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Abstract

In this dissertation the phase diagram of hadronic matter is studied. One of its char-

acteristic features is confinement, which denotes the absence of particles with non-zero

colour-charge in experimental observations. The fundamental mechanism for confinement

is unknown yet, however, there is significant evidence that it is primarily driven by the

dynamics of gluons. The interacting system of gluons is called Yang–Mills theory. It is

the main focus of this thesis. Functional continuum methods describe the physics via cor-

relation functions, whose thermal behaviour is investigated in this thesis in the framework

of the functional renormalisation group. In particular, the temperature-dependent two-

point functions are important, since the thermodynamics can be directly accessed by the

knowledge of the propagators. In this work this allows for a quantitatively accurate com-

putation of the pressure of Yang–Mills theory. Furthermore, confinement of static quarks

is investigated via the Polyakov loop, which is calculated for the gauge groups SU(2) and

SU(3) by means of low-order Green functions. Moreover, the effects of dynamical quarks

onto the gauge sector are studied. All results are directly compared with findings from

other continuum methods and lattice gauge theory.

Kurzfassung

In dieser Dissertation werden ausgewählte Aspekte des Phasendiagramms hadronischer

Materie untersucht. Eine charakteristische Eigenschaft ist der Farbeinschluss. Er bezei-

chnet das Fehlen von Teilchen mit nichtverschwindender Farbladung in experimentellen

Beobachtungen. Bis heute ist der grundlegende Mechanismus für den Farbeinschluss nicht

bekannt, wenngleich es starke Hinweise darauf gibt, dass dieser Effekt in erster Linie durch

die Dynamik der Gluonen erzeugt wird, welche Yang–Mills Theorie genannt wird. Deren

Analyse bildet den Fokus dieser Doktorarbeit. In funktionalen Kontinuumsmethoden wird

die Physik durch Korrelationsfunktionen beschrieben. Das thermische Verhalten dersel-

ben wird in der vorliegenden Abhandlung mittels der funktionalen Renormierungsgruppe

erforscht. Vornehmlich die Zweipunktfunktionen haben eine fundamentale Rolle, da man

anhand der Propagatoren sämtliche thermodynamische Größen der Theorie bestimmen

kann. In dieser Dissertation wird der Druck der Yang–Mills Theorie mit quantitativer

Präzision berechnet. Des Weiteren wird der Farbeinschluss statischer Quarks anhand der

Polyakovschen Schleife studiert, welche für die Eichgruppen SU(2) und SU(3) rein durch

die Kenntnis von Greenschen Funktionen niedriger Ordnung berechnet wird. Zudem wer-

den Effekte dynamischer Quarks im Eichsektor der Theorie untersucht. Alle Resultate

werden direkt mit Ergebnissen anderer Kontinuumsmethoden und der Gittereichtheorie

verglichen.
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1. Introduction

1.1. Introduction

The majority of the observable matter in the universe is made up by hadrons, which

themselves are composite particles. The fundamental constituents are quarks, which are

bound together by the strong interaction mediated by gluons. Quantum Chromodynamics

(QCD) [1–7] has emerged as the proper theoretical framework to capture the nature of the

strong interaction. QCD is embedded in the Standard Model (SM) of elementary particle

physics, which combines the strong and weak nuclear forces as well as electromagnetism in

a single theory. So far, the SM has proven to be the best approach to elementary particle

physics, as it describes and predicts processes at very high energies with amazing accuracy.

QCD has very peculiar properties at different scales. For very small distances, or equiva-

lently high momentum transfers, the coupling of quarks and gluons is weak. This feature

is known as asymptotic freedom [8,9]. In the limit of infinite momenta the coupling even

vanishes, i.e. quarks and gluons form an ideal gas. For non-vanishing but very small cou-

pling it is a fair assumption that the system remains almost free, but is affected mildly by

the interaction. The theoretical approach is the expansion around small couplings, which

is called perturbation theory.

Clearly, the coupling is not small on all scales because of the existence of hadrons, where

the coupling is strong. The coupling increases with decreasing energy scale, and in fact,

perturbation theory finds that the coupling diverges around the intrinsic scale ΛQCD. This

is not the correct physical situation, but rather indicates that perturbation theory fails in

its predictive power. Therefore, at the latest where the coupling is of order 1 it breaks

down. Actually, speaking from the human experience point of view, under normal circum-

stances the coupling is strong as the scale of QCD is ΛQCD ≈ 1012K.

Strongly coupled QCD is governed by two characteristic effects, called confinement and

dynamical chiral symmetry breaking, both of which are truly non-perturbative and cease

to exist at scales where either the temperature or the quark chemical potential renders

the coupling small. Confinement accounts for the experimental fact that although quarks

are the fundamental building blocks of hadrons, individual quarks have not been observed

so far, but they are always bound into mesons or baryons. On the other side, dynamical

chiral symmetry breaking is the mechanism that generates quark masses via the interac-

tions of quarks and gluons among themselves, giving actually most of the observed mass
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1.1. Introduction

of the universe in terms of binding energy in protons and neutrons. Although large ef-

fort has been invested for decades, neither the origin of confinement nor dynamical chiral

symmetry breaking, nor a potential relation of these effects to each other is understood yet.

The reasoning above implies that the state of hadronic matter varies with temperature

and chemical potential: With increasing temperature and/or chemical potential it changes

from the hadronic phase, where quarks are confined and chiral symmetry is broken dy-

namically, to another phase, where quarks can exist individually, and chiral symmetry is

restored. In practice, the investigation of physics close to the phase transition is challeng-

ing on the experimental as well as theoretical side. Consequently, the phase diagram of

QCD can only be conjectured from the limits of the hadronic physics and asymptotic free-

dom yet, which leads to a picture that is sketched in fig. (2.1). As the further exploration

of the phase diagram of QCD is the main motivation for the work presented in this thesis,

I dedicate chapter 2 to a more detailed summary of the phase diagram and the methods

that are used to unravel the mysteries of it.

There is good evidence that chiral symmetry breaking is generated in the matter sector of

QCD, but confinement is supposedly triggered by gluon dynamics, which are described by

Yang–Mills theory [10]. Gluons arise from the gauge symmetry of QCD; thus, the gluon

dynamics is also called pure gauge theory. Being responsible for confinement, theoretical

studies of Yang–Mills theory and its phase transition provide direct information about

the phase diagram of QCD. At the time, the most profound insights about Yang–Mills

theory are obtained from lattice QCD. Unfortunately, lattice QCD suffers from conceptual

problems concerning simulations of quarks. Thus, direct investigations of full QCD are

hampered in the latter method, in particular at non-vanishing quark chemical potential.

Non-perturbative continuum methods provide exact equations for full QCD. As a con-

sequence, they are applicable without restriction in all regions of the phase diagram.

Furthermore, they allow to study the mechanisms in a more direct way than it is pos-

sible in lattice QCD; thus, for not only computing QCD but understanding its physical

mechanisms functional methods are inevitable. However, with only few exceptions, the

functional equations can not be solved without making approximations, and the complex-

ity of the system limits the extend of the truncations in practical applications severly.

This complicates studies in pure gauge theory already. In this sense, continuum and lat-

tice methods are complementary, as the limitations of both approaches are such that they

can be tested with the other method.

In this work functional methods are employed, in particular the functional renormalisation

group (FRG) and Dyson–Schwinger equations (DSEs). Starting from the path integral,

both approaches provide an exact description of QCD in terms of Green functions. Like

in any continuum description of a quantum field theory the propagators play a predomi-

nant role. Their behaviour can be directly related to the phase transitions of QCD, and

appropriate order parameters for the deconfinement-confinement phase transition as well

as the chiral phase transition can be defined. Therefore, during the last two decades, the

2



1.2. Outline

propagators of low-energy QCD, in particular of Yang–Mills theory have been studied.

However, most of the studies were done in the vacuum.

In this thesis this approximation is extended in such a way that the full momentum-

dependent propagators of Yang–Mills theory are studied in the presence of temperature.

Apart from being a quantitative improvement of previous results, the thermal behaviour of

correlation functions turns out to be crucial for the thermodynamics of pure gauge theory,

which is seen in this work in the computation of the pressure. Taking into account the

implicit temperature dependence of the propagators, for the first time within functional

continuum methods the behaviour of the pressure of Yang–Mills theory is captured cor-

rectly for all temperatures, even on a quantitative level: Below the phase transition the

pressure is suppressed due to the mass gap, at the phase transition temperature it sharply

increases, and above the critical temperature it slowly approaches the limit of the ideal gas

of gluons. The behaviour is consistent with results from lattice QCD at all temperatures.

In addition to confinement in pure Yang–Mills theory, confinement of quarks can be stud-

ied within functional methods. The corresponding order parameter is derived from the

Polyakov loop. It can be computed from the propagators in Yang–Mills theory. In pre-

vious works [11, 12] it was computed by the help of the FRG. In this thesis the Polyakov

loop is computed in the framework of DSEs. The orders of the phase transitions and the

critical temperatures found in both approaches are consistent with results from lattice

QCD.

Yang–Mills theory is a complex system in functional continuum approaches, however, the

inclusion of quarks is comparatively simple. In this thesis n-point functions of full QCD

are addressed. Preliminary results for propagators in the presence of dynamical quarks

are obtained in the framework of the FRG. These results compare well with findings from

DSEs and lattice QCD. At the time being, the results are obtained in the vacuum, but

they are going to be extended to non-vanishing temperature and quark chemical potential

in the near future. This advancement is conceptually straightforward, and is sketched

at the end of this thesis. This paves the way for quantitative studies of the phase dia-

gram of QCD from first principles within non-perturbative functional continuum methods.

Parts of the content of this thesis are already published in [13,14].

1.2. Outline

The outline of this thesis is as follows. In chapter 2 I review those aspects of QCD that

are particularly relevant for the work presented in this thesis. Section 2.1 is concerned

with the different phases of QCD. The focus lies on the non-perturbative effects as well as

the characteristic features of the low-energy regime and on the methods that are used to

explore the phase diagram. In the subsequent section 2.2 I recapitulate the construction

3



1.2. Outline

of the QCD action, which encodes all the complexity of QCD under various conditions.

In section 2.3 more information is given about the limit of pure gauge theory, which is sup-

posed to trigger confinement in full QCD as well. In continuum methods there are possible

scenarios for the mechanism of confinement that are based on the correlation functions

of Yang–Mills theory. They are sketched in section 2.3.1. In connection to this I briefly

summarise the present knowledge about Green functions in the non-perturbative regime

in section 2.3.2. These Green functions are not only sensitive to quantum fluctuations,

but also to the temperature. Naturally, the thermal behaviour of correlation functions

encodes the full thermodynamics. The determination of the pressure is one main topic of

this thesis. Thus, I recapitulate in section 2.3.3 what is known about Yang–Mills thermo-

dynamics at the end of this introductory chapter.

In chapter 3 the theoretical tools that are used in this thesis are introduced. At first, the

Matsubara formalism is discussed, which is one conceptual way of formulating a quantum

field theory in equilibrium at non-vanishing temperature, see section 3.1. This formalism

will be employed within two non-perturbative functional continuum methods, especially

the FRG and DSEs. The FRG is the prevailing tool in this thesis. Therefore, it is described

in detail in section 3.2. Its general idea is introduced, and the algorithmic derivation of

equations for correlation functions in this approach is summarised. As most work in this

thesis is concerned with Yang–Mills theory, the characteristics of the FRG in gauge the-

ories are described in more detail, before I specify technical elements of this method that

are needed in the proceeding chapter 4. At the end of section 3.2 I comment on thermal

flows, i.e. particularities of the FRG at non-vanishing temperature. Section 3.3 is dedi-

cated to DSEs. In fact, these two approaches are not independent of each other. Their

relation and the structural similarities and differences are sketched in section 3.4.

In chapter 4 the results for Yang–Mills theory at finite temperature are presented. The re-

sults are achieved in the framework of the FRG. At first, the approximation in use is given

in section 4.1. Then, thermal effects on the momentum-dependent correlation functions,

in particular the gluon and ghost propagators are studied in section 4.2. These results are

directly compared to lattice gauge theory. The two-point functions are the key ingredient

to the flow equation for the effective action, which encodes the full theory. Therefore, in

section 4.3 the thermodynamics of Yang–Mills theory is extracted from its propagators.

In chapter 5 the deconfinement-confinement phase transition is studied, again from the

continuum point of view. However, in addition to an analysis within the formalism of the

FRG, also DSEs as well as 2-particle irreducible actions are used to compute the Polyakov

loop potential to study quark confinement.

Chapter 6 deals with full QCD, i.e. quarks are included in a dynamical way. The emphasis

is on the back-coupling of the quarks onto the gauge sector. In section 6.1 I present the

method that is applied here. Furthermore, results for low-order correlation functions are

presented. As this is work in progress, in section 6.2 I outline the strategy that is going to

4



1.2. Outline

be followed to study full QCD at non-vanishing temperature and quark chemical potential

in the FRG approach.

In chapter 7 I summarise the important aspects and results of the work presented in this

thesis.

Conventions, additional information, notes on numerical techniques and lengthy results

can be found in several appendices.
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2. Aspects of the Phase Diagram of QCD

In this section I summarise those aspects of the phase diagram of quantum chromodynam-

ics (QCD) that are of prior importance in this thesis. At first I summarise the QCD phase

diagram. The focus lies on the transition from the hadronic phase to the quark-gluon

plasma. Thus, I detail in particular the deconfinement-confinement phase transition as

well as dynamical chiral symmetry breaking.

Then I recall the construction of the Lagrangian of QCD and its intrinsic symmetries.

These symmetries play an important role in the understanding of the phase diagram.

The main part of this thesis is focused on the pure gauge part of QCD. Singling out the

parts of Yang–Mills theory1 that are important in this work, I emphasise this sector of

QCD separately in this introductory section. The gluon dynamics is supposed to be re-

sponsible for confinement. The signatures of this characteristic feature of QCD must be

found in the long distance physics, thus, the infrared limit of pure gauge theory is the

relevant region to study confinement. At the end of this section I comment on results of

thermal Yang–Mills theory, which are directly referred to in section 4.

2.1. The Phase Diagram of QCD

The phase diagram of QCD is a very active area of research on both the experimental

as well as the theoretical side. Nevertheless, the precise phase structure of the phases of

QCD is not known yet.

In equilibrium QCD depends on the external parameters temperature and quark chemical

potential2. In this two-dimensional parameter space QCD is believed to show a non-trivial

phase spectrum of at least three distinct states of matter. This conjecture is based on the

features of QCD that are implied from asymptotic freedom at high energies, at which

QCD behaves qualitatively different compared to the state of matter that is observed at

low energies. However, technical limitations complicate interphaseal studies and the cor-

responding transitions in experiments as well as in theory.

After a short comment on the methods that are employed to study the phase diagram, in

this section I summarise the phases of QCD, the assumptions that suggest the existence

1There is no strict definition for the term Yang–Mills theory as it is used for any non-Abelian gauge
theory. However, within this thesis Yang–Mills theory is synonymous with QCD without dynamical
quarks, i.e. quarks with infinite masses. In other words, effectively Nf = 0, leaving the pure gauge part
of the action.

2The quark chemical potential is related to the baryon chemical potential by simply µq = µB/3.
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2.1. The Phase Diagram of QCD

of phase transitions, and in addition their orders as well as the corresponding order pa-

rameters. The focus lies on low-energy QCD. Thus, the deconfinement-confinement phase

transition and the chiral phase transitions. For extensive reviews on the phase diagram of

QCD see e.g. [15–20].

2.1.1. Approaches to the QCD Phase Diagram

Experiments

From the experimental side very high energy densities must be reached in order to scan

the region where other phases different from the hadronic phase are expected. As it is in

fact not the energy but really the energy density that matters, these high scales can be

reached by collisions of particles, either charged elementary particles or heavy ions that

have been accelerated to ultrarelativistic velocities. The increase of particle momenta is

realised via strong electromagnetic fields, and as the field strengths are technically limited

the distance that the particle has to travel to reach high energies is long. So in practice

either these tracks are very long or they are closed in a ring. In the latter case the particles

lose the more energy by synchrotron radiation the smaller the radius of the ring is. Thus,

also in the latter case, the spatial extent of the experiments is necessarily large.

Therefore, there are only few research facilities that run experiments at these energies. The

most efficient ones in the recent past, present and near future are the Relativistic Heavy-Ion

Collider (RHIC) at Brookhaven National Laboratory (BNL), USA, the Large Hadron Col-

lider (LHC) at Conseil Européen pour la Recherche Nucléaire (CERN), Switzerland, the

Facility for Antiproton and Ion Research (FAIR) at Gesellschaft für Schwerionenforschung

(GSI), Germany, the Nuclotron-based Ion Collider Facility (NICA) at Joint Institute for

Nuclear Research (JINR), Russia and the Japan Proton Accelerator Research Complex

(J-PARC) at the Japan Atomic Energy Research Institute (JAERI), Japan.

Apart from that, even if energies are high enough it is a highly non-trivial task to extract

the information of a different phase than the hadronic one because there is no rigorous sig-

nal that uniquely shows the presence of a different phase. Typically, a collision experiment

of heavy ions happens as follows: First, the two ultrarelativistic ions collide in a preferably

central way and the inelastic scattering happens. In this ”little bang”, in which strong

fields emerge, a fireball forms, whose energy density is high enough that other phases

than the hadronic phase can occur, i.e. where quarks and gluons are not confined into

hadrons but are active degrees of freedom. At this stage the system can be described well

by viscous hydrodynamics. Then, the fireball expands and equilibrates to thermal and

chemical equilibrium, which can be approximated by ideal hydrodynamics. In the course

of further expansion, at the phase transition hadronisation sets in, i.e. the system returns

to the phase where hadrons are the active degrees of freedom. However, the hadrons still

interact in such a way that the hadronic content can change. The point in the evolution

7



2.1. The Phase Diagram of QCD

where the energies are so low that the hadrons are fixed is called chemical freeze-out.

This temperature is outstandingly important for theoretical considerations because it can

be extracted from experiment and sets a lower bound for the hadronisation temperature.

These are the particles that are observed in the detectors. But elastic scatterings can still

change the momentum distribution of the particles. This can be described well by kinetic

theory. These scatterings vanish at the thermal freeze-out, which is the last stage in the

expansion of a fireball.

Unfortunately, technical and physical limitations are such that the experimentally observ-

able particles are the final states only, so exclusively the states of the system after the

thermal freeze-out. As a consequence, the physics that happen in the fireball can only be

reconstructed. For a review on experimental data from heavy-ion collisions see e.g. [21–27].

Lattice QCD

Lattice QCD yields very profound information about the phase diagram of QCD [28–43],

in particular about its pure gauge part [44–49], also for different values of Nc [47,48,50,51].

The idea of lattice gauge theory is to discretise spacetime and perform the functional in-

tegral over the residual finite amount of paths straighforwardly, which is possible in a

Euclidean formulation due to the correspondence to a statistical theory3. This method is

genuinely non-perturbative and it does not rely on any approximations or truncations, but

solves the discretised theory from first principles. However, from this discretisation lattice

artefacts can occur, i.e. effects from both, finite volume of the lattice or finite lattice

spacing. In fact, modern computing capabilities only allow for spanning about two orders

of magnitude. Nevertheless, extrapolations to the continuum limit give reliable results if

done properly. Therefore, the discretisation does not pose conceptual problems.

Unfortunately, there are other, even more severe hardships when it comes to simulations of

full QCD, due to the fermionic nature of quarks. The implementation of fermions on the

lattice is a hard task, especially on a dynamical level for realistically small quark masses.

For reviews see e.g. [20, 57–60]. Furthermore, at non-vanishing quark chemical potential

there is the so-called sign problem [61] that hinders computations. The sign problem is

due to the fact that a non-vanishing quark chemical potential renders the fermion deter-

minant in the integral measure of the functional integral complex. Therefore, only the

region of small chemical potential µ/T < 1 can be simulated on the lattice, which is done

by means of reweighting techniques [62–66], Taylor expansions [67–71] with real quark

chemical potential, or extrapolations from imaginary chemical potential [72–77]. For a

recent review on the QCD phase diagram from lattice methods see e.g. [20].

Another approach to learn about the sign problem is to investigate theories that are simi-

lar to QCD, but do not suffer from a sign problem. One example herefore is QC2D, which

3Although the Euclidean signature appears to be indispensable in lattice QCD, also non-equilibrium
physics that necessitate a Minkowski metric can be studied on the lattice [52,53], e.g. using stochastic
quantisation [54–56].
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2.1. The Phase Diagram of QCD

is standard QCD but with two colours instead of three. The sign problem is not present

there, as the fundamental representation is a pseudo-real representation. Furthermore,

the (colour-singlet) baryons are states that are built up from two quarks only. Thus,

QC2D is a good model for testing actually more than the problems related to the sign

problem and in fact various questions and methods for full QCD. This system has been

studied extensively on the lattice [78–87], but also with functional methods [88,89], chiral

effective field theory and random matrix models [90–100], and the Nambu–Jona-Lasinio

model [101–110].

Continuum Methods

In addition to lattice gauge theory there are various continuum methods. Unfortunately,

the standard technique perturbation theory is not applicable in all regions of the phase

diagram, in particular at low energies, i.e. with a momentum transfer that is smaller than

≈ 1GeV, as the coupling becomes large. Thus, the radius of convergence is not sufficient to

investigate the deconfinement-confinement phase transition or the chiral phase transition,

which are the characteristic and genuinely non-perturbative effects of low-energy QCD.

Both are described below in more detail.

So one has to resort to truly non-perturbative methods. With those approaches, studying

full QCD for all values of quark chemical potential and temperature is possible from first

principles, in a Euclidean as well as a Minkowski metric. However, in comparison to lattice

gauge theory, the gauge sector is usually the harder part in these applications, but the

inclusion of quarks comparatively simpler. Thus, these methods are complementary in

the sense that the lattice can serve as a benchmark for continuum methods in Yang–Mills

theory which in contrast allow for studies at non-vanishing real chemical potential.

One prominent continuum method is the functional renormalisation group, which has

been successfully applied to study the phase diagram [17, 111–113]. Furthermore, also

Dyson–Schwinger equations have provided valuable insights [114–117]. In addition to real

chemical potential also imaginary chemical potential has been studied [17, 112, 113]. In

these studies dual order parameters [114, 118–122] were employed which are constructed

from quark correlators to study the phase transition.

Continuum methods are in principle straightforward but suffer from practical limitations

too, as truncations are inevitable. The reliability of these methods depends on the ade-

quate choice of the approximation, see section 3.2.2 for further details. It has turned out

that sophisticated truncations are inevitable to describe the non-perturbative physics of

QCD, not only because the system is complex in each phase individually, but also because

the relevant degrees of freedom change at the phase transition(s). To make things even

more troublesome, the phase transitions are probably not sharp phase transitions but

rather smooth crossovers, see section 2.1.2. At least in some regions, e.g. for small chem-

ical potential, there is very clear evidence from the lattice as well as continuum methods

9



2.1. The Phase Diagram of QCD

that the chiral phase transition as well as the deconfinement-confinement phase transition

are crossovers. In chapter 3 I detail those non-perturbative functional methods that are

used in this work.

In continuum methods models serve to study selected features of full QCD. Based on the

Nambu–Jona-Lasinio (NJL) model [123–125] one can study the breaking of chiral sym-

metry. By the inclusion of the Polyakov loop the model can be improved to the PNJL

model [126–140], which shows the chiral phase transition as well as confinement. A variant

thereof is the Polyakov-Quark-Meson model [141–148]. Actually, at least for non-vanishing

chemical potential most of the information from continuum methods about the phase tran-

sitions in QCD was obtained from model computations4. For a review see e.g. [149].

2.1.2. Phases of QCD

The qualitative picture of the phase diagram of QCD is based on the knowledge of the the-

ory in the two limits of very low and high energies. In the low energy region the hadronic

physics can be studied directly by experiments. At high energies the feature of asymptotic

freedom [8,9] of QCD should dominate the physical situation at hand.

At low temperatures and densities the relevant degrees of freedom are hadrons, like it

is observed in the every-day life. Hadrons themselves are bound states of quarks, either

quark-antiquark pairs, called mesons, or three-quark bound states, called baryons. Inter-

estingly, these constituent particles have never been observed individually. The fact that

individual quarks, or in general any particles that carry colour, have not been observed yet

is called confinement5, and it is one of the two characteristic features of low energy QCD.

Confinement is a non-perturbative effect, it occurs only in regions of the phase diagram

where the coupling is strong.

However, the situation is different at very large temperatures where the temperature raises

the energy scale so high that the coupling becomes weak. In this limit the constituents of

hadrons are not bound any more, but form the so-called quark-gluon plasma6, for reviews

see [154–158].

This necessitates that in between these limits a phase transition7 or at least a change in the

4Note however, that also in models baryons have not been included dynamically yet.
5Note that the definition of confinement is not unambiguous, see e.g. [150]. In this thesis I simply refer

to confinement as the absence of coloured particles from the observed particle spectrum.
6The fact that the hadronic description necessarily breaks down can be seen also from a different view-

point, which has already been pointed out very early [151]. The idea is that the density of states
grows exponentially with the mass m of the hadron divided by the Hagedorn temperature TH , which is
known from experiments. A Boltzmann-factor of exp{−m/T} compensates this exponential growth of
statistics. But above T > TH the suppression is not sufficient and a divergent partition sum invalidates
a hadronic picture.
The value of the Hagedorn temperature is still being measured. Interestingly, the value of TH ≈ 174 MeV
obtained in [152] with data from [153] is actually about the temperature where the deconfinement-
confinement phase transition occurs.

7For simplicity I refer to a crossover as being a phase transition, although this is not correct in a strict
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2.1. The Phase Diagram of QCD

relevant degrees of freedom must occur, which deconfines the quarks and gluons in a way

that they can occur individually and not only as bound states. This phase transition is

referred to as deconfinement-confinement phase transition. It is expected that the energy

scale at which this transition occurs is set by ΛQCD, as it is the only intrinsic scale of QCD.

At infinite temperatures the quark-gluon plasma is actually a gas of free quarks and gluons,

due to the vanishing coupling. So at least for large temperatures the picture of a weakly

coupled gas should persists. Surprisingly, this holds only up to very large temperatures

compared to the energy ΛQCD. In contrast, experiments at RHIC and the LHC advocate

that in the vicinity of the phase transition from the hadronic phase to the quark-gluon

plasma the latter one behaves rather like a liquid of strongly coupled quarks and glu-

ons [22–27,159–161].

The transition from the quark-gluon plasma to the hadronic phase took place in the evolu-

tion of the early universe. The standard picture is such that the trajectory of the universe

as a function of time in the phase diagram started at large temperatures and entered the

hadronic phase, both stages happened at small quark chemical potential.

In addition to that, there is another aspect that suggests a phase transition which is in

principle independent of the deconfinement-confinement phase transition. The masses of

hadrons that consist of light quarks are far above the straightforward sum of the masses

of the quarks, like they are extracted from high-energy experiments. The light quark

masses are of the order of a few MeV, the quark masses are given in tab. (2.1) [162]. In

contrast to this, the proton, which consists of two up and one down quarks, has a mass

of mproton ≈ 938MeV. So actually, most of the mass comes from the binding energy in

the gauge fields and the sea quarks. Therefore, also this attribute of the masses of the

up down strange charm bottom top

2.5+.6
−.8 MeV 5.0+.7

−.9 MeV 100+30
−20 MeV 1.25+.05

−.11 GeV 4.19+.18
−.06 GeV 172.9+.6

−.8 GeV

Table 2.1.: Quark masses [162].

fundamental particles must change at some point, i.e. at the phase transition the (almost)

massless up, down and also the strange quark effectively receive a much higher mass. This

phase transition is called the chiral phase transition. Also, here the relevant scale is sup-

posed to be ΛQCD and the phase transition is supposed to happen in this energy region.

The other quarks, the charm, bottom and top quark, are much heavier than this scale.

Thus, they are not dynamical any more at the chiral phase transition but dominated by

their mass scale, which they obtain from the Higgs mechanism. In contrast to this, the

masses of the light quarks are well below the scale ΛQCD, in particular the mass of the up

and down quark should not play a dominant role. For the light quarks the effect of chiral

sense.
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2.1. The Phase Diagram of QCD

symmetry breaking is therefore crucial, and in fact most of the constituent quark mass

of the up and down quarks in hadrons is not triggered by the Higgs mechanism, but by

dynamical chiral symmetry breaking. For the strange quark both effects contribute with

roughly half of the mass.

It is worth to mention that it is not clear yet whether the deconfinement-confinement

phase transition and the chiral phase transition are independent of each other. It may

well be that they are related to each other, or even that they are one single phase tran-

sition. This statement would be supported by the fact that these phase transitions occur

at approximately the explored regions of the (µ,T )-plane, at least for vanishing chemical

potential [34,72]. Although both effects should be set by the scale ΛQCD, this is an unex-

pected result.

In the hadronic phase there is another phase transition which is called nuclear phase tran-

sition. It is the transition of the liquid self-bound ground state of baryonic matter to the

state where the baryons form a gas. This transition happens at low temperatures and

baryon chemical potentials of µB ≈ 924MeV. At vanishing temperature it is a first order

transition which turns into a second order critical point with increasing temperature. For

even larger temperatures it becomes a crossover.

Another interesting phase that is reasonable by the argument of asymptotic freedom is

that at low temperatures but high baryon densities the state of matter should exhibit

colour superconductivity, i.e. quarks form Cooper pairs [163]. For instance, in neutron

stars or in the still hypothetical objects of quark stars this phase is likely to be realised. As

this is not of particular importance for the work presented in this thesis, I do not discuss

this phase in detail, for further information see [163–169].

Motivated by the phase diagram of QCD in the theoretical limit of many colours, i.e.

Nc → ∞, another phase for low and intermediate temperatures and intermediate quark

chemical potential has been proposed, called the quarkyonic phase [170–173]. In this state

the quarks are still confined but chiral symmetry is restored. However, the existence is

more questionable than the other phases described in this section.

The arguments can be put into a sketch of the conjectured phase diagram which is given

in fig. (2.1). In particular the deconfinement-confinement phase transition and the chiral

phase transition are of interest in this thesis. I detail them in the subsequent sections.

A natural question is the order of the phase transition from the hadronic phase to the

quark-gluon plasma. For vanishing quark chemical potential the situation is summarised

in the so-called Columbia plot [175], which is given in fig. (2.2). The order strongly de-

pends on the quark masses. In fig. (2.2) the axes label the quark masses, the abscissa

shows the two almost degenerate light quarks whereas the ordinate indicates the mass

of the strange quark. In this plot the chiral limit corresponds to the lower left corner

12



2.1. The Phase Diagram of QCD

Figure 2.1.: Sketch of the (conjectured) phase diagram of QCD. For high temperature
and net baryon density quarks and gluon are the relevant degrees of freedom.
For low temperatures and quark chemical potential the fundamental particles
appear only in bound states, called hadrons. Between these two phases the
deconfinement-confinement phase transition and the chiral phase transition
occur. Both transitions happen at about the same parameter sets in the phase
diagram. At low temperature but high baryon densities the system shows signs
of superconductivity, as quarks form Cooper pairs. This illustration is taken
from the homepage of GSI Darmstadt [174].

where the solid line is the critical line of the chiral phase transition. For small masses the

phase transition is of first order [176] which turns into a crossover for larger masses of the

quarks. In the other extreme, the limit of large quark masses, Yang–Mills theory is the-

oretically realised in the upper right corner, where the solid line denotes the critical line

of the deconfinement-confinement phase transition in pure gauge dynamics. The phase

transition of Yang–Mills theory is of first order8 [177], but with dynamical quarks it gets

smeared out to become a crossover as well. The measured quark masses are such that the

physical point lies in the crossover region [34–36,41,42,178–180].

Turning now to non-vanishing quark chemical potential, lattice simulations are hampered.

Thus, the information about the phase transition is not as profound as in fig. (2.2). As a

function of chemical potential in addition to the temperature the critical line in fig. (2.2)

is a critical surface. Model studies show [144,181–184] that this critical surface bends to-

wards the physical point. Thus, for large values of the quark chemical potential the phase

transition from the hadronic phase to the quark-gluon plasma is a first order transition.

For decreasing chemical potentials it occurs on the critical surface, which yields a second

order transition. Beyond this point the transition becomes a crossover, like it is observed

for µq = 0 in fig. (2.2).

So far, lattice results are consistent with the existence of a critical point. However, these

results suffer from the technical and conceptual limitations of the lattice. Moreover, recent

8Actually, the order of the deconfinement-confinement phase transition depends on the gauge group,
for a recent analysis see [11, 12, 48]. For SU(3) the phase transition is of first order, in SU(2) it is
of second order. Confinement and the order of the deconfinement-confinement phase transition are
studied further in chapter 5.
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mstrange

mup, mdown

crossover

1st order

1st order

physical point

chiral limit

pure gauge1

1

Figure 2.2.: This so-called Columbia plot shows the order of the phase transition from the
hadronic phase to the quark-gluon plasma as a function of the quark masses.
In the chiral as well as pure gauge limit the transition is first order, both
end at critical lines where the transition is of second order. For quark mass
configurations that do not satisfy these limits the transition is a crossover.
The physical point is situated in the crossover region.

lattice results indicate that this picture may have to be revised, as in these extrapolations

from the region of imaginary chemical potentials the critical surface bends away from the

physical point at small chemical potentials [74, 75]. This leaves two different scenarios:

Either the transition remains a crossover, or the critical surface bends back towards the

physical point. In the latter case the critical point in the phase diagram, see fig. (2.1),

would be at much larger values of µq/T than expected. The exact location of the critical

point is of great interest because fluctuations at this point are enhanced [185,186], which

would yield clear signals in experiments.

Aspects of Confinement

Since the acceptance of QCD as a fundamental theory, it has been a pressing question why

coloured particles are absent in observations9. I refer to the lack of colour non-singlets10

as confinement, although there is no rigorous definition for this term. For further details

of definitions and signatures of confinement see e.g. [187,188]. The feature of confinement

is also observed in lattice simulations. By the time, it has become accepted, although a

satisfactory explanation or derivation of this property is not known yet.

Quarks interact very weakly at short distances. However, if the constituents of say a me-

9In fact, experimentally the search is not for coloured particles but for particles that have fractional
electric charge, which is the case for quarks.

10Note that the signal of the absence of coloured particles is not a clear signal for confinement either,
since it mixes the notions of confinement in a strict sense and colour screening. For further details see
e.g. [187].
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son are pulled apart, the attractive force between them increases with the distance. For

infinitely heavy (anti-)quarks this growth is unbounded, i.e. it would require an infinite

amount of energy to separate the quark from the antiquarks. This is confirmed by lattice

simulations of pure gauge theory, i.e. static quarks. Here, a linearly rising static quark

potential signals the confining phase, for a review see [189]. At finite quark masses the

energy between the quark-antiquark pair at some point surpasses the threshold for pair

creation from the vacuum. At this point the initial particles bind with one particle of the

created pair. Therefore, for finite quark masses the energy does not tend to infinity but

settles at a finite value. Nevertheless, the remaining particle content is colour neutral.

There are many signals of confinement like the Wilson loop or the Polyakov loop, respec-

tively, the ’t Hooft operator or the vortex free energy. For a detailed discussion see [187].

In this work, in particular in chapter 5, the order parameter for quark confinement is the

Polyakov loop [190,191] which is defined by

L(x⃗) = 1

Nc
trPeig ∫

1/T
0 dx0A0(x) , (2.1)

where Nc is the number of colours, tr is the trace and P denotes path ordering, g is the

unrenormalised gauge coupling and A0 is the temporal component of the gluon at tem-

perature T . The Polyakov loop is a Wilson loop in time direction with periodic boundary

conditions, i.e. at finite temperature, which winds around the compactified time direction

at least once.

The Polyakov loop L has very peculiar properties related to the centre of the gauge group

SU(Nc). The elements zk of the centre ZNc commute with all group elements. For SU(Nc)
it is proportional to the unit matrix I, with the proportionality factor being the Nc roots

of 1. Thus, under a gauge transformation

U = (zkINc×Nc)
x0T

, (2.2)

see eq. (2.8), the gauge field is simply shifted by a constant, but is still periodic in the

temporal direction. Therefore, it leaves the purely gluonic action invariant. This is only

the case if the zk is an element of the centre of the group. Thus, this invariance is called

centre symmetry [192,193].

However, L is sensitive to this transformation because L → zkL, so its expectation value

⟨L⟩ over all gauge transformed L vanishes if centre symmetry is immanent but is non-zero

if centre symmetry is broken [187].

This can be related to an order parameter for quark confinement, because ⟨L⟩ can be

related to the free energy Fq of a static quark [194–196],

⟨L⟩ = exp{−Fq/T} . (2.3)

⟨L⟩ serves as an order parameter for quark confinement for the following reason: If confine-
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ment prevails, bringing an infinitely heavy quark-antiquark pair into the system and then

sending the antiquark to spatial infinity requires an infinite amount of energy. This infi-

nite free energy of the static quark corresponds to ⟨L⟩ = 0. In contrast to this, the needed

amount of energy is finite in the deconfined phase and therefore ⟨L⟩ ≠ 0. Consequently, the

expectation value of the Polyakov loop is a true order parameter: It is strictly zero in the

confined phase T < Tc and non-zero in the deconfined phase T > Tc. The full information

is encoded in the effective potential of the gluons. As the quarks are infinitely heavy, i.e.

static, confinement is generated by gluon dynamics. This suggests that confinement in

QCD is indeed an effect that is driven by the pure gauge sector.

The centre transformation eq. (2.2) leaves the action of Yang–Mills theory invariant. How-

ever, dynamical quarks break the centre symmetry explicitly, thus ⟨L⟩ ≠ 0 in both phases,

the deconfined but also the confined phase. As a result, the phase transition in full QCD

becomes a crossover, but still the sharp rise of ⟨L⟩ at the phase transition gives a clear

signal.

Aspects of Chiral Symmetry Breaking

Chiral symmetry is an exact symmetry of the Lagrangian of QCD, eq. (2.12), in the case

of massless quarks, see section 2.2, with the symmetry group U(1)V ×U(1)A×SU(Nf)L×
SU(Nf)R, stemming from vector rotations and axial-vector transformations on the quark

fields. If this symmetry is realised, quarks qaf can be split in left- and right-handed Weyl

spinors, ψL and ψR, whose components do not mix under chiral transformations. In the

physical situation quark masses break this symmetry explicitly, they mix left- and right-

handed spinors, and the SU(Nf)L × SU(Nf)R is broken the to the SU(Nf)V . But due

to the small quark masses for the light flavours, for those the symmetry remains as an

approximate symmetry. In addition, the U(1)A symmetry is broken to Z(Nf) by quantum

fluctuations. The latter effect is called axial anomaly.

In addition to this explicit breaking, chiral symmetry gets spontaneously broken in the

hadronic phase. An order parameter that is sensitive to this spontaneous breaking is the

chiral condensate ⟨q̄ai qai ⟩ = ⟨ψ̄ψ⟩ = ⟨ψ̄RψL + ψ̄LψR⟩, as it is zero if the components do not

mix, i.e. in the chirally symmetric phase, but acquires a non-vanishing value in the phase

of spontaneously broken chiral symmetry, even for initially massless quarks.

2.2. The Action of QCD

In the standard model of particle physics, the strong interaction is described as a relativistic

quantum field theory called QCD. It is the force between quarks and gluons, which are

the fundamental particles in the theory.

In the functional integral formulation the microscopic action of the theory is the important
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ingredient. It can be described as the spacetime integral over the Lagrangian density11.

As QCD bares local gauge symmetry the classical Lagrangian must be gauge invariant. A

gauge transformation acting on a quark can be written as

q(x) → q′(x) = U(x)q(x) = eigθa(x)taq(x) , with U(x) ∈ SU(N), (2.4)

where the ta are the generators of the group of special unitary transformations SU(N), i.e.

(in a matrix representation) unitary matrices with determinant +1. These transformations

themselves form a Lie algebra [ta, tb] = ifabctc, where the fabc are the structure constants

of the group. For SU(2) they are simply the entries of the Levi-Civita symbol. In the

following, the normalisation is chosen such that tr{tatc} = +1
2δ
ab. For the case of SU(2)

the generators ta are proportional to the standard Pauli matrices, in SU(3) they are called

Gell-Mann matrices.

As the gauge transformation does depend on spacetime itself, the kinetic part containing

a normal spacetime derivative would not transform covariantly, because the derivative

would act on U(x) as well

∂µU(x)q(x) = U(x)∂µq(x) + (∂µU(x)) q(x). (2.5)

This can be cured via the construction of a covariant derivative which guarantees covari-

ance of the kinetic part in the action. The covariant derivative is defined as

Dµ = ∂µ − ig taAaµ(x) , (2.6)

where the Aaµ(x) are the gluons, and g is the unrenormalised coupling. In order to ensure

covariance, the transformation of the gluonic field must cancel the term ∼ ∂µU(x) in

eq. (2.5). This leads to the requirement that

(∂µU(x)) q(x) − ig(A′)µ(x)U(x)q(x) = −ig (U(x)Aµ(x)) q(x) , (2.7)

with the sum abbreviation for a coloured object Cata = C. Thus, the gluons transform

according to

Aµ(x) → (A′)µ(x) = U(x)Aµ(x)U−1(x) − i

g
(∂µU(x))U−1(x). (2.8)

Due to the unitary of the SU(N) ∶ U−1(x) = U †(x).
The gluons are fundamental particles, therefore, a kinetic term in the action must be

included as well. The four-dimensional curl is not appropriate, because it does not ensure

the correct transformation property. Instead, the commutator of two covariant derivatives

is a gauge invariant

i

g
[Dµ, Dν] =

i

g
Fµν = ∂µAν(x) − ∂µAν(x) − ig [Aµ(x), Aν(x)] , (2.9)

11In the following I employ an abbreviation common in the literature, as I refer to the Lagrangian density
simply as the Lagrangian.
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so for its components spanned via the generators Fµν = F aµνta the field strength tensor F aµν
is defined by

F aµν(x) = ∂µAaν(x) − ∂νAaµ(x) + gfabcAbµ(x)Acν(x). (2.10)

For applications at non-vanishing temperature, see especially chapter 4, the spatial com-

ponents of F aµν(x) are grouped in analogy to electrodynamics. The differentiation is done

for chromoelectric fields Eai (x) and chromomagnetic fields Ba
i (x), defined as

Eai (x) = F a0i(x) , Ba
i (x) =

1

2
εijkF

a
jk , with i = 1,2,3 . (2.11)

Finally, constructing the non-trivial kinetic term for the gluons by the Lorentz-scalar

quantity (F aµν)
2
,gives the classical Lagrangian for QCD

Lclassical =
1

4
F aµνF

a
µν +∑

f

q̄ af (−γµDµ +mf)
ab
qbf . (2.12)

Actually, this simple looking Lagrangian is sufficient to describe QCD in all situations,

even though the theory has such diverse properties in different regions which lead to a

rather complex phase structure, see section 2.1.

One interesting aspect of non-Abelian gauge theory is that the pure gauge part is an in-

teracting theory on its own, already on a classical level. In the square of the field strength

tensor also cubic and quartic terms in the gluon fields arise, which are interaction terms

for gluons among themselves. They are illustrated by the help Feynman diagrams as the

last two terms in fig. (2.3(a)).

In view of a quantum theory the classical Lagrangian eq. (2.12) is yet inappropriate.

This is due to the fact that the measure of the functional integral respects all possible

configurations, but there is a redundancy in the physically different configurations as one

is free to perform a gauge transformation. The set of physically similar configurations that

are related by a gauge transformation is called gauge orbit [AU ]

[AU ] ∶= {AU = UAU † + (∂µU)U † , U ∈ SU(N)} . (2.13)

This freedom results in an (infinite) overcounting of the physical states, which can be

circumvented by fixing the gauge: The aim is to count only one representative of each

gauge orbit by imposing the gauge fixing condition G[A] = 0. At first, I employ the

Faddeev–Popov gauge fixing method [197] postponing potential problems connected to

this gauge fixing procedure in non-Abelian gauge theories for the moment.

The idea of the Faddeev–Popov trick is to insert a multiplicative factor of 1 in the path

integral, written in the form

1 = ∫ DU δG[A]∆FP[AU ] , (2.14)

where DU is the Haar measure of the group manifold, which is invariant under gauge
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transformations. The δG[A] takes out only one configuration of each gauge orbit, and

∆FP[AU ] = detM is the Faddeev–Popov determinant arising due to the normalisation.

The Faddeev–Popov determinant is the determinant of the Faddeev–Popov operator

Mab(x, y) = δG[Aa(x)]
δθb(y) ∣

θ=0

. (2.15)

In linear covariant gauges the latter quantity can be written as

Mab = −∂µDabµ . (2.16)

The Faddeev–Popov determinant itself can be transformed by the help of additional,

auxiliary fields called Faddeev–Popov ghosts. As the determinant is in the numerator the

transformation into a path integral,

detM = ∫ DcD c̄ exp{∫
x,y
c̄a(x)Mab(x, y)cb(y)} , (2.17)

requires that the ghosts ca and antighosts c̄a are Grassmannian fields. Nevertheless, ghosts

have spin 0. However, there is no conflict with the spin-statistics theorem as these fields

are not part of the physical state space, but rather a pure mathematical trick. Thus, they

are not subject to the spin-statistics theorem. Note that ghosts carry colour themselves,

which is intuitively reasonable as they cancel the redundant gluonic degrees of freedom.

Also the gauge-fixing condition δG[A] can be raised to be a term 1
2ξ (∂µAµ)

2 in the action

directly, where ξ is the gauge parameter. Here, Landau gauge is employed ξ → 0, i.e. only

those configurations contribute that satisfy the condition ∂µAµ = 0, whereas all others are

suppressed in the functional integral.

The gauge fixing gives the quantum formulation of the non-Abelian gauge theory in terms

of the generating functional

Z [Q, η̄, η, σ̄, σ] = ∫ D [Aq q̄ c c̄] exp{− ∫
x
(Lclassical +

1

2ξ
(∂µAµ)2 + c̄a∂µDabµ cb)

+∫
x
(Q⋅A + η̄ ⋅q + q̄ ⋅η + σ̄ ⋅c + c̄⋅σ)} , (2.18)

with the path integration over the particle content D [Aq q̄ c c̄] = DADqD q̄DcD c̄. The

arguments of the partition function, Q, η̄, η, σ̄ and σ, are the sources of the corresponding

fields. The proper field affiliation of a source can be read off from the couplings of these

quantities in the exponent given in the second line of eq. (2.18).

The interaction terms that appear in the QCD action are illustrated best with Feynman

diagrams. The seven primitively divergent n-point functions that are present in the action

of QCD are illustrated in fig. (2.3). In a quantum theory they are modified by quantum

effects. In addition to the interactions given in fig. (2.3) further interactions can be

triggered by quantum fluctuations.
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(a) Purely gluonic n-point functions. (b) n-point functions with
quark contributions.

(c) n-point functions with
ghost contributions.

Figure 2.3.: Primitively-divergent vertex functions of QCD.

The action of QCD bares symmetries, i.e. the exponent of eq. (2.18) is invariant under

certain transformations, although the local gauge symmetry discussed above is not present

any more due to gauge fixing. Nevertheless, there are also gauge symmetries left.

First of all, there is the freedom for global gauge rotations, i.e. invariance under a gauge

transformation whose parameter in eq. (2.4) does not depend on spacetime. Though, it is

not clear if this symmetry is realised in full QCD. Phrased in other words, the existence

of a global colour charge associated with this symmetry of QCD due to the Noether theo-

rem is not guaranteed. However, the existence of a global colour-charge is crucial for the

Kugo–Ojima confinement scenario, cf. section 2.3.1.

Furthermore, there is another symmetry related to gauge invariance called BRST sym-

metry [198–201]. It means that the action is invariant under the gauge transformations

with the product of the ghost field and a Grassmann valued number as transformation

parameter. The transformations of the fields are given by

sAaµ = Dabµ cb , s q = −igtacaq ,

s ca = −1

2
gfabccbcc , s c̄a = 1

ξ
∂µA

a
µ , (2.19)

where s is the BRST-operator, sc. the symmetry generator. In the confinement scenario

of Kugo and Ojima described in section 2.3.1 it is crucial that s is a nilpotent operator,

i.e. in abuse of notation s2 = 0.

Due to the Noether theorem there is a conserved charge associated with BRST symmetry,

the BRST charge QB. However, in the formulation above this holds for the perturbative

treatment only. So similar to the global colour charge, also for QB it is not clear if it is

well-defined also on the non-perturbative level.

The global gauge symmetry and the BRST symmetry are related to the gauge symmetry,

but there is a symmetry also in the matter sector. The matter part of the Lagrangian, given

explicitly as the second term in eq. (2.12), contains two terms: the covariant derivative

and the quark masses. From experiments it is known that the quark masses are non-zero,

which is (most likely) due to the Higgs mechanisms. However, if the quarks are taken to

be massless, i.e. in the chiral limit mf → 0, chiral symmetry is exact. In this case quarks
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can be decomposed into left- and right-handed Weyl-spinors, whose components do not

mix under chiral transformations, i.e. global unitary transformations U(Nf)L ×U(NF )R.

Finite quark masses break chiral symmetry explicitly. However, as the quark masses of

the three lightest quarks up, down and strange are very light, for large energy scales well

above the quark masses it is expected that the chiral symmetry remains as an approximate

symmetry for these three flavours, which should be reflected in low-energy QCD as well.

But in addition to the explicit breaking there is also a dynamical spontaneous breaking of

chiral symmetry, which is detailed in section 2.1.2.

To conclude this section I sketch the problems that arise in the Faddeev–Popov gauge-

fixing procedure.

The gauge-fixing must single out the physical configurations only. However, this is not

satisfied by the Faddeev–Popov gauge fixing. This can be seen easily in Landau gauge by

the help of the Faddeev–Popov operator, eq. (2.16). As well it is also immanent in other

gauges like Coloumb gauge [202] or maximal Abelian gauge [203]. In fact it is present

in all local gauge-fixings procedures, because it is due to the topological structure of the

gauge group [204]. However, here it is only shown for Landau gauge.

For a gauge configuration that fulfills the Lorenz condition,

∂µAµ = 0 , (2.20)

a gauge transformation, eq. (2.8), can yield another configuration that still fulfills the

Lorenz condition if the Faddeev–Popov operator eq. (2.16) has zero modes, thus

∂µAµ = 0 Ð→ ∂µAµ +MΘ . (2.21)

The presence of these gauge copies is known as the Gribov problem [205], for a recent

review see [206].

Consequently, the gauge-fixing needs a refinement which is done in first place by the defi-

nition of the (first) Gribov region. Actually, the configuration space can be separated by

the Faddeev–Popov operator. Writing the determinant by the product of its eigenvalues,

detM =∏
i

λi , (2.22)

it is obvious that the Gribov horizon is where an eigenvalue vanishes. Therefore, at every

zero mode an eigenvalue changes its sign, and therefore the Faddeev–Popov operator

changes its sign. By the zeroes the space is separated into regions, the first of which is

around the origin with the Faddeev–Popov operator being positive definite. This defines

the Gribov region Ω by

Ω = {{Aµ(x)}∣∂µAµ(x) = 0 ∧M > 0} . (2.23)
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The Gribov region contains the origin12 [207] and is bounded in all directions [207]. Fur-

thermore, it is complex, i.e. two consecutive gauge transformations in the Gribov region

combine to a gauge transformation which stays itself in the Gribov region [207]. In ad-

dition, it can be shown that all gauge orbits intersect the Gribov region [208], therefore

no physical configurations are neglected. Thus, integrating only over the Gribov region

in the functional integral circumvents the problems of zero modes in the Faddeev–Popov

operator.

Unfortunately, even within the Gribov region there are still gauge copies left [208–211].

A full gauge fixing would be obtained by restricting the integration to the Fundamental

Modular Region, but a construction of this object in the continuum is not know yet. Also

resorting to the lattice formulation is not satisfactory because fixing the gauge uniquely

would mean to find the global maximum of the gauge-fixing functional, which is numeri-

cally too costly to allow for a proper solution.

2.3. Yang–Mills Theory

2.3.1. Confinement in Yang–Mills Theory

As outlined in section 2.1.2 confinement means the absence of colour-charged objects in the

physical particle spectrum. Yang–Mills theory shows confinement for low temperatures.

For the gauge group of QCD, SU(3), and larger temperatures it undergoes a first order

phase transition to a deconfined phase. This is expected from the fact that like QCD also

Yang–Mills theory is asymptotically free.

As confinement in full QCD is driven by the gluon dynamics, see section 2.1.2 and chapter

5, Yang–Mills theory on its own provides direct insight into the phase diagram of full QCD.

Confinement is a large distance phenomenon. Thus, in momentum space confinement of

Yang–Mills theory must be reflected in the correlation functions in the infrared regime.

As expected, it turns out that the perturbative description fails. A perturbative gluon

propagator would diverge in the infrared as gauge invariance does not allow for a constant

gluonic mass term. In Landau gauge13, however, in both, continuum as well as lattice

studies, this is not observed. Quite the contrary, the gluon propagator at zero momentum

approaches a constant or may even vanish. The different solutions are detailed below in

section 2.3.2. The other particle, the Faddeev–Popov ghost, does diverge at zero momen-

tum. In some possible explanations for the confinement mechanism the infrared behaviour

of the propagators is crucial. In the following I detail these scenarios, namely the Kugo–

12The fact that the origin lies within the Gribov region is crucial for perturbation theory, which is an
expansion around the origin. The point where complications due to insufficient gauge-fixings occur is
where quantum effects are too large as to allow for a perturbative approach in first place.

13Throughout this thesis Landau gauge is used.
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Ojima scenario and the Gribov–Zwanziger scenario, respectively.

Kugo–Ojima Scenario

Confinement in Yang–Mills theory can be explained by the help of the Kugo–Ojima sce-

nario [212]. It relies on the existence of BRST symmetry, which was already introduced

in section 2.2, the existence of a global colour charge and the violation of the cluster de-

composition property in total state space but not in the physical state space.

In Landau gauge the state space W has an indefinite metric, i.e. not only physical states

occur, but also unphysical ones, e.g. single gluon or ghost states. If BRST symmetry is

unbroken, it allows for a construction of the physical state space Wphys. starting from the

full state space14. Although the symmetry is a global symmetry15, the non-perturbative

existence of a global BRST charge is not guaranteed. However, the Kugo–Ojima scenario

assumes that this charge is well-defined. By the help of the nilpotent BRST charge-

operator QB, i.e. the generator of the symmetry, the state space W of all states ∣ψ⟩ is

divided in three parts of which the cohomology of QB constitutes the physical state space,

i.e. Wphys. = KerQB/ImQB. The physical states are therefore in the kernel of QB, i.e.

BRST invariant QB ∣ψphys.⟩ = 0, but not in the image of it, i.e. not a BRST daughter state

∣ψphys.⟩ ≠ QB ∣ψ⟩. A BRST daughter state is also called BRST exact state. Herein, the

nilpotency QB is crucial as all BRST exact states are BRST invariant as well. If this were

not fulfilled, the definition of the physical subspace as cohomology of QB would not hold.

BRST states that are exact and non-invariant BRST states always come in quartets. In

the S-matrix the contributions from the states that constitute a quartet always cancel,

thus, these states do not appear as physical states. In contrast to this, physical states are

BRST singlets. Note that the BRST quartet mechanism is not only investigated in pure

Yang–Mills theory, but also in QCD, see e.g. [215]. As Kugo and Ojima showed, under

the assumption of the existence of a global colour charge Qa, the physical state space only

contains colour neutral states. Herefore, the Qa is expressed as spatial integral over the

divergence-free Noether current Jaµ , which is obtained from the equation of motion for the

gluon, thus,

Qaµ = Ga +Na = ∫ d3x{∂νF aµν + {QB,Dabµ c̄b}} . (2.24)

The individual terms stemming from the field strength tensor and the anti-commutator,

respectively, may yield individual charges, each of which can be spontaneously broken.

This allows for a classification. Note that the anti-commutator in eq. (2.24) is BRST

exact. In Abelian gauge theories the ghosts always decouple, i.e. the charge Na stemming

involving the covariant derivative of the ghost is always broken. Furthermore, also the

14In the superficial sense, the Kugo–Ojima scenario in Yang–Mills theory resembles the Gupta-Bleuler
mechanism of QED [213, 214]. There, the unphysical states do not appear in S-matrix elements, i.e.
only transversally polarised photons occur as physical particles. However, single gluon states are always
unphysical asymptotic states, even if they are transversal. Thus, the Kugo–Ojima mechanism has to
cancel those states as well in addition to negative norm states.

15The BRST symmetry is gauge transformation with the (spacetime-dependent) ghost as gauge-parameter.
Nevertheless, it is a global symmetry as different points in spacetime must be treated similarly.
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charge from the field strength Ga is broken due to massive gauge modes. However, the

combination of these two breaking terms always cancels in such a way that the global

charge Qa is conserved. In non-Abelian gauge theories massless gauge bosons yield a van-

ishing colour charge Ga. But Na is always broken, so in this case the global charge Qa is

broken. In the confining case both Ga as well as Na are unbroken. Consequently, also Qa

is conserved.

