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Abstract
Coherent elastic neutrino–nucleus scattering (CEνNS) is a neutral-current low-
energy electro-weak reaction-channel detected recently by the COHERENT
experiment at the Oak Ridge National Laboratory (ORNL), USA, in the
Spallation Neutron Source facility. The extremely weak signal on the CsI
detector of the first experiment and on the liquid Ar of the repeated
COHERENT experiment is the energy-recoil due to the neutrino–nucleus
interaction, where the nucleus is elastically scattered as a whole while
simultaneously the neutrino goes out. Today, several promising nuclear
detectors are on the way to be employed in designed and ongoing experiments.
In our present work, we provide predictions for incoherent scattering cross
sections of low-energy neutrinos on 98,100Mo isotopes obtained with the
deformed shell model employed previously for similar predictions in other
electroweak processes. We mention that, Mo detector medium has been used
previously in the MOON and NEMO double beta decay experiments.
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1. Introduction

During the past few decades, neutrinos, the most abundant and least understood particles in
nature, have attracted much attention from researchers in nuclear physics, astroparticle
physics, and cosmology [1–4]. Currently, many extremely sensitive worldwide neutrino
experiments [5] with ultra-high precision detectors aim to measure different types of neutrino
properties, neutrino-matter interactions as well as open problems related to standard and non-
standard neutrino physics involving neutral- and charged-current neutrino–nucleus processes.

Some years ago (September 2017), the neutral-current neutrino–nucleus channel was
detected for the first time in the ORNL COHERENT experiment [5], 43 years after its
theoretical prediction by Freedman [1]. The measurement of coherent elastic event rates of
neutrino scattering on a sodium doped CsI detector may help in answering some key ques-
tions related to neutrino properties and provide an understanding of some theories beyond the
standard model (BSM) of the electroweak interactions [4]. The produced nuclear energy-
recoil signals are appreciably weak and that is why the first measurement of CEνNS events
was considerably delayed after its first proposal and was finally observed at the Oak Ridge
National Laboratory by the COHERENT Collaboration [5].

The neutrino beam employed by the COHERENT experiment was produced through pion-
decay-at-rest (π-DAR neutrino beam) coming from the spallation neutron source facility
(SNS) of ORNL. The first COHERENT measurement was performed by using a CsI detector
[5, 6] and, subsequently, using a liquid argon detector [7]. Currently, other important CEνNS
experiments, mainly based on Nuclear power plant neutrinos, are in operation such as NCC-
1701 [8], CONNIE [9], CONUS [10], and νGeN [11]. In addition, there are also experiments
in preparation as the MINER [12], Chooz [13], the ν-Cleus [14], the TEXONO [15], the
RICOCHET [16], the νIOLETA [17] and Scintillating Bubble Chamber (SBC) [18], Eur-
opean spallation source [19]. We note that, the nuclear power plant facilities have the
advantage of producing an extremely intense beam of low-energy (Eν< 10 MeV)
antineutrinos.

The observation of neutral-current neutrino–nucleus scattering events opened new win-
dows that may reveal novel aspects of neutrino physics. In addition, the first dark matter
search results from coherent CAPTAIN-Mills were measured recently [20]. The neutrino–
nucleus cross sections play a crucial role in unraveling the various processes BSM scenarios
and in constraining the parameters entering various theories [4]. Up to now, neutral-current ν-
nucleus cross section measurements are available for few nuclear reactions.

Theoretically, the nuclear responses of the neutrino-detectors to the energy spectra of
observed neutrino fluxes could be simulated by convoluted cross sections obtained by using
realistic description for the neutrino energy distribution of the studied neutrino source [21].

