
4.32.940

Article

Lower Bounds for Quasi-Cyclic
Codes and New Binary Quantum
Codes

Yiting Liu, Chaofeng Guan, Chao Du and Zhi Ma

https://doi.org/10.3390/sym15030643

https://www.mdpi.com/journal/symmetry
https://www.scopus.com/sourceid/21100201542
https://www.mdpi.com/journal/symmetry/stats
https://www.mdpi.com
https://doi.org/10.3390/sym15030643


Citation: Liu, Y.; Guan, C.; Du, C.;

Ma, Z. Lower Bounds for

Quasi-Cyclic Codes and New Binary

Quantum Codes. Symmetry 2023, 15,

643. https://doi.org/10.3390/

sym15030643

Academic Editor: Jerzy

Kowalski-Glikman

Received: 2 February 2023

Revised: 20 February 2023

Accepted: 1 March 2023

Published: 3 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Lower Bounds for Quasi-Cyclic Codes and New Binary
Quantum Codes

Yiting Liu 1,2 , Chaofeng Guan 2,3 , Chao Du 1,2 and Zhi Ma 1,2,*

1 The State Key Laboratory of Mathematical Engineering and Advanced Computing, Zhengzhou 450001, China
2 Henan Key Laboratory of Network Cryptography Technology, Zhengzhou 450001, China
3 Fundamentals Department, Air Force Engineering University, Xi’an 710051, China
* Correspondence: ma_zhi@163.com

Abstract: This paper considers three kinds of quasi-cyclic codes of index two with one generator

or two generators and their applications in quantum code construction. In accordance with the

algebraic structure of linear codes, we determine the lower bounds of the symplectic weights of these

quasi-cyclic codes. Quasi-cyclic codes with the dual-containing property enable the construction

of quantum codes. Defining the coefficient symmetric polynomials of the generator polynomials

gives a concise condition for the dual-containing of the quasi-cyclic codes. The lower bound results

can significantly reduce the scope of the search for a larger minimum distance of quasi-cyclic codes.

With these algebraic results and computer supports, we obtain classical quasi-cyclic codes with better

parameters and some new quantum codes under the symplectic construction. In particular, two

examples of the new quantum codes [[63, 42, 6]]2, [[51, 35, 5]]2 improve the corresponding codes in

Grassl’s code table.

Keywords: quasi-cyclic codes; symplectic distance; quantum codes

1. Introduction

In recent decades, quantum error-correcting has developed rapidly in the area of
quantum computation and quantum information. Quantum codes were introduced to
protect quantum information from decoherence and quantum noise. Quantum error correc-
tion codes (QECCs) lie at the lowest level of the fault-tolerant quantum computing model
and their error correction capability has a significant impact on the quantum computing
model. Therefore, the search for quantum error correction codes with good parameters
has been a research goal of scholars. QECCs were first proposed by Shor and Steane [1,2].
Calderbank et al. in [3] proposed a method to construct binary quantum error-correcting
codes via classical error-correcting codes over GF(4). Later, the QECCs construction scheme
was further extended to the non-binary case [4,5], which greatly expands the family of
quantum codes. There are three mainstream QECC construction methods, Euclidean, Her-
mitian, and symplectic construction which respect Euclidean, Hermitian, and symplectic
inner products, respectively. Many optimal classical cyclic, constacyclic, repeated-root
cyclic, skew-cyclic code, quasi-cyclic (QC), generalized QC codes, simplex codes etc. with
good dual-containing properties have been given in recent years, and corresponding
QECCs [6–17] with good parameters are constructed based on them.

QC codes are a native generalization of cyclic codes with a rich algebraic structure
and they are widely studied over finite fields [18–20] and finite rings [13,21]. A wider
range of quantum code parameters is available in QC codes [22–24]. Many QC codes
have improved the earlier known minimum distances since Kasami et al. [25] showed
that QC codes satisfy the modified Gilbert–Varshamov (GV) bound. Since the algebraic
structure of one-generator QC codes has been proposed, a large number of one-generator
quasi-cyclic codes with good parameters have appeared [26–29]. With further research,
Chen et al. [23] gave the algebraic structure of two-generator and three-generator QC
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codes from simplex codes. Hagiwara et al. [16,30] studied constructions of QECCs by QC
Low-Density Parity Check (LDPC) codes focusing on long code length and probabilistic
construction. Sangwisut et al. [31] proposed the algebraic structure of Hermitian self-dual
QC codes. Aydin et al. [32] constructed 62 new binary codes using a comprehensive search
strategy with QC codes. Later, Galindo et al. [15] deduced the algebraic structure of the dual
form for a family of two-generator QC codes with index two, which opened up a new way
to construct quantum codes by QC codes under different construction. Ezerman et al. [33]
obtained quantum codes with strictly improved parameters by quantum Construction X
on quasi-cyclic codes with large Hermitian hulls.

