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A flux-scaling scenario for moduli stabilization

and axion inflation in string theory

Anamaŕıa Font∗

Departamento de F́ısica, Centro de F́ısica Teórica y Computacional,
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We describe a type IIB string scenario in which tree-level moduli stabilization via
geometric and non-geometric fluxes is achieved. We present stable non-supersymmetric
vacua with all moduli fixed except for some massless axions. The moduli vacuum expec-
tation values and their masses feature a specific scaling with the fluxes thereby allowing
for parametric control. We discuss some phenomenological aspects of our scenario and
explain how it provides an interesting framework for realizing inflation in string theory.
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1. Introduction

In string compactifications there are generically many moduli, namely massless

scalars with a flat potential. Clearly, these fields must acquire a mass to avoid

unobserved long-range forces. Moreover, phenomenological quantities such as gauge

coupling constants depend on the moduli vevs. Thus, moduli stabilization is a

crucial link in connecting string theory and low-energy phenomena. In the KKLT

and large volume scenarios the axio-dilaton and complex structure moduli obtain

masses at tree-level from a flux-induced potential while the Kähler moduli do it

from non-perturbative contributions1,2. As a result, the masses of the latter are

exponentially smaller. In our scenario the motivation is to have all moduli masses of

the same order so thatmoduli stabilization and single-field inflation can be naturally

combined. This requires all moduli masses to be greater than the Hubble scale

and the mass of the inflaton Θ. Besides, the string and Kaluza-Klein (KK) scales

must be above all these scales to justify working with an effective supergravity

action. Therefore, we want to develop a string scenario that guarantees the hierarchy

MPl > Ms > MKK > Mmod > Hinf > MΘ. To have all moduli masses of the

same order it is logical to fix them at tree-level and this can be achieved taking

into account non-geometric fluxes. The desired hierarchy of scales can be ensured

thanks to flux scaling, which means that the moduli masses are determined by

adjustable ratios of product of fluxes. Below we will briefly describe the flux-scaling

scenario, discuss some phenomenological implications, and consider the aplication

to inflation. More details and references can be consulted in Refs. 3, 4.

2. Flux-scaling scenario

We will work in the framework of N = 1 type IIB Calabi-Yau (CY) orientifolds with

O3- and O7-planes. The CY manifold M is characterized by the Kähler form J
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and the holomorphic 3-form Ω. Under the orientifold projection the harmonic (1,1)

and (1,2) forms can be even or odd and are counted by Hodge numbers h1,1
± and

h1,2
± respectively. We will assume that h1,2

+ = 0. The low-energy effective theory has

been obtained in Ref. 5. The moduli sector comprises the axio-dilaton S, even Tα

and odd Ga Kähler moduli, α = 1, . . . , h1,1
+ , a = 1, . . . , h1,1

− , plus complex structure

moduli U i, i = 1, . . . , h1,2
− . More precisely, S = e−φ − iC(0), where φ is the dilaton

and C(0) the R-R 0-form, Ga = S ba + ica, and

Tα =
1

2
καβγ t

βtγ + iρα − i

2
καab c

abb − 1

4
eφκαabG

a(G+G)b . (1)

Here tα, ρα, c
a and ba are the components of J , C(4), C(2) and B in the internal

space. Besides, καβγ and καab are triple intersection numbers ofM. Recall also that

the 3-form Ω can be expanded in a symplectic basis as Ω = Xλαλ − Fλβ
λ, where

λ = 0, . . . , h1,2
− . The periods Fλ = ∂F

∂Xλ follow from a holomorphic prepotential

that in the large complex structure limit has the form F = dijk
XiXjXk

X0 . The

complex-structure moduli are given by U i = −i Xi

X0 .

The starting point for the moduli stabilization analysis is the F-term scalar

potential of the 4-dimensional N = 1 theory, namely

VF =
M4

Pl

4π
eK

(
KIJDIWDJW − 3

∣∣W ∣∣2) , (2)

where KIJ = ∂I∂J K, DIW = ∂IW +(∂IK)W , and the indices run over the moduli

fields. At tree-level in the large-volume limit the Kähler potential is given by5

K = − log

(
−i

∫
M

Ω ∧ Ω

)
− log

(
S + S

)− 2 logV , (3)

where V = 1
3! καβγ t

αtβtγ denotes the volume of the CY 3-fold in Einstein frame.

The superpotential is generated by fluxes. In addition to R-R and NS-NS 3-form

fluxes F and H we also consider the geometric and non-geometric fluxes F , Q and

R required by T-duality6. The generalized superpotential can be written as7–9

W =

∫
M

(
F+DΦev

c

)
∧ Ω , (4)

where Φev
c = iS−iGaωa−iTασ

α, with ωa and σα 2- and 4-forms inM. The twisted

differential D is defined as D = d −H ∧ −F ◦ −Q • −R 
. The operators F◦, Q•
and R 
 acting on a p-form give respectively a (p + 1)-, (p − 1)- and (p − 3)-form.

