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Resumo

Estimar de forma realista o alcance de descoberta de um experimento de colisão de altas
energias, como o realizado no Large Hadron Collider (LHC) do CERN, é uma tarefa complexa,
principalmente em vista das técnicas de simulação de eventos e dos métodos de estatística multi-
variada utilizadas pelas colaborações experimentais na comparação dos dados com as predições
teóricas.

Descobrir uma nova partícula, contudo, é apenas o primeiro passo na investigação experi-
mental. De modo a estabelecer qual dos eventuais modelos teóricos concorrentes é favorecido
pelos dados, torna-se imprescindível o estudo das propriedades desta nova partícula e de suas
interações com o restante do espectro. Informações como os números quânticos de spin, conju-
gação de carga (C) e paridade (P ), podem ser obtidas através do estudo das correlações entre os
momentos das partículas produzidas codi�cadas nas distribuições cinemáticas. O discernimento
entre os vários modelos, portanto, passa a ser um problema de combinar todas estas informações
de forma e�ciente e compará-las aos dados experimentais através de um teste estatístico e de-
cidindo, assim, pela con�rmação ou não de um novo sinal e sobre o modelo que melhor explica
aqueles dados.

No trabalho realizado nesta tese, investigamos o limite do LHC, operando a uma energia de
centro-de-massa de 14 TeV, para a descoberta de um modelo supersimétrico (SUSY) simpli�cado
e de seu discernimento em relação a um modelo de dimensões extras universais mínimas (MUED),
usando eventos de produção de novas partículas coloridas decaindo, através de cadeias curtas,
em jatos e missing energy.

Nossa abordagem avança em diversos aspectos em comparação a fenomenologias mais simpli-
�cadas: utilizando uma análise estatística multivariada, levando em conta incertezas sistemáticas
nas normalizações das seções de choque e no formato das distribuições, empregando técnicas de
identi�cação de jatos de quarks e glúons para uma melhor separação dos backgrounds do Mo-
delo padrão (MP), escaneando e otimizando os cortes retangulares, simulando eventos de forma
cuidadosa e com correções de ordem superior da cromodinâmica quântica (QCD).

Eventos de SUSY e MUED foram simulados para 150 diferentes espectros de massa, ainda
não excluídos pelo LHC, e estimamos o potencial de descoberta e de discernimento SUSY versus

MUED no plano de massas de squarks e gluinos utilizando as técnicas acima mencionadas.
Mostramos, em primeiro lugar, que mesmo de forma simpli�cada, inserir incertezas sistemáticas
é essencial para uma estimativa mais realista do potencial do acelerador, principalmente no que
diz respeito ao aumento de luminosidade integrada. Para incertezas nas normalizações da ordem
de 20%, o ganho no potencial de busca torna-se mais limitado. Por exemplo, passando de 100 a
3000 fb−1, o alcance na massa dos squarks aumenta de 2.8 para ∼ 3.1 TeV, ao passo que, sem
levar em conta estas incertezas, a estimativa é mais otimista, indo de 3.0 a ∼ 3.5 TeV para as
mesmas luminosidades.

Performance similar é observada no discernimento SUSY versusMUED, onde é possível obter
uma signi�cância de 5σ para massas de squarks de até ∼ 2.7 TeV e gluinos ∼ 5 TeV, mantendo-se
as incertezas sistemáticas a um nível menor do que 10% aproximadamente.

De forma geral, concluímos que um modelo supersimétrico simpli�cado, como o estudado
aqui, pode ser descoberto e con�rmado (em relação a um dos seus mais populares concorrentes,
MUED) para um espectro com squarks, gluinos e neutralinos de aproximadamente 2.5, 5.0 e 0.3
TeV, respectivamente, se as incertezas sistemáticas puderem ser controladas a um nível de 10%
ou menos, após 3 ab−1 de luminosidade integrada.



Palavras-chave: supersimetria, teoria de campos, física de partículas, fenomenologia,
análise estatística de dados.



Abstract

The problem of estimating, in a realistic way, the reach of an experiment in high energy
physics, such as the CERN Large Hadron Collider (LHC), is a di�cult task. Specially due to
the simulations techniques and the multivariate statistics for data and theory comparisons, used
by experimental collaborations.

The discovery of a new particle is just the �rst step in the experimental exploration. The
properties of this particle, like parity, spin and charge are conditions to assert which physics model
is favored by the collected data. It is possible to measure these properties with the analyses of
the particle momentum correlations through the kinematical distributions. The discriminations
among di�erent models turns into a problem of combining all this informations, in a e�cient way,
and compare with experimental data through a statistical test, and choosing for the con�rmation
or exclusion of a signal and which model best describes the data.

In this work, we investigate the limits of the LHC, working in a center of mass energy of 14
TeV, for the discovery of a simpli�ed model of supersymmetry (SUSY) and the discrimination
with a model of minimal universal extra dimensions (MUED), using productions of heavy colored
particles decaying, through short decays chains, in jets and missing energy.

Our approach progresses in di�erent aspects compared with simpli�ed phenomenological
analyses: we used a multivariate statistical analysis, considered systematical uncertainties in the
rate and shape of distributions, implemented techniques of quarks and gluons jet tagging identi-
�cation for a good separation between signal and backgrounds, scanning for the best rectangular
cuts and simulating events in a careful way with 1-loop corrections from quantum chromodyna-
mics.

Our events were simulated for 150 di�erent mass spectrums, not excluded by the LHC, and
we estimate the potencial for discovery and discrimination of SUSY versus MUED in a squarks-
gluinos mass plane, using the techniques mentioned above. We proved, in �rst place, that even in
a simpli�ed way, inserting systematical uncertainties it's essential for an estimative more realistic
of the collider's reach, mainly with the increasing of integrated luminosity. For systematical rate
uncertainties in the distribution of 20%, the gain in the discovery potencial is very limited. For
example, increasing from 100 to 3000 fb−1, the reach in the squark mass increase from ∼ 2.8 to
3.1 TeV. On the other hand, without systematical uncertainties in rate distributions, the reach
is more optimistic, from 3.0 TeV to ∼ 3.5 TeV, for the same luminosities.

Similar performance was observed in the discrimination of Susy versus MUED, where it's
possible to obtain signi�cance of 5σ for squark masses up to ∼ 2.7 TeV and gluinos of ∼ 5 TeV,
keeping systematical uncertainties at a level about 10%.

In general, we conclude that a supersymmetryc model, like we studied here, can be discovered
and con�rmed (compared to one of its more popular competitors, MUED) for a mass spectrum of
squarks, gluinos and neutalinos about 2.5, 5.0 and 0.3 TeV, respectively, if it's possible to control
the systematical uncertainties at a level about 10%, after 3 ab−1 of integrated luminosity.



Key-words: supersymmetry, �eld theory, particle physics, phenomenology, statistical
data analysis.
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Capítulo 1

Introdução

Dois anos após sua inauguração, os experimentos de colisão próton-próton de altas energias
do LHC no CERN alcançaram um dos seus principais objetivos � a descoberta de uma partícula
escalar de CP-par, um bóson de Higgs, o último ingrediente necessário para a consistência do
Modelo Padrão de Partículas. Há, contudo, fortes argumentos teóricos em favor de uma teoria
além do Modelo Padrão, uma vez que este ainda deixa em aberto diversas questões como a
própria escala da massa do bóson de Higgs recém descoberto e da existência de matéria escura,
por exemplo, entre outras questões. Isso gera uma expectativa de que o LHC possa descobrir
alguma forma de nova física em breve.

Existem vários modelos de nova física que abordam muitas destas questões, especialmente
a questão da naturalidade do modelo em relação à massa do bóson de Higgs e de candidatos
viáveis à matéria escura. Entre estes, sem dúvida, a supersimetria tem o maior apelo teórico por
sua abrangência e elegância [1, 2, 3]. Outras sugestões, como a das dimensões extras, propõem
solucionar os mesmos problemas de formas diferentes [4, 5, 6, 7]. Contudo, ainda que as solu-
ções sejam essencialmente diferentes, estes dois modelos, especi�camente, preveem a existência
de espectros de partículas (na escala de até alguns TeV) quase que univocamente corresponden-
tes, ainda que seus espectros de massa típicos em cada teoria di�ram consideravelmente. Tais
partículas podem ter propriedades muito diferentes em relação aos seus números quânticos e
acoplamentos também.

Modelos supersimétricos e de dimensões extras universais, equipadas com simetrias apropria-
das, preveem a presença de LSPs e LKPs (lightest supersymmetric particles e light Kaluza-Klein
particles) no estado �nal do processo de produção de qualquer partícula nova. Como os detec-
tores não têm capacidade de acusar a presença de uma LSP (LKP), os canais de procura por
novas partículas de SUSY e MUED contém alguma combinação de missing energy, jatos e léptons
duros. Na classe de modelos que iremos estudar, a di�culdade reside no fato de que as partículas
pesadas decaem da mesma forma, levando a assinaturas experimentais, em princípio, parecidas.

A presença de missing energy nos eventos impede a reconstrução do 4-momento das partículas
que originaram a cadeia de decaimento, ainda que seja possível inferir a massa delas através de
distribuições cinemáticas que exibem limiares [8, 9]. Isso, contudo, demanda uma boa reconstru-
ção destas distribuições e isso só é possível com muitos eventos. Da mesma forma, a informação
que se obtém pelo tamanho das seções de choque não constitui mais do que uma evidência em
favor de um modelo ou outro. Sem a possibilidade de identi�car o modelo de nova física a partir
do tamanho das seções de choque e do espectro, seja com eventos de jatos + MET (missing

energy), ou outra topologia, só resta o estudo das distribuições cinemáticas disponíveis.
Em cadeias longas, além das distribuições angulares, diferenças ou assimetrias entre distri-

buições de massas invariantes de conjuntos de partículas do estado �nal, como jatos e léptons
carregados, podem ajudar a discernir entre modelos, veja [10, 11], por exemplo. Com cadeias
curtas, como no decaimento direto de sbottoms [12] e de sléptons [13, 14], é possível estudar
variáveis angulares correlacionadas com o ângulo de espalhamento do squark, ou slepton. Nesse
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trabalho, escolhemos trabalhar com as distribuições angulares de jatos produzidos no decaimento
de squarks e gluinos, aproveitando o número muito maior de eventos esperados em relação a slép-
tons ou na produção de sbottoms apenas.

Até o momento, no entanto, as análises de 7 e 8 TeV no LHC só puderam excluir regiões
dos espaços de parâmetros de teorias além do Modelo Padrão. Em relação à SUSY, squarks e
gluinos de até 1.8 e 1.8 TeV, aproximadamente, estão excluídos em modelos de quebra soft de
supersimetria relativamente simples, como o mSugra, ou assumindo modelos simpli�cados que
não consideram todo o espectro de SUSY mas apenas o setor fortemente interagente, por exemplo,
esses limites caem para 1.0 TeV e 1.3 TeV para squarks e gluinos, respectivamente. Isso tem,
inclusive, suscitado diversas discussões acerca da naturalidade dos modelos supersimétricos. Vale
lembrar contudo, que modelos naturais, ou seja, não �namente ajustados para a massa do Higgs,
podem perfeitamente existir em modelos de quebra soft de supersimetria mais complicados.

O nosso trabalho enfoca modelos simpli�cados de supersimetria e dimensões extras universais.
Esses modelos são gerados em um contexto de teoria efetiva de campos, incluindo todos os
termos da lagrangiana relevantes para a produção de jatos e missing energy. Nesses modelos é
possível estudar a manifestação de supersimetria e dimensões extras universais em um contexto
menos restrito. Isso é desejável, pois tratam-se de modelos em bases mais independentes, uma
vez que os modelos mais simples de quebra de supersimetria ou com esquemas conhecidos de
compacti�cação de dimensões extras mostram-se cada vez menos prováveis. Dessa forma, não
assumimos nenhum modelo de quebra soft especí�co, nos restringindo a assumir espectros de
massa fenomenologicamente interessantes e acessíveis ao LHC 14 TeV.

Nossa postura diante do objetivo de discernir SUSY e MUED é maximamente conservadora.
Vamos assumir o cenário mais difícil possível de discernimento, onde supomos que as seções de
choque de produção e razões de decaimento das partículas de SUSY e MUED são idênticas e nos
baseando somente no formato de distribuições cinemáticas para o discernimento. As diferenças
encontradas entre as distribuições dos dois modelos são devidas quase exclusivamente ao seus
spins, portanto, nosso trabalho pode ser encarado como uma determinação do spin das partículas
supersimétricas. A única concessão em favor de supersimetria é que estudamos, na maioria das
vezes, espectros típicos desse modelo, apesar de que também investigamos porções do espaço de
parâmetros onde as massas são mais degeneradas, caso típico dos espectros de MUED.

Do ponto de vista técnico, estimar o alcance de um experimento de altas energias na procura
e discernimento de modelos é uma tarefa que pode ser realizada com vários graus de so�sticação.
Análises fenomenológicas mais simples podem ser realizadas, por exemplo, ao nível de partons

apenas, dispensando a simulação da hadronização e identi�cação de jatos e também sem incluir
efeitos que diminuem o poder de deteção das partículas. Hoje em dia, contudo, há ferramentas
de simulação que permitem gerar eventos que se parecem mais com os eventos reais observados
nos detectores. Outro aspecto que vem sendo paulatinamente melhorado nos estudos fenomeno-
lógicos encontrados na literatura é o da análise estatística. Ainda que possa dar uma ideia do
potencial de descoberta de uma partícula, a métrica de signi�cância normalmente usada em mui-
tos estudos: S/

√
B, onde S (B) denota o número de eventos de sinal (background) observados,

pode levar a uma enorme superestimação da signi�cância estatística, por exemplo, no regime
onde a distribuição de Poisson, associada a experimentos de contagem de eventos, deve ser usada
ao invés de sua aproximação Gaussiana.

Outro aspecto normalmente negligenciado é o de estimar o impacto das incertezas sistemáticas
no alcance do experimento. Muitas vezes, isso pode ser feito através de uma simples modi�cação
da métrica de signi�cância: S/

√
B + (εsysB)2, assumindo uma incerteza sistemática εsys no

número de eventos de background. Novamente, ainda que não seja adequada em todas as ocasiões,
já impede uma superestimação muito grande do potencial de descoberta.

Delegar sempre a tarefa de estimar (ainda que simpli�cadamente) o impacto destas incertezas
às colaborações experimentais é abdicar de realizar uma análise mais útil tanto para o teórico
quanto para o experimental. Levar em conta estas incertezas pode, de imediato, melhorar o
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estudo fenomenológico propondo estratégias mais otimizadas. Por outro lado também trazem
novos desa�os. Para superar as limitações eventualmente impostas pelos sistemáticos, estatís-
ticas mais poderosas para os testes de hipóteses podem ser usadas, por exemplo, numa análise
multivariada.

Neste trabalho, usamos uma estatística baseada no log likelihood ratio, o logaritmo da razão
de verossimilhanças: Λ. Esta estatística combina a informação do formato dos histogramas
de diversas distribuições cinemáticas em uma única quantidade, cuja distribuição estatística é
obtida de forma simulada, realizando uma grande quantidade de pseudo-experimentos. O lema de
Neyman-Pearson [17] garante que um teste de hipóteses simples (onde não há parâmetros a serem
ajustados e na ausência de incertezas sistemáticas) baseado em Λ tem máximo poder possível
(power). A partir, então, das distribuições de probabilidade de Λ para eventos de backgrounds e
de sinal+backgrounds, são realizados os testes de hipóteses habituais para calcular, por exemplo,
a quantidade de dados necessária para uma descoberta. As incertezas sistemáticas, por sua vez,
são incorporadas nesta estatística em um esquema híbrido frequentista-Bayesiano, numa espécie
de marginalização dos parâmetros relacionados a estas incertezas. Na prática, ainda que o lema
de Neyman-Pearson não se aplique devido aos sistemáticos, observa-se que a estatística de log

likelihood ratio é uma das melhores para o discernimento de modelos.
Inserimos incertezas sistemáticas no número estimado de eventos de sinal e de background,

provenientes, por exemplo, de incertezas na luminosidade integrada e da escolha das escalas de
fatorização e renormalização. Em especial, a produção de squarks e gluinos muito pesados envol-
vem frações grandes de energia e momento dos partons, e que são ainda pobremente estimadas e
codi�cadas nas distribuições de partons disponíveis atualmente. Tais incertezas também foram
levadas em conta em nossa simulação. Além disso, incertezas na forma das distribuições, devido a
uma baixa e�ciência de Monte-Carlo para os backgrounds, após cortes retangulares duros, foram
incorporadas também.

A separação entre eventos de sinal e de backgrounds é, em todos os aspectos, uma questão
central em uma análise fenomenológica. A forma mais simples, direta e transparente de fazer
isso é impor cortes a quantidades observáveis que podem ser construídas com os 4-momentos
das partículas, por exemplo, seus momentos transversos, rapidez e massas invariantes. Decidir
tais cortes pode ser feito apenas com uma análise visual das distribuições daquelas observáveis.
Isso, contudo, não é a abordagem ótima do problema. Escanear o espaço de observáveis de corte
à procura de uma região mais rica de sinais é a estratégia mais simples depois da abordagem
visual, ainda que muito mais dispendiosa do ponto de vista computacional. Esta foi a abordagem
adotada nesta tese e será melhor explicada oportunamente.

Técnicas de subestrutura de jatos têm sido utilizadas recentemente para auxiliar a classi�-
cação de eventos de decaimento hadrônico de bósons de gauge, do bóson de Higgs e de quarks
top [18, 19, 20]. Isso permite colecionar um número muito maior de eventos ao mesmo tempo
que fornece uma maneira de distinguir jatos provenientes dos decaimentos destas partículas e
jatos provenientes de radiação de QCD, os quais constituem um enorme background para diversos
processos de nova física. Em especial, técnicas de tagging para distinguir entres jatos de quarks
e jatos de glúons foram desenvolvidas recentemente [21] e estudadas, inclusive, pelo ATLAS [22].

De forma a auxiliar a remoção de eventos de backgrounds de QCD, utilizamos um tagging

de jatos de quarks e glúons de forma parametrizada, a exemplo do que fazemos quando estamos
interessados em identi�car jatos de quarks bottom. Mostraremos que o uso dessa técnica permite
uma separação adicional de eventos de sinal e backgrounds bené�ca à descoberta e discernimento
entre SUSY e MUED.

Realizar esta análise em um universo de 150 espectros de massa distintos, num total de 900
simulações de eventos de SUSY e MUED, demandou um enorme esforço computacional. Sem
uma quase completa automação e sequenciamento de todas as fases de simulação e análise, tal
tarefa teria sido praticamente impossível ou, no mínimo, passível de muitos erros. Ao longo da
tese apresentaremos aspectos especí�cos do ponto de vista computacional que foram importantes
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para obter nossos resultados.
A tese está dividida da seguinte forma, no capítulo 2 faremos uma abordagem dos modelos de

SUSY e MUED, explicitando especi�camente o setor forte da QCD responsável pela produção de
jatos + MET. Falaremos sobre os principais avanços experimentais na busca da cada um desses
modelos e discutiremos a abrangência dos modelos simpli�cados que iremos utilizar. Finaliza-
remos o capítulo com uma discussão sobre a análise estatística empregada neste trabalho, com
comparações entre a usual análise de contagem de eventos e a análise multivariada empregada
nesta tese.

No capítulo 3 iremos expor o tipo de eventos que analisaremos, os observáveis físicos utilizados
em nossa análise multivariada, as simulações para geração de eventos, assim como as técnicas
utilizadas para obtenção dos resultados, como: escaneamento de cortes retangulares, tagging de
jatos de quarks e glúons e a aplicação de incertezas sistemáticas. Sempre que possível, iremos
contrapor a métrica de signi�cância para a simples e amplamente utilizada contagem de eventos
(Zsb) com a métrica da análise multivariada (ZLLR).

No capítulo 4 iremos expor os resultados obtidos e diversas discussões sobre o comportamento
observados das regiões de descoberta. Finalizaremos com a conclusão dada no capítulo 5.



Capítulo 2

Revisão Teórica

Nesse capítulo iremos abordar os pontos fracos do Modelo Padrão de Partículas. Poste-
riormente iniciaremos a descrição dos modelos de supersimetria e dimensões extras universais
mínimas (MUED), com enfoque maior nos termos da lagrangiana responsáveis pela produção de
jatos e MET. Finalizaremos o capítulo com a apresentação da estatística de contagem de even-
tos e log-likelihood ratio, apresentando a forma de obtenção da métrica de signi�cância em cada
caso. Logo em seguida introduziremos o conceito de marginalização de likelihoods para análise
de incertezas sistemáticas nas taxas e formato das distribuições.

2.1 Limitações do Modelo Padrão de partículas

O Modelo Padrão de Partículas, denotaremos como MP daqui em diante, oferece até hoje
descrições muito precisas de diversos fenômenos em física de partículas. Porém, conhecemos
alguns casos onde a descrição dada pelo Modelo Padrão é incompleta. Nessa seção iremos
descrever alguns desses problemas.

Candidato Natural à Matéria Escura
Baseado em observações astrofísicas [23], notou-se uma discrepância entre a velocidade de
rotação de certas galáxias e a massa bariônica nela contida, essa discrepância pode ser
resolvida assumindo que existe uma quantidade de massa excedente não interagente e não
relativística. Essa quantidade de matéria, que não interage com fótons, foi medida pela
colaboração WMAP [28] e supera em cerca de quatro vezes a quantidade de matéria bariô-
nica. Essa matéria é denominada matéria escura. Se, além de interagir gravitacionalmente,
a matéria escura interagir fracamente, através de alguma força fraca e de curto alcance, ou
por intermédio do bóson de Higgs, por exemplo, é possível explicar a sua abundância nos
dias de hoje [25]. O Modelo Padrão não oferece uma partícula que possa representar esse
tipo de matéria, ainda que os neutrinos componham uma pequena parte de sua composi-
ção. Teorias como supersimetria e dimensões extras, em suas versões mínimas e munidas
de uma especí�ca simetria discreta, conseguem fornecer candidatos à matéria escura.

Massa Não-Nula para Neutrinos
A detecção de oscilação de neutrinos leva a possíveis estados massivos para essas partículas
[26, 27]. No Modelo Padrão temos neutrinos de quiralidade Left, porém um neutrino
com quiralidade Right teria todos os seus números quânticos de gauge como singletos do
grupo SU(3) × SU(2)L × U(1)Y . Por isso a completa de�nição de um termo de massa
para os neutrinos torna-se complicada no Modelo Padrão. Algumas teorias supersimétricas
assumem neutrinos com massa não-nula, isso pode ser feito introduzindo alguns tipos novos
de interações [29]. Modelos de dimensões extras também podem acomodar neutrinos de
massa não nula [4].

7
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Constante Cosmológica
A constante cosmológica pode ser entendida como uma energia de vácuo que expande nosso
universo aceleradamente. O valor estimado da constante cosmológica hoje é bem pequeno
(∼ 10−30g/cm3) e positivo [30], o Modelo Padrão não tem como explicar esse valor para
a constante cosmológica. Modelos como supersimetria ou dimensões extras também não
conseguem explicar um valor tão pequeno e positivo para a energia de vácuo. A constante
cosmológica hoje é um dos maiores desa�os para a Física Fundamental.

Assimetria Matéria/Anti-matéria
O Universo que observamos hoje é constituído basicamente de matéria bariônica. Explicar
como essa quantidade de matéria sobreviveu à aniquilação de bárions e anti-bárions em um
universo primordial pode ser feita assumindo violação CP no setor de quarks do Modelo
Padrão. Essa violação é observada experimentalmente, porém seu valor é muito pequeno
e não consegue reproduzir a quantidade de matéria bariônica observada nos dias de hoje
[31]. Alguns modelos supersimétricos conseguem explicar essa assimetria [32].

Problema de Ajuste Fino ou Fine Tuning

Quando partimos para o domínio da Teoria Quântica de Campos, teorias como o Modelo
Padrão possuem divergências ultra-violetas que são removidas por renormalização. Massas,
acoplamentos e funções de onda precisam ser rede�nidos de modo que seus valores tenham
um comportamento não divergente quando analisados no regime de altas energias [33].

O bóson de Higgs é uma partícula escalar de massa ∼ 125 GeV [34]. Assim como qualquer
outra partícula do Modelo Padrão, o bóson de Higgs recebe contribuições para sua massa
vindas de correções quânticas (1-loop). Se assumirmos a validade do MP até uma escala,
digamos ΛUV = 10 TeV, então deve-se retirar as contribuições vindas do MP acima dessa
escala, isso é feito "cortando"os loops do MP para essa energia. As contribuições mais
relevantes para a massa do bóson de Higgs são os loops vindos de quark top, bósons de
gauge SU(2) × U(1) e do próprio Higgs, veja Fig. 2.1. As contribuições quadráticas em
ΛUV = 10 TeV desses loops são:

• Para o loop de quark top,

− 3

8π2
λ2
tΛ

2
UV ∼ −(2 TeV)2, (2.1)

onde λt é o acoplamento de Yukawa para o quark top.

• Para o loop de bósons gauge,

g2

16π2
Λ2
UV ∼ (0.7 TeV)2, (2.2)

onde g2 sin2 θW = e2, onde e é a carga elétrica e sin θW = 0.23 é o ângulo de rotação
induzido após quebra de simetria eletro-fraca para os campos de gauge W 0 e B0.

