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Abstract. The ordinary Bondi-Metzner-Sachs (BMS) group B is the common asymptotic
symmetry group of all radiating, asymptotically flat, Lorentzian space-times. As such, B
is the best candidate for the universal symmetry group of General Relativity. However, in
studying quantum gravity, space-times with signatures other than the usual Lorentzian one,
and complex space-times, are frequently considered. Generalisations of B appropriate to these
other signatures have been defined earlier. In particular, the generalization B(2,2) appropriate
to the ultrahyperbolic signature (+,4,-,-) has been described in detail, and the study of its
irreducible unitary representations (IRs) has been initiated. The infinite little groups of B(2,2)
have been given explicitly but its finite little groups have only been partially described. All the
information needed in order to construct the finite little groups is given. Possible connections
with gravitational instantons are being put forward.

1. Introduction

The best candidate for the universal symmetry group of General Relativity (G.R), in any
signature, is the so called Bondi-Metzner-Sachs (BMS) group. These groups have recently been
described [1] for all possible signatures and all possible complex versions of GR as well. The
induced irreducible representations (IRs) have also been classified and constructed for complex
GR, and, in more detail, for ultrahyperbolic GR [2].

In earlier papers [1, 2, 3, 4] it has been argued that the IRs of the BMS group and
of its generalizations in complex space-times as well as in space-times with Euclidean or
Ultrahyperbolic signature are what really lie behind the full description of (unconstrained)
moduli spaces of gravitational instantons. Kronheimer [5, 6] has given a description of these
instanton moduli spaces for Fuclidean instantons. However, his description only partially
describes the moduli spaces, since it still involves constraints. Kronheimer does not solve the
constraint equations, but it has been argued [1, 4] that IRs of BMS group (in the relevant
signature) give an unconstrained description of these same moduli spaces.

The representation theory of B(2,2), which is the BMS group in ulatrahyperbolic signature, has
been initiated in [2]. It turns out [2] that the problem of constructing the IRs induced from
finite little groups reduces to a seemingly very simple task; that of classifying all subgroups of
the Cartesian product group C, x Cp,, where C; is the cyclic group of order r, r being
finite. Surprisingly, this task is less simple than it may appear at first sight. It turns out that
the solution is constructed from the “ fundamental cases ” n = p%, m = p”, (n,m are powers
of the same prime), via the prime decomposition of m and n.

Now, the moduli spaces associated with instantons arise from only one factor of C, x Cy, (
Cy x I for anti-self dual solutions, I x Cp, for self dual, I being the identity). The groups
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described here seem [4] to be associated, rather, with the far more general mizture of self-dual
and anti-self-dual solutions. Furthermore, this will also apply to the IRs for other signatures,
or for complex space-times. Thus, in all cases, BMS IRs are likely to be related to generalized
instantons.

In this paper we restrict attention to B(2,2). In Section 2 a summary of the results obtained
so far on the representation theory of B(2,2) group is given. In Section 3 it is shown that the
problem of determining the subgroups of C,, x Cy, can be reduced to the problem of determining
the subgroups of Cpa x C,5. Then explicit expressions for the generators of the cyclic and non-
cyclic subgroups of Cpe x Cs are given, and, finally, generators of the subgroups of C, x Cp,
are described in detail.

2. Summary of the representation theory of the Ultrahyperbolic BMS group
B(2,2)

The original BMS group B was discovered by Bondi, Metzner and Van der Burg [7]
for asymptotically flat space-times which were axisymmetric, and by Sachs [8] for general
asymptotically flat space-times, in the usual Lorentzian signature. The group B(2,2) is a different
generalised BMS group, namely the one appropriate to the “ultrahyperbolic” signature, and
asymptotic flatness in null directions. We now give a condensed summary of the representation
theory of B(2,2) given in [2]. Recall that the ultrahyperbolic version of Minkowski space is the
vector space R* of row vectors with 4 real components, with scalar product defined as follows.
Let 2,y € R* have components z* and y* respectively, where = 0,1,2,3. Define the scalar
product x.y between x and y by

zy = 2%y° + 2%y — zlyt — 235, (1)

Then the ultrahyperbolic version of Minkowski space, sometimes written R??, is just R* with
this scalar product. The “2,2” refers to the two plus and two minus signs in the scalar product.
The group B(2,2) is given by

