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Abstract. Heavy ion induced double charge exchange reactions are treated as
an incoherent sequence of two reactions driven by the exchange of charged
mesons (double single charge exchange, DSCE). The process is described
within a fully quantum mechanical distorted wave 2-step theory (2nd order
DWBA). The DSCE reaction amplitudes are shown to be separable into su-
perpositions of distortion factors, accounting for initial and final state ion-ion
elastic interactions, and nuclear matrix elements (NMEs). Explicit expressions
of projectile and target NMEs are derived within the QRPA theory. Reduc-
tion schemes for the DSCE transition form factors are described, analizing their
momentum structure within the closure approximation. Formal analogies be-
tween the NMEs involved in DSCE reactions and in double beta decays are
also pointed out. Results, obtained within this theoretical framework, are il-
lustrated for the reaction 40Ca (18O, 18Ne)40Ar at 15.3 AMeV and compared to
the data measured at INFN-LNS by the NUMEN Collaboration. Furthermore,
preliminary results for reactions involving heavier systems, such as 76Se (18O,
18Ne)76Ge, are shown.

1 Introduction

Nuclear charge exchange transitions are processes characterized by the change of the nu-
clear charge by one or more units, while keeping the mass number constant. These tran-
sitions can be spontaneous or external-field-induced processes. The former include weak
decays (β, ββ decays), while the latter comprise reactions induced by the nuclear strong
interaction (charge-exchange reactions). The study of nuclear charge-changing transitions
allows to gain information useful for different fields of physics, from astrophysics to nu-
clear and particle physics. Nowadays, double charge-exchange (DCE) nuclear reactions, i.e.
a(N, Z)+A(N, Z)→ b(N±2, Z∓2)+B(N∓2, Z±2) transitions, are attracting increasing inter-
est. Indeed, such reactions are used to probe spin and isospin components of NN interaction
potential and to study exotic nuclear systems, such as the tetra-neutron system through the
double charge-exchange reaction 4He(8He, αα)4n [1]. In particular, the recent development
of high resolution experiments led to a renewed interest in heavy ion induced DCE reactions
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(HIDCE), because this kind of reactions could offer the possibility to explore new collective
modes of nuclear matter (e.g. DIAS and the not yet observed DGTGR) and to provide data-
driven information on 0νββ decay nuclear matrix elements. Concerning the latter topic, the
NUMEN collaboration (LNS, Catania) studies HIDCE reactions with the aim of constraining
the nuclear matrix elements (NMEs) involved in 0νββ decay from measurements of HIDCE
cross sections [2]. The latter is a theorized weak decay characterized by the emission of two
charged leptons with no neutrino emission, A(N, Z) → A(N ± 2, Z ∓ 2) + 2e±; it is worth
noting that this decay is not allowed within the Standard Model of particle physics, because
it would imply total lepton number violation (∆L = 2). Moreover, 0νββ decay would hap-
pen only if neutrinos have non-zero mass and are Majorana particles, meaning that they are
their own anti-particle. The observation of 0νββ decay would allow to shed light on physics
beyond the Standard Model and also on the origin of matter-antimatter asymmetry in the
Universe. An accurate estimate of 0νββ NMEs is of fundamental importance to get a reli-
able prediction of the decay half-life. Hitherto, the numerous attempts made for evaluating
these NMEs, using several theoretical approaches, at various levels of sophistication, led to
results still showing significant discrepancies [3]. In this respect, HIDCE reactions turn out
to be an interesting tool to infer data-driven information on double-beta decay NMEs. A first
step towards the feasibility of this kind of studies is represented by the existence of a linear
correlation between the NMEs of DGT-DCE reactions and 0νββ decay, proved by different
nuclear structure models [4, 5].

HIDCE nuclear reactions can be fed by two reaction mechanisms:
• a sequence of (correlated or uncorrelated) exchange of charged mesons (direct or hard

processes);
• sequential multi-nucleon transfers feeding DCE (mean-field or soft processes)[6, 7].