• Para o loop do bóson de Higgs,

λ2

16π2
Λ2
UV ∼ (0.5 TeV)2, (2.3)

λ é o acoplamento quártico de Higgs.

Assim a massa total para o bóson de Higgs será dada, aproximadamente, por:

m2
h = m2

árvore − (100− 10− 5)(200 GeV)2. (2.4)

Com a massa do Higgs da ordem de 100 GeV, um ajuste �no de 1 em 100, entre os
acoplamentos a nível de árvore, é necessário. Se aumentarmos para ΛUV = 100 TeV, o
ajuste passa para 1 parte em 10000. Porém se a escala estiver por volta de 1 TeV, nenhum
ajuste �no é necessário.
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t W,Z h

Figura 2.1: Diagramas em 1-loop que contribuem majoritariamente para divergências quadráti-
cas para a massa do bóson de Higgs no Modelo Padrão.

2.2 Supersimetria

Supersimetria é uma simetria do espaço-tempo que relaciona bósons e férmions através de
um operador fermiônico Q,

Q|bóson >= |férmion >, (2.5)

Q|férmion >= |bóson > .

Em versões mínimas, cada partícula será associada com um parceiro supersimétrico de spin
±1

2 em um supermultipleto. Todas as partículas do supermultipleto terão a mesma massa e
número quânticos de gauge, pois o operador Q comuta com todos os geradores do grupo de
gauge (SU(3)C × SU(2)L × U(1)Y ). Além disso, os supermultipletos possuem o mesmo número
de graus de liberdade bosônicos e fermiônicos [1, 3, 2].

Os supermultipletos são de�nidos em duas grandes classes, os quirais e os vetoriais. Para
de�nirmos o Modelo Padrão supersimétrico teremos que introduzir um conjunto de supermulti-
pletos quirais para de�nir os quarks e léptons. E um conjunto de supermultipletos vetoriais para
os bósons de gauge.

Cada quark e lépton é associado a um supermultipleto quiral juntamente com seu parceiro
supersimétrico de spin-0, os squarks e sléptons (q̃, l̃). Sabemos que as componentes Left e Right
dos quarks e léptons possuem números quânticos diferentes no Modelo Padrão. Por isso teremos
que associar essas componentes separadamente em supermultipletos diferentes. Por exemplo,
teremos um supermultipleto para o quark up Right e outro supermultipleto para os quarks up
Left. O que denota que para um quark up teremos dois parceiros supersimétricos de spin-0. O
mesmo para os outros quarks e léptons do Modelo Padrão.

Os supermultipletos vetoriais recebem os bósons de gauge (W±,W 3, B, g), novamente para
cada um desses bósons teremos um parceiro supersimétrico de spin-1/2, os gauginos (winos
(W̃±, W̃ 0), binos B̃0 e gluinos g̃).

O bóson de Higgs também será representado por um supermultipleto quiral. Porém super-
simetria traz uma di�culdade quanto ao mecanismo de Higgs. No formalismo de supercampos
não é possível acoplar um supermultipleto para o bóson de Higgs com os quarks up, charm e
top ao mesmo tempo que acopla-se com os quarks down, bottom e strange. Isso ocorre porque
em potenciais supersimétricos que dão origem aos acoplamentos de Yukawa não podem conter
termos complexos conjugados para o supermultipleto de Higgs, ditos termos não-holomór�cos
[1, 2]. Assim, pelo menos dois supermultipletos de Higgs devem ser inseridos para a realização
do mecanismo de Higgs, Hu e Hd. Com isso teremos dois escalares de Higgs neutros e dois
carregados (H0

u, H
0
d , H

+
u , H

−
d ), consequência da inserção de dois supermultipletos quirais, e os

seus parceiros supersimétricos, chamamos de Higssinos. Após a quebra espontânea de simetria
eletro-fraca esses bósons dão origem ao bóson de Higgs (escalar leve com CP-par), dois escalares
neutros, e dois carregados.

As partículas listadas até agora não são necessariamente os estados de massa do Modelo
Padrão supersimetrizado. Há misturas em setores, como entre os gauginos e higgsinos no setor
eletro-fraco, e entre squarks/sléptons. O bino, zino e dois higssinos neutros misturam-se e formam
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4 estados denominados neutralinos χ̃0
1,2,3,4. Já a mistura de winos e higgsinos carregados geram

dois charginos χ̃±1,2. No setor de squarks e sléptons a mistura é proporcional à massa da partícula
parceira original do Modelo Padrão. Nesses casos apenas misturas para squarks top, bottom e
staus são relevantes. Os stops (sbottoms) Right e Left misturam-se e resultam em dois estados
t̃1 e t̃2 (b̃1 e b̃2). O mesmo para o stau.

Munidos de alguns ingredientes a mais que discutiremos nas próximas seções, temos o que
chamamos de MSSM (minimal supersymmetric standard model ou modelo padrão supersimétrico
mínimo). Na Tab. 2.1 e 2.2 temos todas as partículas para o MSSM com seus respectivos
números quânticos de gauge.

Supermultipletos Quirais
spin-0 spin-1/2 SU(3)c, SU(2)L, U(1)Y

squarks, quarks q̃uL e q̃dL (qu qd)L (3,2,13)
q̃uR, q̃

d
R quR, q

d
R (3,0,43/-

2
3)

sléptons, léptons ν̃ e l̃L (ν l)L (1,2,-1)
l̃R lR (1,1,-2)

Supermultipletos Vetoriais
spin-1/2 spin-1 SU(3)c, SU(2)L, U(1)Y

gluinos, glúons g̃ g (8,1,0)
winos e bósons W W̃±, W̃ 0 W±,W 0 (1,3,0)
binos e bóson B B̃0 W 0 (1,1,0)

Tabela 2.1: Partículas oriundas dos supermultipletos quirais e vetoriais para o MSSM. A hiper-
carga é dada por Q = T3 + Y

2 . q
u, qd indicam quarks do tipo up e down, respectivamente.

Estados Diagonalizados de Massas
não diagonalizados diagonalizados

neutralinos B̃0, W̃ 0, H̃u
0
, H̃d

0
χ̃1,2,3,4

charginos W̃±, H̃u
+
, H̃d

−
χ̃±1 , χ̃

±
2

stops, sbottoms (t̃R, t̃L),(b̃R, b̃L) (t̃1, t̃2),(b̃1, b̃2)
staus (τ̃R, τ̃L) (τ̃1, τ̃2)

bósons de Higgs H0
u, H

0
d , H

+
u , H

−
d h,H0, A0, H±

Tabela 2.2: Origem dos estados normalizados para os neutralinos, charginos e stops/sbottoms.

Retomando o problema de ajuste �no, vemos que a introdução dos parceiros supersimétricos
traz uma solução para as divergências quadráticas que observamos na seção 2.1. Na Fig. 2.2
colocamos os principais diagramas de supersimetria com contribuição quadrática Λ2

UV para a
massa do bóson de Higgs. Esse diagrama resulta em,

δmh = +
3

8π2
λt

2ΛUV
2 − g2

16π2
ΛUV

2 − λ2

16π2
ΛUV

2 +
3

16π2
m2
t̃
λt

2 log
ΛUV
mt̃

+ · · · . (2.6)

Aqui �zemos uma identi�cação do acoplamento quártico do Higgs do MP e o acoplamento quár-
tico introduzido pelo potencial de quebra soft de supersimetria para os 2 dubletos de Higgs, Hu

e Hd.
Comparando com as equações (2.1 - 2.3), vemos que os diagramas supersimétricos possuem

loops com partículas de spin diferentes dos loops do MP, Fig. 2.1, porém supersimetria mantém
o vértice que compõe o loop com a mesma dependência de parâmetros do Modelo Padrão, pois
partículas de mesmo números quânticos gauge são agrupadas nos mesmos supermultipletos. Isso
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traz o cancelamento exato das divergências quadráticas (Λ2
UV ) para a massa do bóson de Higgs

[35]. Além disso, esse mecanismo de cancelamento garante que todas as outras contribuições, de
qualquer férmion do Modelo Padrão, para a massa do bóson de Higgs, também serão canceladas
pelos seus parceiros supersimétricos.

t̃ H0gauginos

higgsinos

Figura 2.2: Diagramas em 1-loop que cancelam as divergências quadráticas para a massa do
bóson de Higgs devido à contribuições mais relevantes vindas do MP. O terceiro diagrama refere-
se ao bóson de Higgs neutro pesado (H0) introduzido por supersimetria. O segundo e terceiro
diagramas dependem do potencial de quebra soft.

Já que supersimetria não é uma simetria observada experimentalmente, ao menos, na escala
TeV, temos que introduzir um termos de quebra na lagrangiana supersimétrica. Isso é feito atra-
vés de um potencial de quebra soft, nele são introduzido termos com acoplamentos de dimensão
de massa positiva. São introduzidos termos como massas para gauginos e escalares.

2.2.1 Paridade-R

u

u

d

u

ū

e+

proton π0

s̃∗R

Figura 2.3: Decaimento do próton devido à interações supersimétricas que violam número
bariônico e leptônico.

Supersimetria pode introduzir interações que violam número bariônico e leptônico e ainda
assim preservar as transformações supersimétricas. Por isso o MSSM necessita de um ingrediente
a mais que a supersimetrização somente não fornece. Um mecanismo que proíba ou restrinja
fortemente o decaimento do próton [36], através de processos como o ilustrado na Fig. 2.3, onde
acoplamentos que violam o número bariônico e leptônico permitem esse fenômeno. Além do
processo listado na Fig. 2.3, outros podem acontecer como p→ π0µ, νπ+, etc.

Um modo de contornar esse problema para o MSSM é introduzir uma simetria discreta, a
paridade-R. Ela de�ne um número quântico para as partículas do Modelo Padrão igual a +1 e um
número quântico para partículas introduzidas por supersimetria igual a -1. Esse número deve ser
conservado multiplicativamente em todas as interações do MSSM. A paridade-R proíbe, assim,
todas as interações que produzem o decaimento do próton. Vale ressaltar, contudo, que um setor
de quebra de paridade-R pode ainda ser acomodado desde que tais acoplamentos sejam muito
suprimidos de modo a fazer a vida média do próton tão grande quanto a idade do Universo, pelo
menos. Para uma partícula de número bariônico B, número leptônico L e spin s, a paridade-R
será dada por:

PR = (−1)(3(B−L)+2s). (2.7)

Para um colisor do tipo do LHC onde são realizadas colisões entre prótons, temos paridade-R
inicial igual a +1 no estado inicial. Isso implica que todas as partículas supersimétricas serão
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produzidas aos pares e no decaimento dessas partículas outra partícula supersimétrica deverá ser
produzida. Consequentemente, a partícula mais leve introduzida por supersimetria será estável.
Tal partícula massiva, neutra e fracamente interagente (uma LSP, portanto) é uma candidata à
matéria escura.

Nos modelos que iremos estudar, o neutralino mais leve χ̃1 é a LSP, o candidato à matéria
escura para o MSSM. No âmbito desse modelo, contudo, ela não é a única candidata viável. Em
certos modelos de quebra soft de supersimetria, o gravitino ou sneutrino mais leve podem fazer
o papel de matéria escura [2].

2.2.2 Quebra de supersimetria

A supersimetria não pode ser uma simetria exata da natureza, pois como vimos no super-
multipleto, todas as partículas possuem as mesmas massas. Assim, para o elétron, por exemplo,
teríamos o selétrons � escalares de massa 0.5 MeV assim como o elétron. Porém não temos evi-
dências desse tipo de partículas. Isso denota que supersimetria foi quebrada em alguma escala, e
por isso, as partículas supersimétricas têm massas muito diferentes de seus parceiros do Modelo
Padrão. Chamaremos a escala de quebra de supersimetria de ΛSOFT.

Existem diversos mecanismos de quebra de supersimetria que podem ser aplicados ao MSSM,
a maioria deles assume que exista um setor em altas energias, puramente supersimétrico, onde a
quebra na escala TeV seja transmitida por alguma interação que tem origem nesse setor. Dentre
esses modelos os mais famosos são o mSugra ou CMSSM (minimal supergravity mediation susy

breaking) [2, 37] e a mediação gauge GMSSB (gauge mediation susy breaking) [38].
Quando a quebra de supersimetria ocorre, as partículas supersimétricas têm massas muito

diferentes dos seus parceiros supersimétricos. Em geral a massa das partículas supersimétricas
dependem da escala de quebra ΛSOFT. Para o mSugra ΛSOFT = MPlanck, para ao GMSSB
ΛSOFT = MMess, onde MMess é a massa dos campos de gauge mensageiros.

No mSugra de�ne-se um esquema de quebra de supersimetria e reduz-se os parâmetros livres
do MSSM (O(100)) para apenas 5. Os parâmetros livres, no mSugra, são: acoplamento universal
trilinear de escalares (A0), a razão do valor esperado de vácuos dos dois bósons de Higgs Hu e
Hd (tanβ), o sinal do parâmetros de massa do Higgs no superpotencial (µ), a massa universal
do escalares m0 e a massa universal os gauginos m 1

2
. Nesse modelo, em sua concepção mínima,

ou seja, somente com 2 dubletos de bósons de Higgs, resolve o problema de ajuste �no, desde
que a escala de quebra soft não seja muito alta. Atualmente, devido à ausência de eventos de
supersimetria nos últimos resultados do LHC 7 e 8 TeV, as massas das partículas supersimétricas
têm limites na faixa de ∼ 1.8 TeV, retornando assim com uma certa quantidade de ajuste �no.
Conclusões análogas podem ser obtidas para o modelo GMSSB.

Retomando a correção para a massa do bóson de Higgs, em 1-loop, calculada para o Modelo
Padrão (2.1) e para supersimetria (2.6), temos que a contribuição total 1-loop será [2]:

δmh
2 ∼ 1

2
mt̃

2λt
2 log

ΛSOFT

mt̃

+ · · · . (2.8)

Vemos que a correção total para a massa do bóson de Higgs é livre de divergências quadráti-
cas. Porém para manter a massa do Higgs em 126 GeV, com stops muito pesados, introduz-se
novamente outro problema de ajuste �no [2].

Existem modelos simpli�cados que não assumem nenhum esquema de quebra, e logo, não
tem seu comportamento em altas escalas de�nido por equações do grupo de renormalização.
Um deles é o pMSSM (phenomenological minimal supersymmetric standard model) [39, 40, 41],
onde evidências experimentais como física de sabores (�avor physics) e momento de dipolo para
léptons ajudam a restringir os parâmetros introduzidos por supersimetria. Após essas restrições,
restam 20 parâmetros livres caso deseje-se fazer o gravitino como LSP, ou 19 se assumirmos que
a LSP seja o neutralino [44].



CAPÍTULO 2. REVISÃO TEÓRICA 13

2.2.3 Lagrangiana supersimétrica

Em nossa análise estamos interessados em processos de produção de squarks e gluinos com
posterior decaimento em jatos e MET no colisor próton-próton LHC. Sendo assim, iremos fazer
uma descrição somente do setor responsável por essas interações, tornando assim, os modelos
analisados nesse trabalho, simpli�cados. Os termos da lagrangiana relevantes para produção de
squarks e gluinos são os da QCD supersimétrica, e o decaimento em jatos e MET é governado
por um termo eletro-fraco da lagrangiana supersimétrica [3].

LSUSY = Lgq̃q̃ + Lgg̃g̃ + Lggq̃q̃ + Lqq̃g̃ + Lqq̃χ̃1 + h.c., (2.9)

Lgq̃q̃ = −igs
∑
q

[q̃∗L
←→
∂µ q̃L + q̃∗R

←→
∂µ q̃R]T agaµ, (2.10)

Lgg̃g̃ = i
1

2
gsf

abc ¯̃gaγµg̃
bgcµ, (2.11)

Lggq̃q̃ = gs
∑
q

[q̃∗Liq̃Lj + q̃∗Riq̃Rj](T
aT b)ijg

aµgbµ, (2.12)

Lqq̃g̃ = −
√

2gs
∑
q

[q̄PRT
ag̃aq̃L − q̄PLT ag̃aq̃R]. (2.13)

Essas lagrangianas são compostas basicamente por squarks Left e Right, os campos q̃L,R, parceiros
supersimétricos dos quarks, os campos espinoriais de 4 componentes q. Onde q = (u, d, s, c).
Temos os glúons, ga, que manifestam-se em 8 estados diferentes devido à representação adjunta
de SU(3)C . Os gluínos são os parceiros supersimétricos dos glúons, denotados pelos espinores
de Majorana g̃a. Veja o apêndice A.2.

Note que as equações (2.9) não dependem de nenhum parâmetro do modelo supersimétrico e
tão pouco do espectro de massas dos squarks e gluinos. Porém o termo Lqq̃χ̃1 depende do modelo
de quebra de supersimetria e portanto do potencial de quebra soft [2, 3],

Lqq̃χ̃1 = − g√
2

¯̃χ0
1[(lLq PL + rLq PR)q̃∗L + (lRq PL + rRq PR)q̃∗R]q (2.14)

Aqui as constantes l e r dependem do superpotencial de quebra soft. Portanto são dependentes
de modelos. Escolhemos o mSugra pois existem implementações diversas para a produção do
espectro supersimétrico como SPheno [42] e SoftSusy [43], adotamos um modelo onde o bran-

ching ratio de gluinos em squarks e quarks é de 100% com squarks Right decaindo em 99 % dos
casos em jatos e MET, enquanto que os squarks Left decaem em jatos e MET em 1% dos casos.
Espectros que não têm esse tipo de branching ratio podem levar a estados intermediários de pro-
dução de neutralinos pesados e/ou charginos, descaracterizando assim, a produção de eventos de
jatos e MET.

A lagrangiana (2.9) deve ser analisada em dois cenário de hierarquia de massas para squarks
e gluinos, mg̃ > mq̃ e mg̃ < mq̃. Na região mg̃ > mq̃, os gluinos decaem preferencialmente em
squarks e jatos, onde os squarks têm sabores u, d, s, c. Para a região do espectro onde mg̃ < mq̃,
ainda teremos squarks decaindo em jatos e neutralino, mas os gluinos agora terão seu decaimento
em squarks basicamente fora da camada de massa. Isso fará com que os gluinos decaiam em
stops e top, pois os stops em geral são os squarks mais leves em modelos com quebra em altas
energias [2], assim como no modelo simpli�cado que utilizamos.

g̃ → (t̃)∗t→ (t̃∗ → b χ±1 )t, (2.15)
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ou

g̃ → (t̃)∗t→ (t̃∗ → t χ0
1,2,3)t. (2.16)

Em geral os charginos decaem em bósons W e os neutralinos pesados em bósons Z, sempre
acompanhados de partículas supersimétricas mais leves, até produzir o neutralino leve (χ̃1, ma-
téria escura). A produção de quarks top e bottoms está fora dos eventos de jatos e MET, pois
pode-se realizar, com uma e�ciência razoável, o tagging dos jatos produzidos por essas partículas,
e identi�car esses jatos. Esses decaimentos não são contabilizados como válidos após seleção de
eventos em nossa análise e por isso foram desconsiderados das simulações, com isso, somente a
produção de squarks é relevante para a região mg̃ < mq̃.

2.2.4 Limites para supersimetria

Experimentos para detecção de supersimetria já são realizados há algum tempo. Dentre
os mais conhecidos temos o colisor LEP (Large Electron-Positron) no CERN e o Tevatron, um
colisor do tipo próton-antipróton localizado no Fermilab e o LHC large hadron collider localizado
no CERN. Além de outros experimentos para detecção indireta e investigações em fenômenos de
baixa energia. Em geral esses experimentos são analisados em contextos de modelos simpli�cados
e no CMSSM. A seguir temos uma breve exposição e comentários sobre esses experimentos:

Procura em Colisores
O colisor Tevatron concentrou-se na procura de supersimetria para eventos com jatos e
MET. O experimento CDF e D0 localizados no Tevatron colocaram limites para a massa
de squarks e gluinos em 400 GeV para o CMSSM [45, 46]. Já no LEP o experimento
DELPHI realizou buscas para gauginos e sléptons também no CMSSM [47], onde obtiveram
limites para o neutralino mais leve e charginos de 45.5 GeV e 94 GeV, respectivamente.
O limite imposto para os sléptons também teve contribuições do experimento ALEPH,
com isso alcançou-se restrições para massa de sléptons de até 100 GeV [48]. Nos três anos
de funcionamento do LHC muitos limites foram impostos para modelos supersimétricos
como o CMSSM. A maioria dos limites foram impostos através de medidas realizadas para
procura de stops, sbottoms e jatos + MET. Na Fig. 2.4 vemos os resultados recentes
obtidos pelo CMS [49]. Vemos limites para a massa de gluinos e para squarks em função
das massas do neutralino, em uma realizada para procura de eventos com jatos e MET
para modelos simpli�cados de supersimetria. Limites da ordem de 1.0 TeV são impostos
para squarks e 1.3 TeV para gluinos. Com base nesses dados construímos a nossa análise.
Nesses valores de massas análises simpli�cadas deixam de ser e�cientes devido aos grandes
backgrounds associados, por isso uma análise multivariada passa a ter um lugar de destaque.
Ressaltamos que na Fig. 2.4a limites para massas de neutralinos acima de 500 GeV,
praticamente não existem.

Procura em Astrofísica
A medida da densidade de relíquia contribui para adequar o MSSM para um modelo mais
realista. Após a expansão do Universo a níveis adequados, a densidade de matéria escura
torna-se baixa, devido à sua baixa seção de choque acabamos em um cenário onde essa
densidade de matéria escura torna-se praticamente estável. Essa densidade é conhecida
como densidade de relíquia, e foi medida pelo WMAP em 2011 [24]. O MSSM tem o
neutralino como candidato à matéria escura quando introduzimos paridade-R, porém nem
todos os modelos de quebra de supersimetria para o MSSM resultam em densidades de
relíquia que observamos hoje. Com isso podemos restringir diversos valores de parâmetros
livres para o CMSSM.

Procura em Baixas Energias
Em baixas energias pode-se restringir supersimetria através de medidas indiretas. Uma
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Figura 2.4: Resultados para o LHC 8 TeV dados pelo CMS. Limites para gluinos de até 1.3
TeV podem ser alcançados em uma análise com quarks tops e MET no estado �nal. Já para os
squarks o limite é de no máximo 1 TeV. Neutralinos com mais de 500 GeV ainda não possuem
limites estabelecidos. Análise feita para modelos simpli�cados de supersimetria. Fonte: [49]

delas é o processo b → γs. Esse processo envolve diagramas em 1-loop para partículas
pesadas supersimétricas. Assim não observar os efeitos desse loop impõe fortes limites para
as massas dessas partículas [50]. Também pode-se restringir supersimetria em medições
do momento magnético do múon (g − 2), novamente devido à contribuições de loops de
partículas pesadas [51].

2.3 Massas de squarks e gluinos

Modelos como o mSugra ou GMSSB possuem um esquema de quebra em altas energias,
isso proporciona um pequeno número de parâmetros livres que de�nem todo o modelo. Esses
esquemas de quebra de supersimetria necessitam de diversas condições que têm validade somente
no setor de altas energias. Esses setores são conhecidos como hidden sectors ou setores escondidos,
assume-se ainda, que esses setores são totalmente supersimétricos. Com isso todos os parâmetros
são de�nidos em altas energias, conhecidas como escalas mediadoras (M). Por exemplo, no
mSugra temos M = MPlanck e no modelo de mediação via bósons de gauge GMSSB M =
MMess. Porém para de�nirmos a teoria na escala TeV precisamos usar as equações do grupo de
renormalização e converter esses parâmetros de altas energias para baixas energias.

No MSSM os squarks recebem correções quânticas em suas massas através de, basicamente,
gluinos em 1-loop em altas energias.

m2
q̃(Q) ∼ m2

q̃(M) +Aq̃(M)m2
q̃ +Ag̃(M)m2

g̃, (2.17)

onde Q ∼ O(TeV ) e M ∼ O(MGUT = 1016). Acoplamentos de Yukawas foram desconsiderados
e Ag̃ domina sob Aq̃, devido à grande multiplicidade dos gluinos [52].

Já os gluinos não recebem correções em 1-loop vindas de squarks, pois a simetria quiral
protege as massas dos gluinos em qualquer ordem de teoria de perturbação, assim como a simetria
gauge protege as massas dos bósons de gauge. Portanto para gluinos temos,

m2
g̃(Q) ∼ m2

g̃(M) +Bg̃(M)m2
g̃. (2.18)

Por não haver uma simetria desse tipo para escalares temos o problema de hierarquia. Em suma,
a massa do squarks não pode ser feita muito mais leve do que as massas dos gluinos.
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Figura 2.5: Região do plano (mq̃,mg̃) analisada em nosso trabalho. Vemos que algumas regiões
são favorecidas por modelos com quebra de supersimetria em altas energias enquanto outras não.

Na Fig. 2.5 temos uma ilustração da relação de massa entre squarks e gluinos em diferentes
cenários [52]. A região superior denotada por �modelos em altas energias� delimita os modelo com
quebra em altas energias como o mSugra ou GMSSB. A região intermediária, é acessível somente
a modelos com quebra em escalas intermediárias. Aqui o mSugra, por exemplo, está excluído. Já
a região �modelos exóticos� permite apenas modelos com uma diferença pequena entre a escala
de mediação de quebra e a escala eletro-fraca, podem ser modelos com supersimetria estendida.
Em nosso estudo, pontos ao longo de todo este espaço de massas foram considerados dentre os
150 espectros simulados.

