adjusted

2D histogram. Figure 13.47 is the same as Figure 13.46, except that it has a loga-

rithmic color axis. The altered 2D histogram is then projected onto the reconstructed

neutrino energy axis. This is the unoscillated prediction used for the analysis. It is

compared to the unaltered simulation prediction in Figure 13.48. Figure 13.49 is the

same comparison, but featuring a logarithmic vertical axis.



282

QE Neutrino Energy (GeV)
0 1 2 3 4 5

E
ve

nt
s

1

10

210

Data
MC

 ND Reco Spectrumµν → µν

Figure 13.35: Plot comparing data and simulation reconstructed neutrino energies in
GeV in the near detector for ν̄µ CC interactions. The vertical axis is plotted logarith-
mically. The solid red histogram is simulation; the black points are data. The error
bars displayed on the data are statistical only. The simulation is scaled down to match
the POT of the data. This is for the QE population. The true ν̄µ CC population was
created using a proportional decomposition, described in Section 13.1.
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Figure 13.36: Reconstructed neutrino energy in GeV vs. true neutrino energy in GeV
using simulated events in the near detector for ν̄µ CC interactions. This plot has not
been altered to match near detector data. The color axis is number of interactions. The
simulation is scaled down to match the POT of the data. This is for the QE population.
The true ν̄µ CC population was created using a proportional decomposition, described
in Section 13.1.
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Figure 13.37: Reconstructed neutrino energy in GeV vs. true neutrino energy in GeV
using simulated events in the near detector for ν̄µ CC interactions. This plot has not
been altered to match near detector data. The color axis is number of interactions
and is plotted logarithmically. The simulation is scaled down to match the POT of the
data. This is for the QE population. The true ν̄µ CC population was created using a
proportional decomposition, described in Section 13.1.
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Figure 13.38: Reconstructed neutrino energy in GeV vs. true neutrino energy in GeV
using simulated events in the near detector for ν̄µ CC interactions. This plot has been
altered to match near detector data. The color axis is number of interactions. The
simulation is scaled down to match the POT of the data. This is for the QE population.
The true ν̄µ CC population was created using a proportional decomposition, described
in Section 13.1.
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Figure 13.39: Reconstructed neutrino energy in GeV vs. true neutrino energy in GeV
using simulated events in the near detector for ν̄µ CC interactions. This plot has been
altered to match near detector data. The color axis is number of interactions and
is plotted logarithmically. The simulation is scaled down to match the POT of the
data. This is for the QE population. The true ν̄µ CC population was created using a
proportional decomposition, described in Section 13.1.
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Figure 13.40: Plot comparing unaltered and reweighted-by-data true neutrino energies
in GeV using simulated events in the near detector for ν̄µ CC interactions. The solid red
histogram is unaltered simulation; the solid blue histogram is the simulation spectrum
after reweighting by data. The simulation is scaled down to match the POT of the
data. This is for the QE population. The true ν̄µ CC population was created using a
proportional decomposition, described in Section 13.1.
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Figure 13.41: Plot comparing unaltered and reweighted-by-data true neutrino energies
in GeV using simulated events in the near detector for ν̄µ CC interactions. The vertical
axis is plotted logarithmically. The solid red histogram is unaltered simulation; the solid
blue histogram is the simulation spectrum after reweighting by data. The simulation is
scaled down to match the POT of the data. This is for the QE population. The true
ν̄µ CC population was created using a proportional decomposition, described in Section
13.1.
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Figure 13.42: Plot comparing unaltered and reweighted-by-data true neutrino energies
in GeV using simulated events in the far detector for ν̄µ CC interactions. The solid red
histogram is unaltered simulation; the solid blue histogram is the simulation spectrum
after reweighting by the extrapolation of near detector data. The simulation is scaled
down to match the POT of the far detector data and is unoscillated. This is for the QE
population. The true ν̄µ CC population was created using a proportional decomposition,
described in Section 13.1.
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Figure 13.43: Plot comparing unaltered and reweighted-by-data true neutrino energies
in GeV using simulated events in the far detector for ν̄µ CC interactions. The vertical
axis is plotted logarithmically. The solid red histogram is unaltered simulation; the solid
blue histogram is the simulation spectrum after reweighting by the extrapolation of near
detector data. The simulation is scaled down to match the POT of the far detector data
and is unoscillated. This is for the QE population. The true ν̄µ CC population was
created using a proportional decomposition, described in Section 13.1.
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Figure 13.44: Reconstructed neutrino energy in GeV vs. true neutrino energy in GeV
using simulated events in the far detector for ν̄µ CC interactions. This plot has not been
altered to match the extrapolation of near detector data. The color axis is number of
interactions. The simulation is scaled down to match the POT of the far detector data
and is unoscillated. This is for the QE population. The true ν̄µ CC population was
created using a proportional decomposition, described in Section 13.1.
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Figure 13.45: Reconstructed neutrino energy in GeV vs. true neutrino energy in GeV
using simulated events in the far detector for ν̄µ CC interactions. This plot has not
been altered to match the extrapolation of near detector data. The color axis is number
of interactions and is plotted logarithmically. The simulation is scaled down to match
the POT of the far detector data and is unoscillated. This is for the QE population.
The true ν̄µ CC population was created using a proportional decomposition, described
in Section 13.1.
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Figure 13.46: Reconstructed neutrino energy in GeV vs. true neutrino energy in GeV
using simulated events in the far detector for ν̄µ CC interactions. This plot has been
altered to match the extrapolation of near detector data. The color axis is number of
interactions. The simulation is scaled down to match the POT of the far detector data
and is unoscillated. This is for the QE population. The true ν̄µ CC population was
created using a proportional decomposition, described in Section 13.1.
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Figure 13.47: Reconstructed neutrino energy in GeV vs. true neutrino energy in GeV
using simulated events in the far detector for ν̄µ CC interactions. This plot has been
altered to match the extrapolation of near detector data. The color axis is number of
interactions and is plotted logarithmically. The simulation is scaled down to match the
POT of the far detector data and is unoscillated. This is for the QE population. The
true ν̄µ CC population was created using a proportional decomposition, described in
Section 13.1.
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Figure 13.48: Plot comparing unaltered and reweighted-by-data reconstructed neutrino
energies in GeV using simulated events in the far detector for ν̄µ CC interactions. The
solid red histogram is unaltered simulation; the solid blue histogram is the simulation
spectrum after reweighting by the extrapolation of near detector data. The extrapolated
spectrum is used by the analysis as its unoscillated prediction. The simulation is scaled
down to match the POT of the far detector data and is unoscillated. This is for the QE
population. The true ν̄µ CC population was created using a proportional decomposition,
described in Section 13.1.
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Figure 13.49: Plot comparing unaltered and reweighted-by-data reconstructed neutrino
energies in GeV using simulated events in the far detector for ν̄µ CC interactions. The
vertical axis is plotted logarithmically. The solid red histogram is unaltered simulation;
the solid blue histogram is the simulation spectrum after reweighting by the extrap-
olation of near detector data. The extrapolated spectrum is used by the analysis as
its unoscillated prediction. The simulation is scaled down to match the POT of the
far detector data and is unoscillated. This is for the QE population. The true ν̄µ CC
population was created using a proportional decomposition, described in Section 13.1.
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13.4.2 NonQE Population

This section presents the plots for the nonQE population (as defined by the event

selection in Chapter 10, specifically Section 10.4). The first step is to compare the

reconstructed neutrino energy spectrum for ν̄µ CC interactions in the near detector data

and simulation. Figure 13.50 plots this comparison; Figure 13.51 has a logarithmic

vertical axis. A 2D histogram of reconstructed neutrino energy vs. true neutrino energy

for the near detector is created from the simulation. Figure 13.52 is the unaltered 2D

histogram. Figure 13.53 is the same as Figure 13.52, except that it has a logarithmic

color axis. The 2D histogram is then altered to make the reconstructed neutrino energy

spectrum in the simulation match the near detector data. Figure 13.54 is the adjusted

2D histogram. Figure 13.55 is the same as Figure 13.54, except that it has a logarithmic

color axis. The adjusted 2D histogram is projected onto the true neutrino energy axis

to create an altered spectrum. Figure 13.56 compares the altered true neutrino energy

spectrum and the original true neutrino energy spectrum from simulation. Figure 13.57

is the same as Figure 13.56, except that the vertical axis is displayed logarithmically.

Having an altered true neutrino energy spectrum for the near detector, we now use it

to change our far detector prediction. Figure 13.58 compares the original true neutrino

energy spectrum for the far detector with one altered to match the extrapolated near

detector data. Figure 13.59 is the same, except that it features a logarithmic vertical

axis. A 2D histogram of reconstructed neutrino energy vs. true neutrino energy for the

far detector is created from the simulation. Figure 13.60 is the unaltered 2D histogram.

Figure 13.61 is the same as Figure 13.60, except that it has a logarithmic color axis.

The 2D histogram is then altered to make the true neutrino energy spectrum in the

simulation match the extrapolated near detector data. Figure 13.62 is the adjusted

2D histogram. Figure 13.63 is the same as Figure 13.62, except that it has a loga-

rithmic color axis. The altered 2D histogram is then projected onto the reconstructed

neutrino energy axis. This is the unoscillated prediction used for the analysis. It is

compared to the unaltered simulation prediction in Figure 13.64. Figure 13.65 is the

same comparison, but featuring a logarithmic vertical axis.
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Figure 13.50: Plot comparing data and simulation reconstructed neutrino energies in
GeV in the near detector for ν̄µ CC interactions. The solid red histogram is simulation;
the black points are data. The error bars displayed on the data are statistical only.
The simulation is scaled down to match the POT of the data. This is for the nonQE
population. The true ν̄µ CC population was created using a proportional decomposition,
described in Section 13.1.
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Figure 13.51: Plot comparing data and simulation reconstructed neutrino energies in
GeV in the near detector for ν̄µ CC interactions. The vertical axis is plotted logarith-
mically. The solid red histogram is simulation; the black points are data. The error
bars displayed on the data are statistical only. The simulation is scaled down to match
the POT of the data. This is for the nonQE population. The true ν̄µ CC population
was created using a proportional decomposition, described in Section 13.1.
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Figure 13.52: Reconstructed neutrino energy in GeV vs. true neutrino energy in GeV
using simulated events in the near detector for ν̄µ CC interactions. This plot has not
been altered to match near detector data. The color axis is number of interactions.
The simulation is scaled down to match the POT of the data. This is for the nonQE
population. The true ν̄µ CC population was created using a proportional decomposition,
described in Section 13.1.
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Figure 13.53: Reconstructed neutrino energy in GeV vs. true neutrino energy in GeV
using simulated events in the near detector for ν̄µ CC interactions. This plot has not
been altered to match near detector data. The color axis is number of interactions
and is plotted logarithmically. The simulation is scaled down to match the POT of the
data. This is for the nonQE population. The true ν̄µ CC population was created using
a proportional decomposition, described in Section 13.1.
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Figure 13.54: Reconstructed neutrino energy in GeV vs. true neutrino energy in GeV
using simulated events in the near detector for ν̄µ CC interactions. This plot has been
altered to match near detector data. The color axis is number of interactions. The sim-
ulation is scaled down to match the POT of the data. This is for the nonQE population.
The true ν̄µ CC population was created using a proportional decomposition, described
in Section 13.1.
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Figure 13.55: Reconstructed neutrino energy in GeV vs. true neutrino energy in GeV
using simulated events in the near detector for ν̄µ CC interactions. This plot has been
altered to match near detector data. The color axis is number of interactions and is
plotted logarithmically. The simulation is scaled down to match the POT of the data.
This is for the nonQE population. The true ν̄µ CC population was created using a
proportional decomposition, described in Section 13.1.
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Figure 13.56: Plot comparing unaltered and reweighted-by-data true neutrino energies
in GeV using simulated events in the near detector for ν̄µ CC interactions. The solid red
histogram is unaltered simulation; the solid blue histogram is the simulation spectrum
after reweighting by data. The simulation is scaled down to match the POT of the
data. This is for the nonQE population. The true ν̄µ CC population was created using
a proportional decomposition, described in Section 13.1.
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Figure 13.57: Plot comparing unaltered and reweighted-by-data true neutrino energies
in GeV using simulated events in the near detector for ν̄µ CC interactions. The vertical
axis is plotted logarithmically. The solid red histogram is unaltered simulation; the solid
blue histogram is the simulation spectrum after reweighting by data. The simulation
is scaled down to match the POT of the data. This is for the nonQE population. The
true ν̄µ CC population was created using a proportional decomposition, described in
Section 13.1.
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Figure 13.58: Plot comparing unaltered and reweighted-by-data true neutrino energies
in GeV using simulated events in the far detector for ν̄µ CC interactions. The solid
red histogram is unaltered simulation; the solid blue histogram is the simulation spec-
trum after reweighting by the extrapolation of near detector data. The simulation is
scaled down to match the POT of the far detector data and is unoscillated. This is for
the nonQE population. The true ν̄µ CC population was created using a proportional
decomposition, described in Section 13.1.
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Figure 13.59: Plot comparing unaltered and reweighted-by-data true neutrino energies
in GeV using simulated events in the far detector for ν̄µ CC interactions. The vertical
axis is plotted logarithmically. The solid red histogram is unaltered simulation; the solid
blue histogram is the simulation spectrum after reweighting by the extrapolation of near
detector data. The simulation is scaled down to match the POT of the far detector data
and is unoscillated. This is for the nonQE population. The true ν̄µ CC population was
created using a proportional decomposition, described in Section 13.1.
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Figure 13.60: Reconstructed neutrino energy in GeV vs. true neutrino energy in GeV
using simulated events in the far detector for ν̄µ CC interactions. This plot has not been
altered to match the extrapolation of near detector data. The color axis is number of
interactions. The simulation is scaled down to match the POT of the far detector data
and is unoscillated. This is for the nonQE population. The true ν̄µ CC population was
created using a proportional decomposition, described in Section 13.1.



309

Non-QE Neutrino Energy (GeV)
0 1 2 3 4 5

T
ru

e 
E

ne
rg

y 
(G

eV
)

0

1

2

3

4

4−10

3−10

2−10

 FD True To Reco Spectrum (MC)µν → µν

Figure 13.61: Reconstructed neutrino energy in GeV vs. true neutrino energy in GeV
using simulated events in the far detector for ν̄µ CC interactions. This plot has not
been altered to match the extrapolation of near detector data. The color axis is number
of interactions and is plotted logarithmically. The simulation is scaled down to match
the POT of the far detector data and is unoscillated. This is for the nonQE population.
The true ν̄µ CC population was created using a proportional decomposition, described
in Section 13.1.
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Figure 13.62: Reconstructed neutrino energy in GeV vs. true neutrino energy in GeV
using simulated events in the far detector for ν̄µ CC interactions. This plot has been
altered to match the extrapolation of near detector data. The color axis is number of
interactions. The simulation is scaled down to match the POT of the far detector data
and is unoscillated. This is for the nonQE population. The true ν̄µ CC population was
created using a proportional decomposition, described in Section 13.1.
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Figure 13.63: Reconstructed neutrino energy in GeV vs. true neutrino energy in GeV
using simulated events in the far detector for ν̄µ CC interactions. This plot has been
altered to match the extrapolation of near detector data. The color axis is number of
interactions and is plotted logarithmically. The simulation is scaled down to match the
POT of the far detector data and is unoscillated. This is for the nonQE population.
The true ν̄µ CC population was created using a proportional decomposition, described
in Section 13.1.
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Figure 13.64: Plot comparing unaltered and reweighted-by-data reconstructed neutrino
energies in GeV using simulated events in the far detector for ν̄µ CC interactions. The
solid red histogram is unaltered simulation; the solid blue histogram is the simulation
spectrum after reweighting by the extrapolation of near detector data. The extrapo-
lated spectrum is used by the analysis as its unoscillated prediction. The simulation is
scaled down to match the POT of the far detector data and is unoscillated. This is for
the nonQE population. The true ν̄µ CC population was created using a proportional
decomposition, described in Section 13.1.
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Figure 13.65: Plot comparing unaltered and reweighted-by-data reconstructed neutrino
energies in GeV using simulated events in the far detector for ν̄µ CC interactions. The
vertical axis is plotted logarithmically. The solid red histogram is unaltered simulation;
the solid blue histogram is the simulation spectrum after reweighting by the extrapo-
lation of near detector data. The extrapolated spectrum is used by the analysis as its
unoscillated prediction. The simulation is scaled down to match the POT of the far
detector data and is unoscillated. This is for the nonQE population. The true ν̄µ CC
population was created using a proportional decomposition, described in Section 13.1.
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13.5 NC Interactions

This section contains the plots which illustrate how the far detector simulated prediction

for NC interactions is altered due to the near detector data and simulation differences.

NC interactions are the primary component of the background for this analysis from

neutrino interactions that are not νµ CC interactions. The true NC population is cre-

ated from the analysis population by performing a proportional decomposition. This

decomposition uses the simulation to determine the proportion of true NC interactions

within our analysis sample. See Section 13.1 for more details. This is done indepen-

dently for the QE and nonQE populations; Section 13.5.1 contains the plots for the QE

population and section 13.5.2 contains the plots for the nonQE population.

13.5.1 QE Population

This section presents the plots for the QE population (as defined by the event selection

in Chapter 10, specifically Section 10.4). The first step is to compare the reconstructed

neutrino energy spectrum for NC interactions in the near detector data and simulation.

Figure 13.66 plots this comparison; Figure 13.67 has a logarithmic vertical axis.

Having an altered reconstructed neutrino energy spectrum for the near detector, we

now use it to change our far detector prediction. This is the prediction used for the

analysis. It is compared to the unaltered simulation prediction in Figure 13.68. Figure

13.69 is the same comparison, but featuring a logarithmic vertical axis.
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Figure 13.66: Plot comparing data and simulation reconstructed neutrino energies in
GeV in the near detector for NC interactions. The solid red histogram is simulation;
the black points are data. The error bars displayed on the data are statistical only. The
simulation is scaled down to match the POT of the data. This is for the QE population.
The true NC population was created using a proportional decomposition, described in
Section 13.1.
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Figure 13.67: Plot comparing data and simulation reconstructed neutrino energies in
GeV in the near detector for NC interactions. The vertical axis is plotted logarithmically.
The solid red histogram is simulation; the black points are data. The error bars displayed
on the data are statistical only. The simulation is scaled down to match the POT of
the data. This is for the QE population. The true NC population was created using a
proportional decomposition, described in Section 13.1.
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Figure 13.68: Plot comparing unaltered and reweighted-by-data reconstructed neutrino
energies in GeV using simulated events in the far detector for NC interactions. The
solid red histogram is unaltered simulation; the solid blue histogram is the simulation
spectrum after reweighting by the extrapolation of near detector data. The extrapolated
spectrum is used by the analysis as its prediction. The simulation is scaled down to
match the POT of the far detector data. This is for the QE population. The true NC
population was created using a proportional decomposition, described in Section 13.1.
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Figure 13.69: Plot comparing unaltered and reweighted-by-data reconstructed neutrino
energies in GeV using simulated events in the far detector for NC interactions. The
vertical axis is plotted logarithmically. The solid red histogram is unaltered simulation;
the solid blue histogram is the simulation spectrum after reweighting by the extrapo-
lation of near detector data. The extrapolated spectrum is used by the analysis as its
prediction. The simulation is scaled down to match the POT of the far detector data.
This is for the QE population. The true NC population was created using a proportional
decomposition, described in Section 13.1.
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Figure 13.70: Plot comparing data and simulation reconstructed neutrino energies in
GeV in the near detector for NC interactions. The solid red histogram is simulation;
the black points are data. The error bars displayed on the data are statistical only.
The simulation is scaled down to match the POT of the data. This is for the nonQE
population. The true NC population was created using a proportional decomposition,
described in Section 13.1.

13.5.2 NonQE Population

This section presents the plots for the nonQE population (as defined by the event

selection in Chapter 10, specifically Section 10.4). The first step is to compare the

reconstructed neutrino energy spectrum for NC interactions in the near detector data

and simulation. Figure 13.70 plots this comparison; Figure 13.71 has a logarithmic

vertical axis.

Having an altered true neutrino energy spectrum for the near detector, we now use

it to change our far detector prediction. This is the prediction used for the analysis. It

is compared to the unaltered simulation prediction in Figure 13.72. Figure 13.73 is the

same comparison, but featuring a logarithmic vertical axis.
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Figure 13.71: Plot comparing data and simulation reconstructed neutrino energies in
GeV in the near detector for NC interactions. The vertical axis is plotted logarithmically.
The solid red histogram is simulation; the black points are data. The error bars displayed
on the data are statistical only. The simulation is scaled down to match the POT of the
data. This is for the nonQE population. The true NC population was created using a
proportional decomposition, described in Section 13.1.
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Figure 13.72: Plot comparing unaltered and reweighted-by-data reconstructed neutrino
energies in GeV using simulated events in the far detector for NC interactions. The
solid red histogram is unaltered simulation; the solid blue histogram is the simulation
spectrum after reweighting by the extrapolation of near detector data. The extrapolated
spectrum is used by the analysis as its prediction. The simulation is scaled down to
match the POT of the far detector data. This is for the nonQE population. The true
NC population was created using a proportional decomposition, described in Section
13.1.
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Figure 13.73: Plot comparing unaltered and reweighted-by-data reconstructed neutrino
energies in GeV using simulated events in the far detector for NC interactions. The ver-
tical axis is plotted logarithmically. The solid red histogram is unaltered simulation; the
solid blue histogram is the simulation spectrum after reweighting by the extrapolation
of near detector data. The extrapolated spectrum is used by the analysis as its predic-
tion. The simulation is scaled down to match the POT of the far detector data. This is
for the nonQE population. The true NC population was created using a proportional
decomposition, described in Section 13.1.



Chapter 14

Systematic Errors

To perform the analysis, we must first understand and quantify the systematic errors.

Systematic errors allow us to determine the uncertainty our measurement has due to

approximations and unknowns in our analysis. Only the systematic errors with the

largest impact to the overall normalization of the analysis sample, the energy resolution

of the sample, or the absolute energy scale will need to be included; smaller errors will

not have a large impact on the final uncertainty of our measurement.