On the other hand, neutral-current neutrino–nucleus scattering is independent of the
neutrino flavour and can, therefore, be adopted also for studying muon and tau neutrinos
occurring in the interior of a supernova (SN) [22]. Neutral-current nuclear detectors for
neutrinos from Supernovae [23, 24] could be used to test current supernova models and to
study neutrino oscillations. Also, very recently, the detection of supernova, solar, as well as
atmospheric neutrinos through coherent neutrino–nucleus scattering became a promising new
physics probe with the detector of RES-NOVA project [25, 26]. In this proposal, an array of
archaeological lead (Pb) based cryogenic detectors are proposed to be employed since, due to
the very large neutron number of Pb isotopes, the CEνNS cross section on Pb is high [25].
Furthermore, the ultrahigh radio-purity of archaeological Pb enables the operation of a high
statistics experiment.
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The purpose of this work is to study neutral-current neutrino scattering on the 98,100Mo
isotopes. The calculations presented are based on the Donnelly–Walecka method [27, 28]
which has extensively been employed previously for the treatment of semi-leptonic processes
in nuclei. In general, accurate description of the initial and final nuclear states is a key
ingredient in realistic neutrino–nucleus scattering calculations and, in this work, the deformed
shell model [29] is adopted for computing coherent and incoherent cross sections of neutral-
current neutrino–nucleus scattering on the even–even 98,100Mo isotopes.

It should be noted that, cross sections for neutrino scatterings off the stable (A= 92, 94,
95, 96, 97, 98, 100) molybdenum isotopes have been previously calculated with the micro-
scopic quasi-particle model (MQPM) that could be applied to other nuclear systems as well
[30]. Furthermore, the 100Mo nucleus is a famous double-beta-decay emitter [31, 32] and has
been employed by various experiments, e.g. the NEMO Observatory [33], the MOON
experiment [34], etc. Thus, nuclear-structure calculations in the Mo region are welcome for
other processes and experiments too. The obtained nuclear wave functions [35] are essential
in studies of weak processes in 100Mo and in the other stable molybdenum nuclei.

For the odd isotopes 95,97Mo, in [35, 36] the MQPM model was used for the construction
of the nuclear states. A similar work for the even–even Mo isotopes has been performed by
employing the quasi-particle random phase approximation [32, 37]. In the latter calculations
the construction of vibrational states in heavy open-shell nuclei (like the Mo isotopes) is also
feasible. Such contributions are not included in the present work due to the limited valence
spaces used in nearly all versions of Shell Model.

In the case of the incoherent neutrino–nucleus scattering, the cross sections are derived
from these wave functions. It should be mentioned that, in order to obtain realistic estimates
for the nuclear responses to the spectra of various neutrino sources, the computed DSM cross
sections must be folded with the corresponding neutrino distribution of the neutrino source in
question [3, 23, 24].

The rest of this paper is organized as follows. In section 2, the relevant formalism is briefly
described, while in section 3 the main assumptions of the Deformed Shell Model employed
for the calculations are presented. In section 4, the calculated results of this work are pre-
sented and discussed in conjunction with the existing experimental data as well as with the
previously published results of other methods. Finally, the extracted findings of our present
work are summarized in section 5.

2. Brief description of the related formalism

The details of the relevant formulation that provides the neutral current ν-nucleus scattering
differential cross sections have been discussed earlier in [23, 27, 28]. For completeness, we
give here a few important steps. The weak interaction neutrino–nucleus Hamiltonian HI in the
low energy domain is written in the effective current-current form as

ˆ ˆ ( ) ˆ ( ) ( )ò= - m
mH

G
xj x x

2
d . 1I

3 lept

In the above, m̂j
lept

and ˆ m denote the leptonic and hadronic currents, respectively, and G is
the Fermi weak coupling constant.

The double differential cross section for the ν-nucleus scattering from the initial state
∣ ⟩ ∣ ⟩º pi J Mi i to the excited state ∣ ⟩ ∣ ⟩º pf J Mf f is written as
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Applying a multipole analysis on the weak hadronic currant [27, 28], the cross section given
by equation (2) becomes
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The δ-function on the right-hand side of the above equation ensures the energy conservation,
so that the excitation energy of the nucleus ω is given by

( )w = - = - E E . 4f i i f

Ei and Ef represent the energy of the initial and final states of the studied nucleus, òi and òf are
the incoming and outgoing energies of the neutrino. In equation (3), the (−) sign corresponds
to the scattering of the neutrinos and the (+) to the scattering of the antineutrinos.