We construct new quantum codes by searching for the QC codes under the symplectic
dual-containing relation over three different types of QC codes with the help of the lower
bounds. The constructions of the quantum codes all require the classical codes that have
self-orthogonality (or dual-containing) property. In order to give the conditions for the
self-orthogonality (dual-containing), Galindo et al. [15] deform the generator polynomial
in the article to make it a coefficient-symmetric form of the original polynomial which
is useful in inner product calculations. In this paper, we also use this transformation of
polynomials and we rename them as symmetric polynomials. Using the good symmetry
of these polynomials and the form of the generator polynomials, it is easy to give dual-
containing conditions for QC codes under different structures. Then, in this paper, we
calculate the lower bounds on the symplectic distance of three kinds of QC codes with
known structures. These lower bounds can somewhat reduce our difficulty in obtaining
better quantum codes. Akre, Aydin et al. [34] pointed out that obtaining codes with better
parameters is challenging. The minimum distance of a linear code is difficult to compute
and the problem is NP-hard [35]. Furthermore, the code space of a fixed code length
increases rapidly with the number of dimensions. Therefore it is impossible to search for
good codes by exhaustive computer searching. Scholars try to find codes with a special
algebraic structure that has better parameters. This paper then reduces the difficulty of
finding good codes in terms of reducing the search space by giving a lower bound on the
symplectic distance. We provide some examples of QC codes with good parameters and
some stabilizer quantum codes. The parameters of the obtained new codes are competitive
with the code table [36].

2. Preliminaries

In this section, we recall some basic concepts of QC codes and some connections
between QC codes and quantum codes under symplectic construction that are necessary
for the development of this work.

Let Fq be the finite field of q elements where q is a prime power and R =
Fq [x]
xn−1 be

a ring of q-ary polynomials module xn − 1. A classical linear [n, k, d] code C over Fq is a
k-dimensional subspace of Fn

q with d = min{wt(~c) : ~c ∈ C \ {0}} where wt(~c) denotes the
Hamming weight of a codeword~c. The cyclic shift τ on Fn

q is the shift

τ(c0, c1, . . . , cn−1) = (cn−1, c0, . . . , cn−2).

A linear space C ⊂ Fn
q is said to be a cyclic code if C = τ(C). Given a polynomial

g(x) ∈ R and [g(x)] denotes the residue class of g(x) in R. Then a cyclic code can be
identified with an idea of R via the mapping:

[c(x)] = [c0 + c1x + . . . + cn−1xn−1],

and τ(c) corresponding to the class [xc(x)]. A linear code C ⊂ Fnl
q is called a QC code of

index l if it is invariant under a shift of codewords by l units. Let~c be a codeword of C:
~c = (c0,0, c0,1, . . . , c0,n−1, c1,0, . . . , c1,n−1, cl−1,0, cl−1,n−1). Then define a map ψ : Fln

q → Rl :

φ(~c) = ([c0(x)], [c1(x)], . . . , [cl−1(x)]),



Symmetry 2023, 15, 643 3 of 15

where cj(x) = cj,0 + cj,1x + . . . + cj,n−1xn−1 ∈ R. Each cj(x) corresponds to a codeword
of cyclic code generated by [cj(x)] ∈ R. Therefore, a QC code can be identified with an
R-submodule of Rl . A QC code generated by two elements in R2,

([g1(x)], [g2(x)]), ([ f1(x)], [ f2(x)]),

can be regarded as the R-module:

{[a1(x)g1(x)], [a1(x)g2(x)] + [a2(x) f1(x)], [a2(x) f2(x)] | ai(x) ∈ Fq[x]}

Each polynomial of the generator of QC code corresponds to a generator of a cyclic
code, which determines a circulant matrix, so the generator matrix of a 2-QC code with
index 2 has the following form:

G =

(

A1,1 A1,2
A2,1 A2,2

)

.

In this paper, we only deal with one-generator and two-generator QC codes (1-QC
and 2-QC for simplicity). For a linear space C ⊂ Fn

q , C⊥ denotes its Euclidean dual under:

C⊥ = {~x ∈ Fn
q | 〈~x,~y〉 = 0, f or all ~y ∈ C}.

If C ⊂ C⊥, the code C⊥ is a Euclidean dual-containing code. The symplectic weight
of vector ~u ∈ F2n

q is ws(~u) = #{i | (ui, ui+n) 6= (0, 0), 0 ≤ i ≤ n − 1}. The minimum
symplectic weight of code C is ds(C) = min{ws(~u) | ~u ∈ C)}. The symplectic inner

product of two vectors ~u,~v ∈ F2n
q is defined as 〈~u,~v〉s =

n−1
∑

i=0
(uivn+i − un+ivi). So the

symplectic dual code of C is denoted as:

C⊥s = {~x ∈ F2n
q | 〈~x,~y〉s = 0, f or all ~y ∈ C}.

If C ⊂ C⊥s , the code C is symplectic self-orthogonal code and C⊥s is a symplectic
dual-containing code. If C⊥s = C, the code C is a symplectic self-dual code.

Lemma 2.4 in [37] gives a relationship between symplectic and Hamming weights of
vector (~u,~v) ∈ F2n

q :

Lemma 1. Let ~u,~v be two vectors in F2n
q , then we have

qws(~u,~v) = wH(~u) + wH(~v) + ∑
β∈Fq\{0}

wH(β~u +~v),

where wH denotes the Hamming weight, the number of non-zero terms of vector ~v.

Let g(x) = g0 + g1x + . . . + gn−1xn−1 ∈ R and define ḡ(x)= xng( 1
x )= g0 + gn−1x +

. . . + g1xn−1 of which the coefficients of polynomials are symmetrically exchanged (except
for constant terms). When g(x) | xn − 1, there exists a h(x) = xn−1

g(x)
; define g⊥(x) =

1
h(0) xdeg(h(x))h( 1

x ). The coefficient weight of g(x), denoted by cw(g(x))), is defined to

be the smallest distance among non-zero terms of g(x) which is a non-negative integer
given by:

cw(g(x)) =

{

0, if g(x) is a monomial,
min {| i − j || ai, aj 6= 0, i 6= j}, otherwise.