We can look at the effect of these systematic errors on the reconstructed neutrino

energy spectra from simulation. Many systematic uncertainties, such as the overall

normalization of charged current quasielastic interactions, stem from imperfect knowl-

edge included in our simulations. Often, these uncertainties will affect the near and

far detectors in the same way. If neutrinos have quasielastic interactions more often

in the near detector than our simulation predicts, they will also have more quasielastic

interactions in the far detector than our simulation predicts. By using the extrapolation

procedure described in Chapter 13, we can use our near detector data to “fix” our far

detector prediction from simulation. For uncertainties that effect the near and far de-

tectors in the same way, if one of parameters was mis-modeled, the near detector data

would show an altered spectrum. Extrapolation would then allow us to account for for

this mis-modeling and, to first order, we would have no systematic error. However, this

procedure doesn’t perfectly remove systematic uncertainty from our simulation when

the two detectors do not see exactly identical effects. For instance, since the near detec-

tor is smaller, the contained analysis population of the near detector is shifted to have
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proportionally more low energy events than the far detector. Differences of this type

can result in an imperfect canceling of systematic error.

Some sources of systematic error are not correlated between the two detectors. For

instance, we independently calibrate the absolute energy scale in each detector. There-

fore, one would not expect that if the near detector has an absolute energy scale 3%

too high in the simulation relative to the data, that the far detector would also have an

absolute energy scale 3% too high. It could just as well be 5% too high or 4% too low.

In general, systematic errors of this type tend to have a larger effect on the analysis

than ones that can be partially or wholly mitigated with the extrapolation procedure.

This chapter discusses the systematic errors incorporated in the analysis, along with

other systematic errors that were considered but deemed negligible.

14.1 Neutrino Beam Simulation Systematic Error

Systematic errors can arise from mis-modeling the NuMI neutrino beam. The NuMI

neutrino beam is created by smashing accelerated protons onto a fixed target. These

collisions create many particles - most notably for the creation of a neutrino beam,

pions and kaons. These charged hadrons are focused into a beam where they decay

into neutrinos. See Chapter 5 for more information about the NuMI neutrino beam.

If the beam simulation is mis-modeled, the expected neutrino energy distribution for

the analysis will be different. By extrapolating near detector data to the far detector,

most of the mis-modeling is fixed. However, the near detector does sample a larger

solid angle of the neutrino beam than the far detector and it sees the neutrino beam as

a line source, while the far detector sees a point source. These differences mean that

the extrapolation does not perfectly cancel out all systematic differences in the beam

simulation.

The neutrino beam systematic errors considered by this analysis are grouped broadly

into two categories: hadron production systematic errors and beam transport system-

atic errors. Hadron production systematic errors deal with uncertainties in the initial

creation of the pions and kaons that can alter the expected neutrino flux. The beam

transport systematic errors cover uncertainties in the focusing of the charged hadrons to

create a neutrino beam, which can also alter the expected neutrino flux. Uncertainties
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from hadron production in the beam are discussed in Section 14.1.1; Section 14.1.2 cov-

ers the uncertainties from beam transportation. Finally, these errors are combined into

one overall systematic error for neutrino beam simulation. The effect of this total error

is presented in Section 14.1.3. More information about the neutrino beam simulation

systematic errors can be found in Mur’s presentation[69].

14.1.1 Hadron Production

Hadron production systematic errors deal with uncertainties in the initial creation of the

charged pions and kaons which decay to create the NuMI neutrino beam. An error band

is created based on the differences between NA49 data results and simulation for hadron

production. NA49 was a fixed target experiment at the CERN accelerator facility.

It used two large volume, fine-grained time projection chambers (TPC’s) to capture

the evolution of hadronic shower development and two intermediate sized TPC’s to

capture vertex behavior. The data used for comparison was published in the European

Physics Journal[70]. See the NA49 website for more information about the collaboration,

experiment, and findings[71].

The differences seen by hadron type in transverse momentum vs. invariant differ-

ential cross-section between the beam simulation and NA49 data is used to motivate

alternative parameterizations of the simulation. These alternative parameterizations

are used to create 1 σ error bands on the spectrum of true neutrino energy seen at each

detector. See Radovic’s presentations for more information about using NA49 results

to constrain the NOνA flux[72][73]. This systematic error has a much larger effect than

those discussed in the beam transport section. However, although it has a large effect

individually on the neutrino energy spectrum for each detector, these differences largely

cancel out when extrapolating.

14.1.2 Beam Transport

Beam transport systematic errors cover the uncertainties in the focusing of the charged

hadrons used to create a neutrino beam. First, accelerated protons are smashed onto

a fixed target. The location of the target can alter the final neutrino spectrum, as well

as the size of the proton beam. The target interactions create charged hadrons, which
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are focused using two horns that produce a magnetic field. The electrical current in the

horns is fundamental to the focusing effect. The position of each horn, relative to the

target, can also alter the final neutrino spectrum. 8 individual systematic errors were

considered. These errors are:

1. Beam position ± 0.5 mm in horizontal direction

2. Beam position ± 0.5 mm in vertical direction

3. Beam spot size ± 0.2 mm in both the horizontal and vertical direction

4. Target position shifted + 2 mm closer to the beam

5. Horn current ± 1 kAmp

6. Model magnetic field as an exponential distribution in the surface of the horns,

instead of a linear distribution

7. Position of first horn ± 2 mm in both the horizontal and vertical direction

8. Position of second horn ± 2 mm in both the horizontal and vertical direction

For plots justifying the size of the shifts, see Goodenough’s presentation[66]. For

more information on the beam transport systematic errors, see Maan’s presentation[74].

These systematic errors have a much smaller effect than the error discussed in Section

14.1.1. The effect of these errors also largely cancels out when extrapolating.

14.1.3 Total Systematic Error

Instead of implementing each systematic uncertainty individually in the analysis, it

was easier to implement one total neutrino beam simulation uncertainty. To create a

total neutrino beam simulation systematic uncertainty to use for the analysis, envelopes

of each error were combined in quadrature. It was assumed that the errors were not

correlated. The envelope of each error is defined as, for each bin in true neutrino energy,

the maximum of the absolute values of the +1 and -1 σ shifts. The total σ
(tot,±)
i for

each bin i in true neutrino energy is given by:

σ
(tot,±)
i =

9∑
n=0

[
max

(
|σ(n,+)
i |, |σ(n,−)

i |
)]2

. (14.1)
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For ease and convenience, it has the same absolute value for +1 and -1 σ shifts. n is

one of the nine individual beam simulation systematic errors.

We can look at the effect of the systematic uncertainty on the reconstructed neu-

trino energy spectra from simulation. For each population, the near detector spectrum

is shown with the systematic error band. Then the far detector prediction before ex-

trapolation is shown. Without extrapolation, the effect of the uncertainty is as large

as it would be if we only had one detector. Finally, the far detector prediction with

extrapolation is shown. For this plot, the effect of the systematic error on the analysis

is dramatically reduced. If the beam simulation was mis-modeled, the near detector

data would show an altered spectrum. Then, by using the the near detector data to

alter our far detector prediction through the extrapolation process, we would account

for that mis-modeling. Therefore, the final uncertainty on the analysis is significantly

lessened. This procedure doesn’t perfectly remove systematic uncertainty from our sim-

ulation since the two detectors do not see exactly identical effects. For instance, the near

detector subtends a larger solid angle of the beam than the far detector does. Also, the

near detector sees a line source of neutrinos, while the more-distance far detector sees a

point source. Differences of this type can result in an imperfect canceling of systematic

uncertainty.

Figure 14.1 displays the systematic error from the beam simulation for the QE

population in each detector. Figure 14.2 is for the nonQE population. By comparing

the middle and bottom plots for each population, one can see that most of the error

cancels when extrapolation is used.
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(c) Far Detector with Extrapolation

Figure 14.1: Plot of the reconstructed neutrino energy in GeV with the total beam
simulation systematic error band for the QE sample. The simulation distribution is
drawn as a red line with red systematic error bands, with neutrino background drawn
as blue line. The near detector data is drawn as black points with statistical error
bars. The simulation is scaled down to match the data POT. For the near detector,
this is 1.66 × 1020 POT. For the far detector, it is 3.45 × 1020 POT. The far detector
simulation is oscillated using the values listed in Table 4.2 and setting θ23 = π/4 and
|∆m2

32| = 2.4× 10−3 eV2.
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(b) Far Detector without Extrapolation
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(c) Far Detector with Extrapolation

Figure 14.2: Plot of the reconstructed neutrino energy in GeV with the total beam
simulation systematic error band for the nonQE sample. The simulation distribution is
drawn as a red line with red systematic error bands, with neutrino background drawn
as blue line. The near detector data is drawn as black points with statistical error
bars. The simulation is scaled down to match the data POT. For the near detector,
this is 1.66 × 1020 POT. For the far detector, it is 3.45 × 1020 POT. The far detector
simulation is oscillated using the values listed in Table 4.2 and setting θ23 = π/4 and
|∆m2

32| = 2.4× 10−3 eV2.
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14.2 Neutrino Interaction Simulation Systematic Error

Having simulated the neutrino beam, we next simulate the neutrinos interacting with

the NOνA detectors. This is done using GENIE. For more information about this sim-

ulation, see Chapter 6. The model used to simulate neutrino interactions has some

uncertainty; for instance, the overall normalization for charged current quasielastic in-

teractions is not perfectly measured by experiments. The GENIE simulation provides

handles that allow one to reweight individual simulation interactions by +1 and -1 σ to

model many of these uncertainties.

GENIE provides many knobs that can be adjusted, most of which have a very small

effect on the analysis. It would be somewhat impractical to use each knob independently.

Instead, the six with the largest effects on the signal and background distributions will

be used independently. These are discussed in Section 14.2.1. The rest of the systematic

errors were added in quadrature and will be applied together as one systematic error.

The small systematics are discussed in Section 14.2.2.

14.2.1 Large Neutrino Interaction Simulation Errors

Six adjustments to the neutrino cross section from the GENIE framework had the largest

effects on either the signal or background events for this analysis. These adjustments

are implemented individually. They are:

1. Axial mass for charged current quasielastic interactions shifted from −15% to

+25%

2. Axial mass for charged current resonance production shifted ±20%

3. Vector mass for charged current resonance production shifted ±10%

4. Axial mass for neutral current resonance production shifted ±20%

5. Vector mass for neutral current resonance production shifted ±10%

6. Axial mass for neutral current elastic interactions shifted ±25%

The value of the shifts was taken from Chapter 8 of the GENIE Physics and User

Manual[75].
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We can look at the effect of these adjustments on the reconstructed neutrino energy

spectra from simulation. For each, the near detector spectrum is shown with the asso-

ciated uncertainty shown as a systematic error band. Then the far detector prediction

before extrapolation is shown. Without extrapolation, the effect of the uncertainty is as

large as it would be if we only had one detector. Finally, the far detector prediction with

extrapolation is shown. From this plot, one can see that the effect of this systematic

error on the analysis is dramatically reduced. If one of parameters were mis-modeled,

the near detector data would show an altered spectrum. Then, by using the the near

detector data to alter our far detector prediction through the extrapolation process, we

would account for that mis-modeling. Therefore, the final uncertainty on the analysis

is significantly lessened. This procedure doesn’t completely remove systematic uncer-

tainty because the two detectors do not see exactly identical effects. For instance, since

the near detector is smaller, the contained analysis population of the near detector is

shifted to have proportionally more low energy events than the far detector. Differences

of this type can result in an imperfect canceling of systematic error.

Figure 14.3 displays the systematic error from uncertainty in the axial mass for CC

QE interactions for the QE population in each detector. Figure 14.4 is for the nonQE

population. Figure 14.5 displays the systematic error from uncertainty in the axial mass

for CC resonance interactions for the QE population in each detector. Figure 14.6 is for

the nonQE population. Figure 14.7 displays the systematic error from uncertainty in

the vector mass for CC resonance interactions for the QE population in each detector.

Figure 14.8 is for the nonQE population. Figure 14.9 displays the systematic error from

uncertainty in the axial mass for NC resonance interactions for the QE population in

each detector. Figure 14.10 is for the nonQE population. Figure 14.11 displays the

systematic error from uncertainty in the vector mass for NC resonance interactions for

the QE population in each detector. Figure 14.12 is for the nonQE population. Figure

14.13 displays the systematic error from uncertainty in the axial mass for NC elastic

interactions for the QE population in each detector. Figure 14.14 is for the nonQE

population.

From the figures, we can see that extrapolation removes most of the impact of the

systematic uncertainty from these parameters on the analysis. The remaining systematic

uncertainty is relatively small.
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(c) Far Detector with Extrapolation

Figure 14.3: Plot of the reconstructed neutrino energy in GeV with the axial mass for
CC QE interactions systematic error band for the QE sample. The simulation distribu-
tion is drawn as a red line with red systematic error bands, with neutrino background
drawn as blue line. The near detector data is drawn as black points with statistical error
bars. The simulation is scaled down to match the data POT. For the near detector,
this is 1.66 × 1020 POT. For the far detector, it is 3.45 × 1020 POT. The far detector
simulation is oscillated using the values listed in Table 4.2 and setting θ23 = π/4 and
|∆m2

32| = 2.4× 10−3 eV2.
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(b) Far Detector without Extrapolation
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(c) Far Detector with Extrapolation

Figure 14.4: Plot of the reconstructed neutrino energy in GeV with the axial mass for
CC QE interactions systematic error band for the nonQE sample. The simulation distri-
bution is drawn as a red line with red systematic error bands, with neutrino background
drawn as blue line. The near detector data is drawn as black points with statistical error
bars. The simulation is scaled down to match the data POT. For the near detector,
this is 1.66 × 1020 POT. For the far detector, it is 3.45 × 1020 POT. The far detector
simulation is oscillated using the values listed in Table 4.2 and setting θ23 = π/4 and
|∆m2

32| = 2.4× 10−3 eV2.
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(b) Far Detector without Extrapolation
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(c) Far Detector with Extrapolation

Figure 14.5: Plot of the reconstructed neutrino energy in GeV with the axial mass
for CC resonance interactions systematic error band for the QE sample. The simula-
tion distribution is drawn as a red line with red systematic error bands, with neutrino
background drawn as blue line. The near detector data is drawn as black points with
statistical error bars. The simulation is scaled down to match the data POT. For the
near detector, this is 1.66 × 1020 POT. For the far detector, it is 3.45 × 1020 POT.
The far detector simulation is oscillated using the values listed in Table 4.2 and setting
θ23 = π/4 and |∆m2

32| = 2.4× 10−3 eV2.
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(c) Far Detector with Extrapolation

Figure 14.6: Plot of the reconstructed neutrino energy in GeV with the axial mass for
CC resonance interactions systematic error band for the nonQE sample. The simula-
tion distribution is drawn as a red line with red systematic error bands, with neutrino
background drawn as blue line. The near detector data is drawn as black points with
statistical error bars. The simulation is scaled down to match the data POT. For the
near detector, this is 1.66 × 1020 POT. For the far detector, it is 3.45 × 1020 POT.
The far detector simulation is oscillated using the values listed in Table 4.2 and setting
θ23 = π/4 and |∆m2

32| = 2.4× 10−3 eV2.
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(c) Far Detector with Extrapolation

Figure 14.7: Plot of the reconstructed neutrino energy in GeV with the vector mass
for CC resonance interactions systematic error band for the QE sample. The simula-
tion distribution is drawn as a red line with red systematic error bands, with neutrino
background drawn as blue line. The near detector data is drawn as black points with
statistical error bars. The simulation is scaled down to match the data POT. For the
near detector, this is 1.66 × 1020 POT. For the far detector, it is 3.45 × 1020 POT.
The far detector simulation is oscillated using the values listed in Table 4.2 and setting
θ23 = π/4 and |∆m2

32| = 2.4× 10−3 eV2.
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(b) Far Detector without Extrapolation
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(c) Far Detector with Extrapolation

Figure 14.8: Plot of the reconstructed neutrino energy in GeV with the vector mass
for CC resonance interactions systematic error band for the nonQE sample. The simu-
lation distribution is drawn as a red line with red systematic error bands, with neutrino
background drawn as blue line. The near detector data is drawn as black points with
statistical error bars. The simulation is scaled down to match the data POT. For the
near detector, this is 1.66 × 1020 POT. For the far detector, it is 3.45 × 1020 POT.
The far detector simulation is oscillated using the values listed in Table 4.2 and setting
θ23 = π/4 and |∆m2

32| = 2.4× 10−3 eV2.
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(c) Far Detector with Extrapolation

Figure 14.9: Plot of the reconstructed neutrino energy in GeV with the axial mass
for NC resonance interactions systematic error band for the QE sample. The simula-
tion distribution is drawn as a red line with red systematic error bands, with neutrino
background drawn as blue line. The near detector data is drawn as black points with
statistical error bars. The simulation is scaled down to match the data POT. For the
near detector, this is 1.66 × 1020 POT. For the far detector, it is 3.45 × 1020 POT.
The far detector simulation is oscillated using the values listed in Table 4.2 and setting
θ23 = π/4 and |∆m2

32| = 2.4× 10−3 eV2.
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(c) Far Detector with Extrapolation

Figure 14.10: Plot of the reconstructed neutrino energy in GeV with the axial mass for
NC resonance interactions systematic error band for the nonQE sample. The simula-
tion distribution is drawn as a red line with red systematic error bands, with neutrino
background drawn as blue line. The near detector data is drawn as black points with
statistical error bars. The simulation is scaled down to match the data POT. For the
near detector, this is 1.66 × 1020 POT. For the far detector, it is 3.45 × 1020 POT.
The far detector simulation is oscillated using the values listed in Table 4.2 and setting
θ23 = π/4 and |∆m2

32| = 2.4× 10−3 eV2.
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(c) Far Detector with Extrapolation

Figure 14.11: Plot of the reconstructed neutrino energy in GeV with the vector mass
for NC resonance interactions systematic error band for the QE sample. The simula-
tion distribution is drawn as a red line with red systematic error bands, with neutrino
background drawn as blue line. The near detector data is drawn as black points with
statistical error bars. The simulation is scaled down to match the data POT. For the
near detector, this is 1.66 × 1020 POT. For the far detector, it is 3.45 × 1020 POT.
The far detector simulation is oscillated using the values listed in Table 4.2 and setting
θ23 = π/4 and |∆m2

32| = 2.4× 10−3 eV2.
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(c) Far Detector with Extrapolation

Figure 14.12: Plot of the reconstructed neutrino energy in GeV with the vector mass
for NC resonance interactions systematic error band for the nonQE sample. The simu-
lation distribution is drawn as a red line with red systematic error bands, with neutrino
background drawn as blue line. The near detector data is drawn as black points with
statistical error bars. The simulation is scaled down to match the data POT. For the
near detector, this is 1.66 × 1020 POT. For the far detector, it is 3.45 × 1020 POT.
The far detector simulation is oscillated using the values listed in Table 4.2 and setting
θ23 = π/4 and |∆m2

32| = 2.4× 10−3 eV2.
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(c) Far Detector with Extrapolation

Figure 14.13: Plot of the reconstructed neutrino energy in GeV with the axial mass for
NC elastic interactions systematic error band for the QE sample. The simulation distri-
bution is drawn as a red line with red systematic error bands, with neutrino background
drawn as blue line. The near detector data is drawn as black points with statistical error
bars. The simulation is scaled down to match the data POT. For the near detector,
this is 1.66 × 1020 POT. For the far detector, it is 3.45 × 1020 POT. The far detector
simulation is oscillated using the values listed in Table 4.2 and setting θ23 = π/4 and
|∆m2

32| = 2.4× 10−3 eV2.
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(c) Far Detector with Extrapolation

Figure 14.14: Plot of the reconstructed neutrino energy in GeV with the axial mass
for NC elastic interactions systematic error band for the nonQE sample. The simula-
tion distribution is drawn as a red line with red systematic error bands, with neutrino
background drawn as blue line. The near detector data is drawn as black points with
statistical error bars. The simulation is scaled down to match the data POT. For the
near detector, this is 1.66 × 1020 POT. For the far detector, it is 3.45 × 1020 POT.
The far detector simulation is oscillated using the values listed in Table 4.2 and setting
θ23 = π/4 and |∆m2

32| = 2.4× 10−3 eV2.



344

14.2.2 Small Neutrino Interaction Simulation Errors

The six systematic errors from GENIE with the largest effect on the analysis signal

and background were treated individually. The rest of the systematic errors from the

following adjustments to the parameters determining the neutrino cross section were

added in quadrature. The method used is one the discussed in Section 14.1.3. The

neutrino interaction cross-section shifts were:

1. Strange axial form factor η for NC elastic interactions shifted ±30%

2. CCQE Pauli suppression (via changes in Fermi level kF ) shifted ±35%

3. Choice of CCQE vector form factors (BBA05 ↔ Dipole)

4. Axial mass for CC and NC coherent pion production shifted ±50%

5. Nuclear size parameter controlling π absorption in RS model shifted ±10%

6. Non-resonance bkg in νp CC 1π reactions shifted ±50%

7. Non-resonance bkg in νp CC 2π reactions shifted ±50%

8. Non-resonance bkg in νn CC 1π reactions shifted ±50%

9. Non-resonance bkg in νn CC 2π reactions shifted ±50%

10. Non-resonance bkg in νp NC 1π reactions shifted ±50%

11. Non-resonance bkg in νp NC 2π reactions shifted ±50%

12. Non-resonance bkg in νn NC 1π reactions shifted ±50%

13. Non-resonance bkg in νn NC 2π reactions shifted ±50%

14. AHT higher-twist parameter in Bodek-Yang model scaling

variable ξw shifted ±25%

15. BHT higher-twist parameter in Bodek-Yang model scaling

variable ξw shifted ±25%
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16. CV 1u u valence GRV98 PDF correction parameter in Bodek-Yang

model shifted ±30%

17. CV 2u u valence GRV98 PDF correction parameter in Bodek-Yang

model shifted ±40%

18. Inclusive CC DIS cross-section normalization factor

19. ν̄/ν CC ratio

20. DIS nuclear modification (shadowing, anti-shadowing, EMC)

The shifts and their values are reproduced from Table 8.1 of the GENIE Physics and

User Manual[75]. The neutrino-induced hadronization and resonance-decay shifts were:

1. Pion transverse momentum (pT ) for Nπ states in AGKY

2. Pion Feynman x (xF ) for Nπ states in AGKY

3. Hadron formation zone shifted ±50%

4. Pion angular distribution in ∆→ πN (isotropic ↔ Rein-Sehgal)

5. Branching ratio for radiative resonance decays shifted ±50%

6. Branching ratio for single η resonance decays shifted ±50%

The shifts and their values are reproduced from Table 8.2 of the GENIE Physics and

User Manual[75]. The intranuclear hadron transport shifts were:

1. Nucleon mean free path (total rescattering probability) shifted ±20%

2. Nucleon charge exchange probability shifted ±50%

3. Nucleon elastic reaction probability shifted ±30%

4. Nucleon inelastic reaction probability shifted ±40%

5. Nucleon absorption probability shifted ±20%

6. Nucleon π-production probability shifted ±20%
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7. π mean free path (total rescattering probability) shifted ±20%

8. π charge exchange probability shifted ±50%

9. π elastic reaction probability shifted ±10%

10. π inelastic reaction probability shifted ±40%

11. π absorption probability shifted ±20%

12. π π-production probability shifted ±20%

The shifts and their values are reproduced from Table 8.3 of the GENIE Physics and

User Manual[75].