The terms CV and CA include a summation over the contributions coming from the polar-
vector and axial-vector multipole operators, respectively, as
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In the latter equation, the superscript 5 refers to the axial vector components of the hadronic
current. The interference term CVA in equation (3) contains the product of transverse polar-
vector and transverse axial-vector matrix elements as
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For normal parity transitions, CVA contains contributions of T̂J
el
and T̂J

mag5
operators while for

abnormal parity ones it contains matrix elements of T̂J
mag

and T̂J
el5
.

The square of the four-momentum transfer mq2 and the magnitude of the three-momentum
transfer q ≡|q| can be written in terms of the kinetmatical parameters, i.e. laboratory scat-
tering angle θ and the neutrino energies òi= òν and òf= (òi− ω) as
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The reduced matrix elements in equations (5) and (6) are evaluated using the deformed shell
model (DSM) as described below. The definitions of the multiple operators are given in the
appendix.

The weak nucleon form factors =F i, 1, 2i
Z entering the multipole operators (see

appendix) are expressed in terms of the well known charge and electromagnetic form factors
for proton F p

1,2 and neutron Fn
1,2 (conserved vector current, CVC-theory) [28], as
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⎛
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The superscript Z refers to the processes with Z-boson exchange. θW is the Weinberg angle,
q =sin 0.2325W

2 . τ0=+1 for protons and =−1 for neutrons. The Dirac and Pauli form
factors F1 and F2 for proton and neutron are given in [38] which are =F 1p

1 and =F kp
p2 ,

=F 0n
1 and =F kn

n2 . The anomalous magnetic moments kp and kn are related to the magnetic
moments of proton and neutron by kp= μp− 1 and kn= μn, where μp= 2.7928 μN and
μn=−1.9130 μN.

The neutral current axial-vector form factor FZ
A is given by

( ) ( )t= mF F q
1

2
. 9A

Z
A

2
0

Employing the dipole ansatz, we use the static value for ( )mF qA
2 , i.e. ( ) = = -mF q g 1.258A A

2 ,
so that

( ) ( )t= -F
1

2
1.258 . 10A

Z
0

We note that, in the present work, the quenching effect on the axial vector form factor gA is
explicitly taken into consideration (see discussion of the results below).

3. Deformed shell model

The details of this model have been described in many of our earlier publications, see for
example [29]. In this model, for a given nucleus, starting with a model space consisting of a
given set of single particle (sp) orbitals and effective two-body Hamiltonian (TBME + spe),
the lowest energy intrinsic states are obtained by solving the axially symmetric Hartree–Fock
(HF) single particle equation self-consistently. Excited intrinsic configurations are obtained
by making particle-hole excitations over the lowest intrinsic state. These intrinsic states χK(η)
do not have definite angular momenta. Hence, states of good angular momentum projected
from an intrinsic state χK(η) can be written in the form

( ) ( ) ( )∣ ( )⟩ ( )òy h
p

c h=
+

W W W*J

N
D R

2 1

8
d . 11MK

J

JK
MK
J

K2

where NJK is the normalization constant given by

( )⟨ ( )∣ ∣ ( )⟩ ( )ò b b b c h c h=
+ p

b-N
J

d
2 1

2
d sin e . 12JK KK

J
K

J
K

0

i y

In equation (11), Ω represents the Euler angles (α, β, γ), R(Ω) which is equal to exp(−iαJz)
exp(−iβJy) exp(−iγJz) represents the general rotation operator.

The good angular momentum states projected from different intrinsic states are not in
general orthogonal to each other. Hence they are orthonormalized and then band mixing
calculations are performed. The resulting eigenfunctions are of the form

∣ ( )⟩ ( )∣ ( )⟩ ( )åh a y aF =
a

hS . 13M
J

K
K
J

MK
J

,

The reduced matrix elements occurring in equations (5) and (6) are evaluated using the DSM
wave function ( )hFM

J defined in equation (13). Towards this purpose we have to first calculate
the reduced single particle matrix elements of the relevant operator in the single particle
space. The detailed form of the seven operators MCoul

JM , DM
J , D¢M

J , WM
J , SM

J , S¢M
J and S¢¢M

J are
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given in appendix and are also given in [21, 28]. These operators are linearly independent due
to CVC theory. Their reduced matrix elements in the single particle space which are of the
form ⟨ ∣∣ ∣∣ ⟩j T ji

J
1 2 where TJ

i represent any of these basic tensor multipole operators, have been
written in closed compact formulas [21] as

⟨ ∣∣ ∣∣ ⟩ ( )å= b

m

h

m
m-

=
j T j y ye . 14J y

1 2
2

0

max

where the geometrical coefficients m
 are rational numbers or square root of rational numbers

throughout the model space.