B(2,2) = L{(T*) @rG" 2)
where the representation T' of G? on L2(T?) which defines this semi-direct product is given by
(T'(g, h)a)(m, n) = k(m, g)k(n, h)o([mg] , [nh]) (3)

for « € L2(T?). G2 =G x G

(G = SL(2,R)) and L%(T?) is the Hilbert space of of all even square integrable functions
defined on T2, where T? = S! x S is the 2-torus. Let Sp = R?> — 0 be the set of all nonzero
row vectors = (x1,x2) with both components real. Here Sp is the “spin space” appropriate
to N C R*2. The null cone N' C R?? is just the set of nonzero vectors with zero length:
N = {ze R*? |2 #0, zao= 0}. We introduce “polar” coordinates into Sp? = R2 -0 as
follows. With each vector z = (z1,x3) € Sp, we associate the radius r = |z| = /2% + 23, with

the square root always taken positive, and the unit length vector m = [x] = x/|z| having the
same direction as z. Thus we have

x=rm, r=|z|, m=lz]=uz/|z|. (4)

Let S C Sp be the set of vectors of unit length in Sp : S = {z € Sp | |z| = 1}. Each factor
of T2 = S x S! is given by the last equality. If (z,y) € Sp?, define the radius and direction of
x by equation (4), and the radius ¢ and direction n of y by

y=tn, t=lyl, n=[yl=y/lyl (5)
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The set of all real valued functions o : T2 — R, o € L2(T?), are even, that is, they satisfy
the even-ness condition a(—m, —n) = a(m,n). The k—factors which appear in (3) are given by
k(m,g) = |mg|, and similarly, k(n, h) = |nh|. Finally, [mg] = (xg)/ |zg|, and, [nh] = (yh)/ |yh|.
L?(T?) is endowed with the Hilbert topology by using a natural measure on T? and G? is
endowed with the standard topology. In the product topology of L2(T?) x G?, B(2,2) then
becomes a topological group. Let L2(T?)’ be the set of continuous linear functionals on L?(T?).
As is well known, the topological dual L2(T?)" of L?(T?) can be identified with L2(T?) itself.
The action T of G? on L?(T?) induces a dual action T’ of G% on L?(T?)" by setting, for each
a € LE(T?),

(T'(g,h)¢, T(g, h)e) = (¢, a), (6)

where ¢, a € Ho(T?), (9,h) € G* and ((, ) is the value of the linear functional ¢ on a € L2(T?).
It is this dual action 7' on L?(T?)" which determines the structure of the IRs of B(2,2). The
dual action is given by

(T"(g, 1)) (m,n) = k> (m., g)k™*(n, h)(([mg], [nh]) - (7)

Attention is confined to measures on L?(T?)" which are concentrated on single orbits of the
G%—action T’. These measures give rise to IRs of B(2,2) which are induced in a sense
generalising [9] Mackey’s [10] . This induction is materialised as follows. Let O C L2(T?)’ be
any orbit of the dual action 7" of G? on L?(T2)". There is a natural homomorphism O ~ G2/L,
where L, is the ‘little group’ of the point {, C O. Let U be a continuous irreducible unitary
representation of L, on a Hilbert space H,. Every coset space O can be equipped with a unique
class of measures which are quasi-invariant under the action T of G?. Let u be any one of these.
Let H = L?(O, u, H,) be the Hilbert space of functions f : O — H, which are square integrable
with respect to pu. From a given (, and any continuous irreducible unitary representation U of
L, on a Hilbert space H, a continuous irreducible unitary representation of B(2,2) on H can
be constructed. The representation is said to be induced from U and (, and is given by

(00f)(0) = [floy'0),
(af)(e) = €& f(p), (8)

where 0, 0, € G? and (0(,, @) is the scalar product in L?(T?). Different points of an orbit O have
conjugate little groups and give rise to equivalent representations of B(2,2). In the product
topology of L2(T?) x G?, B(2,2) is not locally compact and as a consequence the problem
of determining IRs of B(2,2) arising from strictly ergodic actions T of G? on L2?(T?) is
hopeless. To conclude, every representation of B(2,2) determined uniquely (up to equivalence)
via induction by (1) an orbit @ € L2(T?)’, (2) a class of equivalent IRs of any little group L,,
is irreducible [11]. It is not known if there are other IRs of B(2,2) emanating from strictly
ergodic actions. All the little groups of B(2,2) are compact. The little groups L, for B(2,2)

are the closed subgroups of K = SO(2) x SO(2) which contain the element (—I,—I). These
are (A) K itself, (B) a class of one dimensional not connected Lie groups which are described
in detail in [2] , and (C) all finite subgroups containing (—1,—I). The finite subgroups of
K = S0(2) x SO(2) are precisely the subgroups of C,, x Cy, where both n and m are finite.
These subgroups are not given in [2] and so we proceed now to construct them explicitly.