We can look at the effect of the systematic error on the reconstructed neutrino

energy spectra from simulation. For each population, the near detector spectrum is

shown with the resulting uncertainty shown as a band. Then the far detector prediction

before extrapolation is shown. Finally, the far detector prediction with extrapolation is

shown. For this plot, the effect of the uncertainties in these parameters on the analysis

is dramatically reduced. If one of parameters were mis-modeled, the near detector data

would show an altered spectrum. Then, by using the the near detector data to alter our

far detector prediction through the extrapolation process, we would account for that

mis-modeling. Therefore, the final uncertainty on the analysis is significantly lessened.

This procedure doesn’t completely remove systematic uncertainty from our simulation

because the two detectors do not see exactly identical effects. For instance, since the

near detector is smaller, the contained analysis population of the near detector is shifted

to have proportionally more low energy events than the far detector. Differences of this

type can result in an imperfect canceling of systematic error.

Figure 14.15 displays the systematic error from the summed GENIE effects for the

QE population in each detector. Figure 14.16 is for the nonQE population. From the

figures, we can see that extrapolation removes most of the impact of the systematic un-

certainty from these parameters on the analysis. The remaining systematic uncertainty

is relatively small.
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(c) Far Detector with Extrapolation

Figure 14.15: Plot of the reconstructed neutrino energy in GeV with the summed
GENIE effects systematic error band for the QE sample. The simulation distribution is
drawn as a red line with red systematic error bands, with neutrino background drawn
as blue line. The near detector data is drawn as black points with statistical error
bars. The simulation is scaled down to match the data POT. For the near detector,
this is 1.66 × 1020 POT. For the far detector, it is 3.45 × 1020 POT. The far detector
simulation is oscillated using the values listed in Table 4.2 and setting θ23 = π/4 and
|∆m2

32| = 2.4× 10−3 eV2.
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(c) Far Detector with Extrapolation

Figure 14.16: Plot of the reconstructed neutrino energy in GeV with the summed
GENIE effects systematic error band for the nonQE sample. The simulation distribution
is drawn as a red line with red systematic error bands, with neutrino background drawn
as blue line. The near detector data is drawn as black points with statistical error
bars. The simulation is scaled down to match the data POT. For the near detector,
this is 1.66 × 1020 POT. For the far detector, it is 3.45 × 1020 POT. The far detector
simulation is oscillated using the values listed in Table 4.2 and setting θ23 = π/4 and
|∆m2

32| = 2.4× 10−3 eV2.
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14.3 Particle Propagation Simulation Systematic Error

To simulate propagating particles through the NOνA detector after the neutrino in-

teraction, we use Geant4 configured to use the physics list QGSP BERT HP. For more

information on this simulation, see Section 6.1. The models used in this simulation could

be incorrect - this would cause a systematic error in our reconstructed neutrino energy

spectrum. To understand the size of this systematic error, a study was conducted by

comparing near detector simulations using different Geant4 physics lists.

Three alternative physics lists were used and the results compared to simulation us-

ing the nominal physics list, QGSP BERT HP. The first alternative list was QGSP BIC HP.

For this physics list, the Binary cascade model[76] (as opposed to the Bertini cascade

model[42][43]) was used to simulate primary protons and neutrons propagating through

the detector with energies below 10 GeV. For particles not simulated using the Binary

cascade model, the low energy parametrization model[77] was used. Also, the Binary

light ion cascade model[78] was used to model inelastic interactions of ions up to a few

GeV per nucleon. In other aspects, like the usage of the quark gluon string model[41]

and the high precision neutron simulation, this physics list is the same as the nominal

physics list.

The second alternative physics list considered was QGSC BERT. This physics list

does not use the high precision neutron simulation. Also, instead of using the G4Precompound

model to simulate the de-excitation of nuclei, it uses the Chiral Invariant Phase Space

(CHIPS) model[79][80]. In other aspects, like the usage of the quark gluon string

model[41] and Bertini cascade model[42][43], this physics list is the same as the nominal

physics list.

The third alternative physics list was FTF BIC. For this list, the FRITIOF description[81]

of string excitation and fragmentation was used to model the high energy interactions

of protons, neutrons, pions, kaons and nuclei. This model is used for energies greater

than 5 GeV. The quark gluon string model[41] is not used. This physics list uses the

Binary cascade model[76] to simulate primary protons and neutrons with energies below

10 GeV. The Binary light ion cascade model[76] was used to model inelastic interactions

of ions up to a few GeV per nucleon. The high precision neutron simulation was not

used. This physics list is the most different from the nominal physics list.
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Near detector simulation files with the same underlying GENIE simulation were

produced using the nominal physics list and the three variants. A suite of plots was

made comparing the simulations after applying the normal event selection cuts (see

Chapter 10 for more information about event selection cuts). Looking at plots of re-

constructed neutrino energy, the different physics lists changed the mean value ∼0.5%

and the overall normalization by ∼1%. The shifts are negligible compared to the dis-

crepancies addressed in the data-driven hadronic number of hits systematic, discussed in

Section 14.12. Also, problems with modeling particles propagating through the detector

will contribute to the data-driven hadronic number of hits systematic. Therefore, the

systematic error seen from using different physics lists will be addressed by the hadronic

number of hits systematic. For more information about alternative physics lists used

in Geant, see the Geant website[44]. For more information about the study of particle

propagation simulation errors, see the presentation by Rocco[82].

14.4 Birks’ Law Simulation Systematic Error

As a charged particle travels through the NOνA detector, it interacts with the scintilla-

tor to produce light. In general, there is a linear relationship between the energy loss of

the particle and the amount of light emitted from the scintillator. However, when the

localized amount of energy loss is high, the scintillator can become saturated and the

light yield begins to quench. Birks’ Law is an empirical description of this non-linear

quenching relationship. NOνA performed a measurement of the Birks’ parameters by

selecting protons in the near detector and measuring the dE/dx of the protons as a

function of the distance from the end of the track. These parameter values are used in

the simulation. Although the numbers match the NOνA data well, they are four times

larger than values typically used by other experiments. This discrepancy lead us to try

to evaluate a systematic uncertainty on our parametrization. We created simulation files

with two alternative parameterizations of Birks’ Law that matched values used by other

experiments. The alternative parameterizations had a 10-20% effect on the amount of

hadronic energy seen. They also altered some of the other inputs to the analysis, but

the effects were small compared to the hadronic energy shift.

This analysis has chosen to not use a systematic error derived from the alternative
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simulation files. The hadronic energy effects are already accounted for in the data-

driven hadronic number of hits systematic, discussed in Section 14.12. If a systematic

uncertainty was taken to account for alternative Birks’ parameterizations, it would be

double counting.

14.5 Detector Mass Systematic Error

If our detectors are more or less dense than we expect, we will have more or less neutrino

interactions as a result. To understand the possible magnitude of this effect, a careful

accounting of the uncertainties in our measurement of the densities of the extrusions,

scintillator, glue, and fiber was made. The accounting was done independently for each

detector. Table 14.1 lists the uncertainty from each detector component. This table

is reproduced from the presentation by Raddatz[7]. The extrusions, which account for

36% of the detector mass, and the scintillator, which accounts for 63% of the detector

mass, are the largest contributors to the total uncertainty. The uncertainty from each

component was added in quadrature. This resulted in a 0.7% uncertainty in detector

mass for each detector.

Table 14.1: Table of uncertainties in detector mass from each component. The far detec-
tor and near detector uncertainties are listed separately. The total uncertainty is created
from adding each component uncertainty in quadrature. This table is reproduced from
the presentation by Raddatz[7].

Far Detector Near Detector

Component Mass (kg/m/cell) Percentage Mass (kg/m/cell) Percentage

Extrusions 0.951 ± 0.016 36.4 ± 0.6 0.951 ± 0.016 36.2 ± 0.6

Scintillator 1.641 ± 0.009 62.8 ± 0.3 1.653 ± 0.011 63.0 ± 0.4

Glue 0.019 ± 0.0003 0.07 ± 0.01 0.019 ± 0.0003 0.07 ± 0.01

Fiber 0.001 ± 0.001 0.04 ± 0.04 0.001 ± 0.001 0.04 ± 0.04

Total 2.612 ± 0.018 100 ± 0.7 2.624 ± 0.019 100 ± 0.7

Another source of error stems from the fact that the simulated detector is not iden-

tical to the physical detector. Although the correct nominal material densities were

used, the dimensions of the extrusions in the simulation are slightly different than those
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of the physical extrusions. The PVC simulated volume is too small and the scintillator

simulated volume is too large. The amount of simulated glue is half of what the physical

detector has. No fiber was simulated, although obviously, the physical detector contains

fiber. Table 14.2 lists the differences in total mass by component for the far detector.

This table is reproduced from the presentation by Musser[8].

After adding the error from each source in quadrature, we have a -0.82% normaliza-

tion error. This error could be corrected for in the analysis; however, since the error has

a very small effect on the analysis, we instead chose to treat it as a ± 0.82% systematic

uncertainty. This decision was made for convenience. This error, as well as the 0.7%

uncertainty in detector mass, affects both detectors in the same way. Therefore, after

adding these two errors together, a ± 1.08% absolute normalization systematic error will

be applied. Figure 14.17 displays the systematic error from the absolute normalization

for the QE population in each detector. Figure 14.18 is for the nonQE population. The

effect of this systematic error on the reconstructed neutrino energy for each detector in-

dividually is very small; using extrapolation to correct the far detector prediction based

on the near detector data makes the effect almost imperceivable.

Table 14.2: Table of the total mass of each component in the physical and simulated
far detector. This table is reproduced from the presentation by Musser[8].

Component Mass in Physical Det. (T) Mass in Simulated Det. (T)

Extrusions 3,449.935 3,307.704

Scintillator 10,225.324 10,378,475

Glue 93.3 49.45

Fiber 0.0003 0
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(c) Far Detector with Extrapolation

Figure 14.17: Plot of the reconstructed neutrino energy in GeV with the absolute
normalization systematic error band for the QE sample. The simulation distribution is
drawn as a red line with red systematic error bands, with neutrino background drawn
as blue line. The near detector data is drawn as black points with statistical error
bars. The simulation is scaled down to match the data POT. For the near detector,
this is 1.66 × 1020 POT. For the far detector, it is 3.45 × 1020 POT. The far detector
simulation is oscillated using the values listed in Table 4.2 and setting θ23 = π/4 and
|∆m2

32| = 2.4× 10−3 eV2.
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(c) Far Detector with Extrapolation

Figure 14.18: Plot of the reconstructed neutrino energy in GeV with the absolute
normalization systematic error band for the nonQE sample. The simulation distribution
is drawn as a red line with red systematic error bands, with neutrino background drawn
as blue line. The near detector data is drawn as black points with statistical error
bars. The simulation is scaled down to match the data POT. For the near detector,
this is 1.66 × 1020 POT. For the far detector, it is 3.45 × 1020 POT. The far detector
simulation is oscillated using the values listed in Table 4.2 and setting θ23 = π/4 and
|∆m2

32| = 2.4× 10−3 eV2.
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A very small difference between the simulated near and far detectors was found. The

extrusion widths coded into our simulation are slightly different but the underlying cell

dimensions are identical, so it is currently unclear if this simulation difference actually

results in a physics difference. To cover this uncertainty, a ± 0.05% relative normaliza-

tion systematic error is taken. The magnitude of the simulation difference was presented

by Musser[8]. Figure 14.19 displays the systematic error from the relative normalization

for the QE population in each detector. Figure 14.20 is for the nonQE population. The

effect of this systematic uncertainty on the reconstructed neutrino energy spectra is

almost imperceivable.

14.6 Muon Range Systematic Error

Uncertainties in the mass of the NOνA detector can cause normalization errors; these

are discussed in Section 14.5. The uncertainty in the composition of the materials

making up the detector can also cause a systematic error when relating the muon range

to the muon energy. This would lead to an error in the reconstructed neutrino energy,

which directly effects the analysis.

As discussed in Section 14.5, the active region of the detector has a ±0.7% uncer-

tainty in the mass. We will take this as a ±0.7% uncertainty on the length of the muons.

For muons in the near detector that traveled through the muon catcher, we need to also

account for the uncertainty in the mass of the steel planes. We know the thickness of

the steel to ±2%, so we will treat the length of the muons traveling in steel planes as

±2% uncertain. The magnitude of this uncertainty was presented by Raddatz[83].

Using these uncertainties in muon length, altered reconstructed neutrino energy

spectra were created with ±1σ shifts. The altered spectra were used to create confi-

dence limits of the oscillation parameters measured by this analysis. There wasn’t a

visible change in the confidence limits and the error was deemed negligible. This isn’t

unexpected; the extrapolation procedure should remove most of the effect from the ac-

tive region uncertainty. The extrapolation procedure doesn’t remove uncertainty from

the steel thickness, since the far detector doesn’t have a muon catcher. However, al-

though the uncertainty in the steel exists, many muons in the near detector never enter

the muon catcher or lose only a small portion of their energy in the muon catcher. This
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(c) Far Detector with Extrapolation

Figure 14.19: Plot of the reconstructed neutrino energy in GeV with the relative
normalization systematic error band for the QE sample. The simulation distribution is
drawn as a red line with red systematic error bands, with neutrino background drawn
as blue line. The near detector data is drawn as black points with statistical error
bars. The simulation is scaled down to match the data POT. For the near detector,
this is 1.66 × 1020 POT. For the far detector, it is 3.45 × 1020 POT. The far detector
simulation is oscillated using the values listed in Table 4.2 and setting θ23 = π/4 and
|∆m2

32| = 2.4× 10−3 eV2.
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(c) Far Detector with Extrapolation

Figure 14.20: Plot of the reconstructed neutrino energy in GeV with the relative
normalization systematic error band for the nonQE sample. The simulation distribution
is drawn as a red line with red systematic error bands, with neutrino background drawn
as blue line. The near detector data is drawn as black points with statistical error
bars. The simulation is scaled down to match the data POT. For the near detector,
this is 1.66 × 1020 POT. For the far detector, it is 3.45 × 1020 POT. The far detector
simulation is oscillated using the values listed in Table 4.2 and setting θ23 = π/4 and
|∆m2

32| = 2.4× 10−3 eV2.
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systematic error was not used in the final analysis. The analysis of this systematic error

was presented by Raddatz[83].

14.7 Detector Alignment Systematic Error

The detector geometry in our simulation does not have the same relative alignment of

modules that the physical detector has. The simulation geometry has a regular staggered

offset of planes in the same view. This means that if a particle traveling in a straight

line happened to travel through a cell wall in one plane of a view, in the next plane of

that view, it would be traveling in the middle of a cell. This staggering helps to remove

common trajectories of particles that could be hidden from our reconstruction. However,

when building the physical detector, this staggering was not as precise as the staggering

used by the simulation. Physical modules are large and difficult to position; perfect

precision can not be achieved. Geometry differences can cause systematic effects for our

analysis. If the cell positions for the physical detector are different than the simulated

one, muon tracks might look broken and not be fully reconstructed. This could result

in a different muon and hadronic energy estimation, leading to an altered reconstructed

neutrino energy spectrum.

In the far detector, the uncertainty in the staggered position of the planes is 0.5

inches for both views. The uncertainty in the tilt of each plane is 1.25 mrad. A set of

far detector simulation files was created using an altered geometry for the generation

and propagation of neutrino interactions. The altered geometry set the stagger and tilt

of each plane relative to nominal by randomly sampling Gaussian distributions with σ

values set to the known uncertainty. Then the original geometry, without the jittered

shifts, was used to reconstruct the simulated events. The reconstructed neutrino energy

spectrum was shifted by less than 0.2% when using the altered geometry. The effect

on the ability to measure the oscillation parameters was very small; the uncertainty on

sin2 θ23 was 5× 10−4 and the uncertainty on |∆m2
32| was 5× 10−8 eV2. The analysis of

the far detector detector alignment effects was presented by Zamorano[84].

For the near detector, a different procedure was used to evaluate the systematic

error effects. An improved geometry simulation was created that matched the physical

detector better than the simulation used for this analysis. This improved simulated
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geometry was not used for the main analysis in the interest of time. The improved

geometry set the stagger of each plane to be the value measured by survey data. This

was important, because the differences in the near detector stagger are larger and less

regular than those in the far detector.

The improved geometry simulation was used to reconstruct the near detector data

files. This was compared to near detector data files reconstructed with the original

geometry simulation. The differences in the reconstructed neutrino energy spectrum

were less than 0.05%. The muon PID distribution, ReMId1, changed 20% in the selection

region. Using the improved geometry, the peak was much sharper. This is because

muons had a better chance to be fully reconstructed. This didn’t affect the analysis,

though, because, within 0.2%, the same number of of events still passed the ReMId cut,

which generously includes the entire signal peak region. When extrapolated through the

analysis, the improved geometry had a visually negligible effect on the measurement of

the oscillation parameters. The analysis of near detector alignment effects was presented

by Zamorano[85].

Given that the effects are negligible, no alignment systematic error will be taken for

this source of uncertainty.

14.8 POT Accounting Systematic Error

The analysis depends on understanding the total Protons On Target (POT) for the

data sets in each detector. The POT allows us to calculate the expected number of

neutrino interactions for the dataset. If the true POT was, for instance, higher than

we thought, we would see more neutrino interactions than we expected. This change

in normalization could alter our measurement of the oscillation parameters. If we only

take data when both detectors are active, then any error in the reported POT will cancel

with the extrapolation procedure. However, much of the far detector data was taken

without corresponding near detector data either existing (9 months of the early running

period) or being used (2 months of the later running period). The near detector data

from the later running period was not processed in the interest of time. The extra far

detector data significantly reduces our statistical error. The measurement sensitivity

1See Section 7.6 for more information about ReMId
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would be worse if we restricted ourselves to only using running periods with processed

data from both detectors. Therefore, we need to consider a systematic error from this

unmatched far detector data period.

Monitoring devices exist that can give an estimate on how stable the POT accounting

is through time. The POT is reported by the TRTGTD toroid. We are not concerned

with mis-calibration of the torrid; only if this mis-calibration changes through time.

Therefore, we can check the ratio of the reported POT from the TRTGTD torrid with

the backup TR101D toroid and the internal proton beam measurement device DCCT.

The ratio with the backup torrid is stable to less than 0.5%. The ratio with the internal

proton beam device is stable to about 1%, but the internal proton beam device lost

calibration for a period that caused larger than normal disagreement. It was determined

that any error from differences in POT accounting would be negligible for the first

analysis. The analysis of this systematic error was presented in Chapter 4 of the Beam

Technical Note[86].

14.9 Concurrent Neutrino Interactions Systematic Error

The near detector, being much closer to the neutrino beam, experiences a much larger

flux of neutrinos than the far detector. This means that, while the far detector sees less

than 1 neutrino interaction a day, the near detector sees about 4 neutrino interactions

for each beam spill. These concurrent neutrino interactions could cause problems for

our analysis. If Slicer (see Section 7.3 for more information about our reconstruction)

can not separate individual neutrino interactions with a high purity and efficiency, then

the reconstructed neutrino energy spectrum for the near detector will be altered. By

grouping two neutrino interactions together, we will reconstruct too high of a neutrino

energy. If instead Slicer divides mistakenly divides a single neutrino event, we will

reconstruct too low of a neutrino energy.

A study using the simulation was conducted to investigate how well Slicer separates

neutrino interactions. Purity was defined as the visible energy in the slice from the pri-

mary neutrino interaction, divided by the total visible energy in the slice. Completeness

was defined as the visible energy in the slice from the primary neutrino interaction, di-

vided by the total visible energy deposited by the primary neutrino in the detector. The
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primary neutrino is defined as the neutrino which contributes the most visible energy

to the slice. Truth information was used to associate visible energy and true neutrino

interactions. After applying cuts that required 10 hits in each view and that the true

neutrino interaction vertex was well-contained in the detector, the near detector mean

purity was found to be 98.8%. The mean completeness for the near detector was 96.8%.

For the far detector (where concurrent neutrino interactions isn’t an effect), the mean

purity was 99.3% and the mean completeness was 99.3%. Purity is the metric of most

concern to concurrent neutrino interaction effects. The purity for the near detector com-

pared to the far detector is close enough that this effect was deemed negligible for this

analysis. For future analyses with smaller errors, a better treatment is warranted. The

analysis of concurrent neutrino interactions was presented by Baird[87].

14.10 Bad Channels Systematic Error

Bad channel masks are used to remove channels from the data that might contain

suspect information, due to difficulties with the electronics or DAQ software. Channels

that never report are removed from the analysis so the reconstruction knows that the

channel is malfunctioning and that the particle track didn’t have a true gap. Channels

that constantly create noise hits are removed so that the reconstruction is not confused

by these spurious hits. For more information about bad channel masks, see Section 7.2.

These channel masks have some uncertainty. Channels might be border-line cases;

for some runs they are considered good and for some runs they are considered bad,

although throughout they display marginal behavior. Some channels might never create

hits that correspond to real physics but instead report noise hits at a rate that makes

them look like a good channel.

The effects of alternative channel masks on the analysis was investigated. For each

detector, a particular mask seen in the dataset was picked that represented a high

amount of bad channels. For the near detector, the particular mask had 5% of the

channels marked as bad, while the average channel mask marks 2% of the channels as

bad. For the far detector, a mask was picked that marked 0.6% of the channels as bad.

The average channel masks for the far detector marks 0.3% of the channels as bad.

An alternative set of simulation files was created for each detector which applied
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only the particularly bad channel mask. Using the alternative set of simulation files,

we can compare the reconstructed neutrino energy spectrum to that seen using the

nominal simulation files. For the near detector, the energy shifted by 1%. For the far

detector, the energy shifted 0.2%. Since worst-case masks were applied, the real error

is considered to be much smaller. For this analysis, this source of systematic error is

neglected. For future analyses with smaller statistical errors, a better treatment of this

error is warranted. The bad channels systematic error was evaluated by Sepulveda-

Quiroz[88].

