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We describe a type IIB string scenario in which tree-level moduli stabilization via
geometric and non-geometric fluxes is achieved. We present stable non-supersymmetric
vacua with all moduli fixed except for some massless axions. The moduli vacuum expec-
tation values and their masses feature a specific scaling with the fluxes thereby allowing
for parametric control. We discuss some phenomenological aspects of our scenario and
explain how it provides an interesting framework for realizing inflation in string theory.
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1. Introduction

In string compactifications there are generically many moduli, namely massless
scalars with a flat potential. Clearly, these fields must acquire a mass to avoid
unobserved long-range forces. Moreover, phenomenological quantities such as gauge
coupling constants depend on the moduli vevs. Thus, moduli stabilization is a
crucial link in connecting string theory and low-energy phenomena. In the KKLT
and large volume scenarios the axio-dilaton and complex structure moduli obtain
masses at tree-level from a flux-induced potential while the Kéahler moduli do it
L2 As a result, the masses of the latter are
exponentially smaller. In our scenario the motivation is to have all moduli masses of
the same order so that moduli stabilization and single-field inflation can be naturally
combined. This requires all moduli masses to be greater than the Hubble scale
and the mass of the inflaton ©. Besides, the string and Kaluza-Klein (KK) scales
must be above all these scales to justify working with an effective supergravity
action. Therefore, we want to develop a string scenario that guarantees the hierarchy
Mpy > My > Mgk > Mupoqa > Hing > Me. To have all moduli masses of the
same order it is logical to fix them at tree-level and this can be achieved taking
into account non-geometric fluxes. The desired hierarchy of scales can be ensured
thanks to flux scaling, which means that the moduli masses are determined by
adjustable ratios of product of fluxes. Below we will briefly describe the flux-scaling
scenario, discuss some phenomenological implications, and consider the aplication
to inflation. More details and references can be consulted in Refs. 3, 4.

from non-perturbative contributions

2. Flux-scaling scenario

We will work in the framework of N' = 1 type IIB Calabi-Yau (CY) orientifolds with
03- and O7-planes. The CY manifold M is characterized by the Kéhler form J
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and the holomorphic 3-form . Under the orientifold projection the harmonic (1,1)
and (1,2) forms can be even or odd and are counted by Hodge numbers hil and
hiﬂ respectively. We will assume that h}f = 0. The low-energy effective theory has
been obtained in Ref. 5. The moduli sector comprises the axio-dilaton S, even T,
and odd G* Kéahler moduli, « =1,..., hi’l, a=1,..., h&l, plus complex structure
moduli U?,i=1,..., h%?. More precisely, S = e~ ¢ —iC®, where ¢ is the dilaton
and C© the R-R 0-form, G* = Sb® + ic®, and

1 , i 1 _
T, = 3 mamtﬁt'y + i pa — 3 Keap B — 1 € Koab G*(G + G)b . (1)
Here %, pa, ¢® and b® are the components of J, C™®, C® and B in the internal
space. Besides, kagy and Kqqp are triple intersection numbers of M. Recall also that
the 3-form Q can be expanded in a symplectic basis as Q = X*ay — F)5*, where
A=0,...,h% The periods Fy = 2% follow from a holomorphic prepotential

X prepe
that in the large complex structure limit has the form F = d;j5 = ))%X " The

complex-structure moduli are given by U® = —i <0
The starting point for the moduli stabilization analysis is the F-term scalar
potential of the 4-dimensional A" = 1 theory, namely

My, k(17 14 2

Ve = S P X (KT DwDsW - 3| W) 2)
7

where K7 = 0107 K, DIW = 0rW +(0; K )W, and the indices run over the moduli

fields. At tree-level in the large-volume limit the Kihler potential is given by®

Kz—log(—z’/ Q/\ﬁ)—log(s—i—g)—ﬂogl), (3)
M

where V = 31 kg, tt7t7 denotes the volume of the CY 3-fold in Einstein frame.