The present work focuses on the former reaction mechanism, which is the one allowing
to describe HIDCE reactions by means of the same spin-isospin transition operator involved
in double beta decays, thus allowing to recover analogies between these processes.

Direct HIDCE reactions can be described as a sequence of two uncorrelated SCE reac-
tions (each one induced by charged-meson exchange), i.e. as a two-step process (Double
Single Charge Exchange, DSCE). Correlations between the two SCE reactions can also be
accounted for, thus leading to the description of an effective-one-step process (Majorana-
like reaction mechanism, MDCE) [8]. In these proceedings, we focus on the DSCE reaction
mechanism. In [9], it is proved that DSCE and 2νββ NMEs show similar structures, even
if the former is characterized by a considerable more complex multipole and spin structure.
Moreover, noting that both DSCE reactions and 0νββ decay involve the same nuclear states
in the (off-shell) intermediate channel, a possible connection can exist also between these
processes.

A further step toward the extraction of data-driven information on double beta decay
NMEs, is given by the possibility to factorize the HIDCE cross section [9], allowing to dis-
entangle the information concerning projectile and target nuclear structure from reaction dy-
namics. However, the formalism outlined in [9, 10] does not provide a connection among the
DSCE cross section and projectile and target DSCE NMEs, separately. Hence, an extension
of the formalism is necessary in order to disentangle projectile and target nuclear structure
information. The formalism allowing to reach this goal is discussed below.

2 The s-channel formalism
The heavy ion DSCE cross section is treated within second order DWBA. This theoretical
framework allows to express the DSCE transition matrix element (TME) as the convolution

of two SCE TMEs, and the Green function, Gγ, accounting for the (free) propagation of
the nuclear system generated by the first SCE reaction, as already shown in [9] (t-channel
representation). A proper rotation in angular momentum space allows to decouple projectile
and target angular momenta involved in the two-step transition (s-channel representation)
[10].

After performing this unitary transformation and by properly treating the nuclear states
populating the intermediate channel within the closure approximation, the DSCE TME can
be written as

T (kα, kβ) ≃
∑

c,C

∑

S ,M
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∫
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where Nαβ(η) is the DSCE distortion factor, VS T (q) is the Fourier transform of the NN inter-
action terms and the F(XY)

S i
(q) terms represent the Fourier transform of projectile (lower case

apices) and target (upper case apices) one-body transition densities, embedding information
on the reduced matrix element of the SCE transition operator and accounting for first (i=1)
and second (i=2) SCE transition. The propagator is not shown in (1), because it reduces to a
constant term, owing to the closure approximation. Eq. (1) shows projectile and target tran-
sition densities still entangled. Hence, in order to separately access these transition densities,
i.e. the DSCE NMEs of the two interacting nuclei, further approximations are necessary. For
this purpose, after a simple change of integration variables (η = q1 + q2 and ξ = q1 − q2), the
following two approximations are used:
• average-ρ approximation
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where the above simple expression of target 2-body transition density (2BTD) is obtained
averaging the product of the Fourier transforms of first and second step SCE one-body
transition densities (OBTDs) over the half-off-shell linear momentum transfer ξ (the same
expression is found for projectile 2BTD). Vξ is a normalization factor with the dimesions of
a volume in momentum space, that allows to recover the correct dimension of the 2BTDs.
• collinear approximation
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where only the contribution from ξ = 0, is considered for each of the two SCE OBTDs, i.e.
equal momenta transfers are assumed in the two SCE reactions. Here, fcoll is a dimension-
less normalization factor used to scale results to the θ = 0 value of the angular distribution
obtained in t-channel.

