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ABSTRACT 

A Lie algebra is obtained from the prolongation structure of 

a derivative nonlinear Schr~dinger equation. A similarity 

solution is obtained through solving the characteristic equation. 

i. Introduction 

Since the discovery of solitons for nonlinear equation of 

evolution, a large number of sollton solutions is obtained for 

nonlinear Schr6dinger equation by inverse scattering transform, 

~-function theory [i], Hirota's direct method [2], the B~cklund 

transform and so on. On the other hand, the similarity solutions 

for which the nonlinearity has essential consequences are 

discussed by Redekopp [3]. However, to the best of our knowledge, 

no Lie group theoretic approach to obtain a similarity solution 
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has been given and no Lie algebra is explicitly shown. The group 

theoretic approach to the solutions of partial differential 

equations was initiated by Lie himself in 19th century. Many 

Years later Ovsiannikov [4] and Bluman and Cole [5] extended the 

theory to discuss the nonlinear equations in hydrodynamics. We 

followed [4] and [5] closely and applied the theory to a space 

charge flow [6]. In this contribution, we have obtained Lie 

operators explicitly by studying the prolongation structure of a 

derivative nonlinear $chr6dinger equation. With Lie algebra 

obtained we can get a similarity solution through solving the 

characteristic equations. 

2. ble theory 

We consider the following derivative nonlinear Schr6dinger 

equation (DNLSE hereafter) 

H = J u t  + ~ u x x  + i S ' u * u u x  + 8 u * u u  = 0 ( 2 . 1 )  

where ~, 8', 6 are real constants, i = 4"=I" , * stands for the 

complex conjugate and the lower suffixes represent partial 

differentiations. The infinitesimal Lie transformation may be 

written as follows: 

u' = u + E U(x,t,u) (2.2a) 

x' = x + ~X(x,t,u) (2.2b) 

t' = t + cT(x,t,u) (2.2c) 

Where ~ is a small parameter. 

Invariance is defined as follows: 

i. eq.(2.1) is left invariant when H'(u',x',t') = 0 iff H(u,x,t) 

= 0 where H'(u',x',t') is obtained from H if (u,x,t) is replaced 
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by (u',x' t') ! 

ii. the boundary conditions and boundary curves are left 

invariant. 

Assuming that I u*udx is finite and converges to a constant C 

in the domain of definition R, namely we look for a solution of 

(2.1) with the following condition: 

J u*udx = C (2.3) 
R 

The invariance condition becomes 

e(x + cX, t + ¢T) = 8(x,t) + ~U(x,t,8) + O(E 2) 
(2.4) 

where 8 is a solution of (2.1). 

Expanding th~ left hand side and equating the O( E ) terms we have 

X(x,t,8) ~_~8 + T(x,t,8)~8 : U(x,t,e) (2 .5)  
~x 3t 

and the corresponding characteristic equations to eq.(2.5) are in 

general 

dx = dt = dO (2 .6)  
X ( x , t , O )  T ( x , t , O )  U(x , t ,O)  

Now in order to find out which infinitesimal transformation can 

be admitted we need also to study the invariance of the 

differential operators H and calculate how derivatives transform. 

It must be stressed here that once the transformations of the 

basic coordinates (x,t,u) are known, the rest of the 

transformations of higher order derivatives are determined 

accordingly. This basic fact is usually known as a prolongation 

(or extension). After straightforward but lengthy calculations we 

obtained the following results, 

X(x,t) = ~ + n t + yxt + vx (2.7a) 

T(t) = a + 2 vt + ytz (2.7b) 
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U(x,t,u) = u[ - 7{t/2 - ixZ/4~} + (ix/2~)~ ,+ k + i v c18 

+17 c26] (2.7c) 

where < , a ,  ~ , v , 7 , ~ are 6 arbitrary parameters and ci, 

e2 are constants. The Lie operators corresponding to 6 parameters 

are: 

Xl - ~ 3 X3 = u 3 
~x ' X z -  ~t  ' ~--d 

~u 

= ~ + 1 

ix X6 = t ~  + ~-~ ~ u  

These operators form a Lie algebra and its group table 

( 2 . 8 )  

is shown 

Put 8' = 8 = O, eq.(2.1) is a heat equation. 