The superpotential is generated by fluxes. In addition to R-R and NS-NS 3-form
fluxes § and H we also consider the geometric and non-geometric fluxes F', Q and
R required by T-duality®. The generalized superpotential can be written as”™*

W:/M(S+D<I>§V)/\Q, (4)

where ¢V = iS—iGw,—iT, 0%, with w, and o® 2- and 4-forms in M. The twisted
differential D is defined as D =d — H A —F o —Q e —R_. The operators Fo, Qe
and RL acting on a p-form give respectively a (p + 1)-, (p — 1)- and (p — 3)-form.
For instance, acting on a 4-form Do® = —¢*“ay + ¢2*f?, so that ¢\® and ¢*® are
the components of the non-geometric Q-flux. Here we are following the approach of
Refs. 10, 11 to treat the generalized fluxes in the CY orientifold. There are similar
parameters hy, h, fre and f)‘a, encoding H and F. The R-flux is eliminated by
the orientifold projection and will not appear in W. The fluxes in D are constrained
by Bianchi identities arising from the nilpotency condition D? = 0. On the other
hand, the R-R flux parameters f) and ?‘ enter in tadpole cancellation conditions.
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Expanding and integrating we obtain the superpotential®
W=~ (hX* = PPFy) +iS(haX* — A Fy) (5)
FiG (fra X = FAaF) —iTo (22X — POF) .

Notice that the generalized fluxes give terms depending on the Kéhler moduli. This
opens up the possibility to stabilize them at tree-level.

The task is to look for vacua of the flux-induced scalar potential with the desired
properties. In our conventions the imaginary parts of the moduli are axions that do
not enter in the Kéhler potential. The real parts, dubbed saxions, determine the
string coupling and the internal volume. We then want to fix them in a perturbative
regime of weak coupling and large radius. For the axions we instead allow that
some remain massless at a first stage to become massive after turning on additional
fluxes. It is known that supersymmetric minima with unconstrained axions have
tachyons!2. We will then search for stable non-supersymmetric minima. Moreover,
we demand that moduli vevs and masses are parametrically controlled by adjusting
fluxes. The mass of the lightest massive axion, which is the inflaton candidate, is
also parametrically or numerically controlled. Finally, the moduli masses have to
be smaller than the string and KK scales. We found several models where these
properties are realized.

To exemplify the flux-scaling vacua consider a simple model with h*' =1 and
hi’l = 1, for which the Kéhler potential in the large complex structure limit reads

K = —3log(T +T) —log(S +5)—3log (U+TU). (6)

The underlying geometry can be seen as an isotropic six-torus. We will use the
notation S = s+ic, T = 7+ip and U = v+ iu. For the flux superpotential we take

W=—f-3fU>—hUS—qUT. (7)

In our conventions the fluxes are quantized and in this example they are uncon-
strained by Bianchi identities. Analyzing the resulting scalar potential we find a
non-supersymmetric tachyon-free AdS minimum with axions fixed at u = 0 and
(hc + gp) = 0, whereas the vevs of the saxions enjoy flux scaling of the form

T:—].E)’Uj, s:—12vi, v? = 11i.
q h 3-102 §

As in other examples, the scaling can be inferred from the superpotential. In-
deed note that all terms in W are proportional to §f. For h,q < 0 < f, %, all vevs
are positive. Besides, the flux f does not contribute to any of the tadpoles so
it can be large. Hence, by choosing § > f,h,q ~ O(1), we can ensure that all
moduli are fixed in the perturbative regime. The moduli masses in the canoni-
cally normalized basis turn out to be M2 4 ; = i % 41\774_13217
TS (2.17 0.37, 0.25; 1.3, 0.013, 0). The first (last) three eigenstates are saxions
(axions). The massless mode is the axionic combination (g¢ — hp). Observe that

(8)

with numerical values
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the lightest massive mode is axionic, and although not parametrically light, its mass

1
is numerically light. We also find the ratios %}i ~ hq (%)2 and JV]X%QK =62.5 (%)2.
Therefore, for this model we can achieve a controlled hierarchy of mass scales
Mpy 5 M, = Mk 5 Miod.

We constructed and analyzed several models with non-supersymmetric flux-
scaling AdS extrema. A characteristic feature is that for n moduli, n 4+ 1 fluxes
in the superpotential must be turned on. In models with a larger number of Ké&hler
moduli the extrema often have tachyons that can be stabilized by adding a D-term
potential Vp = QPJ{VIQ %})52 due to a stack of N D7-branes wrapping some internal
4-cycle ¥ and equipped with some U(1) gauge flux. The D-term potential depends

on the Kéhler moduli through the gauge kinetic function f and the Fayet-Iliopoulos
(FI) term of the U(1), given by & = %/J A c1(L), where ¢q(L) is the first Chern
b