Within both approximations, the remaining integral over ξ, in eq. (1), allows to get the
following quite simple expression of the DSCE NN interaction potential

VDS CE
S 1S 2T (η) ≡ (2π)3

∫

d3r VS 1T (r)VS 2T (r)eiη·r (4)

In this way, both collinear and average-ρ approximations lead to the following single-step
like expression of the DSCE TME,
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where x = 1 for average-ρ approximation and x = 2 for collinear approximation. For a TME
expression like that of eq. (5) it is possible to get a factorised expression for small momentum
transfer values [11], leading in turn to the following factorized DSCE cross section expression

dσ
dΩ
≃η≪1 |ρ̃

2BT D
P (

kαβ
x

)|2|ρ̃2BT D
T (

kαβ
x

)|2|VDS CE
S 1S 2T (kαβ)|2|ñαβ(kαβ)|2, (6)

where the distortion coefficient ñαβ(kαβ) is defined by the relation Nαβ(η) = δ(η −
kαβ) ñαβ(kαβ). Eq. (6) is a crucial step toward inferring data-driven information on DCE
NMEs.

3 Results
To assess the quality of the approximations discussed in section 2, s-channel results are
compared to calculations obtained within the t-channel representation (i.e. results obtained
within the formalism described in [9]). Here, the results for the test reaction 40Ca(18O,
18Negs)40Args are illustrated (fig. 1), together with preliminary results for the reaction
76Se(18O, 18Negs)76Gegs (figs. 2 and 3), studied within the NUMEN collaboration.

Initial and final state interactions are properly accounted for by means of São Paulo optical
potentials [12] with parameters suitably tuned through the standard analysis of elastic and
inelastic channel experimental angular distributions [13, 14].

Fig. 1 illustrates that, for the test system 40Ca +18O, the average-ρ approximation allows
to reproduce both the order of magnitude and the diffraction pattern at small scattering angles
of t-channel calculations, while the collinear approximation gives a better description of the
t-channel diffraction pattern,without, however, reproducing the t-channel order of magnitude
( fcoll ≪ 1 in the legends).
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Figure 1. Comparison between t-channel (light green line) and s-channel (average-ρ and collinear
approximations) DWBA DSCE angular distributions for the reaction 40Ca(18O, 18Negs)40Args at 15.3
AMeV. NUMEN data are also shown [2].

Fig.1 also shows the experimental angular distribution, measured by the NUMEN collab-
oration [2]: for this test DCE reaction, (t-channel) DSCE calculations allow to recover the

order of magnitude and the trend of the data. Of course, to make a reliable comparison with
DCE data, it is necessary to coherently sum the contribution from all the possible reaction
mechanisms, i.e., the DSCE mechanism described here, the MDCE reaction mechanism and
the multi-nucleon transfer feeding DCE, even if the latter is expected to be negligible for the
nuclear systems studied [6, 7].
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Figure 2. 76Se two body radial transition densities as a function of two-step linear momentum transfer
q, for different intervals of Jγ. Upper panel shows average-ρ calculations, while lower panel illustrates
results within the collinear approximation. These 2BTDs are evaluated integrating up to ET

γ = 50 MeV.

Similarly, for 76Se(18O, 18Negs)76Gegs DSCE angular distributions, the collinear approxi-
mation result needs a huge scaling to reach the first maximum of the t-channel angular distri-
bution, while the average-ρ approximation allows to reproduce t-channel order of magnitude,
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Figure 2. 76Se two body radial transition densities as a function of two-step linear momentum transfer
q, for different intervals of Jγ. Upper panel shows average-ρ calculations, while lower panel illustrates
results within the collinear approximation. These 2BTDs are evaluated integrating up to ET

γ = 50 MeV.

Similarly, for 76Se(18O, 18Negs)76Gegs DSCE angular distributions, the collinear approxi-
mation result needs a huge scaling to reach the first maximum of the t-channel angular distri-
bution, while the average-ρ approximation allows to reproduce t-channel order of magnitude,
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trend and diffraction pattern at small scattering angles (θ � 6◦), with the caveat of not includ-
ing transitions of too high multipolarity in the intermediate channel (see fig. 3).