(1)

Then we have the following lemma [38].

Lemma 2. If the degree of g(x) is less than cw( f (x)), the following equation holds:

wH( f (x)g(x)) = wH( f (x)) · wH(g(x)). (2)
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A q-ary quantum code Q of length n, distance d and dimension k is a qk-dimensional
subspace of a qn-dimensional Hilbert space (Cq)⊗n. Usually, Q can be designed to correct

up to
⌊

d−1
2

⌋

errors caused by Pauli operators X, Y, Z. Symplectic construction is a powerful

method for constructing QECCs which establishes a correlation between symplectic self-
orthogonal or dual-containing codes and QECCs. Here we give this CRSS [3] construction:

Lemma 3 ([3,5]). Let C ⊂ F2n
q be a symplectic self-orthogonal [2n, n − k] linear code, where C

is a symplectic self-orthogonal code such that C ⊂ C⊥s and d(C⊥s \ C) = d, then there exists a
stabilizer QECC with parameter [[n, k, d]]q.

3. Results

In this section, we focus on three proposed QC structures [39–41]. By analyzing the
form of their generator elements, we give corresponding lower bounds over the symplectic
distance. According to the symplectic construction scheme of QECCs that the symplectic
distance of QC codes with a dual-containing relationship is the minimum distance of
a quantum code. Thus we are able to search for quantum codes with larger minimal
distances with the help of lower bounds and computer supports. These codes have larger
code distances than codes of the same code length and dimension compared with the online
code table [36].

The following table gives the specific forms and generator elements of the three kinds
of QC codes and their symplectic dual codes.

In the first part, we will discuss the use of a class of one-generator QC codes with index
2 (case 1 in Table 1) to find the symplectic dual code to construct QECCs. We also calculate
a lower bound of the distance of the symplectic dual code, then construct QECCs with
good parameters based on the given lower bound.

Table 1. The specific forms of the three types of proposed QC codes and their symplectic dual codes.

Quasi-Cyclic Code Construction Generator Conditions 1 Symplectic Dual Code

(

G1 G2
)

[39]
(

[g(x)], [g(x) f (x)]
)

g⊥e (x) | g(x)
(

[1], [ f̄ (x)]
[0], [g⊥(x)]

)

(

G1 G1
G2 Gh2

)

[40]
(

[ f (x)], [ f (x)]
[g(x)], [g(x)h(x)]

)

g⊥e (x) | f (x), f̄ (x) = f (x)
(

[ f⊥(x)], [h̄(x) f⊥(x)]
[g⊥(x)], [g⊥(x)]

)

(

Gh1 G1
G2 Gh2

)

[41]
(

[h(x)g(x)], [g(x)]
[ f (x)], [ f (x)h(x)]

)

f (x) | g⊥e (x), h̄(x) = h(x)
(

[g⊥(x)], [h̄(x)g⊥(x)]
[h̄(x) f⊥(x)], [ f⊥(x)]

)

1 The conditions for the QC codes to be dual-containing or symplectic self-dual.

Theorem 1. Consider the QC code Q with generator matrix G:

G =

(

[1], [ f̄ (x)]
[0], [g⊥(x)]

)

,

where we assume that g(x) | xn − 1 and f (x) satisfies that gcd( f̄ (x) − β, xn − 1) = 1 for all
non-zero β ∈ Fq. Then, a lower bound on the symplectic weight of Q is the following value

dlow1 = min{d([g⊥(x)]), d([
xn − 1

gcd(xn − 1, f̄ (x))
]), d([ f̄ (x)]),

d([
g⊥(x)

gcd(g⊥(x), f̄ (x))
]), 1 + d([gcd( f̄ (x), g⊥(x))])/q},

Proof. The symplectic weight of any codeword of Q can be represented as:

ws = ws([a(x)], [a(x) f̄ (x) + b(x)g⊥(x)]),

where a(x) and b(x) are arbitrary polynomials in R.
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(1) If a(x) = 0 then ws = wH([b(x)g⊥(x)]) ≥ d([g⊥(x)]).
(2) If a(x) 6= 0 and b(x) = 0, then the weight is represented as ws = ws([a(x)], [a(x) f̄ (x)]).

(i) If a(x) f̄ (x) = 0 mod (xn − 1), then xn−1
gcd(xn−1, f̄ (x))

| a(x) f̄ (x)
gcd(xn−1, f̄ (x))

. Since

gcd( xn−1
gcd(xn−1, f̄ (x))

, f̄ (x)
gcd(xn−1, f̄ (x))

) = 1, we have xn−1
gcd(xn−1, f̄ (x))

| a(x). Therefore,

the cyclic code generated by [a(x)] belongs to [ xn−1
gcd(xn−1, f̄ (x))

]. So the lower bound

of symplectic weight is ws ≥ d([a(x)]) ≥ d([ xn−1
gcd(xn−1, f̄ (x))

]).

(ii) When a(x) f̄ (x) 6= 0 mod (xn − 1), according to Lemma 1, we have

ws =
1
q
(wH([a(x)]) + wH([a(x) f̄ (x)]) + ∑

β∈Fq\{0}

wH([a(x)( f̄ (x) + β)])).

