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ABSTRACT
A Lie algebra is obtained from the prolongation structure of
a derivative nonlinear Schrédinger equation. A similarity

solution is obtained through solving the characteristic equation.

1. Introduction

Since the discovery of solitons for nonlinear equation of
evolution, a large number of soliton solutions is obtained for
nonlinear Schrédinger equation by inverse scattering transform,
t-function theory [1], Hirota's direct method [2]}, the Backlund
transform and s0 on. On the other hand, the similarity solutions
for which the nonlinearity has essential consequences are
discussed by Redekopp [3). However, to the best of our knowledge,

no Lie group theoretic approach to obtain a similarity solution
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has been given and no Lie algebra is explicitly shown. The group
theoretic approach to +the solutions of partial differential
equations was initiated by Lie himself in 19th century. Many
years later Ovsiannikov [4] and Bluman and Cole [5] extended the
theory to discuss the nonlinear equations in hydrodynamics. We
followed [4] and [5] closely and applied the theory to a space
charge flow [6]1. In +this contribution, we have obtained Lie
operators explicitly by studying the prolongation structure of a
derivative nonlinear Schrddinger equation. With Lie algebra
obtained we can get a similarity solution through solving the

characteristic eguations.

2. Lie theory

We consider the following derivative nonlinear Schrddinger
equatlion (DNLSE hereafter)

H = iut + Puzx + i8’u¥uux + Suxuu = 0 (2.1)
where B, ©8', 8 are real constants, i = 41 , * stands for the
complex conjugate and the lower suffixes represent partial
differentiations. The infinitesimal Lie transformation may be

written as follows:

u’ = u + eU{x,t,u) (2.2a)
x' = x + eX(x,t,u) (2.2b)
' = ¢t + eT(x,t,u) (2.2¢)

Where ¢ is & small parameter.
Invariance is defined as follows:
1. eq.(2.1) is left invariant when B'(u’,x',t’) = 0 iff H{u,x,t)

= 0 where H'(u’,x’,t’) is obtained from H if (u,x,t) is replaced
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by (u’,x',t’).

ii. the boundary conditions and boundary curves are left
invariant.

Assuming that { ukudx is finite and converges to a constant C
in the domain of definition R, namely we look for a solution of

{2.1) with the following condition:
j ukudx = C (2.3)
R

The invariance condition becomes
B(x + Cx) t + ET) = e(xlt) + EU(thle) + O(Ez)
(2.4)
where 8 is a solution of (2.1).

Expanding the left hand side and equating the O{ € ) terms we have

38 38 =
X(x,t,a)gi. + ’1‘():,1;,6)..5.,E U(x,t,8) (2.5}
and the corresponding characteristic equations to eq.(2.5) are in
general
—dx 0 . _4av _ g8 (2.86)
X(x,t,@) T(x,t:e) U(xltle)

Now in order to find out which infinitesimal <transformation can
be admitted we need also to study the invariance of the
differential operators H and calculate how derivatives transform.
It must be stressed here that once the transformations of the
basic coordinates (x,t,u) are  known, the 1rest of the
transformations of  higher order derivatives are determined
accordingly. This basic fact is usually known as a prolongation
{or extension). After straightforward but lengthy calculations we
obtained the following results,
X(x,t) = « + mpt + yxt +  ux (2.7a)

T(t) = a + 2 vt + yt2 (2.7b)
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U(x,t,u) = ul - y{t/2 - ix2/48} + (ix/2B)p ,+ » *+ i,c1d
+ivy c28] (2.7¢)
where « , a, A, v , vy , 4 are 6 arbitrary parameters and ci,

¢z are constants. The Lie operators corresponding to 6 parameters

are:

X1 = gx , Xg:_g—f ; Xs =u-g—ﬁ

X4 = Ztgt t Xy ¥ ic1 5%—%6

Xs = tz—?ﬁ + xtde 4 {-(-% - ¢ 1c26}u3u

Xe = el v X w2 (2.8)

These operators form a Lie algebra and its group table is shown
below.It is noted that this group has a strong resemblance of the
classical group of the (linear) heat eguation [7]. Indeed if we

put 6§’ = 5 = 0, eq.(2.1) is & heat equation.

X
1 X %3 24 %5 X5
X 0 0 0 X i
1 1 X 5%,
X
X 0] 0 0 4 1
2 2}(2 —(1C16+§)X3 Xl
X 0 0 0 ic.§
3 ic 8%, 0 0
X -X -2X ~ic, 8% 2Xg
4 1 2 1%%3 0 +27cy8X %
3
X4 -2x
X - S § oS 0 0
5 Xg +(1c15+2)X3 0 —21026X3
Ly X 0
Xy 5553 -X, ~Xg 0 0
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3. Similarity Solution
Substituting eqs.(2.7a,b,c¢) into eq.(2.6), the
characteristic equation for DNLSE has the form

dx ) dt ) de (3.1)
X(X.t) T(t) U(xltle)

where X/T is independent of u. Thus we can obtain the similarity
solution of the form

u(x,t) = F(x,t, n,f(n )) (3.2)
for the solution 8. The similarity varliable n is an integal of
the first equality in eq.(3.1) and

n{x,t) = constant (3.3)
defines path curves (similarity curve) in (x,t)-space. The
dependence of F on n involves an arbitrary function f£(n ) which
is the solution to some ordinary differential equation obtained
by substituting eq.(3.2) into eq.{2.1). Now we proceed to obtain
the explicit form of eq.(3.2). - Path curve is obtained by
integrating the first equality of eq.(3.1) which may be rewritﬁen
as

dx/dt = { ¢ + umt + x(yt + v)}/{a +2 vt + yt2} (3.4)
Elementary calculus gives the following four cases:
(1) v -ay§0, v$0 (11) v? -ay =0, yfo
(111) v - ay= 0, v=y=0, « # 0 (v) a = y= y= 0.
Ve discuss case (i)} in detail and other cases are the obvious

consequences of (i). For case (1), ea.(3.4) can be integrated as

n={x - (At + B)}/IyiZ + 2t + a {3.5)

where
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(y + v )/(ad - v?) (3.6a)

W o>
t 1

{ap -v )/ (ay - v? ) (3.6b).

In order to simplify the algebraic calculation we transform

= ¥4y - v/y (3.7a)
=Xy - w/ly (3.7b)

and define
b2 = (v2 - ay)/y (3.8a)
V = (kv = ky M/ VvV - ay) (3.8b)

and rewrite x* > x, € +t to simplify eq.(3.4) and eq.(3.5). Then
the last equality of eq.(3.1) is reduced to

2.
. (3 - Hg= arivegsriye,8)
Q- qtdre = ——a

(t? - bH
it tfar iVt dt

dt + +
(t2 b2> B (Zpdy 2B Jti-bd) (3.9)

Dn

Finally the similarity solution with similarity variable 1 is

obtained by integrating eq.(3.9) as

R4
6 = £(n) (t%-b%) L g exp{w(n ZavBye « J0[e2-p%) (5.10)

where

v 2 . . : Vzbz
p=(3) - (u° i/48y) + A + ivcyd + dycyd + 78 (3.11a)

3
1

(x - Vt)[](tz-bz) (3.11b)
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In order +to determine f£{( N ), we substitute €q.(3.10} into

eq.(2.1) to have an ordinary differential equation

2 2.2 3.
i (9-32)
dn 48
where
Q= i(dy +1)/(28) + 2ipb/B (3.12a)

The solution f( n) can be expressed in terms of parabolic

eylinder function.
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