The requirements for the case in which both charges are unbroken is the relevant one

for the confinement mechanism for Yang–Mills theory. The relations translate to direct

signatures in the propagators of the gluon and the ghost. The charge Ga vanishes iff the

theory has a mass gap, which is realised if the gluon propagator is less singular than a

simple pole16. Na is unbroken if the ghost propagator is enhanced in comparison to the

trivial propagator. If these conditions are fulfilled, the global colour charge is well-defined.

From this follows the absence of coloured particles from the physical spectrum of Wphys..

The last condition for confinement is linked to the cluster decomposition property. Cluster

decomposition is connected to the locality of the quantum field theory. It states that clus-

ters that are separated in space can be divided and observed individually. Obviously, this

property has to be violated in the full state space as otherwise coloured objects could be

observed. But for physical states only it needs to be fulfilled, i.e. all physically observable

states are local in the sense that the substructures can not be resolved in the experiment.

Therefore, observable states can not scatter into colour singlet states that consist of two

coloured constituents which are well separated in position space, and thus, it would be

observable individually, cf. behind-the-moon problem.

Gribov–Zwanziger Scenario

Another confinement scenario is based on considerations of the gauge fixing that are ex-

plained in section 2.2.

The Gribov–Zwanziger scenario [205, 207, 216, 217] states that the infrared relevant con-

figurations are close to the boundary of the first Gribov region as due to the high dimen-

sionality most configurations are at the boundary. The Gribov–Zwanziger action is a way

to restrict the integration to the horizon of the Gribov region. In Landau gauge, again,

this restriction translates to requirements for the infrared behaviour of the Yang–Mills

propagators. In fact, for the ghost the same condition as in the Kugo–Ojima scenario is

met, sc. the ghost propagator has to diverge more strongly than a simple pole. For the

gluon the requirement is even stricter than in the Kugo–Ojima scenario, as the propagator

must vanish at zero momentum.

In Coulomb gauge the importance of the configurations at the horizon is directly visible

at the hand of the Coulomb potential. The colour Coulomb potential is a renormalisation

group invariant potential, which is an upper bound for the gauge invariant potential of the

Wilson loop, thus, there is no confinement without Coulomb confinement [218]. But the

16Note that the order of the pole relates to momentum squared, so the propagator must be less singular
than the trivial one p−2.
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Coulomb potential is also related to the Faddeev–Popov operator. This potential is almost

linearly rising [219–225], which is generated from the horizon. In Landau gauge, however,

a corresponding potential has not been identified yet, but, nevertheless, the application in

Coulomb gauge supports the relevance of the horizon.

Positivity Violations

If a Euclidean correlator shall have a particle interpretation in the G̊arding–Wightman

relativistic field theory, it needs to fulfill the Osterwalder-Schrader axioms [226–228]. One

of these constraints on the propagators is reflection positivity, which is related to the

positive definiteness of the norm of the physical state space. For unphysical particles, in

the case of Yang–Mills theory in particular the gluon, it is sufficient to show that reflection

positivity is violated in order to prove that the particle is not in the physical state space.

Or in other words it does not have a Källén–Lehmann representation.

Actually, this is not a strict condition for confinement because although particles are

absent in the spectrum, positivity violation itself is not required. Furthermore, it only

provides information for the field, but not of bound states that may carry non-zero colour.

Besides that subtlety, the Källén–Lehmann representation of a propagator G(p) is given

by

G(p) = ∫
∞

0
dm2 ρ(m2)

p2 +m2
, (2.25)

with the spectral function ρ being positive semi-definite. The Fourier-transformation of

this gives

G(t, p⃗2) = ∫
∞

√
p2
dω ρ (ω2 − p⃗2) exp{−ωt} , for ω =

√
p⃗2 +m2 . (2.26)

For a non-negative spectral function ρ it is therefore necessary that the propagator is

positive. A propagator with negative norm contributions has no Källén–Lehmann repre-

sentation and, therefore, can not be interpreted as an asymptotic particle state.

Reflection positivity can be studied by the help of the Schwinger function ∆(t), given by

∆(t) = 1

π
∫

∞

0
dp0 cos{t p0}G(p0, p⃗ = 0) , (2.27)

where G(p0, p⃗) is the propagator of the field, which also signals the mass and width of

a field. E.g. for a massive asymptotic field the Schwinger function would show an expo-

nential decay. In contrast to this, the Schwinger function for an unstable particle would

oscillate with a period that is related to its decay width. For the gluon none of these state-

ments is fulfilled as the Schwinger function goes to zero at some point, however, above

that point it does not oscillate as an unstable particle would. Further, the Schwinger func-

tion becomes negative above a certain scale. In addition, no exponential decay is seen.

Therefore, the gluon is neither a stable nor an unstable particle, and consequently it has

no Källén–Lehmann representation.
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2.3.2. Yang–Mills Correlation Functions at Vanishing Temperature

In section 2.3.1 possible mechanisms for confinement, the Gribov–Zwanziger scenario and

Kugo–Ojima scenario, are described. These scenarios can be tested by studying the in-

frared behaviour of Yang–Mills correlation functions in the infrared. To summarise, both

scenarios require a ghost propagator that is more divergent than a simple pole and, in

addition to that, an infrared finite value of the gluon propagator. Note that the ghost

enhancement is limited from background Landau gauge [229]. In this section I shortly

review results from different methods for the Yang–Mills propagators at vanishing tem-

perature. The situation at non-vanishing temperature is detailed in chapter 4, where it

serves as direct comparison for the results obtained in this thesis.

In contradistinction to the requirements from the confinement scenarios above, early con-

tinuum studies with truncations that were built on arguments from perturbation theory

found an infrared divergent gluon propagator [230–232]. This situation was called in-

frared slavery. It appeared to be a reasonable scenario as a linearly rising potential be-

tween static quarks can be constructed via one-gluon exchange. However, this solution

was already ruled out by early lattice results [233–236] where a finite gluon propagator

was found. In the following, enormous effort has been invested to clarify the infrared

behaviour of Yang–Mills propagators with various methods. In continuum approaches es-

pecially the frameworks of DSEs [237–268], the FRG [13,14,248,249,269–281], stochastic

quantisation [207, 282–284] and the Gribov–Zwanziger approach [285–290] have provided

information about the Yang–Mills system and its structure, which can directly be tested

on the lattice [115, 291–332]. In addition to that, a wide range of approaches has been

successfully applied to the system, like the mapping of φ4 theory to the infrared sector of

Yang–Mills theory [333–335], the epsilon expansion [336] or the massive extension of the

Faddeev-Popov action [337,338].

In most studies Landau gauge is chosen because it simplifies the treatment due to several

reasons. Most importantly, all terms that emerge from the gauge condition term in the

action do not contribute in Landau gauge, as ξ → 0. This constrains the gauge boson

propagator such that the only possible tensor structure is the purely transversal one,

given by

ΠT
µν = δµν −

pµpν

p2
, (2.28)

as the longitudinal structure is proportional to the (inverse) gauge parameter. Therefore,

the gluon can be described with only one (non-trivial) wave-function renormalisation ZA

that encodes all quantum effects. The ghost is even simpler, as it is a Lorentz scalar, i.e.

it carries a trivial tensor structure. Consequently, the full two-point functions in Landau

gauge can be parametrised as

Γ
(2)
A,µν(p) = ZA(p)p2 ΠT

µν(p) , (2.29)

Γ(2)
c (p) = Zc(p)p2 , (2.30)

26



2.3. Yang–Mills Theory

where the identity in colour space δab is suppressed, and the wave-function renormalisa-

tions, i.e. the Z’s, are scalar functions that actually only depend on the squared momentum

p2. The dependence of the Z’s on a non-vanishing field expectation value is neglected for

the moment, although in general the wave-function renormalisations depend on it17.

In order to get the full propagator GA for the gluon and Gc for the ghost the two-point

function must be inverted18. If there are other tensor structures in addition, in particular

structures that mix longitudinal and transversal components, this is a non-trivial task in

general. However, the inverse of the transversal projector ΠT
µν is the transversal projector

itself and no further structures can emerge19.

In addition to this simplification on the level of the two-point functions, the transversality

of the gluon facilitates the study of all higher n-point functions as well. In section 3.2.4

it becomes clear that the functional equations for a purely transversal n-point function

depend on purely transversal n-point functions only. Thus, it is sufficient to exclusively

compute the transversal structures to cover the full dynamics of the system. In other

words, any observable can be constructed from these transversal n-points functions20.

Another nice feature of Landau gauge is that the ghost-gluon vertex stays (almost) bare

in the infrared limit [241,248,249,294,339–343].

In the continuum the deep infrared of Yang–Mills theory shows two qualitatively different

types of solutions, the so-called scaling solution and the decoupling solution. In order to

discuss the features of these two solutions it is convenient to introduce exponents κA/c

to describe the qualitative infrared behaviour of the propagators. Considering only the

17Taking into account the dependence of the wave-function renormalisation on the field expectation can
be useful in finding proper truncations in functional methods, see e.g. the BMW method in section
3.2.2.

18In the framework of DSEs the standard notation in the literature is chosen such that the propagators
GA/c are proportional to a (scalar) dressing function Z for the gluon and G for the ghost. Thus,

GA,µν(p) = ΠT
µν(p)

Z(p2
)

p2
, (2.31)

Gc(p) = −
G(p2

)

p2
, (2.32)

where the trivial colour-tensor is omitted. In Landau gauge the relation of the dressing functions DA/c
and the wave-function renormalisations ZA/c is straightforward as they are simply the inverse quantities
of each other, viz.

ZA =
1

Z
, Zc =

1

G
. (2.33)

19This holds also in the presence of a regulator in the FRG if the regulator is chosen to be transversal as
well, cf. section 3.2.4.

20Note that, although the dynamics can be described by purely transversal n-point functions, this does
not imply that the longitudinal parts do not contribute at all, but rather they stay bare up to finite
corrections. E.g. in perturbation theory the pressure the longitudinal mode gives half of the Stefan–
Boltzmann pressure, which cancels one ghost-mode, cf. section 4.3. A similar cancellation of one ghost
mode by the gauge mode happens in the Weiss potential, the perturbative limit of the Polyakov loop
potential, see chapter 5.
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Lorentz scalar parts in the propagators this is done according to

lim
p2→0

GA(p) ∼ 1

(p2)1+κA , (2.34)

lim
p2→0

Gc(p) ∼ 1

(p2)1+κc . (2.35)

The κA/c are the anomalous dimensions that account for the non-trivial scaling that

emerges in addition to the canonical dimension, which is the 1 in the exponent of the

denominator.

For the scaling solution it turned out that the behaviour of all n-point functions can be

solved exactly in the infrared limit [248, 249, 254], even in dimensions d ≠ 4. An arbitrary

Green function scales according to

lim
p2→0

Γ(m,n)(p) ∼ (p2)(n−m)κ+(1−n)(d/2−2)
(2.36)

where n is the number of external ghost-antighost pairs that enter the vertex and m is

the number of external gluon legs. Note that the scaling eq. (2.36) is actually a function

of only one infrared scaling exponent κ as the anomalous dimensions of the propagators

are not independent of each other

κ = κc = −
κA
2
+ d − 4

4
. (2.37)

The requirements concerning the propagators in the infrared stemming from the Kugo–

Ojima or Gribov–Zwanziger confinement scenarios are met if the exponent fulfills the

relation
d − 2

4
≤ κ < d

4
, (2.38)

as in eq. (2.34) this corresponds to a vanishing wave-function renormalisation Zc (⇔ di-

vergent dressing function) for the ghost, which implies an additional enhancement.

In four dimensions this exponent was computed, the most precise results [241,272,273,282]

give a numerical value of κ ≈ 0.5953. This is consistent with the bound which is obtained

in an FRG study [229]. Eq. (2.36) is self-consistent, and in fact it is even the unique

scaling solution for Green functions in the infrared [248,249,254].

The scaling solution is unique in the sense that it satisfies the scaling relation, eq. (2.36).

In addition, another type of solution is found which shows a ghost propagator that di-

verges as (p2)−1 and a finite gluon21. In terms of anomalous dimensions this corresponds to

κc = 0 , κA = −1. Clearly, this configuration does not satisfy the scaling relation, eq. (2.37).

In fact, the solution of propagators in the infrared is such that there is a whole family of

solutions. A particular solution is determined by fixing one value which is the renormal-

isation condition for the ghost at vanishing momentum [276]. Iff this value is set to be

21Note that a finite gluon propagator can not be described as a ”massive” propagator with a momentum-
independent mass. This can be seen trivially via going to high momentum, where perturbation theory
is applicable. Perturbatively a gluonic mass term would violate gauge-invariance.
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zero, the scaling solution is obtained, however, for any larger value a decoupling solution

is obtained.

The fact that there is a family of solutions suggests that the dominating effects in the

scaling as well as decoupling solution come from the same contributions. It is one strength

of continuum methods that the individual contributions of the diagrams/fields can be in-

vestigated separately. In the case of infrared Yang–Mills theory it turned out that closed

ghost-loops are the prevailing effects. Therefore, the situation is referred to as ghost dom-

inance. The effect of ghost dominance is seen in the ghost as well as the gluon-propagator

in both types of solutions22. The feature of ghost dominance is important in later chapters

for the construction of a proper truncation for higher n-point functions, see section 4.1.4.

Interestingly enough, at least in four dimensions lattice results show the decoupling so-

lution only, even on lattices large enough to exclude the possibility of lattice artefacts

spoiling the qualitative behaviour. Therefore, it is yet unclear whether the scaling solu-

tion is a purely mathematical solution or a physically realised solution. For a discussion

of the discrepancy between the lattice and continuum results see e.g. [344]. However, for

physical observables the deep infrared sector should not drive the relevant physics23, but

the mid-momentum sector is the important region. For example, this has been shown ex-

plicitly for the Polyakov potential [11] and is supported by the results presented in chapter

5.

Results for the two-point correlators of Yang–Mills theory from different methods can be

found in fig. (2.4)24. In fig. (2.4(a)) the gluon propagator is given, the corresponding

dressing function Z defined in eq. (2.29) with Z = 1/ZA is given in fig. (2.4(b)). The ghost

dressing function G, cf. eq. (2.29) with G = 1/Zc, is shown in fig. (2.4(c)). The Schwinger

functions of the two solutions are given in fig. (2.4(d)).

The classification of the different types of solutions does not seem very spectacular, and

for physical observables it is irrelevant, even quantitatively. However, for the mechanism

of colour confinement the implications of the difference in the qualitative behaviour are

crucial. One important difference is that the scaling solution respects BRST symmetry.

In contrast to this, decoupling solutions break BRST symmetry. As the Kugo–Ojima sce-

nario relies on a well-defined BRST charge, i.e. the existence of BRST symmetry, only

the scaling solution is consistent with this picture. Furthermore, as the Gribov–Zwanziger

scenario does not allow for a trivial ghost propagator, this explanation fails as well.

The statements above refer to the mechanism for confinement of Yang–Mills theory, but

not for the question whether confinement is realised or not. Naturally, both types are

confining which can be seen in the Schwinger function of the solutions in fig. (2.4(d)).

22Actually, it were the contributions of the ghosts that were underestimated in the studies that yielded
infrared slavery.

23This conjecture is supported by the fact that in loops the infrared is suppressed with a factor of at least
p2 coming from the integration measure of the loop integral, see appendix D.1.

24Figures are taken from [276] and printed with permission of Elsevier, license number 2924051409272.
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we have discussed the equivalence and consistency of the
renormalization procedure for both, DSEs and FRGs.
Moreover, the FRG provides a consistent momentum cut-
off regularization of the corresponding DSE equation via
(44) and thus allows to deduce the modified STIs for the
DSE in the presence of an ultraviolet momentum cut-off,
see [22, 60]. A crucial difference in the present truncation
is the tadpole diagram in the gluon FRG-equation that
depends on the full four-gluon vertex. This incorporates
two-loop contributions of the sunset diagram in the gluon
DSE, see Fig. 3.

VI. COMPARISON WITH LATTICE RESULTS

In the previous two sections we obtained two different
types of solutions for the ghost and gluon propagators in
the DSE and FRG approaches. It is certainly instructive
to compare these results to the ones from lattice calcu-
lations. As became apparent from a number of works in
the past years such a comparison is not unambiguous.
Ideally one strives for a situation where exactly the same
quantities are calculated in the continuum and on the lat-
tice. However, this is currently not the case for a number
of reasons. First, lattice calculations are necessarily done
in a finite volume. It is therefore mandatory to take into
account finite volume effects and zero mode contributions
absent in the infinite volume/continuum limit. Second,
one encounters finite size contributions due to the non-
vanishing lattice spacing. Third, artefacts due to the
gauge fixing procedure are different from the ones in a
continuum formulation.

Before we discuss these issues further let us com-
pare the continuum solutions with the lattice results of
refs. [41, 75] in minimal Landau gauge. In the top dia-
gram of fig. 9 we display the gluon dressing function from
different approaches. At large momenta, where pertur-
bation theory sets in, all results are in excellent agree-
ment with each other. The DSE results as well as the
FRG results in the intermediate regime show only a mild
dependence of the type of solution, i.e. scaling or de-
coupling does not really matter here, as expected. As
compared to the standard DSE results the dressing func-
tion from the functional RG approach is closer to the
lattice data. From the discussion of the last section this
was to be expected, since the FRG truncation included
effects from the gluonic two-loop diagrams neglected in
the DSE-truncation. Note that such contributions can be
either included directly or phenomenologically by modi-
fying the three-gluon interaction in the one-loop diagram
also into the DSE framework, see e.g. [76].

The infrared behavior of the propagator functions for
the gluon, D(p2) = Z(p2)/p2, of both solutions are com-
pared in the second panel of fig. 9. Clearly, the scal-
ing solution comprises an infrared vanishing propaga-
tor, whereas the decoupling solutions are infrared finite.
Changing the boundary condition G−1(0, µ2) from zero
to finite values first leads to a finite but small value for
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FIG. 9: Both type of solutions of sections IV and V compared
to lattice results in minimal Landau gauge from [41, 75].

D(0) with the corresponding gluon propagator still be-
ing non-monotonous. From a certain minimal value of
G−1(0, µ2) on, this behavior changes and the gluon be-
comes a monotonously decreasing function of momen-
tum. Such a monotonous behavior is also seen in the
lattice data, which therefore clearly represent a decou-
pling type of solution for the gluon.

(a) Gluon propagator, GA =
Z(p2)
p2 = 1

ZA(p)p2 .
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comes a monotonously decreasing function of momen-
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(c) Ghost dressing function, G = 1/Zc.
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FIG. 10: The absolute value of the Schwinger function ∆(t)
plotted against time for both, the decoupling and scaling type
of solutions. (The latter result with a slightly different scale
has previously been published in [84].)

VII. GLUON CONFINEMENT

Finally we wish to investigate the issue of positivity
violations in our two types of solutions. The confinement
of gluons by the absence of a spectral representation of
its propagator has been addressed e.g. in [1, 67, 84] with
violation of positivity being a sufficient criterion for the
absence of gluons from the physical part of the state space
of QCD. For the scaling type of solutions with an infrared
vanishing gluon propagator these violations can be shown
analytically [67]. This is not so for the decoupling type
of solutions. Thus to investigate this question one has to
determine the Schwinger function

∆(t) =

∫
d3x

∫
d4p

(2π)4
exp(ip · x)D(p2), (48)

numerically. Here D(p2) = Z(p2)/p2 is the gluon prop-
agator function. Our results for both type of solutions
are shown in Fig. 10. Apart from some variations in the
scale this type of behavior can be seen for all our decou-
pling solutions, i.e. it is independent of the value of G(0).
This statement, however, may depend on the truncation
scheme.

From Fig. 10 it is plainly visible that, despite the dif-
ferences in momentum space, the Schwinger function for
both solutions is very similar. In particular, in both cases
positivity is violated, and gluons are confined. This oc-
curs for both cases at about the same scale of 1 fm, typical
for the size of bound states.

Furthermore, both results for the Schwinger function
are in qualitative agreement with corresponding results
from lattice calculations [85, 86]. Hence, despite the com-
pletely different status with respect to the Kugo-Ojima
framework, both solutions do not describe propagating
gluons.

In particular, the gluon is not characterized by a
pole mass and an exponential decrease of a (positive)
Schwinger function at large times. This implies that the
mass parameter defined in (42) is also not a pole mass
in the ordinary sense but at best a screening mass. In
addition, a gauge-independent mass in a sense defined in
[87] cannot be constructed. Hence, irrespective of its in-
frared properties, the gluon is never an ordinary massive
particle.

VIII. SUMMARY AND DISCUSSION

We close with summarizing again some of our main
results and conclusions. More detailed discussions have
been provided in the related chapters.

We have obtained, in various truncations of DSEs and
FRGs, a one-parameter family of solutions for the ghost
and gluon dressing functions of Landau gauge Yang-Mills
theory. We argued that Slavnov-Taylor identities cannot
be used to discriminate between these. However, global
symmetries are indicative: exactly one member of this
family, the only one exhibiting scaling behavior, is con-
sistent with confinement and the existence of a globally
well-defined BRST charge. The remaining solutions are
of a decoupling type and are not BRST-symmetric.

One of the truncation schemes had furthermore been
newly developed, and tailored to implement transversal-
ity explicitly at the level of the regularization scheme.
The very good agreement of results obtained in this new
scheme with the results of a previously developed scheme
[5] provides further justification for the old scheme.

The appearance of this one-parameter family of solu-
tions in the DSEs and FRGs can be achieved by im-
plementing boundary conditions [4, 18]. These bound-
ary conditions induce two different mechanisms for the
infrared behavior. One is a domination of the infrared
properties by the gauge-fixing procedure, in accordance
with the Kugo-Ojima and Gribov-Zwanziger scenarios.
The other mechanism generates a decoupling type of so-
lution with an entirely different infrared dynamics. The
latter type of dynamics cannot be color-confining and
preserving BRST symmetry at the same time. Both so-
lutions, however, satisfy the quark confinement criterion
put forward in [31]. As this criterion is insensitive to the
underlying scenario this is a necessary but not sufficient
condition for confining Green’s functions.

Finally, we would like to emphasize once more that
neither solution corresponds to an ordinary massive
gluon with a pole mass. Instead, in both cases the
Schwinger function shows the presence of positivity
violation and thus the gluon is not a free particle.
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Figure 2.4.: Results for the propagators in Yang–Mills theory [276] at vanishing
temperature.

2.3.3. Thermodynamics of Yang–Mills Theory

For high temperatures perturbation theory is supposed to be applicable. This statement

is based on the feature of asymptotic freedom of QCD, which persists also in the limit

of Yang–Mills theory. Indeed, the coupling becomes weak and allows for a perturbative

treatment, but only at very high temperatures, which are well above the deconfinement-

confinement phase transition temperature. In a strict sense perturbation theory is appli-

cable for T = 104 − 105 Tc. In this region even the approximation by a free gas of quarks

and gluons provides quantitatively good results. For small and intermediate temperatures

ordinary perturbation theory becomes unreliable. This is due to the fact that the conver-

gence radius is too small as to reach this domain, at least up to already high order in the

coupling g5. At this point I want to mention that, in contradistinction to this, there are

results from weak coupling expansions for QCD up to order g6 ln 1/g [345] that provide

suprisingly good agreement with lattice data for significantly smaller temperatures down

to ≈ 4T /ΛMS.

30



2.3. Yang–Mills Theory

But the fact that the naive perturbative treatment fails, does not rule out a perturbative

treatment in general as perturbation theory can be refined. For reviews on perturba-

tive investigations on thermodynamics in Yang–Mills theory and beyond see for exam-

ple [346, 347]. There are several mathematical methods that allow to widen the region of

convergence to much lower temperatures, e.g. Padé approximants [348–350], self-similar

approximants [351] or Borel resummations [352,353]. Also, other schemes have proven to

be successful, not only in Yang–Mills theory but even in full QCD, especially hard thermal

loop (HTL) resummations, where modes with momenta far above the temperature scale

are resummed, but the soft contributions are fully taken into account. There are different

ways of how to order these resummations, the most successful ones are either based on a

Φ-derivable HTL resummation [354–357] or HTL perturbation theory [347,358–362].

Continuum approaches based on (improved) perturbation theory do allow for a study

of thermodynamic quantities in the full temperature range above 3Tc, where they give

accurate results in quantitative agreement with lattice data [44, 49]. Unfortunately, tem-

peratures around 0 ≤ T ≲ 3Tc are out of reach also in these approaches, basically because

perturbation theory can only yield logarithmic corrections to the pressure of a free gas, so

the Stefan–Boltzmann limit. In contrast to this, lattice data shows that for low temper-

atures there is a qualitatively different behaviour which is rather a quadratic term in the

temperature that dominates up to ≈ 3Tc.

In order to study physics around the deconfinement-confinement phase transition non-

perturbative methods are inevitable, of which in particular the FRG is suited as it gives

an expression for the free energy25 directly, eq. (3.15). From the free energy all other

thermodynamic quantities can be computed. The free energy of Yang–Mills theory has

already been studied within the FRG [11, 363], and it is one of the major topics in this

thesis as well. From the free energy the pressure, energy density and trace anomaly can be

computed. For first results which are in good agreement with lattice data at temperatures

very close to the deconfinement-confinement phase transition temperature see [363].

In this work the FRG approach is applied to compute thermodynamic observables, see

section 4.3. The results for the pressure agree qualitatively with lattice data, but further-

more, even quantitative agreement up to ≈ 12% for the investigated region 0 < T < 4Tc.

In conclusion, perturbative methods fail at describing the system at the deconfinement-

confinement phase transition but non-perturbative functional approaches are applicable

and very promising in this region. However, the study of thermodynamics in Yang–Mills

theory is very intricate within these methods, so the results need to be cross-checked with

other theoretical methods as no experiments can be conducted in the limit of pure gauge

theory. Fortunately, for pure Yang–Mills theory lattice gauge theory is applicable for all

temperatures because it does not suffer from problems emerging from the matter sector.

For reviews on lattice gauge theory, see e.g. [20, 57–60]. Thus, the lattice is actually the

25Basically, what is called effective action in a field theoretical description is the free energy.
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method that provides the quantitatively most accurate insight into this region of Yang–

Mills theory, and in principle the thermodynamics are well understood [44, 49], even as a

function of Nc [364–366]. Actually, for Nc → ∞ analytical solutions can be found again

[367]. This limit is an important ingredient for employing the AdS/CFT conjecture [368],

for a review see e.g. [369]. However, if one wants to address not only Yang–Mills theory but

proceeds the study with full QCD, the lattice suffers from two severe problems. Firstly,

adding (dynamical) quarks is a hard task in general, and secondly, the sign problem hinders

computations at finite quark chemical potential at least in the region where µ/T ≳ 1, see

also section 2.1.2. Therefore, it is desirable to have an alternative description of the

physics in terms of a continuum functional method that allows for arbitrary values of the

temperature and quark chemical potential in order to fully study the phase diagram. By

comparison of different methods the potential weaknesses of each approach can be tested,

e.g. finite volume or finite size artefacts on the lattice, or truncation insufficiencies in the

continuum. It is an appealing situation that functional continuum methods and the lattice

are complementary in the sense that the pure gauge part of QCD is comparatively easy

on the lattice but the hard part in the continuum, and in turn the matter sector is the

easier part of QCD in the continuum whereas it is hard on the lattice.
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3. Non-Perturbative Functional Methods

Perturbation theory is an expansion around small amplitudes1. Thus, at the latest where

the coupling becomes of order 1 perturbative computations become unreliable. As a con-

sequence, for a description of the full momentum range of QCD within a unique setting

one has to apply non-perturbative methods2. After a short comment on the formulation

of thermal field theory in this chapter I describe two formalisms, the functional renormal-

isation group (FRG) as well as Dyson-Schwinger equations (DSEs), that are able to treat

strongly coupled systems. Both methods are directly derived from the functional integral

of the quantum field theory. Thus, they are exact methods, and capable to study non-

perturbative physics. Another exact non-perturbative method are nPI effective actions,

however, they are not the main approach in this work. Due to this I delay the discussion

to section 5.1.3, in which they are utilised.

The focus is on the FRG as most of the results that are presented in this thesis have

been derived within this framework. However, I sketch the derivation of DSEs as well as

highlight the aspects that are relevant for the thesis. In fact, both methods are related

to each other, however, dependent on the system that is studied one or the other may

be more suited to tackle the problem at hand. Therefore, I conclude this chapter with a

direct comparison of both methods, their relationship to each other and their merits.

3.1. Thermal Quantum Field Theory

In a relativistic field theory, due to particle–anti-particle creation and annihilation pro-

cesses, particle number is not conserved. Further, energy can be exchanged with a heat

reservoir. Therefore, the appropriate statistical ensemble for this physical situation is the

grand canonical partition function. The temperature T , the volume V and the chemical

potential µ are conserved, which determine the mean values for the energy and conserved

charges, i.e. the mean number of particles. These constraints are satisfied by the help

of Lagrangian multipliers, i.e. β = 1/(kBT ) and µi are added to the Hamiltonian in the

exponent of density matrix, one µi for each conserved number operator Ni. In the follow-

ing, natural units are introduced, thus, kB = 1. By the help of the density matrix ρ the

1Often perturbation theory is said to be applicable for weak interactions. In general this is not true as
quantum effects can render the effective couplings strong.

2In principle a strong coupling itself is not an inevitable problem for perturbation theory as in such cases
resummation techniques may be successful. In QCD, however, confinement requires the generation of a
physical mass-scale Λ at low energies. The Λ-dependence is not included in a perturbative expansion.
Thus, such a series or a resummation thereof is not capable of describing QCD in the infrared.
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ensemble averages ⟨O⟩ for arbitrary observables O can be computed according to

ρ = exp{−β (H − µiNi)} , ⟨O⟩ = Tr{ρO}
Tr{ρ} . (3.1)

From this the partition function Z is constructed via

Z = Tr{ρ} . (3.2)

The partition function comprises the entire information of the physical system, i.e. all

physical observables can be calculated from it, e.g. in the thermodynamic infinite volume

limit the (thermodynamic) pressure P , entropy S, charge densities Ni and energy E

P = T
∂ ln{Z}
∂V

= T

V
ln{Z} ,

S = ∂ (T ln{Z})
∂T

= ∂P

∂T
,

Ni = T
∂ ln{Z}
∂µi

= ∂P

∂µi
,

E = ⟨H⟩
V

= − 1

V

∂ ln{Z}
∂β

. (3.3)

The trace in the partition function is equivalent to a sum over all states in Fock space,

thus,

Z = Tr e−β(Ĥ−µiN̂i) = ∑
j

⟨φj ∣e−β(Ĥ−µiN̂i)∣φj⟩ . (3.4)

In order to make the connection of the statistical description with the quantum field the-

ory the element ⟨φj ∣e−β(Ĥ−µiN̂i)∣φj⟩ is written as a transition amplitude, but, working in

terms of an imaginary time3 variable t → iτ . This is why this formalism is also called

imaginary time formalism or also Matsubara formalism. Note that this is effectively an

analytical continuation to the Euclidean metric, however with a finite time interval. The

temperature only enters via the interval range.

For statistical purposes in equilibrium the system returns to its initial state after a certain

time. This should be reflected by the description in terms of the path integral. Thus,

the integration in the time direction is not from negative infinity to infinity any more but

rather over a finite interval. This suffices to describe the system within this time. Fur-

3There is also another formulation of a field theory at non-zero temperature which does not introduce an
imaginary time. In analogy this method is called the real-time approach. Actually, in systems that are
not in equilibrium this formalism is to be chosen as the Matsubara formalism is not applicable. This is
due to the fact that one needs to specify the initial state at time t0 by its density matrix ρnon−eq(t0).
Then, one is interested in the (real-)time evolution of the system. But, this initial state is generally
not in equilibrium, i.e. the identification of the transition amplitude with the time-evolution does
not hold as ρnon−eq(t0) /∼ exp{βH}. This invalidates the Matsubara formalism for out-of-equilibrium
physics. Note that this also refers to the standard lattice formulations for the functional integral, as
in Minkowksi space the probability interpretation is lost. Nevertheless, the lattice is still possible to
simulate these systems, however within other formulations, e.g. with stochastic quantisation [54–56].
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ther, one demands (anti-)periodic boundary conditions for the (fermionic) bosonic fields

as the system can evolve at earlier or later times as well. However, the behaviour of the

system at these times can be described equivalently to this one time interval, again due

to the fact that the equilibrated system returns to the same state after some time. Thus,

the system is determined via the integration over the time region [0, β] with the proper

boundary conditions. This has changed the space on which the fields live. At vanishing

temperature the space is infinite in time direction as well as in spatial direction, thus, the

space is an R4. At non-zero temperature the time direction is compactified, i.e. the space

is [− 1
T ,

1
T ] ×R3 (after symmetrisation), so it has the topology of S1 ×R3.

The fields can be expanded in a Fourier series. Therefore, the spectrum of the 0-component

is not continuous anymore but it has become discrete, which is naturally just the generical

property for particles in a finite volume. By this analogy it is clear that the number of

possible modes is infinite. The discrete modes are called Matsubara modes. Thus, e.g. a

bosonic field φ(τ, x⃗) can be Fourier expanded and Fourier transformed as

φ(τ, x⃗) ∼
∞
∑

n=−∞
∫ dp⃗ ei(p⃗x⃗+ωnτ)φn(p⃗) , (3.5)

where the normalisation is omitted. The p0 = ωn are the Matsubara modes, and the φn(p⃗)
are the different modes of the field, which are labelled by n. The field continuously depends

on spatial momentum as the volume is supposed to be infinite.

The integration over spacetime is affected by this discrete spectrum: The integration over

infinite Euclidean space R4 turns into an integral over the infinite spatial subspace and

a sum over the Matsubara modes, thus, for an arbitrary function f the integral over

spacetime is performed by

∫
d4p

(2π)4
f(p) T≠0Ð→ T

∞
∑

n=−∞
∫

d3p

(2π)3
f (ωn, p⃗) . (3.6)

The length of the time interval is β = 1/T , thus, the bosonic modes are given by ω
(b)
n =

2πTn, with n ∈ Z. For fermions, due to the anti-periodic boundary conditions, the modes

are spanned by ω
(f)
n = 2πT (n+ 1

2). Note that although the ghost is a Grassmann particle it

has bosonic statistics4. Therefore, both types of fields in Yang–Mills theory have bosonic

statistics, i.e. gluons and ghosts have periodic boundary conditions. Naturally, the quarks

are anti-periodic as they are fermions. For the loop integrations and summations in this

thesis I use the abbreviations

∫
p
= ∫

d4p

(2π)4
, and ⨋

p
= T ∑

n∈Z
∫

d3p

(2π)3
, (3.7)

with p0 = 2πTn.

4The Faddeev–Popov ghost is a Grassmann particle with spin zero, i.e. it has the wrong statistics. But,
this does not contradict to the spin-statistics theorem [370] as this theorem holds for physical particles
only, whereas the ghost is an auxiliary field that is introduced only for mathematical convenience.

35



3.2. The Functional Renormalisation Group

The finiteness of the interval shows that temperature is an infrared phenomenon, where

”infrared” does not refer to ΛQCD, but the temperature. Modes with momenta much

larger than the temperature do not feel the change of the boundary conditions, therefore,

they behave as in the zero-temperature case. If the momentum of the mode is low, i.e. of

the order of the interval length, temperature effects grow in size.

Interestingly, in the limit of T → ∞ only the zero mode can contribute, because higher

Matsubara modes are suppressed in the functional integral. As a result, the originally

four-dimensional system becomes an effectively three-dimensional one. Thus, this transi-

tion is also called “dimensional reduction”.

In the work presented later the notion of the rest frame of the heat bath is introduced,

which relates to Lorentz invariance. The rest frame of the heat bath singles out a preferred

frame that breaks Lorentz symmetry manifestly. However, full Lorentz symmetry is not

really broken but obscured. To see it explicitly one can introduce a vector that points in

the direction of the heat bath, and define the path integration to be constrained to the

hypersurface that is orthogonal to this vector. In this formulation Lorentz symmetry is

seen directly. For practical computations this formulation is usually not utilised, because

the construction of the path integral is complicated. Instead of that most calculations

are done in the rest frame of the heat bath. This is justified by the knowledge that, in

principle, the explicit restoration of Lorentz invariance can be done at any time. Later

this manifest breaking of gauge-invariance has an effect on the parametrisation of the

gluon, which needs to be done differently at vanishing and non-vanishing temperature, as

explained in section 4.1.1.

In the rest of this thesis the formulation is done in this Matsubara formalism and in the

rest frame of the heat bath. Further, I refer to the imaginary time τ simply as t.

3.2. The Functional Renormalisation Group

In this section 3.2 I give a short introduction into the powerful tool of functional flow equa-

tions. I sketch the properties of the flow equation in section 3.2.2 and further I give details

on the flow equation in gauge-theories in section 3.2.4. Flow equations can be derived

algorithmically, which is described in detail in section 3.2.3. In section 3.2.5 I describe

field reparametrisations in such a way that (part of) the dependence on the renormalisa-

tion group scale is put directly into the fields. This is crucial in the investigations of the

thermal aspects of Yang–Mills theory in chapter 4.
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3.2.1. The Idea behind the Renormalisation Group

The exact treatment of a real physical system is usually not possible. Thus, the general

strategy is to simplify the system such that solutions for this model system are possible.

But, it is crucial not to neglect relevant aspects of the system, which typically can only

be satisfied if profound knowledge about the system is given. This is often the case if the

system contains just a small number of degrees of freedom and a short correlation length.

Needless to say there are other cases. At critical phase transitions the correlation length

diverges. In quantum field theory the number of degrees of freedom is infinite, even in

finite systems. Both are typical cases for which the functional renormalisation group offers

a framework to describe the system. The idea is to look at the system at various scales,

reducing the degrees of freedom such, that only the relevant aspects persist.

There are two important steps in the reasoning of the FRG: It builds on a coarse-graining

procedure which is followed by a rescaling of the system afterwards. Suppose there is a

system with many degrees of freedom, but a finite interaction length, even though the

correlation length may be large. First, the coarse-graining divides the system in many

subsystems of approximately the size of the interaction length. Then, one averages over

the elements in the subsystem and beholds the averaged system only. This averaging re-

duces the number of degrees of freedom of the full system5. However, these subsystems

interact with each other, but as the averaged regions are larger than the elements over

which has been averaged within this particular region the interaction length has increased,

or in other words, the scale was changed artificially by the averaging procedure. The sec-

ond step in the FRG is to undo this change, thus, to rescale the interaction length to its

original value measured in terms of the size of the single interacting parts. This twofold

transformation tells how the system has changed under a change of scale in the sense

that one learns which mechanisms are still there, whereas others become more irrelevant

if the system is looked at a different scale. Thus, by iteration of renormalisation group

transformations one can learn about the basic interactions and structures of the system

at hand, namely those that persist and those that have extincted in the iteration.

Scale-invariance means that the long-range fluctuations can be treated similarly to the ones

in the bare action, so the description of the system is similar after an arbitrary amount

of renormalisation group transformations6. This is also referred to as a fixed point, as

the theory does not change under further renormalisation group transformations. It has

far-reaching meanings. Firsty, for critical phenomena, as there is no scale to which the cor-

5In a quantum field theory the number of degrees of freedom is infinite. This seems to disqualify the idea
for these systems. However, the interactions are local which allows for a infinitesimal coarse-graining.
This is reasoned further in the context of the momentum shell-integration.

6Note that the system does not necessarily look similar in a literal sense. E.g. for a ferromagnet at
the phase transition the net magnetisation vanishes. However, it is still possible to find a region
whose magnetisation is non-zero, say positive, thus, more constituents would be positive than negative.
But, this would hold on all scales, i.e. each region itself consists of smaller regions with positive
magnetisation. Thus, the non-zero magnetisation would persist either averaging and going to larger
scales, but also by looking at smaller scales. This would signal the system not being at the phase
transition. Thus, the trivial interpretation of scale-invariance that the system looks similarly at all
scales is not correct in a strict sense.
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relation length can be compared, correlation lengths up to infinite range can be included.

Secondly, and maybe even more importantly for the content of this thesis, scale-invariance

is closely related to renormalisability of a theory. Again due to the fact that there is no

scale a cutoff of modes in momentum space is not fixed to a scale, thus, it can be sent to

infinity. But this implies that the theory is (trivially) renormalisable. Furthermore, even

for scale-dependent theories, as it is encountered in this work, one can impose renormali-

sation if the ultraviolet behaviour is determined by a fixed point.

This idea can be translated in a field theoretical language. The classical action encodes

the full information of a classical theory, i.e. in our case a relativistic field theory with-

out quantum fluctuations. In a quantum theory the effective action7 is the analoguous

quantity to the classical action, i.e. it contains all details of the quantum theory. The

FRG does the following: One starts with a (renormalised) theory about which one has full

knowledge at a certain microscopic scale Λ. In fact, one can either start with the classical

action directly or with an action computed by resummation techniques or perturbation

theory, the important point is that the starting action describes the system well at the

energy scale Λ. But in contrast to other methods, e.g. DSEs, one does not integrate out

all quantum fluctuations at once, but following the idea of Wilson [371–373] in a step by

step procedure. This corresponds to the coarse-graining of a theory with local interac-

tions. At the initial scale Λ only quantum fluctuations of a momentum scale around the

initial scale are considered, so from the region Λ−∆k. These contributions are finite as

all quantum fluctuations below that scale are suppressed. After integration of the action

in the presence of the quantum effects one knows the effective action at the lower scale

Λ−∆k. This step corresponds to an renormalisation group transformation. Integrating

quantum fluctuations sequencially and infinitesimally until all fluctuations are included in

the effective action, i.e. integrating down to the scale k = 0, one ends up with the effective

action of the full theory, involving all quantum effects8.

In the following sections I introduce the flow equation in more detail, especially for gauge

theories. Further, I sketch the idea of constructing thermal flows.

3.2.2. Flow Equations

In this section 3.2.2 I highlight those aspects of flow equations that are of importance

in the work presented here. For reviews on the functional renormalisation group see

e.g. [277–279,374–391].

The aim in a theoretical description of a quantum field theory is to get the hands on the

7The effective action generates 1-particle irreducible Green functions. Although other formulations are
possible, see e.g. [278], I only discuss the functional flow equation for the scale-dependent effective
action, as this framework is applied later in this thesis.

8Generally, the flow equation covers all fluctuations, not only quantum fluctuations. Actually, the effect
of thermal fluctuations is a major topic in this thesis. Thus, I delay a discussion of thermal effects
to a separate section 3.2.6 in order not to confuse the special aspects of thermal fluctuations with the
general features of the flow equation, that are to be presented in this chapter.
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effective action Γk, as it comprises the entire information of the quantum theory at a scale

k. In the high energy limit, where all quantum effects are suppressed, the scale-dependent

effective action approaches the classical action S[ϕ], where ϕ is a field multiplet that con-

tains the the fields of the theory.

On the other side, the scale-dependent effective action turns into the full quantum effective

action if one sends the infrared cutoff parameter k to zero, so

Γk[ϕ]
k→Λ→ S[ϕ], Γk[ϕ]

k→0→ Γ[ϕ]. (3.8)

The suppression of infrared fluctuations is implemented via the cutoff function, which is

hard to do consistently on the level on the Greens functions. Instead, the better choice is

to directly modify the generating functional. Here, a regulator term is added to the action

which suppresses low momentum modes

eWk[J] ∶= e−∆Sk[ δδJ ]Z[J] = ∫
Λ
Dϕe−S[ϕ]+∆Sk[ϕ]+J ⋅ϕ. (3.9)

General fields ϕ and sources J carry indices. The coupling to the external sources must

enter the exponential as a scalar quantity. As the possible tensorial structures are not rel-

evant for the discussion here, neither for the fields and their sources, nor for the regulation

procedure, I omit them by using the condensed notation: The dot-product in eq. (3.9)

indicates dummy summation of all types of indices as well as integration over spacetime

or momentum, respectively, when Fourier transformation in momentum space has been

done.

The generating functional for connected n-point functions Wk[J] eq. (3.9) is also called

Schwinger functional9. These quantities are renormalised, i.e. finite quantities, due to

the regulator insertion. This renormalisation is k-dependent, because the regulator is

k-dependent. Here, also the regulator ∆Sk receives regularisation. For reasons of conve-

nience in practical computations that are detailed below, the regulator term that is used

here is defined to be quadratic in the fields, although in principle higher orders would be

possible. Due to its quadratic structure it acts like a mass-term ∼ k2 for the propagator.

This effectively cuts off contributions from fluctuations below that artificial mass scale.

The regulator quadratic in the fields looks like

∆Sk[ϕ] =
1

2
ϕ ⋅Rk ⋅ ϕ. (3.10)

The fields may carry indices. In this case the regulator Rk for the specific field type must

have a non-trivial tensor structure as the action as well as its modification is a scalar

quantity.

The requirements that the theory has the limits of the classical and the full quantum

effective action for very high and low momenta, respectively, and that the infrared fluctu-

ations are suppressed directly translate into constraints for the scalar part of the regulator

9Functional flow equations can be derived not only for the effective action, but also for the Schwinger
functional, see e.g. [278].
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function Rk. Neglecting possible tensor structures it must respect the relations

lim
p2

k2→0

Rk(p) > 0 (infrared finiteness of propagator)

lim
k2

p2
→0

Rk(p) = 0 (full quant. theory at k = 0)

lim
k2→Λ→∞

Rk(p) → ∞ (reduction to classical action).

Apart from that the form of the regulator is free to choose10.

Actually, the form of the regulator guarantees the regularisation of both momentum lim-

its. In the infrared the regulation is due to the mass-like term whereas in the ultraviolet

the vanishing of the scale derivative ∂tRk for p2

k2 ≫ 1 ensures the finiteness of the contri-

butions coming from this region. The scale derivative ∂tRk is peaked around p ≈ k. Thus,

the integral is dominated by the values around k, i.e. it is local in momentum space.

This shows the Wilsonian idea of integrating over small momentum shells. The finiteness

facilitates numerical computations as no divergencies appear and no further (numerical)

renormalisation must be done.

Taking a regulator function like eq. (3.11) for scalar theories is trivially possible. In gauge

theories the introduction of a regulator term is a little bit more subtle as a mass-term

for the gluon breaks gauge invariance manifestly. This problem can be circumvented in

different ways: either by keeping track of the breaking of gauge invariance via so-called

modified Ward–Takahashi- and Slavnov–Taylor-identities or by a construction of gauge-

invariant flow itself. I explain the issue of gauge-invariance in more detail in section 3.2.4.

Conveniently, the regulator function is written in terms of a dimensionless shape function

r(p2/k2) and the tensor and momentum structure of the particle that shall be regulated,

so usually p2 for a real boson or /p for a fermion. For more complex systems the regulator

R may carry other indices. E.g., for the gauge boson in Yang–Mills theory the regulator

carries Lorentz and Colour indices. These generalisations are straightforward, thus, here

it is sufficient and most illustrative to consider a real scalar particle only. In this case

Rk(p) = p2 r(p2/k2). (3.11)

10Albeit the shape of the regulator can be chosen freely as long as the constraints given in eq. (3.11) are
satisfied, some forms may be unsuited for practical computations. As an example that is of particular
importance in the following sections, the sharpness of the regulator in thermal computations can be
in the primary focus. For thermal flows only the difference between the Matsubara sum and the 4-
dimensional integral of the temporal component is relevant. Although the direct thermal effects are
limited to low scales k ≲ 2πT , for regulators that fall off very fast the difference oscillates also in a
momentum region far above this scale. In fact, the steeper the regulator the wider is the region in
which these oscillations are of quantitative importance. Thus, in the limit of a sharp regulator the
initial scale for the start of the flow would have to be Λ → ∞. In a numerical treatment this choice
can not be implemented. Therefore, the choice of an infinitely steep regulator may be inappropriate,
although it satisfies the limits in eq. (3.11) and is therefore theoretically correct.
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Figure 3.1.: Plot of a typical regulator Rk(p), and the scale derivative Ṙk(p) ≡ k∂kRk(p).
For low momenta the regulator acts like a mass-term ∼ k2. Thus, it suppresses
contributions from fluctuations with momentum p2 ≲ k2.

Typical regulators that are applied in this work are the exponential regulator

rm(x) = xm−1

exm − 1
, (3.12)

and the optimised regulator [392]

ropt(x) = (k2 − p2)Θ (k2 − p2) , (3.13)

the shapes of these choices are plotted in fig. (3.2). So, an infrared-divergent massless

bosonic propagator is rendered infrared-finite via the regulator

G(p) = 1

p2
→ Gk(p) =

1

p2 (1 + r (p2/k2)) . (3.14)

In fig. (3.1) the shape of the exponential regulator Rmk (p) and the dimensionless derivative

Ṙmk (p) = k ∂kRmk (p) is given. The latter is a direct ingredient of the flow equation as well.

The different choices of the regulator are given in fig. (3.2). The locality of the flow in

momentum space is directly related to the steepness of the regulator. The faster the

regulator falls off for momenta p > k the more local turns the flow. As locality is a basic

concept of the flow equation the regulator should in general not be smeared over a region

too wide in p-range, as then the picture of momentum shells is not satisfied any more.

In this case fluctuations from large scales, that are far above the scale k, can affect lower

scales.

The effect on a bare massless propagator is sketched in fig. (3.3). For large momenta it

appoaches the perturbative propagator whereas for small momenta it automatically re-
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Figure 3.2.: Different choices for the regulator function Rk(p). The purple and blue curves
are exponential regulators of different steepness controlled by the power in the
exponential, the red curve gives the optimised regulator shape function.

ceives an infrared regularisation, so it tends to a finite value. In this plot it is evident that

k2 G HpL
k2 Gk

m=1HpL
k2 Gk

m=4HpL
k2 Gk

opt.HpL

k2 p20

1

Figure 3.3.: The black curve shows the Feynman propagator of a massless boson, which
diverges at p→ 0. The blue and purple curve shows the regulated propagator
with an exponential shape function with the steepness factor m = 1 and m = 4,
respectively, and the red curve is the regulator propagator with an optimised
regulator. The regulator acts like a mass term in the infrared and suppresses
fluctuations from this region.

different shape function treat the infrared behaviour differently at non-vanishing k. Thus,

the flow itself is specific to the regulator, and hence regulator dependent. It is important

to note that this ambiguity is only present for non-vanishing k, in the limit of k → 0 both

flows yield the full (unique) effective action. The concept of optimisation in the sense of

minimising the flow by the choice of the regulator plays an important role in the practical

applications.

42



3.2. The Functional Renormalisation Group

The functional flow equation was first derived by Wetterich [393]. It is given by

∂tΓk[ϕ] = 1

2
STr{(Γ

(2)
k [ϕ] +Rk)

−1
∂tRk} , (3.15)

with the frequently used abbreviations ∂tOk ≡ Ȯk ≡ k∂kOk. The supertrace STr comprises

integration of the loop momentum as well as the summation over internal indices of the

fields in the loop. Further, it assigns correct signs for Grassmann fields. How these signs

emerge is sketched in section 3.2.3. The inverse of the second derivative of the modified

action is referred to as the propagator.

The flow equation, eq. (3.15), is a differential equation for the scale-dependent effective

action. By infinitesimal variation of the scale k it interpolates between the classical action

and the quantum effective action. The idea of this can be visualised by the help of the

theory space which is an infinitely dimensional space spanned by all possible orthogonal

operators and couplings. Each point in theory space describes a different theory. The

flow equation describes the transition of the classical action to the effective action as a

trajectory/flow in theory space. Reminding of the discussion of different regulators, the

trajectory in theory space is regulator-dependent, besides the limits k →∞ and k → 0 are

unambiguous11. An illustration is given in fig. (3.4), which shows that different trajec-

tories end in the same quantum action. Later, especially in section 3.2.6, this picture is

refined such that thermal effects are considered in addition to quantum fluctuations.

For illustration of the flow equation, eq. (3.15) can also be expressed diagrammatically. For

the example of a real scalar field this more illustrative representation is given in fig. (3.5).

The propagator is given by a solid line where the shaded-circle indicates that it is the

full propagator. In the rest of the thesis the circles are dropped for clarity. All internal

propagators are to be seen as full propagators. The scale-derivative of the regulator is

illustrated by white circle with the cross. The closed loop involves integration and sum-

mation over internal momenta and indices.

I want to stress two important points. Firstly, no approximation has been made in the

derivation of the functional flow equation. Thus, this equation is exact, although it is

of one-loop structure12, however with fully non-perturbative Green functions in the loop.

Therefore, it is a proper tool to study non-perturbative physics13. Secondly, the one-loop

structure contains full n-point functions. This is directly seen in the closed loop at the

propagator, which is not the perturbative one but the full non-perturbative propagator.

So the scale-dependent effective action depends on the two-point function.

It is a generic feature of the FRG that a flow equation for an n-point function depends

11Stricly speaking the point moves in theory space due to the regulator, but that does not alter the physics
at this point.

12Note that this one-loop structure would be lost if regulator terms in orders in the field of higher than
two were introduced.

13Although the FRG is a non-perturbative method, perturbation theory can be easily reproduced by doing
an expansion in h̵.
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Figure 3.4.: The flow equation interpolates between the classical action at the renormal-
isation group scale Λ and the full quantum effective action at k = 0. The
flow is a trajectory in the space of all possible theories which are spanned by
orthogonal operators/couplings Oi, and serve as expansion coefficients, e.g.
O1 = Γ(2)(p = 0). For different implementations of the regulation procedure
the flow varies at non-vanishing k, but the end-points of the flow are un-
ambiguous. Furthermore, the trajectory depends on the chosen truncation,
as may the quantum effective action. By choosing satisfying truncations the
limit k → 0 must be rendered independent of the truncation.

@t�k[�] =
1

2

Figure 3.5.: Graphical representation for the flow equation of a real scalar particle given
in eq. (3.15). The solid line with the shaded circle represents the full non-
perturbative propagator of the scalar field. The crossed circle indicates the
insertion of the scale derivative of the regulator ∂tRk(p).

explicitly on higher n-point functions up to n + 2, which in turn can be derived from the

Wetterich equation eq. (3.15) by taking functional derivatives with respect to the fields

that are external to the particular n-point process. Note that herein all off-shell contri-

butions must be taken into account in the course of the derivation. Only after the last

functional derivative they can be dropped to get the physical contributions. However,

the dependence on higher n-point functions holds at arbitrary order. So accordingly, the

flow equation generates an infinite tower of coupled differtial equations. Thus, for most

practical applications truncations are inevitable, which means that the set of contributing
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n-point functions is rendered finite. Although eq. (3.15) is exact truncations of the flow

equation only approximate the exact result. Thus, the approximation must respect im-

portant aspects of the physical system, e.g. symmetries or relevant operators. The main

point is to find an approximation that covers the physics of the systems to a satisfactory

extend, but further allows for the solution of the set of coupled flow equations on the

technical level. Besides, consistency is a key issue of truncations which means that once

one has chosen a specific order in the expansion one should keep all the terms of that

order in the flow equation. Unfortunately, the quality of the approximation can not be

estimated a priori but must be tested after the computation by comparison with other

truncations as well as other methods.

Furthermore, the truncation may also rule out certain choices for the regulator. In any

case, the approximation introduces a manifest dependence of the final result on the shape

function, even at k → 0. Consequently, at the end of the computation it is not only nec-

essary to investigate the truncation itself but in combination with the dependence on the

regulator14.

The situation becomes clear by looking at the theory space fig. (3.4) again. The trajectory

does not only depend on the regulator but furthermore on the truncation. Each choice of

approximation excites a different flow. Also the effective action potentially moves. The

task to find a satisfying truncation is to guarantee that the theory flows into the exact

quantum effective action in the limit of vanishing renormalisation group scale.

There are various constructions for truncations. The method that is used predominantly

in the work presented here is the vertex expansion of the effective action,

Γk[ϕ] =
∞
∑
n=0

1

n!
∫ ddx1 . . . d

dxn Γ
(n)
k (x1, . . . , xn)ϕ(x1) . . . ϕ(xn),

that is inserted into the flow equation and allows for a solution of the system of equations

for a closed subset of the Γ
(n)
k . Flow equations for Γ

(n)
k can be obtained from the flow

equation for the effective average action Γk by taking n function derivatives with respect

to the fields ϕ. It is a systematic expansion. This means that by adding more terms in

a systematic way, i.e. adding more vertices to the non-trivial part of the truncation, the

result improves qualitatively and quantitatively.