4. The low-lying deformed shell model collective bands in 98,100Mo isotopes

The DSM calculations are performed in the spirit of spherical shell model where one takes a
model space and a suitable effective interaction (single-particle orbitals, single-particle
energies, and a two-body effective interaction). This procedure has been found to be quite
successful in describing the spectroscopic properties and electromagnetic properties of many
nuclei in the mass region A= 60–90 and has also been applied to double beta decay nuclear
transition matrix elements [29]. In addition, this model has recently been used to describe
many weak interaction processes [39–44].

In the present calculations for 98,100Mo isotopes, we have adopted the effective interaction
GWBXG with the 66Ni as the closed core. The details regarding the construction of the
effective interaction have been discussed in [45]. The active proton orbits are 0f5/2, 1p3/2
1p1/2 and 0g9/2 with single particle energies −5.322, −6.144, −3.941 and −1.250MeV. For
the neutrons, the active orbits are 1p1/2, 0g9/2, 0g7/2, 1d5/2, 1d3/2, 2s1/2. The single particle
energies for the first five orbits are taken to be −0.696, −2.597, 5.159, 1.830, 4.261MeV,
respectively. The 2s1/2 orbit produces low-lying large deformed solutions even though
molybdenum isotopes are known to be weakly deformed. Hence, the effect of this orbit is
eliminated by taking the corresponding neutron single particle energy at a high value.

Using the above effective interaction and the single particle energies, we first carried out
an axially symmetric HF calculation by solving the HF equation self consistently. The single
particle spectra corresponding to lowest energy prolate and oblate configurations for the two
isotopes 98Mo and 100Mo are shown in figures 1 and 2, respectively. The intrinsic quadrupole
moments for both the configurations are small. In our band mixing calculation for positive
parity, the intrinsic states with excitation from 1p1/2 orbital is not considered since such
intrinsic states lie very high in energy. Hence essentially our core is also 68Ni. However for
negative parity, we have to make one particle excitation from 1p1/2 since all other neutron
orbitals have positive parity.

For 98Mo, the prolate and oblate HF solutions are almost degenerate, with the oblate
solution being lower by ∼0.3 MeV. We obtained excited HF configurations by making
particle-hole excitations over these lowest HF configurations. For positive parity, we consider
30 intrinsic configurations (15 oblate and 15 prolate) and for negative parity 20 intrinsic
configurations (10 oblate and 10 prolate).

As described before, good angular momentum states are projected from each of these
intrinsic states. These states are not orthogonal to each other. Hence, first, they are ortho-
normolized and, then, are classified into different bands. States having similar structure and,
thus, similar electromagnetic properties are classified into one band. For 98Mo, not many
collective bands have been observed. In figure 3, we compare the calculated ground band with
the experimentally observed band and we see that the agreement is reasonable.
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For 100Mo, also the prolate and oblate configurations are almost degenerate differing by
0.5 MeV, with the oblate solution being lower. The excited HF configurations are obtained by
making particle-hole excitations over these lowest configurations. For positive parity, we
consider 33 intrinsic configurations (19 oblate and 14 prolate) and for negative parity 27
intrinsic configurations (14 oblate and 13 prolate). As before, states of good angular momenta
are projected from each of these intrinsic states and, then, a band mixing calculation is
performed.

The band mixed levels are classified into different bands on the basis of their E2 con-
nectivity. The experimentally observed collective bands are in good agreement with
experiment as shown in figure 4. Our calculations have also many other low-lying levels (not
shown in the figure) which can be compared with the observed levels presented in [46].