The trend and diffraction pattern of s-channel calculations can be understood looking at
the contributions of each total angular momentum Jγ to the 2BTDs of projectile and target
nuclei, within the two approximations discussed above. Fig. 2 illustrates 2BTDs for the
target nucleus 76Se (76Segs →76Gegs two-step transition); upper panel refers to average-ρ
calculations and lower panel to the collinear approximation. Each of the two panels in fig. 2
contains three plots, illustrating the 2BTDs for the three possible combinations of two-step
orbital angular momentum transfer, L12, SCE and two-step spin transfers, S 1, S 2 and S 12,
respectively, contributing to the 0+ → 0+ DCE transition studied.

Fig. 2 illustrates that the collinear approximation strongly suppresses contributions from
multipolarities higher than Jγ = 1, at q = 0, and Jγ = 3 for larger values of the two-step linear
momentum transfer q. Instead, within the average-ρ approximation high multipolarities are
less suppressed already for small linear momentum transfer values (significant contributions
come from high multipolarities, such as Jγ = 4, 5 already at q = 0). Similar results are ob-
tained for projectile 2BTDs and for the ligther target nucleus, 40Ca. In [9] it is proved that
t-channel results accounts for more Jγ contributions than the collinear approximation. Hence,
on the one side, the strong suppression of high multipolarity intermediate channel transitions,
together with the small values of fcoll, makes the collinear approximation less reliable than
average-ρ. On the other side, the full separation of projectile and target degrees of freedom,
through the whole two-step process, leads to a smoother suppression of high multipolarity
contributions within the average-ρ approximation than within the t-channel representation.
Thus, the average-ρ approximation can be considered more reliable if calculations are ex-
tended at most up to the same Jγ value leading to convergent results within the t-channel
representation.

Accounting for high multipolarity transitions within the intermediate reaction channel
has a big impact on the average-ρ DSCE angular distribution: fig. 3 clearly illustrates that
considering multipolarities up to Jγ = 4, the average-ρ approximation nicely reproduces the
t-channel angular distribution, while adding higher multipolarities, e.g. up to Jγ = 9, leads

to results that do not recover the correct order of magnitude and that, in the region θ > 6◦,
present a bump and a shift of the minima towards higher θ values with respect to the t-channel
angular distribution.

To summarize, the average-ρ approximation leads to a reliable factorized expression of
the DSCE angular distribution, with the caveat of excluding spurious contributions from high
multipolarity nuclear states populated in the intermediate channel.

4 Outlooks and Conclusions
HIDCE reactions are described as two-step processes within second order DWBA. A proper
extension of the s-channel formalism illustrated in [10], adopting the average-ρ or the
collinear approximation, allows to get quite simple expressions of projectile and target 2BTDs
and two-step NN interaction potential. Both approximations allow to get an expression of
DSCE TME (and thus of DSCE cross section), where projectile and target NMEs appear
separately. This interesting result represents a first step towards the extraction of informa-
tion on double beta decay-like NMEs, once the contributions from all the possible reaction
mechanisms are coherently accounted for. In particular, the average-ρ approximation, within
the s-channel representation of the DSCE reaction, leads to reliable results, showing small
discrepancies, which are under control, with respect to the pilot calculations, i.e. the ones
obtained within the t-channel representation.

However, further improvements of the present formalism are in progress. Moreover, it is
necessary to improve the nuclear structure inputs used (check of nuclear deformation effects,
use of nuclear structure inputs better reproducing the available experimental nuclear energy
spectra, for instance). Furthermore, the use of different nuclear structure models (QRPA,
Shell Model, IBM, etc.) is envisaged and the coherent sum of all the reaction mechanisms
feeding DCE (once available) should be performed. The extension of the DSCE calculations
to 0+ → Jπ DCE reactions, with Jπ � 0+, is also a task in progress.
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