X 2 

X 3 

X 4 

X 5 

X 6 

X 1 X 2 x 3 X 4 X 5 X 6 

l 
0 0 0 X I X6 ~_~x 3 

X4 1 
0 0 0 2X 2 _(icl6+~)X3 X1 

f 

0 0 0 iCl~X 3 0 0 

-X 1 -2X 2 - i C l ~ X  3 0 2X5 
+ 2 i c 2 6 X  3 X6 

-X 6 

-2BX3 

-X 4 
+(ic 6+~)X~ 0 

1 2 

0 -X 6 0 0 

-2X 5 
-2ic26X S 

0 0 

classical group of the (linear) heat equation [7]. Indeed if we 

below. It is noted that this group has a strong resemblance of the 
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3. Similarity Solution 

Substituting eqs.(2.Ta,b,c) into 

characteristic equation for DNLSE has the form 

dx dt d8 
X(x,t) = T(t) - = U(x,t,e) 

where X/T is independent of u. Thus we can obtain 

solution of the form 

u(x,t) = F(x,t, n,f(n )) (3.2) 

for the solution 8. The similarity variable n is an integal of 

the first equality in eq.(3.1) and 

~(x,t) = constant (3.3) 

defines path curves (similarity curve) in (x,t)-space. The 

dependence of F on ~ involves an arbitrary function f(n ) which 

is the solution to some ordinary differential equation obtained 

by substituting eq.(3.2) into eq.(2.1). Now we proceed to obtain 

the explicit form of eq.(3.2). Path curve is obtained by 

integrating the first equality of eq.(3.1) which may be rewritten 

as 

dx/dt = { < + ~t + x(yt + v)}/{a +2 vt + yt2} (3.4) 

Elementary calculus gives the following four cases: 

(i) (li) 

(ill) ~2 - a7 = O, ~ : 7: O, a ~ 0 (iv) a : v : 7 = O. 

We discuss case (i) in detail and other cases are the obvious 

consequences of (i). For case (i), eq.(3.4) can be integrated as 

n : {x - (At + B)}/4yt z + 2~t + a (3.5) 

where 

eq.(2.6), the 

(3.1)  

the slmllarity 



A = ( y  + ~ v  ) / ( a 6  - v 2 )  

B = ( a ~  - v  ) / ( a ~  - v 2 ) 
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( 3 . 6 a )  

( 3 . 6b ) .  

In order to simplify the algebraic calculation we transform 

t = ~ / 4 7  - v /7  ( 3 . 7 a )  

x = ~ t 4 y  - ~17 (3 .7b)  

end de~ine 

bZ = ( v z  - a T ) / 7  ( 3 . 8 a )  

Y = ( ~ v  - ~y ) / (  v2 - =7 ) ( 3 . 8 b )  

and r e w r i t e  ~ ÷  x ,  ~ ÷ t t o  s i m p l i f y  e q . ( 3 . 4 )  and e q . ( 3 . 5 ) .  Then 

the last equality of eq. (3.1) is reduced to 

dO = ~ dt  (~ - ~ +~+i~c l6+iyc2~)  + . . . . . . .  dt  
0 

Ct 2 - b 2) 

t ~ t 2d t  + iV 
ct2_bz ) dt + (t2_ b 

t d t  
/ ( t 2 - b  2) (3 .0)  

Finally the similaritp solution with similarity variable 

obtained by integrating eq.(3.9) as 

i s  

o f(n)(t 2 bZ) ~ iV~ 2 2 t - b  Oexp{~(n2+V2) t  y g - l t  -b ) (3 .10)  = - C ~ )  + 

where 

iV2b 2 
P = (~) . ( 2 i / 48y)  + ~ + iVCl~ . iyc2~ + ~ ( 3 . 1 1 a )  

-- (x - Vt) /~( t2-b  2) (3.11b) 
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In order to determine f( n ), we substitute eq.(3.10) into 

eq.(2.1) to have an ordinary differential equation 

where 

b2n 2 d2f [~ + f 0 
an2 ' +  462 - j  = 

(3 .12)  

= i(4Y + I)/(2~) + 21Pb/8 ( 3 . 1 2 a )  

The solution f( u ) can be expressed in terms of parabolic 

cylinder function, 
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