A further systematic truncation scheme was designed by J. P. Blaizot, R. Méndez-Galain

and N. Wschebor, commonly referred to as BMW method [394,395]. Up to some trunca-

tion order n it keeps momentum dependence of the propagators and vertices. However,

for higher n the momentum dependence is approximated by making use of generic fea-

tures of the FRG. The momentum q of the fluctuations is bounded from above due to the

regulator, which means that the relevant scale for p > k is p, but not the generic term that

carries p + q in the momentum argument. So this dependence on the loop momentum is

14In the literature the regulation procedure is often considered to be part of the truncation. For clarity I
do not make this fusion of these two aspects here.
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neglected. In this case the higher n-point functions can be obtained by taking functional

derivatives of lower n-point functions. Thus, the knowledge of the functions up to order n

suffices to close the hierachy of flow equations, e.g. restricting to two-point functions, the

three-(four-)point function is obtained by taking one (two) derivative(s) with respect to

the field. Unfortunately, this powerful method is expensive when it comes to applications

as the price to be paid for reliable approximations of higher n-point functions is the explicit

field dependence, which has to be resolved in addition to the momentum-dependence. As

a consequence, for complex systems like Yang–Mills theory of QCD this method is not

feasible yet.

Another truncation scheme is the derivative expansion, as initiated by T. R. Morris [396].

Here, the focus is on resolving small momenta, i.e. long wavelengths.

The great power of the flow equation as a computational tool is due to two charateristics

of the approach. Firstly, no further renormalisation must be done. Secondly, the flow

equation eq. (3.15) has a stabilising form, which is in particular convenient for numerical

computations. If the Γ
(2)
k in the denominator is large the flow becomes small. In the other

case, for potentially small values of Γ
(2)
k at low momenta, the regulator part becomes

dominant and guarantees a relatively small flow as well. Thus, numerically one has to

deal with contributions that are finite in the first place due to the regulator form, but

futhermore, they are even small. In the evolution of the differential equation moderate

changes can be resolved with little numerical efforts, and in many applications standard

differential equations solvers can be used.

3.2.3. Algorithmic Derivation of Flow Equations

As there is a strict algorithm for the derivation of functional flow equations it can be con-

veniently done by the help of a computer. The algorithmic derivation of the general form

of functional equations has been put forward for DSEs as well as FRGEs in [397, 398],

and recently even programs have been developed that directly solve functional equa-

tions [399,400].

The derivation of functional flow equations of Yang–Mills theory is a tedious but not very

illuminating task. For purely bosonic theories the derivation is simplified by the possi-

bility of diagrammatic derivations, as it is known from DSEs, see e.g. [397]. While this

is possible for fermionic theories, in principle, the derivation is very complex due to the

anti-commutativity of fermionic fields and derivatives. Therefore, for the computations to

be presented below, in the course of this work, on the basis of previous codes [269,401], the

program fleq was developed that derives the general form of flows of n-point functions in

an arbitrary quantum field theory. For Yang–Mills theory the code was devised further in

the way that the general expressions are replaced by the corresponding expressions in the

chosen truncation, and contractions of colour and Lorentz indices are done automatically
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by the help of FeynCalc [402], for both cases, zero and non-zero temperature. For more

details on the numerics used here see section 4.1.6. Later the program was extended to

QCD for non-zero temperatures and/or chemical potential.

In this thesis I only sketch the general approach to the algorithmic derivation of flow

equations.

The generating equation for flow equations is the Wetterich equation eq. (3.15). It is

a renormalisation group equation for the scale-dependent effective action Γk[ϕ], which

depends on the fields that are collected in the field multiplet ϕ, e.g. for Yang–Mills theory

ϕ = (A, c̄, c). An arbitrary n-point function is defined by taking functional derivatives of

the effective action Γ with respect to n fields in the field multiplet (ϕi), viz.

Γ
(n)
k,ϕi1ϕi2 ...ϕin

= δn Γk
δϕi1δϕi2 . . . δϕin

, (3.16)

where the index i is a multiindex containing not only the field type but also all indices

of this field. Note that all derivatives act from the left to the right. The order of the

derivatives acting on the effective action is important. Particles with fermionic statistics

anti-commute and so do their derivatives, thus, for two fermions15 ψ, ψ̄

Γ
(2)
k,ψψ̄

= −Γ
(2)
k,ψ̄ψ

. (3.17)

In the flow equation (3.15) the trace on the right hand side involves the inverse of the

second derivative of the modified action as well as a scale derivative of the regulator

function R. The latter one is obtained via taking derivatives of the term ∂t∆Sk[ϕ] with

respect to the fields,

∂tRϕiϕj =
∂t∆Sk
δϕiδϕj

. (3.18)

For the inverse two-point function one has to be careful with the fermionic content. Firstly,

recall that the Schwinger functional W [J] is related to the effective action Γ[ϕ] via a

Legendre transformation. This holds also in the presence of the regulator term,

Γk[ϕ] = sup
J

(J ⋅ ϕ −Wk[J]) −∆Sk[ϕ] . (3.19)

The integration over spacetime is absorbed in the summation over dummy indices. Note

that the indices are all subscripts as the field space metric used here is the unity matrix.

From (3.19) one can derive the relation

δϕa (J ⋅ ϕ) = ηabJb = δϕa (Γ +∆S) , (3.20)

where the functional derivatives of an operator O with respect to a field ϕa or source Ja,

15In Euclidean spacetime there is no Dirac conjugation. Therefore, I want to stress that the ψ̄ and the
ψ are two distinct particles, so the degrees of freedom are effectively doubled compared to Minkowski
space. This can be redone unambiguously, therefore, it does not pose fundamental problems.
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respectively, are abbreviated by

δϕaO = δ

δϕa
O , and δJaO = δ

δJa
O . (3.21)

Furthermore, the factor ηab is introduced,

ηab =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

−1 δab if ϕa and ϕb are Grassmann fields,

1 δab else,
(3.22)

i.e. (ηab) is a diagonal matrix in field space with +1 in the bosonic subspace and −1 in the

fermionic subspace. This definition allows to treat commutations of fermionic and bosonic

quantities, respectively, in a unified manner. With ϕa = δJaW the inverse of the two-point

function can be identified from the relation

(δJaδJcW ) (δϕcδϕbΓ) = (δJaϕc)ηdb (δϕcJd) = ηab . (3.23)

The factor ηab accounts for the correct minus sign in fermionic loops. Relating the prop-

agator Gϕaϕb ≡ δJaδJcW to the two-point function via

ηabGϕaϕc(Γ +∆S)ϕcϕb = 1 (3.24)

shows that the inverse of the matrix (Γ +∆S)ϕaϕb is not given by pure inversion of the

Hessian matrix but obtains an additional minus sign for fermions. Therefore, the flow

equation in the matrix notation is given by

∂tΓk =
1

2
Tr{η ⋅G ⋅ (∂tR)} , (3.25)

which is equivalent to eq. (3.15) where the η was absorbed into the supertrace. In order

to derive the flows of higher n-point functions from this equations one takes functional

derivatives with respect to fields. The only two structures that emerge are δϕaΓ
(n)
k,ϕi1ϕi2 ...ϕin

and δϕaGϕbϕc , of which the first relation is implicitly given in eq. (3.16). By further use

of δϕ(G ⋅G−1) = 0 the latter quantity yields in matrix notation

δϕG = − η ⋅G ⋅ η ⋅ (δϕΓ(2)) ⋅ η ⋅G. (3.26)

3.2.4. Flow Equations in Gauge Theories

In section 3.2.2 and section 3.2.3 I detailed the general derivation of flow equations. One

major part of this thesis deals with Yang–Mills theory. Therefore, in this section I concre-

tise the formalism of the preceeding sections to the pure gauge part of QCD. For reviews

on the FRG in gauge theories see e.g. [277–279,378,403].

In continuum methods it is necessary to choose a gauge, see section 2.2. In this work Yang–
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Mills theory in Landau gauge is investigated, which is not a ghost-free gauge. Therefore,

the theory under investigation is an interacting theory of gluons and ghosts.

In the framework of the FRG the suppression of infrared fluctuations below the renor-

malisation group scale k is done by modifying the quadratic part of the action eq. (3.10).

This regulation is done individually for each field, thus, the modification involves a term

quadratic in the gluon fields and another one quadratic in the ghosts

∆Sk [A, c̄, c] =
1

2
∫
p
Aaµ(−p)Rabk,µν(p)Abν(p) + ∫

p
c̄a(p)Rabk (p)cb(p). (3.27)

The regulator functions themselves have a non-trivial tensor structure. The proper deriva-

tion of the Wetterich equation, eq. (3.15), for Yang–Mills theory is straightforward. Noting

that a negative sign in the ghost loop emerges due to the Grassmann nature of the ghosts

the flow equation for the scale-dependent effective action in Yang–Mills theory is given by

∂tΓk[A, c, c̄] = 1

2
∫
p
Gabµν[A](p, p)∂tRbaνµ(p) − ∫

p
Gab[c, c̄](p, p)∂tRba(p) , (3.28)

where t = lnk, Gabµν[A](p, p) (Gab[c, c̄](p, p)) is the gluon (ghost) propagator. Again the

flow equation can be illustrated in a diagrammatic manner16 which is given in fig. (3.6).

�@t �k [A, c̄, c] =
1

2

Figure 3.6.: Flow equation for Yang–Mills theory. The Γk is the scale-dependent effective
action that depends on the field content of the theory, in Landau gauge Yang–
Mills theory gluon and (anti-)ghosts. On the right hand side, the wiggly line
with the shaded blob represents the full gluon propagator, the dashed line is
the ghost. The crossed circle denotes the insertion of the scale-derivative of
the regulator ∂tR. The factor of 1/2 of the gluon loop is the natural factor
that emerges in the flow equation for bosons. For Grassmann fields, however,
there are two routings which yield the same contributions to the flows of
arbitrary n-point functions. Therefore, this is combined in just one loop with
the combinatorical factor 1. Furthermore, the sign of the loop of fermionic
particles is negative. This holds for ghosts and later on also the quarks.

From eq. (3.28) arbitrary n-point functions of Yang–Mills theory can be derived by taking

functional derivatives with respect to the attached fields. For the propagators this results

in the equations to be given here in the diagrammatic way in fig. (3.7) and fig. (3.8), the

corresponding equation for the ghost-gluon vertex is given in fig. (3.9) and for the trigluon

16All illustrations of functional equations in this thesis have been produced with JaxoDraw [404].
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vertex in fig. (3.10). These diagrammatic expressions contain the full information in an

unambiguous way. The explicit expressions are given in appendix A. In the graphical rep-

resentations in this thesis the internal propagator are to be seen as full propagators, but I

omit the blobs for clarity. The flow equations for Yang–Mills theory were generated with

the algebraic program fleq to derive flow equations that is described in section 3.2.3 and

compared with the alternative program DoFun [398] that derives arbitrary flow equations

as well as DSEs.

@t (
�1�R) = +� 2 � 1

2

Figure 3.7.: Flow equation for the gluon propagator.

@t (
�1�R) = � 1

2
++

Figure 3.8.: Flow equation for the ghost propagator.

In section 2.3.2 I argued that the transversality of the gluon field in Landau gauge facili-

tates the investigation enormously. On the level of the functional equations this becomes

clear: The propagators and vertices are purely transversal due to the transversality of the

gauge field.

The purely transversal correlation functions vanish by contracting one of the Lorentz in-

dices with its momentum, (pi)µiΓ
(n)T
µ1⋯µi⋯µm = 0 for i = 1, ...,m. Note that in general n ≠m

due to the ghosts. Since the propagators are purely transversal in the Landau gauge the

purely transversal correlation functions in the Landau gauge form a closed system of flow

equations: The flow of a purely transversal correlation function only depends on purely

transversal correlation functions and carry the whole dynamics. Any observables can be

built up from the purely transversal correlation functions.

In turn the flow of correlation functions with at least one longitudinal direction, Γ(n)L,

depends on both, Γ(n)T and Γ(n)L. Moreover, they also obey modified Slavnov–Taylor
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@t � 2= � � 2 �

+ + ++

+ � 2 � 1

2
+

Figure 3.9.: Flow equation for the ghost-gluon vertex. Note that also the last two diagrams
are of one-loop order, the break in the wiggly line denotes that there is no
four-point interaction.

@t = � 3 + 6 + 3 � 6

� 1

2
+

Figure 3.10.: Flow equation for the trigluon vertex. Note that also the last two diagrams
are of one-loop order, the break in the wiggly line denotes that there is no
four-point interaction.

identities, see [278,279,405,406] and references therein. This situation is summarised in

∂tΓ
(n)T = FlowT

n [{Γ(m)T }] ,

∂tΓ
(n)L = FlowL

n[{Γ(m)T ,Γ(m)L}] ,

(p)µΓ(n)L
µµ2⋯µm = mSTIn[{Γ(m)T ,Γ(m)L}] , (3.29)
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where m ≤ n + 2. The modified Slavnov–Taylor identities are introduced below. They

converge to the standard ones for vanishing cutoff scale k = 0. The above system comprises

the full information about the correlation functions in the Landau gauge. Interestingly,

the hierarchy of flow equations for the purely transversal correlation functions can be

solved independently and carries the full dynamics of Yang–Mills theory. Therefore, vertex

constructions aided by Slavnov–Taylor identities implicitly utilise an assumed uniformity

of correlation functions, that is

∂pµΓ(n) < ∞ for all (p1, ..., pn) . (3.30)

This works well in perturbation theory but has to be taken with a grain of salt in the

non-perturbative regime.

It is also worth emphasising that eq. (3.29) does not depend on the way how the Landau

gauge is introduced. The Landau gauge can be also represented as the limit of covariant

gauges with the gauge action 1/(2ξ) ∫x(∂µAaµ)2 and gauge fixing parameter ξ. Here ξ → 0

signals the Landau gauge. In this case in general one also introduces a regularisation for

the gauge mode, which is schematically given by

RL
µν = lim

ξ→0

1

ξ
ΠL
µν p

2r(p2/k2) , (3.31)

with the longitudinal projection operator ΠL
µν(p) given by

ΠL
µν(p) = pµpν/p2 . (3.32)

Still, the longitudinal mode does not play any role for the flow of correlation functions

as G ⋅ ∂tRgauge ⋅G → 0 for ξ → 0 and limξ→0G is purely transversal. Note however that

1/2 TrRgauge ⋅ G does not vanish and is of importance in the study of thermodynamics.

Upon t-integration it gives the thermal pressure for the gauge mode, namely the Stefan–

Boltzmann pressure of N2
c − 1 fields, see [407].

The regulator term for the gluons acts like a mass term. Thus, for non-vanishing17 k

it breaks gauge invariance explicitly. However, this does not necessarily mean that the

theory is ill-defined. In a gauge-fixed setting physical gauge-invariance is not observed

on the level of an invariant effective action directly. Rather, if the classical action and

the path integral measure are gauge-invariant, gauge-invariance for the effective action is

encoded via constraints for n-point functions. These constraints involve terms that stem

from the gauge-fixing term and the ghost term. In Abelian gauge theories, for physical

Green functions, i.e. for on-shell quantities, these are the so-called Ward identities (WIs).

They can be generalised to the Ward–Takahashi identities (WTIs) for off-shell Green func-

tions and further to Slavnov–Taylor identities (STIs) for non-Abelian theories, which is

17Note that if truncations are done the limit of vanishing k does not necessarily provide a gauge-invariant
effective action.
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the appropriate relation for Yang–Mills theory. These relations keep gauge-invariance by

implementing constraints for the longitudinal parts of the vertices. If a regulator term is in-

troduced these relations are different, as they receive contributions that originate from the

regulation in the scale-dependent effective action18. The resulting expressions are called

modified Slavnov–Taylor identities (mSTIs) [405, 408–411] and describe gauge-invariance

at the energy scale k. As the mSTIs constitute a fixed point under renormalisation group

transformations they guarantee that a gauge-invariant quantity at some scale k stays

gauge-invariant. Thus, gauge-invariance also holds for k → 0, and furthermore, the mSTIs

turn into the usual STIs at vanishing scale k as the regulator term quadratically goes to

zero with the renormalisation group scale. However, one has to keep track of the terms

originating from the regulation which is done by an appropriate choice of the initial con-

dition of the flow at k = Λ. Here, counterterms are added to the classical action which

cancel gauge-symmetry breaking contributions from the regulator at some k.

Another approach to ensure gauge-invariance is to construct flows that are gauge-invariant

themselves. In particular, this would be desireable because the implementation of the

modified Slavnov–Taylor identities in order to ensure gauge invariance is a hard task as

it necessitates the solution of another loop equation, i.e. an additional equation of a sim-

ilar complexity as the flow equation itself. Especially in numerical computations this is

hard to get under control, as small numerical errors in the flow of the mSTI can destroy

gauge-invariance crucially if they occur in relevant operators. Therefore, the construction

of gauge-invariant flows via a gauge-invariant regularisation itself facilitates the ensuring

of gauge-invariance. However in all suggestions for manifestly gauge-invariant flows made

so far the construction itself is rather complex. Thus, it has not been applied in any

realistic physical system. On the other hand, promising proposals have been made re-

cently [277,412–414]. Other ways to construct gauge invariant flows are via the geometric

approach [415, 416], where the regularisation only acts on gauge-invariant fields, or the

background field approach [406, 417, 418] which ensures a gauge-invariant effective action

itself, see also chapter 5.

3.2.5. Locality of Flows and Field Reparametrisation

In this section I detail the issue of locality of the flow equation. This property is crucial

for applications at non-vanishing temperature, thus, it is of great importance in section

4. Furthermore, I introduce a reparametrisation of the theory which is done in precisely

such a way that the flows of the two-point functions are strictly local.

18Note that these algebraic constraints get modified in a non-trivial way, i.e. loop terms emerge from the
regulation.
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Locality of Flow Equations

By construction the flow equation needs to be local, otherwise contributions from scales

much larger than the considered renormalisation group scale k would affect the region

around k in an uncontrolled way. In the cases presented below the flow is in principle lo-

cal but still the behaviour is not very well suited for computations. This section concerns

locality and techniques that can be employed to improve the locality in flow equations.

The loops on the right hand side of fig. (3.7) and fig. (3.8) only receive contributions from

momentum fluctuations with p2 ≲ k2 due to the regulator insertion ∂tR, see fig. (3.1).

However, the external momenta are not limited by such a constraint. Indeed, for large

external momenta p2/k2 ≫ 1 the flow factorises at leading order: The tadpole diagram with

the four-gluon vertex tends to a constant. The other tadpole diagrams vanish with powers

≲ k2/p2. The related four-point functions are not present on the classical level. Hence they

decay at least with k2/p2. This intuitive statement can be proven easily with the help of

the respective flows and the factorisation present there. Here, the factorisation is sketched

at the relevant example of the three-point function diagrams, see also fig. (3.11), for the

example of the flow of the ghost propagator. These diagrams factorise for large external

momenta, one factor being the uncutted internal line evaluated at p2. For p2/k2 →∞,

Tr [(GṘG) (q) ⋅ Γ(3)(q, p + q) ⋅G(p + q) ⋅ Γ(3)(q + p, q)]

→ Tr [(GṘG) (q) ⋅ Γ(3)(0, p) ⋅G(p) ⋅ Γ(3)(p,0)]
+higher order terms , (3.33)

where the trace also integrates over loop momenta q. In eq. (3.33) it is assumed that all

p + q

q

p/k � 1
⇥

p

q

Figure 3.11.: Factorisation in leading order for large momenta for the first diagram (cut-
ted gluon line) in the flow of the (inverse) ghost propagator in fig. (3.8).
The triangle stands for the product of the two vertices at q = 0 and reads
−pµpµ′facdf bc

′d′ , cf. appendix E.

momentum components are suppressed by the regulator: R is a function of p2 and not

e.g. of solely spatial momentum squared, p⃗2. Note also that for kinetic and/or symmetry

reasons the leading order in line two of eq. (3.33) may vanish. This even supports the

factorisation. The interchange of integration and limit, and hence the factorisation works

as the diagram is still finite with the uncutted line being removed.
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The general factorisation in eq. (3.33) can be nicely illustrated diagrammatically at the

example of the flow of the ghost propagator, fig. (3.8). In fig. (3.11) the factorisation of

the first diagram in fig. (3.8) is displayed. The terms in the second line of eq. (3.33) or on

the right hand side of fig. (3.11) are already subleading as the flow is usually peaked at

momentum scales p2 ≲ k2. However, they are already quantitatively relevant at vanishing

temperature, but turn out to be crucial for the correct thermodynamics, in particular for

the slow approach to the Stefan–Boltzmann limit for large temperatures. Potentially, they

also play an important role for the thermodynamics in non-relativistic systems, where they

supposedly relate to the Tan relations [419–421] in the context of many-body physics. For

FRG-reviews on non-relativistic systems see e.g. [384,386,391].

Still, one needs to reconcile the above polynomial decay with external momenta p with

the well-known exponential decay of thermal fluctuations with the standard suppression

factor exp(−m/T ) in the presence of a mass scale m. In the present case this mass scale

can be either the cutoff scale k or the physical mass scale of Yang–Mills theory, ΛQCD,

which is directly linked to the critical temperature Tc of the deconfinement-confinement

phase transition. The exponential thermal damping factor originates from the full Mat-

subara sum, and is strictly not present if only the lowest Matsubara frequencies are taken

into account. A four-dimensional regulator depending on four-dimensional loop momen-

tum q2 = (2πTn)2 + q⃗2 cuts the Matsubara sum. Hence, it only leads to the polynomial

decay of the flow. The exponential suppression is then built up successively with the flow.

The above properties can be already very clearly seen and understood at the example of

perturbative one-loop flows.

The full Matsubara sum is reintroduced for regulators only depending on p⃗2. They are

frequently used in finite temperature applications of the FRG as they allow for an ana-

lytic summation of the Matsubara sums if only the trivial frequency-dependence is taken

into account, see e.g. [277, 407, 422, 423]. However, in the present work full propagators

and vertices are considered, so the Green functions have a non-trivial frequency- and

momentum-dependence. Moreover, as lower-dimensional regulators introduce an addi-

tional momentum- or frequency-transfer in the flow, only four-dimensional regulators are

used for the study of Yang–Mills theory at non-vanishing temperature in chapter 4.

Apparently, the large momentum contributions also weaken the locality of the flow present

in the loop momenta as they induce a momentum transfer: The flows at a given cutoff

scale k carry physics information about larger momentum scales. In turn this entails that

any local approximation does not fully cover this momentum transfer.
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Field Reparametrisations

The problems that potentially occur in non-local flows can be circumvented by a reparametri-

sation of the fields of the theory along the computation. At the end of the solution of the

flow this reparametrisation must be undone in order to express the correlation functions

in terms of the physical fields. This technique is sketched in this section.

In a vertex expansion the dependence on the renormalisation group scale k does not need

to be put into the n-point functions Γ(n) only. Instead, one is free to reparametrise the

effective action as well as the regulator such, that a part of the dependence on k is put into

the fields. In the computation of thermal correlation functions as well as thermodynamic

quantities of Yang–Mills theory the locality of the flow is crucial as it minimises the

systematic error of a given truncation [278]. By the help of this reparametrisation of the

fields locality of the flow of n-point functions can be restored in cases where it is not

present.

The starting point is to rewrite the regulator term in eq. (3.27) as follows,

∆Sk =
1

2
∫
p
Aµk,a R̂

ab
µν A

ν
k,b + ∫

p
c̄k,a R̂

ab ck,b . (3.34)

The fields φ = (Ak, ck, c̄k) in eq. (3.34) relate to the cutoff-independent fields ϕ = (A, c, c̄)
in the classical action via a cutoff- and momentum-dependent rescaling,

φ(p) = Ẑ1/2
φ,k (p)ϕ(p) with ∂tφ(p) = γ̂φ(p)φ(p) , (3.35)

where the derivative is taken at fixed ϕ. For ghosts the natural definition is γ̂c̄ = γ̂c.

Further, eq. (3.35) implies

γ̂φ(p) =
1

2
∂t log Ẑφ(p) , and R = Ẑ ⋅ R̂ . (3.36)

The field reparametrisation in eq. (3.35) does not change the effective action, in particular

the regulator term ∆Sk does not change. It simply amounts to rewriting the effective

action in terms of the new fields,

Γ̂k[φ] = Γk[ϕ] . (3.37)

Then, φ-derivatives Γ̂
(n)
k of the effective action Γk = Γ̂k are given by eq. (3.16) with ϕ→ φ,

Γ̂
(n)
k (p1, ..., pn) =

δΓ̂k
δφ(p1)⋯δφ(pn)

. (3.38)

As the fields φ and ϕ only differ by a momentum-dependent rescaling with Ẑ1/2 the

correlation functions are related by a simple rescaling with powers of Ẑ1/2,

Γ(n)(p1, ..., pn) =
n

∏
i=1

Ẑ
1/2
φi

(pi) Γ̂(n)(p1, . . . , pn) . (3.39)
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The rescaling with Ẑ is free to choose. Thus it can be used to minimise the momentum

transfer in the flow equation of the two-point function by eliminating the subleading terms

in the flow exemplified in eq. (3.33). Note that this does not remove the related contribu-

tions, the momentum transfer is still present but does not feed-back directly in the flow,

see [278]. This is also elucidated below.

The flow equation for the effective action now receives further contributions from the k-

dependence of the fields φ. Finally, this leads to the following flow for Γ̂k,T [φ] = Γk[ϕ],
see [278],

(∂t +∑
i
⨋
p
γ̂φi(p)φi(p)

δ

δφi(p)
) Γ̂T,k[φ] =

1

2
⨋
p
Ĝabµν[φ](p, p) (∂t + 2γ̂A(p))R̂baνµ(p)

− ⨋
p
Ĝab[φ](p, p) (∂t + 2γ̂C(p))R̂ba(p) , (3.40)

where Ĝ[φ](p, q) = (Γ̂
(2)
k [φ] + R̂)−1(p, q) denotes the full regularised propagator for the

propagation of φ, see eq. (3.24) with ϕ → φ and Γ
(2)
k → Γ̂

(2)
k . The functional flow in

eq. (3.40) looks rather complicated but it is simply a reparameterisation of the standard

flow in eq. (3.28), or fig. (3.6). In the condensed notation introduced in section 3.2.3 this

is more apparent. The flow equation eq. (3.40) then reads

(∂t + φ ⋅ γ̂φ ⋅
δ

δφ
) Γ̂T,k[φ] =

1

2
STr Ĝ[φ] ⋅ (∂t + 2γ̂φ) ⋅ R̂k . (3.41)

Eq. (3.41) illustrates that it is only a reparametrisation the fields in a scale-dependent way.

Taking two derivatives with respect to φ1(p) and φ2(q) of eq. (3.40) at vanishing ghost

fields and constant gauge field schematically yields the flow

(∂t + η̂φ1(p) ) Γ̂
(2)
φ1φ2

(p) = Flow
(2)
φ1φ2

(p) , (3.42)

where the right hand side of eq. (3.42) stands for the φ1(−p) and φ2(p) derivative of the

right hand side of eq. (3.40),

Flow
(2)
φ1φ2

= δ2

δφ1δφ2
(1

2
Tr Ĝ[φ] ⋅ (∂t + η̂φ) ⋅ R̂k) , (3.43)

and

η̂φ(p) = 2γ̂φ(p) = ∂t log Ẑk(p) , (3.44)

is the ‘anomalous’ dimension of the propagator related to the rescaling of the fields with

Ẑ. The two-point functions for vanishing ghosts are diagonal/symplectic in field space.

This enters eq. (3.42). The only non-vanishing components are Γ̂
(2)
k,AA and Γ̂

(2)
k,cc̄ = −Γ̂

(2)
k,c̄c.

The two-point functions for constant gauge fields are also diagonal in momentum space,
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that is

Γ̂
(2)
k (p, q) = Γ̂

(2)
k (p)(2π)4δ(p − q) ,

Flow(2)(p, q) = Flow(2)(p)(2π)4δ(p − q) , (3.45)

and the relation eq. (3.39) for the two-point functions reads

Γ(2)(p) = Ẑ(p) Γ̂(2)(p) . (3.46)

In order to restore locality in the flow the large momentum tail in eq. (3.33) must be

removed in order to guarantee locality in momentum space, i.e. to minimise the momentum

transfer. This is achieved by demanding

∂tΓ̂
(2)
k (p)∣

p2>(λk)2
≡ 0 , (3.47)

which implies

η̂φ(p) = Flow(2)(p)
Γ̂
(2)
k (p)

θ(p2 − (λk)2) . (3.48)

Eq. (3.47) entails that the momentum transfer is switched off for momenta larger than the

cutoff scale. The factor λ controls this scale and can be used for an error estimate.

After the computation of the localised correlation functions Γ̂(n) the correlation functions

Γ(n) are derived via rescaling with powers of Ẑ, see eq. (3.38) and eq. (3.46). The scaling

factor is computed by integrating η̂k defined in eq. (3.44),

Ẑk(p;T ) = Ẑk=0(p;T ) exp{∫
k

0
dt′ η̂k′(p;T )} . (3.49)

This determines Ẑk up to a k-independent function and can be fixed as

Ẑφ,k=0(p;T = 0) = 1 . (3.50)

For the choice eq. (3.50) the two sets of correlation functions agree in the vacuum at k = 0.

As the flow of general correlation functions can be written down solely in terms of Γ̂(n)

the relation eq. (3.47) with eq. (3.48) eliminates the momentum transfer in Γ̂(2) from

the flow. Note however, that a remnant of it is still present via the factor 2γ̂φ = η̂φ on

the right hand side of the flow eq. (3.41). For regulators that decay sufficiently fast for

momenta p2 ≫ k2 this is quantitatively negligible. Indeed, for regulators which vanish

identically for momenta bigger than λk the momentum transfer now is described solely by

η̂φ(p) and decouples completely. In principle, the above construction and the definition

eq. (3.50) leading to eq. (3.47) with λ = 1 can be deduced by evoking functional optimisa-

tion for momentum-dependent approximations, see [278]. The above heuristic arguments

58



3.2. The Functional Renormalisation Group

entail that optimisation restores the locality of the flow also in general momentum- and

frequency-dependent approximations.

Note that this technique of field reparametrisations is not restricted to storing the scale-

dependence in the field. In section 4.1.3, a similar reparametrisation is done for thermal

fluctuations in the ghost propagator.

3.2.6. Thermal Fluctuations

In section 3.2.1 the flow equation, eq. (3.15), is introduced for zero temperature. In gen-

eral, the flow equation can also be applied at finite temperature. It is still an exact method

that includes now both, thermal as well as quantum fluctuations. In this section the fo-

cus is on the signatures of temperature. In the FRG approach it turns out that these

fluctuations can be treated independently from the quantum fluctuations by the help of

purely thermal flows [277, 407]. These flows are simply the difference between flows at

finite and zero temperature. Thus, to determine the quantum theory at finite tempera-

ture it is enough to add the thermal flow to the quantum flow, i.e. the full system can be

studied in two separate steps. At first sight, this may seem to be redundant which would

be true, if the flow equation could be solved exactly, i.e. without any truncation. But for

approximate solutions this partitioning of flows facilitates calculations.

Furthermore, it is generally not necessary to obtain both results in a functional approach

as only the full quantum theory, i.e. the theory at k = 0 is used as input for the thermal

flow. One can even take lattice data, i.e. data from a method that does not suffer from

approximations. Therefore, the insensitivity of the computation of thermal effects from

the input can be investigated easily.

Thermal flows [277,407] are constructed by

∆ΓT,k[ϕ] = Γk[ϕ]∣T − Γk[ϕ]∣T=0 , (3.51)

∂t∆ΓT,k[ϕ] = 1

2
TrG[ϕ] ⋅ ∂tR∣

T
− 1

2
TrG[ϕ] ⋅ ∂tR∣

T=0
, (3.52)

thus, the thermal flow ∂t∆ΓT,k[ϕ] accounts for the difference between the effective action

at vanishing and finite temperature. Due to the thermal exponential suppression the flow

eq. (3.51) should have locality properties with respect to the scale k = T , because tem-

perature is an infrared phenomenon. As discussed in section 3.2.5 locality of the flow is

important for the quantitative reliability of a given approximation.

Previous studies of infrared Yang–Mills correlation functions with functional methods, see

section 2.3.2, have shown that sophisticated truncations are inevitable to quantitatively

match lattice results. In addition, for ensuring gauge-invariance a fine-tuning procedure

must be done in order to find the correct ultraviolet action that does not render a per-
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turbative gluon mass along the flow. The benefit of the thermal flow is that it offers the

possibility to take a different truncation for the thermal behaviour. Therefore, the two

truncations can be optimised such that the relevant aspects of the individual fluctuations

are covered. This facilitates the implementation on a technical level and a fine-tuning can

be avoided, since gauge-invariance is ensured for the quantum theory and thermal masses

are permitted.

The truncation for thermal effects may actually be easier. This conjecture is based on

the following considerations: Firstly, only the difference of the flows at non-zero and zero

temperature, ∂t∆ΓT,k[ϕ], is sensitive to truncational errors. Secondly, which is actually

connected to the first point, temperature is an infrared phenomenon, i.e. it should only

modify the quantum theory below scales k ≲ 2πT . Consequently, the truncation error is

restrained to the infrared. In any truncation the difference is guaranteed to vanish above

the temperature scale, i.e. it is ensured that no numerical error from higher scales can

build up and affect the infrared. Thirdly, low temperatures account for a correction to the

quantum theory, so it is supposed to be a small effect. Therefore, numerical inaccuracies

deteriorate the correction only, i.e. the primary properties of the quantum theory are not

altered.

In the study presented here this two-step procedure is applied. The implementation of the

thermal flow eq. (3.51) is done as follows. The vacuum physics at vanishing temperature

is the input for the thermal flow. A given set of correlation functions Γ
(n)
k=0 at T = 0

and k = 0 can be integrated with the flow eq. (3.15) at vanishing temperature in a given

approximation up to a large momentum scale k = Λ ≫ 2πT , viz.

Γ
(n)
k=0(p1, ..., pn)∣

T=0

flowÐ→ Γ
(n)
k=Λ(p1, ..., pn)∣

T=0
. (3.53)

Thus, starting from the quantum theory at k = 0 (and T = 0), the correlation functions at

all k ≤ Λ are known.

Two important comments are in order here. Firstly, in the reasoning of the FRG the

theory is integrated from a scale Λ, at which the classical action serves as a starting point

in the flow, to k = Λ → 0. The integration from k = 0 → Λ with a different truncation

does not reproduce this classical initial condition but instead some other action. In the

picture of the theory space this corresponds to another point in fig. (3.4). But after all,

this does not pose a problem as this does not need to reproduce the classical action but

rather some action for which it is guaranteed that running down again at T = 0 in the

given truncation yields the correct quantum theory again. In fact, if one obtained the

classical action again, the purely thermal flow eq. (3.51) would be obsolete. In this case

the inversion of the flow at T = 0 would have integrated in again all quantum effects. The

flow at T > 0 would account for both types of fluctuations again. I want to emphasise that

in going up to Λ some quantum fluctuations are actually integrated in, but only exactly

those that are integrated out again in the flow down at finite temperature.
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Secondly, although the name suggests so, the FRG is not a group in the mathematical

sense but rather only a semi-group. This implies that there is no inverse, so it is generally

not possible to reverse the flow. In fact, going from small k to higher values is an instable

direction in Yang–Mills theory. However, for reasonable Λ, i.e. for the case here where

only small temperatures are studied, this potential problem does not occur. This saves

the procedure above for the case of infrared Yang–Mills theory, but in general this may

pose an insurmountable problem.

Coming back to the line of thoughts for thermal flows, eq. (3.53) defines in the approxi-

mation at hand the initial conditions Γ
(n)
k=Λ∣T=0

which give the correct vacuum correlation

functions if integrated to k = 0. The ultraviolet scale Λ is chosen such that all thermal

fluctuations are suppressed given the maximal temperature to be considered, Tmax. This

implies
Tmax

Λ
≪ 1 . (3.54)

Next, the flow is reversed, but at non-vanishing temperature T ≤ Tmax. As the initial scale

is far above temperature effects, switching on T does not change the initial conditions at

leading order, i.e.
1

Λdn
∆Γ

(n)
T,Λ(p1, ..., pn) = 0 +O (T

Λ
) . (3.55)

where dn is the canonical dimension of Γ(n) and all momenta are of order Λ or bigger,

p2
i ≳ Λ2. This suggests to flow ∆Γk,T from the trivial initial condition eq. (3.55) to van-

ishing cutoff.

The idea of the computation is sketched in fig. (3.12), again by the help of the theory

space which served to illustrate the flow equation at T = 0 in section 3.2.2. The sketch

illustrates that the two flows in different truncations deviate from each other, thus, the

reversed flow does not reproduce the classical action. The temperature has an effect in

the infrared, where the scale is set by the temperature itself. The contributions above

that scale cancel in the thermal flow, i.e. in the difference of the flow at finite and zero

temperature.

The arguments above are partly based on the fact that the scale at which thermal fluc-

tuations become important is about 2πT . For the bosonic case this is exactly the first

Matsubara frequency. This may seem very early for the discretisation effects to vanish.

However, that this is actually the case for discretisations can be seen by the hand of trivial

cases already. Here, it is employed that the finiteness of the temperature is equivalent to

a finite extent in temporal direction. Thus, in some sense the study of finite temperature

is related to finite volume investigation.

The first example is simple the investigation how fast the sum over discrete Matsubara

frequencies n approaches the integral over temporal momentum p0. In order to mimic a

typical form of an integral the loop-integration over a propagator is carried out, where the
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Figure 3.12.: This figure illustrates the setting for the computation of the temperature
behaviour of correlation functions by the help of the theory space. The axes
label (orthogonal) couplings Oi which serve as expansion coefficients of the
effective action. First, starting at the classical action Scl the flow for the pure
quantum theory (blue line) yields the full quantum theory, i.e. at k = 0, for
vanishing temperature. In a different truncation, optimised for the thermal
behaviour, the flow is reversed back to a scale Λ where temperature effects
are suppressed. This is not the classical action but an action that gives the
correct vacuum physics if integrated down to k = 0 again with the truncation
at hand. However, at the scale Λ temperature is switched on, T ≠ 0, and flow
integrates back to the infrared. Below the temperature scale k ≈ 2πT the
flow and therefore the theory feels the temperature. Arriving at a different
point in theory space at k = 0, T ≠ 0 the theory includes both, quantum as
well as thermal fluctuations.

integration over spatial momentum is approximated. This leaves the form

f(p0, p) =
p

p2
0 + p2

, (3.56)

where p is the absolute value of the spatial momentum. The integral over p0 of this

expression is finite,

FT=0 =
1

2π
∫

∞

−∞
dp0 f(p0, p) = 1

2
. (3.57)

Transforming this expression to the case of finite temperature, see section 3.1, yields the

Matsubara sum

FT>0(p) = T
∞
∑

n=−∞
f(2πTn, p) = 1

2
coth( p

2T
) . (3.58)

Thus, for large values of the ratio p
2T ≫ 1 the coth ( p

2T
) approaches 1 and the sum ap-
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proaches the integral. Herein, actually the decay is exponential due to the form of the

coth(x) = (e2x − 1)/e2x + 1. The velocity of this decay at T = 1 (in arbitrary units) is given

in fig. (3.13(a)) and that the exponential decay exp (−2 p
2T

) is (trivially) realised can be

seen by the help of fig. (3.13(b)). In this example it is obvious that the discretisation effect

vanishes rather quickly above the temperature scale, even on a quantitative level.

But the above example, fig. (3.13), per se is not what enters flow equations. In the

FRG the situation is more intricate, first of all because there are additional (spatial)

integrals in the loop, but also because the regulator term complicates the expressions.

But, even in the framework of the FRG it can be seen by the help of a simple example

how temperature changes the system. As already detailed in section 3.1 the time direction

is compactified at finite temperature, i.e. R → [− 1
T ,

1
T ]. This is equivalent to a finite size

in time direction, thus, investigations at finite temperature are closely related to studies

at finite volume. This is the next example, namely the flow of the tadpole t of a real

massless scalar particle, i.e. for an interaction term λ
4!φ

4 in a finite volume. The full flow

equation is given in fig. (3.2.6). To keep things as simple as possible the truncation is

chosen such that the three-point vertex vanishes, which is indicated by the dotted cross

in fig. (3.2.6), the four-point vertex is momentum-independent with a coupling strength

λ = 1, i.e. Γ(4) = 1, and so is the wave-function renormalisation for the boson, i.e. Γ(2) = p2,

and the propagator is regulated by an exponential regulator, cf. eq. (3.12), with m = 1,

viz. Gk(p) = p2 (1 + r1(p2/k2)). That yields the expression for the flow of the tadpole

ṫ = −1

2
∫
p
(GṘG)

k
= − 1

8π2 ∫
∞

0
dp p3 e

− p
2

k2

k2
= − 1

16π2
k2 , (3.59)

where the dependence of ṫ on k is omitted. The (flow of the) tadpole is actually inde-

pendent of the momentum p. Note that this expression has been transformed to spherical

coordinates already, see also appendix D.1. The radial integral is now considered in a finite

volume in radial direction. Of course, this discretisation procedure is not equivalent to a

hypercubic discretisation, but at least for large momenta this is a good approximation.

Anyway, here it is a further simplification for clarity. So the radial integral is transformed

to a finite interval of length L which again has the effect that the spectrum is spanned by

discrete modes p→ 2πn
L , so written explicitly

ṫ(L) = 1

8π

1

L

∞
∑
n=0

(2πn

L
)

3 e−
( 2πn
L
)2

k2

k2
. (3.60)

Note that in the infinite volume limit L → ∞, eq. (3.60) turns into the four-dimensional

integral given in eq. (3.59) again.

The dependence of the flow on the length of the box is plotted in fig. (3.15). In this

figure two remarkable aspects that are particularly important for thermal flow equations

are confirmed for this simple case. Firstly, finite volume effects are indeed restricted to
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(a) Comparison of the Matsubara sum at finite temperature with the integration
at vanishing temperature.
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Figure 3.13.: Trivial example for the convergence of the Matsubara sum to the integral for
scales that are far above the temperature.

the infrared, i.e. modes with a momentum much larger than the inverse length of the box

do not feel the altered boundary conditions and behave as if temperature would be zero.
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Figure 3.14.: Flow equation for the propagator in φ4 theory. For the simplest investigation
of finite volume effects only the tadpole is considered.
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Figure 3.15.: The flow of the tadpole diagram in a massless φ4 theory as a function of
the renormalisation group scale k in a finite volume of length L. The effect
of the discretisation of the spectrum due to the finiteness of the volume is
crucial at scales smaller than the size of the box in momentum space, i.e.
k/(2π/L) ≪ 1. Above this scale set by the first mode the impact of the
discretisation vanishes quickly as the modes are larger than the box and do
not feel the altered boundary. The Matsubara formalism compactifies the
time direction, therefore, it can be compared to a finite volume effect. It is
found that thermal fluctuations are suppressed above the very same scale,
i.e. above the first Matsubara mode, which is supported by this figure.

Secondly, also in the flow equation the scale at which the temperature effects (quantita-
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tively) matter is actually quite low: Already for momenta larger than roughly the first

mode 2π/L the theory starts to approach the zero temperature limit rapidly. The first

mode in the case of finite temperature is 2πT .

There is another interesting aspect in the example of the scalar tadpole which is the ab-

sence of additional scales. The only scale in the system is L, so everything is measured in

this scale L. Therefore, the different curves in fig. (3.15) are similar if measured in L, i.e.

if the curves are rescaled to the dimensionless momentum k → k̂ = kL. This is shown in

fig. (3.16), where the curves of all lengths lie on top of each other if plotted over k̂.

L = 1

L = 1

L = 2

L = 3

L = 4

L = 5

L = 10

L = 150

2Π

0 1 2 3 4 5 6 7

0

k̂

�ṫ(1)/k̂2 =
1

16⇡2

a

�ṫ(L) /k̂2

Figure 3.16.: In the tadpole for a massless scalar in a finite volume the only scale that enters
is the length L. Therefore, if the system for different volumes is rescaled
such that it is measured in units of this scale the effect is independent of the
scale. In this plot the curves for the finite volume tadpole are given in the
dimensionless variable k̂ = kL. Thus, the curves lie on top of each other.

So actually, the content of fig. (3.15) is highly redundant. But, this situation would be

different if there were another scale in the system. This is the case for Yang–Mills theory

as well as QCD, where the intrinsic scale ΛQCD is generated19. In the presence of a mass

there is a second scale and the system would not be trivially similar under a rescaling.

This is illustrated by the same example of a scalar tadpole, however, this time the scalar

has a mass of 1 (in arbitrary mass units), i.e. Γ(2) = p2 +m2. That the scales are mixed in

a multiscale system can be cleary seen in fig. (3.17). For inverse lengths much smaller than

the mass the mass scale is dominating. In the opposite case the length sets the dominant

scale. Therefore, in previously dimensionless units k̂ the system shows the scale m.

19Note that although in Yang–Mills theory quarks are absent, nevertheless, the term ΛQCD is used fre-
quently in the literature. I stick to this definition.

66



3.2. The Functional Renormalisation Group

L = 1

L = 1

L = 2

L = 3

L = 4

L = 5

L = 10

L = 150

k [arbitrary units]
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Figure 3.17.: In the flow of the tadpole of a massive scalar there are two scales, the size
of the system as well as the mass of the particle. Put in different volumes
and rescaled with respect to the volume, in contrast to the massless case in
fig. (3.16), the situations are not equivalent due to the second scale set by
the mass..

The above examples are simplified cases to outline what is to be approximately expected in

systems at non-vanishing temperature. However, in thermal Yang–Mills theory it is more

intricate. Therefore, the next step is to consider the rapidity of the decay of ∆Γ
(n)
T,Λ → 0

for large cutoff scales Λ for Yang–Mills theory. This is linked to the question of locality

raised in the previous section 3.2.5. In fig. (3.12) it is indicated that ∆Γ
(n)
T,k starts to sig-

nificantly deviate from zero at the thermal scale k ≈ 2πT . However, at the example of the

tadpole it is clear that the suppression for the flow ∆̇Γ
(n)
T,k above that temperature scale is

not stricly exponential but only polynomial. This implies that the longer ∆Γ
(n)
T,k survives

at large scales k → Λ the more sensitive it is to the approximation at hand. Eventually,

the polynomial contributions to the flow integrate-up to the standard thermal exponential

suppression that relates to the thermal distribution functions as discussed in section 3.2.5.

To conclude there is only a polynomial decay in the flow which indeed plays a role for

computing quantitatively reliable thermodynamical quantities. Additionally, in order to

restore locality as much as possible one can utilise the field reparametrisation to guarantee

that the flow is strictly confined to a range p ≤ λk, see eq. (3.47). This preserves the

exponential decay that stabilises any approximation scheme. In the following this localised

flow, eq. (3.47), is used for the calculation of infrared Yang–Mills correlators. As the local

flow of Γ̂
(2)
k vanishes identically for momenta larger than λk for all temperatures T , this
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yields

∆Γ̂
(2)
T,Λ(p) = 0 +O(e−Λ/(T )) , (3.61)

neglecting the back-reaction of the polynomial decay of the thermal corrections of higher

correlation functions. However, thermodynamic observables such as the pressure in sec-

tion 4.3 are computated from the Wetterich equation, cf. eq. (3.28) and fig. (3.6) for

Yang–Mills theory. Only the two-point functions enter here directly, all higher n-point

functions only implicitly affect the thermodynamics as the propagators depend on them.

Therefore, the corrections of higher Green functions are quantitatively small. Thus, in the

thermodynamics the localisation procedure for the flow of the two-point functions pays-off

in quantitative reliability.

Finally, the field reparametrisation must be undone in order to rearrange the k-dependence

such that the parts that were put into the fields are fully shifted back to a k-dependence

in the correlation functions Γ(n). This is done by a rescaling of the Γ̂(n), that have been

computed, with powers of Ẑk=0. At vanishing temperature the natural normalisation is

simply Ẑk=0 = 1, see eq. (3.49) and eq. (3.50), and the two sets of correlation functions

agreed at k = 0. At finite temperature the flow is initialised at k = Λ with T /Λ ≪ 1. Here,

the exponential suppression is valid for the difference of the localised correlation functions,

eq. (3.61). Accordingly, it is safe to use the natural definition

ẐΛ(p;T ) ∶= ẐΛ(p;T = 0) . (3.62)

Eq. (3.62) implies that eq. (3.61) also applies to ∆Γ
(2)
T,Λ: At the ultraviolet scale thermal

fluctuations are exponentially suppressed for the two-point functions. Due to the imma-

nent polynomial suppression due to the arguments leading to fig. (3.11), the use of the

computational simple initial condition amounts to a temperature-dependent renormalisa-

tion of Γ
(n)
k (T ) at non-vanishing cutoff scale k. For the same reason eq. (3.62) also leads

to Zk=0(p;T ) ≠ 1, which needs to be determined from the flow of η̂k. Thus,

Ẑk(p;T ) = ẐΛ(p; 0) exp{∫
k

Λ
dt′ η̂k(p;T )}

= e∫
k

0 dt′ η̂k(p;0) e∫
k

Λ dt′ (η̂k(p;T )−η̂k(p;0)) , (3.63)

where eq. (3.49) was inserted in the second line. The relation eq. (3.63) entails that the

rescaling factor Zk=0(p;T ) contains the thermal part of the momentum transfer.

3.3. Dyson-Schwinger Equations

In this section I briefly summarise the idea, derivation and structure of DSEs. Especially,

I emphasise Yang–Mills theory. Also DSEs allow for a study of the two main properties

of low-energy QCD, i.e. confinement and dynamical chiral symmetry breaking, and even

the full low-energy phase structure of QCD has been studied recently [88,116,117].
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DSEs have been formulated in the mid of the last century separately by Freeman J. Dyson

[424] and Julian S. Schwinger [425, 426]. They are an important tool to describe non-

perturbative phenomena in quantum field theories, for reviews on DSEs in Yang–Mills

theory and QCD see e.g. [239,247,253,267]. DSEs provide equations for arbitrary n-point

functions. The set of all n-point functions describes the quantum field theory exactly.
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Figure 3.18.: Generating DSE for the gluon. The small dots denote bare vertices, the large
blobs full vertices. The shaded diamond denotes an external gluon field A.

DSEs are the equations of motion for Green functions. Sticking to the path integral

formulation of a quantum field theory, they derive from the observation that the path

integral of a total derivative with respect to a quantum field vanishes. Taking Yang–Mills

theory as an example, thus, having the interacting theory of gluon and ghost fields, this

relation is given by

0 = ∫ Dϕ δϕa e
−SYM[ϕ]+J ⋅ϕ = ⟨−δϕaSYM[ϕ] + ηabJb⟩J[ϕ] , (3.64)

where SYM is the action of Yang–Mills theory with the particles subsumed in the field

multiplet ϕ = (A, c, c̄), whose sources are stored in J , and η accounts for the metric in field

space given in eq. (3.22). The functional derivative is abbreviated as explained in section

3.2.3. Eq. (3.64)) holds under the assumption that the path integral is well defined and,

further, that the integration measure is invariant under field translations20. Apart from

that no approximations have been made, thus, under these mild assumptions the theory

can be described exactly. Note that, albeit the presentation is done in Euclidean space

here, DSEs equations can also be formulated in Minkowski space.

In eq. (3.64) the DSEs generate full Green functions, however, also expressions for the

connected Green functions only as well as 1PI Green functions can be derived. In this

work the latter one are of particular importance. The generating DSEs in this formulation

are given by

δϕaΓ[ϕ] = δφaSYM[φ]∣
φ→ϕa+ δ2W

δJaδJb
δϕb

. (3.65)

There is one generating DSE for each field. Hence, for Yang–Mills theory there are two

generating DSEs, one for the ghost21 and one the gluon, respectively. These are diagram-

20There is an alternative way to derive DSEs following employing Heisenberg equations of motion and
equal time commutation relations [427].

21Starting from the generating equation for the antighost yields the same (on-shell) Green functions as
they are obtained from the generating DSE from the ghost.
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3.3. Dyson-Schwinger Equations

�S[A, c̄, c]

�c̄
= +

Figure 3.19.: Generating DSE for the ghost.

matically given in fig. (3.19) and fig. (3.19). From these generating equations all other

n-point functions can be derived by taking functional derivatives with respect to fields and

setting the sources to zero. The sources must only be taken to zero after having applied

the functional derivatives as otherwise one would neglect some, if not all terms. To clarify

this I use as an example an off-shell propagator, say GAc, on which another functional

derivative with respect to the anti-ghost δc̄ acts. Setting the sources to zero before taking

the derivative this off-shell contribution would vanish (e.g. the ghost-propagator DSE

would be trivial), however, setting the sources to zero after the functional derivation the

non-trivial structure is non-vanishing δc̄GAc∣J→0 = −GAAΓ
(3)
Ac̄cGcc̄.
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Figure 3.20.: DSE for the gluon propagator.

For later use as well as for comparison of the structures of flow equations and DSE I also

give the DSEs for the two point functions of Yang–Mills theory, as well as the ghost-gluon

vertex. The ghost propagator is given in fig. (3.21), the gluon propagator is given in

fig. (3.20). These expressions have been checked with DoDSE [397,398].

The structure of the DSEs fig. (3.21) and fig. (3.20) already shows that there is a drawback

in the application of DSEs, just as it is encountered in the FRG. In general, the DSE for an

n-point function depends itself on higher n-point functions, thus, also this set of equations
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Figure 3.21.: DSE for the ghost propagator.

is infinite. In practice truncations must be done, following basically the same reasoning

as in section 3.2.2.

= + + �

Figure 3.22.: DSE for the ghost-gluon vertex (having started from the generating DSE for
the ghost).

3.4. Structural Aspects and Comparison of Functional Methods

The emphasis of this section is on the comparison of DSEs with flow equations. The idea

of a flow equation follows the line of thought of Wilson, i.e. one aims at sequentially

integrating quantum fluctuations of a momentum in a specific momentum range, which

translates in the differential equation with respect to the renormalisation group scale. In

contrast to this, solving the DSE means integrating all quantum fluctuations at once. The

methods are related to each other as the flow can be seen as the differential form of a DSE

with scale-dependent quantities and vice versa.

In the derivation of a flow equation the quadratic part of the action is modified such that

a regulator term is added which suppresses fluctuations below an infrared scale. Via this

trick the sequential integration of momentum shells is realised. This artificial scale is not

introduced in the formalism of DSEs, which is a big advantage in resolving the n-point

functions: Working with DSEs, Green functions generally depend on the momentum of

the field as well as the the field expectation value. In the flow equation one has to resolve

another dependency, namely the dependence on the renormalisation group scale k. This

additional dependence on k in a flow equation is irrelevant in the full theory, however, in

practical application, i.e. in truncated systems, this can hamper computations.
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In the generating DSE, eq. (3.65)), there is always one functional derivative acting on the

bare action, which translates into the fact that there is always the bare n-point function in

the equation. Thus, each diagram in any DSEs contains a bare vertex. In comparison to a

flow equation this means that a smaller number of different vertices contributes. E.g. the

flow equation for the ghost-propagator, fig. (3.8), contains not only two diagrams where

the loop contains two fully dressed ghost-gluon vertices but also two tadpole diagrams

with a closed gluon or ghost loop, respectively. As the classical action does neither in-

volve a bare two-ghost-two-gluon vertex, nor a ghost-ghost scattering kernel these tadpole

diagrams are not present in the corresponding DSE, fig. (3.21). Furthermore, the two

diagrams in the flow equation that contain the fully dressed ghost-gluon vertex, but the

scale derivative of the regulator once in the internal gluon and once in the internal ghost

propagator, merge to one single diagram in the DSE. This diagram has another simplifi-

cation compared to the flow equation as one ghost-gluon vertex in it is bare.

However, the fact that there is always one bare vertex in each diagram of a DSE is not

necessarily an advantage. It rather depends on the application of the equation. E.g. for

critical phenomena this vertex does not carry the correct renormalisation group scaling,

which hampers the access of critical physics within the DSE formalism, cf. appendix F.

Another interesting aspect of DSEs is that in some cases they can provide more than one

equation for the same Green function, e.g. for the ghost-gluon vertex. Starting from the

generating equation of the ghost guarantees that there is a bare ghost-gluon vertex in

each diagram. This version is given in fig. (3.22). But starting from the gluon one-point

function brings a bare three-gluon vertex about which would give another DSE involving

twelve terms, some of them being of two-loop structure. Both equations are exact, but

in practical computations one can decide according to the construction and validity of

the truncation which form is more the appropriate one. Furthermore, by using the same

truncation but the other equation one can get information about the total validity of the

truncation.

Unfortunately, there are also disadvantages of DSEs. As the infrared is not regulated in

the formalism of DSE also an important feature of the flow equation is absent, namely

that if one starts with a finite (renormalised) theory it stays finite at all steps. This func-

tional renormalisation is not implemented in a DSE. Therefore, a proper renormalisation

procedure must be applied. Another disadvantage in contrast to flow equations is the

appearance of two-loop diagrams22, which can be seen already in the generating gluon

DSE fig. (3.18) and also in the gluon propagator fig. (3.20). On the other hand, the flow

equation has a one-loop form23. At this point it may be worth to mention again that these

22A non-Abelian gauge theory contains a four-point interaction in the classical action, which leads to
two-loop diagrams. This is not a general feature for other theories as well, e.g. for a theory in which
four-point interactions are absent two-loop diagrams would not emerge. In the same manner, if there
are higher order interactions, e.g. in effective theories, there would even be higher loop-orders.

