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Abstract. The ordinary Bondi-Metzner-Sachs (BMS) group B is the common asymptotic
symmetry group of all radiating, asymptotically flat, Lorentzian space-times. As such, B
is the best candidate for the universal symmetry group of General Relativity. However, in
studying quantum gravity, space-times with signatures other than the usual Lorentzian one,
and complex space-times, are frequently considered. Generalisations of B appropriate to these
other signatures have been defined earlier. In particular, the generalization B(2, 2) appropriate
to the ultrahyperbolic signature (+,+,-,-) has been described in detail, and the study of its
irreducible unitary representations (IRs) has been initiated. The infinite little groups of B(2, 2)
have been given explicitly but its finite little groups have only been partially described. All the
information needed in order to construct the finite little groups is given. Possible connections
with gravitational instantons are being put forward.

1. Introduction
The best candidate for the universal symmetry group of General Relativity (G.R), in any
signature, is the so called Bondi-Metzner-Sachs (BMS) group. These groups have recently been
described [1] for all possible signatures and all possible complex versions of GR as well. The
induced irreducible representations (IRs) have also been classified and constructed for complex
GR, and, in more detail, for ultrahyperbolic GR [2].
In earlier papers [1, 2, 3, 4] it has been argued that the IRs of the BMS group and
of its generalizations in complex space-times as well as in space-times with Euclidean or
Ultrahyperbolic signature are what really lie behind the full description of (unconstrained)
moduli spaces of gravitational instantons. Kronheimer [5, 6] has given a description of these
instanton moduli spaces for Euclidean instantons. However, his description only partially
describes the moduli spaces, since it still involves constraints. Kronheimer does not solve the
constraint equations, but it has been argued [1, 4] that IRs of BMS group (in the relevant
signature) give an unconstrained description of these same moduli spaces.
The representation theory of B(2,2), which is the BMS group in ulatrahyperbolic signature, has
been initiated in [2]. It turns out [2] that the problem of constructing the IRs induced from
finite little groups reduces to a seemingly very simple task; that of classifying all subgroups of
the Cartesian product group Cn × Cm, where Cr is the cyclic group of order r, r being
finite. Surprisingly, this task is less simple than it may appear at first sight. It turns out that
the solution is constructed from the “ fundamental cases ” n = pa, m = pβ , (n,m are powers
of the same prime), via the prime decomposition of m and n.
Now, the moduli spaces associated with instantons arise from only one factor of Cn × Cm (
Cn × I for anti-self dual solutions, I × Cm for self dual, I being the identity). The groups
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described here seem [4] to be associated, rather, with the far more general mixture of self-dual
and anti-self-dual solutions. Furthermore, this will also apply to the IRs for other signatures,
or for complex space-times. Thus, in all cases, BMS IRs are likely to be related to generalized
instantons.
In this paper we restrict attention to B(2,2). In Section 2 a summary of the results obtained
so far on the representation theory of B(2,2) group is given. In Section 3 it is shown that the
problem of determining the subgroups of Cn×Cm can be reduced to the problem of determining
the subgroups of Cpa × Cpβ . Then explicit expressions for the generators of the cyclic and non-
cyclic subgroups of Cpa × Cpβ are given, and, finally, generators of the subgroups of Cn × Cm

are described in detail.

2. Summary of the representation theory of the Ultrahyperbolic BMS group
B(2,2)
The original BMS group B was discovered by Bondi, Metzner and Van der Burg [7]
for asymptotically flat space-times which were axisymmetric, and by Sachs [8] for general
asymptotically flat space-times, in the usual Lorentzian signature. The group B(2,2) is a different
generalised BMS group, namely the one appropriate to the “ultrahyperbolic” signature, and
asymptotic flatness in null directions. We now give a condensed summary of the representation
theory of B(2,2) given in [2]. Recall that the ultrahyperbolic version of Minkowski space is the
vector space R4 of row vectors with 4 real components, with scalar product defined as follows.
Let x, y ∈ R4 have components xµ and yµ respectively, where µ = 0, 1, 2, 3. Define the scalar
product x.y between x and y by

x.y = x0y0 + x2y2 − x1y1 − x3y3. (1)

Then the ultrahyperbolic version of Minkowski space, sometimes written R2,2, is just R4 with
this scalar product. The “2,2” refers to the two plus and two minus signs in the scalar product.