If deg( f̄ (x)) < cw(a(x)) then wH([a(x) f̄ (x)]) = wH([a(x)])wH([ f̄ (x)]). So the
symplectic weight has the following lower bound:

ws =
1
q
(wH([a(x)]) + wH([a(x)])wH([ f̄ (x)]) + (q − 1)wH([a(x)]) ∑

β∈Fq\{0}

wH([ f̄ (x) + β])).

the lower bound is given by ws ≥ d([ f̄ (x)]) as there exists at most one β ∈ F∗
q

such that f̄ (x) + β has no constant term.

Else, when deg( f (x)) ≥ cw(a(x)), then

ws ≥ d([a(x)])/q + d([a(x) f̄ (x)]) ≥ 1 + d([ f̄ (x)]).

(3) If a(x) 6= 0, b(x) 6= 0, and a(x) f̄ (x) + b(x)g⊥(x) = 0 mod (xn − 1) then we can

deduce g⊥(x) | a(x) f̄ (x). Then we can gain g⊥(x)
gcd(g⊥(x), f̄ (x))

| a(x) f̄ (x)
gcd(g⊥(x), f̄ (x))

, as

gcd( g⊥(x)
gcd(g⊥(x), f̄ (x))

) = 1, f̄ (x)
gcd(g⊥(x), f̄ (x)))

we obtain g⊥(x)
gcd(g⊥(x), f̄ (x))

| a(x). Finally, we

have ws = wH([a(x)]) ≥ d([ g⊥(x)
gcd(g⊥(x), f̄ (x))

]).

(4) If a(x) 6= 0, b(x) 6= 0, and a(x) f̄ (x) + b(x)g⊥(x) 6= 0, then the symplectic weight is

ws =
1
q
(wH([a(x)]) + wH([a(x) f̄ (x) + b(x)g⊥(x)])

+ ∑
β∈Fq\{0}

wH([a(x)( f̄ (x) + β) + b(x)g⊥(x)])). (3)

If some summand of the summation in Equation (3) is zero then [a(x)( f̄ (x) + β)] =
−[b(x)g⊥(x)] for some β ∈ F∗

q .This means g⊥(x) | a(x), as ( f̄ (x) + β) is a unit modulo
xn − 1. So

ws ≥ wH([a(x)] ≥ d([g⊥(x)]).

Otherwise (all summands in Equation (3) are nonzero),

ws ≥
1
q
(d([a(x)]) + d([gcd( f̄ (x), g⊥(x))]) + (q − 1))

≥ 1 + d([gcd( f̄ (x), g⊥(x))])/q

which concludes the proof.

Then we can give the QECC constructed by QC code of type 1, and the expression of
the code parameters.

Lemma 4. With the above notation, assume that the polynomial f (x) satisfies that gcd( f̄ (x)−
β, xn − 1) = 1 for all non-zero β ∈ Fq and g⊥e(x) | g(x). Then the type 1 QC code C = [2n, n −
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deg(g(x))] is symplectic self-orthogonal and the QECC with parameters [[n, deg(g(x)),≥ dlow1]]
can be constructed.

When it comes to QC codes with two generators, the analysis becomes a little more
complex. However, when we have analyzed all cases, we can simplify the lower bound
expression by combining the lower bound values that have the inclusion relationship.
Furthermore, under the condition given in Table 1, the QC codes of types 2 and 3 are
dual-containing codes. So the distance of the QECC constructed by symplectic construction
can be low bounded by the lower bound of the original QC codes’ distance.

Theorem 2. Consider the QC code Q with generator matrix G:

G =

(

G1 G1
G2 G f 2

)

=

(

[ f (x)], [ f (x)]
[g(x)], [g(x)h(x)]

)

,

where we assume that h(x) satisfies that gcd(h(x)− β, xn − 1) = 1 for all non-zero β ∈ Fq. Then,
a lower bound on the symplectic weight of Q is the following value

dlow2(Q) = min{d([ f (x)]), d([
xn − 1

gcd(xn − 1, h(x))
]),

1
q

d([h(x)g(x)]) + d([g(x)]),

d([g(x)(h(x)− 1)]),
1
q

d([gcd( f (x), g(x)h(x))]) + d([gcd( f (x), g(x))])}. (4)

Proof. The idea of the proof is similar to that of Theorem 1, and the detailed proof procedure
is given in Appendix A.

Lemma 5. With the above notation, assume that the polynomial h(x) satisfies that gcd(h(x)−
β, xn − 1) = 1 for all non-zero β ∈ Fq and g⊥e(x) | f (x), h̄(x) = h(x). Then the type 2 QC code
C = [2n, 2n − deg(g(x))− deg( f (x))] is symplectic dual-containing linear code, and the QECC
with parameters [[n, n − deg(g(x))− deg( f (x)),≥ dlow2]]q can be constructed.

As the generator form of the code in case 3 is identical to its symplectic dual code, we
give the form of a lower bound on the symplectic distance of the original structure which
can also apply to the symplectic dual code.