23As mentioned above the one-loop structure of the flow equation is immanent for quadratic regulators. In
principle, it is possible to regulate also in higher orders of the fields. In this case the one-loop structure
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loop-orders do not restrict the formalisms to the same-loop orders in perturbation theory

as both, flow equations as well as DSEs, contain dressed vertices for which themselves

loop-equations exist. Already inserting the equations for the three-point functions shows

that the loop order increases, which would continue for all higher vertices. Note that

this does not necessarily correspond to a perturbative resummation, i.e. summing up an

infinite amount of perturbative diagrams. However, perturbative resummations can be

accessed via choosing a perturbative truncation.

A flow equation can be seen as the differential form of a DSE. Thus, it is possible to

derive a flow equation from a DSE by two steps. Firstly, a renormalisation group scale is

introduced into the action in the same fashion as in the flow equation, namely by adding

a regulator to the action. This renders all Green functions that appear in the DSE scale-

dependent, not only the propagators, which receive a regulator term, but also the vertices

as they depend on the propagators. Secondly, a total derivative with respect to this scale

k is taken. This derivative acts on the vertices and the propagators. Further, in the

propagators it hits the Γ(2), but also the regulator. It is this point where the typical term

∂tR arises,

− ∂tGk = Gk (∂t (R + Γ
(2)
k ))Gk , (3.66)

where the scale derivative only acts onto the bracket.

@t (
�1�R) = + �

Figure 3.23.: By introducing a scale k in the DSE in the same way as in the FRG approach
and then taking a total derivative of the DSE with respect to k one can derive
a flow equation from the DSE. This figure shows the resulting flow equation
for the ghost propagator. Compared with the FRG equation in fig. (3.8) the
tadpole terms are missing. Their contributions are absorbed. The slashed
lines denote the scale derivative of the full propagator (without the minus
sign that arises in the derivative), i.e. the right hand side of eq. (3.66). The
shaded blob denotes the full vertex, the square is the scale derivative acting
on the vertex.

In the computations of correlation functions of Yang–Mills theory and QCD, that are

presented in later chapters this procedure is employed for the ghost-propagator as well as

the ghost-gluon vertex. For the ghost-propagator the resulting equation is given diagram-

matically in fig. (3.23). Note that the derivative of the bare propagator vanishes. Both,

fig. (3.23) and fig. (3.8) are exact equations for the ghost propagator, i.e. they describe

of a flow equation can be lost.

73
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the same correlation function. But in the latter equation the four-point vertices have dis-

appeared from the equation.

Alternatively, one can convince oneself that this procedure of taking a renormalisation

group scale derivative of the scale-dependent DSE to produce a flow equation is equivalent

to resumming the DSE with the flow. So inserting the flow equations for the Γ
(4)
c̄cc̄c and

Γ
(4)
c̄A2c

in the ghost DSE fig. (3.21) yields the very same equation as fig. (3.23). The actual

computation is rather tedious, therefore I do not present it here.

This representation of flow equations may seem tempting at first sight, because in this form

one recovers the feature that every diagram contains a bare vertex and, as a consequence,

in some cases the number of vertices is reduced. However, the merits of this methods

can be relativised. First of all, the equations depend not only on the n-point functions

but also on the flows of them. As usual, this would be irrelevant in a full setting, but

for truncated systems this is often disadvantageous. Secondly, and more importantly, the

DSEs are not always of one-loop form, but can contain higher loop orders, e.g. DSE for the

gluon propagator involves a two-loop diagram. As this structure would persist the scale

derivative the corresponding flow equation is of two-loop order as well. Therefore, this

alternative method is only promising in selected cases. In the computations for Yang–Mills

theory presented below these cases are the ghost propagator and the ghost-gluon vertex.
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4. Yang–Mills Theory at Non-Vanishing

Temperature

In this chapter I present the results for Yang–Mills theory at non-vanishing temperature.

In the approach followed here, which is explicated in chapter 3, the quantum theory given

in terms of correlation functions serves as the starting point for the study of thermal ef-

fects. The first emphasis of this chapter is the truncation that is used to compute the

flow of the quantum theory. Within the last decades it has turned out that sophisticated

approximations are necessary to obtain quantitatively accurate correlation functions in

the mid-momentum and infrared regime. The advancement of the truncation was part

of this work. In order to find a proper truncation the flows of the vertices are studied

in detail at vanishing temperature, in particular the ghost-gluon vertex and the purely

gluonic vertices. The results are presented in section 4.1.

In section 4.2 I address to the computation of correlators at finite temperature following

the line of thought of chapter 3. The study is optimised for low and intermediate tem-

peratures, so for temperatures ranging from 0 ≤ T ≲ 5Tc, where Tc is the phase transition

temperature of the deconfinement-confinement phase transition. As lattice results for the

chromoelectric and chromomagnetic gluon propagators as well as the ghost propagator are

available, I compare the propagators obtained within the FRG setting with lattice gauge

theory.

In section 4.2, I present results for Yang–Mills thermodynamics obtained in the FRG

framework. Again, the focus lies on the range of temperatures around the deconfinement-

confinement phase transition. As precise data for thermodynamic quantities from lattice

gauge theory is given, I compare the results with the lattice.

In the last section of this chapter I summarise the main findings.

4.1. Approximation

In this section I detail the truncation that is applied in the following computation of corre-

lation functions of Yang–Mills theory. The approximation allows for quantitative studies

at vanishing as well as non-vanishing temperature.

In general, the structure of the flow of the effective action, see fig. (3.6), entails that flows

of n-point functions depend explicitly on (n+2)-point functions. The relevant example
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4.1. Approximation

for the present work is the flow of the (inverse) Yang-Mills propagators Γ
(2)
k , displayed

in fig. (3.7) and fig. (3.8). These flows depend on Γ
(n)
k with n ≤ 4. In other words, the

functional flow in eq. (3.15), if broken up in the flows of n-point functions, constitutes an

infinite hierarchy of coupled integro-differential equations. For computational purposes

the system must be closed: The set of potentially contributing operators must be ren-

dered finite such that the relevant physics is kept in the approximation, cf. section 3.2.2.

Moreover, the approximation should be subject to self-consistency checks that give access

to the systematic error.

At first, I describe the approximation put forward here for the flow of the propagators

in fig. (3.7) and fig. (3.8). Then the explicit parameterisation/approximation in terms of

Γ
(n)
k with n ≤ 4 is given: The propagators are not truncated but rather the full momentum

dependence is taken into account. Further, the equations are closed with self-consistent

approximations to the vertices which respect the renormalisation group properties of the

vertices. For the ghost-gluon vertex the flow equation that is derived from the DSE of the

vertex, see section 3.4, is studied at vanishing temperature. It turns out that the naive

improvement of evaluating the vertex flow at the symmetric point and identifying the

momentum argument with the renormalisation scale k is overestimating the change of the

vertex with the scale. In particular in the propagator flows, this leads to a reweighting of

diagrams with pure ghost content with respect to diagrams with purely gluonic content.

Therefore, the resolution of the vertex in a momentum-dependent way is to be preferred.

However, the full inclusion of the momentum-dependent vertex at finite temperature is

beyond the scope of this work. Instead a constant vertex is taken, which is a relatively

good truncation in view of the non-renormalisation of the ghost-gluon vertex. Further,

it keeps the weights between the different diagrams as they have been established in the

definition of the running coupling. This is explained further in section 4.1.3.

For the three-gluon and four-gluon vertices ansätze are used in this computation. They are

constructed in such a way that the effects of the temperature in the vertices is mimicked.

The effect is a suppression of the vertices for at least intermediate and high temperatures

which is due to the suppression of the propagators in this temperature range. At vanishing

temperature the ansätze are chosen such that they give the correct perturbative running

for high scales k, but account for non-perturbative effects in the infrared. A posteriori,

the validity of the ansatz at zero temperature for the three-gluon vertex is confirmed,

especially in the infrared region. For this the flow equation for the three-gluon vertex as

a function of the renormalisation group scale k is studied at the symmetric point with

the momentum configuration p2 ≳ 0. With this configuration the comparison with per-

turbation theory in the ultraviolet is valid and the perturbative running of the vertex is

reproduced at ultraviolet scales. More details are given in section 4.1.4.

For the four-gluon vertex a similar ansatz is employed. On the one hand, this is supposed

to be justified by the experience gained in the study of the validity of the three-point

gluonic function. On the other hand, this vertex has been studied in the framework of its
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DSE [428]. The reliability of the renormalisation group consistent four-gluon vertex can

be compared with these DSE results.

4.1.1. Two-Point Functions and their Flows

Apart from the dependence on the field expectation value the two-point functions are

fully taken into account, i.e. the dependence on (spatial) momentum p and renormalisa-

tion group scale k is kept1. In this computation the localised two-point functions Γ̂(2) are

employed, see section 3.2.5. In addition, the correlators in terms of cutoff-independent

fields are obtained with eq. (3.39), eq. (3.49) and eq. (3.63).

In Landau gauge the gluon is a purely transversal particle with respect to spacetime,

see eq. (2.28) and eq. (2.29). In contrast to this, the ghost is a Lorentz-scalar particle.

Therefore, one (Lorentz-scalar) wave-functional renormalisation for each field is sufficient

to describe the propagators at zero temperature, ZA,k(p) for the gluon2 and Zc,k(p) for

the ghost (and anti-ghost).

In section 3.2.6 it is argued that at non-vanishing temperature the heat bath breaks

manifest Lorentz symmetry. This singles out the rest frame of the heat bath as a preferred

frame. Consequently, in the three-dimensional spatial subspace there are two different

tensor structures, which are obtained by projections on the longitudinal and transversal

spatial direction with respect to the heat bath vector. The projection operators PL and

PT are given by

P Tµν(p0, p⃗) = (1 − δµ0) (1 − δν0) (δµν − pµpν/p⃗ 2) ,
PLµν(p0, p⃗) = ΠT

µν(p) − P Tµν(p0, p⃗) , (4.1)

where ΠT
µν is the four-dimensional transversal projection operator, see eq. (2.28). These

two tensors demand for a parametrisation of the gluon in terms of two different wave-

function renormalisations ZL,k(p) and ZT,k(p). Both tensors are transversal in four

dimensional space, thus, in the limit of T → 0 these tensor structures reproduce ex-

actly the four-dimensional projector and the two wave-function renormalisations agree

ZA,k(p) = ZL,k(p) = ZT,k(p).
Trivially, the Lorentz-scalar structure of the ghost is independent of the heat bath vector,

thus, the ghost can be parametrised with one function at vanishing as well as non-zero

1Note however, that the dependence on the field expectation value is dropped. The inclusion of this is
subject of section 4.3 and chapter 5.

2At non-zero k the O(4) symmetry is only realised, if the regulator is chosen to be symmetric. E.g.
one possible non-symmetric definition is a three-dimensional regulator which only regulates the spatial
momentum. In this case the differentiation between the longitudinal and transversal tensors in the
three-dimensional subspace is inevitable for non-zero k, although the theory is O(4) symmetric at
k = 0, i.e. for vanishing temperature. Nonetheless, this regulator is applicable, yet it suffers from other
hardships. As pointed out in section 3.2.5, locality of the flow is important. As three-dimensional
regulators do not cut off the temporal direction the flow is rather non-local in this direction, as it only
falls of polynomially. For quantitative numerical studies at non-vanishing temperature in the setup
employed here, this regulator is therefore poorly suited.
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temperature.

Finally, the parameterisation of the gluons and ghost is given by

Γ̂
(2)
A,L(p0, p⃗) = ZL(p0, p⃗)p2 PL(p0, p⃗) ,

Γ̂
(2)
A,T (p0, p⃗) = ZT (p0, p⃗)p2 P T (p0, p⃗) ,

Γ̂(2)
c (p0, p⃗) = Zc(p0, p⃗)p2 , (4.2)

where the identity in colour space is suppressed and the Z’s are functions of p0 and p⃗ sep-

arately as the Euclidean O(4) symmetry is broken by the temperature. In the following

the abbreviation p2 at non-vanishing temperature denotes p2 = p2
0 + p⃗2.

In fact, the dependency on the Matsubara modes can be formulated in an easy approxi-

mation. The approximation is based on the fact that the effect of temperature vanishes

quickly for momenta larger than the first Matsubara mode, see section 3.2.6. So higher

Matsubara modes can be described well by shifting the spatial momentum of the zeroth

Matsubara mode by the time component of the particular Matsubara mode, viz.

Γ(2)
ϕ (p0, p⃗) ≈ Γ(2)

ϕ (0,
√
p2

0 + p⃗2) . (4.3)

This approximation turns out to be very good as it is known from the lattice and DSE

[305,429] and here it is confirmed a posteriori in fig. (4.18).

The parameterisation of Γ(2) follows from that of Γ̂(2) in eq. (4.2), and is read off the

definition of φ(ϕ) in eq. (3.35) and eq. (3.46),

Γ
(2)
A,L/T ≃ ẐL/T (p)ZL/T (p)p2 , Γ(2)

c ≃ Ẑc(p)Zc(p)p2 . (4.4)

These expressions can be inverted trivially, as the longitudinal tensor does not mix with

the transversal one

(P TµνA + PLµνB)−1 = P TµνA −1 + PLµνB−1 . (4.5)

Like in the case of vanishing temperature, the triviality of inversion is again due to the

fact that Landau gauge does not allow for tensor structures that mix transverse and lon-

gitudinal directions. In arbitrary gauges this does not hold, see e.g. [430] for the general

case and the inversion prescription.

The flow equations for the two-point functions are given diagrammatically in fig. (3.7)

and fig. (3.8). Their right hand sides depend on the two-point functions as well as three-

and four-point functions. In particular, there are tadpole diagrams which depend on the

ghost-ghost and ghost-gluon scattering vertices Γ
(4)
c̄cc̄c and Γ

(4)
c̄A2c

, respectively. These ver-

tices vanish classically and in a first approximation one is tempted to drop the related
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diagrams. However, they can be considered in a rather simple way, which is detailed

already in section 3.4, where an alternative flow equation for the ghost propagator was

derived via taking a scale derivative of the ghost DSE. This provides a DSE-resummation

of the vertices in a given approximation to the flow, given in fig. (3.23).

The DSE-flow is finite by construction, as it can be derived from the manifestly finite

ghost flow in fig. (3.8) by inserting the DSEs for the ghost-ghost and ghost-gluon scatter-

ing vertices. These DSEs are also manifestly finite and require no renormalisation. This

can be seen at the individual terms in fig. (3.21) and fig. (3.23), respectively. First of

all, note that the total t-derivative of the propagators, ∂tG, shown in eq. (3.66) acts as a

ultraviolet-regularisation of the loops. They decay at least with G2 as ∂tΓ
(2)
k tends towards

a constant for large momenta. The total t-derivative ∂tĜ decays even more rapidly with

∂tR̂ for large momenta due to eq. (3.47). This reflects again the locality implemented by

eq. (3.47) and its practical importance. The last diagram is proportional to the flow of

the ghost-gluon vertex. This is discussed in detail in the section 4.1.3, and is displayed

schematically in fig. (4.5). Here, it suffices to say that the vertex itself is protected from

renormalisation and its flow decays rapidly for large momenta.

Both flow equations given in fig. (3.8) and fig. (3.23) for the ghost are exact and are

related via the above resummation procedure. In the present approximation scheme the

DSE is more favorable, because the four-point functions do not appear explicitly in the

total derivative of the DSE. But instead of dropping the related contributions, they are

absorbed in the diagrams with cutted propagators. Notably, the ghost-ghost scattering

vertex Γ
(4)
c̄cc̄c disappeared completely from the set of flow equations of ghost and gluon

propagators, whereas the ghost-gluon scattering vertex Γ
(4)
c̄A2c

is still present in the flow of

the gluon two-point function.

The behaviour of the wave-function renormalisation of the ghost at non-vanishing tem-

perature is such that it is suppressed with the temperature. The question arises whether

it can turn negative. However, it can only be answered under consideration of the ghost-

gluon vertex and the non-perturbative running coupling, both of which are introduced in

section 4.1.3. Thus, the discussion of the behaviour of the Zc is delayed to this section.

Forestalling the remaining details of the precise truncation at hand, fig. (4.1) shows the

individual contributions to the full flows of the two-point functions. They are detailed al-

ready here, because they give valuable information about the structure of the truncation,

in particular for gluonic vertices at zero and non-zero temperature, see section 4.1.4.

In fig. (4.1(a)), the purple, dashed–triple-dotted line shows the full flow of the gluon at zero

temperature in the truncation at hand at a fixed renormalisation group scale k = 5 GeV.

As the flow is not just a constant, it yields a non-trivial momentum-dependence of the

gluon propagator along the flow.

In the truncation utilised here, the flow of the gluon receives three contributions stemming
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Figure 4.1.: Typical flows of the two-point functions of Yang–Mills at a fixed scale k =
5 GeV in the truncation at hand, cf. fig. (4.12). Both flows are peaked around
p ≳ k, where the location of the peak is determined by the choice of the shape
function of the regulator. In the gluon flow, the contribution of the diagram
involving two three-gluon vertices is largely cancelled by the tadpole.

from the first three loop diagrams in fig. (3.7). Naturally, the system is coupled in the

sense that the two-point functions couple back into the diagrams, as the internal lines

are full propagators. The red, long-dashed line denotes the contribution of the diagram

involving two three-gluon vertices, i.e. the first diagram in fig. (3.7). It yields a positive

contribution. In contrast to this, the other two diagrams yield negative partial flows. The

third diagram in fig. (3.7) is called tadpole, shown by the blue, dashed line. It is constant

here as it is independent of the external momentum due to the absence of momenta in
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4.1. Approximation

the classical tensor structure of the four-gluon vertex, cf. appendix E. As the classical

tensor is the only one considered in the ansatz for the four-gluon correlator, the only mo-

mentum in the tadpole is the loop momentum itself, which is related to the scale k. The

green, dashed-dotted line is the contribution of the ghost-loop, i.e. the second diagram in

fig. (3.7).

At the scale considered here the ghost-contribution is the smallest one in absolute size.

However, it is an interesting effect that most of the contributions of the tadpole cancel

the flow of the diagram with two three-gluon vertices. As a result, the flow is diminished

significantly in comparison with the individual gluonic contributions. This necessitates

the balance between the individual diagrams which must not be spoiled by choosing a bad

truncation. Furthermore, the flow changes its sign. This yields an even more complex

change of the Γ̂
(2)
A,k(p) along the flow.

The full flow of the ghost two-point function is given as the purple, dashed–triple-dotted

line in fig. (4.1(b)). It only has two different contributions in the truncation employed

here. The green, dashed-dotted line shows the contribution of the diagram, where the scale

derivative acts on the ghost regulator. The red, long-dashed curve shows the contribution

from the diagram, where the scale derivative hits the gluon regulator. Interestingly, the

contribution of the latter diagram approaches a constant at high momenta, because for

the classical ghost-gluon vertex there is a tensor structure which is independent of the

loop momentum, as at vanishing temperature the Lorentz-tensor structure is simply given

by

∼ (p + q)µ pνΠT
µν(q) = p2 − (pµqµ)2

q2
, (4.6)

where p is the external momentum, q the loop momentum, and the transversal projector

is defined in eq. (2.28). As the second term in eq. (4.6) is subject to regularisation the

term ∼ p2 dominates at large momentum.

In the flow of the ghost both diagrams give a positive contribution, however, note that the

ghost-propagator is pushed to more negative values with increasing k due to the negative

dispersion of the ghost, see eq. (2.32).

4.1.2. Vertices and their Flows

For the vertices it is convenient to take a paramerisation that separates the generic renor-

malisation group running of the vertices and split off the non-trivial rest. Herein, the

natural running is determined by the external particles that enter the vertex. This generic

running is therefore set by the wave-function renormalisations of the corresponding fields.

As the two-point function is parametrised in Zφ, there is the factor of Z
1
2

φ for each ex-

ternal field. This construction is motivated by one-loop perturbation theory, thus, it is

clearly good for high values of k. For infrareddish scales below ΛQCD this ansatz is not

suited anymore. Therefore, in terms of Z̄’s that are simply the perturbative ones in the

far ultraviolet but mimic the correct infrared behaviour more accurately, the full vertex
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ansätze are given. These modified factors Z̄’s are proportional to the wave-function renor-

malisations Z, and hence carry the renormalisation group scaling of the vertex as well as

the momentum dependence of the legs: They carry potential kinematical singularities, see

e.g. [249].

Dropping the generic dependence on the renormalisation group scale for clarity, the Z̄’s

are defined by

Z̄L/T (p) =
ZL/T (p)p2 − [ZL/T (q)q2]

q→0

p2
, (4.7)

Z̄c(p) = Zc(p) , (4.8)

with Z̄L/T = Z̄A at vanishing temperature. The subtraction prescription eq. (4.7) is well

suited due to the use of decoupling type solution, i.e. ZL/T (q)q2 approaches a constant

for q → 0. The subtraction in the Z̄L/T,k(p) guarantees that the infrared divergent func-

tion ZL/T,k(p) does not trigger an infrared-divergent vertex, which would yield divergent

gluonic flow diagrams. That these divergences are not the physically realised correlation

functions is confirmed later in section 4.1.4. This is also seen on the lattice [327]. Actu-

ally, for the ghost the usual wave-function renormalisation can remain as an ansatz in the

vertices as the Zc,k(p) is regular.

In addition to that, the non-trivial part due to quantum and thermal fluctuations as well

as the canonical momentum and tensor structure are added, i.e. tensors for Lorentz- or

colour indices. In the following, this part is denoted by a general tensor T . This gives the

vertex construction for the vertices in the (localised) flows of the two-point functions of

Yang–Mills theory

Γ̂(n)(p1, ..., pn) =
n

∏
i=1

Z̄
1/2
φi

(pi)T (p1, ..., pn) . (4.9)

However, the shape of the wave-function renormalisation still does not reflect the expected

properties of the gluonic vertices. Therefore, the Z̄L/T (p) are frozen for p ≤ ppeak, where

ppeak is the potential turning point of the inverse propagator Γ
(2)
L/T,k in the infrared, de-

fined by ∂p(p2ZL/T (p))p=ppeak
= 0. This turning point ppeak implies that the Z̄ becomes

negative below this scale and approaches its value in the k → 0 limit from below 0. This

is actually a sign of the bending over of the gluon propagator, thus, a sign of positivity

violation, cf. section 2.3.1. By cutting off the Z̄L/T at some scale above the turning point

it is guaranteed to remain positive. Note that this is done simply for convenience in order

to avoid the splitting of a positive vertex dressing into two negative factors. The Z̄’s take

into account the renormalisation group scaling of the fields and reflect the gaps present in

the gluonic degrees of freedom.

At finite temperature the turning points depend on T and differ for ZT and ZL, the turn-

ing point of the latter tends towards zero for T →∞ due to the Debye screening.
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This yields a renormalisation group invariant tensor T . It is regular up to logarithms and

carries the canonical momentum dimension as well as the tensor and colour structure.

For the flow of the propagators, fig. (3.7) and fig. (3.8), T has to be computed for the

three-gluon and four-gluon vertex, the ghost-gluon vertex and for the four-ghost as well

as ghost-gluon scattering vertices. The latter two, which are absent on the classical level,

are treated in terms of exact resummations in the ghost-propagator flow with the help of

DSEs. The corresponding term in the gluon propagator involving the ghost-gluon scatter-

ing kernel is dropped.

For the other vertices, i.e. for the vertices that are present in the classical theory already,

the locality of the flow equation is utilised in the following way: The flow only carries loop

momenta q2 ≲ k2 and is peaked at about p2 ≈ k2. Hence, the vertices are well approximated

by evaluating them at the symmetric point at p⃗2
i = k2, see also appendix B, and vanishing

temporal components,

(pi)2
0 = 0 and p⃗2

i = k2 . (4.10)

In this approximation the Z̄-factors in eq. (4.7) and eq. (4.8) can be evaluated at the fixed

momentum of the symmetric point with eq. (4.10), i.e. the momentum p in each Z̄ is

identified with the renormalisation group scale k in order to match it with the truncation

for the vertices at the symmetric point. Therefore,

Z̄A,k = Z̄A(k)θ6(k, ks) + Z̄A(kIR) (1 − θ6(k, ks)) ,
Z̄c,k = Z̄c(k) , (4.11)

where the function θn(k,µ) defines a function to freeze out the Z̄A in the infrared in

a smooth way, because not only the Z̄A,k enters the computation. In addition, also its

derivative with respect to k emerges due to the definition of the regulator of the gluon, see

eq. (4.40). The regulator comprises the Z̄A,k as a prefactor. In eq. (4.11) the parameter ks

regulates the point around which the Z̄A is frozen and Z̄A(kIR) is the value it approaches in

the deep infrared. The function θn(k,µ) is smooth and approaches the Heaviside function

in the limit n→∞. It is defined by

θn(k,µ) = 1 −
( kµ)

n

e
( k
µ
)
n

− 1
. (4.12)

The values of ks and kIR are chosen particularly for the properties of the gluonic two-

point function, where the freezing scale ks ∝ ΛQCD in eq. (4.11) is chosen such that it

is of the order of ppeak, i.e. ks = .9 GeV, the value of kIR = 1.4 GeV and the function is

chosen to be rather smooth n = 6. Actually, the freezing of the Z̄A,k at ks only defines

the parameterisation of the ghost-gluon vertex. The soft step function θ6(k, ks) is given

in fig. (4.2(a)) and the final expressions of the Z̄A,k and Z̄c,k at vanishing temperature are
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given in fig. (4.2(b)) and fig. (4.2(c)).
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(a) Soft Heaviside function to freeze the Z̄A,k in the
infrared.
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(b) Z̄A,k as defined in eq. (4.11) at vanishing tem-
perature.
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(c) Z̄c,k as defined in eq. (4.11) at vanishing temper-
ature.

Figure 4.2.: Definition of the Z̄A/c(k) at vanishing temperature.

At non-vanishing temperature the Z̄A,k is either Z̄L,k or Z̄T,k, depending on the projection

P T /L defined in eq. (4.1) on the respective leg of Γ
(n)
k .

In a slight abuse of notation this defines momentum-independent, but renormalisation

group scale k-dependent factors Z̄(k): The Z̄-factors in eq. (4.11) are functions of p2
0 and

p⃗2, which are evaluated at eq. (4.10).

For the gluonic vertices at vanishing and non-zero temperature this gives a formally con-

sistent definition. However, the effect of the temperature in the Z̄’s does not necessarily

render physically appropriate ansätze for the gluonic vertices at non-vanishing tempera-

ture. Further details on the truncation of the gluonic vertices at non-vanishing temperature

are given in section 4.1.4.
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4.1.3. Ghost-Gluon Vertex

In the truncated system three different vertices appear, the trigluon vertex Γ
(3)
A3 , the

tetragluon vertex Γ
(4)
A4 and the ghost-gluon vertex Γ

(3)
c̄Ac. For these correlators the dressings

T must be determined. Compared to other vertices, in these cases it is rather easy to find

a reasonable ansatz. The reason for this is that these interaction terms have a classical

counterpart, i.e. they are present in the classical action. All the other vertices emerge via

quantum fluctuations. Though, for the classical vertices it is possible to determine the

classical tensor structure by functional derivatives with respect to the external fields that

enter the vertex. In the following only the classical tensor structures are kept, although

in a full treatment the vertices would have to be spanned via all possible tensor basis

obtained from a tensor decomposititon, wherein each tensor would carry a non-trivial

dressing function. Spanning the full vertices is an intricate task, therefore, in most nu-

merical Yang–Mills studies the classical tensor structures or at most subsets of the tensor

basis have been considered. For the three remaining vertices in the truncation above only

the classical tensor structure is taken into account.

In approximations in the framework of the FRG a reasonable ansatz for the non-perturbative

vertices is the classical tensor structure, given in appendix E, with a k-dependent dressing

function that encodes the quantum and thermal fluctuations. At the symmetric point the

centre of mass momentum is identified with the renormalisation group scale k which yields

that the vertices feel the scale in the most direct way, due to the locality of the flow. This

strategy is followed for all three vertices that appear in the coupled system.

As a result, the ghost-gluon vertex is parametrised as

T abcc̄Ac,µ(q, p) = zc̄Ac ,k
1

g
[S(3)
c̄Ac(q, p)]

abc
µ = zc̄Ac ,k iqµfabc , (4.13)

where g is the classical coupling, S
(3)
c̄Ac is the classical ghost-gluon vertex derived from

eq. (2.18), carrying three colour indices and one Lorentz index, see appendix E. Further,

p, q are the ghost and anti-ghost momenta, respectively, see fig. (4.3). Note that the non-

perturbative running coupling is defined via the definition of the zc̄Ac ,k. Due to momentum

conservation in the vertex the dependence on the gluon momentum r is expressed as a

dependence on the (anti-)ghost momentum.

The k-dependent factor zc̄Ac ,k is a renormalisation group invariant and defines a running

coupling,

ᾱs(k) =
z2
c̄Ac, k

4π
, (4.14)

with running momentum scale k. If expanded in powers of the coupling for large momenta,

ᾱs has the one and two-loop universal coefficients of the β-function of Yang–Mills theory.

Note that this necessitates the fact that Z̄A,k → ZA,k for large cutoff scales.
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p q
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Figure 4.3.: Ghost-gluon vertex.

The flow of zc̄Ac, k is extracted from that of the ghost-gluon vertex. The properties and

the behaviour of this flow is studied next. Here, this flow is computed within a DSE-

resummation similar to the derivation that is made for the ghost propagator. Again,

= + + �

Figure 4.4.: DSE for the ghost-gluon vertex in the chosen truncation. The vertex without
the shaded circle denotes the classical vertex.

the DSE-resummed flow is finite as it is derived from the standard flow equation for the

ghost-gluon vertex which is finite by construction. Note however, that already the DSE

in fig. (4.4) is finite without renormalisation procedure due to the non-renormalisation

theorem for the ghost-gluon vertex. Due to simple kinematical reasons, it is also present

in approximation schemes that respect the kinematical symmetries.

The above arguments allow to start straightaway with the simple ghost-gluon DSE, see

fig. (4.4), which only contains one-loop terms. Similarly to the flow for the ghost prop-

agator, the DSE in fig. (4.4) is turned into a flow equation by taking the t-derivative of

fig. (4.5). The running of the vertex allows for a momentum- and temperature-dependent

computation of the vertex which has an effect in the calculation of the propagators.

It remains to project the vertex flow onto that of the renormalisation group invariant

dressing function zc̄Ac, k. Note that this is not the full vertex, as the Z̄’s have been

factorised, eq. (4.9). Omitting the k-argument, the projection on the classical vertex
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structure is done by

Γc̄Ac(P ) = g
⎛
⎜
⎝

[Γ̂(3)
c̄Ac]abcµ [S(3)

c̄Ac]abcµ
[S(3)
c̄Ac]

def
ν [S(3)

c̄Ac]
def
ν

RRRRRRRRRRRRg=1

⎞
⎟
⎠
p2=q2=(p+q)2=P 2

, (4.15)

with an evaluation at the symmetric point at the momentum scale P . For the classical

vertex Γ
(3)
c̄Ac = S

(3)
c̄Ac derived from eq. (2.18) the dressing is simply unity, thus Γc̄Ac, k(P ) = g.

A first improvement compared to the classical vertex is to evaluate the vertex at the mo-

mentum scale k, as it is done in the vertex construction. What enters this approximation

in particular is that the flow of the vertex receives the main contributions always from

the momentum region around the renormalisation group scale. Thus the flow itself is

only evaluated at P = k. So by construction, this ansatz neglects parts of the momentum-

dependence of the vertex. At zero temperature, the effect of this reduction is studied next.

In the course of this the non-perturbative running coupling is introduced.

At first, the ghost-gluon vertex is evaluated at P = k, motivated by the locality of the

flow. The full ghost-gluon vertex does not renormalise in the ultraviolet, however, this

feature is not seen in the flow as the relevant momentum scale is shifted with k. Thus, a

logarithmic running remains in the scale-dependent vertex. This does not invalidate the

ansatz for the vertex, as the physical point is by construction at k = 0 only, where the

fixed point of the coupling of the ghost-gluon vertex remains unchanged.

The identification in the flow is done accordingly, viz.

∂tΓc̄Ac, k = ∂tΓc̄Ac, k(P = k) . (4.16)

Note that the left hand side depends on k via the evaluation at P = k but also due to the

implicit dependence of the vertex on the cutoff scale. The full vertex dressing in eq. (4.16)

also includes the dressing of the legs as split off in eq. (4.9). Hence, the tensor component

zc̄Ac, k is given by

zc̄Ac, k =
1

Z̄
1/2
A,kZ̄c,k

Γc̄Ac, k . (4.17)

The flow ∂tzc̄Ac, k is determined from eq. (4.17) and is directly related to that of the

ghost-gluon vertex. Taking the t-derivative of eq. (4.17) leaves

(∂t +
1

2

∂tZ̄A,k

Z̄A,k
+ ∂tZ̄c,k

Z̄c,k
) zc̄Ac, k = ∂tΓc̄Ac, k

1

Z̄
1/2
A,kZ̄c,k

.

Upon integration the flow, eq. (4.17), gives the vertex dressing of the ghost-gluon vertex

at a given cutoff scale k,

zc̄Ac, k = zc̄Ac, k=0 + ∫
k

0

dk′

k′
∂t′zc̄Ac, k′ . (4.18)
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The input into applications of thermal flows is the T = 0 theory. Therefore, the initial

condition for zk=0,c̄Ac∣T=0
is required. The determination of the vertex is non-trivial.

However, the insights that were gained during the last decades in functional approaches

to the infrared sector of Yang–Mills theory (at vanishing temperature) allow to fix the

value of the running coupling in the limit k → 0. For a review see e.g. [276]. At vanishing

temperature a one-parameter family of solutions with infrared enhanced ghost propagators

and gapped gluon propagators in Landau gauge has been found. They are described in

section 2.3.2. All solutions have a gluon propagator with a mass gap mgluon ∝ ΛQCD.

They only differ from each other in the deep infrared for momenta p2 ≪ ΛQCD. There,

the gluon propagator is described by

ZA(p≪ ΛQCD) ∝ c(p)
m2

gluon

p2
, (4.19)

where c(p) ≳ 1 is a momentum-dependent function which is bounded from below. For

all solutions but one c(p) it is also bounded from above. These solutions are called

decoupling solutions, as the gluon decouples in that momentum regime. There is one

distinguished member of this family where c(p) diverges with p2+2κA with κA < −1, see

section 2.3.2 or [276]. This solution is called scaling solution as the infrared propagators

and vertices are uniquely determined by scaling laws up to constant prefactors, see e.g.

[241,244,248,249,254,276,282].

= � 2 � 2� �

+++ 2

@t

Figure 4.5.: Flow equation for the ghost-gluon vertex from the total t-derivative of the
ghost-gluon vertex DSE in fig. (4.4). The cutted line stands for the scale
derivative acting on the propagator of the corresponding field, see eq. (3.66).
The shaded circles are the full vertices. The square denotes the scale derivative
acting on the full vertex, the vertex indicated by a small black dot denotes
the classical vertex.
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Most importantly, the flow of the ghost-gluon vertex in fig. (4.5) is not sensitive to the

infrared behaviour of the gluon propagator. Thus, it is insensitive to the choice of a

scaling or decoupling solution as input for the thermal flow at vanishing temperature. All

diagrams in fig. (4.5) vanish in the limit k → 0 with powers of k2/m2
gap,

lim
k→0

∂tzc̄Ac, k ∝
k2

m2
gap

. (4.20)

This also entails that the vertex dressing tends toward a constant in the infrared. There-

fore, the infrared value of the ghost-gluon vertex is the same for the whole class of so-

lutions up to subleading terms in renormalisation group transformations. This can be

used to compute zc̄Ac, k=0∣T=0
for the whole class of solutions. It has been shown that the

scaling solution for constant ghost-gluon vertex dressings is determined in the FRG up to

a renormalisation group constant, see [272],

z2
c̄Ac, k=0∣T=0

( Z̄A(p)Z̄2
c (p)

ZA,s(p)Z2
c,s(p)

)
p=0

= 4παs,IR , (4.21a)

with the scaling wave-function renormalisations ZA/c,s for ghost and gluon propagators,

respectively. On the right hand side, the fixed point of the non-perturbative running

coupling appears which is defined in terms of the ghost and gluon wave-function renor-

malisations [241],

αs(p) =
g2

4π

1

ZA(p) (Zc(p))2
. (4.21b)

The fixed point of this coupling in the infrared αs,IR is analytically known [241]

αs(0) = −
4π

Nc

2

3

Γ(−2κ)Γ(κ − 1)Γ(κ + 3)
(Γ(−κ))2 Γ(2κ − 1)

Nc=3≈ 2.97 , (4.21c)

where κ ≈ 0.595, which also fixes the value of the unrenormalised coupling g ≈ 4.23071 for

the propagators at hand by eq. (4.21b).

For momenta p≫ ΛQCD the ZA/c,s(p) tend towards the decoupling solutions up to renor-

malisation group scalings. Demanding equivalence for large momenta fixes the relative

ultraviolet renormalisation condition. In summary, this allows to fix z2
c̄Ac, k at vanishing

temperature in terms of the ultraviolet renormalisation condition in a unique way for both,

scaling and decoupling types of solutions. These couplings are shown in fig. (4.6), where

the scaling solution shows the fixed point in the infrared. For the decoupling solution

the same definition of the running coupling is used, thus, the coupling decreases in the

infrared, as the wave-function renormalisation of the ghost tends to a constant and the

wave-function renormalisation of the gluon diverges at k → 0.

At non-vanishing temperature this coupling is employed as well. But there is a subtlety

connected with the tensor structure of the gluon propagator. As mentioned above, the

gluon propagator in Landau gauge has a purely transversal structure. However, at non-

vanishing temperature this has to be projected with respect to the heat bath vector. These
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two tensor structures allow for two different wave-function renormalisations for the gluon.

As the coupling eq. (4.21b) is defined in terms of the gluonic wave-function, there are two

separate couplings for the chromoelectric gluon αs,L and the chromomagnetic gluon αs,T ,

both defined in analogy to eq. (4.21b), sc.

αs,L/T (p) =
g2

4π

1

ZL/T (p) (Zc(p))2
, (4.22)

which also translates to similar expressions for the definition of the vertex z
L/T
c̄Ac, k.
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Figure 4.6.: The non-perturbative running coupling of Yang–Mills theory as defined in
eq. (4.21b) for the scaling and decoupling solution. The coupling is con-
structed with the scaling propagators, it develops a renormalisation group
fixed point in the deep infrared. Fixing the running coupling in the ultravi-
olet allows to use the same definition for the decoupling propagators as well.
In the deep infrared this coupling vanishes. Thermal effects are insensitive to
the choice of the type of solution of Yang–Mills correlation functions, because
the deep infrared, i.e. the region where the two types differ, is suppressed.

In the light of the ongoing debate about the infrared behaviour of Landau gauge propa-

gators in the vacuum it is important to stress the following: Firstly, the flow of the vertex

function is not sensitive to the differences of the momentum behaviour of the propagators

in the deep infrared, p ≪ ΛQCD, as it is switched off for k → 0 below ΛQCD. Secondly,

the above argument leading to eq. (4.21) only relies on the technical possibility of finding

initial ultraviolet conditions for the flow in the given approximation which flow into the

scaling solution in the infrared. This is trivially possible, see [272, 273, 276]. Then, the

analytical values of the scaling solution fixes eq. (4.21) for both, scaling and decoupling

solutions. This does neither resolve the infrared problem in Landau gauge Yang–Mills

theory closely related to the picture of confinement, nor the Gribov problem in this gauge.

However, above ΛQCD there is no quantitative difference between the scaling or decou-

pling solution. For thermal effects only, which are the main concern of this work, these
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two types of solutions show qualitatively the same behaviour also below the scale ΛQCD,

albeit they are qualitatively different in the deep infrared region.
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Figure 4.7.: Flow of the scale-dependent ghost-gluon vertex. The logarithic running is due
to the identification of the centre-of-mass momentum with the renormalisation
group scale k. Thus, the running of the vertex does not enter the ultraviolet
regime in the unphysical scale k. The vertex is fixed at k = 0, where it
is matched with the fixed point of the non-perturbative running coupling

Γ
(3)
c̄Ac, k=0 = g. Note the absence of dimensions on the ordinate, as the Γ

(3)
c̄Ac, k

relates to the dressing function, i.e. the canonical dimension is not comprised.

All in all, this leaves a relatively simple flow equation for the ghost-gluon vertex which can

be solved self-consistently with the momentum-dependent propagators and the appropri-

ate ansätze for the gluonic vertices to be detailed in the next section. The resulting vertex

Γ
(3)
c̄Ac, k is given in fig. (4.7).

The vertex shows a relatively strong change in the running with the renormalisation group

scale. In fact, the change of the vertex due to the running is much larger than change in

momentum of the physical vertex, for a study in the framework of DSEs see [245, 431].

Futhermore, there are recent indications that a non-trivial vertex is not compatible with

lattice results [432]. This yields an unphysical weighting of the different scales and ef-

fectively renders the infrared regime quantitatively more important than it actually is.

This suggests that although the vertex has been improved in the sense that it entails a

non-perturbative running, the ansatz is not an improvement of the physical result, if it is

done in this naive way.

The truncation error due to latter intricacy is seen best in direct comparison with the

momentum-dependent vertex, evaluated at the symmetric point P . Using the same trun-

cation, the vertex is computed self-consistently in a coupled system with the propagators,

so all changes are purely due to the dependence of the vertex on the external momentum
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p. The initial condition for the vertex is chosen constant at vanishing scale Γ
(3)
c̄Ac, k=0(P ) = g

in order not to change the fixed point of the running coupling as described above3. Thus,

the ghost-gluon vertex is given by

Γc̄Ac, k(P ) = Γc̄Ac, k=0 + ∫
k

k=0

dk′

k′
∂tΓc̄Ac, k′(P ) . (4.23)

The result for the running vertex at various p is given in fig. (4.8(b)), with the flow eval-

uated at various values of the external momentum ∣p∣ given in fig. (4.8(a)). The short

dashed curve is to be compared with the result from the momentum-independent vertex

in fig. (4.7). By comparison the running in the scale-dependent vertex is significantly

overestimated with respect to the momentum-dependent vertex.

Given the results for the various flows of the ghost-gluon vertex above, it is question-

able whether the simple scale-dependent vertex is a real improvement with respect to the

correct physical behaviour of the system. Unfortunately, a full inclusion of the momentum-

dependent vertex at finite temperature is beyond the scope of this thesis. Thus, in the

truncation of the results for the thermal behaviour of the Yang–Mills propagators pre-

sented below, the ghost-gluon vertex is chosen as bare.

In eq. (4.14), eq. (4.17) and eq. (4.21a) the coupling at vanishing temperature is defined. At

non-vanishing temperature the coupling is suppressed below the temperature scale k ∼ T ,

see e.g. [433]. Furthermore, in the vertex external transversal and longitudinal gluon legs

have to be distinguished. However, for the case of the constant ghost-gluon vertex the

temperature dependence is dropped. In addition, the differentiation of the longitudinal

and transversal coupling affects the gluonic vertices only. This is detailed further in the

next section 4.1.4.

At this point I come back to the question of the thermal behaviour of the wave-function

renormalisation of the ghost, mentioned already in section 4.1.1. With increasing tem-

perature the Zc gets suppressed, as it will be seen in section 4.2. However, a vanishing

wave-function renormalisation of the ghost would trigger a divergent flow in the ghost-

gluon vertex. The signs of the contributions of the diagrams are such, that the vertex

would vanish at this point. As the dressing function of the ghost-gluon vertex enters the

equation for the ghost flow, this effectively stops the flow of the ghost at this point. There-

3Note that in principle the vertex must be fixed at ultraviolet scales. However, for the purpose of resolving
the truncation error due to the neglection of the momentum-dependence in the vertex only, it is actually
better to fix the vertex in the deep infrared to be momentum-independent in order to see a clear signal
of the momentum-dependency in direct comparison with running vertex without explicit momentum-
dependency. The change of the vertex indicates that initialising in the ultraviolet would give a constant
vertex at large momenta and a rather mild change at intermediate and small momenta, as it would
mimic the inverted short dashed curve in fig. (4.8(b)). This is constistent with results from studies
with DSEs [245,431]. Nevertheless, besides these arguments, the full computation has not been carried
out here.
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(a) Flow of the momentum-dependent ghost-gluon vertex at fixed renor-
malisation group scales k.
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(b) Momentum-dependent ghost-gluon vertex at various external momenta
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Figure 4.8.: Momentum-dependent ghost-gluon vertex coupled to the full propagators at
vanishing temperature. The vertex in fig. (4.7) approximates the short dashed
curve in fig. (4.8(b)) poorly, because its running overestimates the actual
effect. This suggests, that the naive approximation in fig. (4.7) is not a good
truncation, as it incorrectly weights the ultraviolet with respect to infrared
scales. Note the absence of dimensions of the ordinate, as these curves relate
to the dimensionless dressing function of the vertex.

fore, a negative wave-function renormalisation of the ghost is not realised in the case of

the coupled system of the ghost-gluon vertex and the two-point functions. However, due

to the reasons outlined above, the ghost-gluon vertex in the computation presented here
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is taken to be scale independent, which induces this truncation error4.

First and foremost, this would not represent the physical either, because it would yield a

negative running coupling which gets more and more negative with the temperature. This

unphysical effect due to a truncational shortcoming must be handled. For this purpose, the

technique of field reparametrisations, which is already utilised to guarantee local flows, see

section 3.2.5, is applied also here. However, this time it is not purely the scale-dependency

which is put into the reparametrised ghost fields, but an additional dependence on the

temperature.

The temperature-dependent ghost fields are defined by

˜̂ck = Z̃1/2
k ĉk ,

˜̄̂ck = Z̃1/2
k

ˆ̄ck . (4.24)

By definition the temperature dependence is put into the fields, that leaves the two-point

functions of the corresponding fields to be independent of the temperature,

˜̂
Γ
(2)
c,k,T ∶= Γ̂

(2)
c,k,T=0 , (4.25)

as long as the retransformation to the physical fields is not done. Note that this also

affects the other correlation functions with ghost content and also the coupling ᾱs,k, but

not the physical coupling, as it is detailed further below.

Similar to eq. (3.40) and eq. (3.43) the flow of the two-point function of the reparametrised

ghosts is given by

(∂t + 2˜̂γ) ˜̂
Γ
(2)
c,k,T = δ2

δ˜̂ckδ
˜̄̂ck

(1

2
STr ( ˜̂

Gc,k (∂t + 2˜̂γ) ˜̂
Rk) + gluon loop) = ˜̂

Flow
(2)
T , (4.26)

where the index k on the ghost fields indicates that these fields are scale dependent al-

ready. In other words, they are parts of the field multiplet φ in eq. (3.35). Dropping the

explicit but unmodified dependence on the purely gluon contributions, the definition of

the anomalous dimension of the propagator is turned into

˜̂ηk,T = 2˜̂γ =
˜̂

Flow
(2)
T (Γ̂

(2)
c,k,T=0,

˜̂η,
˜̂
Γ
(n≥3)
c,k,T ) − ˆFlow

(2)
T=0 (Γ̂

(2)
c,k,T=0, η̂, Γ̂

(n≥3)
c,k,T )

Γ̂
(2)
c,k,T=0

, (4.27)

with ˆFlow
(2)
T=0 defined in eq. (3.43) and

˜̂
Flow

(2)
T in eq. (4.26). The definition eq. (4.27) is

well-defined, as the function Γ̂
(2)
c,k,T=0 is strictly positive. This would not be the case for

the gluonic two-point function.

This procedure guarantees that the ghost two-point function that enters the flow in terms

4Note that the exclusion of negative values of Zc at finite temperature is not excluded via the inclusion
of a running ghost-gluon vertex. Firstly, the truncation of the vertex plays a crucial role. But secondly,
even if the vertex is formally capable of stabilising the system in combination with the ghost flow, the
decrease of Zc happens very fast. As a consequence, also in the latter case the system in numerically
hard to resolve and the improvement of the truncation for the ghost flow as it is described for the
constant ghost-gluon vertex remains to be a suitable implementation.
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of the temperature-dependent ghosts is the one at vanishing temperature. In turn, the

full non-trivial dependence on the temperature is not dropped but stored in the fields.

Naturally, at the end of the computation this reparametrisation must be undone to express

the results in terms of the physical fields, similar to eq. (3.49). This is done via integrating

the
˜̂
Zc,k,T via its definition, eq. (4.27),

Γ̂
(2)
c,k,T = ˜̂

Zc,k,T
˜̂
Γ
(2)
c,k,T , (4.28)

= ˜̂
Zc,Λ,T exp{∫

k

Λ

dk′

k′
˜̂ηk,T} ˜̂

Γ
(2)
c,k,T , (4.29)

with
˜̂
Zc,Λ,T = 1. This yields the physical Green functions after having undone the reparametri-

sation of the k-dependent fields according to eq. (3.49).

Note that this puts parts of the temperature dependence also in the (tilded) vertices, cf.

eq. (3.38), not only directly into the ghost-gluon vertex but also into gluonic vertices via

the backcoupling. However, for the ghost-gluon vertex this redefinition directly affects the

definition of the coupling via zc̄Ac, k, cf. eq. (4.17). In the latter definition the Z̃c’s cancel

exactly,

zc̄Ac, k =
˜̂
Γ
(3)
c̄Ac, k√
Z̄A

˜̄Zc
=

Γ̂
(3)
c̄Ac, k√
Z̄AZ̄c

. (4.30)

Note that for the sake of clarity the hats are dropped in the definitions of the Z̄’s as well

as in the ghost-gluon vertex in eq. (4.17), but both relations refer to the hatted quanti-

ties. Therefore, the reparametrisation leaves the coupling ᾱs,k unmodified. Naturally, the

physical coupling is insensitive to reparametrisations of the fields too.

In conclusion, the thermal effects of the ghost two-point functions were put into the ghost

fields. This does not neglect these fluctuations but is an exact rewriting of the flow

equation. However, from the technical point of view, this betters the numerical stability,

as problems due to unphysical negative values of the ghost wave-function renormalisation

are removed.

4.1.4. Gluonic Vertices

To close the truncation it remains to determine the renormalisation group invariant tensors

of the purely gluonic vertices, i.e. TA3 of the three-gluon vertex and TA4 of the four-

gluon vertex. They are described within a parameterisation similar to eq. (4.13). So

schematically they are given by

TA3 = zA3,k
1

g
S

(3)
A3 , TA4 = zA4,k

1

g2
S

(4)
A4 , (4.31)

where the vertex dressings zA3,k and zA4,k relate directly to the ghost-gluon dressing

z2
c̄Ac, k = 4πᾱs(k), eq. (4.14), for large cutoff scales k ≫ ΛQCD or large momenta due to

two loop universality. The tensor structure of the classical vertices S
(3)
A3 and S

(4)
A4 is given

in appendix E.
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Indeed, this reasoning has been validated in [428] with DSE-equations for the four-point

coupling. Hence, there is zA4,k ≃ z2
c̄Ac, k for most of the momentum regime with a potential

deviation in the deep infrared for k2/Λ2
QCD ≪ 1. Again, the parametrisation is done

accordingly,

zA3,k = z3,k zc̄Ac, k , zA4,k = z4,k z
2
c̄Ac, k , (4.32)

where the zi,k, i = 3,4, are functions which are expected to approach unity for k2 ≳ Λ2
QCD,

that is

zi,k≫ΛQCD
→ 1 , (4.33)

for i = 3,4. Their infrared behaviour is determined by the only diagram in the flow that

does not depend on the gapped gluon propagator, see fig. (4.9). The effect of these di-

Figure 4.9.: Infrared dominating diagrams in the flow equations for the three-gluon vertex
and the four-gluon vertex.

agrams on the vertices is determined by two competing effects: Firstly, these diagrams

are suppressed relative to those that involve the ghost-gluon vertex due to their colour

structures and the related vertex dressings. In the case of the four-gluon vertex this com-

binatorial suppression is of order 102 − 103, which is nicely seen in the solution in [428].

For the three-gluon vertex the combinatorial suppression factor also turns out to be of

order 102 − 103, subject to the chosen momenta. This factor has been determined within

a two-dimensional lattice study as 0.017, [434].

Secondly, these diagrams grow strong in the infrared in comparison to the respective dia-

gram in the flow of the ghost-gluon vertex, which involves one gapped gluonic propagator.

As already stressed above, for scales above ΛQCD, the gluonic vertices are insensitive to the

behaviour of the propagators in the deep infrared. Furthermore, their relative suppression

to the diagrams given in fig. (4.9) is qualitatively similar for the scaling and decoupling

solution for small scales. In the decoupling case the flow of the gluonic vertices for k → 0

is proportional to k0 up to logarithms. This leads to an effective suppression of diagrams

with gluonic vertices, as such diagrams also involve gapped gluon propagators, and hence a

suppression with k2/m2
gap. In the scaling case the diagrams with gluonic vertices decouple

with powers of the scaling, which can be seen best in the DSE-hierarchy. However, quanti-
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tatively the gluonic vertices may differ for small scales, but as they are suppressed in this

regime, the impact of these quantitative differences on the behaviour of the propagators is

subleading. Is it noteworthy that these differences do not affect the regime above ΛQCD,

which is directly visible in the approach of the FRG.

In summary, the above analysis entails that the related diagrams can be dropped for

k ≤ ΛQCD and above this scale the vertices have a dressing similar to that of the ghost-

gluon vertex. In the vertices the multiplicative dressing functions Z̄1/2 for the respective

legs have been factorised.

The suppression at infrareddish scales can be mimicked in different ways Here, the dimin-

ishment of the gluonic vertices is satisfied via a polynomial decay with the same order of

the coupling of the according vertex. This guarantees that the two diagrams with purely

gluonic content in the flow of the gluon propagator, cf. fig. (3.7), are treated equally, as

both diagrams are of order z2
c̄Ac, k ∼ ᾱs,k = ᾱs(k). The superposed function5 is given by

z3,k = Θ(k − kA) + k Θ(kA − k) , z4,k = z2
3,k , (4.35)

which suppresses both diagrams quadratically in k for scales below kA = 1 GeV.

The validity of the ansatz for the gluonic vertices can be measured by computing the flow

of the vertices itself. Here, this has been done at vanishing temperature for the three-gluon

vertex. The approximation is again such that only the classical tensor structure is taken

into account and the symmetric point with centre of mass momentum P is chosen as a

convenient kinematic configuration. In contrast to the ghost-gluon vertex, the centre of

mass momentum is not identified with the renormalisation group scale k, as this would

invalidate the comparison with perturbation theory, which necessitates a change between

infrared and ultraviolet scales. This would not be the case if P were shifted with the

scale. In other words, a mixing of scales would spoil the genuine perturbative signature6.

Instead, the external momentum is chosen to be small but finite in order to guarantee

that no diagrams vanish due to the external scale, but further that there is only one scale

in the system, i.e. P ≥ 0. In contradistinction to the non-renormalisation property of

the ghost-gluon vertex, the three-gluon vertex carries a perturbative running. Therefore,

the result for the vertex can be tested at ultraviolet scales. The perturbative running

5Note that the suppression of gluonic vertices in the infrared was varied with respect to the superposed
function, e.g. by taking the ansatz

z3,k =
(Γ
(2)
A,k(k) − Γ

(2)
A,k(k))

Γ
(2)
A,k(k)

. (4.34)

The results for the thermal behaviour of the Yang–Mills propagators turned out to be quantitatively
insensitive for appropriate choices of zi,k.

6Note that taking the external momentum P = 0 in the ghost-gluon vertex instead of P = k would not
ameliorate the approximation, it would even make it worse. In fig. (4.8(b)) this can be seen directly.
Taking a large but fixed external momentum would yield a mixing of scales again. Thus, the reasoning
that is employed for the gluonic vertices does not help to find a better but easy ansatz for the ghost-
gluon vertex.
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is guaranteed for the construction of the ansätze for the gluonic vertices as detailed in

section 4.1.2. The result for the three-gluon vertex at vanishing temperature is given in

fig. (4.1.4).
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Figure 4.10.: Comparison of the ansatz for the three-gluon vertex with solution of the
flow equation thereof. The vertex flow is evaluated at the symmetric point
with vanishing centre of mass momentum to justify a comparison with the
perturbative running that is employed to construct the ansatz.

The computation is directly compared with the ansatz for the three-gluon vertex defined

in eq. (4.9), eq. (4.31) and eq. (4.35).

In order to solve the flow one needs to find the correct initial condition. Herefore, the

situation for the three-gluon vertex is different than for the ghost-gluon vertex, which I

shortly sketch here. For the ghost-gluon vertex the initial condition is determined from the

non-perturbative running-coupling eq. (4.21b). As the physical coupling is strictly given

only at k = 0, the infrared value of the dressing function of the vertex zc̄Ac, k=0 is deter-

mined such that the fixed point of the physical coupling αs(p) at vanishing temperature is

not changed. From the input data that has been used here this gives zc̄Ac,k ≈ 4.23071, as

detailed in section 4.1.3. Then the flow gives the initial conditions for arbitrary k, which

allows to study the temperature-dependence of the vertex as well.