The group B(2, 2) is given by

B(2, 2) = L2
e(T

2) ©s TG2 (2)

where the representation T of G2 on L2
e(T

2) which defines this semi-direct product is given by

(T (g, h)α)(m,n) = k(m, g)k(n, h)α([mg] , [nh]) (3)

for α ∈ L2
e(T

2). G2 = G×G
(G = SL(2, R)) and L2

e(T
2) is the Hilbert space of of all even square integrable functions

defined on T2, where T2 = S1 × S1 is the 2-torus. Let Sp = R2 − 0 be the set of all nonzero
row vectors x = (x1, x2) with both components real. Here Sp is the “spin space” appropriate
to N ⊂ R2,2. The null cone N ⊂ R2,2 is just the set of nonzero vectors with zero length:
N =

{
x ∈ R2,2 | x �= 0, x.x = 0

}
. We introduce “polar” coordinates into Sp2 = R2 − 0 as

follows. With each vector x = (x1, x2) ∈ Sp, we associate the radius r ≡ |x| ≡
√
x2

1 + x2
2, with

the square root always taken positive, and the unit length vector m ≡ [x] ≡ x/ |x| having the
same direction as x. Thus we have

x = rm, r = |x| , m = [x] = x/ |x| . (4)

Let S1 ⊂ Sp be the set of vectors of unit length in Sp : S1 = {x ∈ Sp | |x| = 1}. Each factor
of T2 = S1 × S1 is given by the last equality. If (x, y) ∈ Sp2, define the radius and direction of
x by equation (4), and the radius t and direction n of y by

y = tn, t = |y| , n = [y] = y/ |y| . (5)

261



The set of all real valued functions α : T2 → R, α ∈ L2
e(T

2), are even, that is, they satisfy
the even-ness condition α(−m,−n) = α(m,n). The k−factors which appear in (3) are given by
k(m, g) = |mg|, and similarly, k(n, h) = |nh|. Finally, [mg] = (xg)/ |xg| , and, [nh] = (yh)/ |yh| .
L2
e(T

2) is endowed with the Hilbert topology by using a natural measure on T2 and G2 is
endowed with the standard topology. In the product topology of L2

e(T
2) × G2 , B(2, 2) then

becomes a topological group. Let L2
e(T

2)′ be the set of continuous linear functionals on L2
e(T

2).
As is well known, the topological dual L2

e(T
2)′ of L2

e(T
2) can be identified with L2

e(T
2) itself.

The action T of G2 on L2
e(T

2) induces a dual action T ′ of G2 on L2
e(T

2)′ by setting, for each
α ∈ L2

e(T
2), 〈

T ′(g, h)ζ, T (g, h)α
〉

= 〈ζ, α〉 , (6)

where ζ, α ∈ He(T2), (g, h) ∈ G2 and 〈ζ, α〉 is the value of the linear functional ζ on α ∈ L2
e(T

2).
It is this dual action T ′ on L2

e(T
2)′ which determines the structure of the IRs of B(2, 2). The

dual action is given by

(T ′(g, h)ζ)(m,n) = k−3(m, g)k−3(n, h)ζ([mg] , [nh]) . (7)

Attention is confined to measures on L2
e(T

2)′ which are concentrated on single orbits of the
G2−action T ′. These measures give rise to IRs of B(2, 2) which are induced in a sense
generalising [9] Mackey’s [10] . This induction is materialised as follows. Let O ⊂ L2

e(T
2)′ be

any orbit of the dual action T ′ of G2 on L2
e(T

2)′. There is a natural homomorphism O 	 G2/Lo
where Lo is the ‘little group’ of the point ζo ⊂ O. Let U be a continuous irreducible unitary
representation of Lo on a Hilbert space Ho. Every coset space O can be equipped with a unique
class of measures which are quasi-invariant under the action T of G2. Let µ be any one of these.
Let H = L2(O, µ,Ho) be the Hilbert space of functions f : O → Ho which are square integrable
with respect to µ. From a given ζo and any continuous irreducible unitary representation U of
Lo on a Hilbert space Ho a continuous irreducible unitary representation of B(2, 2) on H can
be constructed. The representation is said to be induced from U and ζo and is given by