Nos modelos simpli�cados a lagrangiana é determinada em teorias efetivas para a escala
especí�ca do fenômeno, em nosso caso a escala do colisor LHC, 14 TeV. Nesses modelos nenhuma
equação do grupo de renormalização são consideradas, portanto as massas e larguras são de�nidas
como parâmetros livres.

2.4 Dimensões extras universais mínimas

Modelos com dimensões extras podem ser de�nidos em contextos onde a gravidade é a única
interação que propaga-se pela dimensão extra ou onde todas as partículas do Modelo Padrão e a
gravidade propagam-se pela dimensão extra [4], neste último caso, dizemos que ela é universal.

Para modelo com uma dimensão extra compacta, assume-se que além das 4 dimensões que
vivemos, existem uma dimensão extra compacta de raio R, a dimensão extra pode estar contida
em [0, 2πR] e seus pontos extremos são identi�cados. Todos os campos podem propagar-se
pela dimensão extra. A lagrangiana para esse modelo é construída em um contexto de teoria
de campos em 5 dimensões (D = 5 ou 5D), e por isso têm acoplamentos 5-dimensionais com
dimensão de massa negativa, e portanto, não renormalizáveis. Como a maioria das teorias não-
renormalizáveis, essa teoria tem validade limitada até um certa escala ΛDE.

Como o espaço é expandido para 5 dimensões, deve-se de�nir momento e posição na quinta
dimensão extra compacta:

xM = (xµ, y), (2.19)

pM = (pµ, p5). (2.20)

A métrica desse espaço é do tipo Minkowski para os índices espaço-tempo µ e plana para a
dimensão extra compacta y. Porém os campos de�nidos nesse espaço devem obedecer condições
periódicas na dimensão extra compacta, levando assim, à quantização do momento na dimensão
extra, p5 = ± n

R . Onde n é um número inteiro e conhecido como número-KK. O invariante
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multi-dimensional pMpM = m2 é igual a massa de uma dada partícula, com isso temos:

p2 = pµp
µ = m2 +

n2

R2
. (2.21)

Vemos que em D=5, onde temos 1 dimensão extra compacta, temos uma torre in�nita de par-
tículas, cada uma com massa proporcional à massa do modo zero (n = 0) e ao raio de com-
pacti�cação R. Esse resultado denota que um campo em D=5, quando expandido em nosso
espaço 4-dimensional, leva à uma torre in�nita de campos, essa torre é conhecida como torre de
Kaluza-Klein. O momento pM é um quantidade conservada na dimensão extras compacta de
raio R.

O modo zero dos campos (n = 0) representam as partículas que observamos no Modelo
Padrão. Para n > 0 começamos a ter outros campos mais pesados, chamamos de estados
excitados, esses campos possuem todos os números quânticos idênticos ao respectivo modo zero.
Por exemplo, um quark terá estados excitados com mesmo spin, hiper-carga, quiralidades, etc,
porém com massas diferentes. Além disso os campos vetoriais terão uma componente extra na
quinta dimensão, denotada por uma partícula extra, teremos tantos campos quanto partículas
vetoriais no Modelo Padrão.

Teremos que lidar com os seguintes problemas: primeiro, refere-se às projeções de quiralidade
para os férmions, sabemos que a interação eletro-fraca distingue quiralidade, portanto deve-se
encontrar um meio de escrever férmions com modo zero Righ ou Left. O segundo refere-se
às componentes extras da quinta dimensão para os bósons de gauge ((A5, Aµ)), elas trazem
novas partículas em D=4 com modos zero massivos, veja apêndice A.3. Contornando esses
problemas poderemos escrever o Modelo Padrão em uma teoria de dimensão extras, em nosso
caso, estaremos interessados em uma teoria onde todos os campos podem se propagar livremente
pela única dimensão extra compacta, tal modelo é conhecido como dimensão extra universal
mínima, ou em inglês, MUED (minimal universal extra dimension). O termo mínimo vem do
fato de considerar apenas uma dimensão extra compacta, podemos construir modelos com duas
dimensões extras compactas veja [4], esses modelos são conhecidos somente como UED.

Para lidar com esses dois problemas utiliza-se a compacti�cação no orbifold, Fig. 2.6 [53].

Z2
S1

y = 0 y = πR

y

y = 0 = 2πR

y

Figura 2.6: Esquema da compacti�cação no orbifold (S1/Z2).

Inclui-se uma paridade para a dimensão extra, reduzindo assim seu tamanho. Essa identi�-
cação pode ser resumida na operação y → −y e chamamos de operação Z2. A dimensão extra
agora está contida [0, πR]. A lagrangiana de MUED deve ser invariante sob Z2. Os campos
assumem um propriedade interessante após essa compacti�cação no orbifold. Campos que são
pares sob Z2 têm modo zero, enquanto que campos ímpares sob Z2 não têm modo zero. Isso
resolve o problema de quiralidade em teoria eletro-fraca para os férmions, utilizando condições
de contornos apropriadas podemos de�nir campos com modo zero Righ ou Left. Além disso as
projeções dos campos vetoriais na quinta dimensão passam a ter paridade ímpar sob Z2, garan-
tindo que seus modos zero desapareçam, veja apêndice A.3. Ressaltamos que os campos em 5
dimensões não podem misturar estados pares e ímpares sob Z2.

Os estados excitados (n > 0), após compacti�cação, terão todos acoplamentos vetoriais. Ou
seja, somente os modos zero irão distinguir as interações eletro-fracas.
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Aparentemente as partículas em MUED tendem a ser altamente degeneradas em massa a nível
de árvore, veja 2.21, se R−1 >> m os estados excitados são praticamente degenerados. Porém
correções em 1-loop tendem a dar grandes contribuições para as massas dos estados excitados,
quebrando essa degenerescência [5].

2.4.1 Paridade-KK

A compacti�cação no orbifold Z2 quebra a simetria de translação na dimensão extra. Assim
o momento p5 não será mais conservado e consequentemente, o número-KK também deixa de
ser conservado.

Quando as interações ocorrem em altas energias q2 >> ( 1
R)

2
, não há possibilidade de iden-

ti�car os pontos �xos y = 0 e y = πR, retornando aparentemente ao caso onde não existia
compacti�cação no orbifold. Com isso o número-KK volta a ser conservado. Isso denota que
a violação do número-KK pode estar concentrada nos pontos �xos. Quando escrevemos a la-
grangiana nesses pontos vemos que deve existir uma paridade para cada uma das partículas da
lagrangiana de MUED [4, 6]. Essa é a paridade-KK, e é dada por:

PKK = (−1)n, (2.22)

onde n é o número-KK. Na Fig. 2.7 temos quatro exemplos da aplicação da paridade-KK.
Observe que no terceiro decaimento o número-KK, e portanto o momento na quinta dimensão,
não é conservado (partículas no orbifold), porém a paridade-KK é conservada. Além disso, a
paridade-KK é conservada sob correções quânticas. O mesmo não pode ser dito para o número-
KK.

0

0

1
1

1

0

0

0

2
1

0

0

Figura 2.7: Aplicação da paridade-KK. Os números indicam o número-KK de cada uma das
partículas dos vértices.

As consequências da paridade-KK são, fenomenologicamente, idênticas à paridade-R em su-
persimetria. A partícula mais leve dos estados excitados, neutra, massiva e portanto um candi-
dato à matéria escura é o estado correspondente ao quanta do grupo U(1)Y : B(1) � o primeiro
modo KK do fóton (fóton pesado).

Os estados com número-kk igual a 1 possuem topologia muito parecida com as de supersime-
tria após a compacti�cação no orbifold. Por isso o modelo de dimensões extras universais é tão
utilizado em comparações com modelos de supersimetria. Pois ambos podem produzir estados
�nais com jatos ou léptons e grande quantidade de MET em diversos fenômenos diferentes, como
discutimos anteriormente.

2.4.2 Limites para MUED e massas de KK-quarks e KK-glúons

Para o modelo de MUED também é possível impor limites para o raio de compacti�cação
através de mediadas de precisão, como o momento magnético anômalo do múon e o branching

ratio de alguns decaimentos raros, como o b→ sγ [54].
A densidade de relíquia também pode ser usada para estimar o valor da massa do KK-fóton

assim impor limites para o modelo de MUED. Como o espectro de MUED é mais degenerado
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do que o supersimétrico, muitos processos participam da co-aniquilação até a produção da ma-
téria escura. Foi mostrado, veja [60], que introduzir processos de co-aniquilação, em geral, leva
ao aumento da densidade de relíquia, consequentemente, diminuindo a massa da partícula de
matéria escura. Isso coloca o KK-fóton com limites de massas maiores do que o neutralino de
supersimetria.

Em colisores, no Tevatron por exemplo, a busca ocorreu com eventos de dois léptons de
mesma carga [61], nesse contexto modelos gerais de dimensões extras eram analisados, no qual
o modelo de MUED é um caso particular. Também foram analisados eventos com dois fótons
no estado �nal e MET, nesses modelos uma LKP pode decair através de interação gravitacional
em um fóton e um KK-gráviton [62]. No LHC o experimento ATLAS [63] realizou uma busca
de eventos com léptons de cargas opostas no estado �nal. É possível que tal assinatura possa
vir de um decaimento direto de um KK-fóton ou KK-bóson Z. No caso de MUED, o decaimento
do fóton pesado é proibido, porém o decaimento do KK-bóson Z pode dar origem a esse tipo de
assinatura, limites para massa desse bóson estão entre 3.0 e 4.0 TeV. Não há buscas especí�cas
no modelo de MUED no ATLAS e CMS, e os limites para o raio de compacti�cação são dados
basicamente por físicos teóricos. O limite para R−1 é de 1.3 TeV com cut-o� ultravioleta de 10
TeV [60, 64, 65]. Esses limites são su�cientes para produzir KK-quarks e KK-glúons com massas
da ordem que estamos analisando nesse trabalho, porém um KK-fóton muito pesado O(TeV )
não é privilegiado pelas observações de densidade de relíquia, para modelos típicos de MUED.

Sem considerar termos localizados na fronteira do orbifold, o espectro típico de MUED é
altamente degenerado. A massa do n−ésimo estado excitado de Kaluza-Klein correspondente a
uma partícula do MP de massa m0 pode ser obtida através de (2.21), será:

m2
n = m2

0 +
n2

R2
. (2.23)

Contudo, correções radiativas devida aos termos cinéticos dos campos do MP localizados na
fronteira do orbifold quebram essa degenerescência severa [59]. Ainda assim, em comparação aos
espectros típicos de SUSY, os de MUED são muito degenerados. Por exemplo, se R−1 = 500
GeV é a escala Λ onde estes termos cinéticos são importantes, tal que ΛR = 20, a diferença de
massa entre o primeiro estado excitado do glúon e do fóton pesado é de apenas 150 GeV [59].

2.4.3 Lagrangiana de MUED

Iremos escrever a lagrangiana do primeiro estado excitado (n = 1), ou seja, os KK-quarks,
kk-glúons e KK-fótons. Note que temos dois quarks excitados, os quarks dubletos Q(1) e quarks
singletos q(1). No apêndice A.3, temos as ferramentas necessárias para reproduzir a lagrangiana
usada nesse trabalho para MUED. Os termos relevantes para a interação do Modelo Padrão e as
partículas do primeiro estado KK, para a nossa análise de jatos e MET, são:

LKK = Lgq(1)q(1) + Lgg(1)g(1) + Lqq(1)g(1) + Lqq(1)B(1) + h.c., (2.24)

Lgq(1)q(1) = −gsQ̄(1)
R,Lγ

µgµQ
(1)
R,L − gsq̄

(1)
R,Lγ

µgµq
(1)
R,L, (2.25)

Lqq(1)g(1) = −gs[q̄Lγµg(1)
µ Q

(1)
L + q̄Rγ

µg(1)
µ q

(1)
R ], (2.26)

Lgg(1)g(1) = −g
2
fabc[(∂µg

a
ν − ∂νgaµ)g(1),bµg(1),cν (2.27)

+(∂µg
(1),a
ν − ∂νg(1),a

µ )gbµg(1),cν − (∂µg
(1),b
ν − ∂νg(1),b

µ )gaµgcν ].
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Tipicamente em MUED γ(1) ≈ B(1), ou seja, o fóton pesado é praticamente dominado pela
componente do bóson B

(n)
µ . Isso decorre do fato de que misturas desses bósons dependem de

uma espécie de ângulo de Weinberg para os KK-bósons de gauge, os termos diagonais dependem
de R−1 ∼ TeV, fazendo com que as misturas desapareçam. Continuaremos denotando o fóton
pesado por B(1). Finalmente temos,

Lqq(1)B(1) = Lqq(1)B(1) = −g[yq̄Lγ
µB(1)

µ Q
(1)
L + y′q̄Rγ

µB(1)
µ q

(1)
R ] + h.c. (2.28)

O modelo de MUED usado em nosso trabalho também é inspirado em ummodelo simpli�cado.
Onde KK-glúons g(1), KK-quarks Q(1), q(1) produzem jatos e B(1) através de interações de QCD
e eletro-fracas, respectivamente, em um contexto de teoria efetiva em dimensões extras. Assim
como no caso de supersimetria, mantendo as ressalvas feitas na seção anterior, temos uma certa
liberdade para de�nição das massas do modelo de MUED.

2.5 Análise estatística

A análise estatística empregada em nosso trabalho baseia-se em testes de hipóteses cons-
truídas através de vários observáveis físicos diferentes. Para o caso de descoberta de nova física
de�nimos a hipótese nula (H0) representando os backgrounds ou Modelo Padrão e a hipótese
alternativa (H1) representando backgrounds e o sinal de nova física, em nosso caso, supersimetria
e Modelo Padrão. Para o discernimento de nova física de�nimos H0 como supersimetria e Modelo
Padrão e H1 como MUED e Modelo Padrão. Todas essas hipóteses são denominadas simples,
pois não existe nenhum parâmetro livre, já que de�nimos previamente todas as massas, larguras
e acoplamentos de cada um dos modelos (hipóteses).

No teste de hipóteses é possível cometer dois tipos de erros, tipo-I (α) e tipo-II (β). Esses erros
são reportados como probabilidades. No caso onde estamos analisando uma possível descoberta
de sinal de nova física, o erro do tipo-I é denominado falso positivo. Ocorre quando o teste
a�rma que os dados são condizentes com eventos de nova física quando na verdade são, de fato,
devidos ao Modelo Padrão. O erro do tipo-II é denominado falso negativo, ocorre quando o teste
estatístico a�rma que os dados não são explicados por um dado modelo de nova física, quando
na realidade são eventos de nova física [55, 56, 57, 58].

O valor do erro tipo-I (α), que deseja-se trabalhar ou alcançar é estipulado a priori. Para
física de partículas adota-se α < 2.87 · 10−7 para de�nir descoberta de nova física. Esse valor é
equivalente a uma probabilidade de se obter signi�cância maior ou igual 5σ ao se sortear uma
variável aleatória distribuída de acordo com uma Normal Padrão. O valor do erro tipo-II (β)
é tal que, se β < 5%, temos a rejeição da hipótese alternativa. Essas duas condições precisam
ser cumpridas, pode-se ter uma medida onde α = 10−10 mas se o β dessa medida cair na região
de exclusão, β < 5%, dizemos que o teste de hipóteses é inconclusivo. Os possíveis erros do
teste de hipóteses (α e β) são escolhidos de acordo com as convenções estipuladas para física de
partículas. Veja que são tratados de maneira assimétrica, pois é mais aceitável assumir o risco
de uma exclusão por engano de um modelo de nova física qualquer, do que assumir um alto risco
de uma falsa descoberta.

Fixado o erro do tipo-I, o teste de hipóteses é sistematizado sempre de forma a minimizar o
erro do tipo-II. Podemos de�nir o melhor teste de hipótese como aquele que maximiza 1− β, o
poder do teste (menor chance de falsa rejeição de nova física), para um dado valor �xo de chance
de falsa descoberta de nova física.

O teorema de Neyman-Pearson (NP) [17] a�rma que o teste estatístico para hipóteses simples
que possui maior poder do teste, é aquele de�nido dentro de uma região dada pela razão de
likelihoods L(resultado|H1)

L(resultado|H0) > kα, qualquer outra região do mesmo tamanho terá menor poder do
teste. kα é de�nido de acordo com o tamanho do erro do tipo-I desejado. Em nosso caso, por
exemplo, de�ne-se kα como a região delimitada por um corte para a estatística-teste, veremos
isso mais adiante.
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A ideia por trás da razão de likelihoods reside no fato de que, se nossos dados são melhores
descritos pela hipótese nula, então L(resultado|H0) será maior do que L(resultado|H1), o que
fornecerá uma razão likelihood pequena, e vice-versa. Assim essa razão comporta-se como um
teste para discernir entre uma ou outra hipótese.

Quando incertezas sistemáticas são inseridas nos likelihoods através de marginalizações o
teorema de NP, em geral, não é mais válido. Porém, como iremos constatar no próximo capítulo,
o teste de hipóteses construído com a razão likelihood, ainda é uma opção muito melhor do que
a simples contagem de eventos comumente usada em trabalhos de fenomenologia.

Em física de partículas uma distribuição muito usada é a distribuição de Poisson, pois a
população de um determinado bin em um dado histograma, quando os dados são coletados em
um intervalo �xo de tempo, é considerada uma variável aleatória que segue distribuições de
Poisson. Trata-se de uma distribuição de probabilidade discreta que mensura a probabilidade da
ocorrência de r eventos independentes em um intervalo de tempo t, onde a taxa de eventos é µ:

P (r;λ) =
e−λλr

r!
, (2.29)

λ = µt.

λ é o número médio de eventos em um intervalo de tempo t.
Observe a Fig.[2.8], nela a distribuição de Poisson tende a uma distribuição gaussiana para va-

lores médios grandes. A partir de λ = 20, ou até valores menores, a concordância com gaussianas
é muito boa.

Λ = 1

Λ = 5

Λ = 20

Distribuição de Poisson

0 5 10 15 20 25 30 35

Figura 2.8: Distribuição discreta de Poisson, para valores médios em um dado intervalo �xo de
tempo de λ = 1, λ = 5 e λ = 20.

2.6 Construção dos histogramas de verossimilhança

Histogramas de cada uma das distribuições cinemáticas usadas na construção da nossa es-
tatística foram gerados em simulações de Monte Carlo, que oportunamente descreveremos no
próximo capítulo. Como vimos na seção anterior, um dado bin i, sofre uma �utuação estatística
de acordo com uma Poisson de média µi. O likelihood para uma dada distribuição com n bins
de um observável j é calculado como:

L( ~N |H) =
n∏
i

P(Ni, µi), (2.30)

onde,

P(Ni|µi) =
µNii e−µi

Ni!
. (2.31)

H denota algum modelo, em nosso caso pode ser o Modelo Padrão, supersimetria ou MUED.
~µj = (µ1, µ2, . . . , µn) é a população esperada em cada um dos n bins do histograma j. Esses
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valores esperados são obtidos através de nossas simulações com geradores de eventos e corres-
pondem às nossa predições teóricas para sinais e backgrounds. Para o histograma j, o valor do
i-ésimo bin é dado por:

µi =

nfontes∑
k=1

LσkEki (2.32)

σk é a seção de choque total, L a luminosidade integrada e Eki uma e�ciência, que em nosso
caso é função do tagging de quarks de jatos, e�ciência de cortes e K-factors para correções NLO.
O índice k indica uma soma realizada sobre os processos para um dado modelo (supersimetria,
MUED ou Modelo Padrão).

Na equação (2.31), Ni é valor �utuado em um dado bin i da distribuição de interesse através
da Poisson de parâmetro µji. Para cada sorteio de um conjunto de Ni, i = 1, · · · , n valores,
a partir dos correspondentes µji, obtemos um novo histograma. Essa é uma maneira simples
de, na verdade, simular o próprio experimento, de criar �dados�. É claro que tais �dados� são
gerados de acordo com as idiossincrasias de nossas simulações, por isso, os chamamos de pseudo-
experimentos.

A partir de agora, iremos denotar a variável µi para o Modelo Padrão por bji. Analogamente
µi será denotada por sji (uji) quando se referir à população do histograma j para o bin i do
modelo de supersimetria (MUED). O índice j varia de 1 a 9, o número de observáveis físicos
sensíveis ao spin que escolhemos e que serão apresentadas na próxima seção, e i varia de 1 a 20,
o número de bins de cada histograma. A escolha do número de bins é feita baseada na precisão
experimental do ATLAS.

No próximo capítulo iremos abordar a obtenção dos valores de sij , uij e bij , que é feita através
de geradores de eventos, particularmente o MadGraph5.

A probabilidade conjunta, ou verossimilhança, associada ao histograma de uma distribuição
cinemática, envolve uma quantidade de informação muito maior do que o simples número total de
eventos, ela codi�ca o próprio formato da distribuição através do vetor (µ1, · · · , µn). A ideia pode,
agora, ser estendida a todos as distribuições usadas no discernimento. Para ndist distribuições,
cada uma dividida em n bins, o likelihood dos backgrounds é dado por:

L =

ndist∏
j=1

n∏
i=1

P(Nji|bji), (2.33)

ao passo que o likelihood associado à hipótese de sinal+backgrounds é,

L =

ndist∏
j=1

n∏
i=1

P(Nji|sji + bji). (2.34)

Vamos agora mostrar como combinar estas informações numa única estatística e avaliar sua
função de distribuição.

2.7 Estatística-teste para descoberta e discernimento

Uma estatística-teste, λ, é uma função criada a partir de um conjunto de medidas experimen-
tais e de predições teóricas. Construída a estatística-teste e armados de um teste estatístico é
possível investigar a concordância de um dado observado com uma determinada hipótese teórica.
Suponha que temos um conjunto de dados observados organizados em bins ~o = (o1, . . . , on), ou
de pseudo-experimentos simulados de acordo com algum modelo pré-estabelecido.

Nosso objetivo é estimar as PDFs da estatística-teste assumindo, ora a hipótese nula, ora a
hipótese alternativa, obtendo f(λ(~o)|H0) e f(λ(~o)|H1), respectivamente. Onde f é uma PDF.
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Escolhemos aqui como estatística-teste a razão dos likelihoods (teorema de NP) associados
a cada hipótese, pois testes estatísticos construídos dessa maneira oferecem o melhor resultado
para um teste de hipóteses simples, como discutimos anteriormente. Ao invés da razão pura
dos likelihoods é comum usar o logaritmo da razão likelihood, pois ele tem a propriedade de
converter multiplicações em simples somas e exponenciais em fatores multiplicativos, além do
fato de ser uma função monotonamente crescente, assim como a razão likelihood. Isso simpli�ca
computacionalmente os cálculos para construção do teste estatístico. A estatística-teste likelihood
ratio torna-se, então, log-likelihood ratio (Λ):

Λ = −2 ln

(
L(N |H1)

L(N |H0)

)
. (2.35)

A primeira análise que vamos fazer é para descoberta de sinal de nova física, ou seja, a
hipótese nula será o Modelo Padrão e a alternativa o Modelo Padrão mais supersimetria:

n0ij = bij , (2.36)

n1ij = bij + sij .

Temos condições agora de calcular (2.35) usando (2.34) e (2.31):

Λ =

ndist∑
i=1

nbins∑
j=1

2(sij − rij ln(1 +
sij
bij

)). (2.37)

onde rji representa o número de eventos observados (ou de um pseudo-experimento) no bin i de
uma distribuição j. Os valores de rij simulam os próprios dados do experimento, para isso são
sorteados de uma Poisson de média bij , sij + bij ou uij + bij dependendo das hipóteses a serem
testadas. Estes experimentos �ctícios são os pseudo-experimentos pseudo-experimentos.

Após a descoberta de nova física, o próximo passo seria dizer quais modelos explicam melhor
os dados vindos de excessos de eventos encontrados. Para a realização desse trabalho de�niremos

n0ij = bij + sij , (2.38)

n1ij = bij + uij .

O variável uij representa o valor esperado dos bins dos modelos de MUED.
Note que, agora, colocamos o modelo de supersimetria na hipótese nula, isso quer dizer que

estamos bene�ciando supersimetria, pois o erro de falsa aceitação de supersimetria é �xo (tipo-I).
Em bases menos exigentes, teríamos de assumir que MUED poderia estar também na hipótese
nula.

Assim (2.35) torna-se

Λ =

ndist∑
i=1

nbins∑
j=1

2(sij − uij − rij ln
sij + bij
uij + bij

). (2.39)

2.8 Métricas de signi�cância, Zsb e ZLLR

A contagem de eventos é a forma mais direta de buscar um sinal de nova física, porém essa
contagem, assim como qualquer outro número obtido de um dado experimental, está sujeita a
�utuações do tipo Poisson. Assumindo que um dado experimento tenha um background e sinal
total, esperados, de b e s eventos, respectivamente, uma métrica de signi�cância usual para o
sinal observado s é Zsb:

Zsb =
s√
b
. (2.40)
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Esta fórmula é obtida facilmente no caso em que as PDFs dos números de eventos (Pois-
son) podem ser aproximadas por distribuições Gaussianas. Suponha que s + b = b + Zsbσb, a
probabilidade α de que b possa �utuar para valores, pelo menos iguais a b+Nσb, é a integral:

α =

∫ +∞

b+Zsb
√
b
G(b,
√
b|x) dx

justamente o nível de signi�cância do teste, e de onde vem que Zsb = s/σb = s/
√
b. A função

G(b,
√
b|x) é uma gaussiana normalizada a unidade, de média b e desvio padrão

√
b.