Theorem 3. Consider the QC code Q with generator matrix G :

G =

(

Gh1 G1
G2 Gh2

)

=

(

[h(x)g(x)], [g(x)]
[ f (x)], [ f (x)h(x)]

)

,

where we assume that g(x) | xn − 1, f (x) | xn − 1 and h(x) satisfies that gcd(h(x)− β, xn −
1) = 1 for all non-zero β ∈ Fq. Then, a lower bound on the symplectic weight of Q is the
following value

dlow3(Q) = min{d([
xn − 1

gcd(h(x), xn − 1)
]),

1
q

d([ f (x)h(x)]) + d([ f (x)]),
1
q

d([g(x)h(x)]) + d([g(x)]),

d([ f (x)])d(h[x]), d(gcd(g(x)h(x), lcm( f (x), g(x)))),

d([lcm( f (x),
g(x)

gcd(g(x), h(x))
)]), d([lcm(g(x),

f (x)

gcd( f (x), h(x))
)]),

1
q
(d([g(x)]) + d([gcd( f (x), h(x)g(x))]) + (q − 1)d([gcd(g(x), f (x))])),

1
q
(d([ f (x)]) + d([gcd(g(x), h(x) f (x))]) + (q − 1)d([gcd(g(x), f (x))])),

1
q
(d([gcd(g(x)h(x), f (x))]) + d([gcd(g(x), f (x)h(x))]) + (q − 1)d([gcd(g(x), f (x))]))}.

Proof. The idea of the proof is similar to that of Theorem 1, and the detailed proof procedure
is given in Appendix A.
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The paper [41] gives the parameters of QECC constructed by symplectic dual code
QC and the condition for a QC to be a symplectic self-orthogonal code in type 3. Based on
the symplectic self-orthogonal condition, and the lower bound on the symplectic distance
given in this paper, combined with Lemma 3, we give QECCs with good parameters in the
next section.

Lemma 6. With the above notation, assume that the polynomial h(x) satisfies that gcd(h(x)−
β, xn − 1) = 1 for all non-zero β ∈ Fq and f (x) | g⊥e(x), h̄(x) = h(x), gcd(g(x), f (x)) = 1.
Then the type 3 QC code C = [2n, 2n − deg(g(x))− deg( f (x))] is symplectic dual-containing
linear code and the quantum code with parameters [[n, n − deg(g(x))− deg( f (x)),≥ dlow3]]q
can be constructed.

4. New QC Codes and QECCs

Similar to classical error-correcting theory, one of the core tasks of quantum error-
correcting theory is to construct QECCs with good parameters. For a QECC with parameters
[[n, k, d]]q, when the code length n and dimension k are fixed, it is desirable to obtain a
QECC with a larger minimum distance d. Similarly, when the minimum distance d is fixed,
it is desirable to make the code rate k/n as large as possible. Some bounds are proposed to
measure the merit of the parameters of QECCs, such as quantum Hamming bound [42,43],
quantum Singleton bound [44,45], and quantum GV-bound [46,47]. Quantum codes that can
achieve Singleton bound are called quantum MDS code. However, Huber and Grassl [48]
in 2020 proved that there are no quantum MDS codes with length larger than (q2 + d − 2)
over Fq. The QECCs that satisfy the GV-bound exist, so constructing QECCs beyond the
GV-bound is a major research problem for scholars.

Lemma 7. ([45] Quantum GV bound)
Suppose n > kGV ≥ 2, n = kGV (mod 2) and d ≥ 2, then there exist quantum codes with

parameters [[n, kGV , d]]q satisfying:

qn−kGV+2−1
q2−1

≥
d−1
∑

i=1
(q2 − 1)i−1

(

n
i

)

.

Once the dimension k of a QECC is greater than kGV , we consider that this quantum
code is good. The work in this paper improves the lower bounds that can help to exclude
bad results and reduce the computation power of finding new QC codes and QECCs with
good parameters. To a certain extent, the search scope is trimmed to be the first to filter out
the poor parameter cases, which helps to strengthen the overall grasp of the relationship
between QECCs and classical codes. Based on the new distance lower bounds we gave, we
give some QECCs that are nearly optimal using the algebra system Magma [49].

We provide some examples of good stabilizer QECCs coming from symplectic con-
struction. Then, for the construction of type 1, we can have the following examples based
on CRSS construction:

Example 1. Let q = 2 and n = 63. We can obtain a symplectic dual-containing QC code C of
length 126. The generator ([g(x)], [g(x) f (x)]) of C is specified as: g(x) = x48 + x47 + x43 +
x42 + x40 + x39 + x37 + x35 + x30 + x29 + x28 + x27 + x23 + x22 + x20 + x14 + x13 + x12 +
x11 + x8 + x7 + x6 + x4 + 1 and f (x) = x6 + x5 + x3 + x2 + 1. The definition set of each
polynomial does not intersect and, according to the lower bound given in Theorem 1, we can drive a
new binary [[63, 48, 4]]2 stabilizer quantum code.

In addition, according to Grassl’s code table [36], a code with parameters [[63, 48, 4]]2 is the
best known binary linear code with length 63 and dimension 48.

Example 2. In the same code length as in Example 1, let g(x) = x42 + x41 + x39 + x38 +
x37 + x32 + x31 + x30 + x29 + x24 + x19 + x17 + x16 + x13 + x12 + x11 + x10 + x9 + x8 + x7 +
x3 + x2 + x + 1, and f (x) = x15 + x14 + x12 + x11 + x10 + x7 + x5 + 1. the cyclic code
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generated by g(x) has parameter [63, 21, 16]2. As g⊥e(x) | g(x), the QC code of structure 1 is
symplectic self-orthogonal.