(�of)(�) = f(�−1
o �),

(αf)(�) = ei〈�ζo,α〉f(�), (8)

where �, �o ∈ G2 and 〈�ζo, α〉 is the scalar product in L2
e(T

2). Different points of an orbit O have
conjugate little groups and give rise to equivalent representations of B(2, 2). In the product
topology of L2

e(T
2) × G2, B(2, 2) is not locally compact and as a consequence the problem

of determining IRs of B(2, 2) arising from strictly ergodic actions T ′ of G2 on L2
e(T

2)′ is
hopeless. To conclude, every representation of B(2, 2) determined uniquely (up to equivalence)
via induction by (1) an orbit O ∈ L2

e(T
2)′, (2) a class of equivalent IRs of any little group Lo,

is irreducible [11]. It is not known if there are other IRs of B(2, 2) emanating from strictly
ergodic actions. All the little groups of B(2, 2) are compact. The little groups Lo for B(2, 2)
are the closed subgroups of K = SO(2) × SO(2) which contain the element (−I,−I). These
are (A) K itself, (B) a class of one dimensional not connected Lie groups which are described
in detail in [2] , and (C) all finite subgroups containing (−I,−I). The finite subgroups of
K = SO(2) × SO(2) are precisely the subgroups of Cn × Cm where both n and m are finite.
These subgroups are not given in [2] and so we proceed now to construct them explicitly.

3. Construction of the subgroups of Cn × Cm.
The following proposition shows that the problem of finding the subgroups of Cn×Cm is reduced
to the problem of finding the subgroups of Cpa × Cpβ .

Proposition 1 Let Cn × Cm be the direct product of the cyclic groups of finite order Cn

and Cm. Let n = pr1
1 · pr2

2 · · · prs
s and m = pt1

1 · pt2
2 · · · pts

s be the prime decomposition
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of the integers n and m, i.e., pi , i=1,2,...,s , are distinct prime numbers and ri , ti are
non-negative integers. Any subgroup of Cn × Cm has the form

C
q

λ1
1

× C
q

λ2
2

× . . .× C
qλσ

σ
, (9)

i.e., is a direct product where the numbers q1, q2, ..., qσ are prime and each one of them
appears at most twice. For any qj, j = 1, 2, ..., σ, there exists a pi, i = 1, 2, ..., s, so that
qj = pi. When qj appears once λj ∈ [1,max(ri, ti)]. When qj occurs twice, say qj = qj+k,
then one of the indices λj , λj+k belongs to [1, ri] and the other one belongs to [1, ti]. For
every subgroup of Cn × Cm the expression (9) is unique.

The group Cpa × Cpβ is a finite abelian group and therefore its rank is higher than the rank
of any of its subgroups. Consequently, the subgroups of Cpa × Cpβ have either one or two
generators. The following two propositions give explicit expressions for the generators of the
cyclic subgroups of Cpa ×Cpβ , whereas, the theorem which follows gives explicit expressions for
the generators of the non-cyclic subgroups of Cpa × Cpβ .

Proposition 2 Let p be a prime number and let a and β be positive integers. Let Cpa and Cpβ

be cyclic groups of order pa and pβ respectively. When 1 ≤ k ≤ min(a, β) the direct product
Cpa × Cpβ has pk + pk−1 cyclic subgroups of order pk. The generators of these subgroups are
given by

(i)
(xrpa−k

, ypβ−k
) , r ∈ {0, 1, 2, ...,pk − 1} , (10)

and ,
(ii)

(xpa−k
, yρp

β−k+1
) , ρ ∈ {0, 1, ...,pk−1 − 1} , (11)

where x and y are generators of the groups Cpa and Cpβ respectively. The parameters
r, which takes values in the set {0, 1, ...,pk − 1}, and ρ, which takes values in the set
{0,p, 2p, ..., (pk−1 − 1)p}, parameterize the distinct pk + pk−1 groups .