In contradistinction to this, for the three-gluon vertex it is not possible to fix the initial

condition in the infrared directly, simply because its infrared value is not known. However,

in the ultraviolet it matches perturbation theory whose running is recovered by the full

vertex in this regime.

For the flow the perturbative running constitutes a solid test for the behaviour of the

vertex (especially for the numerics), as the perturbative behaviour is well known and to
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be found in textbooks, see e.g. [435]. However, a full treatment of the off-shell vertex is

complicated due to the large set of twelve different Lorentz tensor structures, but can be

done via a form factor decomposition [436] which is valid at any order in perturbation

theory. In addtition, non-perturbative results for the three-gluon vertex are at hand, from

continuum [437] as well as lattice studies [327].

Note that the behaviour of the three-gluon vertex given in fig. (4.1.4) at very small mo-

menta is such, that the vertex becomes negative. Nevertheless, such a behaviour is valid,

and in fact it is also seen in lattice simulations [327]. However, the scale at which the

vertex passes the zero is higher than in the FRG result presented here.

A few additional comments regarding the solution given in fig. (4.1.4) are in order. The

solution is obtained such that at first the flow equations for the momentum-dependent

propagators are solved, using the truncation given in the sections above. For the full sys-

tem, the perturbative ansatz of the three-gluon vertex fixes the initial condition for the

vertex at the scale k = Λ. The flow equation is then evolved to the physical scale k = 0. In

a strict sense, this is not a self-consistent computation, because firstly, the vertex in the

ultraviolet is fixed with respect to the infrared value of the ansatz which in general differs

from the computed vertex at k = 0 differ and secondly, the change of the vertex would have

an effect on the propagators as well. In principle, this system would have to be iterated,

i.e. the system should be evolved with the computed vertex from the infrared scale back

to the ultraviolet value Λ, where the vertex is fixed again, and so on until the correlation

functions are stable under this procedure. However, assuming that the iteration does not

develop an instable direction, the full self-consistent result should not be very different

from fig. (4.1.4), because the first iteration step is still quantitatively close to the ansatz.

To conclude, the ansatz that is used is accurate at least at vanishing temperature. The

perturbative behaviour at ultraviolet scales k ≤ 5 GeV is reproduced by the running ver-

tex. At intermediate and infrared scales the vertex clearly deviates from the perturbative

result, which is seen in the computation. In the infrared regime the dominating diagrams

are the ones with closed ghost loops, see fig. (4.9), as the ghost-propagator is enhanced, cf.

section 2.3.2. Nevertheless, the ansatz for the gluonic vertex captures also this non-trivial

behaviour within the expected accuracy. This agreement is crucially due to the switch-

ing off of the gluonic vertices in the infrared with the functions z3,k and z4,k defined in

eq. (4.35).

At non-vanishing temperature the suppression of the non-perturbative running coupling

at scales smaller than the temperature needs to be respected in the ansatz.

For the results presented in section 4.2 the thermal suppression is implemented via switch-

ing off the gluonic vertices below the temperature scale ξ T . The latter scale is chosen

such that the system is fully sensitive to the effects related to the first Matsubara mode,

i.e. the suppression is chosen to occur only for scales ξ < 2π. In contrast to this, the sup-

pression of the coupling increases quickly below the first Matsubara mode. This suggests
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the choice ξ = 3/2π. Dropping the Lorentz- and colour- structure, the gluonic vertices are

schematically given by

Γ
(3)
A3 (k) = Z̄

3/2
A,k z3,k zc̄Ac, k Θ(k − ξT ) + k

ξT
Z̄

3/2
A, ξT z3,ξT zc̄Ac, ξTΘ(ξT − k) ,

Γ
(4)
A4 (k) = Z̄2

A,k z4,k z
2
c̄Ac, k Θ(k − ξT ) + k2

(ξT )2
Z̄2
A, ξT z4,ξT z

2
c̄Ac, ξT Θ(ξT − k) , (4.36)

which ensures that diagrams of the same order of the running coupling ᾱs,k are suppressed

below the temperature scale with the same polynomial order. Note that eq. (4.36) actually

models the combined suppression of the full gluonic vertex, which is according to the ver-

tex construction eq. (4.9) built up from the suppression of the non-perturbative running

coupling defined from the ghost-gluon vertex and the thermal behaviour of the Z̄L/T,k’s.

The sensitivity of the results with respect to the choice of the thermal scale ξ T and the

suppression are studied in detail in section 4.2.

Naively, the Z̄A,k in eq. (4.36) stemming from the external legs are chosen accordingly to

be Z̄T, k, if the attached leg is a transversal gluon, or Z̄L,k, if a longitudinal leg enters. A

closer look on the thermal behaviour of the Z̄L/T, k’s shows that this is not a proper choice

with regard to a suppression of the gluonic vertices with the temperature. Forestalling the

results at finite temperature, the strength arising from the vertices in the diagrams with

closed gluon loops in the gluon flow are shown in fig. (4.11). Note that below the scale

k = 1 GeV the gluonic vertices are switched off with zi,k.

The comparison of the strength of vertices with only transversal and longitudinal external

legs, respectively, shows that the definition of the thermal vertices with the transverse

gluonic Z̄T,k even enhances the gluonic contributions compared to vanishing temperature.

Therefore, in view of the thermal suppression the vertices are defined to carry exclusively

Z̄L,k as prefactors. In order to give a correct weight between contributions of gluonic ver-

tices with different legs also the coupling ᾱs,k involves Z̄L,k only. As explained in section

4.1.3 this does not affect the ghost-gluon vertex. Furthermore, I want to emphasise that

this is not the physical coupling, which in turn differs with transversal and longitudinal

gluons, see eq. (4.22).

The sensitivity of the results with respect to the definition of the gluonic vertices at non-

vanishing temperature is studied in detail in section 4.2.

For a non-trivial ghost-gluon vertex the thermal behaviour of it would allow for refined

treatments of the thermal behaviour of gluonic vertices as well. This is done by the help

zc̄Ac, k, T .

The relative thermal suppression factor is safely encoded in the ratio of the full ghost-gluon

vertex dressings at vanishing and finite temperature,

Γc̄Ac, k, T

Γc̄Ac, k, T=0
. (4.37)

100



4.1. Approximation

1. 1.2 1.4 1.6 1.8 2. 2.2 2.4 2.6 2.8 3.
1.1

1.2

1.3

1.4

1.5

k [GeV]

Strength of Gluonic Vertices

T = 0

Long. Legs, T = .3 GeV

Trans. Legs, T = .3 GeV

Figure 4.11.: Strength of the gluonic vertices in those diagrams of the gluon flow that
contain closed gluon loops. At finite temperature the definition via the
transversal gluon enhances the gluonic vertices with the temperature. As
the gluonic couplings should be suppressed with the temperature, this ansatz
is not a proper choice to approximate the gluonic vertices at non-vanishing
temperature.

Since the temperature-dependent dressing factor zc̄Ac, k is already included in the definition

eq. (4.32), it is sufficient to deal with the reduced ratio of the wave function renormalisa-

tions,

rc̄Ac(k, T ) =
Z̄

1/2
A,k Z̄c,k∣T

Z̄
1/2
A,k Z̄c,k∣T=0

, (4.38)

leading to the final approximation of the gluonic vertex dressings by

zi(k, T ) = rc̄Ac(k, T )i−2 , zmin
i (k, T ) = Z̄k,A

Zk,A
zi(k, T ) . (4.39)

At non-vanishing temperature the structure functions zAn also have to carry the difference

between the coupling to longitudinal and transversal gluons, which is relevant for the sec-

ond choice in eq. (4.39). With increasing temperature the ratio Z̄A/ZA goes to Z̄L/T /ZL/T .

However, the results presented in section 4.2 are obtained with the ansätze given in

eq. (4.36).
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4.1.5. Regulators

For a numerical treatment of finite temperature flow equations exponential regulators

eq. (3.12) generally provide good numerical stability. As already pointed out in section

3.2.5 locality is a central issue. The importance of sufficiently local flows is also seen

on the level of the regulator, where it turns out that the non-locality induced by the

exponential regulator, eq. (3.12), with m = 1 spoils the stability of the flow. On the

other hand, regulators with a steep descent lead to a slower convergence of the regularised

thermal propagators and vertices towards the vacuum ones at T = 0. Indeed, for sharp

cutoff functions or non-analytic ones thermal modifications are present for arbitrarily

large cutoff scales Λ. This invalidates the use of the T = 0 initial conditions at the initial

ultraviolet scale Λ. Accordingly, here an intermediate steepness of m = 2 is chosen for the

computation, whose form is shown in fig. (3.1). The full regulators for the gluon and the

ghost are given by

R̂abL/T, k, µν(p) = δabP T /L
µν Z̄T /L,k p

2 r2(p2/k2) ,
R̂abc, k(p) = δab Z̄c,k p

2 r2(p2/k2) , (4.40)

with the projection operators PL/T defined in eq. (4.1). Note that Zc,k(0) is chosen in-

stead of Zc,k(k) for numerical convenience7. The ghost renormalisation function Zc(p;T )
tends towards zero for small momenta and finite temperatures. The decrease of the Zc is

numerically hard to controll if done in a direct setting. Nevertheless, the numerics can be

improved by applying the temperature-dependent field reparametrisation of the ghost as

explained in section 4.1.2.

At vanishing temperature there is Z̄L,k = Z̄T,k and the gluon regulator RA,k = RT + RL

is proportional to the four-dimensional transversal projection operator ΠT defined in

eq. (2.28).

As mentioned in section 2.3.2 and section 3.2.2, for the full propagator in the presence

of a regulator the term schematically written as Γ(2) + R must be inverted. Therefore,

choosing the regulator to carry the same Lorentz-tensor structure as the Γ(2) ensures that

the inversion stays trivial. This is not only true for zero temperature, where only the

purely transversal tensor has to be inverted, but even persists in the case of non-vanishing

temperature, because in the inversion the purely 3d-longitudinal and 3d-transversal pro-

jectors do not mix and no further tensors are possible in Landau gauge. In other gauges

this feature is not given.

7At this point I want to stress again that the regulator is in principle free to choose as long as it satisfies
the contraints in section 3.2.2. Thus, taking Zc,k(0) is as valid as taken Zc,k(k), the only subtlety is
that the absolute value of the prefactor must be such that the regulator term is of the same size as the

term Γ
(2)
c,k(p ≲ k), which it is supposed to regulate for p ≲ k in the propagator (Γ

(2)
c,k(p) +Rc,k(p))

−1
.

Note that this holds for the scaling as well as the decoupling solution, as the singularity in the ghost
propagator occurs in the limit of vanishing renormalisation group scale, sc. Zk,0(0), where the regulator
must vanish by construction, cf. section 3.2.2, so the vanishing prefactor does not spoil this choice.
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4.1.6. Computational Details

The discussion of the approximation in section 4.1 yields a coupled set of partial integro-

differential equation depicted in fig. (4.12). The initial condition is set in the vacuum,

T = 0, at vanishing cutoff scale, k = 0. The vertices are determined by eq. (4.21c) and the

relations in the section 4.1.3, section 4.1.4 and the input gluon and ghost propagators are

taken from [276], see fig. (2.4), from which a decoupling solution is chosen.

In the numerical treatment the representation of the functions that are computed is im-

portant, as the function values are computed on grid points, but naturally not in the

continuum. In the case of the propagators and vertices the grid is two-dimensional, one

direction is the (spatial) momentum p, the other one the renormalisation group scale k.

Taking trivial interpolations at each evaluation of a function is too slow, and also interpo-

lations between the grid points may have disadvantages. The better approach is to expand

the numerical function by the help of analytic functions over the full range at once, not

only between the grid points individually.

Furthermore, the form of the function is decisive for the quality of the representation in

terms of other basis functions, e.g. functions that are zero on a certain interval can not be

resolved well by polynomials expansions. In the case of Yang–Mills theory two different

quantities are expanded. For the gluonic contributions the two-point functions Γ̂
(2)
L/T,k(p)

are taken. For the ghost its wave-function renormalisation turns out to be better suited for

the expansion procedure which is described below. The reason is that Γ̂
(2)
c,k (p) vanishes at

small momenta p for all k. This is hard to resolve along the direction of k with high quan-

titative accuracy. In contrast to this, for the decoupling solution the Ẑc,k(p) = Γ̂
(2)
c,k (p)/p

2

is finite and more suited to the expansion.

A good set of basis functions are Chebyshev polynomials, see appendix C. In the code the

functions were Chebyshev expanded in two dimensions, the renormalisation group scale k

as well as the external momentum p, with the further grid refinement that the expansion

in p direction was split into three regions. These regions were set by the points in the

gluon propagator where generically the most change in the function happens: The first

grid is p ∈ [0,1 GeV], as the peak in the dressing function of the gluon is at about 1 GeV,

cf. fig. (2.4). The second grid is adjusted with respect to the largest cutoff scale k = Λ,

therefore p ∈ [1,Λ], as the presence of the scale derivative of the regulator in the loop

integrals ensures that most change happens for p ≲ k. The third grid is the grid above

this scale p ∈ [Λ, ζΛ], where ζ > 1 is chosen such that above the scale ζΛ nothing happens

in the sense that fluctuations are suppressed. For the localised flow, cf. section 3.2.5,

and the exponential regulator, eq. (3.12), with m = 2 the parameter can be chosen to

be around ζ ≈ 2, without numerical error, see appendix D.3. The number of Chebyshev

polynomials in the direction of k is chosen around 250, dependent on the choice of Λ. In

the direction of p the numbers were chosen to be between 50 and 100, adapted to the grid

volume. The two-dimensional grid is explaind further in appendix C in combination with
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the Chebyshev expansion and the numerical integration routines.

The flow equations involve integrations over loops. These integrals need to be performed

numerically here due to the complexity of the system. In this work, mainly two different

approaches to numerical integration are employed. The first one is the Gauss–Legendre

quadrature which is based on the idea of performing the Riemann sum in an improved

way. The second idea is to expand the integrand in terms of Chebyshev polynomials and

perform the integration for polynomials trivially. Both approaches are sketched further in

appendix D, further details to Chebyshev polynomials are given in appendix C.

For the solution of the flow in the direction of k two methods have been used. Firstly, the

integro-differential equations can be solved by an iteration procedure. Secondly, it can be

performed by a direct evolution following the idea of a Runge–Kutta method. These two

methods and their merits are described in more detail below.

The numerical integration routines as well as the Matsubara sum routines have been

checked8 in selected cases by changing the methods for the specific integration, further

by applying the integration routines from [438] and with numerical integration in Mathe-

matica. Also, the solution of the integro-differential equation itself has been checked with

Mathematica.

The derivation of flow equations has been done with Mathematica 7 [439, 440] by a self-

written code, cf. section 3.2.3, that utilises open-source packages. For the contractions

of colour as well as Lorentz indices the Mathematica package FeynCalc [402] has been

used in this program. All results for the algebraic expressions in the flow equations (at

vanishing and non-vanishing temperature) that are presented in this thesis were checked

with the FORM [441] package color [442] for the contraction of colour indices and with

the Mathematica package tracer [443] for the Lorentz contractions. The structural form of

the equations themselves has been compared with the results obtained with the package

DoFun [398] (that builds on DoDSE [397]) that derives flow equations as well as DSEs

analytically.

The solution of the flow equations has been carried out with C++. The development of

the full code was part of this thesis. However, for standard numerical applications some

libraries could be used: For the Gauss–Legendre quadrature for the integration of loop

diagrams, Chebyshev expansions the routines have been taken from the code in [444].

Modified routines for the multidimensional implementation of Chebyshev expansions are

8In this section I omit the trivial checks in the routines, such as e.g. varying the number of grid points
in the Chebyshev expansion, integration ranges, number of Matsubara frequencies, number of nodes in
the Gauss–Legendre quadrature etc. Note however, that the relevant integration ranges and number
of Matsubara modes can be determined very easily in this case, as the regulator is four dimensional.
After a shift in the loops each diagram contains a term ∼ ∂tRk(q

2
0 + q⃗

2
) which vanishes quickly for

(q2
0 + q⃗

2
) ≫ ζk, therefore only the correct ζ has to be found once and for all for a chosen regulator

shape function. This is explained further in appendix D.3.
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partially constructed from these routines. Interpolations are done by the help of the GNU

Scientific Library [438].

In principle, differential equations can be solved by iteration. In practice, this is only

possible, if the iteration has a stable direction or at least a stable region in which it

converges to the correct solution of the system. However, if the iteration is stable, the

solution via this method is very efficient and high accuracy can be obtained easily. In

order to solve the flow equation for the quantum theory at vanishing temperature, i.e. at

k = 0 and T = 0, up to an ultraviolet scale k = Λ an iteration procedure turns out to be

well suited, because it is very stable for the direction k → Λ.

Herein the iteration (i + 1) only depends on the given solution (i),

Γ
(n)
k,(i+1) = Γ

(n)
k=0,(i) + ∫

k

0

dk′

k′
Flow

(n)
(i+1) (Γ

(n)
k,(i),Flow

(n)
(i) ) . (4.41)

Incrementing the number of iterations until the solution is stable under further iteration,

i.e. Γ
(n)
k,(m+1) = Γ

(n)
k,(m) up to the desired accuracy, gives the solution of the flow equation.

The starting point of the iteration is taken as Γ
(n)
k,(0) = Γ

(n)
T=0,k=0. The iteration converges

rapidly to the initial condition Γ
(n)
Λ,T=0(p2) for the computations at finite temperature, the

typical number of needed iterations is below 10 for all computations presented here.

@t (
�1�R) = +� 2 � 1

2

@t (
�1�R) = + �

Figure 4.12.: Yang–Mills flows for propagators in the approximation discussed in section
4.1. All internal lines are full propagators, the shaded circles are dressed
vertices, the small dots are classical vertices. The slashed propagators denote
the scale derivative acting on the full propagator ∂tGk, cf. eq. (3.66). The

black squares denote the scale-derivative acting on the full vertex ∂tΓ
(n)
k .

The flow of the ghost propagator are DSE-resummed and the ghost-tadpole
in the gluon equation is neglected.

In contrast to the direction k → Λ in the zero temperature case, the flow from high to low

scales at finite temperature involves instabilities if it is solved by iteration. This is due

to the self-regulating nature of the equations for the wave-function renormalisation of the
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ghost in combination with the ghost-gluon vertex dressing. Their structure is such that

if one of the quantities becomes small it stops the flow of the other and in the following

also its own flow. However, as soon as one of these quantities happens to be negative

in an intermediate iteration step the iteration becomes unstable, i.e. each iteration step

brings the iteration solution further away from the correct solution. The system is highly

sensitive to this, as one has to resolve very small values numerically. This problem could

be cured by modifying the iteration such that the functions are controlled to stay in the

stable region, however, this control is intricate if the functions shall remain smooth, which

they have to be for the next iteration. Furthermore, this ”controlled” convergence to the

correct solution is much slower than for the stable direction k → Λ.

In addition, the iteration procedure is not necessarily stabilised via the temperature-

dependent field reparametrisation of the ghost, see section 4.1.3.

Therefore, a more direct strategy is more appropriate to solve the flow, namely an evolution

of the flow according to a Runge–Kutta solver

Γ
(n)
k(i−1)

= Γ
(n)
k(i)

+
k(i−1) − k(i)

k(i)
Flow

(n)
k(i)

, (4.42)

from the initial condition kN = Λ ≫ T to k0 = 0. In the evolution the system reacts on the

balancing effect between the ghost propagator and ghost-gluon vertex immediately. Thus,

the purely numerical problem of possibly negative values of Zc or zc̄Ac in the iteration is

avoided. It is important to note that the result is stable under iteration again, as it is

the exact solution of the equation and further iterations just reproduce this solution. The

sensitivity to the balancing is still present, but shows up in the form of a small evolution

step size of ∣ki−1 − ki∣ ≲ 10MeV.

The correctness of both implementations has been successfully tested via the interchang-

ing of the two different method, i.e. the iteration procedure k → Λ for the initial condition

was replaced with an evolution, and the solution from the evolution k → 0 was tested with

an iteration that reproduced this solution in two successive iteration steps.

4.2. Results

In this section I present the results for the Yang–Mills propagators at non-vanishing tem-

perature in the truncation detailed in section 4.1. Furthermore, the validity of the ap-

proximations are tested. Finally, the thermal Yang–Mills correlators are directly compared

with results from lattice gauge theory.
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4.2.1. Results for the Propagators

In this section the results for the ghost and gluon propagators at non-vanishing tempera-

ture are presented. The temperature is given in lattice units. For the input propagators at

vanishing temperature a decoupling solution is chosen in order to facilitate the comparison

of thermal effects with lattice data. Above ΛQCD the scaling and decoupling solutions are

quantitatively equal, Even below that scale thermal effects are qualitatively similar for

both types of solutions.

For physical applications these minor quantitative differences in the deep infrared are sup-

posed to be irrelevant. Explicitly, this has been confirmed so far in various computations,

such as the determination of the confinement-deconfinement phase transition tempera-

ture [11, 12, 112]. Thus, these results support the assumption that the deep infrared

behaviour of Yang–Mills propagators is not of quantitative importance for the thermo-

dynamics for temperatures in the range around the phase transition temperature either.

Note however, that in principle the whole class of solutions is in reach by the method

presented in this work.

As it is argued in section 3.2.6 the results for the ghost and gluon propagators show the

typical thermal scale 2πT . Below this scale there are significant temperature effects on

the momentum dependence. In turn, above this scale the temperature fluctuations are

suppressed and all propagators tend towards their vacuum counterparts. This supports

the stability of the thermal flows as discussed in section 3.2.6.

A significant effect can be seen for the chromoelectric and chromomagnetic gluon propaga-

tors, which are the components of the propagator longitudinal and transversal to the heat

bath. The zero mode of the longitudinal and transversal gluon propagator at various tem-

peratures are given in fig. (4.13(a)) and fig. (4.14(a)) as a function of spatial momentum

and compared to the propagator at vanishing temperature. The corresponding dressing

functions are given in fig. (4.13(b)) and fig. (4.14(b)).

For low temperatures T ≲ 150 MeV there is an enhancement of the longitudinal propaga-

tor. Such an enhancement is also seen on the lattice [115,305,323,325,327,330,445].

It has been emphasised on the basis of the FRG that specifically the propagator of the

chromoelectric mode should show critical behaviour, if computed in the background fields

that solve the non-perturbative equations of motion [323]. However, the significance of

the lattice results so far as well as quantitative details are not settled yet.

For higher temperatures the longitudinal propagator is suppressed relative to the gluon

propagator at vanishing temperature. This is the expected behaviour caused by the Debye

screening mass due to the thermal screening of the chromoelectric gluon. For asymptoti-

cally high temperatures T ≫ Tc the chromoelectric gluon decouples from the interacting
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(a) Longitudinal gluon propagator GL at different temperatures.
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(b) Dressing function of the longitudinal gluon Z−1
L at different temperatures as

a function of spatial momentum.

Figure 4.13.: Yang–Mills two-point functions depend on temperature. As the heat bath
singles out a preferred rest frame, there are two tensor structures in the
remaining spatial subspace which yield two different gluonic propagators, the
chromoelectric (longitudinal) and chromomagnetic (transversal) propagator.
This figure shows the thermal behaviour of the zeroth Matsubara mode of the
propagator and dressing function of the chromoelectric gluon as a function
of the spatial momentum p. Higher modes can be approximated by shifting
the spatial momentum of the zero mode by the time component.

theory which shows that the theory tends against the three-dimensional one in the high
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temperature limit. The onset of this behaviour at about T ≈ 150 MeV is earlier as in

the respective lattice computations [115, 305, 323, 325, 327, 330, 445], where the thermal

decoupling takes place for temperatures larger than the critical temperature.

In order to capture the behaviour of a steep descent of the chromoelectric gluon propaga-

tor around the deconfinement-confinement phase transition temperature, it is inevitable

to extend the present truncation in such a way that the Polyakov loop potential is self-

consistently included as a non-trivial background. The Polyakov loop potential is sensitive

to the deconfinement-confinement phase transition and, therefore, it is indispensable to

recover the critical phenomena. In addition to the background, the second derivative of

the Polyakov loop appears in the denominator of the chromoelectric gluon propagator. It

is non-zero for temperatures below the phase transition but vanishes quickly for increasing

the temperature above Tc. Therefore, with the inclusion of the Polyakov loop potential

the critical physics are seen also on the level of the propagators, however its manifestation

is not clear. Thus, it is not sure so far, if its effect would actually bring the propagator

closer to the lattice results.

Another upgrade of the truncation is to resolve the higher n-point functions, in particular

the gluonic vertices, especially for momenta and frequencies below ΛQCD. In contrast to

this, for large temperature and momentum scales above ΛQCD, the lack of quantitative

precision of propagators as well as vertices at infrared scales is irrelevant. In this region

of the temperature there is quantitative agreement with the lattice, see fig. (4.21(b)).

The resolution of gluonic vertices affects not only the deep infrared but also the mid-

momentum region at both vanishing as well as non-vanishing temperature. Thus, it

would also improve the thermodynamics that get their largest contributions from the

mid-momentum regime.

The transversal mode is not enhanced for small temperatures, in clear distinction to the

longitudinal mode. It is monotonously decreasing with temperature, see fig. (4.14(a)).

Moreover, it develops a clear peak at about 500 MeV. This can be linked to positivity

violation which has to be present for the transversal mode: In the high temperature limit

it describes the remaining dynamical gluons of three-dimensional Yang–Mills theory in

the Landau gauge. The infrared bending is more pronounced as that of respective lattice

results. Its strength is subject to the lack of quantitative precision at these scales. The

bending is clearly due to the truncation error in the gluonic vertices, whose suppression

with the temperature is not resolved sufficiently. The strong dependence of the transversal

gluons on the ansätze of the vertices is seen in detail in the truncation tests that are done

at the end of this section, cf. fig. (4.19) and fig. (4.20).

In turn, for larger momenta the transversal propagator agrees well with the respective

lattice propagator, see fig. (4.21(a)).

The ghost propagator is enhanced with the temperature, see fig. (4.15(a)). For its wave-

function renormalisation this entails a suppression with the temperature, see fig. (4.15(b)).
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(a) Transversal gluon propagator GT at different temperatures.
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Figure 4.14.: Thermal behaviour of the zeroth Matsubara mode of the propagator and
dressing function of the chromomagnetic gluon as a function of the spatial
momentum p.

This behaviour clearly deviates from lattice results, where the propagator seems to be un-

affected by thermal fluctuations [115, 305, 323, 325, 327, 330]. This deviation is probably

an artefact of the truncation employed here, where the constant ghost-gluon vertex is

taken as bare at zero and non-zero temperature. However, the ghost-gluon vertex de-

fines the running coupling in the formulation detailed in section 4.1.3, which is suppressed

with the temperature in a full setup, as the physical coupling has to tend towards the
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(a) Ghost propagator Gc at different temperatures.
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(b) Wave-function renormalisation of the ghost Zc at different temperatures.

Figure 4.15.: In contrast to the gluons, the ghost is a Lorentz-scalar. Thus, it can be
described with a single tensor structure. Here, the zeroth Matsubara modes
of the ghost propagator and wave-function renormalisation are given as a
function of the spatial momentum p. Higher modes can be approximated by
shifting the spatial momentum of the zero mode by the time component.

three-dimensional coupling via the transmutation factor of p/T . In the FRG the latter

suppression below the temperature scale translates into the suppression with k/T , which

has not been considered here. However, the effect of the temperature in the ghost flow

is unidirectional, i.e. the ghost propagator is enhanced. Most of the enhancement in the

results in fig. (4.15(a)) builds up at scales, where k is well below T . Therefore, it is fair to

111



4.2. Results

say that for a suppression of the coupling the enhancement of the ghost propagator would

be attenuated in comparison with the results presented here. Thus, the improvement of

the truncation with regard to a satisfactory inclusion of the running of the ghost-gluon

vertex would bring the ghost propagator closer to the lattice result.

The enhancement of the ghost propagator appears to be potentially problematic, as one

would assume that with increasing temperature the Zc would become negative. This would

yield an unphysical pole in the ghost propagator. Note however, that this can not happen

due to the temperature-dependent field reparametrisation of the ghosts, see section 4.1.3,

which stabilises the system. In fact, for the system without reparametrised ghost fields no

solution could be obtained for temperatures ≲ 100 MeV.

Though, the truncation error stemming from the constant ghost-gluon vertex is not ab-

sent. Rather, it is manifest in a different form which is the strong enhancement of the

ghost propagator.
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(a) The longitudinal coupling is increased for low
temperatures and small scales, as the longitudinal
gluon is enhanced in this temperature and momen-
tum range. For higher temperatures the longitudinal
gluon is suppressed, which is directly seen in the cou-
pling.
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(b) The transversal coupling bears the signature of
the dressing function of the chromomagnetic gluon,
it gets suppressed with increasing temperature.

Figure 4.16.: Following eq. (4.43) the non-perturbative running coupling depends on the
temperature. The breaking of manifest Lorentz symmetry by the heat bath
necessitates that there are two different couplings for the chromoelectric and
chromomagnetic gluon, respectively. The dominating effect of these cou-
plings is that both reflect the thermal behaviour of the gluonic wave-function
renormalisation functions. With respect to the coupling at vanishing temper-
ature, the chromoelectric coupling is enhanced for small temperatures and
suppressed for intermediate and high temperatures. The chromomagnetic
coupling is suppressed for all temperatures.

With the definition of the coupling in eq. (4.21b) and following the reasoning for the exis-

tence of two gluonic modes at non-vanishing temperature due to the breaking of manifest

Lorentz symmetry by the heat bath as explained in section 4.1.1 there are two different
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couplings for the chromoelectric and the chromomagnetic gluon, respectively. Note, that if

used within the flow, the coupling is scale dependent [272,276] which leads to the definition

αs,L/T (k) =
1

4π

(Γc̄Ac,k)
2
k6

Γ̂
(2)
L/T,k(k) (Γ̂

(2)
c,k (k))

2
, (4.43)

where Γc̄Ac,k depends on the localised correlation functions. It is the dressing of the full

ghost-gluon vertex but not only of the renormalisation group invariant tensor zc̄Ac, k, see

eq. (4.17). Naturally, both couplings are dependent on temperature. The enhancement or

suppression of the gluons in combination with the ghost propagators is directly seen in the

couplings. As the chromoelectric gluon is enhanced for small temperatures, the coupling

becomes stronger in the infrared. In contrast, the suppression for higher temperatures

downsizes the strength of the longitudinal coupling, see fig. (4.16(a)). The latter effect is

also seen for the chromomagnetic gluon, however for all temperatures, as the propagators

is suppressed for all temperatures with respect to the zero temperature propagator, see

fig. (4.16(b)). Note that the expression of the coupling in terms of the physical fields

and the corresponding vertex functions is crucial for the suppression of the coupling, as

it compensates the overestimated suppression of the wave-function renormalisation of the

ghost.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

p [GeV]

Phys. Long. Coupl. αs,L(p)
T = 0 MeV
T = 100 MeV
T = 200 MeV
T = 300 MeV
T = 500 MeV
T = 1 GeV

(a) The physical longitudinal coupling is increased
for low temperatures and momenta. For higher tem-
peratures the longitudinal gluon is suppressed, which
is directly seen in the coupling.
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(b) The physical transversal coupling is suppressed
with increasing temperature.

Figure 4.17.: Physical couplings as defined in eq. (4.21b). The physical couplings feel the
temperature via the wave-function renormalisation functions of the gluons
and ghosts. With respect to the coupling at vanishing temperature, the
chromoelectric coupling is enhanced for small temperatures, but suppressed
for intermediate and high temperatures. The latter effect is seen for the
transversal coupling at all temperatures.

The physical couplings eq. (4.22) look qualitatively similar to the running couplings. Both,

the physical longitudinal coupling αs,L(p), given in fig. (4.17(a)), as well as the physical
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transversal coupling, given in fig. (4.17(b)), are suppressed with increasing temperature.

4.2.2. Truncation Tests

Naturally, the truncation at hand needs to be tested. In the following this is done by

different definitions of the gluonic vertices and varying the strength of dressing functions.

The necessity of this test is obvious already in view of fig. (4.11). Furthermore, the

accuracy of the suppression of the gluonic couplings with the temperature needs to be

quantified. In addition, the validity of the approximation for higher Matsubara modes is

investigated.

The system was solved for the zeroth Matsubara mode only, as higher Matsubara modes

can be approximated by shifting the spatial momentum of the zeroth Matsubara mode

by the corresponding frequency, which is explained in section 4.1.1. This approximation

is motivated by known results [305, 429]. At this point, the validity of this truncation is

tested, the results for the zeroth, first and second Matsubara modes for the longitudinal

gluon propagator, the transversal gluon propagator and the wave-function renormalisa-

tion of the ghost are given in fig. (4.18(a)), fig. (4.18(c)) and fig. (4.18(e)). The results

were obtained by setting the temporal component of the external momentum as the cor-

responding Matsubara mode and solving the flow at finite temperature from the initial

scale Λ. In this computation the effect of the backcoupling of higher modes is neglected.

However, as the results deviate only little from the approximation, the change from the

backcoupling would be small. In conclusion, this confirms that the approximation for the

higher Matsubara modes is quantitatively reliable, as it is expected on the one hand side

from the quick decay of thermal effects at scales above the first Matsubara mode and on

the other hand side from known results [305,429].

In section 4.1.4 it is detailed how the temperature dependence of the gluonic vertices

is approximated by an ansatz that combined all necessary qualitative properties of the

vertices. In order to check the sensitivity of the propagators at low temperatures to this

choice the results with a strong suppression, eq. (4.36), are compared with a computation

where the minimal suppression of the gluonic vertices is implemented, i.e. ξ = 0.

The result of the computation is given in fig. (4.19), again for the longitudinal gluon prop-

agator and dressing function in fig. (4.19(a)) and fig. (4.19(b)), for the transversal gluon

propagator and dressing function in fig. (4.19(c)) and fig. (4.19(d)), and for the ghost

propagator and wave-function renormalisation in fig. (4.19(e)) and fig. (4.19(f)), respec-

tively.

Fig. (4.19) shows clearly that the chromomagnetic gluon is sensitive to the choice of glu-

onic vertices. In particular, the bending of the propagator (and dressing function) is

determined by the strength of the thermal behaviour of the gluonic interactions. The

chromoelectric propagator feels the gluonic vertices, however only in a region where the
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for the transversal gluon propagator.
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Figure 4.18.: Higher Matsubara modes are well approximated by shifting the spatial mo-
mentum by the Matsubara mode, therefore resolving the zero mode only is
already sufficient to achieve high accuracy. This is in agreement with DSE
studies and lattice results [305,429].
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with minimal and maximal strength of the coupling
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(c) Comparison of transversal propagator with min-
imal and maximal strength of the coupling of purely
gluonic vertices according to eq. (4.36).
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(d) Comparison of transversal dressing function with
minimal and maximal strength of the coupling of
purely gluonic vertices according to eq. (4.36).
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(e) Comparison of ghost propagator with minimal
and maximal gluonic flow according to eq. (4.36).
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Figure 4.19.: Test for the truncation detailed in section 4.1 on the level of the two-point
functions. The comparison shows results for the two-point functions that
were obtained with and without switching off the gluonic vertices below the
temperature scale ξT = 3/2πT .
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thermal mass dominates. The ghost hardly changes with the strength of the gluonic ver-

tices, which is expected as those correlation functions only enter the ghost flow indirectly

via the gluonic two-point functions. Thus, a moderate modification of the gluonic vertices

should only give a small correction to the ghost flow, although it is a coupled system, see

fig. (4.12). The main gluonic n-point functions that enter the ghost are the gluon propaga-

tors only, which themselves do not change significantly with the different strengths of the

gluonic vertices. This is in agreement with the well-known fact that the infrared sector of

Yang-Mills theory in Landau gauge has ghost dominance (for both scaling and decoupling

solutions) for any dimension d = 2,3,4.

This truncation test gives an approximate error band for the propagators with respect to

the ansatz of the gluonic vertices defined via reasonable Z̄L,k’s. The insufficiency of the

naive ansätze is studied below.

As a result, the main impact of the truncation of the gluonic vertices is onto the longitu-

dinal propagator below Tc, given in fig. (4.19(a)), The impact on the dressing functions

thereof is given in fig. (4.19(b)).

A further investigation concerning the truncation described in section 4.1 is necessary,

namely the choice of the longitudinal Z̄L,k to appear in the gluonic vertices only. This

truncation is compared with a computation in which the couplings are strictly related to

the gluonic legs that enter the vertex, each of which contributing with a factor Z̄
1/2
L/T,k.

The result is given in fig. (4.20).

These result confirm the statement that the chromomagnetic gluon is very sensitive to the

gluonic vertices. For larger temperatures the transversal propagator would even develop

an unphysical pole which is purely due to the insufficient truncation. In contrast, the

longitudinal and ghost quantities hardly feel the change in the gluonic vertices, as it is

expected due to the reasoning above.

All in all, this confirms that the truncation has to improved with respect to a better reso-

lution of vertices in order to quantitatively capture the deep infrared. It can be concluded

that in particular the suppression of the coupling in the ghost-gluon vertex as well as the

gluonic vertices is crucial for the correct description of the thermal correlation functions.

However, the dressing functions for the gluons show that at intermediate momenta, the

qualitative effects are not changed, however, quantitatively there are deviations. In section

4.3 it is stressed that firstly, the quantitative accuracy of the Yang–Mills thermodynamics

primarily depends on the chromoelectric as well as chromomagnetic propagator. Secondly,

it is not the deep infrared which is relevant for the thermodynamic quantities9, but it is

the mid-momentum region which is the important region. Therefore, although first results

for the thermodynamics agree already quite well with lattice data, see section 4.3, it is

9Besides, this is the reason why the thermodynamics is insensitive to the propagator input being of
decoupling or scaling type. This has been explicitly checked in this work and is in agreement with
previous findings [11].
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expected that even better accuracy can be achieved by resolving the vertices also in a

temperature-dependent way. In fact, this serves as the bigger motivation to resolve the

gluonic vertices in the full momentum region, cf. section 4.1.4, than a better agreement

in the deep infrared sector.
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(c) Truncation test for the transversal propagator
with respect to the ansätze of the gluonic vertices.
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(d) Truncation test for the transversal dressing func-
tion with respect to the ansätze of the gluonic ver-
tices.
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(e) Truncation test for the ghost propagator with re-
spect to the ansätze of the gluonic vertices.
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(f) Truncation test for the ghost wave-function
renormalisation with respect to the ansätze of the
gluonic vertices.

Figure 4.20.: Test for the truncation detailed in section 4.1.4 on the level of the two-point
functions. The results were obtained with the naive and the improved ansätze
for the purely gluonic vertices at non-vanishing temperature according to the
analysis about fig. (4.11). The naive ansätze drive the system away from the
physical situation, as the transverse gluon propagator is even enhanced and
even develops an unphysical pole. Thus, the refined ansätze for the gluonic
vertices are inevitable.
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4.2.3. Comparison with Lattice Gauge Theory

As there is lattice data available for the Yang–Mills propagators at non-vanishing tempera-

ture [115,305,323,325,327,330], the results obtained in this work can be directly compared

to lattice gauge theory. In the following data from [115, 323, 446] is used. However, the

units and scales have to be matched. This is done in such a way that the lattice data

is scaled to match the normalisation of section 4.2 at momenta p ≳ 1 GeV at vanishing

temperature. Take notice that the decoupling solution that was used here was not the

one from the lattice to which the results are compared with. Thus, the deep infrared

of the data deviates from the input propagators already at zero temperature, which per-

sists also in the propagators at finite temperature. Apart from that there is quantitative

agreement with the lattice data with respect to the (temperature-dependent) momentum

region, where the thermal effects appear. In fig. (4.21(a)) the transversal propagators are

compared. Note that the critical temperature in the lattice data is Tc ≈ 277 MeV (with
√
σ = 440 MeV).
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(a) Chromomagnetic gluon propagator in compari-
son with lattice data. The suppression of the chro-
momagnetic propagator for all temperatures is seen
in both approaches. The FRG result shows a strong
bending of the propagator at intermediate spatial
momenta which is due to an insufficient truncation
with respect to temperature-dependent three- and
four-gluon vertices, see section 4.2.1. For small and
large momenta there is quantitative agreement with
lattice data.
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(b) Chromoelectric gluon propagator in compari-
son with lattice data. On the lattice the chromo-
electric propagator is enhanced for small tempera-
tures. In contrast to this, above the deconfinement-
confinement phase transition temperature T ≈

277 MeV the lattice shows suppression of the prop-
agator. For the limits of small and high temper-
ature, the FRG matches this behaviour quantita-
tively, i.e. for temperatures where the propagator is
not directly affected by the critical physics the domi-
nating effects are captured well, even the non-trivial
enhancement. However, in particular at small tem-
peratures the deviation of the propagators at vanish-
ing temperature is most pronounced. However, for
intermediate temperatures 150 MeV ≲ T ≲ 400 MeV
the propagator from the functional method is smaller
that on the lattice. In this temperature range there
is a qualitative difference.

Figure 4.21.: Comparison of the gluon propagators with lattice results [115,323,446]. The
lattice data is rescaled such that the T = 0 propagators match the gluon prop-
agator at vanishing temperature, see section 4.2.1, at intermediate momenta
p ≳ 1 GeV.
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Clearly, the chromomagnetic gluon shows the same thermal behaviour as it is seen in the

lattice simulations: At non-zero temperature the corresponding propagator is suppressed

with respect to the vacuum. Without a doubt, the qualitative behaviour is seen in the

FRG as well, however, even on a quantitative level the continuum results match in the

region where the truncation is reliable. Therefore, the correlation functions quantitatively

agree except for the strong bending of the continuum propagators at intermediate mo-

menta. The difference at intermediate momenta is presumably due to the insufficiency

of the truncation with respect to the thermal behaviour of purely gluonic vertices, which

is corroborated by the truncation tests in fig. (4.19(c)) and fig. (4.20(c)). Nevertheless,

the intervals of small and high momenta are largely unaffected by these truncation errors,

which is reflected in a good quantitative agreement of the transversal gluon propagator

in these momentum regions under disregard of the difference of the propagators at van-

ishing temperature in the deep infrared already which is still evident at small temperatures.

In contrast to this, the chromoelectric gluon on the lattice shows a qualitatively different

behaviour for temperatures below and around the phase transition. Although the longi-

tudinal propagators agree for T = 0.361Tc ≈ 100MeV, it is exactly this region where the

uncertainty due to the truncation for the gluonic vertices and the ghost-gluon vertex is

large, as shown in fig. (4.19(a)) and fig. (4.20(a)) for T = 300 MeV.

Disregarding a potential truncation dependency in the deep infrared of the longitudinal

propagator at low temperatures as shown in section 4.2.1, the present truncation the chro-

moelectric gluon shows the onset of the enhancement found on the lattice. Increasing the

temperature this feature disappears and a qualitatively different effect for temperatures

below Tc takes over. While the continuum result shows a strictly monotonic decreasing

propagator, the counterpart on the lattice is enhanced in the confining regime, but reflects

the phase transition in form of a rapid decrease at Tc.

Nevertheless, this deflection is expected to be missed in the present truncation, as the

Polyakov loop potential V (A0) is pivotal for the critical behaviour around the phase tran-

sition. In a full calculation the inverse longitudinal gluon propagator is proportional to

the second derivative of the Polyakov loop Γ
(2)
A,L ∼ V ′′(A0), see [11,12,17,112]. This depen-

dence introduces an additional screening of the vertex-approximations as well as vertex

corrections, however, in the computations presented here it was dropped. This upgrade

should also give access to the question of the signatures of criticality in the chromoelectric

propagator discussed in [327]. Interestingly, such a term is absent in the magnetic modes.

It is suggestive that the inclusion of A0 stabilises the computation further. However, this

analysis is beyond the scope of this thesis.

In all published lattice results the ghost propagator is insensitive to thermal fluctua-

tions [115, 305, 323, 325, 327, 330]. In the data at hand, the propagators at different tem-

peratures can not be distinguished within the error bars. Thus, the direct comparison

for the ghost is not explicitly illustrated here, as it basically contains the information of

fig. (4.15(a)). As it was detailed already, the ghost propagator is significantly enhanced
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with increasing temperature. It is a reasonable hypothesis that the deviation of the prop-

agator from the lattice result is due to the insufficient truncation of the ghost-gluon vertex

whose thermal behaviour is neglected in the results presented in this thesis.

4.3. Yang–Mills Thermodynamics

The flow equation for the effective action allows to access the pressure and other thermo-

dynamical observables in Yang–Mills theory by means of the full propagators only. This

remarkable property has been already utilised and tested successfully in other theories,

for results see [407,422,447].

In this thesis the focus is on the computation of the pressure p(T ), as a proper computation

of it allows to determine the other thermodynamic quantities of the energy density ε(T )
as well as trace anomaly Θ(T ). The latter expression quantifies the deviation from the

ideal gas result, so it is a measure for the interaction of the system. With Z being the

partition function, there are relations for the thermodynamics quantities

p(T ) = T

V
Log {Z} , (4.44)

ε(T ) = T 2∂T
p(T )
T

, (4.45)

Θ(T ) = ε(T ) − 3p(T ) . (4.46)

In the framework of the FRG the pressure is easily accessible, as it is nothing but the

effective action evaluated on the equation of motion normalised to zero in the vacuum, i.e.

at T = 0. Therefore, p(T ) = −∆ΓT,0, the latter being defined in eq. (3.52). More generally,

if the theory is put in a background Ā, the related thermal pressure reads

p(Ā) = −∆ΓT,0[Ā] , (4.47)

with a slight abuse of notation. It is understood that the ghost fields vanish, c = c̄ = 0.

The pressure in eq. (4.47) can be accessed within a given approximation by evaluating

the effective action on the equation of motion, or via a diagrammatic expression of the

thermal fluctuations, e.g. the 2PI-expression for the effective action. In the flow equation

approach the flow can be used directly for ΓT,k in the approximation at hand, with the

definition for the regulator-dependent pressure,

pk(Ā, T ) = −∆ΓT,k[Ā] , (4.48)

and its flow

∂tpk(Ā, T ) = −∂t∆ΓT,k[Ā] , (4.49)

for regulator-independent backgrounds A0, see also chapter 5. The flow in eq. (4.49) is
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sensitive to thermal fluctuations, see eq. (3.51) and the discussion in section 3.2.6. Note

that the definitions eq. (4.48) and eq. (4.49) have to be taken with precaution in gauge

theories, as the theory is described by more than just the physical degrees of freedom as

the flow necessitates a gauge-fixed approach. The pressure flow eq. (4.49) is sensitive to the

normalisation of the path integral. Hence, it is potentially sensitive to regulator-dependent

modifications of the auxiliary degrees of freedom, for discussions see [277,278,407].

A safe way to deal with such a situation is to project the path integral or the effective

action only on the physical subspace before computing the pressure. If such a procedure

can be formulated it avoids the potential necessity of non-trivial cancellations between

contributions from the unphysical subspace. In the present case this concerns the ghost

contribution, the gauge mode AL,µ(p) = pµ/p2pνAν and one of the transversal modes, the

one on the zero norm subspace. In turn, there are only the two physical transversal polar-

isations, the chromoelectric mode and one chromomagnetic mode, that enter the related

flow of the pressure. This strategy is detailed further below.

The final expression for the thermal pressure is given in terms of the integrated flow,

p(Ā) = 1

2
∫

Λ

0

dk

k
(TrG[Ā] ⋅ Ṙk∣T − TrG[Ā] ⋅ Ṙk∣T=0

)

+pren(T ) , (4.50)

where Ṙ = ∂tR and pren(T ) ≠ ∆ΓT,Λ undoes the potential temperature-dependent renor-

malisation. pren(T ) is Λ independent as the flow ∂t∆ΓT,k vanishes quickly for Λ/T ≫ 1.

The precise position of the onset of the exponential decay and its slope are regulator

dependent,

exp(−c(R) k
T
) . (4.51)

Sufficiently smooth and analytic regulators lead to suppression factors c(R) ≈ 1. In turn,

for regulators that are non-analytic in the Matsubara frequency, the thermal suppression

factor disappears in general, that is c(R) = 0. Prominent examples for the latter are the

four-dimensional exponential eq. (3.12), optimised eq. (3.13) or sharp regulator,

Rsharp(q) = k2 (1/θ(q2 − k2) − 1) . (4.52)

Within the exponentially decaying envelope the flow ∂t∆ΓT,k oscillates. All the above

properties can be studied already at one loop with classical propagators in the flow. This

is displayed in fig. (4.22). Note however, that this is only the flow of the full pressure, where

the term involving the Matsubara sum oscillates around the integral in the subtraction.

In this flow the loop integrals have been carried out already. Naturally, the corresponding

integrands of the individual loops at non-zero and zero temperature are regulated due to

the term ∂tRk(p) and are consequently free of oscillations.
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Figure 4.22.: The tree-level pressure flow ∂tpk(T ) at a fixed temperature T = 300 MeV
and different regulators normalised to the canonical dimension. The pressure
flow is a purely thermal flow as defined in eq. (4.50), i.e. it is constructed as
a difference of the flow at finite temperature, hence involving a Matsubara
sum and the flow at zero temperature, involving an integral over the temporal
component of the loop momentum, q0. Going to higher scales k this difference
oscillates and in fact this oscillation can go to scales that are far above
the typical temperature scale 2πT . This effect is due to the shape of the
regulator, in particular, it depends on the drop off of the regulator. The
sharper the regulator falls off for p ≥ k, the wider is the region of oscillations
in k. In practical computations this effect rules out regulators that are too
sharp.

In fig. (4.22) it is evident that the sharper a regulator gets the less does the thermal sup-

pression work for the pressure. In turn, the smoother a regulator gets the harder it is to

have control of the locality of the approximation scheme, see section 3.2.5. The latter can

be cured by the use of the localised flow discussed in section 3.2.5. Here, the results are

obtained with a relatively sharp regulator, see eq. (3.12) with m = 2.

The final expression in eq. (4.50) only depends on the scale-dependent ghost and gluon

propagators in the background Ā, see chapter 5. If the physics situation under discussion

does not entail an external background field being present, the background field Ā should

be the (minimal) solution of the equations of motion. For Yang–Mills theory at finite

temperature and restricting to constant backgrounds yields

Āµ = δ0µĀ0 , with
∂Veff(A0)
∂A0

∣
A0=Ā0

= 0 , (4.53)

where Veff(A0) = ΓT [A0]/Volume is the non-perturbative effective potential of a constant

temporal gauge field A0, see [11, 12, 17, 112]. Veff takes the role of the Polyakov loop po-
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4.3. Yang–Mills Thermodynamics

tential in the present approach, cf. chapter 5. In the presence of an external background

field these equations change accordingly. This is interesting in the context of early times

in heavy-ion collisions which may inflict a physically relevant strong chromoelectric as well

as chromomagnetic background.

The simple form of the flow equation eq. (4.50) defines the pressure flow for the two phys-

ical polarisations via a projection onto the related subspaces according to the projection

operators defined in eq. (4.1).

This allows to split the gauge field regulator RA as a block-diagonal matrix with the block

entries

RT = P T ⋅RA ⋅ P T ,
RL = PL ⋅RA ⋅ PL ,

Rgauge = (1 −ΠT) ⋅RA ⋅ (1 −ΠT) . (4.54)

The physical modes of the propagator are the chromoelectric and chromomagnetic one.

The related pressure p� can be defined by projecting eq. (4.50) on these directions, that is

p�(Ā) = 1

2
∫

∞

0

dk

k
(TrG[Ā] ⋅ Ṙ�

k ∣T − TrG[Ā] ⋅ Ṙ�
k ∣T=0

) , (4.55)

with

R� = RL +RT,(1) . (4.56)

In eq. (4.56) the second term RT,(1) is just the projection on a one-dimensional subspace of

P T = (P T )(1)+(P T )(2). The ghost loop and the gauge mode loop are missing in eq. (4.55).

Note however, that the ghost and the second transversal mode related to (P T )(2) is con-

tributing to the quantum and thermal fluctuations of the chromoelectric propagator ∼ PL

and the chromomagnetic propagator ∼ P T,(1). In the following the latter, transversal def-

inition eq. (4.55) is used.

One of the most interesting and most debated issues for the pressure of Yang–Mills theory

and of QCD is its approach towards the Stefan–Boltzmann limit. It is very slow for large

temperatures T ≫ Tc, which can be understood within higher orders of HTL perturbation

theory [347,358–362] or 2PI-resummations [354–357], see section 2.3.3.

However, the temperature region

Tc ≲ T ≲ (3 − 5)Tc (4.57)

has not been well-covered yet with continuum methods. The regime eq. (4.57) is truly

non-perturbative and is sensitive to the confining physics. Precisely this temperature do-

main is the focus of this work, where quantitative agreement with the lattice is achieved.

The results are plotted in fractions of the Stefan–Boltzmann pressure in Yang–Mills theory,
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4.3. Yang–Mills Thermodynamics

which can be computed analytically for arbitrary regulators. Here, a convenient choice of

the three-dimensional optimised regulator proportional to eq. (3.13) is taken to minimise

the obstructions due to the choice of the regulator. For the cutoff function Rk(q) =
q⃗2ropt(q⃗2/k2) the Stefan–Boltzmann pressure pSB1 can be computed by taking classical

(massless) propagators, so the pressure flow is given by

− ∂tpSB1,k(T ) = ⨋
q

1

2
Gk(q)Ṙk(q) − ∫

q

1

2
Gk(q)Ṙk(q)

= 1

2π2
(T

∞
∑

n=−∞
∫

k

0
dq

k2q2

k2 + (2πTn)2
− 1

2π
∫

∞

−∞
dq0∫

k

0
dq

k2q2

k2 + q2
0

)

= 1

12π2
k4 {coth( k

2T
) − 1} . (4.58)

Integration over k yields the Stefan–Boltzmann pressure,

pSB1(T ) = −∫
0

∞

dk

k
∂tpSB1,k(T ) = π2T 4

90
, (4.59)

where the trivial initial condition is justified, as thermal effects are suppressed at infinitely

high scales. Furthermore, for dimensional reasons, the pressure of a free gas scales with

T 4. Note again that naturally the result for pSB1 in eq. (4.59) is independent of the choice

of the regulator Rk(p).

In the computation for eq. (4.59) the only scale is the temperature and the canonical scal-

ing yields the T 4 behaviour. The situation is more complex in Yang–Mills theory. Even

at vanishing temperature the gluon propagator develops an effective mass in the infrared

due to quantum effects, cf. section 2.3.2. For temperatures around and below this ad-

ditional scale, which is set from the peak in the dressing function at around 1 GeV, see

fig. (2.4), there are deviations from the free gas result. The basic properties, e.g. the sup-

pression at small temperatures as well as the slow convergence to the Stefan–Boltzmann

limit, can be seen already in simple toy example. Similar to the investigations for finite

volume in section 3.2.6, this toy is a real massive scalar in a ”classical” truncation, i.e.

Γ
(2)
scalar(p) = p

2 +m2. Carrying out the same computation as in eq. (4.58) and eq. (4.59)

reveals a few important aspects. Firstly, in comparison to the free gas the pressure is sup-

pressed by the mass, but it is not an exponential suppression. Secondly, the temperature,

at which the drop off of the suppression sharpens is not at the mass but significantly below

this scale. Thirdly, the convergence to the classical limit is slow, even for temperatures

much larger than the additional scale. The numerical result for the pressure normalised

to pSB1 is given in fig. (4.23). Note that there is effectively only one relevant parameter,

which is the temperature measured in units of the mass.

Albeit this system is by no means comparable with the complexity of Yang–Mills theory

as it is studied below, the thermal behaviour shows some relevant similiarities.

The Stefan–Boltzmann pressure eq. (4.59) is not yet the appropriate expression for Yang–

Mills theory, because it is only for one colour-less mode. Consequently, the number of
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Figure 4.23.: Pressure for a massive scalar particle in a ”classical” approximation nor-
malised to the Stefan–Boltzmann value.

degrees of freedom must be adjusted. Thus, two10 trivial corrections must be done to have

the correct expression for Yang–Mills theory with its two physical polarisations and the

underlying gauge group SU(Nc). Firstly, the combinatorical factor of 2, as the chromo-

electric as well as the chromomagnetic mode contribute to the physical pressure. Secondly,

the trivial trace over colour indices must be done which gives for gluons (in the adjoint

representation) a factor of N2
c −1. In total, the Stefan–Boltzmann pressure for Yang–Mills

theory pSB is given by

pSB = π
2T 4

45
(N2

c − 1) . (4.60)

Beyond perturbation theory the pressure in fractions of pSB is given by

p(T )
pSB

= 1

pSB
∫

Λ

0

dk

k

1

2
[⨋

p
(ṘG)ϕϕ

T
− ∫

p
(ṘG)ϕϕ

T=0
] , (4.61)

where a sum over species of fields and internal indices is implied and the factor 1
2 is the

generic factor in eq. (3.15). For the pressure definition eq. (4.50) the sum would run over

all species of fields including ghosts, gauge mode and the second transversal mode related

to P T,(2). The corresponding Stefan–Boltzmann pressure would be modified to account for

the correct number of modes. For the transversal pressure to be considered here eq. (4.55)

the sum runs over the chromoelectric mode and the first transversal mode related to P T,(1).