Apesar de sua simplicidade, esta métrica tem a desvantagem de superestimar a signi�cância
estatística se o número de eventos observados não é muito grande. Além disso, a não ser que
b >> s, Zsb também superestima a signi�cância estatística em relação ao cálculo exato com
uma Poisson, uma vez que a cauda da Poisson é mais pesada do que a da Gaussiana, ou seja,
estende-se por um valor de abcissa maior. Veja a Fig. (2.9).
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Figura 2.9: Curvas para a distribuição Gaussiana (vermelha-contínua) e distribuição de Poisson
(ponto-azul) em escala logarítmica.

Em nosso caso, o número de eventos depende da luminosidade integrada, correções NLO,
e�ciência de cortes e tagging de jatos de quarks e glúons. Todos esses fatores podem in�uenciar
no valor de Zsb.

Quando, além da incerteza estatística, espera-se uma incerteza sistemática na taxa dos even-
tos, digamos de ε, podemos adicionar à incerteza estatística

√
b uma incerteza sistemática na taxa

dos eventos de background εb, na forma de soma em quadratura [15], de modo que a incerteza
total será

σT =

√
(
√
b)2 + (εb)2. (2.41)

Assim (2.40) modi�ca-se para,

Zsist
sb =

s√
(b+ (εb)2

. (2.42)

Para efeito de comparação, vamos calcular também a signi�cância de um sinal s em relação
a um background b usando a estatística de Poisson pela fórmula1,

α =
∞∑

k=s+b

P(k|b),

ZP = Φ(1− α). (2.43)

Marginalizando sobre a incerteza sistemática através de uma distribuição Gaussiana de acordo
com:

α =
∞∑

k=s+b

∫ 5

−5
P(k|b ∗ (1 + θε))× e−θ

2/2

√
2π

dθ (2.44)

Zsist
P = Φ(1− α) (2.45)

1Φ(x) = 1
2
√
π

∫ x
−∞ e

−x2

2 .
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Analisamos o comportamento de Zsb, Zsist
sb , ZP e Zsist

P com um erro sistemático ε na taxa dos
eventos de background. Na Fig. 2.10 temos uma comparação de (2.40 � 2.45), para seções de
choque típicas encontradas nesse trabalho (σsusy = 0.34 fb e σbckg = 0.88 fb) e luminosidade de
100 fb−1, em função da incerteza sistemática.
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Figura 2.10: Comparação entre o teste Zsb no caso com e sem erro sistemático na taxa dos
eventos de background.

Em primeiro lugar, con�rmamos que Zsb superestima a signi�cância estatística em qualquer
caso. Para uma incerteza sistemática de 10%, por exemplo, há uma diferença de aproximada-
mente 1σ entre Zsb e Zsist

sb , as linhas sólida e tracejada, respectivamente, e que cresce com a
incerteza. Em comparação ao cálculo exato com a estatística de Poisson, sem incertezas sistemá-
ticas, a diferença entre Zsb e ZP (a linha pontilhada) é de cerca de 0.2σ. Nesse caso, as diferenças
aumentam se s e b são próximos e pequenos (< 100).

Note, �nalmente, que a diferença entre as métricas baseadas nas distribuições de Poisson e
Gaussiana, na presença de incertezas sistemáticas, Zsist

sb e Zsist
P (linha ponto-traço), respectiva-

mente, é menor do que a correspondente diferença sem incertezas sistemáticas. Isso mostra a
importância de se levar em conta tais incertezas no cálculo da signi�cância estatística.

Para contornar as limitações impostas pelos erros sistemáticos, é necessário aumentar a razão
sinal sobre background. Podemos manipular a equação (2.42) e determinarmos uma relação de
vínculo entre s

b , a fração do número de eventos de sinal com relação ao background, e a incerteza
sistemática ε,

s

b
=

2ε2

−1
s +

√
(1
s )2 + 4 ε2

(Zsissb )2

. (2.46)

Vemos que a incerteza sistemática na taxa dos eventos coloca uma limitação no poder de
descoberta de nova física. Veja a Fig. 2.11, nela temos três casos para (2.46), com Zsist

sb = 1,
3 e 5, onde escolhemos uma seção de choque para o sinal de 1 fb, e luminosidade integrada de
100 fb−1. Observe que, a razão s

b necessária para alcançar determinada signi�cância depende
criticamente do nível de erros sistemáticos do experimento. Em um cenário de descoberta de
nova física, por exemplo, com uma incerteza sistemática de 10%, teremos signi�cância igual a 5σ
somente se a razão entre sinal e background for maior que 90%. Se, eventualmente, a separação
de sinal e background não for tão efetiva, então nunca poderemos alcançar descoberta de nova
física nesse canal usando a simples contagem de eventos.

2.8.1 A signi�cância calculada com base na estatística de verossimilhança

Retomando o log-likelihood ratio para descoberta e discernimento (2.37 e 2.39), vemos que
para de�nir a estatística-teste é necessário determinar rji. Conforme de�nimos anteriormente,
sij e bij correspondem às nossas predições teóricas oriundas das simulações de Monte Carlo.
Esses valores �cam �xos após uma simulação.

Ao simularmos um grande número de pseudo-experimentos, obtemos uma coleção de valo-
res da estatística-teste, no caso, o log-likelihood ratio. Organizando estes valores em bins de
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Figura 2.11: Fração de sinal e background necessária para alcançar uma dada Zsb, para incerteza
sistemática na taxa dos eventos de background εtaxa e luminosidade de 100 fb−1.

um histograma podemos ajustar uma função às entradas deste histograma. Tal função será a
nossa estimativa da PDF da estatística: f(Λ) para um determinado modelo � seja backgrounds

(f(Λ|H0)) ou sinal+backgrounds (f(Λ|H1)).
Como os valores de rij são a manifestação experimental de um dado modelo, neles devem

ser inseridos, além da �utuação estatística inerente de todo dado experimental, as incertezas
sistemáticas.

Um resultado importante para a análise dos pseudo-experimentos vem do teorema Central do
Limite. A distribuição de uma soma de n variáveis aleatórias i.i.d. (identicamente, independente-
mente distribuídas), cada uma com média µi e variância σi2, no limite de n in�nito, tende a uma

distribuição gaussiana com média µ =
n∑
i=1

µi e variância σ2 =
n∑
i=1

σi
2. Qualquer soma de variáveis

aleatórias que estejam de�nidas por qualquer PDF, em um dado limite de muitos dados, tendem
sempre a uma distribuição gaussiana. Pelas equações (2.37 e 2.39), vemos que a estatística tem,
basicamente, a estrutura Λ = C +

∑
i

∑
j rijwij , C uma constante, rij ∼ P(µij) e wij pesos

�xos que dependem apenas dos sij , uij , bij . Observamos que com 300.000 pseudo-experimentos,
a convergência das PDFs da estatística-teste Λ para uma gaussiana é muito boa.

É útil identi�car a área sob uma PDF em termos do número de desvios padrões de uma Normal
padrão (Z). Considere a distribuição normal de média 0 e desvio padrão 1, f(x) = 1√

2π
e−x

2/2,
a função de�nida por

Φ(x) =

∫ x

−∞
f(t)dt. (2.47)

é a distribuição cumulativa da PDF Normal padrão (Cumulative Distribution Function, CDF em
inglês).

Tendo calculado a área sob uma PDF, digamos α, basta agora resolver a equação

1− Φ(Z) = α

de modo a obter Z = Φ−1(1− α). A signi�cância α �ca assim associada ao número equivalente
de desvios padrões da média da Normal padrão, Z.

Na Fig. 2.12 temos a PDF para hipótese nula (H0), gerada em uma análise de descoberta
de supersimetria. Veri�camos que o comportamento gaussiano da PDF do log-likelihood ratio

se estende consideravelmente em sua cauda. Simulando 107 pseudo-experimentos, mostramos a
comparação entre f(Λ) obtida numericamente e uma gaussiana com média e desvio padrão que
melhor se ajusta a esta PDF na Fig. 2.13. Vemos que a gaussiana criada a partir do histograma
tem, para um dado ΛOBS , maior valor de erro do tipo-I (α). Isso garante que a signi�cância
medida pela gaussiana teórica é menor do que a obtida através do histograma, novamente estamos
sendo conservadores na análise. Tendo con�ança de que Λ segue uma distribuição Normal,
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Figura 2.12: PDF para hipótese nula (backgrounds). À esquerda somente o histograma, à direita
o histograma �tado por uma gaussiana de média e desvio padrão apropriados.
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Figura 2.13: Simulação para 107 pseudo-experimentos. Na escala logarítmica esboçamos a
curva gaussiana e seu histograma associado. Vemos que na região da cauda direita a área dada
pela gaussiana tende a ser maior que a contagem de bins do histograma. Isso garante que a
signi�cância, para uma dada luminosidade, é menor para a gaussiana.

simulamos para cada espectro estudado 300.000 pseudo-experimentos de modo a estimar a média
e a variância de f(Λ) e assim calcular a signi�cância de forma mais simples e rápida.

O cálculo da signi�cância da estatística-teste log-likelihood ratio é simpli�cado quando as
PDFs são distribuições gaussianas, e o valor observado da estatística-teste situa-se na média
da hipótese alternativa [16]. Na Fig. 2.14 temos esboçadas a hipótese nula (backgrounds) e
alternativa (supersimetria + backgrounds) para uma análise de descoberta de supersimetria.
ZLLR, nesse caso, onde as PDFs das hipóteses são gaussianas é calculada facilmente por

ZLLR =
| < ΛH0 > − < ΛH1 > |

σΛH0

. (2.48)

H0H1 d

ZLLR =
d

ΣH0
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Figura 2.14: A métrica de signi�cância para o teste de hipóteses. Note que as PDF's possuem
limites gaussianos e a equação para ZLLR torna-se a simples distância entre as hipóteses em
unidades de σH0 .

Além da distância entre as médias das distribuições de Λ sob a hipótese de H0 e de H1, a
signi�cância aumenta de forma inversamente proporcional ao desvio padrão de f(Λ|H0). Quando
há incertezas sistemáticas nas normalizações, como às que estudamos, a diferença | < ΛH0 >
− < ΛH1 > | permanece inalterada em relação ao cálculo sem as incertezas, porém, σH0 aumenta
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Figura 2.15: Cálculo dos erros do tipo-I e tipo-II, ΛCUT é de�nido arbitrariamente.

tornando f(ΛH0) mais larga e, por conseguinte, diminuindo a signi�cância do teste. Vamos tratar
do efeito das incertezas sistemáticas na próxima seção.

Na Fig. 2.15 vemos como o cálculo dos erros do tipo I e II é feito, usando as PDFs �tadas
para cada uma das hipóteses, no caso de um ΛOBS qualquer. É comum assumir a convenção de
usar o ΛOBS como sendo a média da hipótese alternativa. Isso garante um erro do tipo-II de,
sempre, 50%.

2.9 Marginalização dos erros sistemáticos

O teorema de Bayes a�rma que:

p(H|resultado) =
L(resultado|H)π(H)

p(resultado)
. (2.49)

Onde,

p(resultado) =
∑
i

p(resultado|Hi)p(Hi). (2.50)

Aqui L(resultado|H) é o likelihood para observação de um dado resultado sob a hipótese de um
modelo H. π(H) é o prior para o modelo H, quanti�ca o quanto acreditamos ou inferimos
sobre esse modelo antes de qualquer evidência ou informação sobre o modelo. E �nalmente
p(H|resultado) é o posterior, a probabilidade atualizada do modelo H ser o responsável pela
medida de resultado após levarmos em conta qualquer informação sobre ele.

Consideram-se incertezas sistemáticas quaisquer incertezas que não tenham origem estatís-
tica. Em geral, uma série de experimentos repetidos diminuem uma incerteza do tipo estatística,
porém incertezas sistemáticas não seguem essa regra. Essas incertezas podem afetar somente o
sinal, somente o backgroud ou ambos ao mesmo tempo. Isso dependerá do tipo de incerteza em
questão. Por exemplo, a incerteza na luminosidade integrada in�uencia o número de eventos de
todas as amostras de sinal e background do mesmo modo, essa incerteza é dita correlacionada
entre sinal e background.

A inserção de incertezas sistemáticas no likelihood pode ser feita através de marginalização do
likelihood ou pro�ling likelihood. O segundo é mais usado em casos de determinação de parâmetros
desconhecidos, e por isso é usado em hipóteses compostas. A marginalização oferece uma forma
mais rápida de inserir incertezas em nosso caso, pois baseia-se no teorema de Bayes. O posterior,
dado pela equação de Bayes (2.49), pode denotar o efeito de uma incerteza sistemática desde
que integremos o likelihood apropriadamente. Em nosso caso assumiremos que as incertezas
sistemáticas apresentam-se nos likelihoods na forma do que se chama (nuisance parameters) �
parâmetros que não são alvos diretos da inferência, mas que devem ser incorporados na análise
relativa aos parâmetros de interesse.
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Aplicamos incertezas sistemáticas na normalização (taxa) e na forma das distribuições [66].
Dentre as incertezas que afetam as taxa de nossos eventos consideramos incertezas: na lumi-
nosidade integrada, afeta sinal e background de forma simétrica; nas PDFs parton distribution

functions2, afeta sinal e background de forma assimétrica. Já na forma das distribuições levamos
em conta uma incerteza devido à baixa e�ciência de Monte Carlo após cortes retangulares duros
para o background. Retomaremos essa discussão, apropriadamente, no próximo capítulo, usando
os dados que utilizamos para obter nossos resultados.

Assumiremos que as incertezas nas normalizações são distribuídas de forma normal. As incer-
tezas na forma das distribuições serão aplicadas através de funções de Poisson cujos parâmetros
serão dados pela previsão teórica de nossas simulações em cada bin. Ressaltamos que incertezas
sistemáticas na taxa dos eventos podem alterar também as formas das distribuições, veja [66],
esse efeito foi desconsiderado em nossa aplicação de incertezas nas taxas dos eventos.

O posterior (2.49), para o likelihood (2.34), com priors apropriados para cada uma das incerte-
zas sistemáticas, pode ser considerado como o likelihood marginalizado [69], e esse likelihood pode
ser usado para inferir ZLLR, o p-value e o poder de nosso teste, assim como os usados em uma
análise frequentista. Esse processo de inserção de incertezas sistemáticas, através de marginali-
zação do likelihood, é conhecido como híbrido Bayesiano-frequentista. O likelihood marginalizado
com incertezas na taxa dos eventos será,

Lm ≡
∫
L(N |s(~θ), b(~θ))η(~θ)d~θ. (2.51)

~θ é um conjunto de incertezas sistemáticas na taxa e as funções η(~θ) são os priors gaussianos,
com média 0 e desvio padrão 1. Para a marginalização de incertezas no formato das distribuições,
basta alterar a função η(~θ), o prior, para uma distribuição de Poisson [71].

Uma grande vantagem do likelihood é que a aplicação de diversas incertezas sistemáticas
pode ser feita de forma conjunta, sempre de maneira multiplicativa. No próximo capítulo, iremos
contextualizar os tipos de incertezas necessárias para uma boa descrição de nosso trabalho, assim
como a aplicação das incertezas sistemáticas no likelihood.

2As incertezas nas PDFs também podem afetar a forma das distribuições cinemáticas, estamos considerando
o efeito dessas incertezas somente na normalização das distribuições [66].



Capítulo 3

Análise

Em colisões próton-próton, como as que ocorrem no LHC, partículas carregadas sob o grupo
SU(3)C da QCD são produzidas copiosamente. Em especial, mesmo novas partículas pesadas,
como squarks e gluinos, que interagem fortemente com quarks e glúons, devem ter seções de
choque de produção grande comparadas com outras partículas produzidas de forma eletro-fraca,
como sléptons e gauginos, por exemplo. Isso, é claro, torna a procura por partículas coloridas, um
alvo para as colaborações experimentais. Contudo, na maioria dos modelos de nova física, tais
partículas são instáveis e decaem rapidamente levando invariavelmente à produção de jatos. No
caso de squarks, gluinos ou quarks e glúons excitados de modelos de dimensões extras universais,
além dos jatos haverá a produção de duas LSP (LKP), a candidata à matéria escura desses
modelos. Isso nos traz ao estudo de um canal clássico de procura, jatos + MET.

Neste capítulo iremos descrever nossas simulações e os aspectos estatísticos relevantes ao nosso
trabalho. Descreveremos a escolha do tipo de sinal para procura de nova física e seus canais de
produção para o LHC. Passaremos pela simulação e seleção de eventos, assim como a descrição
das variáveis usadas para construção dos observáveis físicos. Posteriormente descreveremos a
análise estatística assim como a inserção de incertezas sistemáticas.

Como guia geral, o �uxograma da Fig. 3.1 ilustra de forma esquemática todo o transcorrer
da análise junto com os programas e rotinas usadas em cada passo. Iniciamos o análise criando
os espectros de nova física com o programa SPheno[42], logo em seguida iniciamos a simulação
dos eventos e integração no espaço de fases com o programa MadGraph5 [81] para o LHC 14
TeV, usando modelos de supersimetria e MUED criados a partir do programa FeynRules[67].
Após a produção dos eventos a nível partônico, �zemos o parton shower e hadronização com o
programa Pythia[82] versão 6, subsequentemente simulamos efeitos de detecção com o programa
PGS [83]. Com os eventos devidamente simulados começamos o escaneamento de cortes retan-
gulares, usando distribuições cinemáticas criadas no programa MadAnalysis [68]. De�nido os
cortes, passamos para a aplicação de e�ciências de detecção, correções NLO (Prospino) [94], a
aplicação do tagging de jatos de quarks e glúons [21, 22], e normalização das distribuições de
MUED. A partir daqui começamos a gerar os pseudo-experimentos necessários para de�nição da
estatística-teste do teste de hipóteses, juntamente com a inserção de erros sistemáticos na taxa
e forma dos observáveis físicos. Finalmente usamos esse conjunto de informações para de�nir
a signi�cância do teste de hipóteses e analisar a descoberta e discernimento de supersimetria e
MUED.

A simulação e análise de resultados envolveu uma quantidade muito grande de processa-
mento computacional, programação, automação e concatenação de diversas ferramentas. Isso
demandou a geração de milhões de eventos partônicos além de seu pós-processamento visando a
simulação de efeitos de hadronização de quarks e glúons, identi�cação de jatos, e efeitos de detec-
tores. Finalmente, na parte �nal da análise, um segundo e demorado esforço computacional foi
imprescindível para a estimativa do impacto de alguns erros sistemáticos importantes no cálculo
da métrica de signi�cância esperada tanto na descoberta da nova física quanto no nosso principal

30
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objetivo, o discernimento entre os modelos supersimétrico e de dimensões extras universais.
Para melhor ilustração de algumas discussões que iremos realizar no início desse capítulo,

faz-se necessário a de�nição de 3 espectros �xos de supersimetria e MUED,

• Espectro A: mq̃ = mq(1) = 1.4 TeV , mg̃ = mg(1) = 1.5 TeV e mχ̃1 = mB(1) = 0.3 TeV.

• Espectro B: mq̃ = mq(1) = 2.6 TeV , mg̃ = mg(1) = 4.0 TeV e mχ̃1 = mB(1) = 0.3 TeV.

• Espectro C: mq̃ = mq(1) = 1.4 TeV , mg̃ = mg(1) = 1.5 TeV e mχ̃1 = mB(1) = 1 TeV.

Figura 3.1: Fluxograma esquemático de todo o trabalho realizado.

3.1 Produção de squarks no LHC

As produções de squarks e gluinos no LHC ocorrem através de uma série de processos envolvendo
quarks e glúons no estado inicial, veja as �guras 3.2 e 3.3. Na Fig. 3.4 mostramos as seções de
choque de produção de q̃′iq̃

′
j , q̃
′
ig̃, i, j = L,R, e g̃g̃ no LHC 14TeV. De uma forma geral, as seções

de choque caem rapidamente com o aumento da massa dos squarks e gluinos. Na tabela (3.1)
mostramos alguns dos espectros que analisamos nesse trabalho junto com a contribuição relativa
da seção de choque de cada canal, comparando entre alguns dos pontos mais leves e mais pesados.
Na região ondemg̃ < mq̃ temos um favorecimento à produção de gluinos, a produção associada de
squarks e gluinos é um processo sub-dominante nesse cenário e a produção de squarks é pequena.
Já na região mg̃ > mq̃ a produção de squarks domina, a produção associada de squarks e gluinos
torna-se sub-dominante e a produção de gluinos é pequena.
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mq̃ (TeV) mg̃ (TeV)
σq̃q̃
σ (%)

σq̃q̃∗
σ (%) σq̃g̃

σ (%) σg̃g̃
σ (%)

1.4 1.5 38 18 44 0
1.4 2.0 57 20 22 0
1.4 3.0 70 29 1 0
1.4 4.0 66 33 1 0
1.4 5.0 62 38 0 0
5.0 1.5 0 0 0 100
5.0 2.0 0 0 1 99
5.0 3.0 0 0 12 88
5.0 4.0 7 0 54 39
5.0 5.1 78 2 19 0

Tabela 3.1: Contribuições relativas para as seções de choque em NLO de supersimetria, onde
σ = σq̃q̃ + σq̃q̃∗ + σq̃g̃ + σg̃g̃.

O CMS e o ATLAS têm realizado análises de procura de supersimetria em modelos supersi-
métricos simpli�cados para produção de partículas coloridas no regime de desacoplamento dos
gluinos [91, 92, 93]. Nesse regime, os squarks são produzidos predominantemente pela interação
direta com glúons, veja a Fig. 3.2, em especial os diagramas sensíveis ao desacoplamento de
gluinos, os gg → q̃q̃. Ainda na Fig. 3.2 temos uma contribuição vinda diretamente dos quarks

qq → q̃q̃

qq̄ → q̃q̃

gg → q̃q̃

q

q̄

q̃i

q̃∗i

q

q̄′

q̃i

q̃∗j

q

q′

q̃i

q̃′j

q̃i

q̃∗i

q̃i

q̃i

q̃∗iq̃∗i

Figura 3.2: Diagramas de Feynman para produção de squarks no LHC. O único diagrama que
contribui no canal qq → q̃q̃ é o canal dominante na produção de squarks.

de valência, a qq′ → q̃q̃ com um gluino no canal-t. Podemos esperar que, enquanto tenha-se
gluinos não muito mais pesados que squarks, esses diagramas serão predominantes na produção
de squarks para o LHC, além de que, a grande multiplicidade de possíveis estados iniciais envol-
vendo sabores de quarks distintos, para esse processo, leva também a um aumento da seção de
choque �nal.
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Já na Fig. 3.3, temos os diagramas de Feynman responsáveis pela produção de squarks e
gluinos. Vemos que estados iniciais somente com quarks ou glúons não contribuem nesse processo.

Recentemente mostrou-se [90] que o limite de desacoplamento de gluinos possui apenas um
acordo moderado com o regime não desacoplado. Uma análise onde o gluino não esteja desa-
coplado mostra-se mais adequada no regime de massas que estamos analisando, uma vez que
estamos interessados em regimes de partículas de ordem de 1 a 5 TeV, com hierarquias fortes e
fracas entre os squarks, os gluinos e o neutralino mais leve.

qq̄ → q̃g̃ nao contribui

qq → q̃g̃ nao contribui

nao contribui

qg → q̃g̃

gg → q̃g̃

Figura 3.3: Diagramas de Feynman para produção de squarks e gluinos no LHC.
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Figura 3.4: Seções de choque em NLO para produção de squarks e gluinos em função da massas
dos squarks e gluinos. Valores calculados através do programa Prospino.

Para veri�carmos se, de fato, a contribuição de gluinos no canal-t é dominante em nossos
observáveis físicos, �zemos uma avaliação da contribuição relativa de gluinos, veja Fig. 3.5,
através do cálculo dos processos listados na Fig 3.2 para a produção de squarks no LHC. O
primeiro processo é a contribuição advinda somente de glúons no estado inicial, de�nimos como
a curva sem quarks,

gg
todas partículas−−−−−−−−−−→
intermediárias

q̃q̃′. (3.1)

O segundo com processos iniciados apenas por quarks com contribuição somente do canal-s, esse
processo excluí gluinos no canal-t de produção de squarks (denominado curva sem glúons, sem

g̃):

qq̄
sem g e sem g̃−−−−−−−−−→
somente canal-s

q̃q̃′. (3.2)

O terceiro é o processo iniciado somente por quarks e apenas canal-t com gluinos (curva sem

glúons + canal-t gluinos):

qq
com g̃−−−−−−−−−→

somente canal-t
q̃q̃′. (3.3)

Note que na Fig. (3.5) as curvas sem glúons no estado inicial e somente com gluinos no canal-t
são idênticas à curva da contribuição total todos os canais. Se as distribuições não estivessem
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Figura 3.5: Distribuições normalizadas para produção de squarks no LHC. Contribuições do
canal-t vindas dos gluinos são as que dominam as seções de choque para produção de squarks
no LHC. As distribuições cinemáticas mostradas serão de�nidas ainda nesse capítulo.

normalizadas, curvas como as sem quarks e sem glúons, sem g̃, mal apareceriam nos grá�cos.
Espectros supersimétricos dependem, em princípio, dos particulares modelos de quebra soft

de supersimetria. Porém o grande número de parâmetros supersimétricos confere uma grande
liberdade na escolha desses espectros. O caso típico, contudo, é de forte hierarquia entre as par-
tículas coloridas e não coloridas, ou seja, squarks e gluinos bem mais pesados do que sléptons,
neutralinos, charginos, gauginos eletrofracos e Higgsinos. Ainda assim, dada a falta de evidência
de nova física no LHC 7 e 8TeV, espectros de SUSY comprimidos tem sido cada vez mais estu-
dados, uma vez que a degenerescência do espectro di�culta a observação de sinais com jatos e
léptons duros.