Proposition 3 Let p be a prime number and let a be a non-negative integer and let β be a
positive integer. Let Cpa and Cpβ be cyclic groups of order pa and pβ respectively. The direct
product Cpa × Cpβ has pa cyclic subgroups of order pk, where a < k ≤ β. The generators of
these subgroups are the following

(xj, yβ−k) , j ∈ {0, 1, 2, ...,pa − 1} , (12)

where x and y are generators of the groups Cpa and Cpβ respectively. The parameter j, which
takes values in the set {0, 1, ...,pa − 1}, parametrises the groups .

In the following theorem the generators of the non-cyclic subgroups of Cpa × Cpβ are given.

Theorem 1 Let p be a prime number and let k , l , a , β be integers which satisfy
0 < k < l ≤ β and a ≤ β. Let Cpa × Cpβ denote the direct product of the cyclic groups
Cpa and Cpβ and let Cpk ×Cpl denote the direct product of the cyclic groups Cpk and Cpl. Then

(i) When 0 < k < l ≤ a ≤ β the group Cpa × Cpβ has pl−k + pl−k−1 subgroups which are
isomorphic to the group Cpk × Cpl . From these subgroups, pl−k are generated by the
elements

(xrpa−l
, ypβ−l

) , (xpa−k
, I), where r ∈ {0, 1, 2, ...,pl−k − 1},

and the remaining pl−k−1 subgroups are generated by the elements

(xpa−l
, yρp

β−l+1
) , (I, ypβ−k

), where ρ ∈ {0, 1, 2, ...,pl−k−1 − 1}.
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(ii) When 0 < k ≤ a < l ≤ β the group Cpa × Cpβ has pa−k subgroups which are isomorphic
to the group Cpk × Cpl . These pa−k subgroups are generated by the elements

(xj, ypβ−l
) , (xpa−k

, I), where j ∈ {0, 1, 2, ...,pa−k − 1}.

The task of writing explicit expressions for the generators of the subgroups of Cn ×
Cm is facilitated by the use of the set SP of the permutations of s pairs of numbers
(pa1

1 ,p
β1
1 ), (pa2

2 ,p
β2
2 ), ..., (pas

s ,p
βs
s ) . Let P ∈ SP . By P(pai

i ,p
βi
i ) = (paj

j , p
bj

j ) , i, j = 1, 2, ..., s, we
denote that the permutation P moves the pair (pai

i ,p
βi
i ) at the ith position, to the jth position.

Obviously, pi ≡ pj, ai ≡ aj, and, βi ≡ bj. By using Propositions 2, 3 and Theorem 1 we can give
explicit expressions for the generators of the subgroups of Cn × Cm. The results are stated in
the Theorem which follows.

Theorem 2 Let C be a subgroup of C of Cn × Cm. We distinguish two cases :

(i) When C is non-cyclic then it can be written in a highly non unique way as a direct product
of two cyclic groups C1 and C2 ,i.e.,

C = C1 × C2 , (13)

whose orders are not relatively prime. A legitimate choice for the generators g1 and g2 of
C1 and C2 is the following :

g1 = (xA1 , yB1), (14)

where, x is a generator of Cn , y is a generator of Cm ,

A1

n
=

ν∑
i=1

rip−ki
i +

ν+χ∑
i=ν+1

p−ki
i +

ν+χ+τ∑
i=ν+χ+1

ji/pai
i +
ν+χ+τ+ψ∑
i=ν+χ+τ+1

p−ki
i +

ν+χ+τ+ψ+σ∑
i=ν+χ+τ+ψ+1

rip−ki
i

+
ν+χ+τ+ψ+σ+θ∑
i=ν+χ+τ+ψ+σ+1

p−ki
i +

ν+χ+τ+ψ+σ+θ+φ∑
i=ν+χ+τ+ψ+σ+θ+1

ti/pai
i +

ν+χ+τ+ψ+σ+θ+φ+ξ∑
i=ν+χ+τ+ψ+σ+θ+φ+1

p−ki
i , and, (15)