The minimum symplectic weight of the symplectic dual quantum code is 6. Therefore, we
obtain a binary quantum code with parameter [[63, 42, 6]]2, which is superior to the best-known
[[63, 42, 5]]2 binary quantum code that appeared in [36]. Although the lower bound of the symplectic
distance is not tight in this example, it reduces the computational cost required to obtain this
good code.

For the construction of type 2, we can give an example that improves the record in
Edel’s table [50] and breaks the GV bound.

Example 3. Let q = 3 and n = 23. Utilizing the cyclotomic cosets as defining sets of the
generator polynomial, we have g(x) = x11 + x10 + x9 + 2x8 + 2x7 + x5 + x3 + 2, f (x) =
x11 + x10 + x9 + 2x8 + 2x7 + x5 + x3 + 2, and h(x) = 2x22 + x21 + 2x20 + 2x19 + 2x17 +
x14 + 2x13 + 2x10 + x9 + 2x6 + 2x4 + 2x3 + x2 + 2x. Based on the polynomial given above,
the QC code C2 generated in type 2 is symplectic dual-containing code and we construct a QECC of
length 23, dimension 1, accordingly. The value of our lower bound is 8 and the QEEC given by our
construction is also 8. Although the dimension of this code is 1, our parameter also breaks the GV
bound. The best-known QECC of the same length and dimension in Edel’s code table is [[23, 1, 5]]3,
so our result improves the minimum distance in the code table.

The following is an example constructed from type 3.

Example 4. Let q = 2 and n = 51. The generator polynomials are in the following forms:
g(x) = x8 + x5 + x4 + x3 + 1, f (x) = x8 + x7 + x6 + x5 + x4 + x + 1, and h(x) = x48 + x45 +
x44 + x42 + x41 + x10 + x9 + x7 + x6 + x3. The QC code generated by the above polynomials is
symplectic dual-containing and has a minimum distance 5. The best distance for quantum codes of
the same code length and dimension known from Grassl’s code table is 4, so our result [[51, 35, 5]]2
improves the code table.

From this section, classical and quantum codes with better parameters are given for
different types of proposed QC code structures. These examples reflect the significance of
our work.

5. Conclusions

This paper investigates three classes of 1-QC and 2-QC codes, and determines the
parameters of the QECCs constructed on them. We mainly focus on the minimum distance
of the QECCs. As the calculation of the minimum distance of linear codes is NP-hard, we
reduce the difficulty of searching for the optimal QECCs by calculating a lower bound of
the symplectic distance of the QC codes. The lower bound is given to add constraints to the
search for QECCs with good parameters, enabling early exclusion of bad results that occur
during construction. In summary, our work can reduce computational power consumption
and help to search for QECCs with good parameters. Finally, some examples of record-
breaking or competitive binary QECCs are derived from the symplectic construction.

In the future, the structure of the 1-QC codes can be further investigated to calculate a
general form of a lower bound on the symplectic distance under arbitrary indexes, which are
useful for searching optimal codes. As mentioned in the introduction, QC codes are closely
related to many LDPC codes and Turbo codes [51]. However, the characteristics of the QC
codes used in the construction of LDPC are different from those utilized in this paper. Here
we look for the relationship between the generator elements and the minimum code distance
from the perspective of the QC code generator polynomial. The construction of quantum
LDPC is carried out with the help of knowledge of matrix theory and graph theory in [16,30].
How to implement the construction concretely is an open and interesting question.
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Appendix A

The proof for Theorem 2.

Proof. Consider the symplectic weight

ws = ws([a(x) f (x) + b(x)g(x)], [a(x) f (x) + b(x)g(x)h(x)]).

(1) If a(x) = 0, b(x) 6= 0 and b(x)g(x)h(x) = 0 which means (xn − 1) | b(x)g(x)h(x)
then ws = wH([b(x)g(x)]). The cyclic code generated by ([b(x)g(x)]) belongs to the
cyclic code generated by ([ xn−1

gcd(h(x),xn−1) ]), so ws ≥ d([ xn−1
gcd(h(x),xn−1) ]).

(2) If a(x) = 0, b(x) 6= 0, b(x)g(x)h(x) 6= 0, the ws = ws([b(x)g(x)], [b(x)g(x)h(x)]).
According to the relation between symplectic and Hamming weights of vectors from
Lemma 1 we have:

ws =
1
q
(wH([b(x)g(x)]) + wH [(b(x)h(x)g(x)]) + ∑

β∈Fq\{0}

wH([b(x)g(x)(β + h(x))])).

If deg(h(x)) < cw(b(x)g(x)), we have:

ws =
1
q
(wH(b(x)g(x)) + wH(b(x)h(x)g(x)) + ∑

β∈Fq\{0}

wH([b(x)g(x)])wH([h(x) + β]))

≥
1
q
(d([g(x)]) + qd([b(x)g(x)])− (q − 1))

≥
1
q
(d([g(x)])) + d([g(x)])d([h(x)])−

q − 1
q

≥
1
q
(d([g(x)])) + d([g(x)])d([h(x)]).