3. Construction of the subgroups of C, x C,,.
The following proposition shows that the problem of finding the subgroups of C, x Cy, is reduced
to the problem of finding the subgroups of Cpa x Cs.

Proposition 1 Let C, x C, be the direct product of the cyclic groups of finite order C,
and Cp. Let n =pi'- p?---p® and m = p}'- pi --- pl* be the prime decomposition
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of the integers n and m, ie., p; , i=1,2,...,s, are distinct prime numbers and r; , t; are
non-negative integers. Any subgroup of C, x C,, has the form

qul X Cq§2 x...xCp 9)

i.e., is a direct product where the numbers qi,q2,...,q, are prime and each one of them
appears at most twice. For any qj, j = 1,2,...,0, there exists a p;, i =1,2,...,s, so that
gj = pi- When q; appears once A; € [1,max(rj,t;)]. When g; occurs twice, say qj = qjx,
then one of the indices Aj, Ajjk belongs to [1,1;] and the other one belongs to [1,t;]. For
every subgroup of C, x Cy, the expression (9) is unique.

The group Cpa x Cps is a finite abelian group and therefore its rank is higher than the rank
of any of its subgroups. Consequently, the subgroups of Cpe x C,s have either one or two
generators. The following two propositions give explicit expressions for the generators of the
cyclic subgroups of Cpe x Cps, whereas, the theorem which follows gives explicit expressions for
the generators of the non-cyclic subgroups of Cpe x Cs.

Proposition 2 Let p be a prime number and let a and [ be positive integers. Let Cpa and Cpp
be cyclic groups of order p® and p° respectively. When 1 < k < min(a, 3) the direct product
Cpa x Cpp has pX 4+ pX7 1 ceyclic subgroups of order pX. The generators of these subgroups are
given by
(i) o
(:L,rp 7yp ) , € {07172"“,];)1{_1} ) (10)
and ,

(ii)

@y L pe {0l -1y (11)
where x and y are generators of the groups Cpe and Cys respectively. The parameters

r, which takes values in the set {O,l,...,pk — 1}, and p, which takes values in the set
{0,p,2p, ..., (P*~! — 1)p}, parameterize the distinct p* + p*~1 groups .

Proposition 3 Let p be a prime number and let a be a non-negative integer and let 5 be a
positive integer. Let Cpa and Cps be cyclic groups of order p* and p? respectively. The direct
product Cpa X Cps has p® cyclic subgroups of order pX, where a < k < . The generators of
these subgroups are the following

(2, 9°7%), je{0,1,2,...,p* -1}, (12)

where x and y are generators of the groups Cpa and Cpp respectively. The parameter j, which
takes values in the set {0,1,...,p* — 1}, parametrises the groups .

In the following theorem the generators of the non-cyclic subgroups of Cpe x Cp,s are given.

Theorem 1 Let p be a prime number and let k , 1 , a , (B be integers which satisfy
0< k< 1< Banda <. Let Cpa x Cyp denote the direct product of the cyclic groups
Cpa and Cps and let Cp x Cy1 denote the direct product of the cyclic groups Cpx and Ci. Then

(1)) When 0 <k <1< a < f3 the group Cpe X Cps  has P + pI subgroups which are
isomorphic to the group Cp x C,i . From these subgroups, P~k are generated by the

elements
a—1 —1 a—k

(2™ ,ypﬁ ), (2" ,1),  where re{0,1,2,...,p K -1},

1-k—1

and the remaining p subgroups are generated by the elements

(xpail,yppﬁilﬂ) , (1, ypﬁik), where p € {0,1,2, apTR o 1}.
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(ii) When 0 <k < a <1< 8 the group Cpa x Cps has p*™* subgroups which are isomorphic
to the group Cpx X Cpi . These p®~ % subgroups are generated by the elements

a—k

(:Uj,ypﬁil) , (@ 1), where je€ {0,1,2,...,p“_k— 1}.