In the computation another approximation is made which concerns the manifestation of

the temperature on different levels. The full form of the transversal pressure according to

10Note that in the case of fermions there is another factor of 7
8

in the pressure. However both, gluons and
ghosts obey bose statistics, albeit the ghosts are Grassmann fields.
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eq. (4.61) can be split up to separate the two effects by adding a zero in the form

p(T ) = 1

2
∫

Λ

0

dk

k

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⨋
p
(ṘG)ϕϕ

T
− ∫

p
(ṘG)ϕϕ

T

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
A

+∫
p
(ṘG)ϕϕ

T
− ∫

p
(ṘG)ϕϕ

T=0

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
B

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

, (4.62)

where the contribution coming from A is the main effect and the second term B brings a

correction to it. In the results in fig. (4.24), fig. (4.25) and fig. (4.26) only the term coming

from A is evaluated,

pYM ≈ 1

2
∫

Λ

0

dk

k
{⨋

p
(ṘG)ϕϕ

T
− ∫

p
(ṘG)ϕϕ

T
} . (4.63)

Still, the correct thermal behaviour in eq. (4.63) is encoded in three dependencies. Firstly,

there is the explicit dependence due to the spanning over Matsubara frequencies. Sec-

ondly, there is also the implicit temperature dependence of the propagators and regulators

in (ṘG)
T

, which has been computed in this work in section 4.2.1. Thirdly, there is the

effect of the Polyakov loop potential, which is sensitive to the critical physics at the phase

transition.

At first, an interesting question is how important are these latter dependencies for the

pressure. In fig. (4.24) this is studied by taking the temperature-independent propaga-

FRG
Borsanyi et al.
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Figure 4.24.: Pressure of Yang–Mills theory from vacuum propagators on a vanishing
Polyakov loop potential in comparison with lattice data [49]. For interme-
diate temperatures the pressure is even larger than the Stefan–Boltzmann
result, which is expected from the known behaviour of a general Bose-gas.
From this result it is evident that taking into account the implicit tempera-
ture dependence of the propagators is inevitable for accurate results of the
thermodynamics.

tors from the pure quantum theory, but spanning them over the Matsubara modes in

the loop in the flow equation. The pressure is computed on a vanishing background, and

compared with lattice data from [49]. The result from the renormalisation group for T = 0-

propagators clearly does not match the lattice data. Furthermore, it even overshoots the
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Stefan–Boltzmann limit at intermediate temperatures and approaches the free gas limit

for large temperatures slowly from above. Evidently, the behaviour of Yang–Mills theory

is not captured correctly and the implicit temperature dependence of the propagators is

important. Note that the effect of a non-trivial background does not correct this, as it

only changes the behaviour of the pressure at temperature T ≲ Tc, which is also seen in

the comparison of fig. (4.25) with fig. (4.26).

The evaluation of eq. (4.61) with temperature-dependent propagators but on a trivial

background is given in fig. (4.25). For temperatures above the phase transition the pres-
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Figure 4.25.: Pressure of Yang–Mills theory with temperature-dependent propagators on a
vanishing Polyakov loop potential. The pressure is not sensitive to the phase
transition and the FRG does not reproduce the lattice data [49] for tem-
peratures T ≲ Tc. For temperatures above the deconfinement-confinement
phase transition the Yang–Mills pressure obtained in FRG matches the cor-
responding lattice data within an accuracy of ≈12%.

sure of Yang–Mills theory obtained from eq. (4.61) matches the corresponding lattice data

up to an accuracy of ≈ 12%. For temperatures in the confining domain the sharp drop

of the temperature to almost11 zero is not captured and, furthermore, no significance of

the deconfinement-confinement phase transition is seen. This is not surprising, as the

critical physics in continuum methods comes from the Polyakov loop potential, which has

been neglected here. Therefore, in addition to the importance of the thermal behaviour,

fig. (4.25) implies that the Polyakov loop potential is crucial as well. This agrees with

findings in recently published works [448].

The final result for the pressure is given in fig. (4.26). In fact, the result is very satisfying,

as not only the qualitative features are recovered, but even on a quantitative level the

agreement with lattice data is within a smaller error than it would have been expected a

priori. At temperatures above Tc the pressure becomes perturbative. However, the ap-

proximation utilised here is optimised to capture the non-perturbative aspects, but not to

yield high precision in the perturbative sector. In the domain where perturbative effects

11Note that the pressure does not exactly vanish, as the pressure of the gluonic bound states, the so called
glueballs, gives a positive but small contribution.
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Figure 4.26.: Pressure of Yang–Mills theory from the functional renormalisation group in
comparison with lattice gauge theory [49]. The thermal behaviour as well as
the Polyakov loop potential are crucial to describe the pressure correctly. The
suppression of the pressure at small temperatures is driven by the Polyakov
loop potential. The quantitative accuracy of the behaviour at all tempera-
tures is due to the thermal behaviour of the propagators.

are predominant the truncation at hand encodes full one-loop and parts of the two-loop

contributions. Therefore, the deviation of the lattice at large temperatures is natural.

But, as it is known from e.g. NNLO hard thermal loop perturbation theory [361], the ac-

curacy in this temperature range could in principle be improved systematically to match

the lattice very well.

Disregarding the last point, the results in this section suggest that the thermal behaviour

of the propagators presented in section 4.2.1 is quite accurate, at least in the region above

the phase transition, where they account for the high accuracy, which is also seen in the

agreement of the propagators with lattice data, see section 4.2.3. Furthermore, it confirms

that the inclusion of the non-trivial background, i.e. the approximation for evaluating the

propagators to the Polyakov loop potential is satisfactory. To conclude, to the best of my

knowledge, this is the first result within functional continuum methods for the pressure

of Yang–Mills theory that captures the non-perturbative aspects and, furthermore, agrees

with the lattice over a large temperature range around the deconfinement-confinement

phase transition temperature.

I emphasise again that computing the pressure by integrating the pressure flow in eq. (4.49),

eq. (4.61) is self-consistent and is making best use of the approximation at hand: In the

flow equation approach all quantities derive from the flow equation of the effective action.

This entails that ∂tΓk in a given approximation is by construction making maximal use of

the approximation. Any quantity which can be expressed directly in terms of ∂tΓk is best

computed in this representation. This strategy has been already used very successfully

both in relativistic and non-relativistic field theories for the pressure, density and other
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observables, see e.g. [111,277,376,384,407,433,447,449–464].

4.4. Conclusion of Yang–Mills Theory at Non-Vanishing

Temperature

As a summary of this chapter 4 Yang–Mills at non-vanishing temperature can be studied

well by the help of the functional renormalisation group. The flow equation allows for a

computation of the propagators in combination with vertices, for which approximations

are inevitable, however, improvable in a systematic way. More importantly, the flow equa-

tion gives access to the rather straightforward computation of thermodynamic quantities

over the full temperature range, i.e. in the confined as well as deconfined phase.

In the work presented in this thesis the propagators are studied in a momentum-dependent

and also temperature-dependent way. It turns out that for quantitative accuracy not only

in full QCD but already in pure gauge theory the implicit temperature dependence is

crucial to obtain accurate results. This holds not even on a quantitative but already on

the qualitative level.

At finite temperature there are two different (non-trivial) gluonic modes, the chromoelec-

tric and the chromomagnetic mode. In this work it is found that for small temperatures the

zero mode of the chromoelectric gluon is enhanced, which is in agreement with lattice data

for small temperatures T ≲ 200MeV. For higher temperatures the propagator is suppressed

with respect to the zero temperature propagator. Also this suppression is in quantitative

agreement with lattice data. However, the propagator starts to be suppressed at a different

point in the FRG than in lattice gauge theory, so for temperatures 200MeV ≲ T ≲ 300MeV

there is a qualitative deviation around the deconfinement-confinement phase transition

temperature. A possible explanation for this is that the Polyakov loop potential has been

neglected, i.e. the computation of the propagators is done in a vanishing potential. Thus,

the possibility of a non-trivial potential to build up is eliminated.

On the lattice the chromoelectric propagator is the only quantity that directly reflects the

deconfinement-confinement phase transition. The zero mode of chromomagnetic propa-

gator is suppressed with respect to the zero temperature propagator for all temperatures

and the behaviour is smooth. The results obtained in this thesis show this suppression in

the functional continuum framework as well. Interestingly, the ghost propagator hardly

feels the temperature in both approaches, the FRG and the lattice.

Higher modes of the propagators can be obtained within an error < 3 % by shifting the

momentum of the zero mode by the zero component of the higher Matsubara mode. This

is consistent with studies with DSEs [429] and on the lattice [305].

The propagators are the important ingredient for the flow equation for the effective po-

tential, which encodes the pressure. Having the propagators at hand, the pressure com-
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putation shows that the qualitative features of the pressure of pure gauge theory can be

obtained within this treatment. Herein, firstly the implicit temperature dependence of the

propagators is crucial and secondly, the Polyakov potential is important, which is reason-

able, as in the FRG approach this quantity encodes the critical physics that happens at

the deconfinement-confinement phase transition.

Up to now, the consequences of the Polyakov loop potential were estimated in such a way

that the main effect is captured. But strictly speaking, the pressure from the propagators

in the non-trivial potential was not computed self-consistently. The fully self-consistent

computation is very intricate and beyond the scope of this thesis, since in addition to the

momentum dependence that was resolved here also the directions in colour space need to

be treated individually.

132



5. Confinement from Correlation Functions

At the end of section 2.1.2 the notion of confinement is introduced. It denotes the ab-

sence of colour-charged states in the observed particle spectrum at low temperatures and

densities. For high temperatures confinement ceases to exist, which necessitates a phase

transition from the confined to a deconfined phase. For the pure gauge part of QCD there

are scenarios that directly relate confinement of gluons to the infrared behaviour of the

correlation functions of Yang–Mills theory, cf. section 2.3.1. Since the latter theory is sup-

posed to trigger confinement also in full QCD, it stands to reason that criteria for quark

confinement can be found in terms of Yang–Mills Green functions. Indeed, this connection

could be established recently [11, 12, 465, 466]. For static quarks the expectation value of

the Polyakov loop, eq. (2.1), is a true order parameter to distinguish the confined and the

deconfined phase. In this chapter the Polyakov loop potential is numerically determined

with non-perturbative functional continuum methods by the knowledge of low-order n-

point functions.

5.1. Polyakov Loop Potential from Functional Methods

The expectation value of the Polyakov loop ⟨L[A0]⟩, see eq. (2.1), contains the gauge field

as the argument of the exponential function. Therefore, in a continuum description the

computation of ⟨L[A0]⟩ entails n-point functions up to infinite order. As a consequence,

no direct computation is feasible, although there are signatures for a confining potential

from correlation functions [467–469]. However, it can be shown [11, 465, 470] that in ad-

dition to ⟨L[A0]⟩ also L[⟨A0⟩] fulfills the requirements for an order parameter: In the

deconfined phase it is an upper bound for L[⟨A0⟩] ≥ ⟨L[A0]⟩ > 0 and it strictly vanishes

in the confined phase.

In contradistinction, L[⟨A0⟩] can be obtained from the functional continuum methods, as

exclusively the expectation value of the temporal component of the gauge field is needed.

The expectation value is simply the minimum of the effective potential1 for ⟨A0⟩, which

can be computed in the background field formalism with A0 being a constant background

field with fluctuations about.

In this section different representations of the Polyakov loop potential are derived from the

1Note that the expectation value ⟨A0⟩ is also of importance in other confinement description, since it is
sensitive to topological defects [471].
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FRG, DSEs and two-particle irreducible (2PI)-functionals. The Polyakov loop potential

V is simply the free energy, i.e. one-particle irreducible (1PI) effective action Γ, evaluated

on a constant background A0.

Most functional approaches are based on closed expressions for the effective action or

derivatives thereof in terms of full correlation functions. Hence, the knowledge of the

latter in constant A0-backgrounds allows to compute the Polyakov loop potential V [A0].
In turn, confinement requires the Polyakov loop potential to have minima at the confining

values for A0. For the gauge group SU(Nc) these are the center-symmetric points. This

restricts the infrared behaviour of the correlation functions computed in the constant A0-

background.

Gauge covariance of the correlation functions and gauge invariance of the effective po-

tential is achieved within the background field approach [472]. The idea relies on the

separation of the gauge field into a non-dynamical background field and a fluctuating

field. The background field is an auxiliary field. It is invariant under a gauge transforma-

tion which is independent of the gauge transformation of the full gauge field. The decisive

point is to choose a gauge-fixing with respect to the background field which is constructed

such that it singles out one configuration for the full field, but that the gauge-fixing and

therefore the action itself is invariant under a combined gauge transformation of the full

gauge field and the background field. Finally, the identification of the full gauge field with

the background field after integration of fluctuations leaves a gauge invariant (effective)

action, although the actual computation for the fluctuating field is done in a gauge-fixed

setup. For introductions in the background field formalism see e.g. [279,473].

In detail this entails that the gauge field A is split in a background Ā and fluctuations a

about the background, viz.

A = Ā + a . (5.1)

By this separation, gauges can be constructed that transform covariantly under gauge

transformations of both the background and the full gauge field,

Dµ(Ā)(A − Ā)µ = 0 , with Dµ(A) = ∂µ − i g Aµ . (5.2)

Note that the ghost field does not need to be split and, therefore, it is not subject to the

gauge transformation of the background field.

As a consequence, all correlation functions transform covariantly under combined gauge

transformations of A and Ā. Hence, the effective action Γ is invariant under combined

gauge transformations. However, due to the gauge eq. (5.2) it now depends on the full

gauge field A and Ā separately, Γ = Γ[Ā;a, c, c̄], with the path intgegral representation

exp−Γ[Ā;φ] = ∫ dφ̂ exp{−SA[Ā; φ̂] + ∫
x

δΓ

δφ
(φ̂ − φ)} , (5.3)
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with the classical action

SA[Ā;φ] = 1

4
∫
x
F aµνF

a
µν +

1

2ξ
∫
x
(D̄µa

a
µ)

2 + ∫
x
c̄aD̄µD

ab
µ c

b .

Herein, the field multiplet is given by

φ = (a, c, c̄) , and φ = ⟨φ̂⟩ , (5.4)

with the abbreviation ∫x = ∫ β0 dx0 ∫ d3x and β = 1/T . Note that the ghost term has

changed. The Faddeev–Popov operator eq. (2.15) is the functional derivative of the gauge-

fixing condition: In section 2.2 the gauge-fixing is done for the full gauge field ∂µAµ = 0.

This has been modified via the fixing with respect to the background Dµ(Ā)aµ = 0,

however, the covariant derivative of the background field does not depend on the gauge

transformation parameter for the full gauge field, since the background is only an auxil-

iary field. As a consequence, it factorises from the functional derivative similar to ∂µ in

eq. (2.15) leaving the Faddeev–Popov operator −D̄µD
ab
µ .

As a next step, the background Ā is identified with the physical background A, the ex-

pectation value of the field. This yields a gauge invariant effective action [472],

Γ[A, c, c̄] = Γ[A; 0, c, c̄] . (5.5)

The Polyakov loop potential is given by eq. (5.5) evaluated on a constant A0-background,

V [A0] ∶=
1

βV Γ[A0; 0] , (5.6)

where V is the three-dimensional spatial volume. The Polyakov loop, eq. (2.1), is then

evaluated at the minimum ⟨A0⟩ ∶= A0,min. As mentioned above, eq. (2.1) evaluated on the

minimum of eq. (5.6) constitutes an order parameter such as ⟨L[A0]⟩ ≤ L[⟨A0⟩] [11, 465].

The functional equations for the effective action such as FRG, DSE and 2PI equations

depend on the correlation functions Γ(n) of fluctuation fields a only. Schematically, they

given by

Γ(n)[Ā](p1, ..., pn) =
δnΓ[Ā, a]

δa(p1)⋯δa(pn)
∣
a=0

, (5.7)

where the unchanged ghosts and the internal and Lorentz indices are omitted. In [11] it

is argued that the correlation functions in the background Landau gauge, Γ(n)[Ā], are

directly related to that in the Landau gauge, Γ(2)[0]. This allows to use the latter cor-

relation functions within the computation of the effective potential. The argument given

in [11] for the two-point function, which straightforwardly extends to higher correlation

functions, is that gauge covariance of the fluctuation field correlation functions constrains

the difference between Γ(2)[0] and Γ(2)[Ā].

At vanishing temperatures the gluon two-point function in the Landau gauge splits into a

transversal part ∼ ΠT
µν(p), given in eq. (2.28), and a longitudinal part with the projection
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operator ∼ ΠL
µν(p), given in eq. (3.32). Hence, the gluon propagator is transversal for all

renormalisation group scales k, even though the longitudinal part receives finite correc-

tions.

At non-vanishing temperatures one has to take into account chromoelectric and chromo-

magnetic modes, see section 4.1.1 for the projection operators and the parametrisations

of the two-point functions.

In order to parametrise the background field correlation functions in terms of the Landau

gauge the correlation functions in eq. (4.2) are evaluated at covariant momenta,

(Γ
(2)
L/T [a = 0,A])

ab

µν
= ∑

L/T
PL/Tµρ (−D)δab(−D2)δρσZL/T (−D0,−D⃗)PL/Tσν (−D)

+F cdρσfabcdµνρσ(D) + δµνδab∆m2(D,A0) . (5.8)

The f terms are proportional to the field strength tensor in the adjoint algebra F cdρσ. They

can not be obtained from the correlation functions in Landau gauge. For a smooth limit

to a vanishing background these terms satisfy that f(Ā = 0) is non-singular. In fact, it

depends on higher n-point functions in Landau gauge. Fortunately, it does not play a

role here. Furthermore, since Landau–de-Witt gauge preserves the transversality of the

correlation functions of the fluctuating fields, there can only be finite contributions to

the longitudinal terms in the gauge field two-point functions. These contributions are

irrelevant for the non-trivial transversal structure. Note that the projection operators

PL/T do not commute with ZL/T (D0, D⃗) for general gauge fields. They do, however, for

constant gauge fields A0, which leaves a tensorial structure similar to eq. (4.2) but with

generalised momenta.

On the other hand, ∆m2(D,A0) vanishes at A0 = 0 or T = 0: At finite temperature, the

Polyakov loop L is a further invariant, i.e. the Polyakov line,

P(x⃗) = P exp(ig∫
β

0
dx0A0(x0, x)) , (5.9)

transforms covariantly under gauge transformations. These terms are particularly impor-

tant for the chromoelectric 00 component of the gluon two-point function, eq. (5.8). They

are not covered by the Landau gauge term in eq. (5.8) for general A0. This can be seen as

follows: Consider p = 0 for Γ
(2)
A,00[A0]. This is directly related to ∂2

A0
V [A0] even though it

is not identical. In any case, it is periodic in

Aa0τ
a → Aa0τ

a + 1

βg
τava , (5.10)

with A0 being in rotated in the a direction of the Cartan subalgebra of the SU(Nc), which

is spanned by its generators τa in the adjoint representation. The Cartan subalgebra is

the maximal Abelian subgroup of the generators. For constant A0 this rotation is always

possible2. The periodicity comes from the Matsubara sum over all modes in loops, as they

2Note that the rotation into the Cartan direction is only done for convenience. In fact, the periodicity
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5.1. Polyakov Loop Potential from Functional Methods

are proportional to

2πT (n + gβAa0τa) . (5.11)

In view of the periodicity of the potential, the expectation value of the temporal gauge

field A0 can be mapped onto a set of compact variables ϕa,

βg

2π
A0 = ∑

τa
τaϕa = ∑

τa
τavaϕ , (5.12)

where ϕ = ∣ϕa∣ and the va are the unit vectors in the Cartan directions. They give the

corresponding eigenvalues νl of the generators in the adjoint representation by

νl = spec{(τava)bc∣ v2 = 1} . (5.13)

Obviously, the N2
c − 1 eigenvalues depend on the direction. For SU(2), however, the Car-

tan subalgebra is trivial as it is simply τ = σ3/2 in the adjoint representation. This matrix

has the eigenvalues νl = 0,±1, thus, the potential only needs to be computed for ϕ ∈ [0,1),
due to the symmetry for the eigenvalues ±1. Note that this symmetry is generic, each

non-vanishing eigenvalue occurs with both signs, which is obvious from the anti-symmetry

of the generators in the adjoint representation.

In summary, this leaves a spectrum of the covariant momentum in the non-trivial back-

ground

p2 → spec{−D2[⟨A0⟩]} = p⃗2 + (2πT )2 (n − ϕνl)2 , (5.14)

with the continuous spatial momentum p⃗ and integer values for n. Again the periodicity

of the potential is directly visible, as each value of ϕ can be mapped via a shift in the

Matsubara sum to satisfy ∣ϕνl∣ < 1.

However, this periodicity is not present in the Landau gauge propagators as functions of

momenta only. One could estimate it on the basis of the Polyakov loop potential as

ZL(−D0, D⃗) → ZL(−D0, D⃗) + (∂2
A0
V [A0] − ∂2

A0
V [0]) . (5.15)

Eq. (5.15) has the correct periodicity properties and the correct limits. In the second term

it does not take into account the difference between Ā0 and a0-derivatives. As this only

affects the periodicity correction but not the dominating first term it should only cause

minor errors.

The full propagators for Cartan fields A0 and Matsubara modes ωn(A0) can be computed

on the basis of flow results for the Landau gauge propagators by using the representation

GabA/c[ωn(A0)] =
N2
c −1

∑
l=1

GA/c∣ωn=2πT (n+ϕνl)
Pl , (5.16)

where ϕνl are the eigenvalues of βgA0 and Pl the projection operators on the respective

persists in all directions and it is sufficient to restrict the computation to one of each distinct Weyl
chambers.

137



5.1. Polyakov Loop Potential from Functional Methods

eigenspaces.

5.1.1. Flow Equation for the Polyakov Loop Potential

The representation of the Polyakov loop potential has been introduced in [11, 12]. It

is derived from the flow equation for the Yang-Mills effective action Γk[Ā;φ] at finite

temperature T as

∂tΓk[Ā;φ] = 1

2
⨋
p
Gabµν[Ā;φ](p, p)∂tRbaνµ(p) − ⨋

p
Gab[Ā;φ](p, p)∂tRba(p) . (5.17)

The full field-dependent propagator for a propagation from the fluctuation φ1 to φ2 is

given by

Gφ1φ2[Ā;φ](p, q) =
⎛
⎝

1

Γ
(2)
k [φ] +Rk

⎞
⎠
φ1φ2

(p, q) . (5.18)

This entails that eq. (5.17) only depends on the propagators of the fluctuations φ evaluated

in a given background Ā. This also holds for Γk[A, c, c̄]. In eq. (5.18), the regulator

function in field space, Rk,φ1φ2 , is unchanged and given by

Rk,AaµAbν = R
ab
µν , Rk,c̄acb = −Rk,cbc̄a = Rab . (5.19)

For more details see section 3.2.4. On the diagrammatic level the representation is equal

to the flow equation given in fig. (3.6).

This yields the equation for the effective Polyakov loop potential V [A0],

V [A0] = VΛ[A0] +
1

βg
∫

0

Λ
dt ∂tΓk[A0] , (5.20)

where VΛ[A0] = 0 for sufficiently large Λ/T ≫ 1 and sufficiently smooth regulators, see

section 4.3. In conclusion, the computation of V [A0] with FRG-flows only requires the

knowledge of the (scale-dependent) propagators GA/c.

5.1.2. DSE-Representation for the Polyakov Loop Pxotential

Although DSEs have been applied for a great variety of physical systems and theories, they

have hardly been employed for critical physics, in particular critical exponents. This is

due to the fact that studies are hindered by the breaking of renormalisation group invari-

ance in the DSEs. But since this method is exact, DSEs encode also the physics at phase

transitions. In this section they serve to compute the Polyakov loop potential, thus, allow

for a study of the phase transition. In principle, also critical exponents can be studied.

For a related example I want to refer the reader to appendix F, where the Wilson–Fisher
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fixed point of φ4 theory in three dimensions is studied.

Since DSEs provide n-point functions with n ≥ 1 only, cf. section 3.3, there is no direct

representation for the effective potential. In spite of that, the derivative of the effective

potential can be computed directly from the generating equation for the gluon given in

fig. (3.18). In the background formalism with a static temporal non-vanishing background

A0, the functional derivative is taken with respect to the A0. With a closer look on the

generating DSE, eq. (3.65), this derivative acts on the effective action. This leaves the

derivative of the Polyakov loop potential for the constant background considered here.

On the right hand side of eq. (3.65), the derivative acts on the classical action, however,

the loops genuinely contain the fluctuating fields. Written schematically, this yields the

representation of V ′[A0] according to

δ(Γ[A0; 0] − S[A0; 0])
δA0(x)

= 1

2
S

(3)
A0aa

Gaa − S(3)
A0cc̄

Gcc̄ +
1

6
S

(4)
A0aaa

G3
aaΓ

(3)
aaa ,

with the classical vertices

S
(3)
A0aa

= δ3SA
δA0δa2

∣
φ=0

, S
(3)
A0cc̄

= δ3SA
δA0δcδc̄

∣
φ=0

, S
(4)
A0aaa

= δ4SA
δA0δa3

. (5.21)

The three-point vertices have one background leg and two fluctuation leg. They differ

from the standard vertices. The gluonic vertex also has a piece from the gauge fixing term

proportional to 1/ξ. The ghost-gluon vertex also involves the gauge field derivative of D̄

and not only D, see eq. (5.4). Naturally, in the vacuum all contributions would vanish,

but due to the external background leg these contributions are non-zero.

The DSE has the same form as the standard DSE for the fluctuation fields, only the

vertices differ. It is depicted in fig. (5.1). The external field is a background gluon field

�=
1

2
+

1

6

�(�� S)

�A0
=

A0 A0 A0

Figure 5.1.: DSE for the gluon one-point function.

with only a temporal component A0. This is reflected in the projections. In conclusion,

the computation of V [A0] only requires the knowledge of the propagators and of the full

gluonic three-point function Γ
(3)
aaa.
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5.1.3. 2PI-Representation for the Polyakov Loop Potential

Additionally, the functional DSE displayed in eq. (5.21) and fig. (5.1) also derives from the

2PI generating functional. For a review on 2PI effective action techniques see e.g. [474].

In general, NPI effective actions are another exact non-perturbative functional method.

In particular, in physical situations where resummations, i.e. calculations of perturbative

corrections up to infinite order are inevitable, they are very powerful since resummations

are genuinely built in. In a consistent renormalisation scheme, 2PI expansions respect

both the theory’s symmetries and also the pattern for spontaneous symmetry breaking.

The generating equations for NPI effective actions are derived via the functional integral

with source terms not only for the one-point function but for all n-point functions with

n ≤ N . As a consequence, the effective action is a functional not only of the field, but also

of the n-point functions. Thus, for a theory with field content ϕ and the corresponding

propagators Gϕϕ the generating functional is Γ2PI[Gϕϕ, ϕ].

For Yang–Mills theory in the background field formalism the 2PI generating functional is

given by

Γ2PI[G, Ā;φ] = SA[Ā, φ] −
1

2
Tr logGA +Tr logGc

−1

2
Tr ΠAGA +Tr ΠcGc +Φ[G, Ā;φ] ,

where Φ contains only the two-particle-irreducible pieces and ΠA/c = G−1
A/c − S

(2)
A/c are the

gluon vacuum polarisation and ghost self-energy respectively. The effective action is then

given with

Γ[Ā;φ] = Γ2PI[G[Ā;φ], Ā;φ] with
δΓ2PI

δG
∣
G=G[Ā;φ]

= 0 , (5.22)

the effective action is the 2PI-effective action evaluated on the gap equation. The derivative

with respect to Ā0 of Γ[Ā;φ] in its 2PI-representation, eq. (5.22), hits the explicit Ā-

dependence in the classical vertices as well as the one in the propagators. The latter

terms, however, vanish due to the gap equation displayed in eq. (5.22),

δ(Γ[A0; 0] − S[A0; 0])
δA0(x)

= (Tr
δΓ2PI

G

δG[A0;φ]
δĀ0

+ δΓ2PI[G, Ā;φ]
δĀ0

)
G=G[Ā;φ]

(5.23)

= 1

2
SA0aaGaa − SA0cc̄Gcc̄ +

δΦ[G, Ā;φ]
δĀ0

∣
G=G[Ā;φ]

,

where, by comparison, the last term simply is

δΦ[G, Ā;φ]
δĀ0

∣
G=G[Ā;φ]

= 1

6
SA0aaaG

3
aaΓ

(3)
aaa . (5.24)

Eq. (5.24) can be proven in any order of a given 2PI-expansion scheme such as 2PI pertur-
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bation theory or the 1/N -expansion. Therefore, for all practical purposes of the present

task, the 2PI-computation is already covered by the DSE-computation, even though one

may not respect the self-consistent 2PI approximation. Note that this is not the case for

e.g. dynamics of a given system in which conservation laws such as energy and particle

number conservation play a role.

5.2. Results for the Polyakov Loop Potential and Tc

In this section the results for the computation of the Polyakov loop potential are given.

The main focus of the work presented here is to complement previous results obtained in

the FRG framework [11,12] with others methods. Therefore, the Polyakov loop potential

obtained from the DSE is studied in detail. The equation for the potential in the 2PI

formalism coincides for this purpose presented here with the corresponding DSE, thus, no

separate calculation is necessary. The insensitivity of the transition temperatures of the

difference between infrared scaling or decoupling solution is confirmed, which had been

found in the FRG and is in agreement with general expectations. Furthermore, the effect

of the implicit temperature-dependence of the propagators presented in chapter 4 is stud-

ied.

The phase transition temperatures and the nature of the phase transitions are compared

with lattice gauge theory.

5.2.1. Results from the FRG

As discussed before the flow equation has the minimal representation for the Polyakov

loop potential as it only requires the full propagators of Landau gauge Yang–Mills theory

in a given background.

For the case of temperature-independent propagators this setup has been applied for the

gauge groups SU(2) and SU(3) [11, 12] that are present in the Standard Model of par-

ticle physics. In addition, other Lie groups have been investigated, in particular general

SU(Nc), the symplectic Sp(2) and the exceptional Lie group E(7) [12], where the latter

two have the center Z(2).

In the subsequent section 5.2.2 the Polyakov loop potentials for SU(2) and SU(3) are

computed from the DSE representation. The obtained results are compared to the corre-

sponding FRG computations. The critical temperatures from the FRG [11] are TFRG
c,SU(2) ≈

266 MeV and TFRG
c,SU(3) ≈ 289 MeV at a lattice string tension of

√
σ = 440 MeV. The poten-

tials and order parameters are summarised in fig. (5.2), the individual figures are taken

from [11].
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FIG. 2: Order-parameter potential for SU(2) (left panel) and SU(3) (right panel) for various temperatures. For SU(2) we show
the potential for T = 260, 266, 270, 275, 285 MeV (from bottom to top). We find Tc ≈ 266 MeV for SU(2). In case of SU(3),
the relevant minima occur in the A8

0 direction in the Cartan subalgebra. A slice of the potential in this direction is shown for
T = 285, 289.5, 295, 300, 310 MeV (from bottom to top). A magnified view on the potential at the phase transition is shown
in the inlay, revealing the 1st-order nature of the phase transition with two equivalent minima at at Tc ≈ 289.5 MeV.

propagator for the first two or three Matsubara frequen-
cies, even though their weight is higher, only gives rise
to minimal changes in the potential. This fully justifies
the zero-temperature estimate on the propagators.

With the parametrisation (6),(7), the dressing func-
tions ZA(p2), ZC(p2) in the KOGZ scenario are charac-
terised by the power-law behaviour (8) in the deep IR,
p2 ! Λ2

QCD. For low enough temperature, the spectral

window −D2[A0] # (2πT )2 is in this asymptotic regime,
and thus the effective potential arises dominantly from
fluctuations in the deep IR,

V IR(φa) =

{
d − 1

2
(1 + κA) +

1

2
− (1 + κC)

}

× 1

Ω
Tr ln

(
− D2[A0]

)
(17)

=

{
1 +

(d − 1)κA − 2κC

d − 2

}
V UV(φa).

If the anomalous dimensions are such that the expression
in curly brackets becomes negative, the effective poten-
tial is reversed and the confining center-symmetric points
become order-parameter minima.

We conclude that the effective action (17) predicts a
center-symmetric quark-confining ground state if

f(κA, κc; d) = d − 2 + (d − 1)κA − 2κC < 0. (18)

Provided that the O(∂tΓk(2, 0)) terms in Eq. (14) remain
subdominant, this equation provides a simple, necessary
and sufficient criterion for quark confinement in Yang-
Mills theory: if Eq. (18) is satisfied the order parameter
for quark confinement vanishes, 〈L[A0]〉 = 0. It is satis-
fied for the whole one-parameter family of infrared solu-
tions of Landau-gauge Yang-Mills theory. For the scaling
solution with the sum rule (9), we are led to

κ ≡ κC >
d − 3

4
. (19)

which is satisfied for the numerical values for the scaling
exponents κd in d = 2, 3, 4, see [4, 28]. Specifically in
d = 4, we have Eq. (10), and hence

f(−2κc, κc; 4) = −2.76... . (20)

For the decoupling solution (11), we are led to

f(−1, 0; d) = −1 . (21)

Both values imply confinement, and hence the whole one
parameter family of solutions is confining. Note that this
is to be expected as corresponding propagators can be
obtained within lattice simulations with different gauge
fixings.

The above confinement criterion has to be compared
to the Kugo-Ojima criterion for color confinement κ > 0
and the Zwanziger horizon condition for the ghost κ > 0
and for the gluon κ > 1/2 in d = 4. The Kugo-Ojima cri-
terion and the Zwanziger horizon condition are necessary
but not sufficient for confinement. Indeed for 0 <κ < 1/4
in four dimensions, we observe that the Kugo-Ojima cri-
terion is satisfied but does not lead to confinement ac-
cording to the present confinement criterion (19). We
would also like to emphasise that, in effective theories for
QCD, Eq. (18) only serves as a necessary condition. It
only restricts the propagators, and other Green functions
in effective theories might violate related constraints.

RESULTS FOR THE PHASE TRANSITION

In contradistinction to the simple confinement crite-
rion put forward above, the physics of the confinement-
deconfinement phase transition, e.g., the transition tem-
perature and the order of the phase transition, is deter-
mined by the dynamics of the system and not by its IR
asymptotics. Indeed, we find that fluctuations in the non-
perturbative mid-momentum regime induce the center-
symmetric minimum of the A0 potential long before the

(a) Polyakov loop potential for SU(2) for the tem-
peratures T = 260, 266, 270, 275, and 285 MeV from
bottom to top.

5

-0.4

-0.3

-0.2

-0.1

 0

 0  0.2  0.4  0.6  0.8  1

β4  V
(β

 <
Α

0>
)

β <A0>/(2π)

-0.5
-0.4
-0.3
-0.2
-0.1

 0
 0.1
 0.2
 0.3
 0.4

 0  0.2  0.4  0.6  0.8  1

β4  V
(β

 <
Α

0>
)

β <A0>/(2π)

0.3 0.5 0.7

FIG. 2: Order-parameter potential for SU(2) (left panel) and SU(3) (right panel) for various temperatures. For SU(2) we show
the potential for T = 260, 266, 270, 275, 285 MeV (from bottom to top). We find Tc ≈ 266 MeV for SU(2). In case of SU(3),
the relevant minima occur in the A8

0 direction in the Cartan subalgebra. A slice of the potential in this direction is shown for
T = 285, 289.5, 295, 300, 310 MeV (from bottom to top). A magnified view on the potential at the phase transition is shown
in the inlay, revealing the 1st-order nature of the phase transition with two equivalent minima at at Tc ≈ 289.5 MeV.

propagator for the first two or three Matsubara frequen-
cies, even though their weight is higher, only gives rise
to minimal changes in the potential. This fully justifies
the zero-temperature estimate on the propagators.

With the parametrisation (6),(7), the dressing func-
tions ZA(p2), ZC(p2) in the KOGZ scenario are charac-
terised by the power-law behaviour (8) in the deep IR,
p2 ! Λ2

QCD. For low enough temperature, the spectral

window −D2[A0] # (2πT )2 is in this asymptotic regime,
and thus the effective potential arises dominantly from
fluctuations in the deep IR,

V IR(φa) =

{
d − 1

2
(1 + κA) +

1

2
− (1 + κC)

}

× 1

Ω
Tr ln

(
− D2[A0]

)
(17)

=

{
1 +

(d − 1)κA − 2κC

d − 2

}
V UV(φa).

If the anomalous dimensions are such that the expression
in curly brackets becomes negative, the effective poten-
tial is reversed and the confining center-symmetric points
become order-parameter minima.

We conclude that the effective action (17) predicts a
center-symmetric quark-confining ground state if

f(κA, κc; d) = d − 2 + (d − 1)κA − 2κC < 0. (18)

Provided that the O(∂tΓk(2, 0)) terms in Eq. (14) remain
subdominant, this equation provides a simple, necessary
and sufficient criterion for quark confinement in Yang-
Mills theory: if Eq. (18) is satisfied the order parameter
for quark confinement vanishes, 〈L[A0]〉 = 0. It is satis-
fied for the whole one-parameter family of infrared solu-
tions of Landau-gauge Yang-Mills theory. For the scaling
solution with the sum rule (9), we are led to

κ ≡ κC >
d − 3

4
. (19)

which is satisfied for the numerical values for the scaling
exponents κd in d = 2, 3, 4, see [4, 28]. Specifically in
d = 4, we have Eq. (10), and hence

f(−2κc, κc; 4) = −2.76... . (20)

For the decoupling solution (11), we are led to

f(−1, 0; d) = −1 . (21)

Both values imply confinement, and hence the whole one
parameter family of solutions is confining. Note that this
is to be expected as corresponding propagators can be
obtained within lattice simulations with different gauge
fixings.

The above confinement criterion has to be compared
to the Kugo-Ojima criterion for color confinement κ > 0
and the Zwanziger horizon condition for the ghost κ > 0
and for the gluon κ > 1/2 in d = 4. The Kugo-Ojima cri-
terion and the Zwanziger horizon condition are necessary
but not sufficient for confinement. Indeed for 0 <κ < 1/4
in four dimensions, we observe that the Kugo-Ojima cri-
terion is satisfied but does not lead to confinement ac-
cording to the present confinement criterion (19). We
would also like to emphasise that, in effective theories for
QCD, Eq. (18) only serves as a necessary condition. It
only restricts the propagators, and other Green functions
in effective theories might violate related constraints.

RESULTS FOR THE PHASE TRANSITION

In contradistinction to the simple confinement crite-
rion put forward above, the physics of the confinement-
deconfinement phase transition, e.g., the transition tem-
perature and the order of the phase transition, is deter-
mined by the dynamics of the system and not by its IR
asymptotics. Indeed, we find that fluctuations in the non-
perturbative mid-momentum regime induce the center-
symmetric minimum of the A0 potential long before the

(b) Polyakov loop potential for SU(3) for the tem-
peratures T = 285, 289.5, 295, 300, and 310 MeV
from bottom to top.
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propagators acquire their deep IR scaling form (8). As
only the deep infrared is sensitive to the infrared bound-
ary condition the critical temperature is insensitive to
this choice which is confirmed in the explicit computa-
tion.

The results presented below are achieved by numeri-
cally integrating the flow equation (4) in order to obtain
the potential for an A0 background. The present trun-
cation is optimised by using Landau-gauge propagators
and RG improvement terms at zero temperature com-
puted from the FRG for different infrared boundary con-
ditions. It is also compared to results obtained by using
fits to Landau-gauge propagators as measured by lat-
tice gauge theory [7] and the RG improvement computed
in [8]. For our numerical study of the order-parameter
potential we have suitably amended the lattice propaga-
tors by the perturbative behaviour in the UV and the
corresponding power laws (8) in the IR. In Fig. 1 we
show the gluon and ghost propagators as obtained from
FRG computations [8] and lattice simulations [7]. There
is an impressive agreement of the results for the ghost
and gluon propagators for momenta larger than about
p ! 700 MeV which holds for the whole one parameter
family of solutions including the scaling one. The results
for the ghost dressing from scaling solution of the FRG
and lattice simulations start deviating for p " 700 MeV
whereas the scaling solution for the gluon starts deviating
for even lower momenta. Since the lowest non-vanishing
Matsubara mode is associated with momenta at about
|p| ∼ 2πTc ∼ 1700 MeV, the differences in the IR are
hardly probed in the present study of the deconfinement
phase transition. This is confirmed by the explicit com-
putation. In the vacuum limit, T → 0, the picture arising
from the preceding simple confinement criterion is con-
firmed: a sufficient amount of gluon screening with or
without an IR enhancement of the ghost creates a center-
disordered ground state with quark confinement.

The confinement-deconfinement transition is taking
place in the mid-momentum regime that interpolates be-
tween the perturbative regime and the IR asymptotics.
The effective potentials for SU(2) and SU(3) for vari-
ous temperature values near the phase transition are dis-
played in Fig. 2. For SU(3) (right panel), the slice of the
potential in A8

0 direction is depicted where the relevant
minima for the phase transition occur. Reading off 〈A0〉
from the minimum of the potential at a given tempera-
ture, we can determine L[〈A0〉] which is plotted in Fig. 3.
For SU(2) (blue/dashed line), the phase transition is of
second order. For SU(3) (black/solid line), we clearly ob-
serve a first-order phase transition at a critical temper-
ature of Tc % 284 ± 10MeV with a lattice string tension√
σ = 440MeV, that is Tc/

√
σ = 0.646 ± 0.023. The er-

ror relates to the uncertainties of the fits for the lattice
propagators which exceed the estimate on the system-
atic error in the FRG computation. The result compares
favourably both qualitatively and quantitatively with lat-
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FIG. 3: Polyakov loop for the A0 expectation value L[β〈A0〉]
for SU(2) (blue/dashed line) and SU(3) (black/solid line).
The phase transition is of second order for SU(2) and of first
order for SU(3).

tice simulations, see e.g. [7, 48]. Also, our result for
L[〈A0〉] in the deconfined phase is higher than the lattice
measurement of the Polyakov-loop expectation value 〈L〉
in agreement with the Jensen inequality L[〈A0〉] > 〈L〉.
Note however that this statement has to be taken with
care as the lattice result involves a non-trivial renormali-
sation factor which is absent in the definition of L[〈A0〉].
Indeed, L[〈A0〉] ≤ 1 whereas the renormalised Polyakov
loop 〈L〉ren necessarily exceeds unity for some tempera-
ture range as can be deduced from perturbation theory.

As discussed above, corrections to our estimate arise
from finite-T modifications of the propagators as well as
from order-parameter fluctuations; the latter are more
pronounced for SU(2) owing to the second-order nature
of the transition. As expected, the critical temperature is
not sensitive to the one-parameter family of solutions, it
is only sensitive to the mid-momentum regime at about
1 GeV. Indeed, this also explains the fact that the gluon
mass parameter is restricted from below: small gluon
mass parameters would also trigger changes in the mid-
momentum regime and almost certainly change physical
quantities such as the critical temperature.

In summary, we have established a simple confinement
criterion that relates quark confinement to the infrared
behaviour of ghost and gluon Green functions. This con-
finement criterion is applicable in arbitrary gauges. Our
full numerical analysis of the IR dynamics predicts a
second-order phase transition for SU(2) and a first-order
phase transition for SU(3), the critical temperature of
which is in quantitative agreement with lattice results.
The related Polyakov loop potential also plays an im-
portant rôle for full QCD computations with dynamical
quarks within functional methods, for first results on the
QCD phase diagram see [49].
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(c) Order parameters for the deconfinement-
confinement phase transition in SU(2) and SU(3),
showing second and first order phase transitions,
respectively.

Figure 5.2.: Polyakov loop potential from its FRG representation with vacuum scal-
ing propagators. The phase transition temperature of SU(2) is TFRG

c,SU(2) ≈
266 MeV, for SU(3) it is TFRG

c,SU(3) ≈ 289 MeV. Results and figures are taken

from reference [11] and printed with permission of Elsevier, license number
2958691101164.

5.2.2. Results from DSE & 2PI

The full computation of the Polyakov loop potential from DSE and 2PI methods contains

the computation of the three diagrams given in fig. (5.1). This shows that indeed the

two-point functions and the full three-gluon vertex are sufficient to fully compute this

equation. However, the approximation employed here is such that the two-loop term is

dropped. This discards the dependence on the three-point function. The remaining two

one-loop diagrams depend on the gluon and ghost propagators only, whose full momentum-

and temperature-dependencies are taken into account. The diagrammatic expression is

given in fig. (5.3). In the following the contributions from the loops in the given background

are derived.
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Figure 5.3.: DSE one-loop approximation for the derivative of the effective potential.

At first, a note on the value of the classical coupling is in order. The only relevant as-

pect for quark confinement is the shape of the Polyakov loop potential with respect to

the minima, but not its absolute value. In other words, only the position of the minima

decides about a confining or deconfining potential. Having dropped the two-loop diagram

involving the full three-gluon vertex, the only coupling that enters the equation is the

classical one. Being constant and of equal order in both one-loop diagrams it factorises

completely, thus, its absolute value is irrelevant for the search of the minimum. For this

reason it is safely fixed to unity.

At vanishing temperature the gluon propagator has a transversal and a longitudinal struc-

ture. In Landau gauge the longitudinal component remains tree-level, but the transversal

one is modified by quantum effects,

Gabµν(p) = δabΠµν(p)GA(p) , GA(p) = 1

ZA(p)p2
, (5.25)

where ZA(p) is the wave-function renormalisation of the gluon introduced in eq. (2.29).

Naturally, the DSE does not depend on the renormalisation group scale k but only on

the physical Green functions. Thus, if the two-point functions are taken from the FRG

computation, only the functions Γ
(n)
k=0(p) are needed.

For vanishing fluctuation fields and a constant background the full gluonic propagator can

be parametrised according to

GA = GA,� +GA,gauge with GA,gaugeµν = ξD̄µ
1

D̄2
D̄ν , (5.26)

where the longitudinal term from the gauge mode is modified compared to standard Lan-

dau gauge, because the gauge fixing is not done with respect to a trivial background but

to the constant background field. However, the transversality relations persist, however,

in terms of the covariant momentum,

D̄µGA,�µν = 0 and D̄µGA,gaugeµν = ξD̄µ
1

D̄2
D̄ν . (5.27)
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This is a consequence of the corresponding Slavnov-Taylor identities: The quantum cor-

rections to the propagator are transversal, hence the gauge sector is unchanged.

a

b c

!

!

!k⇢

pµ

q⌫

pA0

A0

a a

Figure 5.4.: Three-gluon vertex with a purely temporal background leg attached.

The three gluon vertex, fig. (5.4), in the background for all momenta ingoing is defined in

eq. (5.21). At vanishing fluctuating fields it is schematically given by

SA0aaρµν = SA0aaρµν +
1

ξ

δ(D̄µD̄ν)
δĀρ

, (5.28)

where the first term simply carries the standard classical tensor structure given in appendix

E. This tensor vanishes if two legs are closed with a longitudinal tensor. Thus, for the

contribution to the gauge mode only the remaining term is relevant. The second term

originates from the background field dependence of the gauge fixing term, see eq. (5.4).

Together with the longitudinal structure of the gauge mode this leaves the contribution

of the gauge sector as

1

2
Tr

1

ξ

δ(D̄µD̄ν)
δĀρ

GA,gaugeµν =
δ

δĀρ

1

2
Tr log(−D̄2) , (5.29)

where the trace on the right hand side does not include a trace over Lorentz indices. This

term is equal to 1-loop perturbation theory. Hence, it gives 1/2V Weiss
SU(Nc), i.e. half of the

Weiss potential [475,476], which is analytically known

V Weiss
SU(Nc) = −

d − 2

πd/2
Γ(d/2)T d

N2
c −1

∑
l

∞
∑
n=1

cos{2πnνl ∣ϕ ∣}
nd

. (5.30)

For SU(2) the Weiss potential is given in fig. (5.5), where it is normalised to the canon-

ical dimension T 4. Note that the only temperature dependence is the canonical one,

thus, fig. (5.5) is independent of the temperature. Furthermore, the potential is peri-

odic in ϕ and with the eigenvalues νl = {±1,0} for SU(2) it has minima at integer val-

ues of ϕ. However, the Polyakov loop vanishes for values of ϕ = 1/2, since L[⟨A0⟩] ∼
Tr Exp{2πϕ (τ ⋅ v1 + τ ⋅ v2)} = 0 for ϕ = 1/2 and τ = σ3/2. This shows that the perturba-

tive potential does not yield a vanishing expectation value of the Polyakov loop according

to the line of thought in section 5.1. Consequently, perturbation theory does not shows
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Figure 5.5.: (Perturbative) Weiss potential for SU(2). The confining value is at ϕ = 1/2,
however, the Weiss potential has minima at integer values of ϕ. Thus, this
potential does not exhibit confinement.

confinement, as expected. This can be mapped onto the longitudinal mode: Since the

gauge mode in Landau gauge is trivial it generates a deconfining potential.

The full ghost propagator is parametrised similarly as in Landau gauge, because the back-

ground is only of gluonic nature. Hence,

Gab(p) = −δabGc(p) , with Gc(p) = 1

Zc(p)p2
, (5.31)

where Zc(p) is the wave-function renormalisation of the ghost introduced in eq. (2.30).
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kµ

pq

A0
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k

Figure 5.6.: Classical ghost-gluon vertex with attached background field.

Concerning the ghost-gluon vertex there is a subtlety arising from the Faddeev–Popov

operator, which depends on the external background field as well. In Landau gauge,

the derivative with respect to the gluon A only acts on the covariant derivative D(A),
cf. eq. (2.16). In contrast to this, in the background field formalism the derivative with

respect to the background A0 acts on both covariant derivatives in the Faddeev–Popov
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operator −D̄µ(Ā)Dab
µ (Ā + a), see eq. (5.4). Thus, compared to the Landau gauge ghost-

gluon vertex, S
(3)
Acc̄, an additional factor of 2 arises in the vertex S

(3)
A0cc̄

in the background

fixed formalism, defined in eq. (5.21).

The first diagram that is to be computed is the gluon loop, given as the diagram labelled

(a) in fig. (5.3). The non-trivial part of the computation concerns the transversal part

GA,�, which couples to the standard part of the three-gluon vertex, Saaa, derived from

1/2 ∫ trF 2. It is similar to the three-gluon vertex given in appendix E.

Written out it translates for the purely temporal momentum (pA0)0 = 2πTϕ of the external

gluon and without color and the global i to

1

2
⨋
q
Gµν(pA0 + q)S

(3)
A0aa, 0µν

(pA0 , pA0 + q,−pA0 − q)

= g1

2
⨋
q
GA(pA0 + q) (2(pA0 + q)0 (δµµ − 1))

= 3 g⨋
q

2πT (nq + ϕ)GA(pA0 + q) , (5.32)

where due to symmetry only the term ∝ pA0 + q0 = 2πT (ϕ + nq) survives.

Also, the ghost loop given as diagram (b) in fig. (5.3) takes a simple form

−⨋
q
Gc(pA0 + q)S

(3)
A0cc̄ ,0

(pA0 + q, pA0 ,−pA0 − q)

= −2ig⨋
q
Gc(pA0 + q) 2πT (ϕ + nq).

Therefore, the final equation for the derivative of the Polyakov loop potential is just the

sum of the longitudinal mode giving half of the derivative of the Weiss potential3, the

transversal gluon loop and the ghost loop,

V ′(ϕ) = 1

2
(V Weiss

SU(Nc))
′
+ ⨋

q
2πT (nq + ϕ)

× [3GA (q + pA0) − 2Gc (q + pA0)] . (5.33)

The generating equation for the Polykov loop potential, eq. (5.33), depends on non-trivial

propagators. As a consequence, it can only be solved numerically. The loop integrals are

numerically simple because the loop integrations and Matsubara sums are finite.

3The fact that the longitudinal mode gives half of the Weiss potential can be checked by taking classical
propagators in the loop. This has been done analytically but also numerically to test the numerics.
Another valuable numerics check is the periodicity of the potential.
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Results for SU(2)
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(a) Polyakov loop potential for SU(2). For low temperatures
the minimum is at the confining value ϕ = 1/2 for SU(2). For
higher temperatures the minimum moves to a different value
which signals the deconfinement-confinement phase transition.
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(b) At the phase transition temperature the derivative of the
Polyakov potential for SU(2) changes at the confining value
from a positive to negative slope, turning the minimum of the
potential into a local maximum.

Figure 5.7.: Polyakov loop potential for SU(2) from its DSE representation with vacuum
scaling propagators.

Eq. (5.33) only depends on the ghost and gluon propagators. In the following three differ-

ent kinds of propagators are used. At first, the difference between the decoupling and the

scaling solutions of Yang–Mills propagators at vanishing temperature, cf. section 2.3.2, is

studied.

Similar to the pressure, cf. section 4.3, the finiteness of the temperature has a two-fold

effect. On the one hand side, the Matsubara sum yields an explicit dependence and on the

other hand side, the wave-function renormalisation are temperature dependent. Therefore,

the third approximation for the Polyakov loop potential is obtained with the temperature-

dependent propagators presented in chapter 4.
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The Polyakov loop potential for SU(2) from the scaling propagators at vanishing tem-

perature is given in fig. (5.7(a)). As argued before the position of the minimum de-

cides about a confining (ϕ = 1/2) or deconfining (ϕ ≠ 1/2) potential. In fig. (5.7(a)) the

Polyakov loop potential is given at different temperatures, the critical temperature Tc for

the deconfinement-confinement phase transition is obtained best by the help of the deriva-

tive of the Polyakov loop potential, which is plotted in fig. (5.7(b)). The phase transition

happens at the point at which the minimum in the potential moves away from ϕ = 1/2. As

it is a smooth transition, the potential is flat around ϕ = 1/2 at this temperature. Thus,

a vanishing derivative of the potential in this region signals the phase transition. Being

computed from the scaling propagators the critical temperature is T scal
c ≈ 210 MeV. In

comparison to this, the FRG result gives a critical temperature of TFRG
c ≈ 266 MeV in [11],

using the same input. However, note that the two-loop diagram has been omitted in the

computation presented here which could potentially correct for this deviation.
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transversal gluons (3)
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Figure 5.8.: Individual contributions from the gauge mode, the transversal gluons and the
ghost loop with trivial implicit temperature dependence in the Polyakov loop
potential obtained from its presentation in the framework DSEs.

Functional methods have the advantage that often the mechanisms and individual contri-

butions can be resolved. In this case it is trivially possible due to the additive structure of

the equation for the potential, eq. (5.33). As outlined above the gauge mode gives half of

the perturbative one-loop potential. The factor of one-half stems from the fact that the

perturbative potential is made up from the two physical modes: the transverse polarisa-

tions of the gluon. The Polyakov loop potential is gauge invariant, thus only the physical

modes must contribute. Naturally, the perturbative result simply reproduces this feature.

In fact, for trivial propagators all different modes contribute combinatorically with the

same weight. So the cancellation of the unphysical modes can be understood easily. All of

the four gluonic degrees of freedom contribute equally with 1
2V

Weiss
SU(Nc) each. The amplitude

of the ghost potential is equal to this, however, these modes contribute with a negative

sign. So a trivial summation cancels the two unphysical mode, leaving exactly V Weiss
SU(Nc).
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For perturbative propagators this cancellation is directly seen in the DSE representation

in eq. (5.33).

In addition, the different parts from the transversal gluon and the ghosts can be resolved

also for the full propagators which exhibit a crucially different momentum dependence.

The gauge mode is not affected by quantum effects.

The individual contributions for the scaling propagators at vanishing temperature are

given in fig. (5.8) for the Polyakov loop potential at about the deconfinement-confinement

phase transition temperature. As expected from perturbation theory, the pattern persists

that the gluons contribute with a deconfining potential whereas the ghosts add a confining

piece. However, the magnitude of the single contributions has changed, as the gluon prop-

agators have a mass gap in the infrared whereas the ghost propagators are even enhanced.

Note that the latter feature is significant in the scaling solution, however, the gluon sup-

pression is seen in both infrared Yang–Mills solutions, the scaling and the decoupling one.

In total, the interplay of these effects yields a confining potential for small temperatures,

because the ghost loop dominates. For larger temperatures the infrared sector becomes

less important, since the propagators are evaluated at higher momenta due to the spread-

ing of the Matsubara modes. At high momenta the propagators become perturbative. At

very high temperatures this yields the deconfining V Weiss
SU(Nc). This entails that in between

there is a phase transition. This is clearly seen in the data.
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Figure 5.9.: The expectation value of the temporal gluon serves as an order parameter for
the phase transition [11,465], the confining value for SU(2) is ϕconf = 1/2. The
figure shows the expectation value obtained from temperature-independent
scaling propagators. The continuous change of the minimum signals a second
order phase transition for SU(2). This is in agreement with lattice results,
see e.g. [364,365].