Else, the symplectic weight can be represented as:

ws ≥
1
q
(d([g(x)]) + d([h(x)g(x)]) + (q − 1)d([g(x)]))

≥ d([g(x)]) + d([h(x)g(x)])/q. (A1)

(3) Suppose a(x) 6= 0, b(x) = 0,
we have ws = ws([a(x) f (x)], [a(x) f (x)]) = wH([a(x) f (x)]) ≥ d([ f (x)]).
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(4) Suppose a(x) 6= 0, b(x) 6= 0, b(x)g(x)h(x) = 0, we can deduce that xn−1
gcd(xn−1,h(x))

|

b(x)g(x). The symplectic distance is ws = ws([a(x) f (x) + b(x)g(x)], [a(x) f (x)]).

ws =
1
q
(wH([a(x) f (x) + b(x)g(x)]) + wH([a(x) f (x)])

+ ∑
β∈Fq\{0}

wH([(β + 1)a(x) f (x) + βb(x)g(x)])). (A2)

(i) If xn − 1 | a(x) f (x) + b(x)g(x), we have

ws =
1
q
(wH([−b(x)g(x)]) + ∑

β∈Fq\{0}

wH([−b(x)g(x)]))

= wH([b(x)g(x)]) ≥ d([
xn − 1

gcd(xn − 1, h(x))
]).

(ii) If there exists a β0 ∈ F∗
q satisfying xn − 1 | (β0 + 1)a(x) f (x) + β0b(x)g(x), then

ws =
1
q
(wH([b(x)g(x)]) + wH([−β0b(x)g(x)]) + ∑

β∈Fq\{0}

wH([(β − β0)b(x)g(x)]))

≥ wH([b(x)g(x)]) ≥ d([
xn − 1

gcd(xn − 1, h(x))
]).

Else, if all summands in Equation (A2) are nonzero:

ws =
1
q
(wH([a(x) f (x) + b(x)g(x)]) + wH([a(x) f (x)])

+ ∑
β∈Fq\{0,q−1}

wH([(β + 1)a(x) f (x) + βb(x)g(x)]) + wH([(q − 1)b(x)g(x)]))

≥
1
q
(d([gcd(g(x), f (x))]) + d([ f (x)]) + (q − 2)d([gcd( f (x), g(x))]) + d([

xn − 1
gcd(xn − 1, h(x))

]))

=
1
q
((q − 1)d([gcd(g(x), f (x))]) + d([ f (x)]) + d([

xn − 1
gcd(xn − 1, h(x))

]))

(5) Suppose now that a(x) 6= 0, b(x) 6= 0, b(x)g(x)h(x) 6= 0,

ws =
1
q
(wH([a(x) f (x) + b(x)g(x)]) + wH([a(x) f (x) + b(x)g(x)h(x)])

+ ∑
β∈Fq\{0}

wH([(β + 1)a(x) f (x) + b(x)g(x)(β + h(x))])). (A3)

In case the first summand in Equation (A3) is zero, we get

ws = wH([(h(x)− 1)b(x)g(x)])

≥ d([g(x)(h(x)− 1)]).

In case the second summand in Equation (A3) is zero, we get

ws =
1
q
(wH([a(x) f (x) + b(x)g(x)]) + ∑

β∈Fq\{0}

wH([β(a(x) f (x) + b(x)g(x))]))

≥ d([g(x)(h(x)− 1))]).
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If some summand of the summation in Equation (A3) is zero, then (β0 + 1)a(x) f (x) =
−(h(x) + β0)b(x)g(x) for a β0 ∈ F∗

q . So we have lcm( f (x), g(x)) | b(x)g(x) as h(x) + β is
a unit. So

ws =
1
q
(wH([a(x) f (x) + b(x)g(x)]) + wH([a(x) f (x) + b(x)g(x)h(x)])

+ ∑
β∈Fq\{0}

wH([(β + 1)a(x) f (x) + b(x)g(x)(β + h(x))]))

≥
1
q
(wH([(h(x)− 1)b(x)g(x)]) + wH([β0(h(x)− 1)b(x)g(x)])

+ ∑
β∈Fq\{0}

wH([(β0 − β)(h(x)− 1)b(x)g(x)]))

≥ wH([b(x)g(x)]) ≥ d([lcm( f (x), g(x))]).

Otherwise,

ws =
1
q
(wH([a(x) f (x) + b(x)g(x)]) + wH([a(x) f (x) + b(x)g(x)h(x)])

+ ∑
β∈Fq\{0}

wH([(β + 1)a(x) f (x) + b(x)g(x)(β + h(x))]) + wH([b(x)g(x)(q − 1 + h(x))]))

≥
1
q
(d([gcd( f (x), g(x))]) + d([gcd( f (x), g(x)h(x))]) + (q − 2)d([gcd( f (x), g(x))]) + d([g(x)]))

≥
1
q
((q − 1)d([gcd( f (x), g(x))]) + d([gcd( f (x), g(x)h(x))]) + d([g(x)]))

≥
1
q

d([gcd( f (x), g(x)h(x))]) + d([gcd( f (x), g(x))]).

Then we conclude the proof.

The detailed proof for Theorem 3 is as following.

Proof. To obtain the lower bound of the symplectic weight of the QC code Q, we need to
consider the codewords in the following form

ws = ws([a(x)h(x)g(x) + b(x) f (x)], [a(x)g(x) + b(x) f (x)h(x)]).

(1) If a(x) = 0, b(x) 6= 0 and b(x) f (x)h(x) = 0 which means (xn − 1) | b(x) f (x)h(x)
then ws = wH([b(x) f (x)]). The cyclic code generated by [b(x) f (x)] belongs to the
cyclic code generated by [ xn−1

gcd(h(x),xn−1) ], so ws ≥ d([ xn−1
gcd(h(x),xn−1) ]).