The task of writing explicit expressions for the generators of the subgroups of C, X
Cn is facilitated by the use of the set Sp of the permutations of s pairs of numbers

DB ;b ..
(p(lllvpll)v (p827p22)a ey (Pgs,Pss) . Let P € S’P' By P(pial’pj ) = (p?Jaij) ) 17J = 1727 ""Sa we
denote that the permutation P moves the pair (p{",p;*) at the i*® position, to the j'* position.
Obviously, p; = pj, ai = a;, and, 5; = b;. By using Propositions 2, 3 and Theorem 1 we can give
explicit expressions for the generators of the subgroups of C, x Cy,. The results are stated in
the Theorem which follows.
Theorem 2 Let C be a subgroup of C of Cy x Cy,. We distinguish two cases :
(i) When C is non-cyclic then it can be written in a highly non unique way as a direct product
of two cyclic groups C; and Co ,i.e.,
C= Cl X C2 y (13)

whose orders are not relatively prime. A legitimate choice for the generators g1 and go of
C1 and Cq is the following :
g1 = (x.Alijl)’ (14)

where, x is a generator of C, , y is a generator of Cy, ,

v+x v+x+T v+x+T+Y v+x+T+Y+o

.Al u —k; —k; . a; —k; k.
DL R D TR D DR iU DS VR D DR
i=1 i=v+1 i=v+x+1 i=v+x+7+1 i=v+x+7+1v+1
v+x+T+p+o+0 v+x+T+Yp+o+0+¢ v+X+T+Y+o+0+d+E
+ > p; i+ > ti /Pl + > p; <, and, (15)
i=vtx+THpto+1 i=vtx+TH)+o+0+1 i=vtx T +o+0+p+1
By v v+x v+x+T v+x+T+Y v+x+7+¢+o
—k; —k;+1 —k; s/ Pi —k;
D DRI DI D DR D DI D DI
=1 i=v+1 i=v+x+1 i=v+x+7+1 i=v+x+7+1p+1
v+x+T+Y+o+0 v+x+T+Y+o+0+¢ vHX+THY+o+0+¢+E
—ki+1 —ki b;
+ > pip; ST+ > p; N+ > ti/p;" - (16)
i=vx T 4o+l i=vtx+HT Yo +0+1 i=vx TR+ o 0+ o1
B
g2 = (x2,4P2),  where, (17)
As v+X+T+Y+o v+x+T++o+0+é
_ =P =P
A T e TR a9
i=v+x+T+P+1 i=v+x+T+p+o+0+1
v+x+71+yY+o+ v+X+T+Y+o+0+0+
B ) 0 p 0+¢+¢

ﬁ = 3 Pl - Pl (19)

i=v+x+THto+l i=v+x+THY+o+0+p+1
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(ii) When C is cyclic then it is generated by
9= (ayP), (20)

where, A=A; and B=B; when c=0=¢=£=0. (21)

The non-negative integers v, x,T,¥,0,0,¢0,& are such that v+ x+74+¢v+o+0+¢p+E€<s.
When C is cyclic then o =60 = ¢ =& = 0. When C is non-cyclic then at least one of the 0,0, ¢, &

must be non-zero. Moreover, (p?j,p})j) =P, p"), 1,j=1,...,8, for some permutation P of

the s pairs of numbers (p(fl,p?l), (p%Q,pgz),..., (pgs,pg) . Furthermore, the allowed values of

the other indices are easily deduced from Propositions 2 , 8 and Theorem 1.

By using the previous results we can give explicit expressions for the little groups of of B(2,2)
by isolating those subgroups of C, x C,, which contain the element (—I,—1I). Details and
proofs of the aforementioned propositions and theorems as well as an explicit construction of
the irreducibles of the group B(2,2) will be given elsewhere. Ultrahyperbolic General Relativity
has not been well studied ([15] contains a non group theoretic approach). Subgroups of Cy x Cyy,

not only do they appear as little groups of B(2,2) but they also appear [1] as little groups of the
Complex BMS group CB and of the Euclidean BMS group EB. In particular, in the case of EB,
the large number of little groups which are subgroups of C, x Cy, and which lie not just in one
factor of C, x Cy, but they ‘ sit across ’ both factors of Cp x Cy,, strongly suggests [4] that the
gravitational multi-instantons of Gibbons and Hawking [16] represent only a very small number
of solutions of a class of solutions whose more general members are mixtures of self-dual and
anti-self dual solutions. In the Fuclidean case the existence of the aforementioned mixtures has
been suggested in a different context by Hooft G "H [17]. The physical content and significance
for low-energy quantum gravity of these odd-looking mixtures [4] - flat manifolds whose certain
points are identified at the neighbourhood of infinity - is an open problem in all cases.
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