Furthermore, the order of the phase transition can be determined as well. From the lattice

it is known that the the phase transition for SU(2) is of second order. This means that the
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order parameter does not jump at the critical temperature. In the Polyakov loop potential

in fig. (5.7(a)) this is seen by the help of the change of its minimum. In addition to the

expectation value of the Polyakov loop, the Polyakov loop evaluated on the minimum of

the potential is an order parameter. The latter quantity only vanishes for distinct minima,

thus, the position of the minimum also serves as an order parameter. In fig. (5.7(a)) the

minimum moves continuously but is strictly at its confinig value in the confined phase.

This implies that the phase transition is of second order. The expectation value of the

minimum ⟨ϕ⟩ as a function of the temperature measured in the units critical temperature

T scal
c ≈ 210 MeV is given in fig. (5.9), where the continuous transition is evident.
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(a) Polyakov loop potential for SU(2).
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(b) Phase transition temperature for SU(2).

Figure 5.10.: Polyakov loop potential for SU(2) from the DSE with temperature-
independent Yang–Mills propagators from a decoupling solution.

In the FRG studies [11, 12] it is argued that the Polyakov loop potential should be in-

sensitive to the deep infrared regime. Thus, scaling and decoupling solutions should give

approximately the same phase transition temperature. This is due to the fact that the

phase transition is driven by the mid-momentum region, which is in between the infrared

and the perturbative physics. In this domain both types of solutions are quantitatively
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equal. Thus, the Polyakov loop potential is not sensitive to the type of Yang–Mills solution

in the deep infrared.

In the computation presented here the dependence on the different inputs is given by

comparison of the Polyakov loop potential obtained with decoupling propagators at van-

ishing temperature, given in fig. (5.10), with the potential from the scaling propagators

studied above in fig. (5.7). Also, in the DSE representation the insensitivity with respect

to the different infrared behaviour is clearly confirmed. This is seen on the level of the

deconfinement-confinement phase transition temperature. For the decoupling solution it

is T dec
c ≈ 200MeV.
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(a) Polyakov loop potential for SU(2).
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(b) Phase transition temperature for SU(2).

Figure 5.11.: Polyakov loop potential for SU(2) from the DSE with temperature-
dependent Yang–Mills propagators from section 4.2.1.

These results can be improved such that the implicit temperature dependence of the

two-point functions is taken into account. This dependence was studied in chapter 4

where the input was a decoupling solution to facilitate the comparison with lattice results.

Note that the non-trivial modes in the gluon loop in the DSE for the Polyakov loop

potential contribute with three degenerate transversal gluon wave-function renormalisation

functions, which is a result of EuclideanO(4)-symmetry and the transversality of the gluon
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propagators in Landau gauge. At finite temperature these modes are generally different,

see chapter 4. They split up in two chromomagnetic modes and one chromoelectric mode.

The computation for the Polyakov loop potential with temperature-dependent propagators

is done such that there are two individual diagrams that have the same structure of the one-

loop gluon diagram of the equation at vanishing temperature, see fig. (5.3). Instead of the

overall factor of three, one loop involves the chromoelectric gluon with the combinatorical

factor of one and the other gluon loop depends on the chromomagnetic mode with a

prefactor of two. Hence, the full equation is given by

V ′(ϕ) = 1

2
(V Weiss

SU(2))
′
+ ⨋

q
2πT (nq + ϕ)

× [GL (q + pA0) + 2GT (q + pA0) − 2Gc (q + pA0)] . (5.34)

Of course, in the perturbative limit the Weiss potential is satisfied also for this split, since

the perturbative mode counting has not changed.

The results for the effective potential of the Polyakov loop from temperature-dependent

Yang–Mills propagators is given in fig. (5.11). The effect of the implicit temperature de-

pendence is such that in comparison with the vacuum decoupling solution T dec
c ≈ 200 MeV

the critical temperature of the deconfinement-confinement phase transition is raised to

T fin.T
c ≈ 230 MeV.

Also for the case of thermal propagator input, the individual contributions can be resolved

according to the loops in eq. (5.34), the compilation is given in fig. (5.12). By the help

of the individual contributions it is evident that the potential is confining for low tem-

peratures, due to the suppression of the gluons. The gauge mode gives half of the Weiss

potential. In addition, both the chromomagnetic as well as the chromoelectric mode are

suppressed due to their effective masses, which is seen in comparison with the gauge mode.

Note that the curve of the contribution of the chromomagnetic gluon is the sum of two

modes. The suppression is now a two-fold effect from the gap the gluons exhibit at vanish-

ing temperature already, see section 2.3.2, but also of the thermal suppression. Due to the

latter manifestation of temperature, the gluonic modes yield a smaller contribution than

in the zero temperature computation in fig. (5.7(a)). In contrast, the ghost propagator has

hardly changed at the temperature where the deconfinement-confinement phase transition

happens. As a direct consequence, the confining contribution of the ghosts is equal but the

deconfining one is diminished. In total, this yields a higher phase transition temperature.

Note that in chapter 4 the results for the ghost propagator differ from the corresponding

lattice findings, however, only at larger temperatures. At the temperatures around the

deconfinement-confinement phase transition of quarks the only quantitative difference is

the absent enhancement of the longitudinal gluon in the FRG formulation. Nevertheless,

it remains as an open question, if the evaluation of the chromoelectric mode on the non-

trivial background in the computation above corrects for this quantitative difference. The
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Figure 5.12.: Individual contributions from the gauge mode, the chromoelectric and chro-
momagnetic gluons and the ghost with non-trivial implicit temperature de-
pendence to the Polyakov loop potential in its DSE representation. The
numbers in the brackets denote the number of degenerate modes that are
summed in the corresponding curve. The gluonic modes are suppressed due
to the effective mass scale which arises from the quantum mass gap and
the thermal mass. At low temperatures the confining ghost potential domi-
nates which yields a confining potential. At higher temperatures the ratio of
absolute ghost to gluon contribution decreases which renders a deconfining
potential.

inclusion of the Polyakov loop in the propagator would be an appealing explanation for the

deviation at low temperatures, because the FRG formulation of the thermal propagators

according to chapter 4 is not sensitive to the phase transition. In turn, the critical physics

in the continuum formulation is encoded in the Polyakov loop.

The results can be compared to lattice gauge theory, which finds [47,48]

T lattice
c,SU(Nc)/

√
σ = 0.596(4) + 0.453(30)

N2
c

, (5.35)

for 2 ≤ Nc ≤ 8. This formula is obtained in [47], where improved gluonic operators on the

lattice [48] were used and the blocking and smearing techniques were refined in comparison

to earlier studies. This actually changed the values found in early studies of T lattice
c /√σ

significantly for SU(2) and SU(3).
For the case of SU(2) eq. (5.35) gives T lattice

c,SU(2)/
√
σ ≈ 0.709. Thus, with a lattice string

tension
√
σ = 440 MeV the phase transition temperature found in the DSE representation

of the Polyakov loop potential is too low, T fin.T
c /√σ ≈ 0.523, which is possibly due to the

missing contribution from the two-loop diagram.
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5.2. Results for the Polyakov Loop Potential and Tc

Results for SU(3)

In fact, for fixed directions of A0 in the Cartan subalgebra, the Polyakov loop potential

for arbitrary SU(Nc) can be obtained by the pure knowledge of the SU(2) potential4,

VSU(Nc)(ϕ
a) =

N2
c −1

∑
l=1

1

2
VSU(2)(νl ϕ) . (5.36)

The Cartan subalgebra of the gauge group of QCD, SU(3), is two-dimensional, i.e. max-

imally two generators commute with each other. In the standard notation, see e.g. [477],

these are the Gell-Mann matrices τ3 and τ8. The direction can be parametrised by the

help of them. Thus, the Polyakov loop potential is given as a function of the magnitude

ϕ3, ϕ8 of the background field in these directions. In general, this gives

V (ϕ3, ϕ8) = VSU(2) (ϕ3) + VSU(2) (
ϕ3 +

√
3ϕ8

2
) + VSU(2) (

ϕ3 −
√

3ϕ8

2
) . (5.37)

The SU(3) Polyakov loop potential for the two different inputs of temperature-independent

scaling propagators and the temperature-dependent decoupling ones are given in fig. (5.13).

Fig. (5.13(a)) is computed from the SU(2) potential from temperature-independent prop-

agators. Fig. (5.13(b)) shows the same quantity derived from thermal propators, which

are given in chapter 4.

The deconfinement-confinement phase transition temperature of these results is higher

compared to SU(2), for the scaling vacuum propagators it is T scal
c,SU(3) ≈ 240MeV, for the

case of the thermal propagators T fin.T
c,SU(3) ≈ 280 MeV. The quantitative importance of the

implicit temperature dependence of the wave-function renormalisation is also seen in the

SU(3) potential, which is a direct consequence of the quantitative difference of the SU(2)
potentials, fig. (5.7(a)) and fig. (5.11(a)).

In lattice gauge theory the critical temperature is found as T lattice
c,SU(3)/

√
σ ≈ .646 MeV [47,48],

cf. eq. (5.35). The input propagators in chapter 4 were matched with the lattice string

tension
√
σ = 440 MeV which gives a ratio T fin.T

c,SU(3)/
√
σ ≈ 0.637, in good agreement with

lattice data.

As explained above the position of the minimum of the effective potential is an order pa-

rameter, which reflects order of the phase transition. The position of the minimum for the

SU(3) potential is given in fig. (5.14). In contrast to the second order phase transition in

SU(2), the minimum of the potential of SU(3) jumps from the confining value ⟨ϕ⟩ = 2/3
to a different value, see also fig. (5.13). This abrupt change signals a first order phase

transition, which is consistent with lattice gauge theory [44].

Before I end this chapter I want to emphasise again that, although the critical tempera-

4Note that the non-trivial dependence of the input propagators on the value of Nc is neglected in this,
as it has been in chapter 4.
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(a) Polyakov loop potential for SU(3) obtained from temperature-
independent scaling propagators from [276].
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(b) Polyakov loop potential for SU(3) obtained from temperature-
dependent propagators from chapter 4.

Figure 5.13.: The Polyakov loop potential for SU(3) can be obtained from the SU(2)
potential according to eq. (5.37). This figure shows the SU(3) potential in
the ϕ = ϕ3 direction. The confining value is ϕ = 2/3. The position of the
minimum serves as an order parameter for the deconfinement-confinement
phase transition. At the critical temperature it jumps from its confining
value to a non-confining value. This signals a first order phase transition for
SU(3), which is in agreement with lattice results, see e.g. [20].

tures for the deconfinement-confinement phase transition in SU(2) and SU(3) obtained

from the best truncation within functional methods agree well with lattice gauge theory,

there are caveats arising from truncations. Thus, the high accuracy may be a lucky co-

incidence. Nevertheless, it is fair to infer from the previous results that the occurence of

the phase transition at the correct order of magnitude is definitely not affected by these

approximations. In the following I summarise the potential problems and arguments why
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Figure 5.14.: First order phase transition for SU(3) obtained from temperature-
independent scaling propagators. The expectation value of the temporal
gluon serves as an order parameter for the deconfinement-confinement phase-
transition. The confining value for SU(3) is ϕconf = 2/3.

these deviations from the lattice in the corresponding parts could be subleading in the

computation of the Polyakov loop potential.

Firstly, the main ingredients for the DSE representation of the Polyakov loop potential

are the propagators. The good agreement is achieved with the temperature-dependent

propagators given in chapter 4. For the temperatures of the phase transitions the results

for the chromomagnetic gluon and the ghost are in satisfactory agreement with the lat-

tice. In contrast to this, the chromoelectric propagator is significantly enhanced on the

lattice. This is not seen in the FRG. However, the FRG propagator is evaluated on a

non-trivial background. The background is identified with the Polyakov loop potential

which is directly sensitive to the critical physics, in contradistinction to the computations

of the thermal propagators presented in section 4.2.1. Therefore, although there is a clear

deviation in the propagators, the way in which they occur in the subsequent computations

may correct for this. This conjecture is supported by the quantitative agreement of the

pressure given in fig. (4.3).

Secondly, another benchmark for the DSE Polyakov loop potential are the FRG results,

which give higher critical temperatures for the same input. Since in the one-loop trun-

cation of the DSE only the propagators enter, this may be due to the missing two-loop

contribution. However, the two-loop contribution can be approximated by a diagram

which has the same structure as the one-loop gluon term but with a three-gluon vertex

correction. This vertex correction is supposedly a small correction. The latter statement

is based on the results for the two-point functions at vanishing temperature in the DSE

framework [276] given in section 2.3.2 in fig. (2.4), in which the two-loop diagrams have

been dropped. Nevertheless, these results show that the main contributions arise from the

one-loop diagrams and the two-loop terms give a small correction. This suggests that the

two-loop diagram in the DSE representation of the Polyakov loop potential gives only a

small correction as well.
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5.3. Conclusions

The standard order parameter for quark confinement is the expectation value of the

Polyakov loop potential. In addition to that, it could be shown that also the Polyakov

loop evaluated on the expectation value of a purely temporal gauge field and, therefore,

the latter expectation value itself serves as an order parameter as well [11,465]. This quan-

tity is the minimum of the effective potential of the Polyakov loop, which is studied in

this chapter within the framework of functional continuum methods. In these approaches

quark confinement can be directly related to the behaviour of the propagators of Yang–

Mills theory [11,12].

In the FRG approach this has been pioneered in [11, 465]. In turn, the focus of the work

presented here is on other functional methods, in particular DSEs and 2PI-effective ac-

tions. It turns out that the determining equation in the 2PI representation is equal to the

one derived in the DSE. In this chapter this equation is solved numerically. The computa-

tion of the Polyakov loop potential gives the critical temperatures of the deconfinement-

confinement phase transition of the gauge groups SU(2) and SU(3) which are of second

and first order, respectively, as it is generally expected [11,12,44,47,48,364,365,478]. The

critical temperatures are T
SU(2)
c ≈ 230 MeV and T

SU(3)
c ≈ 280 MeV, measured in units of

a lattice string tension
√
σ = 440 MeV. Thus, T

SU(2)
c /√σ ≈ 0.523 and T

SU(3)
c /√σ ≈ 0.637.

These are compared with results from lattice gauge theory which yield T
SU(2)
c, latt /√σ ≈ 0.709

and T
SU(3)
c, latt /√σ ≈ 0.646 [47,48].
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6. On the QCD Phase Diagram from

Functional Methods

The phase diagram of QCD can be studied within functional approaches from first princi-

ples [17,111–117]. The promising advantage of these methods is that they are not restricted

to small values of the chemical potential. These approaches describe the theory in terms of

correlation functions, wherein n-point functions of low order have an outstanding role. In

this chapter I present results from an FRG approach for the two-point functions of QCD

in the vacuum. An extension to correlation functions at non-zero temperature and/or

quark chemical potential is possible and conceptually straighforward.

The results in this chapter are preliminary and, therefore, merely a status report of the

work in progress. Thus, the exposition here is kept very compact as it only serves to

impart the idea that is employed in this approach.

6.1. Unquenched Yang–Mills Propagators from the FRG

6.1.1. Method

After having studied QCD Green functions in the unphysical limit of infinitely heavy

quarks, a natural advancement is to consider dynamical quarks, i.e. full QCD. The study

of the fully coupled self-constistent system of infrared propagators of QCD has been pi-

oneered in the framework of DSEs in [247, 479–481]. Afterwards, the study of Green

functions of non-perturbative QCD from DSEs has been continued and it has developed

as an active field of research [88, 116, 117, 260, 482–485], which can be directly compared

with lattice simulations [486–493].

In this section Yang–Mills propagators in the presence of dynamical quarks are studied in

the framework of the FRG. At first, I outline the strategy that is employed to consider

quark fluctuations. This relies on the general properties of the FRG that are also utilised

in the computation of the temperature-dependent propagators and thermodynamics of

Yang–Mills theory in chapter 4.

As detailed in section 3.2.2 the FRG allows to look at a physical system at different scales.

Therefore, the knowledge of the theory at one particular scale allows to compute the the-

ory at all other scales. At large scales the running coupling of Yang–Mills theory becomes

weak, thus, the theory can be desribed with perturbation theory. This gives access for
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6.1. Unquenched Yang–Mills Propagators from the FRG

computing Yang–Mills theory also in the non-perturbative regime, e.g. for the full quan-

tum theory.

However, this transition can be reversed1. In the case of thermal fluctuations, cf. chapter

4, this is utilised such that the full quantum theory is evolved to a scale Λ/T ≫ 1 where

thermal fluctuations of a fixed temperature are suppressed. Therefore, at this point the

pure quantum theory is the appropriate initial condition for the thermal theory, which can

be obtained by solving the flow equation of the thermal field theory down to the physical

limit of vanishing renormalisation group scale.

The method to include quark fluctuations is based on the same considerations. Again,

the full quantum effective action of Yang–Mills theory is taken as an input. The reversed

flow can be done up to a high scale where the contributions of the quark loops in the

equations are known from perturbation theory. They can be added to the effective action

of Yang–Mills theory at this perturbative scale. In this way the initial condition can be

obtained and full QCD can be studied by solving the flow to vanishing scale.

Note that this construction can be combined for unquenching and thermal effects. Fur-

thermore, it can be extended even to the case of non-vanishing quark chemical potential

µ. Similarly to the thermal fluctuations the signatures of the chemical potential vanish at

large scales µ/Λ ≪ 1.

ka
µ

r s

Figure 6.1.: Quark-gluon vertex.

The evolution of the full quantum Yang–Mills theory to the renormalisation group scale

Λ is equal for both applications of thermal field theory and QCD. As the same truncation

for the gauge part is employed here, the details for the first step of the computation

are given in section 4.1. However, the second step differs for the two applications. For

thermal fluctuations the initial condition at Λ is unchanged from the zero temperature

case. In turn, for the quark fluctuations the perturbative contributions have to be taken

into account. Note that as a simple approximation, the quark propagator and quark-

gluon vertex are taken as classical at all scales. This is done in view of the way the

results will be used in the study of the phase diagram, where at low chiral symmetry is

1Note that the inversion is not generally possible, cf. section 3.2.6, but for the purpose and scales
presented here it is feasible.
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6.1. Unquenched Yang–Mills Propagators from the FRG

dynamically broken and quarks and gluons are confined. At high and intermediate scales it

is known from DSE studies that the quark sector is quantitatively close to the perturbative

behaviour, for a review see e.g. [247]. In turn, it deviates for low scales. But, for the low

energy regime the FRG formulation can be refined via dynamical hadronisation, i.e. the

information of the bound states are not solely subsumed in the quark propagator and

quark-gluon vertex any more but predominantly absorbed in other effective couplings.

Thus, the approximation of the quark propagator and its coupling to the gluon is not the

decisive part in this region. Note however, that the approximation for the vertex could

be improved easily by exploiting its STI, see e.g. [339]. For a detailed study of the quark-

gluon vertex in DSEs see [483]. In addition to that, in the FRG ansätze derived from

this entity can be improved further by equipping the vertex with a renormalisation group

scale-dependent dressing. This would also be an easy improvement for the wave-function

renormalisation of the quark.

The quark propagator Gq and the quark-gluon vertex used in the computation presented

in this chapter are schematically given by

Gq(r,mq) =
1

−i/r +mq
, (Γ

(3)
Aqq̄)

a

µ
(k; r, s) = −igτaγµ , (6.1)

where r, s and k are the momenta of the quark, anti-quark and gluon, respectively, mq is

the mass of the considered quark flavour, the colour-structure is given by the Gell-Mann

matrices τa and the Lorentz structure is given in terms of the Dirac matrices γµ. In the

diagrammatic form the quark-gluon vertex is given in fig. (6.1), the quark propagator is

illustrated by an arrowed solid line.

In the discussion of flow equations for two-point functions the generic diagrams that emerge

contain three- and four-point interactions. For the quark fluctuations in the flow equation

for the gluon propagator this yields two different types of diagrams, one involving two

quark-gluon vertices and a closed quark loop and a tadpole contribution with the quark-

gluon scattering kernel with a closed quark loop. The latter tadpole structure arises in

the ghost propagator as well but, naturally, involving a quark-ghost scattering kernel. In

contradistinction, the diagrams with two three-point vertices are forbidden due to the

conservation of either ghost-number of fermion-number in the vertices. In the following

the scattering-kernels are dropped in the approximation, since they do not have a classical

analogue. As a result, the only modification on the level of Yang–Mills propagators is the

quark-loop diagram, which is given in fig. (6.2).

Note that in the truncation at hand the quark propagator is classical and, therefore, no

flow equation for the corresponding two-point function is solved. However, the propagator

is regularised by the help of a cutoff function. In section 3.2.2 it is argued that the tensor

structure of the regulating term should be equal to the tensor structure of the two-point

function. Thus, in the case of the fermionic field the regulating term is ∼ /p r(p2/k2).

As outlined before the initial condition of Yang–Mills theory is not the appropriate one

for full QCD. It has to be corrected with the perturbative quark contribution, which is a
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6.1. Unquenched Yang–Mills Propagators from the FRG

Figure 6.2.: The fluctuations of dynamical quarks give a contribution to the flow of the
gluon propagator.

momentum-dependent quantity. In the truncation at hand, only the initial condition for

the gluonic two-point function has to be adjusted. Schematically, the procedure is given

by

Γ
(2),YM
A,k=Λ (p) → Γ

(2),YM
A,k=Λ (p) +∆Γ

(2)
A,k=Λ(p) , (6.2)

where Γ
(2),YM
A,k=Λ (p) is the gluonic two-point function of pure gauge theory at the renormali-

sation group scale k = Λ. The second term on the right hand side of eq. (6.2), ∆Γ
(2)
A,k=Λ(p),

accounts for the quark contribution and is proportional to the canonical behaviour ∼ p2

with an additional logarithmic running with the renormalisation group scale Λ, viz.

∆Γ
(2)
A,k=Λ(p) = ∆Zq p

2 ln{
Λ2 +m2

q

m2
q

} . (6.3)

Note that for large scales Λ ≫ mq the logarithm approaches ln{Λ2}. The term ∆Zq is

taken as a constant and it could be set by the analytical result from perturbation theory,

however only at the appropriate scale. For an arbitrary but large scale Λ the running of

the quark-loop in this approximation can also be extracted from the flow of the diagram

by

∆Zq = ∂p2∂t∆Γ
(2)
A,k=Λ(p)∣p→0

. (6.4)

Note that this causes a different normalisation in the ultraviolet that has to be considered

in the interpretation of the results.

Additionally, the adjustment according to the procedure in eq. (6.2) needs to be refined

in view of gauge invariance. The naive addition of the flow of the quark loop would

excite a perturbative mass term for the gluon which is forbidden by gauge invariance. The

appearence of this mass term is a signature of the wrong initial condition. In principle,

this would have to be cured by fine-tuning the initial condition to find the appropriate

starting values for the full quantum theory. In spite of that, the emergence of a mass can

be considered on an approximate level2 in a far simpler way, namely by subtracting the

mass directly along the flow. This is done in two steps. First of all, by subtracting the

2The approximation has been checked via the comparison of the mass subtraction given here with the
mass that emerges along the full flow. For the results presented below the accuracy is ≲ 5%.
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emerging mass directly in the flow, hence, in the transition from pure Yang–Mills theory

to QCD the flow is corrected with

∂tΓ
(2),YM
A,k (p) → ∂t (Γ

(2),YM
A,k (p) +∆Γ

(2)
A,k(p) −∆Γ

(2)
A,k(p = 0)) . (6.5)

Second of all, the two-point functions of the ghost and the gluon now deviate from the

corresponding quantities in pure gauge theory due to the quark fluctuations. Naturally,

they couple back to the flow. As a consequence, the fine-tuning that has been done to

cancel the perturbative mass in Yang–Mills theory is not the proper one for this case.

However, it is still approximately correct since the subtraction of the flow, see eq. (6.5),

cancels the main contributions. The development of the mass is forbidden by gauge-

invariance, however, strictly only in the perturbative domain. Forestalling the results for

quarks with constituent quark masses, the emerging masses (δm)2 for the subtraction

procedure in eq. (6.5) in the perturbative region is shown in fig. (6.3). Evidently, the
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Figure 6.3.: A perturbative mass (δm)2 in the unquenched gluon propagator builds up due
to the approximative nature of the method eq. (6.5). This mass term breaks
gauge-invariance, thus, it is extracted from the results.

effect grows with the number of flavours. Therefore, the study of QCD in the limit of

large Nf is supposedly not feasible with this method. I comment on this further at the

end of this section. Anyhow, these masses can be read off and subtracted from the gluonic

two-point functions,

Γ
(2)
A (p) → Γ

(2)
A (p) − (δm)2 . (6.6)

Of course, this method is not exact but is the best approximation that can be applied

which does not require additional fine-tuning.

Of course, the way how quark fluctuations are considered, eq. (6.5), is an approximation

not only regarding the truncation of Green functions. In fact, the procedure above con-

stitutes a scale-dependent normalisation which is generally different from the one used in

Yang–Mills theory. In section 6.1.2 this is seen directly in the wave-function renormalisa-

tions of both the gluon and the ghost fields.
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The quarks have a physical mass. For high energies these masses are the bare masses,

however, at scales where chiral symmetry is dynamically broken the light quarks acquire

far higher masses. In the following the dependence of the constituent quark mass is tested

on the level of the two-point functions. The solution with bare quark masses only is

compared to the computation which comprises the changing masses at the chiral phase

transtion. For reference the bare quark masses are given in tab. (2.1). The constituent

quark mass is taken from an FRG computation of the QCD phase diagram which I sketch

in section 6.2. The additional mass m̃ due to the breaking of chiral symmetry is used as

pure input in the flow of the gluon and ghost propagators, it is given in fig. (6.4). The data

is taken from a computation in progress which advances previous FRG results [112, 494].

This mass is non-zero only at relatively small scales k where the gluon flow is subject to

ghost dominance. Thus, the effect of dynamical chiral symmetry breaking is qualitatively

irrelevant for the unquenched Yang–Mills propagators.
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Figure 6.4.: Emerging quark mass contribution due to chiral symmetry breaking along the
renormalisation group scale k.

There are six different quark flavours in the Standard Model of elementary particle physics.

Each quark flavour contributes to the flow of the gluon propagator separately. Thus, the

dependence of the two-point functions on the number of quark flavours Nf can be studied

easily by considering the quark fluctuations arising from the diagram in fig. (6.2) for each

flavour individually. However, note that the method described by eq. (6.5) and eq. (6.6)

is an approximation which gets worse the further one goes away from the limit of pure

gauge theory. Theoretically, the study concerning the dependence on Nf is possible for

values larger than the physical value. This has also already been studied with the FRG,

see e.g. [495, 496] and references therein. However, the limit of large Nf is inaccessible

within the method presented here. Even for investigations of multi-flavour QCD the ca-

pabilities of this approach may be limited. Nevertheless, the value of Nf is varied in the

computations presented below as the method is supposed to be reliable for realistic values
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of Nf .

6.1.2. Results

In this section three different cases of mass input are investigated. The first choice are con-

stituent quark masses with respect to the constituent quark mass given in fig. (6.4). The

second computation is done with current quark masses only. At the end the comparison

with the chiral limit is done. The results are compared with data from DSE studies [479]

and lattice QCD [486].

At first, the most realistic case of consitutent quark masses, see fig. (6.4) and additionally

tab. (2.1), are taken into account. For quarks depending on constituent quark masses, the

gluon propagator,

(Γ
(2)
A )

−1
= (ZA(p)p2)−1

, (6.7)

in given in fig. (6.5(a)), its corresponding dressing function Z−1
A is shown in fig. (6.5(b)).

Note that the notation is adjusted to the significant differences in the quark masses, cf.

tab. (2.1), with respect to the scale ΛQCD ≈ 200 MeV. Nf = 2 stands for taking into account

the up and down flavour, whose masses are negligible with respect to ΛQCD. The notation

Nf = 2+ 1 denotes the case of fluctuations of the two light flavours and the strange quark,

whose mass is of the order of the intrinsic scale. The last results for Nf = 6 include all

physical quarks. Note that the heavy quarks are hardly affected by the mass that emerges

due to dynamical chiral symmetry breaking.

In fig. (6.5) the results for two, two plus one and six quark flavours, respectively, are com-

pared with the propagator of pure gauge theory, Nf = 0. The gluon is directly sensitive to

the quark contribution. Fig. (6.5(b)) shows that this leads to a suppression of the dressing

function in the mid-momentum region. With increasing Nf it is suppressed further, which

is in agreement with DSE results [88,116,117,247,260,479–482,484,485].

An interesting aspect in fig. (6.5(b)) is the comparatively small change between the tran-

sition from Nf = 2 + 1 to Nf = 6 with respect to Nf = 2 to Nf = 2 + 1. This effect is

due to the large quark masses of the heavy flavours. For large quark masses the loop

propagators in the diagram given in fig. (6.2) are suppressed. Thus, their contributions

are diminished. Naturally, the relevance of this effect depends on the relative scales in

the system, here it is ΛQCD ≈ 200 MeV. Thus, only the masses of the light flavours allow

for significant fluctuations. The direct consequence is the small deviation of the Nf = 6

results to theNf = 2+1 results. In the following also the chiral limit, i.e. mf → 0, is studied.

With regard to the full two-point function the dressing function does not resolve the in-

frared very well, since it vanishes for all non-singular values of the propagator. But the

infrared shows a very interesting effect, namely, that the effective mass does not increase

but stays of the same order. In fact, the propagator for 2 + 1 flavours is enhanced. Note

that an enhancement of the propagator is actually necessary for large values of Nf since
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(a) Gluon propagator for pure gauge theory, Nf = 2, Nf = 2+1 and Nf = 6.
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Figure 6.5.: Gluon propagator and dressing function from the FRG as a function of the
number of quark flavours. In the results in this figure constituent quark
masses, see fig. (6.4) and tab. (2.1), have been considered.

the finiteness is related to confinement. For QCD, however, the quarks yield a deconfining

contribution. Therefore, for large numbers of Nf the gluon propagator should diverge

which necessitates a decrease of the effective mass. Under these considerations it is plau-

sible that the propagators are not significantly suppressed in the deep infrared. Note that

for Nf = 6 the propagator is in fact suppressed, however, it is only a small effect which may

be due to the decreasing level of accuracy of the approximation for large Nf . I want to

emphasise that in other studies in functional methods the propagator is in fact suppressed

significantly, see e.g. [485] for a recent study, the FRG shows a clear deviation at this point.
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Figure 6.6.: The ghost is sensitive to the quark fluctutations via the coupling to the gluon.
This figure shows the wave-function renormalisation of the ghost Zc(p) as a
function of momentum and the number of quarks, Nf , with constituent quark
masses, cf. fig. (6.4) and tab. (2.1).

In contradistinction to the gluon propagator, the ghost propagator feels the quark only

via its coupling to the gluon propagator. As a consequence, the effect of unquenching

is expected to be less pronounced. This conjecture is confirmed in the results presented

here. The wave-function renormalisation of the ghost is given in fig. (6.6). Naturally,

the suppression of quark fluctuations from the heavy flavours according to the discussion

above is also seen here, since the Nf = 6 curve is close to the Nf = 2 + 1 one.

The results can be compared to other methods. The case of Nf = 2 + 1 is given in

fig. (6.7(a)). The figure is taken from [247], it shows results from DSEs [479] as well as

lattice QCD [486]. Note that for a better comparison of data the corresponding FRG

data in fig. (6.7(b)) is rescaled with a factor Cnorm = 2.35 such that the gluon dressing

function of pure Yang–Mills theory is of the same height as the one of the lattice data.

The Nf = 2+1 result is rescaled with the same factor leaving the relative suppression with

respect to the pure gauge part unchanged.

The constituent quark mass is non-zero at low energy scales only. In this regime, how-

ever, the gluon and ghost propagators are dominated by the ghost content which is only

sensitive to the quark fluctuations via its coupling to the gauge field. Therefore, the effect

of dynamical chiral symmetry breaking is expected to be subleading. Note, however, that

this only holds for the two-point functions presented here. Of course, the matter sector of

QCD is highly sensitive to the chiral phase transition.

In view of these aspects of the constituent quark mass, the small deviation of the results

for the gluon dressing function in fig. (6.8), that is obtained without the consideration of

chiral symmetry breaking, is reasonable. Since the wave-function renormalisations of the
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Infrared Properties of QCD from Dyson-Schwinger equations 31
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Figure 13. Unquenched gluon and ghost propagators compared to quenched results.

For the ghost propagator unquenched lattice data are not yet available. From: Fischer

and Alkofer [115] (DSE), Bowman et al. [109] (lattice), Sternbeck et al. [55]) (lattice).

which is large compared to the physical case of three light flavours. Realistic effects due

to unquenching may therefore be not too large.

For the ghost, gluon and quark propagators of QCD these effects have been

determined recently in the DSE-approach [106, 115]. The effects in the gluon propagator

have since been confirmed on the lattice [109, 129, 130]; no unquenched lattice results for

the ghost propagator are available yet. In the Dyson-Schwinger approach one solves the

coupled set of three equations, which includes a quark loop in the gluon DSE, see figure

12 for a diagrammatical representation. Compared to the case of pure Yang Mills theory,

figure 5, there is an additional quark-loop in the gluon DSE. This has some impact on

the intermediate momentum region as can be seen from the numerical results shown in

figure 13. In the region around 1 GeV enough energy is present to generate dynamical

quark-antiquark pairs from the vacuum. These provide some colour screening, which

partly eliminates the antiscreening effects from the gluon self interaction. Consequently

the bump in the gluon dressing function decreases. This effect is clearly present in both

the DSE and the lattice study. In the chiral limit the screening effect of the quark

loop becomes stronger as the energy needed to create a quark pair from the vacuum

becomes smaller with decreasing bare quark mass. In the ultraviolet momentum region

unquenching effects are only visible in modified anomalous dimensions as expected from

resummed perturbation theory.

It is, however, important to note that the inclusion of three light flavours has no

effect on the infrared structure of the Yang-Mills part of QCD. This can be understood

easily in terms of our infrared analysis from subsection 2.2. Quark loops in the Yang-

Mills sector contain at least two massive quark propagators, which are proportional to

[p2+M(p2)]−1. Provided chiral symmetry is broken dynamically we always have sizeable

quark masses in these propagators that dominate at small momenta. Each massive

(a) DSE and lattice results for the unquenched gluon
dressing function Z(p2

) = ZA(p)
−1 for Nf = 2 + 1

in comparison to pure gauge theory. The figure is
taken from [247] and printed with permission of IOP
Publishing Ltd, it contains data from [479] and [486].
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Figure 6.7.: Comparison of results of different methods for the unquenched gluon dressing
function.
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Figure 6.8.: Unquenched gluon dressing function of matter fluctuations with current quark
masses.

ghost in the results with constituent and current quark masses are not distinguishable by

eye, they are not explicitly illustrated here.

Another situation that is often studied theoretically is the chiral limit, i.e. all quarks are

massless. For the results presented here dynamical chiral symmetry breaking is neglected

in this case. This is the more interesting because chiral symmetry is exact at all scales

for these configurations. The results for the gluon dressing function with two and six

massless flavours is given in fig. (6.9). As expected the case of two light flavours is not
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Figure 6.9.: Unquenched gluon dressing function in the chiral limit.

significantly changed, because the masses of the light quark are of the order of 1 − 2%

of the relevant scale. Hence, they are quantitatively irrelevant. In contrast to this, the

fluctuations of heavy quarks are heavily affected, since in this limit they are dynamical.

Thus, they enhance the effect that is observed in the two-flavour case.

6.2. Conclusions and Outlook

In the FRG approach it is possible to compute non-perturbative Green functions of full

QCD. The method which is presented in this chapter is constructed such that the full

quantum Yang–Mills theory is taken as the starting point. It is evolved to a renormalisa-

tion group scale Λ at which quark fluctuations are perturbative and well known. Solving

the flow equation for this system gives the non-perturbative two-point functions with dy-

namical quarks. This method is not limited to vacuum physics. Furthermore, non-zero

temperature T and/or chemical potential µ can be studied as long as the scale Λ is chosen

such that at this energy the fluctuations of (fixed equilibrium) T and µ are under control.

In this chapter preliminary results for the Yang–Mills propagators in the presence of

dynamical quarks in the vacuum are presented. The two-point functions are computed as

momentum-dependent functions of the quark masses and the number of quark flavours.

The results agree qualitatively well with studies in the DSE approach [88, 116, 117, 247,

260,479–485] and lattice gauge theory [486–493].

The main motivation for the computation of Green functions is their importance for studies

of the QCD phase diagram from first principles with continuum methods3, which is the

3Note that the correlation functions are also relevant in model studies, since they close the gap from
perturbative physics to the scale at which the model serves to be a good approximation. In other words,
the model parameters can be set from correlation functions that are obtained from a perturbative or
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future field of application of the results presented in this chapter. In the formulation

of the FRG it is possible to link the hadronic phase to the genuinely different phase in

which quarks and gluons are the prevailing degrees of freedom. This is done via well-

established rebosonisation techniques [111, 278, 494, 497–501], to which in this context

is also referred to as dynamical hadronisation. The latter methods work such, that in

addition to the quark-gluon vertex effective couplings of fermions are introduced which

absorb the contributions from the fermion scattering kernels. The link to the hadronic,

i.e. bound state description, is established via a Hubbard–Stratonovich transformation

[502,503] for these effective fermion couplings. In the dynamical hadronisation formalism

the chiral condensate emerges. It is an order parameter for dynamical chiral symmetry

breaking. This condensate also triggers a mass term for the bound states. Hence, it gives

access to the constituent quark mass. It is a crucial aspect of this technique that the

transition to the hadronic phase is not preset in this construction. In fact, one starts in

the phase dominated by quark-gluon dynamics. The rebosonisation technique only allows

the system itself to choose which degrees of freedom are active but it does not constrain the

dynamics at all. In contrast, the chiral phase transition is only sensitive to the running

coupling αs, which is defined from the low-order correlation functions, see eq. (4.21b).

Having said that, it is obvious that high precision in the computations of full QCD can

only be obtained from quantitatively accurate correlation functions. So in the near future

the insights that have been gained in this chapter and chapter 4 are going to be combined

in order to study the full correlation functions at non-vanishing temperature and quark

chemical potential, giving direct access to the full phase diagram of QCD.

even classical action.
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The main motivation for the work presented in this thesis is the phase diagram of QCD. So

far, the different states of hadronic matter can only be conjectured, since both, experimen-

tal and theoretical approaches, suffer from technical limitations. In this thesis functional

continuum methods are employed. They are non-perturbative tools and applicable also

in the strong coupling regime, where QCD is governed by the two characteristic effects of

confinement and dynamical chiral symmetry breaking.

In the theoretical limit of infinitely heavy quarks the gauge bosons remain as the only

dynamical particles. This system is called Yang–Mills theory, and due to the non-Abelian

nature of the underlying gauge group it is an interacting system on its own. In fact, this

pure gauge part of QCD is believed to be decisive for confinement, which denotes the ab-

sence of coloured states in the observed particle spectrum. Although great effort has been

invested, the precise mechanism of confinement is not known yet, neither in Yang–Mills

theory, nor in full QCD.

The study of Yang–Mills theory with non-perturbative functional methods is one of the

main topics in this thesis. These continuum approaches provide a description of the the-

ory in terms of correlation functions. However, due to the complexity of the system, most

studies did not take into account the temperature dependence of Green functions. Chapter

4 is dedicated to the inclusion of thermal effects in the framework of the FRG. In particu-

lar, the propagators of the two physical polarisations of the gluon, the chromoelectric and

the chromomagnetic mode are computed in the presence of non-zero temperature. The

study is done in Landau gauge, which necessitates the incorporation of Faddeev–Popov

ghosts.

At non-vanishing temperature the chromomagnetic propagator is suppressed with respect

to its vacuum behaviour. But even in the infinite temperature limit it remains dynamical.

In contrast to this, the chromoelectric mode develops a thermal mass, hence, it decouples

from the interacting system. Interestingly, the chromoelectric propagator shows a highly

non-trivial behaviour. At low temperatures T ≲ 200 MeV it is enhanced with respect to the

vacuum. For temperatures above this value it shows a clear suppression. With increasing

temperature the suppression is more distinct. It turns out that the thermal effects in

the vertices must not be neglected in reliable truncations. The results presented in this

thesis are in quantitative agreement with lattice data except for the chromoelectric mode

at temperatures close to the critical temperature of the deconfinement-confinement phase
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transition Tc ≈ 280 MeV. The strong enhancement of the chromoelectric propagator at

temperatures 150 MeV < T < Tc is missed in the FRG. Note that the thermal behaviour

is not sensitive to the choice of a scaling or decoupling solution, which are the two math-

ematically possible but qualitatively different solutions of Yang–Mills theory in the deep

infrared. On the lattice, however, only the decoupling solution is found. Therefore, for the

study presented in this thesis, a decoupling solution was chosen. The results of chapter

chapter 4 are published in [13,14].

By definition, correlation functions of Yang–Mills theory are gauge-dependent, but never-

theless they encode gauge-invariant physics. For example, thermodynamic observables can

be studied in terms of n-point functions. Note that the term observable in this case refers

to lattice simulations, since pure gauge theory is not accessible in experiment. The FRG

provides direct access to the thermodynamics, since it provides an equation for the free

energy. In this work the pressure of Yang–Mills theory is computed from the temperature-

dependent propagators. For the first time within continuum methods the behaviour of

the pressure is correctly described over the full temperature range, in particular for tem-

peratures around the deconfinement-confinement phase transition. Two effects are crucial

for the quantitative agreement: the temperature dependence of the propagators and the

Polyakov loop potential, which encodes the critical physics at the phase transition. The

results are very promising, however, still preliminary.

The interactions of gluons are responsible for the confinement of quarks as well. An order

parameter for the confinement of static quarks is the expectation value of the Polyakov

loop potential, which can be computed from low-order correlation functions of Yang–Mills

theory. As a consequence, pure gauge theory yields direct information for the phase dia-

gram of QCD.

In this work the Polyakov loop potential is studied within functional methods. Com-

plementing previous works in the FRG approach [11, 12], mainly DSEs and 2PI effective

actions are employed in this work to study the critical physics that happen at tempera-

tures of the deconfinement-confinement phase transition.

In chapter 5, the Polyakov loop potential is computed from the temperature-dependent

gluon and ghost propagators of pure gauge theory, giving a first order phase transition

for SU(3) and a second order phase transition for SU(2). The critical temperatures

T
SU(3)
c ≈ 280 MeV and T

SU(2)
c ≈ 230 MeV, respectively, are found. With a lattice string

tension of
√
σ ≈ 440 MeV, this yields T

SU(3)
c /√σ ≈ .636 and T

SU(2)
c /√σ ≈ .523. The corre-

sponding results from lattice gauge theory are T
SU(3)
c, lattice/

√
σ ≈ .646 and T

SU(2)
c, lattice/

√
σ ≈ .709

[47,48].

Chapter 6 deals with the inclusion of dynamical quarks. Naturally, their fluctuations

also affect the correlators without external quark content. This unquenching is studied

for different numbers of quark flavours and for the different cases of constituent, current

and vanishing quark masses. The quark fluctuations suppress the gluon propagator at

intermediate momenta significantly. At low momenta, however, the gluon propagator is
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almost unchanged. This may be a signature of the fact that for large numbers of quark

flavours the gluon propagator diverges at vanishing momentum. However, the results in

chapter 6 are preliminary, thus, this question is not conclusively answered in this thesis.

In the near future the correlation functions are going to be used in investigations of the

phase diagram of QCD from first principles within functional methods, advancing previous

works [112,494].
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A. Flow Equations

In this appendix the information from fig. (3.7), fig. (3.8), fig. (3.9) and fig. (3.10) are

given in terms of actual formulae. As mentioned in section 3.2.3 a Mathematica program

was written to derive flow equations algorithmically. The formulae here are the full flow

equations and no truncations have been done so far.The output was generated by Mathe-

matica as well.

For applications, note that the loop momentum can be shifted such that the similarity

of some terms in the formulae below is manifest, e.g. the four terms with ghost-loops in

the gluon propagator yield the same contribution to the flow, so the diagram has only

be computed once with a combinatorical factor of four. These simplifications due to mo-

mentum shifts have not been employed in the equations below, but have been done in the

diagrammatic illustrations in fig. (3.7), fig. (3.8), fig. (3.9) and fig. (3.10).

The corresponding figures for the DSEs can be translated in a similar fashion from the

diagrammatic illustration.

The flow for the gluon propagator, fig. (3.7), is given by

∂t {(Γ(2)A,k)
ba

νµ
(p,−p)} =

−
1

2
∫
q
(Rc)cd (q) (Gc)de (q) (Gc)fc (q) (ΓAAc̄c)

baef
νµ (−p,p, q,−q)

+
1

2
∫
q
(Rc)cd (q) (Gc)de (q) (Gc)fc (q) (ΓAAcc̄)

baef
νµ (−p,p, q,−q)

−
1

2
∫
q
(RA)

cd
ρσ (q) (GA)

de
στ (q) (GA)

fc
υρ (q) (ΓA4 )baef

νµτυ
(−p,p, q,−q)

+
1

2
∫
q
(RA)

cd
ρσ (q) (GA)

de
στ (q) (GA)

hc
ξρ (q) (GA)

fg
υω (p + q) (ΓA3 )aef

µτυ
(p, q,−p − q) (Γ

A3 )bgh

νωξ
(−p,p + q,−q)

+
1

2
∫
q
(RA)

cd
ρσ (q) (GA)

de
στ (q) (GA)

hc
ξρ (q) (GA)

fg
υω (q − p) (ΓA3 )agh

µωξ
(p, q − p,−q) (Γ

A3 )bef

ντυ
(−p, q, p − q)

−
1

2
∫
q
(Rc)cd (q) (Gc)de (q) (Gc)hc (q) (Gc)fg (p + q) (ΓcAc̄)

eaf
µ (q, p,−p − q) (ΓcAc̄)

gbh
ν (p + q,−p,−q)

−
1

2
∫
q
(Rc)cd (q) (Gc)de (q) (Gc)hc (q) (Gc)fg (q − p) (ΓcAc̄)

ebf
ν (q,−p,p − q) (ΓcAc̄)

gah
µ (q − p,p,−q)

−
1

2
∫
q
(Rc)cd (q) (Gc)de (q) (Gc)hc (q) (Gc)fg (p + q) (ΓcAc̄)

fae
µ (−p − q, p, q) (ΓcAc̄)

hbg
ν (−q,−p,p + q)

−
1

2
∫
q
(Rc)cd (q) (Gc)de (q) (Gc)hc (q) (Gc)fg (q − p) (ΓcAc̄)

fbe
ν (p − q,−p, q) (ΓcAc̄)

hag
µ (−q, p, q − p) . (A.1)
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The flow for the ghost propagator, fig. (3.8), is given by

∂t {(Γ(2)c,k)
ba
(p,−p)} =

−
1

2
∫
q
(RA)

cd
ρσ (q) (GA)

de
στ (q) (GA)

fc
υρ (q) (Γcc̄AA)

baef
τυ (−p,p, q,−q)

−
1

2
∫
q
(Rc)cd (q) (Gc)de (q) (Gc)fc (q) (Γcc̄c̄c)baef (−p,p, q,−q)

+
1

2
∫
q
(Rc)cd (q) (Gc)de (q) (Gc)fc (q) (Γcc̄cc̄)baef (−p,p, q,−q)

+
1

2
∫
q
(RA)

cd
ρσ (q) (GA)

de
στ (q) (GA)

hc
ξρ (q) (Gc)

fg (q − p (ΓcAc̄)
bef
τ (−p, q, p − q) (ΓcAc̄)

gha
ξ

(q − p,−q, p)

+
1

2
∫
q
(Rc)cd (q) (Gc)de (q) (Gc)hc (q) (GA)

fg
υω (q − p) (ΓcAc̄)

bfe
υ (−p,p − q, q) (ΓcAc̄)

hga
ω (−q, q − p,p)

+
1

2
∫
q
(Rc)cd (q) (Gc)de (q) (Gc)hc (q) (GA)

fg
υω (p + q) (ΓcAc̄)

bgh
ω (−p,p + q,−q) (ΓcAc̄)

efa
υ (q,−p − q, p)

+
1

2
∫
q
(RA)

cd
ρσ (q) (GA)

de
στ (q) (GA)

hc
ξρ (q) (Gc)

fg (p + q) (ΓcAc̄)
bhg
ξ

(−p,−q, p + q) (ΓcAc̄)
fea
τ (−p − q, q, p) . (A.2)

The flow for the ghost-gluon vertex, fig. (3.9), is given by

∂t (Γ(3)cc̄A)
cba

µ
(t, s, r) = A

cba
µ (t, s, r) +Bcbaµ (t, s, r) +Ccbaµ (t, s, r) +Dcbaµ (t, s, r) +Ecbaµ (t, s, r) , (A.3)

with

A
cba
µ (t, s, r) =

−
1

2
∫
q
(GA)

jk
ζγ
(q + r + s) (Gc)ef (q) (Gc)gh (q + r) (Gc)ld (q + r + s + t) (Rc)de (q)

(ΓcAc̄)
ckl
γ (t, q + r + s,−q − r − s − t) (ΓcAc̄)

hjb
ζ
(q + r,−q − r − s, s) (ΓcAc̄)

fag
µ (q, r,−q − r)

−
1

2
∫
q
(GA)

jk
ζγ
(q + r + t) (Gc)ef (q) (Gc)gh (q + r) (Gc)ld (q + r + s + t) (Rc)de (q)

(ΓcAc̄)
lkb
γ (−q − r − s − t, q + r + t, s) (ΓcAc̄)

cjh
ζ
(t,−q − r − t, q + r) (ΓcAc̄)

gaf
µ (−q − r, r, q)

−
1

2
∫
q
(GA)

ld
δσ (q + r + s + t) (GA)

ef
τυ (q) (GA)

gh
ωξ
(q + r) (Gc)jk (q + r + t) (RA)

de
στ (q)

(Γ
A3 )afg

µυω
(r, q,−q − r) (ΓcAc̄)

klb
δ (q + r + t,−q − r − s − t, s) (ΓcAc̄)

chj
ξ
(t, q + r,−q − r − t)

−
1

2
∫
q
(GA)

gh
ωξ
(q + r + s) (Gc)ef (q) (Gc)jd (q + r + s + t) (Rc)de (q)

(ΓcAAc̄)
bafg
µω (s, r, q,−q − r − s) (ΓcAc̄)

chj
ξ
(t, q + r + s,−q − r − s − t)

−
1

2
∫
q
(GA)

ld
δσ (q + r + s + t) (GA)

ef
τυ (q) (GA)

gh
ωξ
(q + r) (Gc)jk (q + r + s) (RA)

de
στ (q)

(Γ
A3 )afg

µυω
(r, q,−q − r) (ΓcAc̄)

clk
δ (t,−q − r − s − t, q + r + s) (ΓcAc̄)

jhb
ξ
(−q − r − s, q + r, s)

−
1

2
∫
q
(GA)

jd
ζσ
(q + r + s + t) (GA)

ef
τυ (q) (Gc)

gh (q + t) (RA)
de
στ (q)

(ΓcAAc̄)
bahj
µζ

(s, r, q + t,−q − r − s − t) (ΓcAc̄)
cfg
υ (t, q,−q − t)

−
1

2
∫
q
(GA)

ld
δσ (q + r + s + t) (GA)

jk
ζγ
(q + s + t) (GA)

ef
τυ (q) (Gc)

gh (q + t) (RA)
de
στ (q)

(Γ
A3 )akl

µγδ
(r, q + s + t,−q − r − s − t) (ΓcAc̄)

hjb
ζ
(q + t,−q − s − t, s) (ΓcAc̄)

cfg
υ (t, q,−q − t)

−
1

2
∫
q
(GA)

ld
δσ (q + r + s + t) (GA)

ef
τυ (q) (Gc)

gh (q + t) (Gc)jk (q + r + t) (RA)
de
στ (q)

(ΓcAc̄)
klb
δ (q + r + t,−q − r − s − t, s) (ΓcAc̄)

haj
µ (q + t, r,−q − r − t) (ΓcAc̄)

cfg
υ (t, q,−q − t)

−
1

2
∫
q
(GA)

ld
δσ (q + r + s + t) (GA)

jk
ζγ
(q + s + t) (GA)

ef
τυ (q) (Gc)

gh (q + s) (RA)
de
στ (q)

(Γ
A3 )akl

µγδ
(r, q + s + t,−q − r − s − t) (ΓcAc̄)

cjh
ζ
(t,−q − s − t, q + s) (ΓcAc̄)

gfb
υ (−q − s, q, s) , (A.4)
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B
cba
µ (t, s, r) =

−
1

2
∫
q
(GA)

ld
δσ (q + r + s + t) (GA)

ef
τυ (q) (Gc)

gh (q + s) (Gc)jk (q + r + s) (RA)
de
στ (q) (ΓcAc̄)

clk
δ (t,−q − r − s − t, q + r + s)

(ΓcAc̄)
jah
µ (−q − r − s, r, q + s) (ΓcAc̄)

gfb
υ (−q − s, q, s)

−
1

2
∫
q
(GA)

jk
ζγ
(q + r + t) (GA)

gh
ωξ
(q + t) (Gc)ef (q) (Gc)ld (q + r + s + t (Rc)de (q) (Γ

A3 )ahj

µξζ
(r, q + t,−q − r − t)

(ΓcAc̄)
lkb
γ (−q − r − s − t, q + r + t, s) (ΓcAc̄)

cgf
ω (t,−q − t, q)

−
1

2
∫
q
(GA)

gh
ωξ
(q + t) (Gc)ef (q) (Gc)jk (q + s + t) (Gc)ld (q + r + s + t) (Rc)de (q) (ΓcAc̄)

lak
µ (−q − r − s − t, r, q + s + t)

(ΓcAc̄)
jhb
ξ
(−q − s − t, q + t, s) (ΓcAc̄)

cgf
ω (t,−q − t, q)

−
1

2
∫
q
(GA)

jk
ζγ
(q + r + s) (GA)

gh
ωξ
(q + s) (Gc)ef (q) (Gc)ld (q + r + s + t) (Rc)de (q) (Γ

A3 )ahj

µξζ
(r, q + s,−q − r − s)

(ΓcAc̄)
ckl
γ (t, q + r + s,−q − r − s − t) (ΓcAc̄)

fgb
ω (q,−q − s, s)

−
1

2
∫
q
(GA)

gh
ωξ
(q + s) (Gc)ef (q) (Gc)jk (q + s + t) (Gc)ld (q + r + s + t) (Rc)de (q) (ΓcAc̄)

kal
µ (q + s + t, r,−q − r − s − t)

(ΓcAc̄)
chj
ξ
(t, q + s,−q − s − t) (ΓcAc̄)

fgb
ω (q,−q − s, s) , (A.5)

C
cba
µ (t, s, r) =

−
1

2
∫
q
(GA)

jd
ζσ
(q + r + s + t) (GA)

ef
τυ (q) (Gc)

gh (q + r + t) (RA)
de
στ (q) (ΓcAAc̄)

cafg
µυ (t, r, q,−q − r − t)

(ΓcAc̄)
hjb
ζ
(q + r + t,−q − r − s − t, s)

+
1

2
∫
q
(GA)

gh
ωξ
(q + s) (Gc)ef (q) (Gc)jd (q + r + s + t) (Rc)de (q) (ΓcAAc̄)

cahj
µξ

(t, r, q + s,−q − r − s − t)

(ΓcAc̄)
fgb
ω (q,−q − s, s)

+
1

2
∫
q
(GA)

jd
ζσ
(q + r + s + t) (GA)

ef
τυ (q) (Gc)

gh (q + s) (RA)
de
στ (q) (ΓcAc̄)

gfb
υ (−q − s, q, s)

(ΓcAc̄A)
cahj
µζ

(t, r, q + s,−q − r − s − t)

−
1

2
∫
q
(GA)

gh
ωξ
(q + r + t) (Gc)ef (q) (Gc)jd (q + r + s + t) (Rc)de (q) (ΓcAc̄)

jhb
ξ
(−q − r − s − t, q + r + t, s)

(ΓcAc̄A)
cafg
µω (t, r, q,−q − r − t)

−
1

2
∫
q
(GA)

gh
ωξ
(q + t) (Gc)ef (q) (Gc)jd (q + r + s + t) (Rc)de (q) (ΓcAc̄)

cgf
ω (t,−q − t, q)

(Γc̄AAc)
bahj
µξ

(s, r, q + t,−q − r − s − t)

−
1

2
∫
q
(GA)

jd
ζσ
(q + r + s + t) (GA)

ef
τυ (q) (Gc)

gh (q + r + s) (RA)
de
στ (q) (ΓcAc̄)

cjh
ζ
(t,−q − r − s − t, q + r + s)

(Γc̄AAc)
bafg
µυ (s, r, q,−q − r − s)

+
1

2
∫
q
(GA)

jd
ζσ
(q + r + s + t) (GA)

ef
τυ (q) (GA)

gh
ωξ
(q + r) (RA)

de
στ (q) (ΓA3 )afg

µυω
(r, q,−q − r)