14.11 Calibration Systematic Error

If the calibration procedure resulted in a systematic bias between the simulation and the

data, our analysis would also be biased. See Chapter 8 for more information about cali-

bration. Three types of bias, described below, were considered; only one was determined

to have a large enough effect to not neglect.

14.11.1 Overly-uniform Simulation Calibration

The calibration procedure for the simulation treats the detector as if all the X-direction

planes behaved the same and all the Y-direction planes behaved the same. In the near

detector, the muon catcher is a slight complication. For the active region, all the X-

direction planes are treated as the same and all the Y-direction planes are treated as

the same. Then, in the muon catcher, all the X-direction planes are treated as the

same, but different than the active planes. Also, all the Y-direction planes are treated

as the same, but again, different than the active planes. For the data, the behavior

of each cell is unique. Different cells will have different PVC reflectivity, scintillator

composition, APD gain levels, and different fiber quality. This means that the data

has a less uniform calibration than the simulation. To see if this introduces a bias,

the simulation calibration was randomly jittered. To determine the size of the the

jitter, a comparison between the calibrated energy per cm for simulation and data was

made. After shifting the simulation distribution to the same mean location as the

data, the RMS of the simulation distribution was smaller than the data distribution.

After introducing a random jitter of 8% to the simulation files, the RMS of the two
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distributions was the same. One could then consider the reconstructed neutrino energy

spectrum using the jittered simulation and nominal simulation. The two spectra were

within 1% for energies less than 5 GeV. Next, the impact to evaluating the oscillation

parameters was considered. It had almost no impact and will be neglected. The effect

of calibration jitter on this analysis was presented by Tamsett[89].

14.11.2 Calibration Effects Due to Distance from Readout

The second calibration systematic considered looked at the differences between the data

and simulation detector response as a function of distance from the electronic readout.

For the far detector, the calibrated detector response at the far end of the cell is 20%

different between the data and the simulation, while it is within a few percent at the

near end of the cell. This is less of an effect for the near detector, where distance from

the readout is at most 4 m.

We created altered simulation files to evaluate the effects of this discrepancy. The

difference between the data and simulation calibrated detector response with respect to

distance from the end of the cell was fit with a second-order polynomial. This function

was used to create altered simulation files, who have a detector response in distance from

the readout that matches that seen in data. Using these altered simulation files, one can

determine the differences in the reconstructed neutrino energy. Although a small shape

difference can be seen, the energy difference is less than a 5% effect for energy regions

of interest. When evaluating the impact to measuring the oscillation parameters, this

shift has a larger impact than applying random jitters. However, it is still a relatively

small impact, especially compared to other systematic effects taken into account. This

systematic effect will be neglected. The analysis evaluating the effect of this systematic

on the analysis was presented by Tamsett[89].

14.11.3 Absolute Energy Scale Offsets

The final calibration systematic considered was that of absolute energy scale. If the

calibration procedure doesn’t work correctly, the same energy deposition in data and

simulation could be reconstructed as different amounts of energy. For instance, if the

selection of events used for the calibration had more shower events contaminating the
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data sample than in the simulation, the calibration for data would be wrong. This

would create a bias in the analysis. It wouldn’t effect the reconstructed muon energy,

which is based on track length, but it would shift the reconstructed hadronic energy

and therefore the reconstructed neutrino energy. It can also hamper efforts to identify

muons by looking at the energy deposition along the length of a track.

We have evidence that, at least for the near detector, some bias exists. The most

convincing study looked at muon tracks in the near detector which passed the official se-

lection cuts in the beam data and simulation files of beam interactions. A few additional

cuts were made, restricting the start and stop positions to ensure that no rock muons

contaminated the sample and that the muons stopped before entering the muon catcher.

Also, the muon tracks were required to have no overlapping hadronic vertex energy. A

plot was made of the deposited energy per path length as a function of the distance

from the end of the muon track. The curve for data is systematically lower than the

curve for simulation. Shifting the simulation by a scale factor of 96.4% minimized the

χ2 between the two curves. Some small shape discrepancies remained, but the overall

agreement was much better. For more information on the inconsistent absolute energy

scales in data and simulation, see Raddatz’s presentation[90].

It is believed that this bias in the calibration process was created due to problems in

the underlying cosmic ray events used. The simulation files used to create the calibration

constants did not allow cosmic rays to shower and interact in the rock above the near

detector. This created cleaner tracks in the simulation files than were seen in the data.

The cuts to create the calibration sample were optimized primarily using simulation files

and were not severe enough to remove showering events from the data sample. Also,

the data files were contaminated with some neutrino beam activity. This activity is

different from the clean cosmic rays present in the simulation and could bias the result.

For future analysis, the cosmic ray simulation for the near detector has been im-

proved and should allow for more shower-like events to be simulated. Also, the cuts for

future rounds of calibration have been altered to remove showering events. Finally, the

filter that removes neutrino beam activity now has tighter timing cuts which remove all

beam events. These improvements, although shown to improve the agreement between

data and simulation calibration results, were not used for this analysis in the interest

of time.
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For this analysis, the calibration for the near detector data has been scaled up by

3.7% to match the simulation. This number was determined from the study mentioned

above. This study was considered the most in-depth and precise of the studies comparing

the data and simulation absolute energy scales. The choice was made to scale up

the data, as opposed to scaling down the simulation, because it is believed the data

calibration was plagued by showering event contamination. However, a systematic error

must still be applied to the absolute energy scale. Other studies found differences in the

absolute energy scale, but at different magnitudes. One study, presented by Sachdev[91],

was similar to the one used to determine the 3.7% scaling was done on near detector data

and simulation, but it used slightly difference choices for selection cuts. This second

study favored scaling the data up by 4.7%, which is larger than the scaling used. Also

using near detector data and simulation, a study was conducted which selected a sample

of π0 candidates. The invariant mass of these candidates was calculated and plotted for

both data and simulation. Again, the data sample was low, this time, by 5.1%. For more

information about the π0 calibration study, see the presentation by Davies[92]. Lastly,

a study of Michel electrons was conducted. Comparing data and simulation energies

in the near detector, this study found the data was either 8 or 10% low, depending on

what metric was used. This study was also conducted for the far detector. For the far

detector study, the detector was divided into regions close to the electronics readout

and far from the electronics readout. In the near region, the data was 2% lower than

the simulation. However, in the far region, the data was actually 6.2% higher than

the simulation. For more information about the Michel electron calibration study, see

Patterson’s notes[93].

Given the general disagreement as to the level of agreement in calorimetric energy

scale for the simulation and data, a systematic must be taken. Shifts in absolute calori-

metric energy scale of ±5% will be applied to simulation files for both detectors and

reprocessed through the entire chain of reconstruction. Histograms of the differences

in the reconstructed neutrino energy spectrum for each population were created and

used as templates for ±1σ systematic errors. First, the peaks of reconstructed neutrino

energy for each sample were fit with a Gaussian. A scale factor applied to the recon-

structed hadronic energy was found that caused the peaks in reconstructed neutrino
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energy to align. However, besides simply shifting the hadronic energy, the altered sim-

ulation shows overall normalization shifts (due to failing to identify the muon energy

deposition) as well as small shape changes. To account for this, after the hadronic energy

shift is made, a correlated shape correction will be made bin-by-bin in reconstructed

neutrino energy.

The systematic errors were applied in such a way that the value of the error for each

detector is allowed to move independently of the other detector. The extrapolation

procedure will not be able to mitigate the effect. Figure 14.21 displays the systematic

error from the near detector absolute energy scale offset for the QE population in each

detector. The plot for the far detector without extrapolation doesn’t have an error band,

because without extrapolation, the systematic error from the near detector absolute

energy scale offset doesn’t impact the far detector spectrum. Figure 14.22 is for the

nonQE population. Again, the plot for the far detector without extrapolation doesn’t

have an error band, because without extrapolation, the systematic error from the near

detector absolute energy scale offset doesn’t impact the far detector spectrum. Figure

14.23 displays the systematic error from the far detector absolute energy scale offset

for the QE population in each detector. Since this is the systematic error from the far

detector absolute energy scale offset, the near detector spectrum doesn’t have an error

band. Figure 14.24 is for the nonQE population. Again, since this is the systematic error

from the far detector absolute energy scale offset, the near detector spectrum doesn’t

have an error band. The effect of this systematic error on the precision of measuring

the oscillation parameters is much larger than the other two calibration systematics

considered. It is one of the largest systematic errors of this entire analysis - only the

errors discussed in Section 14.12 rival the effect of this systematic uncertainty. Future

analyses should work to reduce the uncertainty in the calorimetric energy scale.



367

QE Neutrino Energy (GeV)
0 1 2 3 4 5

E
ve

nt
s/

0.
2 

G
eV

/1
.6

6e
20

 P
O

T
0

0.01

0.02

0.03

610×

 CC Eventsµν
 Background Eventsν

Data Events

(a) Near Detector

QE Neutrino Energy (GeV)
0 1 2 3 4 5

E
ve

nt
s/

0.
2 

G
eV

/3
.4

5e
20

 P
O

T

0

1

2

3

A SimulationνNO

 CC Eventsµν
 Background Eventsν

(b) Far Detector without Extrapolation

QE Neutrino Energy (GeV)
0 1 2 3 4 5

E
ve

nt
s/

0.
2 

G
eV

/3
.4

5e
20

 P
O

T

0

1

2

3

A SimulationνNO

 CC Eventsµν
 Background Eventsν

(c) Far Detector with Extrapolation

Figure 14.21: Plot of the reconstructed neutrino energy in GeV with the near detector
absolute energy scale systematic error band for the QE sample. Figure 14.21b doesn’t
have an error band because the near detector systematic error doesn’t affect the far
detector without extrapolation. The simulation distribution is drawn as a red line with
red systematic error bands, with neutrino background drawn as blue line. The near
detector data is drawn as black points with statistical error bars. The simulation is
scaled down to match the data POT. For the near detector, this is 1.66×1020 POT. For
the far detector, it is 3.45 × 1020 POT. The far detector simulation is oscillated using
the values listed in Table 4.2 and setting θ23 = π/4 and |∆m2

32| = 2.4× 10−3 eV2.
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Figure 14.22: Plot of the reconstructed neutrino energy in GeV with the near detector
absolute energy scale systematic error band for the nonQE sample. Figure 14.22b
doesn’t have an error band because the near detector systematic error doesn’t affect
the far detector without extrapolation. The simulation distribution is drawn as a red
line with red systematic error bands, with neutrino background drawn as blue line. The
near detector data is drawn as black points with statistical error bars. The simulation
is scaled down to match the data POT. For the near detector, this is 1.66× 1020 POT.
For the far detector, it is 3.45 × 1020 POT. The far detector simulation is oscillated
using the values listed in Table 4.2 and setting θ23 = π/4 and |∆m2

32| = 2.4× 10−3 eV2.
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(c) Far Detector with Extrapolation

Figure 14.23: Plot of the reconstructed neutrino energy in GeV with the far detector
absolute energy scale systematic error band for the QE sample. Figure 14.23a doesn’t
have an error band because the far detector systematic error doesn’t affect the near
detector. The simulation distribution is drawn as a red line with red systematic error
bands, with neutrino background drawn as blue line. The near detector data is drawn
as black points with statistical error bars. The simulation is scaled down to match the
data POT. For the near detector, this is 1.66 × 1020 POT. For the far detector, it is
3.45 × 1020 POT. The far detector simulation is oscillated using the values listed in
Table 4.2 and setting θ23 = π/4 and |∆m2

32| = 2.4× 10−3 eV2.
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(c) Far Detector with Extrapolation

Figure 14.24: Plot of the reconstructed neutrino energy in GeV with the far detec-
tor absolute energy scale systematic error band for the nonQE sample. Figure 14.24a
doesn’t have an error band because the far detector systematic error doesn’t affect the
near detector. The simulation distribution is drawn as a red line with red systematic
error bands, with neutrino background drawn as blue line. The near detector data is
drawn as black points with statistical error bars. The simulation is scaled down to match
the data POT. For the near detector, this is 1.66 × 1020 POT. For the far detector, it
is 3.45 × 1020 POT. The far detector simulation is oscillated using the values listed in
Table 4.2 and setting θ23 = π/4 and |∆m2

32| = 2.4× 10−3 eV2.



371

14.12 Hadronic Number of Hits Systematic Error

As previously noted in Chapter 12, the data in the near detector has some significant

discrepancies with the simulation. Specifically, the number of hadronic hits is different.

Figure 12.27 shows that the data distribution has, on average, fewer hadronic hits than

the simulation distribution. This causes the reconstructed hadronic energy in the data

to be lower than in simulation, which in turn leads to a lower average reconstructed

neutrino energy as well. Much investigation has been done to try and understand this

difference; so far, no cause has been fully verified.

It is possible that some of the differences stem from failures in the modeling of

neutrino interactions in the simulation. In the energy region of interest, the processes

contributing to the neutrino interactions are not well-understood. For example, it has

been suggested that an interaction channel with two particle-hole pairs needs to be added

to the interaction simulation[94]. Early looks at the effect of this channel in explaining

the data and simulation differences in NOνA are promising but not yet conclusive.

Many instrumental avenues to explain this discrepancy have also been pursued.

Adjustments to the Birks’ parametrization (Section 14.4) certainly change the number

of hadronic hits seen; however, the effect was not large enough to explain the majority

of the difference. Effects due to mis-matched light level and threshold simulation were

investigated; these were not shown to have a large effect. Changes in the noise simulation

can also impact the number of hadronic hits; so far, this has not been able to explain

the bulk of the differences.

A systematic error based on the observed differences between the data and the

simulation has been taken. A simple shift in energy is not sufficient for this analysis.

QePId (discussed in Section 7.8) makes QE determinations using information that is

linked with the number of hadronic hits. For instance, it only considers slices with one

or two tracks as potential QE-candidates; if the data displays too few hadronic hits, it

is more likely to have slices with only one or two tracks. Therefore, simulation files were

created which randomly removed 30% of reconstructed hits which, by truth, were not

associated with a muon. There is no reason to believe this is actually what is physically

happening in our detector, but it does show the effect of reducing the number of hits

associated with a neutrino event independent of the underlying cause. By looking at
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comparison plots of near detector data and simulation, one can see that this method

does a good job reproducing the effects seen in our data.

First, we can look at comparisons for lower-level inputs to the analysis. Figure 14.25

plots the number of hits for each slice. This plot shows that reducing the number of

non-muon hits gives better agreement in the region occupied by the majority of the

data. Figure 14.26 shows the number of reconstructed 3D Kalman tracks for each

slice. It shows a better agreement between data and simulation with hits removed for

events with one reconstructed track. These are potentially QE events. It shows worse

agreement for a larger number of tracks. Figure 14.27 shows the number of hits on the

primary track; Figure 14.28 shows the track length distribution for the primary tracks.

These show worse agreement for short tracks with a small number of hits and better

agreement for longer tracks, more likely to be muons. The analysis level cuts, Section

10.4, have not been applied to the previous plots.
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Figure 14.25: Plot of the number of hits in a slice for the near detector. The nominal
simulation distribution is displayed as a red line. The altered simulation with fewer
hadronic hits is drawn as a blue line. The data distribution is drawn as black points
with statistical error bars. The bottom plot displays the ratio between the data and
simulation distributions. The simulation is scaled down by a factor of 6 to 1.65× 1020

POT, the exposure for the near detector data. All cuts listed in Sections 10.1, 10.2 and
10.3.2 are applied. The cuts listed in Section 10.4, notably a cut to select slices with
muons, are not applied.
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Figure 14.26: Plot of the number of 3D Kalman tracks in a slice for the near detector.
The nominal simulation distribution is displayed as a red line. The altered simulation
with fewer hadronic hits is drawn as a blue line. The data distribution is drawn as
black points with statistical error bars. The bottom plot displays the ratio between the
data and simulation distributions. The simulation is scaled down by a factor of 6 to
1.65 × 1020 POT, the exposure for the near detector data. All cuts listed in Sections
10.1, 10.2 and 10.3.2 are applied. The cuts listed in Section 10.4, notably a cut to select
slices with muons, are not applied.
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Figure 14.27: Plot of the number of hits on the 3D Kalman track with the highest
ReMId value in a slice for the near detector. The nominal simulation distribution is
displayed as a red line. The altered simulation with fewer hadronic hits is drawn as
a blue line. The data distribution is drawn as black points with statistical error bars.
The bottom plot displays the ratio between the data and simulation distributions. The
simulation is scaled down by a factor of 6 to 1.65×1020 POT, the exposure for the near
detector data. All cuts listed in Sections 10.1, 10.2 and 10.3.2 are applied. The cuts
listed in Section 10.4, notably a cut to select slices with muons, are not applied.
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Figure 14.28: Plot of the length, in cm, of the 3D Kalman track with the highest ReMId
value in a slice for the near detector. The nominal simulation distribution is displayed
as a red line. The altered simulation with fewer hadronic hits is drawn as a blue line.
The data distribution is drawn as black points with statistical error bars. The bottom
plot displays the ratio between the data and simulation distributions. The simulation
is scaled down by a factor of 6 to 1.65× 1020 POT, the exposure for the near detector
data. All cuts listed in Sections 10.1, 10.2 and 10.3.2 are applied. The cuts listed in
Section 10.4, notably a cut to select slices with muons, are not applied.



377

Next, in building up to the final selection cuts for the analysis, we can consider

the inputs to ReMId. Again, the ReMId cut has not been applied. Each plot has one

entry per slice, corresponding to the metric for the 3D Kalman track with the highest

ReMId value in the slice. Figure 14.28, the track length of the 3D Kalman track with

the highest ReMId value, already shown, is one input. Figures 14.29, 14.30 and 14.31

display the other three inputs to ReMId. Note that ReMId was only trained with the

original simulation and not with the simulation with fewer hadronic hits. Finally, Figure

14.32 shows the ReMId distribution. Significant disagreement is seen between the data

and the altered simulation for low values of ReMId. These are the least muon-like and

are composed mostly of hadrons. This region is most sensitive to the details of the

hadronic simulation and disagreement in this region isn’t surprising. At cut at 0.7 is

made on this distribution to select slices with a reconstructed muon for our analysis.

The rest of the plots will have this cut applied.
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ReMId Input: Scattering Log-Likelihood
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Figure 14.29: Plot of the scattering log-likelihood for the the 3D Kalman track with
the highest ReMId value in a slice. This plot is for the near detector populations.
The nominal simulation distribution is displayed as a red line. The altered simulation
with fewer hadronic hits is drawn as a blue line. The data distribution is drawn as
black points with statistical error bars. The bottom plot displays the ratio between the
data and simulation distributions. The simulation is scaled down by a factor of 6 to
1.65 × 1020 POT, the exposure for the near detector data. All cuts listed in Sections
10.1, 10.2 and 10.3.2 are applied. The cuts listed in Section 10.4, notably a cut to select
slices with muons, are not applied.



379

ReMId Input: dE/dx Log-Likelihood
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Figure 14.30: Plot of the dE/dx log-likelihood for the the 3D Kalman track with the
highest ReMId value in a slice. This plot is for the near detector populations. The
nominal simulation distribution is displayed as a red line. The altered simulation with
fewer hadronic hits is drawn as a blue line. The data distribution is drawn as black
points with statistical error bars. The bottom plot displays the ratio between the data
and simulation distributions. The simulation is scaled down by a factor of 6 to 1.65×1020

POT, the exposure for the near detector data. All cuts listed in Sections 10.1, 10.2 and
10.3.2 are applied. The cuts listed in Section 10.4, notably a cut to select slices with
muons, are not applied.
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Figure 14.31: Plot of the non-hadronic plane fraction for the the 3D Kalman track
with the highest ReMId value in a slice. This plot is for the near detector populations.
The nominal simulation distribution is displayed as a red line. The altered simulation
with fewer hadronic hits is drawn as a blue line. The data distribution is drawn as
black points with statistical error bars. The bottom plot displays the ratio between the
data and simulation distributions. The simulation is scaled down by a factor of 6 to
1.65 × 1020 POT, the exposure for the near detector data. All cuts listed in Sections
10.1, 10.2 and 10.3.2 are applied. The cuts listed in Section 10.4, notably a cut to select
slices with muons, are not applied.
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Figure 14.32: Plot of the ReMId value for the the 3D Kalman track with the highest
ReMId value in a slice. This plot is for the near detector populations. The nominal
simulation distribution is displayed as a red line. The altered simulation with fewer
hadronic hits is drawn as a blue line. The data distribution is drawn as black points
with statistical error bars. The bottom plot displays the ratio between the data and
simulation distributions. The simulation is scaled down by a factor of 6 to 1.65× 1020

POT, the exposure for the near detector data. All cuts listed in Sections 10.1, 10.2 and
10.3.2 are applied. The cuts listed in Section 10.4, notably a cut to select slices with
muons, are not applied.
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Figure 14.33: Plot of the number of hits on the 3D Kalman track with the highest
ReMId value in a slice for the near detector. The nominal simulation distribution is
displayed as a red line. The altered simulation with fewer hadronic hits is drawn as
a blue line. The data distribution is drawn as black points with statistical error bars.
The bottom plot displays the ratio between the data and simulation distributions. The
simulation is scaled down by a factor of 6 to 1.65 × 1020 POT, the exposure for the
near detector data. All cuts listed in Sections 10.1, 10.2 and 10.3.2 are applied. A cut
requiring a ReMId value ≥ 0.7 is also applied.

Having made a ReMId cut, we now have a sample which is primarily composed of

contained νµ CC interactions. We can now look again at the properties of the primary

tracks in this sample and inspect the hadronic component of the slice. The samples

have not been divided into QE and non-QE populations. Each plot has one entry per

slice. When track properties are plotted, only the 3D Kalman track with the highest

ReMId value, defined as the reconstructed muon track, is used.