B1

m
=

ν∑
i=1

p−ki
i +

ν+χ∑
i=ν+1

ρip
−ki+1
i +

ν+χ+τ∑
i=ν+χ+1

p−ki
i +

ν+χ+τ+ψ∑
i=ν+χ+τ+1

ji/pbi
i +

ν+χ+τ+ψ+σ∑
i=ν+χ+τ+ψ+1

p−ki
i

+
ν+χ+τ+ψ+σ+θ∑
i=ν+χ+τ+ψ+σ+1

ρip
−ki+1
i +

ν+χ+τ+ψ+σ+θ+φ∑
i=ν+χ+τ+ψ+σ+θ+1

p−ki
i +

ν+χ+τ+ψ+σ+θ+φ+ξ∑
i=ν+χ+τ+ψ+σ+θ+φ+1

ti/pbi
i . (16)

g2 = (xA2 , yB2), where, (17)

A2

n
=

ν+χ+τ+ψ+σ∑
i=ν+χ+τ+ψ+1

p−li
i +

ν+χ+τ+ψ+σ+θ+φ∑
i=ν+χ+τ+ψ+σ+θ+1

p−li
i and, (18)

B2

m
=

ν+χ+τ+ψ+σ+θ∑
i=ν+χ+τ+ψ+σ+1

p−li
i +

ν+χ+τ+ψ+σ+θ+φ+ξ∑
i=ν+χ+τ+ψ+σ+θ+φ+1

p−li
i . (19)
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(ii) When C is cyclic then it is generated by

g = (xA, yB), (20)

where, A = A1 and B = B1 when σ = θ = φ = ξ = 0. (21)

The non-negative integers ν, χ, τ, ψ, σ, θ, φ, ξ are such that ν + χ+ τ + ψ + σ + θ + φ+ ξ ≤ s .
When C is cyclic then σ = θ = φ = ξ = 0. When C is non-cyclic then at least one of the σ, θ, φ, ξ
must be non-zero. Moreover, (paj

j , p
bj

j ) = P(pai
i ,p

βi
i ) , i, j = 1, ..., s, for some permutation P of

the s pairs of numbers (pa1
1 ,p

β1
1 ), (pa2

2 ,p
β2
2 ), ..., (pas

s ,p
βs
s ) . Furthermore, the allowed values of

the other indices are easily deduced from Propositions 2 , 3 and Theorem 1.

By using the previous results we can give explicit expressions for the little groups of of B(2,2)
by isolating those subgroups of Cn × Cm which contain the element (−I,−I). Details and
proofs of the aforementioned propositions and theorems as well as an explicit construction of
the irreducibles of the group B(2,2) will be given elsewhere. Ultrahyperbolic General Relativity
has not been well studied ([15] contains a non group theoretic approach). Subgroups of Cn×Cm

not only do they appear as little groups of B(2,2) but they also appear [1] as little groups of the
Complex BMS group CB and of the Euclidean BMS group EB. In particular, in the case of EB,
the large number of little groups which are subgroups of Cn ×Cm and which lie not just in one
factor of Cn×Cm but they ‘ sit across ’ both factors of Cn×Cm, strongly suggests [4] that the
gravitational multi-instantons of Gibbons and Hawking [16] represent only a very small number
of solutions of a class of solutions whose more general members are mixtures of self-dual and
anti-self dual solutions. In the Euclidean case the existence of the aforementioned mixtures has
been suggested in a different context by Hooft G ’H [17]. The physical content and significance
for low-energy quantum gravity of these odd-looking mixtures [4] - flat manifolds whose certain
points are identified at the neighbourhood of infinity - is an open problem in all cases.
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