Em nossos estudos, consideramos espectros com forte hierarquia entre squarks e gluinos, e o
neutralino mais leve, e também alguns casos mais degenerados.

3.2 Produção de KK-quarks e KK-glúons no LHC

No modelo UED, a produção de partículas coloridas ocorre através de canais muito parecidos
com os de supersimetria. Os squarks (q̃) de spin-0 são substituídos por KK-quarks (q(1)) de spin-
1/2, gluínos (g̃) de spin-1/2 por KK-glúons (g(1)) de spin-1 e o neutralino (χ̃1) de spin-1/2 pelo
primeiro estado de fóton excitado (B(1)) de spin-1. No caso de UED os KK-quarks apresentam-se
como singletos q(1)

S ou dubletos q(1)
D do grupo gauge SU(2)L.

Os espectros típicos de MUED são muito mais comprimidos do que os de supersimetria,
variando em apenas algumas centenas de GeV desde o estado excitado mais leve, o fóton excitado,
por exemplo, até o mais pesado, o glúon excitado [59], para uma dada escala de compacti�cação
1/R.

Ainda na produção de partículas oriundas de MUED, como dissemos anteriormente, numa
realização típica desse modelo, os jatos terão menor momento transverso, assim como menos
MET, devido à maior degenerescência do espectro, o que torna mais difícil separar estes eventos
dos eventos do MP. Isso, naturalmente leva a uma impossibilidade de identi�cação do modelo
correto baseado apenas no excesso de número de eventos.
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3.3 Eventos de jatos + MET

Entre outras características interessantes, como um mecanismo para manter a massa do bóson
de Higgs em torno da escala eletrofraca, modelos supersimétricos e de dimensões extras universais
ainda possuem candidatas naturais a matéria escura fria.

Como vimos anteriormente, os modelos de SUSY e MUED acomodam um candidato à matéria
escura. Assim se a produção de partículas desses modelos ocorrer, como os squarks (KK-quarks)
e gluinos (KK-glúons), teremos cadeias de decaimentos onde os produtos �nais serão partículas de
matéria escura e outras partículas estáveis do Modelo Padrão. Em nosso trabalho, consideramos
apenas cadeias curtas de decaimento, onde gluinos decaem em squarks e quarks, e os squarks
decaem diretamente em quarks e no neutralino (KK-fóton) dando origem a eventos de jatos e
missing energy.

A presença de LSPs no estado �nal impede a reconstrução do 4-momento das partículas que
originaram a cadeia de decaimento, mas é possível inferir a massa delas através de distribuições
cinemáticas que exibem limiares [8, 9]. Isso, contudo, demanda uma boa reconstrução destas
distribuições e isso só é possível com muitos eventos. Mais uma vez, isso adiciona evidência
a um modelo ou outro, mas ainda não signi�ca uma identi�cação positiva do modelo. Sem a
possibilidade de identi�car o modelo de nova física a partir do tamanho das seções de choque
e do espectro, seja com eventos de jatos + MET, ou outra topologia, só resta o estudo das
distribuições cinemáticas disponíveis.

Em cadeias longas, além das distribuições angulares, diferenças ou assimetrias entre distri-
buições de massas invariantes de conjuntos de partículas do estado �nal, como jatos e léptons
carregados, podem ajudar a discernir entre modelos, veja [10, 11], por exemplo. Com cadeias
curtas, como no decaimento direto de sbottoms [12] e de sleptons [13, 14], é possível estudar
variáveis angulares correlacionadas com o ângulo de espalhamento do squark, ou slepton. Nesse
trabalho, escolhemos trabalhar com as distribuições angulares de jatos produzidos no decai-
mento de squarks e gluinos aproveitando o número muito maior de eventos esperados em relação
a sleptons ou na produção de sbottoms apenas.

3.4 Produção dos espectros de nova física

O espectro supersimétrico do MSSM necessita de escolhas arbitrárias de parâmetros, vide
capítulo 1. Para qualquer modelo de supersimetria que assume um esquema de quebra em altas
energias esses parâmetros podem ter sua evolução calculada através das equações do grupo de
renormalização. No mSugra a evolução dos parâmetros é feita da escala Planck até a escala
TeV. Já para o modelo GMSSB, a evolução é feita da escala de massa dos campos de gauge
mensageiros até a escala TeV.

Também temos modelos onde nenhum esquema de quebra supersimétrica é assumido, como
o pMSSM, como vimos no capítulo 2, nesse modelo não há análise de parâmetros em altas
energias. Porém, em qualquer caso de modelos supersimétricos, seja os modelos com quebra em
altas escalas de energia ou no pMSSM [44], ainda existe uma liberdade de escolha dos parâmetros
que de�nem o espectro de cada modelo.

Os modelos supersimétricos com quebra de supersimetria em altas energias têm fortes limites
impostos pelo LHC hoje. Por exemplo, o modelo Gauge-Mediated para o MSSM possui bósons
de gauge que comunicam a quebra de supersimetria para a escala TeV, nesse modelo tem-se
grandes di�culdades para conciliar um bóson de Higgs de ∼ 125 GeV [72, 73], em sua versão
mais simples, com massas das partículas supersimétricas abaixo de 2 TeV. Já o mSugra está
muito desgastado pelos resultados recentes do LHC, os limites das seções de choque estão cada
vez melhores, obrigando o mSugra a ter massas de partículas supersimétricas cada vez maiores,
porém ainda é possível obter um escalar neutro de CP-par dentro desse modelo com massa de
125 GeV, é claro, assumindo uma certa quantidade de �ne-tuning [74].
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O nosso trabalho não é sensível a mecanismos particulares de quebra supersimétrica, o impor-
tante é a assinatura fenomenológica de um modelo supersimétrico na escala TeV com espectros
ainda não excluídos pelo LHC. A relevância reside nos acoplamentos, topologia e spin das par-
tículas envolvidas nos processos da QCD supersimétrica. Por isso implementamos um modelo
simpli�cado em supersimetria para produção de squarks e gluinos. Esses modelos já são ampla-
mente utilizados em análises fenomenológicas e experimentais [75, 90].

Os valores de massas para squarks e gluinos foram escolhidos apropriadamente para respeitar
os limites impostos pelos mais recentes resultados do LHC de 8 TeV, com luminosidade integrada
de 19.5 fb−1 [49, 76], para modelos simpli�cados de supersimetria. Massas de squarks de sabores
u, d, s e c têm valores não excluídos acima de 1 TeV e massas de gluinos valores não excluídos
acima de 1.3 TeV.

Em nosso modelo simpli�cado de supersimetria iremos estudar espectros, que em alguns
casos, serão parecidos com os espectros típicos de mSugra. Aproveitando-se desse fato, usamos o
programa SPheno. Esse programa tem implementado as equações do grupo de renormalização
para o mSugra e de�nem o espectro na escala TeV a partir dos parâmetros de altas energias
dados. O SPheno oferece rotinas que calculam automaticamente as larguras das partículas
supersimétricas. Usando massas de squarks degenerados de 1.4 TeV, massa de gluino de 1.5 TeV
e massa de neutralino de 300 GeV de�nimos as larguras através do SPheno como as listadas na
tabela 3.2.

Γ (GeV) m (TeV)
ũR 2.91

1.4
ũL 13.21
d̃R 0.72

1.4
d̃L 13.19
c̃R 2.91

1.4
c̃L 13.21
s̃R 0.92

1.4
s̃L 13.19
g̃ 21.0 1.5
χ̃1 - 0.3

Tabela 3.2: Um exemplo dentre os 150 espectros analisados em nosso trabalho, inspirado no
modelo de mSugra. Os valores de massas listados ainda não foram excluídos pelo LHC, no
contexto de modelos simpli�cados de supersimetria.

Para MUED necessita-se de 2 parâmetros para determinar todo seu espectro. O raio da
dimensão extra (R) e o cutt-o� ultravioleta (ΛUV ). Esses valores também são estudados baseados
na descoberta do bóson de Higgs no LHC [64], temos limites impostos de 1/R > 1100 GeV
ΛUVR > 20 para os dados do LHC 8 TeV. Um raio de compacti�cação da ordem de TeV já
alcança as massas de nosso espectro de referência para supersimetria.

O cenário mais difícil de discernimento entre supersimetria e dimensões extras universais é
aquele em que as massas, as larguras e seções de choque são iguais em valores numéricos. Apesar
de �ctício, pois o modelo de MUED possui um espectro mais degenerado quando comparado ao
dos modelos supersimétricos típicos, nesse regime o discernimento entre supersimetria e MUED
é o mais complicado. Assim, assumimos uma postura maximamente conservadora quanto ao
alcance do discernimento de modelos, a situação real deverá ser mais simples, então nosso limite
estimado do alcance do LHC realmente testa o potencial do experimento de forma muito exigente.
Sendo assim, apenas mudanças mais profundas entre os modelos, spin por exemplo, traria alguma
pista sobre qual modelo apresenta melhor descrição dos dados experimentais.

A construção dos diversos espectros analisados em nosso estudo pode ser feita através das
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massas e larguras dos decaimento envolvidos na produção de jatos e MET. As larguras parciais
de decaimento, a menos de acoplamentos, têm a seguinte dependência na massa dos squarks,
gluinos e neutralinos [77, 78]:

• Γ0(q̃ → jatos + χ̃1) ∝ mq̃(1− (
mχ̃1
mq̃

)2)2.

• Γ0(g̃ → q̃ + jatos) ∝ (m2
g̃−m

2
q̃)

2

m3
g̃

, se mg̃ > mq̃.

• Γ0(q̃ → g̃ + jatos) ∝ (m2
q̃−m

2
g̃)2

m3
q̃

, se mg̃ < mq̃.

As massas de quarks foram desprezadas. Em geral, decaimentos eletro-fracos de squarks em jatos
e MET ocorrem através de duas partículas diferentes q̃R e q̃L, a dependência das larguras de de-
caimento com as massas são idênticas para essas duas partículas, porém existe uma dependência
da matriz de mistura dos neutralinos.

Construímos um espaço de massas em um plano (mq̃ , mg̃) que consiste em 150 pontos.
Variamos a massa dos squarks de 1.4 TeV até 5 TeV em passos de 0.4 TeV, a massa dos gluínos
de 2.0 TeV a 5 TeV em passos de 1 TeV, com a inclusão do ponto 1.5 TeV, além dos quatro já
citados para os gluinos. E ainda três diferentes massas de neutralinos, 50 GeV, 300 GeV e 1 TeV.
Pontos que possuem massas de squarks e gluínos idênticas, por exemplo (3.0, 3.0) e (5.0, 5.0),
sofreram um aumento na massa dos gluínos de modo a evitar que sejam exatamente iguais, esses
pontos se transformaram em (3.0, 3.1) e (5.0, 5.1).

O nosso espaço de massas contempla desde espectros mais comprimidos [44], com |mq̃−mg̃| ≥
100 GeV e |mq̃ − χ̃1| ≥ 400 GeV, até espectros fortemente hierarquizados típicos de SUSY, onde
partículas coloridas são muito mais pesadas do que as não coloridas.

De�nido o conjunto de massas e de larguras criam-se os arquivos necessários para que os
programas MadGraph5, Pythia e PGS gerem os eventos para o LHC. Esses arquivos entram
nos programas pelo nome de param_card.dat, são de�nidos no formato slha [79] para os eventos
de supersimetria e slha2 [80] para os eventos de dimensões extras universais 1.

Contabilizando larguras e massas temos 14 parâmetros a serem alterados para gerar 150
param_card.dat diferentes no formato slha e slha2. Isso totaliza de mais de 4200 mudanças em
linhas de arquivos de texto. Trabalho tedioso, mas que pode ser minimizado a 6 segundos de
cálculos de um computador modesto se usarmos algum programa para automação. Em nosso
caso produzimos scripts escritos em python para realização desse trabalho.

A linguagem python oferece excelentes rotinas para manipulação de arquivos com uma bi-
blioteca e desempenho poderosos, basicamente toda a manipulação de dados, testes, validações
e integração de programas nesse trabalho foram realizadas em python.

3.5 Canais para simulação de eventos

3.5.1 Supersimetria

A produção de squarks (KK-quarks) e de gluinos (KK-glúons) e seu posterior decaimento em
jatos e MET é um processo que depende da hierarquia de massas, como comentamos na seção 3.1.
Temos dois cenários: o primeiro mg̃ > mq̃, aqui assumimos que o decaimento de gluinos (KK-
glúons) em squarks (kk-quarks) e quarks (g̃ → q̃q) e o decaimento de squarks (kk-quarks) em
jatos e neutralino (fóton pesado) ocorre com um branching ratio de 100%. A contribuição vinda
do canal de produção de pares de gluinos (KK-glúons) é muito pequena e pode ser desprezada,

1Supersymmetry Les Houches Accord.
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veja tabela (3.1). Simulamos, então, eventos para os seguintes canais:

pp → q̃iq̃j + (0, 1)j → jj + (0, 1)j + χ̃0
1χ̃

0
1, (3.4)

pp → q̃iq̃
∗
j + (0, 1)j → jj + (0, 1)j + χ̃0

1χ̃
0
1,

pp → q̃∗i q̃
∗
j + (0, 1)j → jj + (0, 1)j + χ̃0

1χ̃
0
1,

pp → q̃ig̃ → jjj + χ̃0
1χ̃

0
1.

Onde q = (u, d, s, c) e {i, j} = {L,R}. No segundo cenário, na região mg̃ < mq̃, canais com
gluinos devem ser excluídos, portanto o sinal de supersimetria reduz-se a:

pp → q̃iq̃j + (0, 1)j → jj + (0, 1)j + χ̃0
1χ̃

0
1, (3.5)

pp → q̃iq̃
∗
j + (0, 1)j → jj + (0, 1)j + χ̃0

1χ̃
0
1,

pp → q̃∗i q̃
∗
j + (0, 1)j → jj + (0, 1)j + χ̃0

1χ̃
0
1.

Essa região tem contribuição em número de canais reduzida, mas mesmo assim, poderemos fazer
alguma inferência sobre descoberta e discernimento de modelos de nova física, como veremos no
capítulo Resultados.

Em (3.4 e 3.5), j são jatos de todos os sabores de quarks leves e glúons. Analisamos somente
quarks leves, porque o tagging de jatos de quarks e glúons é mais e�ciente nessas partículas [21].
Além de que, a contribuição de maior relevância na seção de choque de produção de squarks vêm
de gluinos no canal-t Fig. 3.2 e 3.5, na qual os quarks bottom pouco contribuem para colisões
iniciais do tipo próton-próton. Novamente, retirar bottoms da simulação, torna nossa análise
conservadora.

Incluímos a produção de jatos extras de radiação porque em processos de altas energia envol-
vendo QCD a produção desses jatos é abundante. Para isso ser feito devemos realizar a inclusão
de processos independentes de produção de jatos, no �nal da simulação obtém-se dois conjuntos
de simulação independentes, para que haja convergência no espaço de fase dessas duas simulações
é necessário um processo denominado matching de jatos. Esse processo é feito automaticamente
pelo MadGraph5 e Pythia, com os devidos ajustes que descreveremos ainda nesse capítulo.

3.5.2 MUED

Os eventos de MUED são produzidos a partir de canais de topologia idênticas aos de super-
simetria. Para mq(1) < mg(1) os canais que contribuem para o sinal de MUED são:

pp → q
(1)
i q

(1)
j + (0, 1)j → jj + (0, 1)j +B(1)B(1), (3.6)

pp → q
(1)
i q̄

(1)
j + (0, 1)j → jj + (0, 1)j +B(1)B(1),

pp → q
(1)
i g(1) → jjj +B(1)B(1).

Onde q = (u, d, s, c). E os índices i e j agora referem-se a singletos (S) e dubletos (D).
E para mq(1) > mg(1) ,

pp → q
(1)
i q

(1)
j + (0, 1)j → jj + (0, 1)j +B(1)B(1), (3.7)

pp → q
(1)
i q̄

(1)
j + (0, 1)j → jj + (0, 1)j +B(1)B(1).

Algumas topologias de supersimetria não encontram equivalentes em MUED, como ilustrado
na Fig. 3.6. O mesmo pode ser dito para supersimetria, pois vértices do tipo ggg̃g̃ não são
permitidos, enquanto que para MUED ggg(1)g(1) são permitidos.

Para MUED, assim como em supersimetria, processos com primeiro estado excitado de KK-
glúons no canal-t dominam a seção de choque de produção de KK-quarks. Por isso o discer-
nimento entre supersimetria e MUED torna-se importante, usando informações de diferentes
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q̃

q̃

q(1)

q(1)

Figura 3.6: Vértices que não possuem topologia equivalente em supersimetria e MUED.

números quânticos presentes em cada hipótese, que por sua vez estão contidas em observáveis
físicos apropriados, é possível dizer se um modelo é favorecido com relação a outro. Embora a
topologia para produção de jatos e MET seja, efetivamente, idêntica nas duas hipóteses.

3.5.3 Backgrounds

Os backgrounds para jatos e MET são de�nidos em duas grandes categorias, redutíveis e
irredutíveis. Os backgrounds irredutíveis são aqueles que contribuem diretamente para imitar
o sinal de jatos e MET, esses eventos possuem o mesmo número de partículas no estado �nal,
após cortes, aceitação e seleção de eventos. Já os background redutíveis, são os eventos que não
possuem a mesma topologia de estado �nal, mas eventualmente, por alguma característica de
detecção, acabam sendo confundidos como sinal.

Para produção de jatos e MET, os backgrounds irredutíveis são,

pp → qq + {Z → νν̄}+ (0, 1)j → jj + (0, 1)j + νν̄,

pp → qg + {Z → νν̄}+ (0, 1)j → jj + (0, 1)j + νν̄,

pp → gg + {Z → νν̄}+ (0, 1)j → jj + (0, 1)j + νν̄. (3.8)

Esses processos têm a maior contribuição em seção de choque de todos os processos referentes
aos backgrounds. Nesses canais também simulamos produção de jatos extras de QCD.

Para os backgrounds redutíveis para jatos e MET temos:

pp → qq + {W± → l±νl}+ (0, 1)j → jj + (0, 1)j + νl±,

pp → qg + {W± → l±νl}+ (0, 1)j → jj + (0, 1)j + νl±,

pp → gg + {W± → l±νl}+ (0, 1)j → jj + (0, 1)j + νl±. (3.9)

O lépton adicional no estado �nal torna o processo completamente diferente de dois jatos e
neutrinos somente, em princípio. Porém, como a seção de choque de produção de W+jatos é
grande, a fração de eventos em que estes léptons não sejam detectados ou por serem muito moles
(baixo momento transverso) ou por atingirem regiões periféricas do detector (grande rapidez),
ou ainda por não estarem su�cientemente isolados de jatos, por exemplo, ainda constitui um
background não desprezível. A boa notícia é que esses eventos não sobrevivem a cortes de HT ,
E/T e pT acima de 500 GeV. Como veremos, cortes bem mais duros do que estes serão aplicados
para separar os eventos de sinal.

Também podemos ter a produção pura de jatos vindos de QCD como um background redutível.
Os processos responsáveis por produção pura de QCD são:

pp → jj,

pp → jjj,

pp → jjjj. (3.10)

No processo de hadronização, alguns jatos vindos de quarks têm baixa energia e isso torna a
identi�cação dos hádrons que o compõe mais difícil. Assim eventos de 2 ou mais jatos são
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confundidos com eventos de menos jatos, levando a um desbalanço de MET. Já quando o jato
é muito energético, a produção de hádrons é mais colimada e a identi�cação é mais e�ciente,
diminuindo signi�cativamente o MET associado. Cortes acima de 200 GeV em MET retiram
eventos vindos desse background.

Ainda para os backgrounds redutíveis temos a produção de quarks tops,

pp→ tt̄→ b+ {W → jj}+ b̄+ {W → lν}. (3.11)

Aqui a perda de um lépton pode levar a eventos com jatos + MET no estado �nal. Veri�camos
também que esse processo não passa nos cortes retangulares usados no resultado �nal.

3.6 Simulação de eventos

O programa usado para geração dos eventos de nosso trabalho é o MadGraph5 [81], versão
2.2.3. Trata-se de um programa para produção dos diagramas de Feynman relacionados a um
dado processo para um dado modelo de física de partículas em altas energias, além de realizar a
integração, automática, do espaço de fase necessário para a geração dos eventos. É um programa
baseado em integrações através de processos de Monte Carlo.

O MadGraph5 acompanha por padrão uma vasta variedade de modelos. Dentre eles o
MSSM, modelo usado nessa análise para simular os eventos de supersimetria com os devidos
ajustes. Infelizmente a versão MadGraph5 2.2.3 ainda não acompanha o modelo de MUED.
Mas o addon para Mathematica chamado FeynRules traz ferramentas para criação e alguns
modelos prontos para uso no MadGraph5.2. E com o FeynRules criamos o modelo efetivo de
MUED usado nesse trabalho.

O programa MadGraph5 será associado com os programas Pythia [82] e PGS [83], respon-
sáveis pela hadronização e parton shower e e�ciência de detecção, respectivamente. O Mad-

Graph5 tem a maioria dos seus parâmetros ajustados por um arquivo chamado run_card.dat,
nele escolhemos o tipo de acelerador da simulação, a energia das colisões, o número de eventos,
escalas de fatorização, renormalização, matching dentre outros.

O número de eventos gerados para nossa análise foi 45.000 para cada canal de supersimetria e
MUED. Esse valor foi escolhido baseado na prescrição que os desenvolvedores doMadGraph5 re-
comendam para uma melhor integração com o programa Pythia.

Os próximos parâmetros que ajustamos foram a escala de fatorização e renormalização. Aqui
cada canal tanto de sinal e background precisam ter escolhas diferentes. Pois a nível de árvore
as seções de choque tendem a ter uma dependência grande desses fatores, por isso precisam ser
escolhidos apropriadamente. Para o sinal utilizamos a convenção dada em [84], onde a escala é
escolhida de acordo com a média das massas das partículas produzidas no estado intermediário.
Para produção de squarks a escala de fatorização e renormalização é

mq̃1+mq̃2
2 , para produção de

squarks e gluinos a escala é mq̃+mg̃
2 , a mesma convenção é adotada para os canais de produção

de kk-quarks e kk-glúons.
Para os backgrounds �zemos uma escolha de escala dinâmica. O valor da escala de fatorização

é escolhido de acordo com as con�gurações de cada evento. Isso pode ser feito no MadGraph5.
É possível escolher uma escala (µ2) que dependa da soma de momentos transversos e massa
invariante para cada partícula em um dado evento,

µ2 =
∑
i

(pT i
2 +m2

i ), (3.12)

onde a soma i é realizada sobre o número de eventos, e m2
i = ~pi · ~pi. Fizemos essa escolha para

os backgrounds pois não temos uma grande criação de partículas intermediárias, já que seus jatos

2https://cp3.irmp.ucl.ac.be/projects/madgraph/wiki/Models [17/05/2015].
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vêm basicamente de radiação, por isso convenciona-se uma escolha alternativa para �xar o valor
das escalas.

A geração de eventos para o MadGraph5, com produção extra de partons, ainda requer
um corte em pT de 20 GeV, para retirada de partons que eventualmente podem ter energias
muito baixas e a convergência dos diagramas de Feynman �cam prejudicadas, a nível de árvore.
Falaremos mais sobre isso na próxima seção. A geração de eventos também possui um corte
máximo para rapidez dos jatos, |η| < 5.

3.6.1 Matching de jatos

A produção inclusiva de eventos, realizada em nossa análise, exige a geração de jatos vindos de
radiação de QCD. O programa Pythia será o responsável pelo parton shower (PS) e hadronização
dos eventos. Porém, em nosso caso, poderemos produzir jatos muito energéticos e bem separados
no detector, um regime onde o Pythia não possui boa convergência. Assim precisamos ajustar
alguns parâmetros para o correto tratamento da região de transição entre os regimes soft e hard
de emissão de partons extras [85]. Seja qual for o gerador de eventos utilizado, combinar as
regiões de emissão soft dos Parton Showers e emissão hard com elementos de matriz (ME) exatos
é uma tarefa imprescindível para obter resultados consistentes.

A integração no ME + PS dá origem a um problema de superposição de espaço de fases
quando uma análise com inclusão de partons extras é realizada. Por exemplo, em uma análise
inclusiva como a nossa onde amostras de 0 e 1 parton extra são adicionadas em processos di-
ferentes, pode ocorrer que após o PS, uma amostra de 0 parton já tenha sido considerada pelo
ME nos eventos gerados com 1 parton extra. Isso é a chamada superposição de espaço de fases.
Para evitar isso o matching de jatos é necessário.

O processo ocorre da seguinte maneira para o esquema kT MLM [86]. Partons no estado
�nal dos eventos gerados pelo MadGraph5 são agrupados segundo um algoritmo kT , somente
agrupamentos que possuem uma correspondência com o que foi gerado pelo ME são mantidos
na simulação. O esquema kT necessita de um parâmetro para agrupamento dos jatos, no Mad-

Graph5 é chamado de xqcut. Logo após o Pythia inicia o PS, antes da hadronização os novos
partons �nais serão agrupados em jatos usando o mesmo esquema kT , a diferença está na escala
de agrupamento, que será agora qcut. Esses novos jatos serão comparados com os originais do
ME, um jato terá correspondência com o parton inicial se kt(parton, jato) < qcut. Se isso ocorrer
o evento é mantido na simulação, caso contrário é excluído. Na maioria das vezes, os eventos que
não conseguem ter uma correspondência são aqueles que os partons estão próximos, de modo
que são confundidos como sendo apenas 1 jato. Ou quando os partons tem energia baixa e não
conseguem gerar seu próprio jato.