For instance, acting on a 4-form Dσα = −q̃λααλ + qλ
αβλ, so that qλ

α and q̃λα are

the components of the non-geometric Q-flux. Here we are following the approach of

Refs. 10, 11 to treat the generalized fluxes in the CY orientifold. There are similar

parameters hλ, h̃
λ, fλa and f̃λ

a, encoding H and F . The R-flux is eliminated by

the orientifold projection and will not appear in W . The fluxes in D are constrained

by Bianchi identities arising from the nilpotency condition D2 = 0. On the other

hand, the R-R flux parameters fλ and f̃λ enter in tadpole cancellation conditions.
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Expanding and integrating we obtain the superpotential4

W =− (
fλX

λ − f̃λFλ

)
+ iS

(
hλX

λ − h̃λFλ

)
(5)

+ iGa
(
fλaX

λ − f̃λ
aFλ

)− iTα

(
qλ

αXλ − q̃λαFλ

)
.

Notice that the generalized fluxes give terms depending on the Kähler moduli. This

opens up the possibility to stabilize them at tree-level.

The task is to look for vacua of the flux-induced scalar potential with the desired

properties. In our conventions the imaginary parts of the moduli are axions that do

not enter in the Kähler potential. The real parts, dubbed saxions, determine the

string coupling and the internal volume. We then want to fix them in a perturbative

regime of weak coupling and large radius. For the axions we instead allow that

some remain massless at a first stage to become massive after turning on additional

fluxes. It is known that supersymmetric minima with unconstrained axions have

tachyons12. We will then search for stable non-supersymmetric minima. Moreover,

we demand that moduli vevs and masses are parametrically controlled by adjusting

fluxes. The mass of the lightest massive axion, which is the inflaton candidate, is

also parametrically or numerically controlled. Finally, the moduli masses have to

be smaller than the string and KK scales. We found several models where these

properties are realized.

To exemplify the flux-scaling vacua consider a simple model with h2,1
− = 1 and

h1,1
+ = 1, for which the Kähler potential in the large complex structure limit reads

K = −3 log(T + T )− log(S + S)− 3 log
(
U + U

)
. (6)

The underlying geometry can be seen as an isotropic six-torus. We will use the

notation S = s+ ic, T = τ + iρ and U = v+ iu. For the flux superpotential we take

W = −f− 3 f̃U2 − hU S − qU T . (7)

In our conventions the fluxes are quantized and in this example they are uncon-

strained by Bianchi identities. Analyzing the resulting scalar potential we find a

non-supersymmetric tachyon-free AdS minimum with axions fixed at u = 0 and

(hc+ qρ) = 0, whereas the vevs of the saxions enjoy flux scaling of the form

τ = −15v
f̃

q
, s = −12v

f̃

h
, v2 =

1

3 · 10 1
2

f

f̃
. (8)

As in other examples, the scaling can be inferred from the superpotential. In-

deed note that all terms in W are proportional to f. For h, q < 0 < f, f̃, all vevs

are positive. Besides, the flux f does not contribute to any of the tadpoles so

it can be large. Hence, by choosing f � f̃, h, q ∼ O(1), we can ensure that all

moduli are fixed in the perturbative regime. The moduli masses in the canoni-

cally normalized basis turn out to be M2
mod,i = μi

hq3

f
3
2 f̃

1
2

M2
Pl

4π·27 with numerical values

μ ≈ (
2.1, 0.37, 0.25 ; 1.3, 0.013, 0

)
. The first (last) three eigenstates are saxions

(axions). The massless mode is the axionic combination (q c − hρ). Observe that
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the lightest massivemode is axionic, and although not parametrically light, its mass

is numerically light. We also find the ratios
M2

mod

M2
KK

∼ hq
(

f̃

f

)1
2

and
M2

s

M2
KK

= 62.5
(
h
q

)1
2

.

Therefore, for this model we can achieve a controlled hierarchy of mass scales

MPl �p
Ms �p

MKK �
p
Mmod.

We constructed and analyzed several models with non-supersymmetric flux-

scaling AdS extrema. A characteristic feature is that for n moduli, n + 1 fluxes

in the superpotential must be turned on. In models with a larger number of Kähler

moduli the extrema often have tachyons that can be stabilized by adding a D-term

potential VD =
M4

Pl

2Re(f)ξ
2 due to a stack of N D7-branes wrapping some internal

4-cycle Σ and equipped with some U(1) gauge flux. The D-term potential depends

on the Kähler moduli through the gauge kinetic function f and the Fayet-Iliopoulos