class of the U(1) line bundle. By virtue of the Freed-Witten anomaly cancellation
conditions the FI vanishes at the AdS supersymmetric minimum but also at the non-
supersymmetric extremum with same ratio of moduli vevs. Thus, the extremum
is not shifted but the mass of the Kéhler tachyon is uplifted. We also studied soft
supersymmetry breaking masses in a MSSM realized on D7-branes. For instance,
since generically the F-terms are not zero, gaugino masses M, = %(Re fa) 'r 05 fa
are typically of the same order of Moq ~ 10 GeV. However, in a particular toy
model we arranged to have F7 = 0 and then M,, being generated by o’ correc-
tions, can be lowered. Concerning uplift of the cosmological constant, in principle
it can be achieved by including a potential due to anti D3-branes but we could only
find examples with unrealistic values of the parameters involved. More recently, by
adding an extra anti D3-brane contribution to the scalar potential, we were indeed
able to obtain Minkowski and dS vacua, although not continuously connected to
the initial AdS ones!'®. One persistent problem with the models is that it is not
always possible to attain moduli masses lower than the KK scale.

3. Inflation

The current limit on the ratio of tensor-to-scalar perturbations is r < 0.113'%. We
also know that for » > 0.01 the Lyth bound implies that the inflaton © rolls over
trans-Planckian field values'®. Thus, it is important to study large-field inflation in
the context of string theory which is purported to be UV complete. In particular,
string theory should explain how perturbative corrections to the inflaton potential
can be suppressed. A compelling mechanism is the shift symmetry of axions that
generically appear in string compactifications. The symmetry has to be broken and
it is interesting to do it by fluxes as in the proposal of F-term axion monodromy
16-18 * Tyurning on fluxes can also stabilize other moduli and break super-
symmetry. A novel feature in our models is that the axions from Ké&hler moduli can
get a potential induced by non-geometric fluxes. We will consider two possibilities

inflation
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for the inflaton. It can be a massless axion that becomes massive, as proposed in
Refs. 19, 20, or it can be a lightest axion from the beginning.

In the first approach the idea is to initially fix most moduli by turning on
a particular set of fluxes that leaves a massless axion which is then the inflaton
candidate. At a second step we rescale the original fluxes and introduce secondary
ones to generate a potential for the inflaton. Schematically the superpotential
has the form W = AWy + faxAW. By choosing A > f.x it is possible to make
Mo < Muoq. However it is then difficult to keep Mxk > Mmod-

In the second approach the inflaton is the lightest axion already present and we
take into account the backreaction of the massive moduli during the slow roll of the
inflaton?!. We worked out a toy example with only S and 7 moduli and particular
flux potential given by

V= Az((hs + )2 _ 6hgs — 2qf B 5¢> ) 02 o

16573 16572 48sT 16s73 "’

where 0 = hc + gp. When A = 1 this potential is due to W = —if + ihS + iqT, but
the axion € is not the lightest mode. Taking A large makes the axion lighter than the
saxions. Integrating out the heavy saxions, and adding an uplift to Minkowski, we
find the backreacted potential shown in Fig. 1 for A = 10. For small values of 6 the
potential is quadratic, for large values it reaches a plateau, and in the intermediate
region it is linear. For /A > §, in terms of the inflaton with canonical kinetic
energy, the potential is actually of Starobinsky type, namely

25 hq3\? _
Vback(e) = 2716 f2 (1 — € ’y@) s (10)

where 72 = 28/(14 4+ 5)2). To determine how the value of the scalar-to-tensor ratio
varies with A requires a numerical analysis®. For instance, it is found that » ~ 0.08
for A = 20.

Vback

0
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Fig. 1. Backreacted potential for h=1,¢=1 ,f =10 and A = 10.
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4. Final comments

In this work we have elaborated on a large scale scenario of moduli stabilization
which includes non-geometric fluxes in order to fix all closed string moduli at tree-
level. We were able to construct non-supersymmetric non-tachyonic anti de Sitter
vacua characterized by a definite scaling of vevs and masses with the fluxes. In
this way we gained parametric control over these quantities, thereby allowing to
stabilize the moduli in their perturbative regime while keeping their masses below
the string and KK scales.

We discussed some phenomenological questions such as soft supersymmetry
breaking masses, but the main interest resides in aplications to inflation. We showed
that the flux-scaling vacua provide a natural set-up for F-term axion monodromy
inflation. An uplift to Minkowski or de Sitter was assumed but later we found
proper mechanisms by adding an anti D3-brane or a D-term containing geometric
and non-geometric fluxes'3.

The uplift of the 4-dimensional effective theory with non-geometric fluxes to a
full solution of string theory in 10 dimensions is an open question. Some progress
in this direction is the recent derivation of the scalar potential with non-geometric
fluxes from dimensional reduction of double field theory on a Calabi-Yau 3-fold?2.
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