Figure 14.33 shows the number of hits on the primary track; Figure 14.34 shows

the track length distribution for the primary tracks. The altered simulation does a

surprisingly good job of matching the data. It is possible that with less hadronic activity,

a slightly different mix of event topologies passes containment and analysis cuts.
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Figure 14.34: Plot of the length, in cm, of the 3D Kalman track with the highest ReMId
value in a slice for the near detector. The nominal simulation distribution is displayed
as a red line. The altered simulation with fewer hadronic hits is drawn as a blue line.
The data distribution is drawn as black points with statistical error bars. The bottom
plot displays the ratio between the data and simulation distributions. The simulation
is scaled down by a factor of 6 to 1.65× 1020 POT, the exposure for the near detector
data. All cuts listed in Sections 10.1, 10.2 and 10.3.2 are applied. A cut requiring a
ReMId value ≥ 0.7 is also applied.
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Figure 14.35: Plot of the number of hits in the slice not on the 3D Kalman track with
the highest ReMId value for the near detector. The nominal simulation distribution is
displayed as a red line. The altered simulation with fewer hadronic hits is drawn as
a blue line. The data distribution is drawn as black points with statistical error bars.
The bottom plot displays the ratio between the data and simulation distributions. The
simulation is scaled down by a factor of 6 to 1.65 × 1020 POT, the exposure for the
near detector data. All cuts listed in Sections 10.1, 10.2 and 10.3.2 are applied. A cut
requiring a ReMId value ≥ 0.7 is also applied.

Next, we can look at the properties of the hadronic part of the slice. Figure 14.35

plots the number of hits in the slice not on the primary track. These hits are defined

to be the hadronic hits. This plot demonstrates that by removing hadronic hits in our

altered simulation, we can make a distribution that is closer to that of data for the

region with the most candidates.

We can look at the visible calorimetric energy of the hadronic sector. Figure 14.36

plots the visible energy, in GeV, for the hadronic hits. Figure 14.37 plots the visible

energy, in GeV, associated with hadronic energy in the vertex region of the muon track.

These hadronic energies have not had the fits, discussed in Chapter 9, applied. Again,

as expected, by removing hadronic hits, the altered simulation is able to mimic the data

better than the nominal simulation.
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Figure 14.36: Plot of the sum of the visible energy (in GeV) of hits in the slice not on
the 3D Kalman track with the highest ReMId value. This plot is for the near detector
populations. The nominal simulation distribution is displayed as a red line. The altered
simulation with fewer hadronic hits is drawn as a blue line. The data distribution is
drawn as black points with statistical error bars. The bottom plot displays the ratio
between the data and simulation distributions. The simulation is scaled down by a
factor of 6 to 1.65× 1020 POT, the exposure for the near detector data. All cuts listed
in Sections 10.1, 10.2 and 10.3.2 are applied. A cut requiring a ReMId value ≥ 0.7 is
also applied.
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Figure 14.37: Plot of the sum of the visible energy (in GeV) associated with hadronic
energy in the vertex region of the 3D Kalman track with the highest ReMId value.
This plot is for the near detector populations. The nominal simulation distribution is
displayed as a red line. The altered simulation with fewer hadronic hits is drawn as
a blue line. The data distribution is drawn as black points with statistical error bars.
The bottom plot displays the ratio between the data and simulation distributions. The
simulation is scaled down by a factor of 6 to 1.65 × 1020 POT, the exposure for the
near detector data. All cuts listed in Sections 10.1, 10.2 and 10.3.2 are applied. A cut
requiring a ReMId value ≥ 0.7 is also applied.
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Average energy per hit is a useful quantity to understand the relationship between

total visible energy and number of hits. Figure 14.38 displays, for each slice, the total

visible energy in GeV divided by the total number of hits in the slice. Each slice has

one entry in the plot. Figure 14.39 plots the total visible energy in GeV for hits on

the muon track divided by the total number of hits associated with the muon track.

Again, each slice has one entry in the plot. It is possible that the improvement seen

from the altered simulation is due to less hadronic hit contamination near the vertex

of the muon track. The hadronic energy sector has more structure; Figure 14.40 plots

the total visible energy in GeV for hits in the slice not associated with the muon track,

divided by the total number of hadronic hits. It is not fully understood why the altered

sample shifts to lower energy per hit. It is possible that this is because any muon hits in

the hadronic cluster wouldn’t have a chance to be randomly removed. This could pull

the distribution slightly lower. Alternatively, by removing some hadronic hits, different

event topologies could be selected for the analysis sample at higher rates, changing this

distribution.
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Figure 14.38: Plot of the sum of the visible energy (in GeV) for the slice hits divided by
the total number of hits in the slice. Each slice is one entry in the histogram. This plot
is for the near detector populations. The nominal simulation distribution is displayed
as a red line. The altered simulation with fewer hadronic hits is drawn as a blue line.
The data distribution is drawn as black points with statistical error bars. The bottom
plot displays the ratio between the data and simulation distributions. The simulation
is scaled down by a factor of 6 to 1.65× 1020 POT, the exposure for the near detector
data. All cuts listed in Sections 10.1, 10.2 and 10.3.2 are applied. A cut requiring a
ReMId value ≥ 0.7 is also applied.
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Figure 14.39: Plot of the sum of the visible energy (in GeV) for the hits associated the
3D Kalman track with the highest ReMId value divided by the number of hits associated
with the primary track. Each primary track is one entry in the histogram. This plot
is for the near detector populations. The nominal simulation distribution is displayed
as a red line. The altered simulation with fewer hadronic hits is drawn as a blue line.
The data distribution is drawn as black points with statistical error bars. The bottom
plot displays the ratio between the data and simulation distributions. The simulation
is scaled down by a factor of 6 to 1.65× 1020 POT, the exposure for the near detector
data. All cuts listed in Sections 10.1, 10.2 and 10.3.2 are applied. A cut requiring a
ReMId value ≥ 0.7 is also applied.
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Figure 14.40: Plot of the sum of the visible energy (in GeV) for the slice hits not
associated the 3D Kalman track with the highest ReMId value divided by the number
of hits in the slice not associated with the primary track. Each slice is one entry in
the histogram. This plot is for the near detector populations. The nominal simulation
distribution is displayed as a red line. The altered simulation with fewer hadronic hits is
drawn as a blue line. The data distribution is drawn as black points with statistical error
bars. The bottom plot displays the ratio between the data and simulation distributions.
The simulation is scaled down by a factor of 6 to 1.65× 1020 POT, the exposure for the
near detector data. All cuts listed in Sections 10.1, 10.2 and 10.3.2 are applied. A cut
requiring a ReMId value ≥ 0.7 is also applied.
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To make our final analysis sample, we need to apply a QePId cut to create a QE

and a nonQE population. First, let us understand the inputs to QePId. Each plot has

one entry per slice. Plots are either for the one track or two track sample. For more

information on these samples or the inputs to QePId, see Section 7.8.

Figure 14.41, the off-track energy ratio for the one track sample, is one input to

QePId. This plot shows remarkable agreement between the altered simulation and

data. Figure 14.42 displays the off-track energy ratio, but for the two track sample. In

general, the altered simulation does less well capturing all the structure present in the

two track sample, compared to the more simple one track sample. Figure 14.43 shows

the fractional energy difference for the one track sample and Figure 14.44 is for the

two track sample. The fractional energy difference Z-test for the one track sample is

plotted in Figure 14.45; the two track sample is shown in Figure 14.46. Figure 14.47

plots the dE/dx ratio, only applicable to the two track sample. For this input to QePId,

the altered simulation clearly fails to do better than the original simulation. Randomly

removing hits in the hadronic sector is going to have a negative impact on one’s ability

to make hadronic tracks with expected dE/dx depositions. The approach, in general,

works much better for the one track sample. Something more sophisticated would need

to be developed if one wanted to properly model effects in samples with reconstructed

hadronic tracks.
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Figure 14.41: Plot of off-track energy ratio for a slice in the near detector. This is
for the one track sample. The nominal simulation distribution is displayed as a red
line. The altered simulation with fewer hadronic hits is drawn as a blue line. The
data distribution is drawn as black points with statistical error bars. The bottom plot
displays the ratio between the data and simulation distributions. The simulation is
scaled down by a factor of 6 to 1.65 × 1020 POT, the exposure for the near detector
data. All cuts listed in Sections 10.1, 10.2 and 10.3.2 are applied. A cut requiring a
ReMId value ≥ 0.7 is also applied.
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Figure 14.42: Plot of off-track energy ratio for a slice in the near detector. This is
for the two track sample. The nominal simulation distribution is displayed as a red
line. The altered simulation with fewer hadronic hits is drawn as a blue line. The
data distribution is drawn as black points with statistical error bars. The bottom plot
displays the ratio between the data and simulation distributions. The simulation is
scaled down by a factor of 6 to 1.65 × 1020 POT, the exposure for the near detector
data. All cuts listed in Sections 10.1, 10.2 and 10.3.2 are applied. A cut requiring a
ReMId value ≥ 0.7 is also applied.
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Figure 14.43: Plot of the fractional energy difference for a slice in the near detector.
This is for the one track sample. The nominal simulation distribution is displayed as
a red line. The altered simulation with fewer hadronic hits is drawn as a blue line.
The data distribution is drawn as black points with statistical error bars. The bottom
plot displays the ratio between the data and simulation distributions. The simulation
is scaled down by a factor of 6 to 1.65× 1020 POT, the exposure for the near detector
data. All cuts listed in Sections 10.1, 10.2 and 10.3.2 are applied. A cut requiring a
ReMId value ≥ 0.7 is also applied.
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Figure 14.44: Plot of the fractional energy difference for a slice in the near detector.
This is for the two track sample. The nominal simulation distribution is displayed as
a red line. The altered simulation with fewer hadronic hits is drawn as a blue line.
The data distribution is drawn as black points with statistical error bars. The bottom
plot displays the ratio between the data and simulation distributions. The simulation
is scaled down by a factor of 6 to 1.65× 1020 POT, the exposure for the near detector
data. All cuts listed in Sections 10.1, 10.2 and 10.3.2 are applied. A cut requiring a
ReMId value ≥ 0.7 is also applied.
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Figure 14.45: Plot of the fractional energy difference Z-test for a slice in the near
detector. This is for the one track sample. The nominal simulation distribution is
displayed as a red line. The altered simulation with fewer hadronic hits is drawn as
a blue line. The data distribution is drawn as black points with statistical error bars.
The bottom plot displays the ratio between the data and simulation distributions. The
simulation is scaled down by a factor of 6 to 1.65 × 1020 POT, the exposure for the
near detector data. All cuts listed in Sections 10.1, 10.2 and 10.3.2 are applied. A cut
requiring a ReMId value ≥ 0.7 is also applied.
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Figure 14.46: Plot of the fractional energy difference Z-test for a slice in the near
detector. This is for the two track sample. The nominal simulation distribution is
displayed as a red line. The altered simulation with fewer hadronic hits is drawn as
a blue line. The data distribution is drawn as black points with statistical error bars.
The bottom plot displays the ratio between the data and simulation distributions. The
simulation is scaled down by a factor of 6 to 1.65 × 1020 POT, the exposure for the
near detector data. All cuts listed in Sections 10.1, 10.2 and 10.3.2 are applied. A cut
requiring a ReMId value ≥ 0.7 is also applied.
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Figure 14.47: Plot of the dE/dx ratio for a slice in the near detector. This is for the
two track sample. The nominal simulation distribution is displayed as a red line. The
altered simulation with fewer hadronic hits is drawn as a blue line. The data distribution
is drawn as black points with statistical error bars. The bottom plot displays the ratio
between the data and simulation distributions. The simulation is scaled down by a
factor of 6 to 1.65× 1020 POT, the exposure for the near detector data. All cuts listed
in Sections 10.1, 10.2 and 10.3.2 are applied. A cut requiring a ReMId value ≥ 0.7 is
also applied.



399

QePId
0 0.2 0.4 0.6 0.8 1

 P
O

T
20

 1
0

×
C

an
di

da
te

s 
/ 1

.6
5 

5

10

15

20

25

310×

Simulation
Simulation w/ less had. hits
Data

QePId
0 0.2 0.4 0.6 0.8 1

D
at

a/
S

im
ul

at
io

n

0.8

0.9

1

1.1

1.2

Figure 14.48: Plot of QePId for a slice in the near detector. This is for the one track
sample. The nominal simulation distribution is displayed as a red line. The altered
simulation with fewer hadronic hits is drawn as a blue line. The data distribution is
drawn as black points with statistical error bars. The bottom plot displays the ratio
between the data and simulation distributions. When the ratio is too large for the scale,
the point and its error bars are not drawn. The simulation is scaled down by a factor
of 6 to 1.65 × 1020 POT, the exposure for the near detector data. All cuts listed in
Sections 10.1, 10.2 and 10.3.2 are applied. A cut requiring a ReMId value ≥ 0.7 is also
applied.

Finally, Figure 14.48 shows the QePId distribution for the one track sample and

Figure 14.49 shows the QePId distribution for the two track sample. For the one track

sample, a cut is made at 0.45. Slices with higher values are considered part of the

QE sample; slices with lower values are part of the nonQE sample. For the two track

sample, the cut is made at 0.4. The altered simulation does a much better job modeling

the QePId distribution for the one track sample than the nominal simulation. Both

simulations fail to capture the structure seen in the data for the two track sample;

however, this sample contributes fewer events to the QE sample than the one track

sample and is relatively less important.
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Figure 14.49: Plot of QePId for a slice in the near detector. This is for the two track
sample. The nominal simulation distribution is displayed as a red line. The altered
simulation with fewer hadronic hits is drawn as a blue line. The data distribution is
drawn as black points with statistical error bars. The bottom plot displays the ratio
between the data and simulation distributions. The simulation is scaled down by a
factor of 6 to 1.65× 1020 POT, the exposure for the near detector data. All cuts listed
in Sections 10.1, 10.2 and 10.3.2 are applied. A cut requiring a ReMId value ≥ 0.7 is
also applied.
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Figure 14.50: Plot of reconstructed neutrino energy in GeV for a slice in the near
detector. This is for the QE sample. The nominal simulation distribution is displayed
as a red line. The altered simulation with fewer hadronic hits is drawn as a blue line.
The data distribution is drawn as black points with statistical error bars. The bottom
plot displays the ratio between the data and simulation distributions. The simulation
is scaled down by a factor of 6 to 1.65× 1020 POT, the exposure for the near detector
data. All cuts listed in Sections 10.1, 10.2, 10.3.2 and 10.4 are applied.

Having made our final analysis populations, we can now look at the reconstructed

neutrino energy. Figure 14.50 displays the reconstructed neutrino energy for the QE

sample. Figure 14.51 displays the reconstructed neutrino energy for the nonQE sample.

We see that the altered simulation improves the agreements with the data but doesn’t

perfectly model the relative normalizations or the energy shifts seen in the data. It does

capture the behavior well-enough to be used to estimate the systematic error.
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Figure 14.51: Plot of reconstructed neutrino energy in GeV for a slice in the near de-
tector. This is for the nonQE sample. The nominal simulation distribution is displayed
as a red line. The altered simulation with fewer hadronic hits is drawn as a blue line.
The data distribution is drawn as black points with statistical error bars. The bottom
plot displays the ratio between the data and simulation distributions. The simulation
is scaled down by a factor of 6 to 1.65× 1020 POT, the exposure for the near detector
data. All cuts listed in Sections 10.1, 10.2, 10.3.2 and 10.4 are applied.
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For the curious, we can look at the muon track properties of our final analysis

populations. Remember that with a ReMId cut, the muon track length and number

of hits matched incredibly well between the altered simulation and the data. However,

once we divide our sample into the QE and nonQE populations, we no longer see this

striking agreement. Figure 14.52 shows the number of hits on the muon track for the

QE population. Figure 14.53 is for the nonQE population. Figure 14.54 displays the

muon track length for the QE population. Figure 14.55 shows the nonQE population.

The altered simulation still does a better job matching the data than the nominal

simulation for the QE population, but the data and altered simulation do not lie on top

of each other. This isn’t completely unexpected - by looking at our QePId distributions,

we already knew that the altered simulation doesn’t allow us to make populations that

match the data perfectly. These differences carry over into the muon track distributions;

for instance, since the data still sees more QE events than the altered simulation, we

see more muon tracks in the data sample than in altered simulation.
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Figure 14.52: Plot of the number of hits on the 3D Kalman track with the highest
ReMId value in a slice for the near detector. This is for the QE sample. The nominal
simulation distribution is displayed as a red line. The altered simulation with fewer
hadronic hits is drawn as a blue line. The data distribution is drawn as black points
with statistical error bars. The bottom plot displays the ratio between the data and
simulation distributions. The simulation is scaled down by a factor of 6 to 1.65× 1020

POT, the exposure for the near detector data. All cuts listed in Sections 10.1, 10.2,
10.3.2 and 10.4 are applied.
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Figure 14.53: Plot of the number of hits on the 3D Kalman track with the highest
ReMId value in a slice for the near detector. This is for the nonQE sample. The
nominal simulation distribution is displayed as a red line. The altered simulation with
fewer hadronic hits is drawn as a blue line. The data distribution is drawn as black
points with statistical error bars. The bottom plot displays the ratio between the data
and simulation distributions. The simulation is scaled down by a factor of 6 to 1.65×1020

POT, the exposure for the near detector data. All cuts listed in Sections 10.1, 10.2,
10.3.2 and 10.4 are applied.
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Figure 14.54: Plot of the length, in cm, of the 3D Kalman track with the highest
ReMId value in a slice for the near detector. This is for the QE sample. The nominal
simulation distribution is displayed as a red line. The altered simulation with fewer
hadronic hits is drawn as a blue line. The data distribution is drawn as black points
with statistical error bars. The bottom plot displays the ratio between the data and
simulation distributions. The simulation is scaled down by a factor of 6 to 1.65× 1020

POT, the exposure for the near detector data. All cuts listed in Sections 10.1, 10.2,
10.3.2 and 10.4 are applied.
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Figure 14.55: Plot of the length, in cm, of the 3D Kalman track with the highest
ReMId value in a slice for the near detector. This is for the nonQE sample. The
nominal simulation distribution is displayed as a red line. The altered simulation with
fewer hadronic hits is drawn as a blue line. The data distribution is drawn as black
points with statistical error bars. The bottom plot displays the ratio between the data
and simulation distributions. The simulation is scaled down by a factor of 6 to 1.65×1020

POT, the exposure for the near detector data. All cuts listed in Sections 10.1, 10.2,
10.3.2 and 10.4 are applied.
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Having created simulation files which remove hadronic hits for both detectors, we

looked at the reconstructed neutrino energy spectra for each population (near and far

detectors, QE and nonQE samples) to create +1 σ errors. The peaks of reconstructed

neutrino energy for each sample were fit with a Gaussian. A scale factor applied to

the reconstructed hadronic energy was found that caused the peaks in reconstructed

neutrino energy to align. After this shift is made, a correlated shape correction was

made bin-by-bin in reconstructed neutrino energy. The systematic errors are one-sided

and +1 σ was defined to be twice the size of the shift seen in the altered simulation

files. The shift size was doubled because the shift didn’t perfectly encompass all the

data and simulation differences. Twice was picked because it conservatively covered the

discrepancy.

The systematic errors were applied in such a way that the value of the error for each

detector is allowed to move independently of the other detector. The extrapolation

procedure will not be able to mitigate the effect. Figure 14.56 displays the systematic

error from the near detector number of hadronic hits discrepancy for the QE population

in each detector. The plot for the far detector without extrapolation doesn’t have an

error band, because without extrapolation, the systematic error from the near detector

number of hadronic hits discrepancy doesn’t impact the far detector spectrum. Here, the

far detector prediction with extrapolation is actually lower for the QE population due to

this systematic error. That is because it is able to undo the effects of the extrapolation,

which already increased the expected number of QE events. Figure 14.57 is for the

nonQE population. Again, the plot for the far detector without extrapolation doesn’t

have an error band, because without extrapolation, the systematic error from the near

detector number of hadronic hits discrepancy doesn’t impact the far detector spectrum.

The effect of the systematic error is slightly counter-intuitive; it is again undoing the

effects of the extrapolation on this sample. Figure 14.58 displays the systematic error

from the far detector number of hadronic hits discrepancy for the QE population in each

detector. Since this is the systematic error from the far detector number of hadronic hits

discrepancy, the near detector spectrum doesn’t have an error band. The shift goes in

the expected direction and increases the total predicted number of QE events in the far

detector, as well as shifts the reconstructed neutrino energy lower. Figure 14.59 is for

the nonQE population. Again, since this is the systematic error from the far detector
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number of hadronic hits discrepancy, the near detector spectrum doesn’t have an error

band. It works as expected in the far detector spectrum, reducing the total number of

nonQE events predicted in the far detector and again shifting the reconstructed neutrino

energy to lower values.

This systematic error, along with the uncertainty in the absolute calorimetric energy

scale discussed in Section 14.11.3, has the largest impact on this analysis. It changes the

overall normalization of each population and reduces the precision with which we can

measure the parameters from the oscillation dip. This systematic error must be reduced

for future analyses by understanding the source of the data and simulation differences

in the near detector.
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(c) Far Detector with Extrapolation

Figure 14.56: Plot of the reconstructed neutrino energy in GeV with the near detector
number of hadronic hits systematic error band for the QE sample. Figure 14.56b doesn’t
have an error band because the near detector systematic error doesn’t affect the far
detector without extrapolation. The simulation distribution is drawn as a red line with
red systematic error bands, with neutrino background drawn as blue line. The near
detector data is drawn as black points with statistical error bars. The simulation is
scaled down to match the data POT. For the near detector, this is 1.66×1020 POT. For
the far detector, it is 3.45 × 1020 POT. The far detector simulation is oscillated using
the values listed in Table 4.2 and setting θ23 = π/4 and |∆m2

32| = 2.4× 10−3 eV2.
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Figure 14.57: Plot of the reconstructed neutrino energy in GeV with the near detector
number of hadronic hits systematic error band for the nonQE sample. Figure 14.57b
doesn’t have an error band because the near detector systematic error doesn’t affect
the far detector without extrapolation. The simulation distribution is drawn as a red
line with red systematic error bands, with neutrino background drawn as blue line. The
near detector data is drawn as black points with statistical error bars. The simulation
is scaled down to match the data POT. For the near detector, this is 1.66× 1020 POT.
For the far detector, it is 3.45 × 1020 POT. The far detector simulation is oscillated
using the values listed in Table 4.2 and setting θ23 = π/4 and |∆m2

32| = 2.4× 10−3 eV2.
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(c) Far Detector with Extrapolation

Figure 14.58: Plot of the reconstructed neutrino energy in GeV with the far detector
number of hadronic hits systematic error band for the QE sample. Figure 14.58a doesn’t
have an error band because the far detector systematic error doesn’t affect the near
detector. The simulation distribution is drawn as a red line with red systematic error
bands, with neutrino background drawn as blue line. The near detector data is drawn
as black points with statistical error bars. The simulation is scaled down to match the
data POT. For the near detector, this is 1.66 × 1020 POT. For the far detector, it is
3.45 × 1020 POT. The far detector simulation is oscillated using the values listed in
Table 4.2 and setting θ23 = π/4 and |∆m2

32| = 2.4× 10−3 eV2.
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Figure 14.59: Plot of the reconstructed neutrino energy in GeV with the far detector
number of hadronic hits systematic error band for the nonQE sample. Figure 14.59a
doesn’t have an error band because the far detector systematic error doesn’t affect the
near detector. The simulation distribution is drawn as a red line with red systematic
error bands, with neutrino background drawn as blue line. The near detector data is
drawn as black points with statistical error bars. The simulation is scaled down to match
the data POT. For the near detector, this is 1.66 × 1020 POT. For the far detector, it
is 3.45 × 1020 POT. The far detector simulation is oscillated using the values listed in
Table 4.2 and setting θ23 = π/4 and |∆m2

32| = 2.4× 10−3 eV2.
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14.13 Total Systematic Error

Having considered many systematic errors, some of which this analysis uses and some

that are negligible, we can now look at the total systematic error being taken. The

two systematic errors that have the largest impact are the absolute calorimetric energy

scale error (Section 14.11.3) and the number of hadronic hits error (Section 14.12).