A e�ciência de matching de jatos, em nosso caso, está por volta de 50%, para sinal e back-

ground. Espectros mais pesados de supersimetria e MUED tendem a ter e�ciências melhores,
justamente por produzirem partons mais separados e mais energéticos.

Temos na Fig: 3.7 um exemplo prático da correspondência de jatos em nossa análise. Foi
esboçado somente uma parte de um dos diagramas que contribuem para a produção de sinal de
supersimetria. A produção de squarks com 1 jato extra é feita no Matrix Element, quando o
Pythia começa o PS, acaba ocorrendo a geração de eventos que já foram incluídos na simulação.
O matching exclui eventos que não possuem uma correspondência partônica com o ME, garan-
tindo assim que o PS não inclua eventos que já foram contabilizados pelo ME (double counting).
Vale ressaltar que uma má escolha dessas escalas leva a uma contagem de jatos errada.

As escalas de matching (xqcut e qcut), para os jatos, necessitam de uma análise individual
para cada canal. Não existe uma regra geral para qual valor usar, é um processo de tentativa
e erro. A sugestão é que xqcut tenha uma valor entre 1/6 a 1/2 da escala de fatorização-
renormalização. Felizmente o MadGraph5 tem um teste para veri�car se a escolha de escala
foi apropriada, são as �guras para diferential jet rate (DJR). Se essas distribuições estiverem
contínuas então as escolhas de matching foram adequadas. A escolha de escala soft que usamos
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q̃

q

χ̃1

PS

Double Counting

squark decay squark decay + extra jet

+

Figura 3.7: Exemplo de como o Pythia insere processos (parte inferior da �gura) que já foram
calculados pelo MadGraph5 na geração de eventos com inclusão de jato extra (parte superior
da �gura).

foi a descrita na tabela 3.3.

xqcut (GeV) qcut (GeV)
susy 100 120
mued 100 120
bckg 10 15

Tabela 3.3: Valores da escala de correspondência para MadGraph5 e Pythia.

Na Fig. 3.8 temos um exemplo da distribuição DJR1 para uma simulação de supersimetria.
Essa distribuição não possui um signi�cado físico, pois ela depende de escalas de correspondência
inseridas apenas para evitar sobreposição de dois espaços de fases. DJR1 denota a distância
(escala) de transição de uma amostra de 1 jato para uma de 0 jato. Se essa distribuição não for
contínua aconteceu algum problema no matching de jatos. Aliás, quando essa distribuição não
é contínua, a distribuição de pT dos jatos no estado �nal também apresenta descontinuidades,
denotando que algumas regiões do espaço de fase acabaram com menos eventos de jatos do que
outras. Em nosso trabalho temos 900 canais de simulação e veri�camos para todos eles que essas
distribuições são contínuas.
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Figura 3.8: Distribuição para avaliação da escolha de escala para correspondência de jatos.

Alguns ajustes ainda são necessários para a realização do matching. A variável,

T = auto_ptj_mjj (3.13)
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garante uma escolha automática para cortes em pT e massas invariantes dos jatos no mesmo
valor de xqcut, fundamental para o uso do esquema kT MLM. Deve-se também estar atento aos
cortes em drjj, versões mais novas do MadGraph5 ajustam esse corte automaticamente para
zero quando uma simulação com matching é realizada.

3.6.2 Subtração de gluinos ressonantes

A inclusão de jatos extras em uma análise inclusiva necessita ainda da subtração de res-
sonâncias de gluinos no canal de produção de squarks. No processo pp → q̃q̃ + j, o Mad-

Graph5 inclui diagramas que também são contabilizados no processo pp → q̃g̃, gerando um
outro double-counting, veja a Fig. 3.9. Esse problema aparece no momento de produzir jatos
extras na produção de squarks, pois o MadGraph5 produz alguns dos processos calculados em
pp→ (q̃ → jχ̃1) + (g̃ → jjχ̃1) para o canal pp→ q̃q̃+ j. Como a nossa análise é inclusiva e leva
em consideração esses dois canais, isso é um problema. A solução desse problema é subtrair as
ressonâncias de gluinos dos diagramas de produção de squarks com jatos extras. Pode-se rea-
lizar isso tanto a nível de elementos de matriz (MadGraph5), quanto à nível de parton shower

(Pythia). Escolhemos a implementação através do Pythia, que é realizada através do comando
EXCRESS.

q̃ g̃

q̃

q

q̃q̃LO q̃q̃ + jet ≡ q̃g̃LO

Figura 3.9: Exemplo de como o MadGraph5 introduz diagramas repetidos em processos que
possuem ressonâncias de partículas nos estados intermediários, para a simulação de eventos com
jatos e MET através da produção dos canais q̃q̃ e q̃g̃.

3.6.3 PGS

O programa PGS [83] é um simulador rápido de efeitos de detectores para processos de física
de altas energias. Esse programa incorpora um conjunto de rotinas para e�ciências de detecção
parametrizando a resposta do detector em função das propriedades dos jatos, léptons, fótons
e missing energy. É possível escolher diversos detectores pré-con�gurados. Em nosso caso es-
colhemos o ATLAS. Não deve-se esperar grandes diferenças em relação ao CMS de qualquer
forma.

3.7 Seleção de eventos

As variáveis usadas na seleção de eventos do nosso trabalho são as mais exploradas em buscas
de supersimetria no LHC, para eventos com jatos e missing energy - HT , E/T e pT de jatos.

A Fig. 3.10c, mostra que o pT de jatos é uma boa variável para separação entre sinal e
background em eventos de produção de jatos e MET. Selecionaremos eventos com dois jatos com
alto pT , isso porque a topologia de produção de squarks (kk-quarks) privilegia a produção de
pares de jatos provenientes de decaimento direto de partículas pesadas.
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A variável HT é de�nida como:

HT =

N∑
i

pT i, (3.14)

onde N é o número total de partículas no estado �nal de cada evento. Aqui usamos novamente
o pT , mas levando em conta o momento transverso de todas as partículas do estado �nal. Isso
vai garantir uma separação de sinal e background ainda maior, pois serão poucos os eventos de
backgrounds que terão um momento transverso grande para 1, 2 ou 3 jatos. Com HT , garantimos
que muitos jatos com alto pT serão selecionados. Diminuindo ainda mais os eventos para os
backgrounds.

Como podemos ver na Fig. 3.10, os backgrounds possuem valores médios, para cada uma
das distribuições apresentadas, abaixo dos valores médios de supersimetria. Justamente por isso
essas variáveis são interessantes na seleção de eventos de nova física para jatos e MET no estado
�nal.
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Figura 3.10: Distribuições normalizadas para as variáveis usadas na separação de eventos de
sinal total e background total.

Os cortes em pT serão aplicados para os dois jatos mais duros de cada evento. Os jatos
vindos do decaimento direto de squarks serão aqueles com maior pT , jatos de radiação de QCD
não conseguem ser tão energéticos quanto eles.

As variáveis E/T e HT têm valores médios baixos para os backgrounds. Mas a seção de choque
para esses eventos chega a ser milhões de vezes maior do que as de supersimetria. Portanto,
os cortes serão maiores que 1 TeV para removermos razoavelmente os backgrounds. E por essa
razão, o número de eventos para os backgrounds têm uma grande diminuição com cortes em HT ,
E/T e pT altos. A fração de eventos que passam nesses cortes são, em média, 10% para E/T e
HT > 1 TeV com pT > 400 GeV.
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Selecionamos eventos também com a variável pseudo-rapidez (η),

|ηj | < 2.5. (3.15)

Para os dois jatos mais duros de cada evento. O valor de 2.5 é escolhido pois os jatos poten-
cialmente de nova física serão os de decaimento de squarks pesados, altamente energéticos e
portando com rapidez nesse intervalo.

3.8 Observáveis físicos para jatos e MET

O likelihood binado permite construir PDFs conjuntas que podem conter informações de di-
versos observáveis físicos diferentes. Inserir mais observáveis é um processo que tende a melhorar
um teste estatístico construído com uma função likelihood, desde que o observável escolhido seja
capaz de ter algum poder de discernimento entre os modelos analisados. Escolhemos um conjunto
de 9 variáveis (observáveis ou distribuições) sensíveis, em algum nível, ao spin das partículas in-
termediárias dos modelos de supersimetria e MUED. Como discutido anteriormente, os dois jatos
mais energéticos serão os jatos que potencialmente terão informações de nova física, de�niremos
observáveis que são funções dos dois jatos mais duros de cada evento, denotaremos por (j1, j2),
pT1 > pT2 .

As distribuições de nossa análise dependem de pT , massas invariantes e rapidez dos jatos
mais energéticos de cada evento.

A rapidez é de�nida como:

y =
1

2
log(

E + pz
E − pz

). (3.16)

A diferença de rapidez é uma medida invariante sobre boosts ao longo do eixo z de colisão dos
hádrons, o que a torna interessante em aceleradores do tipo do LHC, pois a natureza composta
dos prótons torna difícil determinar o referencial onde a colisão de cada parton ocorreu. Para
de�nir a rapidez (3.16) são necessárias informações como o momento ao longo eixo z, medida
complicada no LHC pois o feixe de colisão atrapalha uma medida precisa do momento nessa
direção, e a energia da partícula. A saída é usar a pseudo-rapidez, η = − log tan θ

2 . Ela é
de�nida a partir da rapidez y no regime de altas energias. Diferenças de pseudo-rapidez também
são invariantes sobre boosts no eixo z, e a medida de η depende somente do ângulo da partícula
com relação ao feixe do acelerador, θ.

As distribuições escolhidas mostraram-se boas para aumentar a capacidade de descoberta e
discernimento. Elas oferecem a vantagem de ser adimensionais. Pode-se mostrar que variáveis
adimensionais, em um decaimento de uma partícula visível e outra invisível, independem da
massa da partícula invisível, desde que os observáveis construídos dependam apenas dos momen-
tos da partícula visível [14]. E notamos que elas oferecem um ganho no poder de descoberta e
discernimento de nova física. Além disso essas distribuições, em geral, estão relacionadas com
momentos transversos de jatos muito energéticos e massas transversas, garantindo também que
são invariantes sobre boosts ao longo do eixo z. As distribuições cinemáticas usadas foram:

cos θB
Analisando decaimentos altamente energéticos de partículas de nova física em jatos ou
léptons e MET, mostrou-se [13, 14] que é possível diferenciar modelos com partículas Y de
diferentes estatísticas ou spin, em um regime de altas energias. A partícula Y pode ser um
slépton-squarks (spin-0) ou KK-lépton-KK-quarks (spin-1/2). Como exemplo veja a Fig.
3.11.

A seção de choque de produção para as partículas Y e Ȳ com massas O(TeV ), vindas de
uma contribuição do tipo canal-s, em função do ângulo entre um parton inicial e a partícula
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Figura 3.11: Possível topologia para pp→ Y Ȳ → jX + jX̄.

Y (θ′), para o referencial do centro de massa de Y Ȳ é dada para supersimetria da seguinte
forma:

dσ

d cos θ′
∝ 1− cos2 θ′. (3.17)

E para MUED,

dσ

d cos θ′
∝ 1 +

E2
Y −m2

Y

E2
Y +m2

Y

cos2 θ′, (3.18)

onde EY e mY são a energia e massa do KK-quark, no referencial de centro de massa.

A produção de partículas Y e Ȳ será feita com ângulos diferentes para cada modelo, isso
é um mecanismo de determinação do spin dessas partículas nessa topologia de produção
via canal-s. Quando os sléptons/squarks (KK-léptons/KK-quarks) decaírem, devido à sua
grande massa, iremos observar que léptons/quarks altamente energéticos, e portanto com
altos boosts no referencial de laboratório 3. Para supersimetria teremos léptons/quarks, em
média, menos espalhados em θ′ do que os léptons/quarks de MUED.

Mostrou-se [13] que o ângulo polar θ′ possui uma correlação no regime de altas energias
com a diferença de pseudo-rapidez dos léptons do estado �nal no referencial de centro de
massa dos próprios sléptons e kk-léptons produzidos. E que esse ângulo no decaimento dos
sléptons em léptons através da produção de matéria escura independe da massa da matéria
escura.

Nosso trabalho faz uso de jatos ao invés de léptons, e isso traz um desa�o a mais. Ainda
é possível de�nir um ângulo polar para jatos com analogia ao que foi feito para os léptons
[12]. Esse ângulo polar estará correlacionado também com a diferença de pseudo-rapidez
dos jatos no estado �nal no regime de altas energias. Porém para supersimetria e MUED a
topologia dominante na produção de jatos e E/T é o canal-t com gluinos (kk-glúons). Além
do que fatores como parton shower, hadronização, efeitos de detector e cortes retangulares
in�uenciam de maneira relevante no poder de correlação para o caso, de por exemplo, Y
sendo sléptons (kk-léptons).

A variável que possui uma correlação de spin em regimes de altas energias, independe da
massa das partículas envolvidas e possui invariância sob boosts ao longo do eixo-z é:

cos θB = tanh

(
∆ηij

2

)
, (3.19)

3Ressaltamos que realizações típicas de MUED não produzem jatos duros em seus decaimentos, pois seu
espectro é mais comprimido do que os típicos de supersimetria. Porém, para espectros de MUED normalizados
aos de supersimetria, teremos um favorecimento à produção de jatos duros em ambos os modelos.
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onde ηi é a pseudo-rapidez de uma dado jato medida no referencial do laboratório.

Eventos com produção de MET no LHC não fornecem a possibilidade de reconstrução
do ângulo de espalhamento dos squarks ou kk-quarks. A variável (3.19) vem suprir essa
necessidade. Na Fig. 3.12 temos a distribuição cinemática de (3.19) para ilustração. Aqui
é um caso onde não foi incluído parton shower, hadronização e e�ciência de detecção.
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Figura 3.12: Um exemplo de distribuição cinemática usada em nosso trabalho, perceba que para
cada um dos modelos temos distribuições com formas diferentes. O modelo de supersimetria tem
produção de quarks menos separados do que o modelo de MUED, no referencial do laboratório.

cos θM
Essa variável é de�nida de maneira análoga ao cos θB, com a vantagem de ser mais sensível
ao spin de partículas intermediárias quando comparada com cos θB segundo [14]. cos θM
será o cosseno do ângulo de espalhamento dos jatos e o feixe do acelerador no referencial
do centro de massa dos jatos visíveis. Basicamente temos que somar os momentos dos
dois jatos mais duros (P = pi + pj), calcular sua massa invariante (mij =

√
P 2) e fazer

um boost do momento dos jatos para o referencial onde Q = (mij , 0, 0, 0), o ângulo θM é
de�nido nesse referencial. cosθB e cos θM coincidem em regime de altas energias no caso
onde pi = −pj .
A variável cos θM não depende da pseudo-rapidez, em contraste à variável cos θB. Com isso
cos θM não apresenta um efeito de smearing devido à e�ciência de detecção com relação à
pseudo-rapidez.

αT

Essa variável adimensional foi proposta inicialmente em [87] como uma variável sensível a
diferentes modelos de nova física. Ela é de�nida como:

αR =
pT j1
mj1j2

, (3.20)

onde pT i é o momento transverso do jato mais energético e mj1j2 é a massa invariante dos
dois jatos mais energéticos de um dado evento.

cos θ∗

Variável responsável pela medida do ângulo que o jato mais energético faz com o eixo z
positivo.

cos θij
De�ni-se primeiramente os dois jatos mais duros de momento ~p1 e ~p2, onde p

µ
1 é o mais duro.

Então devemos fazer um boost do momento p1 para o referencial de repouso de p1 + p2.
Assim θij será o ângulo entre ~p1 boosted e o vetor ~p1 + ~p2 no referencial de laboratório.
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∆Rij

Com essa variável medimos a distância em um plano cartesiano de coordenadas (η,φ) entre
os dois jatos mais duros.

∆R =
√
δη2 + δφ2, (3.21)

η é a pseudo-rapidez e φ é o ângulo entre o pT da partícula e o eixo z.

∆φij
Separação angular (φ) entre os dois jatos mais duros.

χT

Essa variável é de�nida em analogia com o αR, mas agora ao invés de usar a massa invariante
mj1j2 usa-se a massa MT2 dada por [88, 8]:

χT =
pT j1
MT2

. (3.22)

MT2 = min
q/1+q/2=p/T

max{mT (p1, q/1, χ),mT (p1, q/1, χ)}, (3.23)

onde mT ≡ função de massa tranversa é dada por:

mT (p, q, χ) = m2
p +m2

χ + 2(EpTE
q
T − ~p · ~q) (3.24)

Aqui p1 e p2 são os momentos das partículas visíveis e p/T o momento transverso faltante.
É necessário fazer uma suposição sobre o valor de massa da matéria escura mχ, mas essa
escolha não in�uencia fortemente o resultado �nal [89].

Njets

Trata-se do número de jatos gerados no estado �nal de cada evento.

Na Fig. 3.13 temos nove �guras para as distribuições dos três modelos estudados (supersime-
tria, MUED e o Modelo Padrão). Os cortes aplicados a essas �guras são somente os relacionados
à geração dos eventos, veja a seção 3.7. As mudanças na forma das distribuições é o que a aná-
lise multivariada leva em conta, quanto maior as diferenças entre os formatos das distribuições,
melhor é o poder de discernimento de modelos na análise multivariada. As seções de choque
de produção de backgrounds, para o Espectro A, superam a seção de choque de produção de
supersimetria em um fator de 15 nesse caso. Quando aplicarmos os cortes retangulares para
remover os backgrounds e aumentar o poder de descoberta a seção de choque e o formato de
todas distribuições mudam, tornando o formato das distribuições mais parecidos.

Na Fig. 3.14, temos novamente as nove distribuições normalizadas. Agora variamos os espec-
tros de massa, mantendo mχ̃1 = mB(1) = 300 GeV, com massas de squarks e gluinos (mq̃,mg̃) de
(1.4, 1.5), (2.6, 3.0) e (3.0, 4.0) TeV. As distribuições com curvas sólidas (supersimetria) tendem
a ser parecidas na forma com outras curvas sólidas, a mesma observação pode ser feita para as
distribuições pontilhadas (MUED). Corroborando o que discutimos, no início dessa seção, sobre
distribuições adimensionais em decaimentos de cadeias curtas de partículas pesadas. As distri-
buições não são totalmente idênticas porque efeitos como PS, hadronização e cortes na geração
dos eventos acabam atrapalhando a invariância com o espectro. Note que a distribuição Njet

apresenta poucas diferenças também entre os dois modelos normalizados. Essa variável depende
basicamente do matching de jatos, pois se esse processo não for realizado apropriadamente, temos
uma in�uência direta na contagem de jatos após PS e hadronização. Em um cenário onde mχ̃1

e mB(1) são �xos, as diferenças são poucas quando não há cortes retangulares aplicados.
Ressaltamos que, neste trabalho, estamos desconsiderando qualquer correlação estatística

entre observáveis.
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Figura 3.13: Diferenças nos formato das distribuições para os diferentes modelos. Pequenas
diferenças nas formas da distribuições são levadas em conta em nossa análise multivariada. Após
cortes retangulares esses formatos tendem a �car parecidos, di�cultando o discernimento de
modelos. Por isso a necessidade de levar em conta uma estatística poderosa para a análise de
descoberta e discernimento de modelos de nova física.

3.9 Escaneamento de cortes retangulares

Para os cortes escolhemos três variáveis para análise simultânea, HT , E/T e pT . Esses três
observáveis são amplamente utilizados em análise de descoberta de nova física [91, 92, 93]. Esco-
lhemos o espectro base, o mais leve, para aplicar a análise de cortes. Foi escolhido um intervalo
de 600 GeV a 2000 GeV de passo 100 GeV para HT e E/T , e um valor �xo para o momento
transverso dos dois jatos mais duros de cada evento de 400 GeV (pT ). Além dessas variáveis
também escolhemos um corte na pseudo-rapidez máxima dos dois jatos mais duros, ηmax < 2.5.
Estamos interessados em jatos mais centrais, pois estes serão os de origem mais promissora para
descoberta de nova física. Fixamos também um espectro para esta análise, o Espectro B.

Para realizar o escaneamento integramos programas em python e cshell com o MadAnaly-

sis (versão 1.1.3). O MadAnalysis precisa ser con�gurado através do arquivo kin_func.f de
modo a incluir as nove distribuições que descrevemos no início desse capítulo.

Realizamos o escaneamento em 225 conjunto de cortes diferentes, sendo que cada conjunto
continha 6 canais de supersimetria e backgrounds e cada canal contem um conjunto de 40000
eventos, em média. O que totaliza por volta de 54 milhões de eventos analisados de sinal e
backgrounds. Esse é um processo que demanda um tempo grande de análise. Ao término do
escaneamento escolhe-se o corte que maximiza a signi�cância de descoberta de supersimetria
com a estatística de log-likelihood ratio.

3.10 Correções NLO, Prospino

O programa Prospino [94] baseado em Fortran possui rotinas para cálculos em NLO de
processos para QCD supersimétrica. As correções de NLO para QCD supersimétrica aumentam
as seções de choque de produção de pares de squarks, gluinos e de produção associada de squark-
gluino em comparação com as seções de choque de LO, além de diminuírem a dependência de
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Figura 3.14: Diferenças no formato das distribuições para 3 dos 150 espectros estudados em
nosso trabalho. Todas as curvas com mχ̃1 = 0.3 TeV e mq̃ = 1.4 TeV, mg̃ = 1.5 TeV; mq̃ = 2.6
TeV, mg̃ = 3.0 TeV; mq̃ = 3.0 TeV, mg̃ = 4.0 TeV. Mesmo para diferentes massas, em cada uma
dos respectivos modelos o formato da distribuição mantém-se aproximadamente o mesmo.

escalas de fatorização e renormalização. Correções eletrofracas também já foram calculadas para
a produção de pares de squarks [95], mas não têm a mesma relevância quanto às de QCD e,
portanto, não foram levadas em conta em nosso trabalho.

A determinação de incerteza na escala de fatorização, chamaremos de εfatoriz, em alguns
casos, não é um processo direto. É comum usar um processo de propagação de erros [71], devido
à sua rápida implementação. Nesse método escolhe-se o valor da incerteza variando a escala de
fatorização manualmente. A escala é variada em 2µ2 e 1

2µ
2, coleta-se a variação da seção de

choque e compara-se com a seção de choque na escala de fatorização original µ2. A estimativa
para o impacto dessa incerteza é:

εfatoriz =
σ+ − σ−

σ0
. (3.25)

Onde σ± indica a variação superior (inferior) da seção de choque com a escala, e σ0, o valor da
seção de choque na escala original de fatorização. A escala de fatorização (µ2) é determinada de
acordo com o que foi discutido na seção 3.6.

Para os backgrounds, a correção NLO também é possível e aplicamos em nosso trabalho.
Porém, infelizmente, o Prospino não calcula essas correções. Em todo caso é possível encontrar
correções NLO para vários fenômenos do Modelo Padrão, veja [96, 97].

Fizemos um programa em python que integra-se ao Prospino, com isso foi possível obter 150
seções de choque para os 3 canais de supersimetria e avaliar o impacto da incerteza na escala de
fatorização para essa seção de choque. Todos esses runs consomem um tempo razoável, apesar
de pequeno quando comparado a outros procedimentos de nosso trabalho. A�nal, cada canal
deve ser avaliado três vezes para um total de 150 espectros diferentes. Isso resulta em um total
de 450 runs para encontrar seções de choque de produção e os erros sistemáticos devido à escala
de fatorização. Quando isso é feito o programa prepara três runs seguidos alterando somente a
escala de fatorização das PDF (particle data functions). Isso fornece três valores para um dado
canal. Somando a contribuição dos 3 canais de supersimetria temos que a incerteza devido à
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escala de fatorização dada por (3.25), torna-se:

ε4 =
(σ+

canal1 + σ+
canal2 + σ+

canal3)− (σ−canal1 + σ−canal2 + σ−canal3)

(σ0
canal1 + σ0

canal2 + σ0
canal3)

, (3.26)

onde, no caso de supersimetria para um dado espectro: canal1 = q̃q̃, canal2 = q̃q̃∗ e canal3 =
q̃g̃. Lembrando que as seções de choque de MUED estarão normalizadas pelas seções de choque
de supersimetria, por isso levaremos em conta somente canais supersimétricos para a incerteza
na escala de fatorização e o resultado se estende para MUED, para os backgrounds uma análise
semelhante deve ser feita. Para os backgrounds, somente os canais de produção do bóson Z e
jatos são relevantes 3.5.3, com isso (3.25) torna-se:

ε3 =
(σ+

zqq + σ+
zqg + σ+

zgg)− (σ−zqq + σ−zqg + σ−zgg)

(σ0
zqq + σ0

zqg + σ0
zgg)

. (3.27)

Em nosso caso, para o LHC 14 TeV, ε3 = 5%.
Na tabela 3.4 mostramos somente alguns valores da incerteza sistemática na taxa dos eventos

de supersimetria devido à escala de fatorização. Note que, embora estejamos usando uma correção
em NLO, a escala de fatorização introduz uma incerteza grande quando variada. Isso porque a
convergência das funções de densidade partônica não é boa para altas energias, vide [98].

mq̃ (TeV) mg̃ (TeV) ε4 (%)
1.4 1.5 10.3
2.2 2.0 12.7
3.0 4.0 13.3
5.0 5.0 22.1

Tabela 3.4: Erro sistemático na seção de choque devido à variação da escala de fatorização em
NLO para supersimetria. Tabela parcial de resultados.