(2) If a(x) = 0, b(x) 6= 0 and b(x) f (x)h(x) 6= 0, we have

ws = ws([b(x) f (x)], [b(x) f (x)h(x)])

If deg(h(x)) < cw(b(x) f (x)), then wH([b(x) f (x)h(x)]) = wH([h(x)])wH([b(x) f (x)]).
So the symplectic weight can be expressed as:

ws ≥
1
q
(wH([b(x) f (x)]) + wH([b(x) f (x)h(x)]) + ∑

β∈Fq\{0}

wH(b(x) f (x)(β + h(x))))

≥
1
q
(d([ f (x)]) + d([ f (x)])d([h(x)]) + (q − 1)d([ f (x)])− d([ f (x)]))

= d([ f (x)])d([h(x)]).
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Else,

ws ≥
1
q
(d([ f (x)]) + d([ f (x)h(x)]) + (q − 1)d([ f (x)]))

=
1
q

d([ f (x)h(x)]) + d([ f (x)]).

(3) If a(x) 6= 0, b(x) = 0 and a(x)h(x)g(x) = 0, similar to case (1) we have ws ≥

d([ xn−1
gcd(h(x),xn−1) ]).

(4) If a(x) 6= 0, b(x) = 0 and a(x)h(x)g(x) 6= 0, the symplectic weight is represented as

ws = ws([a(x)h(x)g(x)], [a(x)g(x)])

= ws([a(x)g(x)], [a(x)h(x)g(x)])

≥
1
q

d([g(x)h(x)]) + d([g(x)]).

(5) Suppose now that a(x) 6= 0, b(x) 6= 0, b(x)h(x) f (x) 6= 0 a(x)h(x)g(x) = 0, then the
symplectic weight is

ws = ws([b(x) f (x)], [a(x)g(x) + b(x) f (x)h(x)])

=
1
q
(wH([b(x) f (x)]) + wH([a(x)g(x) + b(x)h(x) f (x)])

+ ∑
β∈Fq\{0}

wH([(β + h(x))b(x) f (x) + a(x)g(x)])). (A4)

In case the second summand in Equation (A4) is zero, we get

ws = wH([b(x) f (x)])

and [b(x) f (x)] belongs to the cyclic code generated by [ g(x)
gcd(g(x),h(x))

]. So

ws ≥ d
(

[lcm( f (x), g(x)
gcd(g(x),h(x))

)]
)

.

If some summand of the summation in Equation (A4) is zero, then [(β+ h(x))b(x) f (x)] =
−[a(x)g(x)] for some β ∈ F∗

q . This means that lcm( f (x), g(x)) | b(x) f (x) as h(x) + β is
a unit. So

ws ≥ wH([b(x) f (x)]) ≥ d(lcm( f (x), g(x))).

Otherwise (all summands in Equation (A4) are nonzero)

ws ≥
1
q (d([ f (x)]) + d([gcd(g(x), h(x) f (x))]) + (q − 1)d([gcd(g(x), f (x))])).

(6) Suppose now that a(x) 6= 0, b(x) 6= 0, b(x)h(x) f (x) = 0 and a(x)h(x)g(x) 6= 0, then
the lower bound of symplectic weight is similar to (5).

(7) Suppose now that a(x) 6= 0, b(x) 6= 0, b(x)h(x) f (x) 6= 0 and a(x)h(x)g(x) 6= 0, then
the symplectic weight is

ws = ws([a(x)g(x)h(x) + b(x) f (x)], [a(x)g(x) + b(x) f (x)h(x)])

=
1
q
(wH([a(x)g(x)h(x) + b(x) f (x)]) + wH([a(x)g(x) + b(x)h(x) f (x)])

+ ∑
β∈Fq\{0}

wH([(β + h(x))b(x) f (x) + (βh(x) + 1)a(x)g(x)])). (A5)
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In case the second summand in Equation (A5) is zero, then we can deduce xn −

1 | a(x)g(x) + b(x) f (x)h(x) | a(x)g(x)h(x) + b(x) f (x)h2(x) and lcm( f (x), g(x)
gcd(g(x),h(x))

) |

b(x) f (x). So

ws = wH([a(x)g(x)h(x) + b(x) f (x)])

= wH(b(x) f (x)(h2(x)− 1))

≥ d([lcm( f (x),
g(x)

gcd(g(x), h(x))
)]).

The calculation process is the same if the first summand is zero:

ws ≥ d([lcm(g(x), f (x)
gcd( f (x),h(x))

)]). If some summand of the summation in Equation (A5) is

zero, then [(β0 + h(x))b(x) f (x)] = −[(β0h(x) + 1)a(x)g(x)] for some β0 ∈ F∗
q . This means

that lcm( f (x), g(x)) | b(x) f (x) as h(x) + β is a unit. So

ws ≥
1
q
(2d([gcd(g(x)h(x), lcm( f (x), g(x)))]) + (q − 2)d([gcd(g(x)h(x), lcm( f (x), g(x)))])) (A6)

≥ d(gcd(g(x)h(x), lcm( f (x), g(x)))) (A7)

Otherwise (all summands in Equation (A5) are nonzero)

ws ≥
1
q
(d([gcd(g(x)h(x), f (x))]) + d([gcd(g(x), f (x)h(x))]) + (q − 1)d([gcd(g(x), f (x))]))

which concludes the proof.
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