Both of these errors are relatively large in each detector. Also, they were treated as

uncorrelated between detectors. For the hadronic hits error, this was a conservative

choice. Future analyses should be able to reduce this error and its impact. Since the

errors were implemented as uncorrelated, the process of using the near detector data

to altered the far detector prediction couldn’t mitigate the impact of these systematic

errors.

Most of the other systematic errors used in this analysis, however, are correlated

between detectors. This means that the extrapolation process does mostly remove

the effect of the uncertainty from the analysis. The systematic errors from the beam

simulation (Section 14.1) are large in each detector, but fairly small when extrapolated.

Systematic errors from the neutrino interaction simulation (Section 14.2) are smaller

in each detector than the beam simulation errors and even smaller when extrapolated.

Normalization systematic errors (Section 14.5) are very tiny and have almost no impact

on the total systematic error envelope.

Figure 14.60 displays the total systematic error for the QE population in each de-

tector. Figure 14.61 is for the nonQE population.
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(c) Far Detector with Extrapolation

Figure 14.60: Plot of the reconstructed neutrino energy in GeV with the total systematic
error band for the QE sample. The simulation distribution is drawn as a red line with
red systematic error bands, with neutrino background drawn as blue line. The near
detector data is drawn as black points with statistical error bars. The simulation is
scaled down to match the data POT. For the near detector, this is 1.66×1020 POT. For
the far detector, it is 3.45 × 1020 POT. The far detector simulation is oscillated using
the values listed in Table 4.2 and setting θ23 = π/4 and |∆m2

32| = 2.4× 10−3 eV2.
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Figure 14.61: Plot of the reconstructed neutrino energy in GeV with the the total
systematic error band for the nonQE sample. The simulation distribution is drawn
as a red line with red systematic error bands, with neutrino background drawn as
blue line. The near detector data is drawn as black points with statistical error bars.
The simulation is scaled down to match the data POT. For the near detector, this is
1.66×1020 POT. For the far detector, it is 3.45×1020 POT. The far detector simulation
is oscillated using the values listed in Table 4.2 and setting θ23 = π/4 and |∆m2

32| =
2.4× 10−3 eV2.



Chapter 15

Results

Having defined a set of cuts to create analysis populations, determined an extrapolation

procedure and finalized a set of systematic errors, we can now look at the far detector

data. This data corresponds to 3.45× 1020 POT with variable detector configurations.

If no neutrino oscillations occurred, we would expect roughly 100 events in each

analysis population. However, in the case of maximal mixing, we would instead expect

about 14 QE events and 24 nonQE events. Table 15.1 lists the event counts for each

population in the data as well as predicted event counts from simulation under differ-

ent hypotheses. To be counted, the event must have a reconstructed neutrino energy

between 0 and 5 GeV. This analysis can easily determine if neutrino oscillations oc-

cur; since we see 20 QE events and 25 nonQE events in the data, we can rule out the

hypothesis of no neutrino oscillations.

The table also lists the event counts predicted for maximal mixing when one varies

the systematic errors by 1σ. Systematic errors cause us to expect between 10 and 18

events for the QE population and 13 and 35 events for the nonQE population. Finally,

the table also lists the expected background event counts from neutrino interactions that

are not νµ CC interactions and cosmic ray backgrounds. These are relatively small; for

the QE population, we expect about 1 background event and for the nonQE population,

we expect about 5 background events.

417
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Table 15.1: Predicted and measured event counts for the far detector. The total POT
for the far detector is 3.45×1020 POT and this corresponds to variable detector configu-
rations. The counts for each population only include events with reconstructed neutrino
energy between 0 and 5 GeV. The total number of data events for each population is
listed first. The predicted total event count for each population under the hypothesis of
no neutrino oscillations is given next. The rest of the lines correspond to the hypothesis
of maximal mixing, setting θ23 = π/4 and |∆m2

32| = 2.4× 10−3 eV2 as well as using the
oscillation parameters listed in Table 4.2. The event counts predicted by varying the
systematic errors by 1σ are listed for the hypothesis of maximal mixing. The expected
background event counts are given for each population, with neutrino interactions that
are not νµ CC interactions and cosmic ray backgrounds separated.

QE NonQE

Data 20 25

Total Events (no osc.) 89.2 122.3

Total Events (max. mix) 14.3 24.2

Total Events w/ syst. 1σ errors (low) 10.3 13.6

Total Events w/ syst. 1σ errors (high) 18.2 34.8

Neutrino Background 0.2 2.1

Cosmic Ray Background 0.7 2.7

Section 15.1 looks at the far detector data events in detail. Then Section 15.2

presents the measurement of the oscillation parameters and compares it to the results

of other experiments.

15.1 Far Detector Data Events

We can now look at the far detector data events in some detail. We measured 20 data

events for the QE population and 25 for the nonQE population. The event displays

for each data event were visually scanned. 2 of the QE events visually looked like

possible cosmic ray background events. Both clearly entered or exited from the edge of

the detector, but due to a reconstruction error, passed the analysis cuts. This type of

failure could be removed from future analyses by adding cuts that looked at slice extents.

The QE population was predicted to have 0.7 events from cosmic ray backgrounds. The
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probability of measuring 2 or more events when expecting 0.7 was 15%. Table 15.2 lists

each selected QE far detector data event.

One QE data event that was visually very signal-like corresponds to run 17953, event

256887. Figure 15.1 is an event display of this event. It shows the entire far detector.

Figure 15.2 is a spatially-zoomed version of the event display, showing the slice hits.

Figure 15.3 is also spatially-zoomed, but has the Kalman tracks drawn on top of the hits.

The long green 3D Kalman track is the muon track; the short blue 2D track is probably

a proton. This is a classic example of what a QE event looks like. Note that the muon

track does have some gaps. These can be caused by faulty electronics or photo-detector

or low hit efficiency when far from the APD readout. Gaps on muon tracks don’t hurt

our ability to reconstruct the energy of the muon, as long as the reconstruction is still

able to reconstruct the entire track.

For an example of a selected event that could be a cosmic-ray background entering

the detector, see Figure 15.4 of run 18302, event 413485. It shows the entire far detector.

An alternative hypothesis is that this could be a muon from a neutrino interaction which

exited the detector. Figure 15.5 is a spatially-zoomed version of the event display,

showing the slice hits. Figure 15.6 is also spatially-zoomed, but has the Kalman tracks

drawn on top of the hits. Note that, although the slice has hits which are very near

to the top of the detector, the curve in the track is not followed by the reconstructed

Kalman track. This causes the end of the track to be considered contained and passes

the analysis cuts.

Table 15.2: Far detector QE data events. The time is relative to the start of the readout
window. The ReMId value listed is for the 3D Kalman track in the slice with the highest
ReMId. The energy is reconstructed neutrino energy in GeV. These events were visually
scanned and categorized. “S” indicates the event looked signal-like. “I” indicates the
event was indeterminate and could be signal or background. “B” indicates the event
visually looked like cosmic ray background. “C” indicates that the background was
well-contained in the detector. “E” indicates that the event was clearly entering the
detector.

Run Subrun Event Slice Time [µs] ReMId Energy [GeV] Scan

15028 18 124609 37 219.6 1.00 3.91 S

Continued on next page
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Table 15.2 – continued from previous page

Run Subrun Event Slice Time [µs] ReMId Energy [GeV] Scan

16382 53 302896 25 226.8 1.00 1.80 S

16751 11 45215 41 224.5 1.00 2.21 S

17953 38 256887 29 228.4 0.99 2.60 S

18302 37 413485 32 218.2 0.99 1.20 B, E

18464 40 546039 24 221.3 1.00 1.98 S

18571 03 50129 27 226.2 1.00 1.94 S

18639 10 141206 43 220.6 0.99 3.37 S

18653 16 219065 36 227.0 0.98 2.32 S

18756 37 597960 22 226.1 1.00 2.26 S

18862 51 820267 37 227.7 0.95 0.88 S

18963 15 229864 37 221.4 1.00 1.77 S

19054 26 383867 34 220.8 0.99 3.76 S

19332 16 221786 44 221.7 1.00 3.96 S

19347 03 50163 34 218.9 0.74 0.65 I

19350 46 664010 29 218.4 0.99 1.41 B, E

19420 38 561111 32 225.0 1.00 2.63 S

19422 22 334692 34 226.8 1.00 2.77 S

19425 61 903289 26 220.7 1.00 1.86 S

19468 30 512430 25 227.3 1.00 2.34 S
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Figure 15.1: Event display of far detector data QE event. This event corresponds to
run 17953, event 256887. Note that the figure is rotated. The view shows the entire
far detector. Colored dots are drawn over hits in the slice associated with Kalman
tracks. The green dots represent a long, 3D Kalman track. This slice also had a short
2D Kalman track, drawn with blue dots. Hits in the readout window not associated
with the slice are grayed out. The blue box indicates the region of the detector not
considered active.
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Figure 15.2: Event display of far detector data QE event. This event corresponds to run
17953, event 256887. Note that the figure is rotated. The display is spatially zoomed in
to region of interest. Hits in the readout window not associated with the slice are not
drawn. Hits are colored by their time relative to the readout window; the left bottom
inset relates hit time and colors.
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Figure 15.3: Event display of far detector data QE event. This event corresponds
to run 17953, event 256887. Note that the figure is rotated. The display is spatially
zoomed in to region of interest. Colored dots are drawn over hits in the slice associated
with Kalman tracks. The green dots represent a long, 3D Kalman track. This slice also
had a short 2D Kalman track, drawn with blue dots. Hits in the readout window not
associated with the slice are grayed out.
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Figure 15.4: Event display of far detector data QE event. This event corresponds to
run 18301, event 413485. Note that the figure is rotated. The view shows the entire far
detector. Colored dots are drawn over hits in the slice associated with Kalman tracks.
The green dots represent a 3D Kalman track. This slice also had a short 2D Kalman
track, drawn with blue dots. Hits in the readout window not associated with the slice
are grayed out.
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Figure 15.5: Event display of far detector data QE event. This event corresponds to run
18301, event 413485. Note that the figure is rotated. The display is spatially zoomed in
to region of interest. Hits in the readout window not associated with the slice are not
drawn. Hits are colored by their time relative to the readout window; the left bottom
inset relates hit time and colors.
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Figure 15.6: Event display of far detector data QE event. This event corresponds to run
18301, event 413485. Note that the figure is rotated. The display is spatially zoomed
in to region of interest. Colored dots are drawn over hits in the slice associated with
Kalman tracks. The green dots represent a 3D Kalman track. This slice also had a short
2D Kalman track, drawn with blue dots. Hits in the readout window not associated
with the slice are grayed out.



427

Table 15.3 lists each selected nonQE far detector data event. 3 of the nonQE events

visually looked like cosmic ray background events. One clearly entered from the edge of

the detector, but due to a reconstruction error, passed the analysis cuts. This type of

failure could be removed from future analyses by adding cuts that looked at slice extents.

This is similar to the QE background event shown in Figure 15.4. The other two events

that could be cosmic ray background were well-contained. Cuts that evaluated if the

hadronic cluster was closer to the start or end of the muon track might help to remove

this class of event; more sophisticated transverse momentum cuts could also help. The

nonQE population was predicted to have 2.7 events from cosmic ray backgrounds. The

probability of measuring 3 or more events when expecting 2.7 was 50%.

One of the best nonQE data events corresponds to run 18791, event 765587. Figure

15.7 is an event display of this event. It shows the entire far detector. Figure 15.8 is a

spatially-zoomed version of the event display, showing the slice hits. Figure 15.9 is also

spatially-zoomed, but has the Kalman tracks drawn on top of the hits. The long green

3D track is the muon; the shorter blue 3D track is probably a charged pion. It has a

kink, representing a hard scatter, within the track, one of the hallmarks of a charged

pion track. Also, the blue track is relatively high energy. This is what makes it classified

as a nonQE interaction instead of a QE one.

For an example of a selected event that looked like cosmic-ray background that was

well-contained in the detector, see Figure 15.10. It shows the entire far detector. Figure

15.11 is a spatially-zoomed version of the event display, showing the slice hits. Figure

15.12 is also spatially-zoomed, but has the Kalman tracks drawn on top of the hits.

Note that what appears to be vertex activity is associated with the end of the muon

track. Beam-induced neutrinos would usually have the vertex activity associated with

the low-Z side of the track. This event could be caused by a neutrino from a cosmic ray

interaction. An alternative hypothesis is that this event could be caused by a neutron,

although due to the depth in the detector, this isn’t the most likely explanation. Events

with similar topology are seen in the data which doesn’t correspond to a NuMI beam

spill and their rate and source is not fully understood.
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Table 15.3: Far detector nonQE data events. The time is relative to the start of the
readout window. The ReMId value listed is for the 3D Kalman track in the slice with
the highest ReMId. The energy is reconstructed neutrino energy in GeV. These events
were visually scanned and categorized. “S” indicates the event looked signal-like. “I”
indicates the event was indeterminate and could be signal or background. “B” indicates
the event visually looked like cosmic ray background. “E” indicates that the background
event was clearly entering the detector.

Run Subrun Event Slice Time [µs] ReMId Energy [GeV] Scan

14828 38 192569 32 226.1 1.00 2.76 S

15085 00 1746 19 228.4 1.00 4.23 S

15679 16 142934 19 287.6 0.83 1.42 I

15974 14 88744 15 287.6 0.83 2.15 S

16315 04 17937 36 286.7 1.00 2.84 S

16450 17 93029 39 289.7 0.80 2.07 B, C

16453 33 178062 37 292.2 0.94 1.38 B, C

16675 54 249520 26 221.0 0.75 0.81 B, E

16730 25 101478 31 220.5 1.00 3.33 S

18342 47 609061 34 226.4 0.99 2.11 S

18401 02 35501 34 225.7 0.75 1.49 S

18417 43 582977 30 226.1 0.81 0.97 S

18572 19 255330 24 226.8 0.95 1.81 S

18791 48 765587 29 224.9 1.00 2.80 S

19004 22 318354 37 225.8 1.00 2.74 S

19058 39 568646 29 222.9 1.00 1.99 S

19084 62 908450 22 222.0 1.00 3.92 S

19107 52 756898 32 226.0 0.79 1.33 I

19154 45 663979 30 228.1 0.74 0.90 I

19296 35 482441 19 223.1 0.93 1.56 S

19327 18 248695 22 220.0 0.86 1.08 S

19356 11 156460 34 220.5 0.99 1.65 S

19423 01 20137 36 220.4 1.00 2.24 S

Continued on next page
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Table 15.3 – continued from previous page

Run Subrun Event Slice Time [µs] ReMId Energy [GeV] Scan

19476 06 110767 25 222.0 1.00 1.75 S

19485 61 1068905 32 228.6 0.79 2.16 S
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Figure 15.7: Event display of far detector data nonQE event. This event corresponds to
run 18791, event 765587. Note that the figure is rotated. The view shows the entire far
detector. Colored dots are drawn over hits in the slice associated with Kalman tracks.
The green dots represent a long, 3D Kalman track. This slice also had a shorter 3D
Kalman track, drawn with blue dots. Hits in the readout window not associated with
the slice are grayed out. The blue box indicates the region of the detector not considered
active. The green boxes indicate DCM boundaries.
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Figure 15.8: Event display of far detector data nonQE event. This event corresponds
to run 18791, event 765587. Note that the figure is rotated. The display is spatially
zoomed in to region of interest. Hits in the readout window not associated with the slice
are not drawn. Hits are colored by their time relative to the readout window; the left
bottom inset relates hit time and colors. The green boxes indicate DCM boundaries.
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Figure 15.9: Event display of far detector data nonQE event. This event corresponds
to run 18791, event 765587. Note that the figure is rotated. The display is spatially
zoomed in to region of interest. Colored dots are drawn over hits in the slice associated
with Kalman tracks. The green dots represent a long, 3D Kalman track. This slice also
had a shorter 3D Kalman track, drawn with blue dots. Hits in the readout window not
associated with the slice are grayed out. The green boxes indicate DCM boundaries.
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Figure 15.10: Event display of far detector data nonQE event. This event corresponds
to run 16450, event 93029. Note that the figure is rotated. The view shows the entire far
detector. Colored dots are drawn over hits in the slice associated with Kalman tracks.
The red dots represent the longest 3D Kalman track. Yellow dots are associated with
a second 3D Kalman track. This slice also had two 2D Kalman track, drawn with blue
dots and green dots. Hits in the readout window not associated with the slice are grayed
out. The blue box indicates the region of the detector not considered active. The green
boxes indicate DCM boundaries.
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Figure 15.11: Event display of far detector data nonQE event. This event corresponds
to run 16450, event 93029. Note that the figure is rotated. The display is spatially
zoomed in to region of interest. Hits in the readout window not associated with the
slice are not drawn. Hits are colored by their time relative to the readout window; the
left bottom inset relates hit time and colors. The green boxes indicate DCM boundaries.
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Figure 15.12: Event display of far detector data nonQE event. This event corresponds
to run 16450, event 93029. Note that the figure is rotated. The display is spatially
zoomed in to region of interest. Colored dots are drawn over hits in the slice associated
with Kalman tracks. The red dots represent the longest 3D Kalman track. Yellow dots
are associated with a second 3D Kalman track. This slice also had two 2D Kalman
track, drawn with blue dots and green dots. Hits in the readout window not associated
with the slice are grayed out. The green boxes indicate DCM boundaries.
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15.1.1 Far Detector Data Distributions

We can compare the far detector data distributions to our simulation. For these plots,

the simulation has been oscillated using the best fit values described in Section 15.2. We

oscillated using the values listed in Table 4.2 and setting sin2 θ23 = 0.61 and |∆m2
32| =

2.49× 10−3 eV2. The best fit values for the systematic errors were not used.

For all the distributions examined, the agreement between the far detector data and

the simulation is good. With the increased statistics of future analyses, it will be easier

to see if any subtle discrepancies exist.

Figure 15.13 displays the number of hits in a slice for the QE population; Figure

15.14 is for the nonQE population. The number of 3D Kalman tracks in a slice is shown

in Figure 15.15 for the QE population and in Figure 15.16 for the nonQE population.

The number of hits on the primary Kalman track for the QE population is plotted in

Figure 15.17; Figure 15.18 is for the nonQE population. The next three plots, Figures

15.19, 15.21 and 15.23, show the X, Y and Z detector coordinate positions for the start

of the primary Kalman track for the QE population. Figures 15.20, 15.22 and 15.24

show the track start positions for the nonQE population. Figures 15.25, 15.27 and

15.29, show the X, Y and Z detector coordinate positions for the end of the primary

Kalman track for the QE population. Figures 15.26, 15.28 and 15.30 show the track end

positions for the nonQE population. The angle between the primary Kalman track and

the NuMI beam line is shown in Figure 15.31 for the QE population and Figure 15.32

for the nonQE population. All show excellent agreement between data and simulation.