Figure 1. HF single-particle spectra for 98Mo corresponding to lowest energy prolate
and oblate configurations. In the figure, circles represent protons and crosses represent
neutrons. The HF energy E in MeV, mass quadrupole moment Q in units of the square
of the oscillator length parameter and the total azimuthal quantum number K are given
in the figure.
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Going beyond the energy spectra, the calculated magnetic moments for the +21 states of
98Mo and 100Mo are 1.30 and 1.35 μN respectively and they are obtained using bare gyro-
magnetic ratios. The corresponding experimental values from [46] are 0.97± 0.06 and
0.94± 0.07 μN respectively and they agree quite well with the calculated values. Still better
agreements can be obtained by using effective gyromagnetic ratios which are used by many
groups; see for example [47]. Turning to B(E2) values, the experimental values for the
transitions + +2 01 1 and + +4 21 1 are 37.6 and 69 Wu respectively for 100Mo and 20 and 42
Wu respectively for 98Mo. The calculated B(E2) values for the above transitions are 19 and 28
Wu respectively for 100Mo which are off from the experimental values by a factor of ∼2.
Same is the situation with 98Mo with values 16 and 15 Wu. The calculation of B(E2)ʼs
requires effective charges so as to take into account the effect of the core polarization effects.

Figure 2. HF single-particle spectra for 100Mo corresponding to lowest energy prolate
and oblate configurations. In the figure, circles represent protons and crosses represent
neutrons. The HF energy E in MeV, mass quadrupole moment Q in units of the square
of the oscillator length parameter and the total azimuthal quantum number K are given
in the figure.
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As effective charges from shell model calculations in 100Mo are not available, we took the
effective charges for these nuclei to be 1.6e and 1.0e for protons and neutrons following our
past work [29]; see also [47]. Systematic studies of B(E2) values in the 100Mo region will be
performed in future to determine more reliable set of effective charges in this region.

5. Conclusions

The recently observed neutral-current coherent elastic neutrino–nucleus scattering data, as
well as those expected to be measured at the designed CEνNS experiments with other nuclear
detectors, offer the possibility to constrain the parameter space of several models going
beyond the standard model which assume vector and scalar mediators.

To this aim, various neutrino (and anti-neutrino) sources, including laboratory and
astrophysical neutrinos, may be employed. Of particular importance are the non-standard
reactions of the neutrinos emitted during core-collapse supernovae explosions, during the
thermonuclear reactions taking place in the interior of the Sun, as well as in the Earth’s
atmosphere, with the sensitive nuclear detectors of XENON1T, XENONnT, DARWIN, RES-
NOVA and other experiments.

Our present predictions on the 98,100Mo, may be of help towards this direction since, as it is
known, these isotopes are prominent detection media. They have been employed previously

Figure 3. The ground band observed for 98Mo is compared with the DSM predicted
values. The experimental data are taken from [46].
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in appreciably sensitive detectors (for the detection of neutrinoless double beta decay, dark
matter and neutrinos) in the MOON and NEMO experiments.

6. Results and discussions

One of our goals in this work was to calculate the incoherent differential cross sections for
each multipole state included in the chosen model space of the 98,100Mo isotopes. This was
done by evaluating the transition matrix elements entering equations (5) and (6) through the
use of the deformed SM wave function ( )hFM

J defined in equation (13).
As it is known, in spherical shell model the quenching factor is necessary to be considered

[45]. It has been shown [48] that, for transfer reactions the quenching factor can be less than
0.4 as shown in figure 1 of their paper. Suhonen [49] in his shell model calculations for Mo
takes the value gA

eff= 0.60 corresponding to a quenching factor of the value 0.36. As men-
tioned previously, the DSM is an approximation to shell model. Moreover, we found that if
we use the quenching factor 0.35 (as defined by Kay et al [48]) we get almost similar results
with those obtained by using QRPA.

Figure 4. The collective bands observed for 100Mo is compared with the DSM
predicted values. The experimental data are taken from [46].
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In figure 5, the differential cross section as a function of the excitation energy ω for the
98Mo is illustrated. The incoming neutrino energy is assumed to be òν= 15MeV which may
give rise to different excited states lying up to this energy from the ground state level. As can
be seen, the contribution of the multipolarities J= 1+ (represented by red), J= 2+ (repre-
sented by blue), J= 1− (represented by black), and J= 2− (represented by cyan) are the most
important ones. For this neutrino energy òν, other higher spin multipolarities contribute
negligibly.