(Γcc̄AA)
cbhj
ξζ

(t, s, q + r,−q − r − s − t)

+
1

2
∫
q
(GA)

jd
ζσ
(q + r + s + t) (GA)

ef
τυ (q) (GA)

gh
ωξ
(q + s + t) (RA)

de
στ (q) (ΓA3 )ahj

µξζ
(r, q + s + t,−q − r − s − t)

(Γcc̄AA)
cbfg
υω (t, s, q,−q − s − t) , (A.6)
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Flow Equations

D
cba
µ (t, s, r) =

+
1

2
∫
q
(Gc)ef (q) (Gc)gh (q + s + t) (Gc)jd (q + r + s + t) (Rc)de (q (ΓcAc̄)

jah
µ (−q − r − s − t, r, q + s + t))

(Γcc̄c̄c)cbfg (t, s, q,−q − s − t)

+
1

2
∫
q
(Gc)ef (q) (Gc)gh (q + r) (Gc)jd (q + r + s + t) (Rc)de (q) (ΓcAc̄)

gaf
µ (−q − r, r, q)

(Γcc̄c̄c)cbhj (t, s, q + r,−q − r − s − t)

−
1

2
∫
q
(Gc)ef (q) (Gc)gh (q + s + t) (Gc)jd (q + r + s + t) (Rc)de (q) (ΓcAc̄)

haj
µ (q + s + t, r,−q − r − s − t)

(Γcc̄cc̄)cbfg (t, s, q,−q − s − t)

−
1

2
∫
q
(Gc)ef (q) (Gc)gh (q + r) (Gc)jd (q + r + s + t) (Rc)de (q) (ΓcAc̄)

fag
µ (q, r,−q − r)

(Γcc̄cc̄)cbhj (t, s, q + r,−q − r − s − t) , (A.7)

E
cba
µ (t, s, r) =

−
1

2
∫
q
(Gc)ef (q) (Gc)gd (q + r + s + t) (Rc)de (q) (Γcc̄Ac̄c)

cbafg
µ (t, s, r, q,−q − r − s − t)

+
1

2
∫
q
(Gc)ef (q) (Gc)gd (q + r + s + t) (Rc)de (q) (Γcc̄Acc̄)

cbafg
µ (t, s, r, q,−q − r − s − t)

−
1

2
∫
q
(RA)

de
στ (q) (GA)

ef
τυ (q) (GA)

gd
ωσ (q + r + s + t) (Γcc̄A3 )cbafg

µυω
(t, s, r, q,−q − r − s − t) . (A.8)

The flow of the three-gluon vertex, fig. (3.10), is given by

∂t (Γ(3)
A3
)
cba

ρνµ
(t, s, r) = a

cba
ρνµ(t, s, r) + b

cba
ρνµ(t, s, r) + c

cba
ρνµ(t, s, r) + d

cba
ρνµ(t, s, r) + e

cba
ρνµ(t, s, r) , (A.9)

with

a
cba
ρνµ(t, s, r) =

−
1

2
∫
q
(RA)

de
στ (q) (GA)

ef
τυ (q) (GA)

gh
ωξ
(q + r) (Γ

A3 )afg

µυω
(r, q,−q − r) (GA)

jk
ζγ
(q + r + s) (Γ

A3 )bhj

νξζ
(s, q + r,−q − r − s)

(GA)
ld
δσ (q + r + s + t) (ΓA3 )ckl

ργδ
(t, q + r + s,−q − r − s − t)

−
1

2
∫
q
(RA)

de
στ (q) (GA)

ef
τυ (q) (GA)

gh
ωξ
(q + r) (Γ

A3 )afg

µυω
(r, q,−q − r) (GA)

jk
ζγ
(q + r + t) (Γ

A3 )chj

ρξζ
(t, q + r,−q − r − t)

(GA)
ld
δσ (q + r + s + t) (ΓA3 )bkl

νγδ
(s, q + r + t,−q − r − s − t)

−
1

2
∫
q
(RA)

de
στ (q) (GA)

ef
τυ (q) (GA)

gh
ωξ
(q + s) (Γ

A3 )bfg

νυω
(s, q,−q − s) (GA)

jk
ζγ
(q + r + s) (Γ

A3 )ahj

µξζ
(r, q + s,−q − r − s)

(GA)
ld
δσ (q + r + s + t) (ΓA3 )ckl

ργδ
(t, q + r + s,−q − r − s − t)

−
1

2
∫
q
(RA)

de
στ (q) (GA)

ef
τυ (q) (GA)

gh
ωξ
(q + t) (Γ

A3 )cfg

ρυω
(t, q,−q − t) (GA)

jk
ζγ
(q + r + t) (Γ

A3 )ahj

µξζ
(r, q + t,−q − r − t)

(GA)
ld
δσ (q + r + s + t) (ΓA3 )bkl

νγδ
(s, q + r + t,−q − r − s − t)

−
1

2
∫
q
(RA)

de
στ (q) (GA)

ef
τυ (q) (GA)

gh
ωξ
(q + s) (Γ

A3 )bfg

νυω
(s, q,−q − s) (GA)

jk
ζγ
(q + s + t) (Γ

A3 )chj

ρξζ
(t, q + s,−q − s − t)

(GA)
ld
δσ (q + r + s + t) (ΓA3 )akl

µγδ
(r, q + s + t,−q − r − s − t)

−
1

2
∫
q
(RA)

de
στ (q) (GA)

ef
τυ (q) (GA)

gh
ωξ
(q + t) (Γ

A3 )cfg

ρυω
(t, q,−q − t) (GA)

jk
ζγ
(q + s + t) (Γ

A3 )bhj

νξζ
(s, q + t,−q − s − t)

(GA)
ld
δσ (q + r + s + t) (ΓA3 )akl

µγδ
(r, q + s + t,−q − r − s − t) , (A.10)
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b
cba
ρνµ(t, s, r) =

−
1

2
∫
q
(RA)

de
στ (q) (GA)

ef
τυ (q) (GA)

gd
ωσ (q + r + s + t) (ΓA5 )cbafg

ρνµυω
(t, s, r, q,−q − r − s − t)

−
1

2
∫
q
(Rc)de (q) (Gc)ef (q) (Gc)gd (q + r + s + t) (Γ

A3 c̄c
)cbafg

ρνµ
(t, s, r, q,−q − r − s − t)

+
1

2
∫
q
(Rc)de (q) (Gc)ef (q) (Gc)gd (q + r + s + t) (Γ

A3cc̄
)cbafg

ρνµ
(t, s, r, q,−q − r − s − t) , (A.11)

c
cba
ρνµ(t, s, r) =

1

2
∫
q
(Gc)ef (q) (Gc)gh (q + t) (Gc)jk (q + s + t) (Gc)ld (q + r + s + t) (Rc)de (q)

(ΓcAc̄)
kal
µ (q + s + t, r,−q − r − s − t) (ΓcAc̄)

hbj
ν (q + t, s,−q − s − t) (ΓcAc̄)

fcg
ρ (q, t,−q − t)

+
1

2
∫
q
(Gc)ef (q) (Gc)gh (q + t) (Gc)jk (q + r + t) (Gc)ld (q + r + s + t) (Rc)de (q)

(ΓcAc̄)
haj
µ (q + t, r,−q − r − t) (ΓcAc̄)

kbl
ν (q + r + t, s,−q − r − s − t) (ΓcAc̄)

fcg
ρ (q, t,−q − t)

+
1

2
∫
q
(Gc)ef (q) (Gc)gh (q + t) (Gc)jk (q + s + t) (Gc)ld (q + r + s + t) (Rc)de (q)

(ΓcAc̄)
lak
µ (−q − r − s − t, r, q + s + t) (ΓcAc̄)

jbh
ν (−q − s − t, s, q + t) (ΓcAc̄)

gcf
ρ (−q − t, t, q)

+
1

2
∫
q
(Gc)ef (q) (Gc)gh (q + t) (Gc)jk (q + r + t) (Gc)ld (q + r + s + t) (Rc)de (q)

(ΓcAc̄)
jah
µ (−q − r − t, r, q + t) (ΓcAc̄)

lbk
ν (−q − r − s − t, s, q + r + t) (ΓcAc̄)

gcf
ρ (−q − t, t, q)

+
1

2
∫
q
(Gc)ef (q) (Gc)gh (q + r) (Gc)jk (q + r + t) (Gc)ld (q + r + s + t) (Rc)de (q)

(ΓcAc̄)
fag
µ (q, r,−q − r) (ΓcAc̄)

kbl
ν (q + r + t, s,−q − r − s − t) (ΓcAc̄)

hcj
ρ (q + r, t,−q − r − t)

+
1

2
∫
q
(Gc)ef (q) (Gc)gh (q + s) (Gc)jk (q + s + t) (Gc)ld (q + r + s + t) (Rc)de (q)

(ΓcAc̄)
kal
µ (q + s + t, r,−q − r − s − t) (ΓcAc̄)

fbg
ν (q, s,−q − s) (ΓcAc̄)

hcj
ρ (q + s, t,−q − s − t)

+
1

2
∫
q
(Gc)ef (q) (Gc)gh (q + r) (Gc)jk (q + r + t) (Gc)ld (q + r + s + t) (Rc)de (q)

(ΓcAc̄)
gaf
µ (−q − r, r, q) (ΓcAc̄)

lbk
ν (−q − r − s − t, s, q + r + t) (ΓcAc̄)

jch
ρ (−q − r − t, t, q + r) , (A.12)

d
cba
ρνµ(t, s, r) =

+
1

2
∫
q
(Gc)ef (q) (Gc)gh (q + s) (Gc)jk (q + s + t) (Gc)ld (q + r + s + t) (Rc)de (q) (ΓcAc̄)

lak
µ (−q − r − s − t, r, q + s + t)

(ΓcAc̄)
gbf
ν (−q − s, s, q) (ΓcAc̄)

jch
ρ (−q − s − t, t, q + s)

+
1

2
∫
q
(Gc)ef (q) (Gc)gh (q + s) (Gc)jk (q + r + s) (Gc)ld (q + r + s + t) (Rc)de (q) (ΓcAc̄)

haj
µ (q + s, r,−q − r − s)

(ΓcAc̄)
fbg
ν (q, s,−q − s) (ΓcAc̄)

kcl
ρ (q + r + s, t,−q − r − s − t)

+
1

2
∫
q
(Gc)ef (q) (Gc)gh (q + r) (Gc)jk (q + r + s) (Gc)ld (q + r + s + t) (Rc)de (q) (ΓcAc̄)

fag
µ (q, r,−q − r)

(ΓcAc̄)
hbj
ν (q + r, s,−q − r − s) (ΓcAc̄)

kcl
ρ (q + r + s, t,−q − r − s − t)

+
1

2
∫
q
(Gc)ef (q) (Gc)gh (q + s) (Gc)jk (q + r + s) (Gc)ld (q + r + s + t) (Rc)de (q) (ΓcAc̄)

jah
µ (−q − r − s, r, q + s)

(ΓcAc̄)
gbf
ν (−q − s, s, q) (ΓcAc̄)

lck
ρ (−q − r − s − t, t, q + r + s)

+
1

2
∫
q
(Gc)ef (q) (Gc)gh (q + r) (Gc)jk (q + r + s) (Gc)ld (q + r + s + t) (Rc)de (q) (ΓcAc̄)

gaf
µ (−q − r, r, q)

(ΓcAc̄)
jbh
ν (−q − r − s, s, q + r) (ΓcAc̄)

lck
ρ (−q − r − s − t, t, q + r + s) , (A.13)

177



Flow Equations

e
cba
ρνµ(t, s, r) =

−
1

2
∫
q
(Gc)ef (q) (Gc)gh (q + r) (Gc)jd (q + r + s + t) (Rc)de (q) (ΓAAcc̄)

cbhj
ρν (t, s, q + r,−q − r − s − t)

(ΓcAc̄)
fag
µ (q, r,−q − r)

+
1

2
∫
q
(Gc)ef (q) (Gc)gh (q + r) (Gc)jd (q + r + s + t) (Rc)de (q) (ΓAAc̄c)

cbhj
ρν (t, s, q + r,−q − r − s − t)

(ΓcAc̄)
gaf
µ (−q − r, r, q)

−
1

2
∫
q
(Gc)ef (q) (Gc)gh (q + s + t) (Gc)jd (q + r + s + t) (Rc)de (q) (ΓAAcc̄)

cbfg
ρν (t, s, q,−q − s − t)

(ΓcAc̄)
haj
µ (q + s + t, r,−q − r − s − t)

+
1

2
∫
q
(Gc)ef (q) (Gc)gh (q + s + t) (Gc)jd (q + r + s + t) (Rc)de (q) (ΓAAc̄c)

cbfg
ρν (t, s, q,−q − s − t)

(ΓcAc̄)
jah
µ (−q − r − s − t, r, q + s + t)

−
1

2
∫
q
(Gc)ef (q) (Gc)gh (q + s) (Gc)jd (q + r + s + t) (Rc)de (q) (ΓAAcc̄)

cahj
ρµ (t, r, q + s,−q − r − s − t)

(ΓcAc̄)
fbg
ν (q, s,−q − s)

+
1

2
∫
q
(Gc)ef (q) (Gc)gh (q + s) (Gc)jd (q + r + s + t) (Rc)de (q) (ΓAAc̄c)

cahj
ρµ (t, r, q + s,−q − r − s − t)

(ΓcAc̄)
gbf
ν (−q − s, s, q)

−
1

2
∫
q
(Gc)ef (q) (Gc)gh (q + r + t) (Gc)jd (q + r + s + t) (Rc)de (q) (ΓAAcc̄)

cafg
ρµ (t, r, q,−q − r − t)

(ΓcAc̄)
hbj
ν (q + r + t, s,−q − r − s − t)

+
1

2
∫
q
(Gc)ef (q) (Gc)gh (q + r + t) (Gc)jd (q + r + s + t) (Rc)de (q) (ΓAAc̄c)

cafg
ρµ (t, r, q,−q − r − t)

(ΓcAc̄)
jbh
ν (−q − r − s − t, s, q + r + t)

−
1

2
∫
q
(Gc)ef (q) (Gc)gh (q + t) (Gc)jd (q + r + s + t) (Rc)de (q) (ΓAAcc̄)

bahj
νµ (s, r, q + t,−q − r − s − t)

(ΓcAc̄)
fcg
ρ (q, t,−q − t)

+
1

2
∫
q
(Gc)ef (q) (Gc)gh (q + t) (Gc)jd (q + r + s + t) (Rc)de (q) (ΓAAc̄c)

bahj
νµ (s, r, q + t,−q − r − s − t)

(ΓcAc̄)
gcf
ρ (−q − t, t, q)

−
1

2
∫
q
(Gc)ef (q) (Gc)gh (q + r + s) (Gc)jd (q + r + s + t) (Rc)de (q) (ΓAAcc̄)

bafg
νµ (s, r, q,−q − r − s)

(ΓcAc̄)
hcj
ρ (q + r + s, t,−q − r − s − t)

+
1

2
∫
q
(Gc)ef (q) (Gc)gh (q + r + s) (Gc)jd (q + r + s + t) (Rc)de (q) (ΓAAc̄c)

bafg
νµ (s, r, q,−q − r − s)

(ΓcAc̄)
jch
ρ (−q − r − s − t, t, q + r + s) .

(A.14)
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B. Kinematic Configurations for Vertices

In Yang–Mills theory the full computation of vertex functions is a tedious task, due to

the complicated tensor structures that arise in the vertices. In principle, the vertex has

to be spanned via all possible tensors in the corresponding tensor basis, each of which

is modified by quantum and thermal fluctuations. Therefore, for each tensor structure

a scalar dressing function would be necessary to describe the full vertex. In addition to

that, in the case of non-vanishing temperature the dressing functions would depend on

the temporal and spatial components separately.

As a first step, vertices can be approximated in the way that only the classical tensor

structure or a subset of tensors is taken into account. Another simplification is to consider

special kinematic configurations for the momenta that enter the vertex.

In the thesis the symmetric point is frequently used as a particular kinematic configuration

of the vertex with the classical tensor structure. In this appendix the properties of the

symmetric point are summarised and the basis that is used is given.

All flow equations in this thesis, also the ones for the vertices, have been generated with

the computer algebra tool described in section 3.2.3. By definition in the code all momenta

are counted as ingoing. Therefore, also below all momenta are counted as coming into the

vertex.

The properties of the symmetric point of three-point functions are

p2
1 = p2

2 = p2
3 = P 2 , (B.1)

p1 ⋅ p2 = p2 ⋅ p3 = p3 ⋅ p1 = −
P 2

2
, (B.2)

where pi, i = 1,2,3 are the external momenta entering the vertex and P is the centre of

mass momentum. The first relation expresses that all momenta have the same absolute

value. The second relation allows for the first one to be satisfied in a plane by setting an

angle of 22π/3 between the momenta.

In this thesis the symmetric point is employed in three dimensions as well as four dimen-
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Kinematic Configurations for Vertices

sions. In spherical coordinates an arbitrary vector is given by

l(3d) = l
⎛
⎜⎜
⎝

sinϕ1 cosϕ2

sinϕ1 sinϕ2

cosϕ1

⎞
⎟⎟
⎠
, l(4d) = l

⎛
⎜⎜⎜⎜⎜
⎝

sinφ1 sinφ2 cosφ3

sinφ1 sinφ2 sinφ3

sinφ1 cosφ2

cosφ1

⎞
⎟⎟⎟⎟⎟
⎠

, (B.3)

cf. appendix D.

A possible basis for the external momenta is found by choosing the coordinate system such

that ϕ2 = π/2 and φ2 = 0, respectively, which leaves the angles ±2π/3 between the external

momenta to be a rotation in ϕ1 and φ1 only.

The basis in three dimensions is explicitly given by

p
(3d)
1 = P

⎛
⎜⎜
⎝

0

0

1

⎞
⎟⎟
⎠
, p

(3d)
2 = P

⎛
⎜⎜
⎝

0√
(3)/2
−1/2

⎞
⎟⎟
⎠
, p

(3d)
3 = P

⎛
⎜⎜
⎝

0

−
√

(3)/2
−1/2

⎞
⎟⎟
⎠
, (B.4)

and the extension to four dimensions is trivially given by

p
(4d)
1 = P

⎛
⎜⎜⎜⎜⎜
⎝

0

0

0

1

⎞
⎟⎟⎟⎟⎟
⎠

, p
(4d)
2 = P

⎛
⎜⎜⎜⎜⎜
⎝

0

0√
(3)/2
−1/2

⎞
⎟⎟⎟⎟⎟
⎠

, p
(4d)
3 = P

⎛
⎜⎜⎜⎜⎜
⎝

0

0

−
√

(3)/2
−1/2

⎞
⎟⎟⎟⎟⎟
⎠

. (B.5)

Due to momentum conservation in the vertex, the relations in eq. (B.2) reduce to con-

straints for two external momenta only, say p1 and p2. Therefore, for contractions with

an arbitrary momentum the relations of two basis vectors are sufficient to give the general

case.

A loop momentum q in three and four dimensions can be parametrised according to

eq. (B.3). As a result, the contractions of an external momentum with the loop momen-

tum are given by

p
(3d/4d)
1 ⋅ q(3d/4d) = P ∣q∣A,
p
(3d/4d)
2 ⋅ q(3d/4d) = P ∣q∣B(3d/4d) , (B.6)

with the abbreviations

A = cosφ1 ,

B(3d) =
√

(3)
2

sinφ1 sinφ2 −
1

2
cosφ1 ,

B(4d) =
√

(3)
2

sinφ1 cosφ2 −
1

2
cosφ1 .

For the four-point vertices the symmetric point can be chosen in different ways. Reason-
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able configurations are either the flat symmetric point, i.e. all momenta have the same

absolute value and lie in the same plane with an angle of π/2, or the real symmetric

configuration where the momenta of equal absolute value start in the four corners of a

tetraeder. However, this shall not be detailed further as no results for four-point functions

are incorporated in this thesis.
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C. Chebyshev Polynomials

In numerical calculations for Green functions one has to find a way how to efficiently deter-

mine and evaluate dressing functions. These functions are analytic and are thus qualified

for a polynomial expansion. In practice a simple power series is often not the optimal

choice, as the error is smallest at the expansion point but increases going away from it.

Furthermore, the error is not bounded. For a Chebyshev expansion up to order N and

decreasing coefficients the error is largest at order N +1, where the Chebyshev polynomial

is bounded to be TN+1 ≤ 1 and its extrema are distributed over the full expansion interval.

That is why Chebyshev polynomials are a good choice for practical purposes, with the

drawback that it is a polynomial expansion with the usual problem, e.g. instabilities at

the interval boarders may be instable, especially derivatives thereof. For a very extensive

discussion of Chebyshev polynomials in non-perturbative functional methods see e.g. the

highly recommendable reference [504], a detailed general discussion in numerical applica-

tions see [444]. There are two common formulae how to generate the polynomials Tn(x).
One is given by the relation

Tn(x) = cos (narccosx) , (C.1)

whereas the other one is given by the recursion

Tn(x) = 2xTn−1(x) − Tn−2(x), for n ≥ 2 (C.2)

with T0 = 1, T1 = x .

The Chebyshev polynomials fulfill both a continuous and a discrete orthogonality relation

in the interval [−1,1]. The continuous orthogonality relation is given by

∫
1

−1
dx
Ti(x)Tj(x)√

1 − x2
=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 for i ≠ j
π
2 for i = i ≠ 0

π for i = i = 0

. (C.3)

For the discrete version this boils down to

N

∑
k=1

Ti(xk)Tj(xk) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 for i ≠ j
N
2 for i = i ≠ 0

N for i = i = 0

. (C.4)

The expansion interval is x ∈ [−1,1], as only there the Chebyshev functions are orthogonal.

For expansion in another interval s ∈ [a, b] one has to map the independent variable s to

the interval [−1,1] by

x = 1

2
(s (b − a) + (b + a)) . (C.5)
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T0

T1

T2

T3

T4

-1.0 -0.5 0.5 1.0 x

-1.0

-0.5

0.5

1.0

Figure C.1.: Chebyshev polynomials up to order 4.

Naturally, the coefficients cn of the Chebyshev series contain the information of the fitted

function. From eq. (C.1) it is immediately evident that the N zeros of Tn are at

xi = cos(π (i − 1/2)
N

), i = 1, . . . ,N . (C.6)

Applying the discrete orthogonality relation in eq. (C.4) one can derive a formula for the

coeffcients. The expansion shall be exact at the zeros of the Chebyshev polynomials, so

expanding a function f(x) up to order N one has at each zero

f(xi) =
N−1

∑
j=0

cjTj(xi) −
c0

2
≡
N−1

∑
j=0

′
cjTj(xi)

⇒
N

∑
i=1

Tn(xi)f(xi) =
N−1

∑
j=0

′
cj

N

∑
i=1

Tn(xi)Tj(xi) =
N

2

N−1

∑
j=0

′
cjδnj =

N

2
cn (C.7)

So the coefficients can be easily calculated by

cn =
2

N

N

∑
i=1

f(xi)Tn(xi). (C.8)

Therefore, it is sufficient to know the function value at the positions of the Chebyshev

zeros in order to fully expand the function up to order N . As an important remark for

technical reasons, note again that the expansion is exact at the zeros of the expansion,

therefore, by a sophisticated choice of the expansion interval numerical stability can be

maximised. Note, herefore, especially that the density of zeros, i.e. gridpoints is lowest

around the middle of the expansion interval and increases going to each end of the interval,

as it can already be anticipated from fig. (C.1).

Having the coefficients at hand a fast way to evaluate the function is not to compute the
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Chebyshev Polynomials

sum by brute force but to use Clenshaw’s recurrence formula [505] instead

dm+1 = dm = 0

dj = 2xdj+1 − dj+2 + cj , j =m − 1,m − 2, . . . ,1

f(x) = d0 = xd1 − d2 + 1
2c0. (C.9)

As (even indefinite) integrations (differentiations) of polynomials are trivial, Chebyshev

expanded functions can be integrated (differentiated) easily, even on the level of the coef-

ficients. The integrated (differentiated) function is then given by Chebyshev coefficients

Cn (c′n) itself, calculable from the N Chebyshev coefficients cn

Cn = cn−1−cn+1

2n , i > 0

c′n = c′n+2 + 2ncn+1, n = N − 2, . . . ,1 (C.10)

The coefficient C0 is an integration constant to be determined otherwise, whereas the

starting coefficients in the recurrence formula for differentiation are c′N+2 = c′N+1 = 0.

Of course for all standard operations with Chebyshev polynomials numerical functions are

available, e.g. in [444].

For applications in the renormalisation group framework the expanded function often does

not depend on only one but rather two momentum arguments. For instance the wave-

function renormalisation function Z(p, k, φ) depends in general on the external momentum

p, the renormalisation scale k and the field φ. Neglecting the field dependence one still

has to make an expansion for two variables. For the same reasons as in one dimension

Chebyshev polynomials are also a good choice here.

Given a function f = f(x, y) one first expands in x-direction at the Chebyshev zeros in y

direction, so at each zero yj one gets the Chebyshev coefficients ci in x-direction

ci =
2

Nx

Nx

∑
k=1

f(xk, yj)Ti(xk). (C.11)

Evaluating the function at the zeros yj one can determine the (x-dependent) Chebyshev

coefficients in y-direction by

dj(x) =
2

Ny

Ny

∑
k=1

f(x, yk)Tj(yk), (C.12)

where one evaluates f(x, yk) in the usual fashion

f(x, yk) =
Nx

∑
i=1

ci(yk)Ti(x),

ci(yk) =
2

Nx

Nx

∑
l=1

f(xl, yk)Ti(xl). (C.13)
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Therefore, there is for each dj(x)

dj(x) =
4

NxNy

Ny

∑
k=1

Nx

∑
i,l=1

f(xl, yk)Ti(xl)Ti(x)Tj(yk). (C.14)

And the function evaluation of f(x, y) is thus

f(x, y) = 4

NxNy

Ny

∑
j,k=1

Nx

∑
i,l=1

f(xl, yk)Ti(xl)Ti(x)Tj(yk)Tj(y) . (C.15)

1 L ΖL
p@GeVD

L

k

Figure C.2.: Grid for the Chebyshev expansion of the functions in the directions of the
external momentum p and the renormalisation group scale k. In the direction
of p the grid is divided in three regions, that are shown in the different colours.
The regions are adapted such that the behaviour of the functions along the
flow is captured in a most efficient way, with the focus on the change in the
gluon wave-function renormalisation which changes the most around 1GeV.

For the computation of the propagators and vertices in Yang–Mills theory with the func-

tional renormalisation group there are two variables in the function, the external field

momentum p and the renormalisation group scale k. In section 4.1.6 the computational

details are sketched, the expansion is done by the help of Chebyshev polynomials in these

two dimensions. However, the functions in the direction of p are not very well suited for

an expansion over the full momentum interval up to large values, so either a large number

of grid points is necessary, or the grid must be divided again. This latter strategy is used

for the work presented here, as already shortly sketched in section 4.1.6. The partitioning

of the grid that is used (with different numbers of nodes) is given in fig. (C.2), where Λ

is the largest renormalisation group scale, see section 3.2. The choice of the value of ζ is

detailed in appendix D.3.
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D. Numerical Integrations

D.1. Integration Measure

In Euclidean space of dimension d it is convenient to work in hyperspherical coordinates

q1 = q cosφ1

q2 = q sinφ1 cosφ2

q3 = q sinφ1 sinφ2 cosφ3

⋮
qd−1 = q sinφ1 sinφ2 . . . sinφd−2 cosφd−1

qd = q sinφ1 sinφ2 . . . sinφd−2 sinφd−1 . (D.1)

For the integration over the d-dimensional space one has to compute the Jacobian. Ab-

breviating with

sφ ∶= sinφ

cφ ∶= cosφ

sφ1,φ2,...,φn ∶= sinφ1 sinφ2 . . . sinφn

the Jacobian gives

J = ∂(q1, q2, . . . , qd)
∂(q, φ1, φ2, . . . , φd−1)

=

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

cφ1 −q sφ1 0 0 . . .

sφ1cφ2 q cφ1cφ2 −q sφ1,φ2 0 . . .

⋮
⋱

−q sφ1,...,φd−1

sφ1,...,φd−1
q cφ1sφ2,...,φ4 q cφ2sφ1,φ3,...,φd−1

. . . q sφ1,...,φd−2
cφd−1

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

= qd−1
d−2

∏
i=1

(sinφi)d−1−i . (D.2)

Thus, a d-dimensional momentum integral can be transformed to spherical coordinates as

∫
Rd

ddq

(2π)d =
1

(2π)d ∫
∞

0
dq ∫

2π

0
dφd−1∫

π

0
dφd−2∫

π

0
dφd−3 . . .∫

π

0
dφ1 qd−1

d−2

∏
i=1

(sinφi)d−1−i

(D.3)

Here, mainly integrations in four dimensions are used for applications at zero temperature.
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D.1. Integration Measure

In addition, at non-vanishing temperature for integrations of the spatial subspace the

three-dimensional case was employed. Often the integrands are independent of a certain

number of angles, as the integration is over the whole space. Then one can choose the

coordinate system such that one vector is aligned with one axis. In this case one can

perform the trivial angular integral(s) which gives volume factor(s). Some typical relations

are

Ω(1) = ∫
2π

0
dφ = 2π (D.4)

Ω(3) = ∫
2π

0
dφ2∫

π

0
dφ1 sinφ1 = 4π (D.5)

Ω(4) = ∫
2π

0
dφ3∫

π

0
dφ2∫

π

0
dφ1 sin2 φ1 sinφ2 = 2π2 (D.6)

Ω(d) = 2
√
π
d−1

Γ (d
2 −

1
2
)
, (D.7)

thus

∫
d3q

(2π)3
f(q) = 1

2π2 ∫
∞

0
dq q2f(q) (D.8)

∫
d3q

(2π)3
f(q, φ1) = 1

(2π)2 ∫
∞

0
dq q2 ∫

π

0
dφ1 sinφ2f(q, φ1) (D.9)

∫
d4q

(2π)4
f(q) = 1

8π2 ∫
∞

0
dq q3 f(q) (D.10)

∫
d4q

(2π)4
f(q, φ1) = 1

4π3 ∫
∞

0
dq q3 ∫

π

0
dφ1 sin2 φ1f(q, φ1) (D.11)

∫
d4q

(2π)4
f(q, φ1, φ2) = 1

(2π)3 ∫
∞

0
dq q3 ∫

π

0
dφ1∫

π

0
dφ2 sin2 φ1 sinφ2f(q, φ1, φ2)

(D.12)

Numerical procedures may be instable when the angles in the integrals taken as they are

above. In particular, as the angles mainly appear in sine or cosine functions, the integration

over the cosine of the angle, x ∶= cosφ, is potentially superior to the integration over the

variable φ itself. The transformation yields the relation

∫
π

0
dφ sinφf(cosφ) = ∫

cosπ

cos 0
d(cosφ)∂ cosφ

∂φ
sinφf(cosφ)

= ∫
−1

1
dx (−f(x))

= ∫
1

−1
dxf(x), (D.13)

and similarly with sinφ =
√

1 − cos2 φ

∫
π

0
dφ sin2 φf(cosφ) = ∫

1

−1
dx

√
1 − x2 f(x). (D.14)

However, which procedure is practically better depends on the individual case and can
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D.2. Gauss–Legendre Quadrature

not be decided generally.

The effects of the temperature T in this thesis are considered via a projection onto purely

thermal flows. So schemetically one deals with subtractions of the form ∆∂tΓ = ∂tΓT −∂tΓ0.

The flows ∂tΓT , ∂tΓT involve loop integrals, however, in the zero temperature case it is

a four-dimensional integral whereas at non-vanishing temperature (and in the imaginary

time formalism) one deals with the Matsubara sum and the three-dimensional spatial

integral. In the numerics it turns out that the numerical cancellation of the flows at scales

k ≫ T is more accurately implemented if also the 4d-integral at T = 0 is split up into the

temporal and spatial integral, respectively, ∫ d4q
(2π)4 → ∫ dq02π ∫

dq⃗
(2π)3 . For the propagators the

only Lorentz vectors that appear in the flows are the external momentum p, and the loop

momentum q. Their relative relation can be parametrised via one angle φ, thus, the loop

is written in the form

∫
R4

d4q

(2π)4
f(p2, q2, cosφ) → 1

(2π)3 ∫
∞

−∞
dq0∫

∞

0
dq⃗ q⃗2∫

1

−1
dx

√
1 − x2 f(p2

0, q
2
0, p⃗

2, q⃗2, x).
(D.15)

Obviously, the integration takes much longer in this procedure, but the accuracy compen-

sates for this disadvantage.

D.2. Gauss–Legendre Quadrature

There are different methods how to perform the integral of a function numerically. I

only discuss the two general ideas that are exploited in this thesis. This section closely

follows [444], which is a good reference for a more extensive treatment of numerical inte-

gration and numerical methods in general.

The first method is the straightforward way of performing the Riemann sum, see fig. (D.2),

i.e. undoing the continuum-limit in the integral formulation and summing up the products

of the function values f(xi) at given nodes xi times the distance ∆x to the next point,

therefore, with N + 1 being the number of nodes and x1 = a and xN+1 = b,

∫
b

a
f(x)dx ≈

N

∑
i=1

f(xi)∆x . (D.16)

This is why the methods based on this idea are often referred to as quadratures. However,

this can be done in more sophisticated ways that enhance stability and accuracy. For

instance, instead of taking the function f(xi) just at one of the end-points xi of the small

interval of length ∆x and approximating the contribution to the integral by a rectangle,

the function can be taken at both end-points xi and xi+1 and then averaged over the upper

sum and lower sum, see fig. (D.2), thus
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Dxa b
x

fHxL

Figure D.1.: Riemann sum to perform the numerical integration.

Dxxi xi+1

x

fHxL

Figure D.2.: Averaged Riemann sum to perform the numerical integration.

Fi,i+1 = ∫
xi+1

xi
f(x)dx ≈ 1

2
(f(xi) + f(xi+1))∆x , (D.17)

where Fi,i+1 is the contribution to the intregral coming from the function f(x) in the

interval x ∈ [xi, xi+1]. In this case, the weighting factor of the two contributions is simply
1
2 . This can be improved further by the help of more general weights.

Another improvement is not to take the grid points equally distanced, but to choose a

refined grid which can be chosen such that is particularly suited to the shape of the

function f(x) in the integration interval.

Both improvements are employed in the Gauss–Legendre quadrature, which is used in this

thesis. The integral of a function f(x) is approximated by

∫
b

a
dxf(x) ≈

N

∑
i=1

ωif(xi) , (D.18)

where f(xi) are the values of the function f(x) at the integration nodes xi, with i =
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1, . . . ,N which are the zeros of the Legendre polynomials in the integration interval [a, b],
with the weights involving the Legendre polynomials Pi(x)

ωi =
2

(1 − x2
i )(P

′
N(xi))2

. (D.19)

Routines for the determination of the abscissas and weights are available as coded func-

tions directly, see e.g. [438,444].

Another conceptual way that is utilised here is linked to the Chebyshev expansion, see

appendix C. The Chebyshev polynomials can be integrated trivially. Therefore, it is often

advantageous to expand the integrand itself in terms of Chebyshev polynomials and then

apply the general integration prescription for polynomials. Usually, in the loop integrations

in Yang–Mills theory this is a good idea because the functions are smooth.

D.3. Integration Range for 4d-Regulators

Flow equations generically involve the scale derivative of the regulator ∂tRk(q), where q is

the loop momentum and k is the renormalisation group scale. Over the loop momentum

the integral is taken which extends to infinity, in principle. In practical computations,

however, it is advantageous to resolve only a smaller grid, that is adapted to the proper-

ties of the integrand, i.e. not to integrate in a region in which the integrand is zero within

numerical accuracy.

This procedure is particularly easy for 4d-regulators. At vanishing temperature this is

a trivial statement as the integrand simply falls of and is zero for q2 > (ζk)2. For an

exponential regulator, which is mainly used in this thesis, the damping of the regulator is

proportional to ∼ exp{−(q/k)4}. So for the value of ζ = 2.5 machine precision is reached.

Thus, the integration can be cut off at this point.

Fortunately, also for non-vanishing temperature this can be used, however, the damping

is then ∼ exp{−((q2
0 + q2

V ) /k2)2}, where q0 is the temporal component and qV is the ab-

solute value of the spatial momentum. So the different possibilities of the reaching of the

region where the integrand falls off must be respected.

Moreover, due to the shape of the derivative of the regulator, the integrand is always

peaked around q2
0 + q2

V ≈ k. So the idea is to split the grid again to resolve the region

below and above this peak separately, which brings most accuracy by the same amount

of grid points, in particular, if the integrand is expanded in Chebyshev polynomials. It

simply guarantees that the peak itself is realised, which is not necessarily satisfied if the

regulators are too sharp for the integration grid.

These two ideas result in a integration that is performed in four regions A,B ,C1 andC2

separately, given in fig. (D.3). These regions are the four integrals on the right hand side
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D.3. Integration Range for 4d-Regulators

of the transformation

∫
∞

−∞
dq0∫

∞

0
dqV f(q0, qV ) →A + B + C1 + C2 =

= ∫
k

−k
dq0∫

√
k2−q2

0

0
dqV f(q0, qV ) + ∫

k

−k
dq0∫

√
(ζk)2−q2

0
√
k2−q2

0

dqV f(q0, qV ) +

+ ∫
ζk

k
dq0∫

√
(ζk)2−q2

0

0
dqV f(q0, qV ) + ∫

−ζk

−k
dq0∫

√
(ζk)2−q2

0

0
dqV f(q0, qV )

(D.20)

q0

qV

A B

C1

k Ζ

C2

k

Figure D.3.: Optimised integration ranges at non-vanishing temperature for 4d-regulators.
qV is the absolute value of the momentum in the spatial subspace, q0 is
the temporal component, which is discretised in the case of non-vanishing
temperature.

I want to emphasise that these transformations are exact up to machine precision in the

formal way. But on the technical side this transformation constitutes a big improvement

by little effort. In the integration of a large but naive region, either the number of nodes

in the integration must be increased1, or the computing time is significantly longer. Note

that the number of needed grid point in two dimensions goes quadratically, so already a

1In case of a Chebyshev expansion it is even another problem, as polynomial expansions are not well
suited for resolving the zero.
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doubling of the area would demand four times the computing time.

Furthermore, and this is actually the bigger numerical problem, the form of the integrand

is such that it is peaked around p ≈ k. So performing the integration over the full region

at once, the peak structure is hard to resolve by the trivial integration grid, especially in

two dimensions.

The gain of the improved grid was tested in some selected cases. Dependent on the number

of grid points that is needed to get the same accuracy as in the improved grid, the comput-

ing time in the trivial case is higher by a factor of 102 − 103 for values 4GeV < k < 10GeV,

and rises further for higher k.

To conclude, dividing the integration regions below and above p = k is inevitable for nu-

merical accuracy.

At finite temperature the integration over q0 becomes a sum. The number of Matsubara

modes that are summed are also given by the cut-off, so with q0 = 2πTn the highest mode

Nmax that numerically contributes is given by

Nmax = ⌊ ζk
2πT

⌋ . (D.21)
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E. Classical Vertices

In this appendix I give the classical Green functions for Yang–Mills theory in the definitions

that are used in this thesis. In Landau gauge there are five classical n-point functions, the

gluon propagator, the ghost propagator, the three- and four-gluon vertex and the ghost-

gluon vertex.

The gluon propagator in Landau gauge is purely transversal, it is given by

(S(2)
A2 )

ab

µν
(p) = δabΠµν(p)

1

p2
, (E.1)

with the transversal projector Πµν defined in eq. (2.28).

The ghost propagator is given by

(S(2)
cc̄ )

ab

µν
(p) = − δab 1

p2
. (E.2)

The three-gluon vertex is given by

(SA3)abcµνρ (p, q, r) = igfabc [(p − q)ρδµν + (q − r)µδρν + (r − p)νδµρ] , (E.3)

where all momenta are counted as ingoing.

The four-gluon vertex is given by

(SA4)abcdµνρσ (p, q, r, s) = g2 {feabfecd [δµρδνσ − δµνδρσ]+
febcfead [δµνδρσ − δµρδνσ] +
febdfeac [δµνδρσ − δµσδνρ] } . (E.4)

The ghost-gluon vertex is given by

(ΓcAc̄)abcµ (p; q, r) = −igfabcrµ , (E.5)

where p is the gluon, q the ghost and r the anti-ghost momentum and all momenta are

ingoing.
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F. Critical Exponents of Three-Dimensional

φ4-Theory from DSEs

In this appendix I present a toy example that shows a method to extract critical expo-

nents from the DSE. This system was partly studied in [470]. These results are not put

in the main text as the results are puzzling and not fully understood yet. To get straight

to the point: The truncation that is used in this study is supposed to be able to resolve

a behaviour that is beyond mean-field, but, nevertheless, the results obtained here show

mean-field exponents. The system is numerically intricate and hard to stabilise, but could

be controlled in the end in a way that is described below. Albeit numerous tests on the

numerics have been made no numerical errors have been found so far. In summary, these

results are obtained in the way presented below, nevertheless, from the physics point of

view they are to be taken with a grain of salt.

A central issue in the analysis of phase transitions and critical phenomena is the concept of

universality. It describes the fact that for continuous phase transitions microscopic details

do not have an impact on the critical behaviour of the system at macroscopic scales. Thus,

two microscopically different systems can show the same critical behaviour. Therefore, in

the vicinity of the phase transition they can be described by the same scaling exponents.

By the help of these scaling exponents systems can be grouped into universality classes.

One universality class contains all systems that share the same scaling exponent. As a

consequence of universality, it suffices to study one representative of each class to learn

about the behaviour of all the systems within this class.

In this context O(N)-models have turned out to be a very powerful tool to study a plethora

of microscopically different physical systems, e.g. polymers, liquid-vapour transition, su-

perfluidity of He4 as well as ferromagnets and also the QCD phase transition with two

massless quark flavors.

The most extensively applied method to study universal properties is the renormalisation

group. The renormalisation group has provided illuminating insight into the concept

of universality itself and, furthermore, has allowed for calculations of critical universal

properties.

The Dyson–Schwinger formalism is an approach that is closely connected to the functional

form of the renormalisation group. DSEs are based on the translational invariance of the

functional integral. Therefore both, DSEs and FRG equations can directly be derived

from it. Both methods are purely non-perturbative approaches. To put it bluntly, DSEs

can be seen as integrated FRG equations. Practically, this means that one does not treat
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F.1. O(N) Model

quantum fluctuations sequencially as the FRG does but rather integrates over all of them

at once. Due to the connection between these two methods one expects that critical

phenomena can be studied within both methods. This serves as the motivation for the

study presented here, where critical exponents of ν of φ4-theory in three dimensions are

investigated on the level of the DSE.

F.1. O(N) Model

O(N)-models are important for the study of phase transitions because within these sys-

tems it is convenient to study vaious aspects of spontaneous symmetry breaking. This

section is pure textbook knowledge and follows the lines of [477].

For an N -component real massive scalar field the Lagrangian is made up by kinematic and

interaction terms for an N -dimensional real vector. The Lagrangian is symmetric under

orthogonal transformations in N -dimensions.

In the case of spontaneously broken symmetry, the vacuum expectation value is not in-

variant under a symmetry which is obeyed by the initial Lagrangian. For the O(N)-model

this means that the expectation value of the norm of the field no longer vanishes but rather

acquires a value proportional to the ratio of the mass and the coupling. Note that only

the norm of the N -dimensional vector is constrained, i.e. (φi)2 > 0. So this state is still

symmetric under rotations in the (N −1)-dimensional subspace. An expansion around the

new, true vacuum involves one massive field which describes the radial fluctuation around

the vacuum and N − 1 (massless) Golstone modes.

Here the easiest O(N)-model is studied, which is simply the standard φ4-theory. The

number of dimensions is three. From renormalisation group studies it is known that φ4-

theory in three dimensions, or in general in d < 4 dimensions, has another fix point besides

the free-field fix point. This non-trivial fix point is called Wilson-Fisher fix point. The

critical behaviour is related to that fix point.

For the O(1)-model the Lagrangian is symmetric under a sign-flip of the field-value φ→ −φ.

The Lagrangian is given by

L[φ] = 1

2
(∂µφ)2 − 1

2
m2φ2 − λ

4!
φ4. (F.1)

Decreasing the mass parameter to negative values m2 → −m2 ≡ µ2 this symmetry is

spontaneously broken, and the vacuum expectation value of the field becomes

⟨φ⟩ = ±
√

6

λ
µ. (F.2)

Around this new minimum in the potential one can make an expansion in a new field. One

finds that the Lagrangian for the new field with mass µ2 contains also cubic and quadratic

interactions among itself. The initial symmetry is no longer apparent, it is rather hidden

in the new parameters, the effective mass and the coupling constants of the new field,

respectively.
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F.2. Method

F.2. Method

The method itself is based on the generating DSE for the effective action. For the moment,

a possible momentum-dependence of the potential is neglected. Approximating the φ-

propagator and higher n-point functions via their bare expressions, the generating DSE

in three (Euclidean) dimensions can be written as

δΓ

δΦ
= δS

δΦ
+ λ

2
∫

3d

p
G(0)
p φ − λ

3!
∫

3d

p,q
G(0)
p G(0)

q G
(0)
p+qV

(3) , (F.3)

having made the abbreviation for the bare propagator G
(0)
p = G(0)(p2) = 1

p2+V ′′ and the

loop integrations

∫
3d

p
= ∫

R3

d3p

(2π)3
, and ∫

3d

p,q
= ∫

R3

d3p

(2π)3 ∫R3

d3q

(2π)3
. (F.4)

Furthermore, Γ[φ] is the effective action, S[φ] the classical action an V [φ] the effective

potential. Note that the second derivative of the potential, V ′′[φ], and the fourth deriva-

tive V (4)[φ] with respect to the field φ give the effective mass and the effective coupling,

respectively, at the given field value. In the following I refer to the first integral expression

as the tadpole-integral and to the second integral as the sunset-integral. The interesting

observation in this equation is that the two integral expressions can be solved analytically,

as it is evident below. This provides an ordinary differential equation for the effective

potential.

The regularisation of the integrals in eq. (F.3) contains two ”tricks”. Firstly, for the

tadpole-integral the mass of the scalar field is split into m̄2 =m2 +∆m2, with m being the

renormalised mass and the counterterm

∆m2 = −λ
2
∫

3d

p

1

p2
. (F.5)

Combining the derivative of the classical action with the tadpole gives

δS

δΦ
+ φλ

2
∫

3d

p

1

p2 + V ′′ = 1

2
(p2 +m2)φ + φλ

2
∫

3d

p
( 1

p2 + V ′′ −
1

p2
) . (F.6)

The latter integral is finite and the evaluation of it gives

φ
λ

2
∫

3d

p

−V ′′

p2(p2 + V ′′) = −φ λ
8π

√
V ′′. (F.7)

Secondly, it is also necessary to regularise the other divergent integral in eq. (F.3). The

procedure for the sunset-integral involves another trick. Herefore the full expression is

divided by V (3) and afterwards a derivative with respect to the field is taken. This acts

on each propagator as
δ

δφ
G(0)
p = −G(0)

p V (3)G(0)
p . (F.8)
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F.3. Numerics

With appropriate shifts in the loop momentam, the resulting three expressions are actually

identical can sum up trivially to give a combinatorical factor. So speaking casually, taking

the derivative w.r.t. φ gives a fourth propagator and a factor. Already counting the powers

in this integral suggests, that it is finite for non-zero values of V ′′, and the evaluation of

it yields

− λ

3!

δ

δφ
(∫

3d

p,q
G(0)
p G(0)

q G
(0)
p+q) = λV (3)

2
∫

3d

p,q
G(0)
p G(0)

q (G(0)
p+q)2

= λV (3)

192πV ′′ . (F.9)

At this point the equation for the effective potential has been rendered finite. It is con-

venient to rewrite the remaining equation into a total derivative and to carry out one

integration over φ analytically. This yields an ordinary differential equation for the effec-

tive potential

− V ′

V (3) +
S′

V (3) −
λ

8π
φ

√
V ′′

V (3) + λ
ln (V ′′)
192π2

= c. (F.10)

Herein c is the integration constant fixed at a large field value Φclassical, where quantum

fluctuations are suppressed so much that the effective action descends into the classical

action. Therefore, the term proportional to V ′(Φclassical) is cancelled by S′(Φclassical), and

c is fixed by the values for the renormalised tadpole and sunset integrals, thus

c = − 1

8π

√
m2 + λ

2
Φ2
cl +

λ

192π2
ln(m2 + λ

2
Φ2

classical) . (F.11)

Solving eq. (F.3) this way is only possible under the assumption of a bare scalar prop-

agator. In contrast to this, for a renormalised propagator these integrals must be solved

numerically.

F.3. Numerics

Although eq. (F.10) is an ordinary differential equation, finding a numerical solution is

non-trivial. This is mainly due to the sunset term, which involves a product of the third

derivative of the effective potential V (3) ∼ λφ with the logarithm of the second derivative

ln(V ′′) ∼ ln(m2 +λφ2). In the symmetric phase the vacuum expectation value of the field

⟨φ⟩ vanishes, and so does V (3). Directly at the phase transition also the effective mass µ

is zero.

Within the region of interest here, i.e. around the phase transition, V (3) and the effective

mass of φ vanish. So at the phase transition and at the value φ = 0 the solver has to deal

with the limit of a vanishing quantity V (3)(0) times a logarithmically divergent term ln(0).
Analytically this limit is well-defined and yields zero. But numerically the system becomes

very unstable at the phase transition. Thus approaching the point where the symmetry

breaking or symmetry restoration sets in (no matter from what phase one approaches)

standard solving methods for differential equations fail in integrating the equation over

the full range of φ∈[0,Φcl]. This interval is chosen such that one starts at Φclassical, which
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F.3. Numerics

is a value of the field chosen such that quantum fluctuations are suppressed. Here the

theory is described by the classical action, thus S[Φclassical] serves as the initial condition

for the differential equation, as described above.

In order to stabilise the system it is possible to choose a matching point φm in the interval

and match a solution that is valid in the upper half of the interval with another one, that

is valid in the lower half. This matching point must be chosen such that at φm both

solutions still suffice eq. (F.10) up to a chosen accuracy.

For the solution in the lower half, Vode[φ], eq. (F.10) is solved, but not starting at the

upper bound of the interval, but fix the equation at φ = 0, thus, one imposes the effective

values instead of the bare ones. Here a note to the validity of this approach is in order.

As a final step, the bare parameters must be mapped onto the effective ones, i.e. in the

used here nomenclature {m,λ} → {µ, λ̄}. The differential equation does not depend on the

“direction“ in which it is solved. Thus it is also a valid approach to assume the evolved

parameters and integrate them over the interval to see, which input values would have

given these values. For given values of the effective mass µ boundary conditions can be

imposed based on the physical properties of the solution: at φ = 0 the first derivative

must vanish, since the effective potential has an extremum at this point. Furthermore

the second derivative of the effective potential at φ = 0 is the effective mass µ2. Thus

the other boundary conditions is V ′
ode[φ = 0] = 0 and V ′′

ode[φ = 0] = µ2 and eq. (F.10) can

be integrated from φ = 0 upwards to φm. Note that this solution also becomes unstable

for too large values of φ. Actually, solvers break down at field values, where the system

is not described by the classical action yet. Thus this method is not capable of solving

eq. (F.10) for the full range [0,Φclassical] either. Due to this the point of φm must be chosen

carefully, as the differential equation must be fulfilled up to a high accuracy. In principle

this accuracy can be chosen freely, but the result for the critical exponent crucially depends

on it, so a high accuracy is inevitable to reasonably extract critical exponent ν.

The upper solution, Vit[φ] is obtained from the non-integrated form of the generating eq.

(F.10) via iteration, starting with the classical action S[φ] in the first iteration step. Thus

the nth iteration step is

V ′
(n) = S

′ − λ

8π
φ
√
V ′′
(n−1) +

λV
(3)
(n−1)

192π2
ln (V ′′

(n−1)) , (F.12)

wherein the subscripts denote the iteration step, starting with V ′
(0) = S

′. Note that this

methods also suffers from the instability around φ = 0 at criticality. So solving eq. (F.10)

entirely with iteration is not an option either. This issue has to be respected in the choice

of φm too, where both, the solution in the upper half and the solution for the lower half,

respectively, must solve the differential eq. (F.10) for the effective potential up to a high

accuracy for reasons mentioned above.

The mapping of the classical onto quantum parameters is obtained by varying the input

parameters such that the matching conditions are fulfilled. Keep in mind that these input

parameters differ for the two types of solutions, as the iteration starts with m and λ,

whereas the differential equation needs µ and λ̄ as input. For the matching there are two
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F.3. Numerics

constraints, at φm the two equations

V ′
ode[φm] != V ′

it[φm]
V ′′
ode[φm] != V ′′

it [φm] (F.13)

must simultaneously be true. In order get the values of m related to the effective mass µ

is kept fixed in Vode and m is varied. In Vit the coupling λ is kept fixed. So the variation

of m and λ̄ for chosen values of µ and λ is done such that both matching constraints are

true. This yields sets of related values of m,µ,λ and λ̄. In practice this is done on a

two-dimensional grid for the varied parameters and with an interpolation of the functions

at φm, because the computing time for the iterated solution is quite high. Fig. (F.1) shows

a sketch of the matching procedure.

VodeHΦL

VitHΦL

Φm0.1 0.2 0.3 0.4 0.5
Φ

0.05

0.10

0.15

Figure F.1.: Sketch of the matching procedure that is done in order to get a proper map
of the input parameters {m,λ} onto the effective parameters {µ, λ̄} (here the
parameter-set is chosen arbitrarily).

Note again that in principle there are not two different quantities that describe the phase

transition, but rather only one order parameter
√
m2/λ, as described in section F.1. In

fig. (F.2) the evolved value µ2/λ̄ of the squared order parameter is plotted against the

bare value m2/λ. In the vicinity of the phase transition the order parameter scales like

√
µ2

λ̄
∝ ∣m −m∗∣ν . (F.14)

This can be decomposed via

µ2

λ̄
∝ ∣m −m∗

λ
∣
2ν

= ∣(m −m∗
λ

)(m +m∗
λ

)∣
ν

= c̃ ∣m −m∗
λ

∣
ν

, (F.15)
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Figure F.2.: Mapping of the bare order parameter onto the effective order parameter. The

phase transition is at
√

m2

λ ≈ 0.051.

wherein m∗ is the value of the mass at the phase transition, and the positive value m +
m∗ (in the symmetric phase) is absorbed into the constant. This yields a relation from

which one can read off the critical exponent of the mapping. The graph shows vanishing

curvature, thus it gives the value ν ≈ 0.5. So the result of this simple case, where the

propagator is taken as bare, yields the mean-field exponent.

F.4. Improving the Scheme

In the preceeding calculation the two-point function is taken as bare. The scheme pre-

sented above can be refined by considering the effects of the dressed scalar propagator,

so the dressing function Z(p2) is taken into account that encodes the quantum correc-

tions to the bare propagator. Here, the dressing function is calculated via its DSE, given

diagrammatically in fig. (F.3). Note that in the symmetrically broken phase additional

diagrams with three-point functions would contribute. For the calculations of such quan-

-1  = -1 -1/2 -1/3!

Figure F.3.: Dyson-Schwinger equation for the scalar two-point function in the symmetric
phase. Internal propagators are dressed.

tities Chebyshev polynomials have turned out to be a reliable tool, because firstly the

included error is smeared out over the total momentum interval, and secondly the point

density is highest in the middle of the interval, i.e. where the physics happens, see ap-
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F.4. Improving the Scheme

pendix C. Thus employing the DSE for the two-point function Z(p2) can be computed

numerically via expanding it in Chebyshev polynomials. Of course the analytical solution

of the two integrals in eq. (F.3) is not possible any more, as soon as one plugs the numer-

ical expressions of Z(p2) into the propagator. Thus the particular contributions from the

two integrals in eq. (F.3) must be determined numerically.

From this point on one has to face the same problems that arose already in the approx-

imation in section F.3. Also for a non-trivial dressing function for the scalar propagator

the system is unstable around the phase transition. The same stabilisation procedure as

in the case with bare propagators is applied here too, i.e. the solution of the differential

equation in the lower half of the interval is matched with the solution in the upper half

obtained by iteration at intermediate field expectation values. Considering the dressing

function this gives that the phase transition is shifted and happens at a higher value of the

(bare) order-parameter
√
m2/λ ≈ 0.054, see fig. (F.4) for the plot after the first iteration,

which is already stable. Surprisingly, the value for the critical exponent is not changed it

remains ν ∼ 0.5 up to numerical precision. As a result, the critical exponent is still similar

to the one obtained in Landau theory.

0.004 0.0045 0.005
m2

Λ

0.0005

0.001

Μ
2

Λ

Figure F.4.: Mapping of the bare order parameter onto the effective order parameter under
consideration of the dressing function of the scalar propagator.
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