(FI) term of the U(1), given by ξ = 1
V

∫
Σ

J ∧ c1(L), where c1(L) is the first Chern

class of the U(1) line bundle. By virtue of the Freed-Witten anomaly cancellation

conditions the FI vanishes at the AdS supersymmetricminimum but also at the non-

supersymmetric extremum with same ratio of moduli vevs. Thus, the extremum

is not shifted but the mass of the Kähler tachyon is uplifted. We also studied soft

supersymmetry breaking masses in a MSSM realized on D7-branes. For instance,

since generically the F-terms are not zero, gaugino masses Ma = 1
2

(
Refa

)−1
F i∂i fa

are typically of the same order of Mmod ∼ 1014GeV. However, in a particular toy

model we arranged to have FT = 0 and then Ma, being generated by α′ correc-

tions, can be lowered. Concerning uplift of the cosmological constant, in principle

it can be achieved by including a potential due to anti D3-branes but we could only

find examples with unrealistic values of the parameters involved. More recently, by

adding an extra anti D3-brane contribution to the scalar potential, we were indeed

able to obtain Minkowski and dS vacua, although not continuously connected to

the initial AdS ones13. One persistent problem with the models is that it is not

always possible to attain moduli masses lower than the KK scale.

3. Inflation

The current limit on the ratio of tensor-to-scalar perturbations is r < 0.11314. We

also know that for r > 0.01 the Lyth bound implies that the inflaton Θ rolls over

trans-Planckian field values15. Thus, it is important to study large-field inflation in

the context of string theory which is purported to be UV complete. In particular,

string theory should explain how perturbative corrections to the inflaton potential

can be suppressed. A compelling mechanism is the shift symmetry of axions that

generically appear in string compactifications. The symmetry has to be broken and

it is interesting to do it by fluxes as in the proposal of F-term axion monodromy

inflation16–18. Turning on fluxes can also stabilize other moduli and break super-

symmetry. A novel feature in our models is that the axions from Kähler moduli can

get a potential induced by non-geometric fluxes. We will consider two possibilities
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for the inflaton. It can be a massless axion that becomes massive, as proposed in

Refs. 19, 20, or it can be a lightest axion from the beginning.

In the first approach the idea is to initially fix most moduli by turning on

a particular set of fluxes that leaves a massless axion which is then the inflaton

candidate. At a second step we rescale the original fluxes and introduce secondary

ones to generate a potential for the inflaton. Schematically the superpotential

has the form W = λW0 + faxΔW . By choosing λ � fax it is possible to make

MΘ < Mmod. However it is then difficult to keep MKK > Mmod.

In the second approach the inflaton is the lightest axion already present and we

take into account the backreaction of the massive moduli during the slow roll of the

inflaton21. We worked out a toy example with only S and T moduli and particular

flux potential given by

V = λ2

(
(hs+ f̃)2

16sτ3
− 6hqs− 2qf̃

16sτ2
− 5q2

48sτ

)
+

θ2

16sτ3
, (9)

where θ = hc+ qρ. When λ = 1 this potential is due to W = −ĩf+ ihS + iqT , but

the axion θ is not the lightest mode. Taking λ largemakes the axion lighter than the

saxions. Integrating out the heavy saxions, and adding an uplift to Minkowski, we

find the backreacted potential shown in Fig. 1 for λ = 10. For small values of θ the

potential is quadratic, for large values it reaches a plateau, and in the intermediate

region it is linear. For θ/λ � f̃, in terms of the inflaton with canonical kinetic

energy, the potential is actually of Starobinsky type, namely

Vback(Θ) =
25

216

hq3λ2

f̃2

(
1− e−γΘ

)
, (10)

where γ2 = 28/(14+ 5λ2). To determine how the value of the scalar-to-tensor ratio

varies with λ requires a numerical analysis3. For instance, it is found that r ∼ 0.08

for λ = 20.

θ

Vback

Fig. 1. Backreacted potential for h = 1 , q = 1 , f̃ = 10 and λ = 10.
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4. Final comments

In this work we have elaborated on a large scale scenario of moduli stabilization

which includes non-geometric fluxes in order to fix all closed string moduli at tree-

level. We were able to construct non-supersymmetric non-tachyonic anti de Sitter

vacua characterized by a definite scaling of vevs and masses with the fluxes. In

this way we gained parametric control over these quantities, thereby allowing to

stabilize the moduli in their perturbative regime while keeping their masses below

the string and KK scales.

We discussed some phenomenological questions such as soft supersymmetry

breakingmasses, but the main interest resides in aplications to inflation. We showed

that the flux-scaling vacua provide a natural set-up for F-term axion monodromy

inflation. An uplift to Minkowski or de Sitter was assumed but later we found

proper mechanisms by adding an anti D3-brane or a D-term containing geometric

and non-geometric fluxes13.

The uplift of the 4-dimensional effective theory with non-geometric fluxes to a

full solution of string theory in 10 dimensions is an open question. Some progress

in this direction is the recent derivation of the scalar potential with non-geometric

fluxes from dimensional reduction of double field theory on a Calabi-Yau 3-fold22.
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