We can next look at some of the ReMId inputs. Figure 15.33 is the scattering log-

likelihood for the primary Kalman track for the QE population; Figure 15.34 is for the

nonQE population. Similarly, Figure 15.35 is the dE/dx log-likelihood for the primary

Kalman track for the QE population; Figure 15.34 is for the nonQE population. The

ReMId values for the QE population are shown in Figure 15.37 and in Figure 15.38 for

the nonQE population. Finally, Figure 15.39 plots the visible hadronic energy for the

QE population and Figure 15.40 plots the same for the nonQE population. Again, all

show excellent agreement between data and simulation.
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Figure 15.13: Plot of the number of hits in a slice for the far detector for the QE
population. The total prediction is drawn as a red line with red total systematic error
bands, with neutrino background drawn as a green line and the cosmic ray background
drawn as a magenta line. The cosmic ray background distribution was determined from
the out-of-time data in the NuMI trigger files. The data distribution is drawn as black
points with statistical error bars. The bottom plot displays the ratio between the data
and simulation distributions. The simulation is oscillated using the values listed in Table
4.2 and setting sin2 θ23 = 0.61 and |∆m2

32| = 2.49× 10−3 eV2. The simulation is scaled
down to match the exposure for the far detector data, 3.45× 1020 POT.
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Figure 15.14: Plot of the number of hits in a slice for the far detector for the nonQE
population. The total prediction is drawn as a red line with red total systematic error
bands, with neutrino background drawn as a green line and the cosmic ray background
drawn as a magenta line. The cosmic ray background distribution was determined from
the out-of-time data in the NuMI trigger files. The data distribution is drawn as black
points with statistical error bars. The bottom plot displays the ratio between the data
and simulation distributions. The simulation is oscillated using the values listed in Table
4.2 and setting sin2 θ23 = 0.61 and |∆m2

32| = 2.49× 10−3 eV2. The simulation is scaled
down to match the exposure for the far detector data, 3.45× 1020 POT.
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Figure 15.15: Plot of the number of 3D Kalman tracks in a slice for the far detector
for the QE population. The total prediction is drawn as a red line with red total
systematic error bands, with neutrino background drawn as a green line and the cosmic
ray background drawn as a magenta line. The cosmic ray background distribution was
determined from the out-of-time data in the NuMI trigger files. The data distribution
is drawn as black points with statistical error bars. The bottom plot displays the ratio
between the data and simulation distributions. The simulation is oscillated using the
values listed in Table 4.2 and setting sin2 θ23 = 0.61 and |∆m2

32| = 2.49×10−3 eV2. The
simulation is scaled down to match the exposure for the far detector data, 3.45 × 1020

POT.
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Figure 15.16: Plot of the number of 3D Kalman tracks in a slice for the far detector
for the nonQE population. The total prediction is drawn as a red line with red total
systematic error bands, with neutrino background drawn as a green line and the cosmic
ray background drawn as a magenta line. The cosmic ray background distribution was
determined from the out-of-time data in the NuMI trigger files. The data distribution
is drawn as black points with statistical error bars. The bottom plot displays the ratio
between the data and simulation distributions. The simulation is oscillated using the
values listed in Table 4.2 and setting sin2 θ23 = 0.61 and |∆m2

32| = 2.49×10−3 eV2. The
simulation is scaled down to match the exposure for the far detector data, 3.45 × 1020

POT.
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Figure 15.17: Plot of the number of hits on the 3D Kalman track with the highest ReMId
value in the slice. This plot is for the far detector QE population. The total prediction
is drawn as a red line with red total systematic error bands, with neutrino background
drawn as a green line and the cosmic ray background drawn as a magenta line. The
cosmic ray background distribution was determined from the out-of-time data in the
NuMI trigger files. The data distribution is drawn as black points with statistical error
bars. The bottom plot displays the ratio between the data and simulation distributions.
The simulation is oscillated using the values listed in Table 4.2 and setting sin2 θ23 = 0.61
and |∆m2

32| = 2.49 × 10−3 eV2. The simulation is scaled down to match the exposure
for the far detector data, 3.45× 1020 POT.
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Figure 15.18: Plot of the number of hits on the 3D Kalman track with the highest
ReMId value in the slice. This plot is for the far detector nonQE population. The
total prediction is drawn as a red line with red total systematic error bands, with
neutrino background drawn as a green line and the cosmic ray background drawn as a
magenta line. The cosmic ray background distribution was determined from the out-
of-time data in the NuMI trigger files. The data distribution is drawn as black points
with statistical error bars. The bottom plot displays the ratio between the data and
simulation distributions. The simulation is oscillated using the values listed in Table
4.2 and setting sin2 θ23 = 0.61 and |∆m2

32| = 2.49× 10−3 eV2. The simulation is scaled
down to match the exposure for the far detector data, 3.45× 1020 POT.
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Figure 15.19: Plot of the start position in the detector X coordinate in m for the 3D
Kalman track with the highest ReMId value in a slice for the far detector for the QE
population. The total prediction is drawn as a red line with red total systematic error
bands, with neutrino background drawn as a green line and the cosmic ray background
drawn as a magenta line. The cosmic ray background distribution was determined from
the out-of-time data in the NuMI trigger files. The data distribution is drawn as black
points with statistical error bars. The bottom plot displays the ratio between the data
and simulation distributions. The simulation is oscillated using the values listed in Table
4.2 and setting sin2 θ23 = 0.61 and |∆m2

32| = 2.49× 10−3 eV2. The simulation is scaled
down to match the exposure for the far detector data, 3.45× 1020 POT.
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Figure 15.20: Plot of the start position in the detector X coordinate in m for the 3D
Kalman track with the highest ReMId value in a slice for the far detector for the nonQE
population. The total prediction is drawn as a red line with red total systematic error
bands, with neutrino background drawn as a green line and the cosmic ray background
drawn as a magenta line. The cosmic ray background distribution was determined from
the out-of-time data in the NuMI trigger files. The data distribution is drawn as black
points with statistical error bars. The bottom plot displays the ratio between the data
and simulation distributions. The simulation is oscillated using the values listed in Table
4.2 and setting sin2 θ23 = 0.61 and |∆m2

32| = 2.49× 10−3 eV2. The simulation is scaled
down to match the exposure for the far detector data, 3.45× 1020 POT.
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Figure 15.21: Plot of the start position in the detector Y coordinate in m for the 3D
Kalman track with the highest ReMId value in a slice for the far detector for the QE
population. The total prediction is drawn as a red line with red total systematic error
bands, with neutrino background drawn as a green line and the cosmic ray background
drawn as a magenta line. The cosmic ray background distribution was determined from
the out-of-time data in the NuMI trigger files. The data distribution is drawn as black
points with statistical error bars. The bottom plot displays the ratio between the data
and simulation distributions. The simulation is oscillated using the values listed in Table
4.2 and setting sin2 θ23 = 0.61 and |∆m2

32| = 2.49× 10−3 eV2. The simulation is scaled
down to match the exposure for the far detector data, 3.45× 1020 POT.
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Figure 15.22: Plot of the start position in the detector Y coordinate in m for the 3D
Kalman track with the highest ReMId value in a slice for the far detector for the nonQE
population. The total prediction is drawn as a red line with red total systematic error
bands, with neutrino background drawn as a green line and the cosmic ray background
drawn as a magenta line. The cosmic ray background distribution was determined from
the out-of-time data in the NuMI trigger files. The data distribution is drawn as black
points with statistical error bars. The bottom plot displays the ratio between the data
and simulation distributions. The simulation is oscillated using the values listed in Table
4.2 and setting sin2 θ23 = 0.61 and |∆m2

32| = 2.49× 10−3 eV2. The simulation is scaled
down to match the exposure for the far detector data, 3.45× 1020 POT.



447

Track Start Z Position (m)

E
ve

nt
s

0

2

4

6

8

10
Data
Cosmic BKG

τν + eνNC + 
Oscillated

Mean MC :   24.9 +/-   3.58
Mean data:   21.8 +/-   3.38

/NDF:   7.24/11 = 0.658 (p = 0.779)2χ

A PreliminaryνNO

Kalman Track Start Z [m]
0 10 20 30 40 50 60

D
at

a 
/ M

C

0
1
2
3

Figure 15.23: Plot of the start position in the detector Z coordinate in m for the 3D
Kalman track with the highest ReMId value in a slice for the far detector for the QE
population. The total prediction is drawn as a red line with red total systematic error
bands, with neutrino background drawn as a green line and the cosmic ray background
drawn as a magenta line. The cosmic ray background distribution was determined from
the out-of-time data in the NuMI trigger files. The data distribution is drawn as black
points with statistical error bars. The bottom plot displays the ratio between the data
and simulation distributions. The simulation is oscillated using the values listed in Table
4.2 and setting sin2 θ23 = 0.61 and |∆m2

32| = 2.49× 10−3 eV2. The simulation is scaled
down to match the exposure for the far detector data, 3.45× 1020 POT.
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Figure 15.24: Plot of the start position in the detector Z coordinate in m for the 3D
Kalman track with the highest ReMId value in a slice for the far detector for the nonQE
population. The total prediction is drawn as a red line with red total systematic error
bands, with neutrino background drawn as a green line and the cosmic ray background
drawn as a magenta line. The cosmic ray background distribution was determined from
the out-of-time data in the NuMI trigger files. The data distribution is drawn as black
points with statistical error bars. The bottom plot displays the ratio between the data
and simulation distributions. The simulation is oscillated using the values listed in Table
4.2 and setting sin2 θ23 = 0.61 and |∆m2

32| = 2.49× 10−3 eV2. The simulation is scaled
down to match the exposure for the far detector data, 3.45× 1020 POT.
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Figure 15.25: Plot of the end position in the detector X coordinate in m for the 3D
Kalman track with the highest ReMId value in a slice for the far detector for the QE
population. The total prediction is drawn as a red line with red total systematic error
bands, with neutrino background drawn as a green line and the cosmic ray background
drawn as a magenta line. The cosmic ray background distribution was determined from
the out-of-time data in the NuMI trigger files. The data distribution is drawn as black
points with statistical error bars. The bottom plot displays the ratio between the data
and simulation distributions. The simulation is oscillated using the values listed in Table
4.2 and setting sin2 θ23 = 0.61 and |∆m2

32| = 2.49× 10−3 eV2. The simulation is scaled
down to match the exposure for the far detector data, 3.45× 1020 POT.
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Figure 15.26: Plot of the end position in the detector X coordinate in m for the 3D
Kalman track with the highest ReMId value in a slice for the far detector for the nonQE
population. The total prediction is drawn as a red line with red total systematic error
bands, with neutrino background drawn as a green line and the cosmic ray background
drawn as a magenta line. The cosmic ray background distribution was determined from
the out-of-time data in the NuMI trigger files. The data distribution is drawn as black
points with statistical error bars. The bottom plot displays the ratio between the data
and simulation distributions. The simulation is oscillated using the values listed in Table
4.2 and setting sin2 θ23 = 0.61 and |∆m2

32| = 2.49× 10−3 eV2. The simulation is scaled
down to match the exposure for the far detector data, 3.45× 1020 POT.
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Figure 15.27: Plot of the end position in the detector Y coordinate in m for the 3D
Kalman track with the highest ReMId value in a slice for the far detector for the QE
population. The total prediction is drawn as a red line with red total systematic error
bands, with neutrino background drawn as a green line and the cosmic ray background
drawn as a magenta line. The cosmic ray background distribution was determined from
the out-of-time data in the NuMI trigger files. The data distribution is drawn as black
points with statistical error bars. The bottom plot displays the ratio between the data
and simulation distributions. The simulation is oscillated using the values listed in Table
4.2 and setting sin2 θ23 = 0.61 and |∆m2

32| = 2.49× 10−3 eV2. The simulation is scaled
down to match the exposure for the far detector data, 3.45× 1020 POT.
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Figure 15.28: Plot of the end position in the detector Y coordinate in m for the 3D
Kalman track with the highest ReMId value in a slice for the far detector for the nonQE
population. The total prediction is drawn as a red line with red total systematic error
bands, with neutrino background drawn as a green line and the cosmic ray background
drawn as a magenta line. The cosmic ray background distribution was determined from
the out-of-time data in the NuMI trigger files. The data distribution is drawn as black
points with statistical error bars. The bottom plot displays the ratio between the data
and simulation distributions. The simulation is oscillated using the values listed in Table
4.2 and setting sin2 θ23 = 0.61 and |∆m2

32| = 2.49× 10−3 eV2. The simulation is scaled
down to match the exposure for the far detector data, 3.45× 1020 POT.
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Figure 15.29: Plot of the end position in the detector Z coordinate in m for the 3D
Kalman track with the highest ReMId value in a slice for the far detector for the QE
population. The total prediction is drawn as a red line with red total systematic error
bands, with neutrino background drawn as a green line and the cosmic ray background
drawn as a magenta line. The cosmic ray background distribution was determined from
the out-of-time data in the NuMI trigger files. The data distribution is drawn as black
points with statistical error bars. The bottom plot displays the ratio between the data
and simulation distributions. The simulation is oscillated using the values listed in Table
4.2 and setting sin2 θ23 = 0.61 and |∆m2

32| = 2.49× 10−3 eV2. The simulation is scaled
down to match the exposure for the far detector data, 3.45× 1020 POT.
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Figure 15.30: Plot of the end position in the detector Z coordinate in m for the 3D
Kalman track with the highest ReMId value in a slice for the far detector for the nonQE
population. The total prediction is drawn as a red line with red total systematic error
bands, with neutrino background drawn as a green line and the cosmic ray background
drawn as a magenta line. The cosmic ray background distribution was determined from
the out-of-time data in the NuMI trigger files. The data distribution is drawn as black
points with statistical error bars. The bottom plot displays the ratio between the data
and simulation distributions. The simulation is oscillated using the values listed in Table
4.2 and setting sin2 θ23 = 0.61 and |∆m2

32| = 2.49× 10−3 eV2. The simulation is scaled
down to match the exposure for the far detector data, 3.45× 1020 POT.
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Figure 15.31: Plot of cos θNuMI , where θNuMI is the angle between the 3D Kalman
track with the highest ReMId value in the slice and the NuMI beam direction. This
plot is for the far detector QE population. The total prediction is drawn as a red line
with red total systematic error bands, with neutrino background drawn as a green line
and the cosmic ray background drawn as a magenta line. The cosmic ray background
distribution was determined from the out-of-time data in the NuMI trigger files. The
data distribution is drawn as black points with statistical error bars. The bottom plot
displays the ratio between the data and simulation distributions. When the ratio is too
large for the scale, the point and its error bars are not drawn. The simulation is oscillated
using the values listed in Table 4.2 and setting sin2 θ23 = 0.61 and |∆m2

32| = 2.49×10−3

eV2. The simulation is scaled down to match the exposure for the far detector data,
3.45× 1020 POT.
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Figure 15.32: Plot of cos θNuMI , where θNuMI is the angle between the 3D Kalman
track with the highest ReMId value in the slice and the NuMI beam direction. This plot
is for the far detector nonQE population. The total prediction is drawn as a red line
with red total systematic error bands, with neutrino background drawn as a green line
and the cosmic ray background drawn as a magenta line. The cosmic ray background
distribution was determined from the out-of-time data in the NuMI trigger files. The
data distribution is drawn as black points with statistical error bars. The bottom plot
displays the ratio between the data and simulation distributions. When the ratio is too
large for the scale, the point and its error bars are not drawn. The simulation is oscillated
using the values listed in Table 4.2 and setting sin2 θ23 = 0.61 and |∆m2

32| = 2.49×10−3

eV2. The simulation is scaled down to match the exposure for the far detector data,
3.45× 1020 POT.
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Figure 15.33: Plot of the scattering log-likelihood for the 3D Kalman track with the
highest ReMId value in the slice. This plot is for the far detector QE population.
The total prediction is drawn as a red line with red total systematic error bands, with
neutrino background drawn as a green line and the cosmic ray background drawn as a
magenta line. The cosmic ray background distribution was determined from the out-
of-time data in the NuMI trigger files. The data distribution is drawn as black points
with statistical error bars. The bottom plot displays the ratio between the data and
simulation distributions. The simulation is oscillated using the values listed in Table
4.2 and setting sin2 θ23 = 0.61 and |∆m2

32| = 2.49× 10−3 eV2. The simulation is scaled
down to match the exposure for the far detector data, 3.45× 1020 POT.
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Figure 15.34: Plot of the scattering log-likelihood for the 3D Kalman track with the
highest ReMId value in the slice. This plot is for the far detector nonQE population.
The total prediction is drawn as a red line with red total systematic error bands, with
neutrino background drawn as a green line and the cosmic ray background drawn as a
magenta line. The cosmic ray background distribution was determined from the out-
of-time data in the NuMI trigger files. The data distribution is drawn as black points
with statistical error bars. The bottom plot displays the ratio between the data and
simulation distributions. The simulation is oscillated using the values listed in Table
4.2 and setting sin2 θ23 = 0.61 and |∆m2

32| = 2.49× 10−3 eV2. The simulation is scaled
down to match the exposure for the far detector data, 3.45× 1020 POT.
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Figure 15.35: Plot of the dE/dx log-likelihood for the 3D Kalman track with the
highest ReMId value in the slice. This plot is for the far detector QE population.
The total prediction is drawn as a red line with red total systematic error bands, with
neutrino background drawn as a green line and the cosmic ray background drawn as a
magenta line. The cosmic ray background distribution was determined from the out-
of-time data in the NuMI trigger files. The data distribution is drawn as black points
with statistical error bars. The bottom plot displays the ratio between the data and
simulation distributions. When the ratio is too large for the scale, the point and its
error bars are not drawn. The simulation is oscillated using the values listed in Table
4.2 and setting sin2 θ23 = 0.61 and |∆m2

32| = 2.49× 10−3 eV2. The simulation is scaled
down to match the exposure for the far detector data, 3.45× 1020 POT.
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Figure 15.36: Plot of the dE/dx log-likelihood for the 3D Kalman track with the
highest ReMId value in the slice. This plot is for the far detector nonQE population.
The total prediction is drawn as a red line with red total systematic error bands, with
neutrino background drawn as a green line and the cosmic ray background drawn as a
magenta line. The cosmic ray background distribution was determined from the out-
of-time data in the NuMI trigger files. The data distribution is drawn as black points
with statistical error bars. The bottom plot displays the ratio between the data and
simulation distributions. When the ratio is too large for the scale, the point and its
error bars are not drawn. The simulation is oscillated using the values listed in Table
4.2 and setting sin2 θ23 = 0.61 and |∆m2

32| = 2.49× 10−3 eV2. The simulation is scaled
down to match the exposure for the far detector data, 3.45× 1020 POT.
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Figure 15.37: Plot of the ReMId value for the 3D Kalman track with the highest ReMId
value in the slice. This plot is for the far detector QE population. The total prediction
is drawn as a red line with red total systematic error bands, with neutrino background
drawn as a green line and the cosmic ray background drawn as a magenta line. The
cosmic ray background distribution was determined from the out-of-time data in the
NuMI trigger files. The data distribution is drawn as black points with statistical error
bars. The bottom plot displays the ratio between the data and simulation distributions.
The simulation is oscillated using the values listed in Table 4.2 and setting sin2 θ23 = 0.61
and |∆m2

32| = 2.49 × 10−3 eV2. The simulation is scaled down to match the exposure
for the far detector data, 3.45× 1020 POT.
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Figure 15.38: Plot of the ReMId value for the 3D Kalman track with the highest
ReMId value in the slice. This plot is for the far detector nonQE population. The
total prediction is drawn as a red line with red total systematic error bands, with
neutrino background drawn as a green line and the cosmic ray background drawn as a
magenta line. The cosmic ray background distribution was determined from the out-
of-time data in the NuMI trigger files. The data distribution is drawn as black points
with statistical error bars. The bottom plot displays the ratio between the data and
simulation distributions. When the ratio is too large for the scale, the point and its
error bars are not drawn. The simulation is oscillated using the values listed in Table
4.2 and setting sin2 θ23 = 0.61 and |∆m2

32| = 2.49× 10−3 eV2. The simulation is scaled
down to match the exposure for the far detector data, 3.45× 1020 POT.
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Figure 15.39: Plot of the sum of the visible energy (in GeV) of hits in the slice not on
the 3D Kalman track with the highest ReMId value. This plot is for the far detector QE
population. The total prediction is drawn as a red line with red total systematic error
bands, with neutrino background drawn as a green line and the cosmic ray background
drawn as a magenta line. The cosmic ray background distribution was determined from
the out-of-time data in the NuMI trigger files. The data distribution is drawn as black
points with statistical error bars. The bottom plot displays the ratio between the data
and simulation distributions. The simulation is oscillated using the values listed in Table
4.2 and setting sin2 θ23 = 0.61 and |∆m2

32| = 2.49× 10−3 eV2. The simulation is scaled
down to match the exposure for the far detector data, 3.45× 1020 POT.
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Figure 15.40: Plot of the sum of the visible energy (in GeV) of hits in the slice not on the
3D Kalman track with the highest ReMId value. This plot is for the far detector nonQE
population. The total prediction is drawn as a red line with red total systematic error
bands, with neutrino background drawn as a green line and the cosmic ray background
drawn as a magenta line. The cosmic ray background distribution was determined from
the out-of-time data in the NuMI trigger files. The data distribution is drawn as black
points with statistical error bars. The bottom plot displays the ratio between the data
and simulation distributions. The simulation is oscillated using the values listed in Table
4.2 and setting sin2 θ23 = 0.61 and |∆m2

32| = 2.49× 10−3 eV2. The simulation is scaled
down to match the exposure for the far detector data, 3.45× 1020 POT.
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15.2 Results

Figure 15.41 displays the reconstructed neutrino energy spectrum for the data and

the simulation with systematic error bands, for the QE population, assuming maximal

oscillations. Figure 15.42 is for the nonQE population.

To measure sin2 θ23 and |∆m2
32|, we can perform a binned maximum-likelihood fit

to the reconstructed energy spectra, marginalizing over our systematic errors. When we

marginalize over a systematic error, we scan the allowed values and use the one which

minimizes the χ2 value. The χ2 is penalized for values of the systematic error large with

respect to the σ for each systematic error. Figure 15.43 displays the 90% 2D Gaussian

confidence limits for this measurement. The best-fit for the combined sample was found

to be sin2 θ23 = 0.61 and |∆m2
32| = 2.49×10−3 eV2. The 90% confidence limits for these

values are given by Figure 15.43. The space is symmetric about sin2 θ23 = 0.5, so it

should be understood that there is another local minimum located near sin2 θ23 = 0.4.

Assuming a Gaussian distribution, however, is not the correct analysis technique.

This is a low-statistics analysis that is constrained by the physical boundary of maximal

mixing. Instead, the Feldman-Cousins approach[95] should be used. This approach in-

volves creating thousands of pseudo-experiments with true values of sin2 θ23 and |∆m2
32|

distributed across the parameter space. Each of these pseudo-experiments uses fake

“data” drawn with the proper Poisson statistics from the simulation. Also, each set of

fake “data” is assigned random “true” values for each of the systematic errors. The

maximum-likelihood fitting procedure is then performed for each pseudo-experiment.

This allows us to build a map of ∆χ2 distributions for each bin in the space of sin2 θ23

and |∆m2
32|. Finally, we can construct confidence limits for our real data that properly

account for the low statistics and physical boundaries involved in the analysis. For

more information about the Feldman-Cousins approach, see the paper[95] or the ex-

cellent discussion by Backhouse in his thesis[96]. Figure 15.44 displays the 90% 2D

Feldman-Cousin confidence limits for this measurement, with the Gaussian confidence

limits also drawn. Although the two approaches are philosophically different, in this

case, they gave very similar results. The best-fit for the combined sample using the

Feldman-Cousin approach was found to be sin2 θ23 = 0.61 and |∆m2
32| = 2.49 × 10−3

eV2. These are the same values found using the Gaussian method. Again, the space
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is symmetric about sin2 θ23 = 0.5, so there is another local minimum located near

sin2 θ23 = 0.4. Table 15.4 lists the best fit values for the systematic errors from the

marginalization procedure. None of the values are larger in magnitude than 1 σ. The

systematic error for the far detector number of hadronic hits sees the largest shift at

+0.55σ.
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Figure 15.41: Plot of the reconstructed neutrino energy in GeV. This is for the QE pop-
ulation in the far detector. The simulation distribution is drawn as a red line with red
total systematic error bands, with neutrino background drawn as a blue line and the cos-
mic ray background drawn as a green line. These are displayed as stacked distributions.
The data is drawn as black points with statistical error bars. The simulation is oscillated
using the values listed in Table 4.2 and setting θ23 = π/4 and |∆m2

32| = 2.4× 10−3 eV2.
The simulation is scaled down to match the data POT, 3.45× 1020 POT.
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Figure 15.42: Plot of the reconstructed neutrino energy in GeV. This is for the nonQE
population in the far detector. The simulation distribution is drawn as a red line with red
total systematic error bands, with neutrino background drawn as a blue line and the cos-
mic ray background drawn as a green line. These are displayed as stacked distributions.
The data is drawn as black points with statistical error bars. The simulation is oscillated
using the values listed in Table 4.2 and setting θ23 = π/4 and |∆m2

32| = 2.4× 10−3 eV2.
The simulation is scaled down to match the data POT, 3.45× 1020 POT.
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Figure 15.43: Plot of the 90% 2D Gaussian confidence limits for the analysis measure-
ment of sin2 θ23, on the horizontal axis, and ∆m2

32, on the vertical axis in units of 10−3

eV2. This plot assumes normal hierarchy. The red line is for the nonQE population
alone; the blue line is for the QE population. The black line shows the result when
fitting both samples together.
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Figure 15.44: Plot of the 90% 2D confidence limits for the analysis measurement of
sin2 θ23, on the horizontal axis, and ∆m2

32, on the vertical axis in units of 10−3 eV2.
This plot assumes normal hierarchy. The black line shows the results of using the
Feldman-Cousin approach. The blue line uses Gaussian assumptions.
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Table 15.4: Values of the best fit values for each systematic error from the marginal-
ization procedure using the Feldman-Cousin approach. The best fit value for each
systematic error is given in terms of the σ defined for that error. For more information
on the systematic errors, see Chapter 14.