3.11 Identi�cação de jatos de quarks e glúons (Tagging)

Squarks e gluinos decaem invariavelmente em jatos de quarks. Por outro lado, o background

dominante para jatos + MET, Z+jatos, possui radiação de QCD proveniente da emissão de
quarks e glúons. Se for possível identi�car os jatos de quarks e glúons, podemos vetar os iden-
ti�cados com a emissão de glúons e assim suprimir ainda mais os eventos de MP, ainda que a
emissão de glúons também ocorra nos eventos de sinal. Mostraremos que o esforço de identi�car
jatos de quarks e glúons (tagging) é, de fato, vantajoso para o objetivo de aumentar a signi�cância
do sinal.

A identi�cação de jatos é realizada através de análises da estrutura interna de jatos. Quando
possível, algumas informações extras podem ser usadas como o branching ratio de um deter-
minado processo. Conhecendo a topologia exata envolvida no processo é possível identi�car a
origem de um dado jato, infelizmente quando o número de processos envolvidos é grande torna-
se complicado determinar qual topologia foi usada no processo de produção de um determinado
jato. Em geral a produção de jatos de glúons é favorecida em processos de QCD, pois os fatores
de cor (Casimir) para quarks e glúons diferem consideravelmente, CA

CF
= 2.25. Isso leva a uma

produção de jatos de glúons em média 2 vezes maior que a produção de jatos de quarks. Além
do que, jatos de sabores pesados tendem a ser semelhantes aos jatos de glúons, ou seja, jatos
menos colimados. Todas essas informações juntamente com a estrutura dos jatos podem indicar
se um quark leve ou glúons os produziu.
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A análise conduzida em [21] propõe uma técnica para a realização do tagging de jatos de
quarks e glúons. Nesse trabalho mostrou-se que observáveis como o número de traços recons-
truídos dentro de um jato e uma espécie de largura (distância) entre esses traços podem ser
usados para a realização do tagging. Jatos duros e centrais |η| < 3 são os que possuem melhores
resultados para o tagging de jatos.
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Figura 3.15: Curvas para o tagging de jatos de quarks e glúons, uma para tagg e outra para o
recíproco εg, a primeira retirada de [21]. Essa curva tem maior validade para jatos de pT > 200
GeV e centrais.

É possível inferir a função que relaciona a aceitação de quarks εq com a exclusão de glúons
tagg,

tagg = e6(1−εq), (3.28)

onde εg = 1
tagg

, veja Fig 3.15. Essa relação foi obtida através de resultados de [21] e a região de

maior e�ciência para esse tagging é com jatos de pT > 200 GeV.
Em nosso trabalho usamos o tagging como um fator global na taxa de produção de jatos e

MET. Como simulamos nossos eventos em uma análise onde cada canal é conhecido completa-
mente, e sabemos qual jato teve sua origem em quarks ou glúons, podemos aplicar esse fator de
diluição na seção de choque de produção de cada canal. Por exemplo, se o fator de seleção de
jatos de quarks for de εq = 60% então teremos que somente εg = 1

11 dos glúons passarão pelo
tagging de jatos (3.28). Podemos esperar que canais que contribuem com 2 jatos de quarks terão
uma fator de diluição na seção de choque total de produção de jatos vindos de quarks de 36 %
e um fator de diluição na seção de choque de produção para glúons de 1 %.

O ATLAS já faz uso da técnica de tagging de jatos de quarks e glúons em suas análises para
busca de nova física [22].

3.12 Distribuições �nais, aplicação de tagging, K-factors e nor-

malização

Nesta seção dedicaremos espaço para explicitar como contabilizamos as: contribuições de
sinal e backgrounds, aplicação dos fatores de tagging de quarks e glúons, correções em NLO,
e�ciências de cortes retangulares e normalização para seções de choque de MUED.

A hierarquia de massa é relevante aqui. Para a regiãomg̃ > mq̃ temos três canais contribuindo
para o nosso sinal. Já na região mg̃ < mq̃ os canais com gluínos deixam de contribuir para um
estado �nal do tipo jatos + MET, e portanto eles devem ser excluídos da análise nessa região.

Para realizar todas essas tarefas criamos um programa Fortran. As entradas desse programa
são todos os bins das nove distribuições escolhidas para a análise.
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• σilhco, a seção de choque dada pelo MadGraph5 logo após a geração dos eventos para o
canal i.

• σicut, a seçaõ de choque dada pelo MadAnalysis logo após aplicação de cortes para o canal
i.

• σiNLO, seção de choque em NLO para o canal i supersimétrico.

• εq, tagging de jatos de quarks. Trata-se de um parâmetro livre, valores possíveis estão entre
0 e 1.0.

• εg = 1
tagg

, tagging de jatos de glúons (3.28).

Para ilustração vamos analisar o canal de produção de squarks, denominaremos sqsq. O bin
I da distribuição J �ca alterado da seguinte maneira:

sqsqnew(J, I) = sqsqold(J, I) · σ
sqsq
NLO

σsqsqlhco

· ε2q . (3.29)

O mesmo procedimento é feito para os canais squark/anti-squark e squark/gluino (quando a
hierarquia de massas permitir). O fator de tagging é o mesmo para todos os canais que contribuem
para o sinal, pois em todos os canais os jatos mais duros são de quarks provenientes do decaimento
direto de partículas supersimétricas (ou de dimensões extras) pesadas. Lembrando que nossos
histogramas estão normalizados pela respectiva seção de choque então a normalização de sqsqnew
para um dado histograma é σsqsqcut ·

σsqsq
NLO

σsqsq
lhco

. O que denota que para uma distribuição sem cortes a

correção NLO é σsqsqNLO, em consequência, um histograma que passou por cortes retangulares tem
a correção NLO fracionada 4. Assim não estaremos superestimando o sinal.

Para os eventos de MUED, como ilustração usaremos o canal de produção de KK-quarks,
denominaremos q1q1. A normalização desse canal é,

q1q1new(1, I) = q1q1old(1, I) ·

∑
I

sqsqnew(1, I)∑
I

q1q1old(1, I)
. (3.30)

Note que �zemos como ilustração uma normalização da distribuição cinemática 1 (J = 1) para
o canal de produção de KK-quarks, mas isso pode ser feito sobre qualquer distribuição. Esse
processo garante que todos os eventos de MUED terão a mesma seção de choque. Observe que
sqsqnew já possui um fator de tagging na seção de choque, garantindo que MUED também já
tenha um tagging de jatos de quarks aplicado.

Depois de somado todas as contribuições de cada canal, levando em conta a hierarquia de
massa para cada espectro, temos a contribuição de supersimetria e dimensões extras universais
de�nidas.

Para os backgrounds os K-factors de produção de Z + jatos é KZ + jets = 1.10 [96, 97]. A
diferença agora é que deveremos aplicar fatores de tagging de jatos de forma diferente, pois nossos
backgrounds têm jatos vindos de glúons.

• Para o canal Z + qq, onde q é um jato de quark o fator de tagging é: ε2q .

• Para o canal Z + qg, onde q é um jato de quark e g um jato de glúon o fator de tagging é:
εq · εg.

• Para o canal Z + gg, o fator de tagging é: ε2g.

Note que, tanto sinal e backgrounds, levam contribuições diferentes de fator de tagging. Isso
garante um expressivo aumento no poder de discernimento.

4A correção NLO para a seção de choque não considera cortes de qualquer natureza. A seção de choque
calculada após a geração de nossos eventos possui cortes, porém são cortes pequenos.
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3.13 Incertezas sistemáticas no log-likelihood ratio

Todas as análises do nosso trabalho levam em conta erros sistemáticos. A escolha de cortes,
melhor tag de jatos, a estatística-teste, todos serão analisados com erros sistemáticos na taxa e
formato dos eventos.

Retomando a equação do likelihood que apresentamos em (2.34), e os resultados discutidos na
seção 2.9, temos que a aplicação de incertezas nas taxas dos eventos pode ser realizada através
da marginalização do likelihood original,

L =

N∏
i=1

P(ni|µi)G(L|L̃, σL). (3.31)

A função G(L|L̃, σL) é uma gaussiana normalizada a unidade, de média L̃ e desvio padrão σL.
Em nosso caso, analisamos cenários de L̃ = 100, 500 e 3000 fb−1 e σL assumirá valores corres-
pondentes a diferentes tipos de erros sistemáticos. O único parâmetro livre para a marginalização
é σL, cada tipo de incerteza sistemática terá associada um desvio padrão gaussiana apropriado.
Denotaremos esses desvios por εi.

A determinação dos εi, em alguns casos, não é um processo direto. Por exemplo, no caso da
incerteza na escala de fatorização, vimos na seção 3.10, que variações da escala fornecem uma
estimativa desses erros. Em outros casos, medidas auxiliares podem ser usadas para estimar
os erros em um determinado aparato, como as medidas realizadas pelo ATLAS para análise da
incerteza sistemática na luminosidade integrada [99].

Aplicamos quatro tipos de incertezas sistemáticas nas taxas dos nossos eventos. São,

• Incerteza na escala de fatorização para os eventos de background. Em nosso caso esse valor
foi calculado explicitamente, ε3 = 5%.

• Incerteza na escala de fatorização do sinal. Já apresentamos essa incerteza na Tab. 3.4.
A terceira coluna da tabela será o valor dessa incerteza, de�nimos como ε4. O valor dessa
incerteza varia de 10% para espectros leves a 22% para espectros pesados, vide seção.

• Incerteza na luminosidade integrada (ε5). Baseados em resultados da colaboração ATLAS,
o valor dessa incerteza está de�nida hoje em 3.5%.

• Uma incerteza sistemática que pode estar relacionada a erros sistemáticos de diversas fon-
tes. Como por exemplo, convergência da série in�nita de QCD, e�ciência de geradores
de Monte Carlo, e�ciência de tagging de jatos de quarks e glúons, e�ciência do programa
Pythia no parton shower e na hadronização, dentre outras [66]. Chamaremos essa incerteza
de Variadas, será dada por εtaxa. O valor associado à essa incerteza é variado livremente,
escolhemos cenários de 0, 10 e 20 %. Procuras de supersimetria estimam que essas incerte-
zas variam de 20 a 100% no LHC [100], é claro que esses valores dependem do controle dos
erros sistemáticos, com o passar do tempo as incertezas sistemáticas tendem a diminuir
conforme o conhecimento sobre o aparato experimental melhora.

Com isso formamos o conjunto de incertezas sistemáticas nas taxas dos eventos de nossa análise,
denotadas pelo conjunto {εtaxa, ε3, ε4, ε5}.

Nossa aplicação de incertezas sistemáticas seguiu o critério de que somente bins ocupados
foram usados na análise. Eventualmente bins com ocupação zero tanto para os backgrounds

quanto para o sinal foram excluídos do cálculo da signi�cância do teste estatístico.
As incertezas no formato das �guras têm implementações diferentes das incertezas nas taxas,

elas podem ter origens na incerteza da escala de energia para os jatos, esse efeito in�uencia todos
os jatos de um dado evento na mesma direção. Ou pode ter origem em incertezas estatísticas
nas amostras de Monte Carlo, esse tipo de incerteza é interessante em nosso trabalho, pois na
prática, as distribuições de nossa análise têm estatística limitada, a�nal foram geradas por um
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número �nito de eventos através de geradores de Monte Carlo. É possível levar esse tipo de
limitação como uma incerteza sistemática [71]. A prescrição é veri�car a condição,

NMC < 10Ndados. (3.32)

NMC é o número de eventos de MC que passaram nos cortes, esse número é dado pelo MadA-

nalysis. Depende, em nosso caso, da e�ciência de matching de jatos e principalmente de cortes
retangulares, como discutidos nas sub-seção 3.6.1 e seção 3.7. E Ndados é o número de even-
tos dado pela seção de choque multiplicada pela luminosidade integrada, incluindo e�ciência de
corte, tagging de jatos e correções NLO. Quando a condição (3.32) é verdadeira, estamos esti-
mando, relativamente, muitos eventos de dados de uma amostra de MC insu�ciente para essa
a�rmação, isso denota um problema. A prescrição para contornar essa limitação é inserir um
erro sistemático bin a bin em cada distribuição. O número de eventos esperados em cada bin
será �utuado de acordo com uma distribuição de Poisson, isso é uma espécie de erro sistemá-
tico no formato das distribuições. Esse erro é tratado através de marginalização, assim como as
incertezas sistemáticas na taxa dos eventos.

Fizemos a avaliação espectro a espectro dos pontos que necessitavam desse tipo de incerteza.
Para o sinal nossosNMC são números grandes quando comparados com o background, basicamente
porque os eventos de sinal passam mais nos cortes. E ainda, o aumento das massas de squarks e
gluinos contribui para que mais eventos passem pelos cortes. Já as seções de choque, diminuem
gradativamente enquanto o espectro aumenta, fazendo com que a condição (3.32) seja verdadeira
em apenas 10% dos casos para uma análise sem tagging de jatos. Esse número cai para menos
de 5% para uma análise com tagging de εq = 0.5. Já para o background temos o comportamento
oposto, NMC não passa de 500 eventos. Porém a seção de choque é sempre alta, pois são processos
da QCD pura. Em todos os cenários possíveis de tagging (0.1 < εq < 1.0), com correção NLO,
por exemplo, a relação (3.32) é satisfeita, portanto, é primordial incluir esse efeito no background
e secundário no sinal.

O likelihood (2.34), com a inserção de incerteza sistemática na forma das distribuições, �ca
alterado da seguinte maneira,

L =
N∏
i=1

P(ni|µi)P(b̃i|bi). (3.33)

Ressaltamos que retiramos da análise bins que não possuem eventos, tanto de sinal quanto de
backgrounds.

Na Fig. 3.16 temos uma ilustração do que pode acontecer em um bin da distribuição χT
de nossa análise levando em conta a incerteza no formato. Veja que a distribuição χT , para
os backgrounds, após cortes retangulares, tem seu formato prejudicado. A aplicação de uma
�utuação em cada bin, de acordo com uma Poisson (setas vermelhas), é um método rápido para
levar em conta o efeito de baixa estatística após cortes duros. Na tabela 3.5 temos uma visão
geral das incertezas que incluiremos nesse trabalho.

Fonte da Incerteza taxa (%) formato Processos Afetados
PDF 5 - background
PDF 10-22 - sinal
Luminosidade 3.5 - sinal e background
Variadas 0-20 - background
Número �nito eventos MC - X background

Tabela 3.5: Natureza e módulo das incertezas sistemáticas aplicadas neste trabalho.

O trabalho computacional necessário para inserção de incertezas sistemáticas no likelihood

construído através de histogramas, refere-se ao sorteio de cinco gaussianas diferentes, sorteios de
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Figura 3.16: Ilustração do possível efeito de um erro sistemático no formato da distribuição
cinemática cos θB.

Poisson bin-a-bin, da concomitante realização dos pseudo-experimentos e construção das PDF's
conjuntas para a estatística-teste. Em média há um aumento de tempo de cálculos, para o
nosso poder de processamento, da ordem de 50% quando são inseridos os erros sistemáticos. O
processo de construção das PDFs, para a hipótese nula e alternativa, para todos os espectros,
para todos os cenários analisados e para descoberta e discernimento de nova física �cou em
torno de noventa horas. Esse é um tempo de processamento que consideramos médio para nossa
capacidade computacional, em comparação com outros processos de nosso trabalho.

A aplicação do erro sistemático impacta principalmente no desvio padrão das PDFs das hi-
póteses nula e alternativa. O aumento dos erros sistemáticos faz com que as distribuições se
alarguem, enquanto que seus valores médios permanecem praticamente intactos, como podemos
ver na Fig. 3.17. Isso ocorre porque as incertezas são inseridas como sorteios gaussianos de
média zero e desvio padrão 1 (3.31), para cada pseudo-experimento. Veremos no capítulo Re-
sultados, que a incerteza sistemática limita completamente os nossos resultados. Com certeza,
a implementação desses efeitos é trabalho obrigatório para análises que pretendem explicar a
manifestação de dados experimentais além do Modelo Padrão no LHC.
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Figura 3.17: Manifestação de um erro sistemático na taxa dos eventos dos backgrounds na
PDF da estatística-teste Λ, para um dado teste de hipóteses. O alargamento das gaussianas é
decorrente da inserção de incerteza sistemática na taxa dos eventos.

O conjunto de incertezas sistemáticas usados em nosso trabalho é mínimo quando compa-
rado ao que é feito pelas colaborações do CERN, embora seja um conjunto expressivo quando
comparado com outros trabalhos de fenomenologia.

Antes de inciarmos o capítulo Resultados, iremos expor, na próxima seção, a terminologia
que usaremos como forma de sintetizar a exposição dos resultados de nossa análise.
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3.14 Cenários

Consideramos 150 espectros diferentes, porém a exposição de alguns resultados parciais e
veri�cações devem ser feita em pontos especí�cos do espaço de massas. Para isso de�niremos os
seguintes espectros:

• Espectro A: mq̃ = mq(1) = 1.4 TeV , mg̃ = mg(1) = 1.5 TeV e mχ̃1 = mB(1) = 0.3 TeV.

• Espectro B: mq̃ = mq(1) = 2.6 TeV , mg̃ = mg(1) = 4.0 TeV e mχ̃1 = mB(1) = 0.3 TeV.

• Espectro C: mq̃ = mq(1) = 1.4 TeV , mg̃ = mg(1) = 1.5 TeV e mχ̃1 = mB(1) = 1 TeV.

Para as incertezas sistemáticas teremos os seguintes cenários:

• Sem Sistemáticos, aqui não temos a inserção de nenhum tipo de incerteza sistemática.
Ainda haverá casos em que denotaremos εtaxa= 0%, e novamente, todos os erros sistemáticos
na taxa e formato serão desconsiderados.

• Sistemático no Background, nesse caso somente incertezas sistemáticas que afetam ex-
clusivamente as taxas dos eventos de background são consideradas. Tratam-se de incertezas
sistemáticas devido à escala de fatorização, luminosidade e à fontes diversas moduladas
por εtaxa, vide seção 3.13.

• Todos Sistemáticos, inclusão de todas incertezas sistemáticas listadas na tabela [3.5].

Para os resultados, a incerteza sistemática no formato das distribuições foi levada em conta
somente quando εtaxa> 0.

Para os cortes retangulares também é possível alternarmos em dois cenários:

• Sem Cortes, trata-se do caso onde não aplicam-se cortes em HT , E/T e pT .

• Cortes Ótimos, refere-se aos cortes que maximizam a descoberta de supersimetria para
luminosidade integrada (L) de 100 fb−1, sem tagging de jatos aplicados, com inserção
de todas as incertezas sistemáticas consideradas na análise (Todos Sistemáticos) e para o
Espectro B. Trata-se do conjunto HT= 1500 GeV, E/T = 1250 e pT= 400 GeV. Note que
toda a análise para os cortes foi realizada para um espectro especí�co.

O cenário de Cortes Ótimos foi analisado somente para L = 100 fb−1, esse é um cenário de menor
luminosidade em nosso trabalho, portanto, será o cenário de maior di�culdade para descoberta
de supersimetria.

O tagging de jatos de quarks e glúons, que maximiza a descoberta de supersimetria, depende
da luminosidade integrada e e�ciências. Por isso valores especí�cos de luminosidade terão um
tagging �xo (εq). Veremos mais adiante como determinamos esses valores. Por enquanto, iremos
nos ater a de�nir os possíveis cenários para o tagging de jatos de quarks e glúons:

• L = 100 fb−1, nesse caso εq = 0.53 e εg = 1
11 .

• L = 500 fb−1, nesse caso εq = 0.38 e εg = 1
41 .

• L = 3000 fb−1, nesse caso εq = 0.32 e εg = 1
59 .

Eventualmente, teremos casos onde desconsideramos o tagging de jatos, chamaremos de sem
tagging. Nesse caso εq = εg = 1.
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3.15 A escolha de cortes retangulares

Os cortes retangulares foram de�nidos de modo a maximizar a descoberta de supersimetria
para o teste estatístico ZLLR, para um cenário onde L = 100fb−1, o conjunto Todos Sistemáticos
com εtaxa = 20%, Espectro B, sem a inclusão de tagging de jatos de quarks e glúons e com nove
observáveis físicos. Com exceção do espectro, o cenário listado é o pior para descoberta de
supersimetria, por isso o de�nimos como referência para o escaneamento de cortes.

Como estamos avaliando três variáveis diferentes para os cortes, que possuem um grande
potencial de separação de sinal e backgrounds, veja Fig. 3.10a a 3.10c, decidimos selecionar duas
delas, onde a sensibilidade de ZLLR é maior, e então aplicar um escaneamento bi-dimensional.
Notamos que ZLLR era menos sensível à variável pT . Então escolhemos um valor para �xar essa
variável, obtivemos bons valores para ZLLR em um escaneamento com pT = 400 GeV, e então
�zemos um escaneamento em HT e E/T . Na Fig. 3.18 temos o resultado desse escaneamento.
Podemos perceber que quanto mais duro for o corte em E/T , temos signi�câncias cada vez maiores.
Porém regiões com E/T > 1600 GeV oferecem um número pequeno de eventos de sinal para essa
luminosidade e espectro. Escolhemos um conjunto de cortes onde ZLLR fosse relativamente alta,
e o número de eventos de sinal estivessem na ordem de 1000 para L = 100fb−1. Essa premissa
é necessária pois estamos analisando um cenário onde não há tagging de jatos. Após a aplicação
do tagging, esse número de eventos irá diminuir consideravelmente.
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Figura 3.18: Escaneamento de cortes retangulares para descoberta de supersimetria. Os números
destacados indicam curvas de nível para ZLLR.

Escolhemos o conjunto de cortes de HT= 1500 GeV, E/T = 1250 GeV e pT= 400 GeV. De�ni-
mos esse conjunto como o Cortes Ótimos. Para esses cortes, temos as seguintes seções de choque
total para os espectros descritos na seção 3.14:

• Espectro A, σsusy = 8.80 fb e σbckg = 0.88 fb.

• Espectro B, σsusy = 0.34 fb e σbckg = 0.88 fb.

• Espectro C, σsusy = 0.26 fb e σbckg = 0.88 fb.

3.16 Zsb e ZLLR, revisitado

De�nidos os cenários de nosso trabalho, podemos analisar a signi�cância em um contexto
direcionado à nossa análise. Como vimos em (2.42), Zsb leva em conta somente uma informação,
o número de eventos de sinal e de background. Em compensação, ZLLR é sensível à forma das
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distribuições e ainda é possível utilizar diversos observáveis físicos diferentes 2.6. A vantagem
de incluir diversas distribuições diferentes pode ser vista na Fig. 3.19. Note que a inserção
de nove distribuições leva ZLLR a quase triplicar o seu valor comparado à uma análise com
apenas uma distribuição, enquanto que a curva para Zsb não tem sensibilidade para inserção
de diferentes distribuições. Para Ndistri = 1 temos que a análise multivariada possui métrica
maior que a contagem de eventos, demonstrando mais uma vez o poder da estatística-teste razão
log-likelihood. A Fig. 3.19 foi gerada a partir do Espectro B e luminosidade integrada de 100
fb−1, não usamos tagging de jatos de quarks e glúons.
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Figura 3.19: Comparação entre os testes Zsb e ZLLR com relação ao número de observáveis
usados na análise multivariada.

Veri�camos que o comportamento de ZLLR com o número de histogramas inseridos é se-
melhante ao observado na Fig. 3.19 em todos os espectros da análise. Esse comportamento é
esperado, pois as equações (2.37 e 2.39) bene�ciam-se quando aumentamos Ndistri. Em geral,
essas equações tornam-se mais positivas ou negativas dependendo da razão sij/bij , e isso acaba
mudando o valor médio da estatística-teste. Ressaltamos que a aplicação de incertezas sistemá-
ticas alteram o padrão observado para ZLLR na Fig. 3.19, porque se a distribuição cinemática
não possuir relativa diferença de formato entre sinal e background, qualquer �utuação estatística
do background pode desaparecer com o sinal.

Como já vimos anteriormente na seção 2.8, para a contagem de eventos, dependendo dos
erros sistemáticos e da razão s

b , em alguns casos é impossível alcançar descoberta ou 5σ de
signi�cância. Na Fig. 3.20, vemos que esse comportamento não é exclusividade de Zsb, pois
ZLLR também tem essa característica, embora ele seja alcançado em regiões com um valor de
signi�cância maior. Perceba também que o teste Zsb, sem a aplicação de incertezas sistemáticas,
não consegue minimamente reproduzir o comportamento real de qualquer análise que leve efeitos
de incertezas. Aqui, ZLLR é calculado usando os nove observáveis físicos de�nidos na seção
3.8. Conforme a incerteza sistemática na taxa dos eventos de background aumenta, a saturação
da signi�cância ocorre com valores menores de luminosidade integrada. Essa saturação ocorre
em luminosidades integradas aproximadamente iguais para a contagem de eventos e razão log-

likelihood. No cenário ilustrado, com εtaxa = 5% a saturação ocorre por volta de 2 ab−1, para
εtaxa = 10% por volta de 1.5 ab−1 e �nalmente para εtaxa = 20% ocorre em 500fb−1 Fig. 3.20.