A similar picture for the incoherent differential cross sections is obtained for the 100Mo
isotope, see figure 6 where the contribution of the multipolarities J= 1+ (in red), J= 2+ (in
blue), J= 1− (in black), and J= 2− (in cyan) are shown.

Assuming that the quenching factor is 0.35, the coherent differential cross section comes
out to be 1506.2 for 98Mo, while for 100Mo the corresponding value 1692.9. Furthermore, for
the incoherent channel in the case of 100Mo, DSM predicts fourteen 1+ states in the chosen
model space. We find that the basic operators S¢J , S¢¢J , ΔJ and ΩJ contribute to this mul-
tipolarity. We also find that the contribution of the 1+ multipole at ω= 3.14MeV is the

Figure 5. The differential cross section as a function of the excitation energy ω for
98Mo at incoming neutrino energy òν = 15 MeV for different excited states. The
contribution of the excitation to J= 1+ state is represented by red, to J= 2+ by blue, to
J= 1− by black, and to J= 2− by cyan.
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largest and has the value 120. For 98Mo, we find that in DSM there are nine K= 1+ levels.
The contribution of the multipole 1+ that occurs at 3.159MeV is highest (the most pro-
nounced one) having the value 69.

In table 1, we tabulate the coherent, incoherent and total differential cross section that
comes out of our present calculation for each of the detector isotopes, 98Mo and 100Mo. In
addition, the ratio of the measured coherent cross section over the total cross section, which is

Figure 6. The differential cross section as a function of the excitation energy ω for
100Mo at incoming neutrino energy òν = 15 MeV for different excited states. The
contribution of the excitation to J= 1+ state is represented by red, to J= 2+ by blue, to
J= 1− by black, and to J= 2− by cyan.

Table 1. Coherent, Incoherent and total differential cross section of neutrino scattering
off the 98,100Mo detector isotopes. The portion of the Coherent into the total cross
section is also listed.

Isotope Coherent Incoherent Total Coherent/total (%)

98Mo 1506.2 147.7 1653.9 91.07 (%)
100Mo 1692.9 290.0 1982.9 85.38 (%)
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a useful quantity, is listed in this table. By glancing at table 1, we may conclude that, possible
measurements of the coherent cross section by the ongoing or designed CEvNS experiments
(see discussion in the Introduction) with the use of Mo as detector medium, will offer the
possibility to compare the cross sections of table 1 with the experimental results.

We note that, our cross sections correspond only to the Standard Model (SM) ν-nucleus
interactions since, in our present work we did not consider contributions coming from BSM
interactions. It is worth remarking that in other BSM electroweak processes where the
coherent channel is also possible, e.g. the muon-to-electron conversion in nuclei (see e.g.
[50, 51]) the portion of the coherent branching ratio into the total one represents also about the
85%–90% of the total rate.

Closing, as can be seen from equation (11) of [4], the SM part of the cross section could be
separated out of the BSM part. This means that, by measuring the coherent part using Mo
detector, one can derive stringent constraints on the particle model parameters coming, from
the Mo detector. Such constraints may restrict further the parameter space of the relevant
BSM scenarios related to the neutral current coherent neutrino nucleus scattering and shed
more light towards explaining the part of the event rate measured at ORNL by the
COHERENT experiments [5–7]. As has been discussed in [4], the coherent data cannot be
explained within the SM of the electroweak interactions. Moreover, the measurements of Mo
detector combined with our present predictions may help in answering some key questions
related to neutrino properties and provide understanding of some BSM theories.
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Appendix

The definitions of the eight multipole operators M̂J , L̂J , T̂J
el
, T̂J

mag
, M̂J

5
, L̂J

5
, T̂J

el5
and T̂J

mag5
,

where the superscript 5 refers to the axial vector components of the hadronic current, are as
follows:
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where we neglect the pseudo scalar form factor. In equation (6), the first three and last
multipole operators have normal parity, π= (−)J while others have abnormal parity,
π= (−)J+1.
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