Systematic Error Best Fit [σ]

Beam Sim. +0.15

Axial Mass - CC QE +0.06

Axial Mass - CC Res. −0.04

Vector Mass - CC Res. −0.02

Axial Mass - NC Res. +0.06

Vector Mass - NC Res. +0.01

Axial Mass - NC Elas. +0.04

Small Neutrino Sim. −0.03

Abs. Norm. +0.00

Rel. Norm. +0.01

ND Abs. E Scale +0.29

FD Abs. E Scale −0.13

ND Had. Hits −0.23

FD Had. Hits +0.55
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We can look at what the predicted event count would be using the best fit values.

Table 15.5 lists the expected event counts using the best fit values for the oscillation

parameters, as well as the expected event counts when using the best fit values for both

the oscillation parameters and the systematic errors. For the QE population, using the

best fit values increases the expected event count to be closer to that seen in the data.

For the nonQE population, the effect on the expected event count is somewhat smaller

but still consistent with the data.

Table 15.5: Predicted and measured event counts for the far detector. The total POT
for the far detector is 3.45×1020 POT and this corresponds to variable detector configu-
rations. The counts for each population only include events with reconstructed neutrino
energy between 0 and 5 GeV. The total number of data events for each population is
listed first. The predicted total event count for each population under the hypothesis
of no neutrino oscillations is given next. The next line corresponds to the hypothesis of
maximal mixing, setting θ23 = π/4 and |∆m2

32| = 2.4 × 10−3 eV2 as well as using the
oscillation parameters listed in Table 4.2. When using the oscillation parameters from
the best fit to the data, we instead set sin2 θ23 = 0.61 and |∆m2

32| = 2.49 × 10−3 eV2.
When using the best fit values for the systematic errors, the values listed in Table 15.4
are used.

QE NonQE

Data 20 25

No Oscillations 89.2 122.3

Maximal Mixing 14.3 24.2

Best Fit Oscillation Parm. 15.5 25.5

Best Fit Oscillation Parm. and Systematic Errors 17.2 23.9

We can also look at the energy spectra for these different parameter choices. Fig-

ure 15.45 displays the spectra for the QE population; Figure 15.46 is for the nonQE

population. We can see that by using the best fit oscillation parameters, which don’t

correspond to maximal mixing, we expect more events in the dip region. By also using

the best fit values for the systematic errors, we expect more QE events in the dip region

and that the energy for the nonQE events is shifted to lower values.
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Figure 15.45: Plot of the reconstructed neutrino energy in GeV. This is for the QE
population in the far detector. The total predicted simulated spectrum using maximal
mixing is drawn as a red line. The total predicted simulated spectrum using the best
fit values for the oscillation is drawn as a green line. The total predicted simulated
spectrum using the best fit values for the oscillation and systematic error values is
drawn as a blue line. The data is drawn as black points with statistical error bars. The
simulation is oscillated using the values listed in Table 4.2. For the case of maximal
mixing, θ23 = π/4 and |∆m2

32| = 2.4 × 10−3 eV2. When using best fit values for the
oscillation, sin2 θ23 = 0.61 and |∆m2

32| = 2.49 × 10−3 eV2. When using the best fit
values for the systematic errors, the values listed in Table 15.4 are used. The simulation
is scaled down to match the data POT, 3.45× 1020 POT.
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Figure 15.46: Plot of the reconstructed neutrino energy in GeV. This is for the nonQE
population in the far detector. The total predicted simulated spectrum using maximal
mixing is drawn as a red line. The total predicted simulated spectrum using the best
fit values for the oscillation is drawn as a green line. The total predicted simulated
spectrum using the best fit values for the oscillation and systematic error values is
drawn as a blue line. The data is drawn as black points with statistical error bars. The
simulation is oscillated using the values listed in Table 4.2. For the case of maximal
mixing, θ23 = π/4 and |∆m2

32| = 2.4 × 10−3 eV2. When using best fit values for the
oscillation, sin2 θ23 = 0.61 and |∆m2

32| = 2.49 × 10−3 eV2. When using the best fit
values for the systematic errors, the values listed in Table 15.4 are used. The simulation
is scaled down to match the data POT, 3.45× 1020 POT.
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Finally, we can compare this result to results from other experiments. Figure 15.47

displays the 90% confidence limits for this thesis as well as the results from the MINOS

experiment[10] and the T2K experiment[11]. Note the restricted axes in relation to

previous plots of the confidence limits for this thesis. The result from this thesis is less

precise than the other results; however, it is already quite comparable. The MINOS

and T2K experiments are both mature experiments with a relatively large amount of

statistics and time to fully understand their detectors and simulation. This result uses

only 7% of NOνA’s expected exposure; with increased statistics, the measurement will

become much more precise. Also, understanding of the differences in hadronic response

seen between the data and simulation will allow a large reduction in the systematic

error of this result. Work to understand the difference is actively ongoing; a resolution

is expected to be ready in time for the next round of NOνA results.

NOνA will soon be able to improve the world’s knowledge of these two parameters.

Figure 15.48 shows the predicted sensitivity to the oscillation parameters with increased

amounts of data. Note the different axes in relation to previous plots of confidence limits

shown in this thesis. These predicted sensitivities do not include systematic errors or

cosmic background events, although the cuts to remove cosmic background have been

applied to the signal. The sensitivities are created using only the simulation. Two truth

assumptions are shown. These sensitivities show that NOνA will soon have results

more precise than those currently published by other experiments. Also, if the value of

sin2 θ23 is approximately 0.4 or 0.6, NOνA will be able to rule out maximal mixing. If

the value is closer to 0.5, this will become more difficult.



475

23θ2sin
0.2 0.3 0.4 0.5 0.6 0.7 0.8

)2
 (

eV
322

m∆

2

2.5

3

3.5
3−10×

90% CL
MINOS 2014
T2K 2014
Thesis Result
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This plot assumes normal hierarchy. The black line shows the results of this thesis. The
red line shows the 2014 results from the MINOS experiment[10]. The green line shows
the 2014 results from the T2K experiment[11].
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mode analysis cuts. Cosmic background events are not included, although the cuts to
reject cosmic background are applied to the signal to account for inefficiencies. The
sensitivity is based on simulation only. This plot assumes normal hierarchy.



Chapter 16

Conclusion and Discussion

The NOνA detectors are now constructed and fully operational. The NuMI neutrino

beam has successfully undergone its first phase of upgrades. It regularly operated with

a beam power of 400 kW and reached a record beam power of 521 kW. Future upgrades

are on track to increase the power to the final specification of 700 kW. The NuMI

beam had 85% uptime for this period of data-taking and exceeded design goals for POT

delivered. The NOνA far detector was completed in July 2014. It is the largest free-

standing plastic structure in the world. It has more than 99.5% operational channels

from a total of 344,064 and a greater than 95% uptime. The NOνA near detector was

completed August 2014. It runs with an average of 98% of channels considered usable

for physics analysis. Neutrino interactions were observed within seconds of turning on

the near detector. Both detectors are working as expected and performing well.

This analysis uses the first data from the NOνA experiment to make a 2D measure-

ment of sin2 θ23 and |∆m2
32|. The hypothesis that neutrinos do not oscillate is easily ruled

out. The best fit parameters were found to be sin2 θ23 = 0.61 and |∆m2
32| = 2.49×10−3

eV2. The 90% confidence limits using the Feldman-Cousin approach are shown in Fig-

ure 15.44. A comparison of these results with those of other, more mature experiments

is shown in Figure 15.47. We can see that this analysis agrees well with previous results.

This shows that the detectors and analysis techniques are working as expected.

This analysis did not make more precise measurements than those of the other ex-

periments. However, it is competitive for a “first light” measurement and shows the

detector is functioning as designed. It used only 7% of the total expected exposure
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for NOνA. Also, work to fully understand the differences seen between the data and

the simulation will be needed for future analyses to be able to make precision measure-

ments of the oscillation parameters by reducing systematic errors. This work is actively

ongoing.

Figure 15.48 shows expected measurement sensitivities for NOνA with more data.

It shows that NOνA will soon make measurements of these parameters more precise

than the current results of other experiments. If sin2 θ23 is 0.4 or 0.6, NOνA will be

able to rule out maximal mixing with its expected final dataset. If sin2 θ23 is closer to

0.5, this will be more difficult.

16.1 Future Improvements

There are a number of issues that could be improved for future analyses. For instance,

when creating a fit for muon energy from track length, one could use more splines for

higher precision or one could switch to using a Bethe-Bloch curve. If one wanted use

Bethe-Bloch, one should look at the implementations already existent in Calibration.

This implementation could be improved; it currently makes the approximation that the

whole detector is made out of density-weighted scintillator.

The hadronic energy estimation could be improved. It is important to first under-

stand the differences between the data and simulation in the hadronic sector before

making more complicated energy estimation schemes. After these differences are re-

solved, one could probably make gains in energy resolution by using more sophisticated

reconstruction on the hadronic hits. For instance, one could run a second tracking

attempt on only the hadronic cluster. This reconstruction could use the muon start

position as extra information. The second tracker could be optimized to find shorter

tracks with more sharp kinks than the muon tracks generally have. With hadronic

tracks, one could then attempt to identify particle types such as a proton or charged

pion. With reliable tracks and particle identification in the hadronic cluster, one could

then develop a proton energy estimation, etc.

Cosmic background rejection could be significantly improved with further study. I

think it is very likely that a few common failure modes of either reconstruction or bad

data quality make up a large portion of the remaining cosmic background. Additional
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event display scanning could help to understand and categorize these failure modes and

more powerful cuts could probably be crafted to remove the background. Then, one

might be able to loosen cuts currently being made, like the transverse momentum cut,

to regain low energy signal. A cut on the maximum y position of the slice might be

particularly useful. Also, utilizing more information about if the non-muon energy is

better aligned with the start or end of the track could help to reject background neutrino

interactions from cosmic rays.

Some improvements could be made to the software that detects low probability

electronics failures. For example, the DCM edge metric is not sensitive enough in its

present form to find cases where only a few DCMs are out of sync. This is an important

failure mode that future analyses should reject.

Work is actively ongoing for the most important improvements to the NOνA anal-

ysis. A second round of analysis results from NOνA will be published next year. The

future of NOνA promises to hold important scientific results soon!
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Appendix A

Glossary and Acronyms

Care has been taken in this thesis to minimize the use of jargon and acronyms, but

this cannot always be achieved. This appendix defines jargon terms in a glossary, and

contains a table of acronyms and their meaning.

A.1 Glossary

AngleQEE – Angle Quasielastic Energy is a reconstructed neutrino energy based

on the muon track length and the angle of the muon track relative to the beam

direction under the assumption of a quasielastic νµ CC interaction.

Module – A module is a C++ class which performs a specific task on the input

file.

Run – A period of detector running where the manually-set detector configuration

does not change. It is composed of subruns and ends when either there are 64

subruns, the total duration of the run is 24 hours, or the detector stops taking

data.

PID – A particle or event identification metric.

Subrun – A subdivision of a run. Subruns end when the duration of the subrun

is 1 hour, the file size is 1 GB, or the detector stops taking data.
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TrkQEE – Track Quasielastic Energy is a reconstructed neutrino energy based

on the muon track length and the visible hadronic energy. The hadronic energy

fit uses the assumption of a quasielastic νµ CC interaction.

TrkNonQEE – Track Non-Quasielastic Energy is a reconstructed neutrino energy

based on the muon track length and the visible hadronic energy. The hadronic

energy fit uses the assumption of a non-quasielastic νµ CC interaction.

A.2 Acronyms

Table A.1: Acronyms

Acronym Meaning

ADC Analog-to-digital converter

AngleQEE Angle Quasielastic Energy

CC Charged Current

NC Neutral Current

NDF Number of Degrees of Freedom

PID Particle Identification

reco reconstructed

TDC Time-to-digital converter

TrkNonQEE Track Non-Quasielastic Energy

TrkQEE Track Quasielastic Energy

νe Electron Neutrino

νµ Muon Neutrino

ντ Tau Neutrino



Appendix B

Density of the Earth

Matter effects, discussed in Section 4.3, rely on ρ, the average density of the earth

through which the neutrinos travel. NOνA uses the value 2.84 g/cm3. This value as-

sumes a spherical earth and is based on the CRUST 2.0 model[97]. This model provides

measured average earth densities as a function of distance below the surface of the earth.

Alexander Radovic created a simple polynomial fit to the measured values. The average

neutrino depth underground going from the near detector to the far detector is 9.38 km.

When this value is used in the simple polynomial fit, 2.84 g/cm3 is the result. This is

also the answer Alexander obtains when he integrates over the path of the neutrinos

instead of simply using an average depth.
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Appendix C

Slicer Algorithm Details

To group cell hits into clusters, Slicer uses a score function to determine the distance

between cell hits in space and time. Hits deemed to be close are grouped together and

those deemed far away are not. The algorithm was inspired by this paper[98]. Each hit

is determined to be either a core point or a border point. Core points are those that

have more than the minimum number of neighbors; border points do not. Border points

can only be included in a cluster if they are a neighbor of a core point. Neighbors are

defined as having ε < 2.0 for far detector and ε < 5.0 for near detector. ε is defined as:

ε =

(
∆T −∆−→r /c

Tres

)2

+

(
∆Z

Dpen

)2

+

(
∆XY

Dpen

)2

+

(
PEpen
PE

)5

where Tres is the timing resolution of two hits, Dpen is a distance penalty, PEpen is

an energy penalty, and PE is the number of photoelectrons for both hits added in

quadrature. The ∆T and ∆−→r values are the distance between the two hits in time

and space. ∆Z is the distance in the z direction between the two points; ∆XY is the

distance in the other direction for hits in the same view. For hits in different views,

∆XY is zero.

The algorithm begins by looping over all points. When it finds a core point, it

begins a cluster. The core point and all of its neighbors are added to the cluster. The

algorithm then asks if any of the neighbors added to the cluster are core points. If they

are, then the neighbors of the new core points are added to the cluster. This process

continues until the neighbors of all core points are contained within the cluster. The
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algorithm then determines if any remaining hits not within a cluster are core points,

creates a new cluster, and continues. Any point that does not get clustered is defined

as a noise hit. For more information, see the technical note[48].



Appendix D

Fitting Peaks, not Means

There are various ways to take a 2D histogram and condense it into a 1D graph that can

be fit. Originally, this was done by using ROOT’s Profile function, which takes each bin

in x and finds the mean value in y. The fits that result from this method describe the

bulk distribution best but can fail to describe the peak of the distribution well. Means

are, by construction, sensitive to the tails of the distribution. Another approach is to

use the peak of the y distribution for each bin in x. This is conceptually better if one

distrusts the tails and does not want the fit to be overly influenced by them. This is

the approach that has taken.

The procedure used to make the 1D graph is to first loop over each bin in x. For each

bin slice in x, quality cuts are made requiring at least 30 entries in the slice to make a

point. Then the y bin with the most contents is found and the width at half maximum

on each side of the highest bin is defined. These values are then used to initialize a

Gaussian fit. The mean of the resulting Gaussian fit is set as the graph point; the error

on the mean, reported by the fit, is the size of the error bars used.

The fit range is chosen to be a multiplier times the width at half height. With

high statistics samples (approx. 10 million neutrino interactions), a multiplier of 1.5

often works well. For the hadronic fits, variable binning is used to reduce the effect of

lower statistics in the high visible energy regions. Still, there are a few regions where a

multiplier of 1.5 is not sufficient. This is primarily seen in the high visible energy region

of QE hadronic energy. In these bins, the distribution does not peak strongly enough

so that width at half-height is a reliable metric. For now, this has been dealt with by
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looking bin-by-bin in regions of concern and testing the effects of different multipliers.

Then regional multipliers are assigned as high as 25. In the future, it would be nice if

this could be a more automated and robust system. One way to do this would simply

have even more statistics but one would probably need at least 20 million neutrino

interactions to do a significantly better job in the troublesome regions. Otherwise, one

could increase the x bin size even more or make the variable binning choices based

directly on number of entries.



Appendix E

Using Spline Fits

Arbitrary functional forms can be described by piecing together straight-line segments

required to connect at join locations. The spline fits I used have an offset, the slopes of

the lines, and the join locations as free parameters of the fit.

For each fit, I looked individually at using a single line up to 4 spline fits. I found

that using 4 spline fits described the far detector muon track length distribution and

both far detector hadronic energy distributions significantly better than fits with less

free parameters. The near detector muon catcher fit required only a simple linear fit to

capture the structure. The near detector hadronic fits worked best with 2 spline fits.

This is the functional form of an arbitrary linear fit:

y = slope1 * x + offset ;

This is the functional form of an arbitrary two spline fit:

if (x < stitch1 ){

y = slope1 * x + offset ;

}

else {

y = slope2 * x +

((slope1-slope2) * stitch1 + offset) ;
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}

This is the functional form of an arbitrary four spline fit:

if (x < stitch1 ){

y = slope1 * x + offset ;

}

elseif (x < stitch2 ){

y = slope2 * x +

((slope1-slope2) * stitch1 + offset) ;

}

elseif (x < stitch3 ){

y = slope3 * x +

((slope2-slope3) * stitch2 +

(slope1-slope2) * stitch1 + offset) ;

}

else {

y = slope4 * x +

((slope3-slope4) * stitch3 +

(slope2-slope3) * stitch2 +

(slope1-slope2) * stitch1 + offset) ;

}

When doing the fits, one must consider carefully if the fit worked well or if better

initial estimates of parameter values would result in a better fit. This is one reason to

make the progression from linear up to 4 spline fits - it allows the user to track the

subtle changes in slope and join locations. Sometimes the fits can fail to fit well if not

provided with very enlightened initial parameters.



Appendix F

Fit Populations

When one performs a fit, they need to choose what population to fit over. One could fit

a super-pure population that was chosen by utilizing truth information or one could fit

a population using our actual reconstruction-based cuts. Optimizing fits over the actual

reconstruction-based population that one will use in the analysis will result in the best

energy resolution. However, this can also cause problems. The reconstruction selection

used depends in some part on the energy fits (for instance, QePId compares TrkQEE

and AngleQEE energies to determine if a slice is QE). This means that to do the fits

and selections properly, one would need to find energy fits, determine selection criteria,

and then repeat until convergence was obtained. This method would take more time.

I have used a primarily reconstruction-based population with a few truth cuts to fit

over. The reconstruction cuts were picked to match those of the official νµ CC analysis

group and are not identical to the reconstruction used in the analysis presented in this

thesis. However, the effect on final energy resolutions will be small.

There are many criteria that are used to define the fitting populations. Truth infor-

mation is used to require that the neutrino interaction is a νµ charged current interac-

tion. Furthermore, the truth is used to distinguish between if the interaction was QE or

non-QE when the hadronic energies are fit. It is also required that the primary muon

from the neutrino interaction has at least 3 hits in each view.

For the far detector, the slice must pass quality cuts, be contained, pass the cut to

identify νµ charged current interactions, and pass cosmic rejection cuts. For the near

detector, the definition of contained is different and no cosmic rejection cuts are applied.
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The quality cuts used by the official νµ CC analysis group were applied. It is required

that at least one 3D Kalman track with a ReMId value greater than zero is associated

with the slice. Also, the NumuEnergy TrkNonQEE must be greater than zero. The

number of hits in the slice must be larger than 20. The number of continuous planes in

the slice must be larger than four. The number of Cosmic tracks must be larger than

zero.

The far detector containment used by the official νµ CC analysis group has a number

of criteria. The slice must be more than one cell away from the edge of the detector.

The slice must be more than one plane away from the front of the detector and more

than one plane away from the back of the detector. The 3D Kalman track with the

highest ReMId value must be more than 10 cells away from the edge of the detector,

based on the projected track direction at the start and end of the track. Similarly, the

Cosmic track must be at least one cell away from the edge of the detector, based on the

projected track direction at the start and end of the track.

The near detector containment is somewhat different than that used for the far

detector. Again, the slice must be more than one cell away from the edge of the detector.

The first plane of the slice must be greater than 1 and the last plane of the slice must be

less than 212. The start position of the 3D Kalman track with the highest ReMId value

must have a z position of less than 1150 cm. To avoid traveling in uninstrumented area

when transitioning from the fully active region to the muon catcher, the z position of

the 3D Kalman track with the highest ReMId value must be less than 1275 cm or have

a y position in the transition plane of less than 55 cm. The visible off-track hadronic

energy in the slice contained in the transition plane and the muon catcher must be less

than 0.03 GeV. Finally, the 3D Kalman track with the highest ReMId value must be

more than 4 cells away from the edge of the detector, based on the projected track

direction at end of the track. The distance from the start of the track to the edge of

the detector along the projected track direction must be more than 8 cells.

To be considered a νµ charged current interaction, the highest ReMId value of a 3D

Kalman track must be greater than 0.75.

Lastly, for the far detector, the cosmic rejection cuts for the official νµ CC analysis

group were applied. This required that the cosine of the angle between the 3D Kalman

track with the highest ReMId value and the NuMI beam direction was greater than 0.5.
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The number of slice hits was required to be less than 400. The boosted decision tree

trained to separate contained νµ CC interactions at the far detector from cosmic ray

background events must return a PID value greater than 0.535.

I used unoscillated simulation files to fit with. For the far detector and the near

detector, I used 10,000 events each. The files were matched by run and subrun number

to the detector configurations and bad channels used for this analysis.
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