Realizamos outra veri�cação, para erros sistemáticos, como pode ser visto na Fig. 3.21, para
descoberta de supersimetria. Das três curvas esboçadas, duas delas representam Zsb, para um
caso onde não há incerteza sistemática (2.40) e outra com uma incerteza sistemática na taxa dos
eventos de backgrounds, de acordo com o conjunto Sistemático no Background (2.42). A terceira
curva representa a métrica de signi�cância, ZLLR, com a análise de apenas um histograma5

como observável físico para descoberta de supersimetria. Inserimos somente uma distribuição
pois assim podemos comparar ZLLR com Zsb em bases equivalentes. Porque, em geral, utilizar
um teste estatístico com nove observáveis físicos diferentes trará melhores resultados quando
comparado a um teste que utiliza somente um.

5O observável físico usado em todas as nossas análises com apenas um histograma foi cos θM 3.8.
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Figura 3.20: Comparação entre ZLLR e Zsb, em diferentes cenários para εtaxa.
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Figura 3.21: Comparação entre os testes estatísticos ZLLR e Zsb com relação à in�uência de
uma incerteza sistemática na taxa dos eventos de background.

Vemos na Fig. 3.21 que, em nosso caso, ZLLR é um teste estatístico com maior poder de
descoberta em qualquer cenário com inserção de incertezas sistemáticas, quando comparado com
o Zsb. Mesmo nos cenários onde usamos apenas um observável para descoberta de nova física.
Isso deve-se ao fato de que, para obter ZLLR, usamos as mínimas diferenças no formato da
distribuição para o sinal e background, em uma análise bin a bin. Enquanto que Zsb leva em
conta, somente, o número de eventos total.

Como vimos na seção 3.7, os eventos de Monte Carlo para os backgrounds têm baixa e�ciência
quando cortes retangulares duros são aplicados. Porém esses eventos possuem uma grande seção
de choque associada, levando à uma grande produção de eventos para uma dada luminosidade in-
tegrada L. Na Fig. 3.22, mostramos todas as distribuições usadas na análise para supersimetria,
MUED e background com o conjunto Cortes Ótimos aplicados. O efeito da estatística limitada
compromete a suavidade das distribuições cinemáticas para o background. Por isso a necessidade
de modelar uma incerteza sistemática teórica associada ao número de eventos de Monte Carlo
que efetivamente restam após os cortes retangulares [71]. Realizamos uma análise para veri�car
o impacto da incerteza sistemática teórica no formato das distribuições dos backgrounds. Na Fig.
3.23 temos a análise para o caso de descoberta de supersimetria. No caso onde não temos incer-
tezas sistemáticas no formato das distribuições (curvas azuis), temos um resultado mais otimista
para o alcance da descoberta de supersimetria. Portanto, inserir uma incerteza sistemática na
forma das distribuições, além de trazer o benefício de modelagem da baixa estatística de Monte
Carlo após cortes duros para os backgrounds, não superestima a descoberta de supersimetria.
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Figura 3.22: Distribuições normalizadas para supersimetria, MUED e Modelo Padrão. Após
aplicação do conjunto de cortes Cortes Ótimos.

3.17 A escolha do tagging de jatos de quarks e glúons

Para de�nir o melhor tagging de jatos �zemos uma análise com os valores de signi�cância para
a estatística log-likelihood-ratio. Para descoberta de supersimetria, consideramos três cenários
diferentes para luminosidade integrada, Todos Sistemáticos com εtaxa = 20% e Cortes Ótimos.
Na Fig. 3.24 temos curvas para essa análise, em função do tagging de jatos de quarks εq.
Ressaltamos que εg depende de εq, como vimos na seção 3.11, porém um dos dois valores pode
ser escolhido de forma arbitrária.

Colocamos um eixo adicional paralelo a εq, que denota a exclusão de glúons tagg = 1
εg
. Os

valores de εq e εg são os fatores que modulam as seções de choque dos canais de produção com
quarks e glúons, veja a seção 3.12. Vemos que ZLLR, de fato, é bene�ciada com a aplicação do
tagging de jatos. Observe que o aumento da luminosidade integrada faz com o que εq seja cada
vez menor, e isso portanto, aumenta a exclusão de glúons. Esse comportamento é esperado, pois
grandes luminosidades possibilitam a retirada maior de glúons e quarks sem prejudicar a métrica
ZLLR.

Para cada valor de luminosidade integrada, temos um tagging de jatos de quarks e glúons
que maximiza a descoberta de supersimetria para ZLLR. Note que para εq = εg = 1.0, temos
praticamente signi�câncias idênticas para os três valores de luminosidade integrada, isso deve-se
à saturação da seção de choque com o erro sistemático εtaxa que observamos na equação 2.46 e
na Fig. 3.20.

Com a ajuda dos resultados da Fig. 3.24, de�nimos as relações de luminosidade integrada e
tagging de jatos de quarks que mostramos em 3.14.

• L = 100 fb−1, nesse caso εq = 0.53 e εg = 1
11 .

• L = 500 fb−1, nesse caso εq = 0.38 e εg = 1
41 .

• L = 3000 fb−1, nesse caso εq = 0.32 e εg = 1
59 .

Realizamos uma análise para observar o impacto do tagging na contagem de eventos. Criamos
curvas de níveis para a razão s

b , onde s e b são os números de eventos totais de sinal e background
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Figura 3.23: Análise do impacto da incerteza sistemática devido à escassez de eventos de Monte
Carlo para os backgrounds. Esse efeito é inserido através de um erro sistemático no formato das
distribuições dos backgrounds.

em função de mq̃ e mg̃. Na Fig. 3.25 temos dois grá�cos que mostram o impacto do tagging de
jatos na contagem de eventos. Podemos perceber que a aplicação de tagging de jatos aumenta
as regiões de s

b iguais a 0.1 e 1.
Isso é esperado, porque, no caso da Fig. 3.25, a seção de choque para o sinal tem uma redução

de 50% enquanto que os backgrounds de 95%, após aplicação do tagging de jatos, veja seção 3.11.
Criamos também a Fig. 3.26, que é um análogo à Fig. 3.24, porém, para a contagem de eventos
temos a inclusão somente de um erro sistemático na taxa dos eventos de background. Observe
que a contagem de eventos (Fig. 3.26) tem comportamento bem semelhante ao visto na análise
multivariada (Fig. 3.24).

Finalmente analisamos o impacto da incerteza sistemática εtaxa no tagging de jatos de quarks
e glúons. Na Fig. 3.27 vemos que o tagging de jatos tem impacto diferente nos testes ZLLR e Zsb.
Existe uma região onde a métrica de signi�cância para εtaxa = 5, 10, 20% converge, 0.1 < εq < 0.4
para ZLLR e 0.1 < εq < 0.2 para Zsb. Nessas regiões ocorre o decréscimo acentuado do número
de eventos de background devido à grande exclusão advinda do tagging de jatos, tornando a
métrica de signi�cância praticamente independente de �utuações dos backgrounds devido ao erro
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Figura 3.24: Análise para determinação do melhor tagging de jatos de quarks para descoberta
de supersimetria.
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Figura 3.25: Impacto da aplicação de tagging de jatos para s
b . Há um aumento de todas as

regiões delimitadas pelas curvas de nível quando aplicamos o tagging de jatos.

sistemático εtaxa. Note que essa região de independência do erro sistemático εtaxa ocorre antes
para ZLLR, porque essa métrica tem uma sensibilidade maior aos erros sistemáticos.

Ainda na Fig. 3.27, vemos que o tagging não bene�cia tanto Zsb, o máximo dessas curvas
acontece em aproximadamente 0.8 < εq < 1. Esse comportamento pode ser entendido com a
equação (2.46) e a Fig. (2.11). Para um erro sistemático �xo, não é qualquer aumento da razão
s/b que leva a um acréscimo em Zsb. Por isso é esperado que Zsb não se bene�cie muito com
qualquer tagging de jatos.

Ressaltamos também que, embora não explicitado, na Fig. 3.27, existem diferenças pequenas
para os casos de mχ̃1 de 50 e 300 GeV. Os dois valores de massas fornecem praticamente a mesma
razão s

b , porque têm seções de choque e e�ciência de cortes muito parecidas. Portanto esboçamos
somente o caso de mχ̃1 = 300 GeV.
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Figura 3.26: Análise referência para o comportamento do tagging de jatos em função da signi�-
cância para a contagem de eventos.
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Figura 3.27: In�uência das incertezas sistemáticas na análise de tagging de jatos para os testes
ZLLR e Zsb.



Capítulo 4

Resultados

Esse capítulo será dedicado à exposição e veri�cações dos resultados obtidos. Apresentaremos
nossos resultados em um espaço de massas, {mq̃,mg̃} e mχ̃1 , dependendo do tipo de análise.
Nesse espaço serão esboçadas curvas de níveis, referentes às métricas de signi�cância iguais a
5σ, para o teste de hipóteses. Temos, assim, que essas curvas de 5σ sempre levam à exclusão da
hipótese nula como melhor representante dos dados simulados e observados. Na Fig. 4.1 temos
um exemplo de uma curva de 5σ para nossa análise, ela exempli�ca como são representadas
nossas regiões de descoberta e discernimento.

Curva de ZLLR
= 5

ZLLR < 5

ZLLR > 5

região m
q
�

> m
g
�

região m
q
�

< m
g
�

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

m g
� HTeVL

m
q�

HT
eV

L

Figura 4.1: Figura exemplo para interpretação de nossos resultados no plano de massas
{mq̃,mg̃}. Destacamos aqui a região indicada pelas setas azuis, ela indicam pontos para massas
de squarks e gluinos onde é possível alcançar signi�cância maior que 5σ, enquanto que as regiões
com a seta vermelha o contrário. As regiões onde mq̃ > mg̃ e mq̃ < mg̃ também desempenham
papel importante na interpretação dos resultados, como veremos adiante.

Os modelos que estudamos assumem um certo conjunto de condições, como já discutimos
nos capítulos 2 e 3 desse trabalho. Para supersimetria e MUED estamos assumindo que:

• BR(g̃ → q̃ + q) = BR(g(1) → q(1) + q) = 100%.

• BR(q̃R → q + χ̃1) = BR(q(1) → q +B(1)) = 99%.

• BR(q̃L → q + χ̃1) = BR(Q(1) → q +B(1)) = 1%.

• As seções de choque de MUED são normalizadas às seções de choque de supersimetria.

• Não estamos assumindo correlações estatísticas entre os observáveis físicos usados na aná-
lise.

65
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4.1 Discussão dos resultados no espaço de massas

Podemos investigar como uma análise multivariada com nove observáveis sensíveis à diferentes
características dos modelos de SUSY e MUED, usando a estatística-teste log-likelihood ratio, com
a aplicação de incertezas sistemáticas (tabela 3.5), pode fornecer resultados sobre a descoberta
e discernimento de modelos como supersimetria e MUED no LHC 14 TeV. Além disso, podemos
estimar os limites que o LHC alcançará em uma análise fenomenológica mais realista, pois leva
em conta incertezas sistemáticas de diversas origens.

Nosso trabalho possui enfoque no regime de grande luminosidade integrada L: 100, 500 e
3000 fb−1. O resultado será apresentado através de curvas de nível para valores de ZLLR, em um
espaço bi-dimensional {mq̃,mg̃} com mχ̃1 �xo caso a caso. Consideramos três cenários diferentes
de incertezas sistemáticas, o Todos Sistemáticos onde εtaxa = 0, 10 e 20% e três massas de
neutralino (kk-fotons) diferentes, 50, 300 e 1000 GeV. Todos analisados no conjunto de cortes
retangulares Cortes Ótimos 3.14. É importante ter em mente como de�nimos o valor observado
da estatística-teste (ΛOBS) no teste de hipóteses 2.8, usando a mediana da hipótese alternativa.

Alguns resultados observados serão explicados, pormenorizadamente, na próximas seções.

4.1.1 Descoberta de supersimetria
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Figura 4.2: Curvas de nível ZLLR = 5, para descoberta de supersimetria. Vemos que para
L = 3000 fb−1, podemos alcançar descoberta de supersimetria para squarks de massas de até 3.1
TeV com incertezas sistemáticas na taxa dos backgrounds de 20 %. O real limite para a massa dos
gluinos não �ca claro, pois até onde simulamos, 5 TeV, são regiões de massa facilmente acessíveis
para descoberta.
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Na Fig. 4.2 temos três curvas de nível para a signi�cância da estatística log-likelihood
ratio (ZLLR) em função de mq̃ e mg̃.

1. Podemos notar que as curvas paramχ̃1 de 50 e 300 GeV estão, aproximadamente, sobrepos-
tas. Mostrando que, para descoberta de supersimetria, nossa análise multivariada possui
pouca sensibilidade para diferenças de massas de neutralino de algumas centenas de GeV.
Já que o formato das distribuições cinemáticas (vide a seção 4.3), o número de eventos
que passam nos cortes retangulares, as seções de choque de produção supersimétricas e as
incertezas da escala de fatorização, para neutralinos de 50 e 300 GeV, são parecidas.

2. Observamos uma clara dependência da região de descoberta com o erro sistemático εtaxa,
vide a seção 3.13. Para uma luminosidade integrada de 100 fb−1, as regiões de descoberta
tornam-se menos sensíveis a εtaxa, quando comparadas com as curvas de 3000 fb−1. Esse
comportamento pode ser entendido usando a equação (2.42), nela vemos que quanto maior
o número de eventos de background, b = σback · L, maior é a chance de uma �utuação
estatística do número de eventos de backgrounds, o que acarreta na diminuição da in�uên-
cia dos eventos de supersimetria. Essa conclusão é análoga para a análise multivariada
usando likelihoods, com a adicional ressalva de que as incertezas sistemáticas no formato
das distribuições de backgrounds in�uenciam também em ZLLR, como vimos na seção 3.16.

3. A região de transição de mq̃ > mg̃ para mq̃ < mg̃, delimitada pela linha transversal pon-
tilhada, mostra-se com curvas de inclinação ligeiramente decrescentes, na parte superior,
com relação à parte inferior. Essa in�uência é geral em nossos resultados, e é decorrente da
subtração dos canais que não contribuem com jatos e MET nesse regime, os de produção
associada de gluinos, veja seção 3.5.1. Isso diminui consideravelmente as contribuições de
eventos para o sinal de supersimetria na região mq̃ > mg̃, consequentemente, diminuindo
o poder de descoberta de supersimetria.

4. Destacamos que as curvas para mχ̃1 = 1 TeV possuem as menores regiões de descoberta
de supersimetria. Isso porque o pT dos jatos produzidos no decaimento de um squark em
neutralino pesado são baixos em comparação com os casos de mχ̃1 = 50 e 300 GeV, embora
E/T seja alto. Assim, menos eventos passam nos cortes retangulares de�nidos pelo conjunto
Cortes Ótimos, veja seção cenários 3.14.

5. Em relação à descoberta, squarks de até 3.5 TeV estão acessíveis (Fig. 4.2b), enquanto que
o limite para gluinos pode superar os 5 TeV. Isso decorre de, principalmente, dois fatores:
primeiro, as altas incertezas sistemáticas associadas à escala de fatorização do sinal para
massas de squarks grandes, veja seção 3.10. Segundo, e mais relevante, a região onde
mq̃ < mg̃ tem contribuições para o sinal vindas de canais de produção de squarks e gluinos,
e nessa região, a seção de choque de produção para squarks supera a de produção de gluinos.
Enquanto que a outra região tem contribuições apenas de squarks, e aqui, a produção de
squarks é secundária, ou seja, os canais que mais participam na região mq̃ > mg̃, os de
gluinos, devem ser retirados, e os que menos contribuem são os únicos que restam para a
análise de jatos e MET, veja Fig. 3.4 e subseção 3.5.1. Note que a descoberta deve ser
entendida no sentido conjunto, ou seja, onde squarks e gluinos participam dos eventos de
nova física, ainda que a contribuição de squarks seja a dominante na maior parte do espaço
de massas acessível à descoberta.

As curvas de εtaxa = 0% são as que cobrem as maiores regiões do espaço de massas, o que já
era esperado, pois um cenário de ausência de todo e qualquer erro sistemático seja impossível.
Podemos descobrir supersimetria para mq̃ < 3.0 TeV e mg̃ < 5.0 TeV com L = 100 fb−1.
Quando L = 3000 fb−1, há um aumento dessa região em, aproximadamente, 500 GeV na massa
dos squarks, nesse caso, o novo limite de descoberta é mq̃ < 3.5 TeV. Observamos um decréscimo
de aproximadamente 50 GeV para a região de descoberta de supersimetria quandomχ̃1 = 1 TeV e



CAPÍTULO 4. RESULTADOS 68

notamos que a Fig. 4.2a possui um região para mq̃ = 1.5 TeV e mg̃ > 4.5 TeV onde não é possível
alcançar descoberta de supersimetria para mχ̃1 = 1 TeV. Como já dissemos, esses espectros, com
mq̃ baixo e mχ̃1 alto, têm eventos que não passam nos cortes retangulares, porque geram jatos
com baixo pT .

Para as curvas de εtaxa = 10(20)% a descoberta de supersimetria cai para mq̃ < 2.9(2.8) TeV
para L = 100 fb−1 (Fig. 4.2a) e mq̃ < 3.3(3.1) TeV para L = 3000 fb−1(Fig. 4.2b). Novamente
temos uma região na parte inferior da Fig. 4.2a (mq̃ < mg̃) onde o decaimento de neutralinos,
de 1 TeV, não permitem descoberta de supersimetria, agora essa região é, para 100 fb−1, de
mq̃ < 1.6(1.7) TeV e mg̃ > 3.8(3.3) TeV. No regime de 3000 fb−1, essa região deixa de existir
(regime mq̃ < mg̃ da Fig. 4.2b), e agora a alta luminosidade compensa a perda de eventos
vindos do decaimento de squarks em um neutralino de mχ̃1 = 1 TeV, permitindo a descoberta
de supersimetria para εtaxa = 20%.

4.1.2 Discernimento de supersimetria e MUED
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Figura 4.3: Curvas de nível ZLLR = 5 para discernimento entre supersimetria e MUED. Primei-
ramente vemos que as curvas de 5σ para matéria escura de 1 TeV são, praticamente, inexistentes.
Pode-se alcançar discernimento de supersimetria e MUED para squarks (KK-quarks) de até 2.60
TeV para incertezas sistemáticas na taxa dos eventos de backgrounds de 20% e luminosidade
de 3000 fb−1. Pra gluinos e KK-glúons esse limite é de ∼ 5 TeV, para o mesmo valor de erro
sistemático e luminosidade integrada.

Na Fig. 4.3 temos as curvas de ZLLR = 5 para o discernimento entre supersimetria e MUED.
Ressaltamos que supersimetria e backgrounds estão associados à hipótese nula (H0), de modo
que a região de massas dentro das curvas de 5σ denotam que o modelo de supersimetria pode
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ser discernido de um modelo de MUED e backgrounds. Enquanto que nas regiões externas das
curvas de ZLLR = 5 (Fig. 4.1) o discernimento não é possível neste nível de signi�cância. Regiões
de 95% ou 99% de nível de con�ança devem abarcar áreas bem maiores do espaço de massas. É
interessante notar que recentes avanços no estudo do spin e paridade do bóson de Higgs, veja [70],
aproveitam-se também de testes de hipóteses, onde confrontam-se uma partícula de spin-0 e CP-
par, o bóson de Higgs advindo do Modelo Padrão, contra algum bóson de Higgs de outro modelo
com propriedades diferentes, porém de mesma massa. Alguns desses resultados são apresentados,
hoje, com níveis de con�ança de 99%, algo em torno de 3σ. Nossos cenários de análise requerem
con�gurações mais rigorosas, muito adequadas a uma análise teórica dos limites do acelerador
LHC.

1. O que podemos observar, de imediato, é que apenas uma curva para mχ̃1 = 1 TeV aparece
nos grá�cos de discernimento, o da Fig. 4.3b, referente a L = 3000 fb−1 e εtaxa = 0%.
É possível discriminar entre os modelos de supersimetria e MUED somente no regime
improvável de incertezas sistemáticas muito pequenas, quando a luminosidade integrada é
menor que alguns milhares de fb−1. Isso está relacionado com a quantidade de eventos de
Monte Carlo, para mχ̃1 = 1 TeV, que não passam no conjunto Cortes Ótimos, vide 4.2.
Relaxando os cortes, especi�camente para essa massa de matéria escura, poderia levar a
resultados melhores nesse regime.

2. O discernimento é sensível à mudanças de algumas centenas GeV para a massa no neutralino
(KK-fóton), observe as curvas pretas e vermelhas na Fig. 4.3. As curvas vermelhas,
mχ̃1 = 50 GeV, são aquelas onde o discernimento de modelos é mais fácil, devido à produção
de jatos mais duros, para essa massa, e com isso maior aceitação após cortes retangulares.

3. O alcance do discernimento, em termos absolutos, é bem menor do que a descoberta de
supersimetria para a massa dos squarks. No caso de maior luminosidade integrada e sem
sistemáticos, esse alcance é de no máximo 2.7 TeV, embora ainda seja possível observar
discernimento em cenários de gluinos de até 5 TeV. Para os squarks, isso é re�exo do erro
sistemático na escala de fatorização do sinal, agora, ele atinge as duas hipóteses, veja 3.10.
Além disso, a região de mq̃ > mg̃ tem apenas um canal para produção de jatos e MET.

4. A região de transição entre mq̃ < mg̃ e mq̃ > mg̃ apresenta comportamento idêntico
à descoberta de supersimetria (seção 4.1.1 item 3), exatamente pelo mesmo motivo, a
subtração de canais que contribuem de forma relativamente alta na produção de jatos
e MET, devido à hierarquia de massas. A diferença é que as curvas de discernimento
concentram-se mais na regiãomq̃ < mg̃ (abaixo da linha tracejada), denotando que discernir
modelos é um procedimento mais sensível à ausência dos canais de gluinos na parte superior
dos grá�cos.

5. Destacamos a dependência dos erros sistemáticos também na discriminação de modelos,
como esperado. Na região mq̃ > mg̃, existe uma dependência menor do discernimento com
o erro sistemático εtaxa para mχ̃1 �xo, as curvas de 10 e 20% para esse erros �cam bem
próximas umas das outras. Isso pode ser entendido retomando a equação (2.39) para a
estatística-teste do discernimento de hipóteses. Essa equação tem os backgrounds incluídos
na hipótese nula e alternativa, embora sejam feitos sorteios independentes gaussianos, a
incerteza sistemática no background acaba tornando-se uma espécie de efeito global e do-
minante, já que nessa região a contribuição vem somente de produção de squarks pesados.
Já na região mq̃ < mg̃, temos também um efeito pequeno com a mudança de εtaxa, porém
ainda assim é possível notar diferenças entre as curvas, isso porque nessa região, a contri-
buição de sinal é maior do que na parte superior da linha transversal tracejada, tornando
assim, o efeito do sistemático nas duas hipóteses, levemente menos dominante do que no
primeiro caso.
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6. É nítido um efeito de baixa luminosidade integrada na Fig. 4.3a, a região demg̃ > 3.0 TeV e
mq̃ = 1.8 TeV, apresenta um regime onde não é possível discernir modelos de supersimetria e
MUED. Ressaltamos que esse comportamento não ocorre quando L = 3000 fb−1, mostrando
que esses espectros têm um baixo número de eventos de supersimetria, e consequentemente
de MUED, já que as seções de choque de produção do sinal, nesse regime, são da ordem
de 10−3 fb, veja Fig. 3.4.

Tabela 4.1: Regiões de possível discernimento para mχ̃1 = 50 GeV (Fig. 4.3).

L (fb−1) Região mq̃ (TeV) Região mg̃ (TeV)

Sem Sistemáticos
100 2.00 (2.35) 5.00 (5.00)
500 2.35 (2.55) 5.00 (5.00)
3000 2.70 (2.80) 5.00 (5.00)

εtaxa = 10%
100 1.80 (2.20) 4.55 (4.90)
500 2.20 (2.45) 5.00 (5.00)
3000 2.45 (2.65) 5.0 (5.00)

εtaxa = 20%
100 1.80 (2.20) 4.50 (4.80)
500 2.15 (2.45) 5.00 (5.00)
3000 2.45 (2.65) 5.00 (5.00)

Tabela 4.2: Regiões de possível discernimento para mχ̃1 = 300 GeV (Fig. 4.3).

L (fb−1) Região mq̃ (TeV) Região mg̃ (TeV)

Sem Sistemáticos
100 1.85 (2.25) 4.00 (5.00)
500 2.25 (2.45) 5.00 (5.00)
3000 2.70 (2.75) 5.00 (5.00)

εtaxa = 10%
100 1.80 (2.15) 3.10 (4.40)
500 2.10 (2.35) 4.90 (5.00)
3000 2.45 (2.60) 5.0 (5.00)

εtaxa = 20%
100 1.80 (2.15) 3.00 (4.30)
500 2.05 (2.35) 4.70 (5.00)
3000 2.40 (2.60) 5.00 (5.00)

Construímos as tabelas 4.1 e 4.2, na qual sintetizamos os limites impostos para as massas de
squarks (KK-quarks) e gluinos (KK-glúons) de acordo com a luminosidade, erros sistemáticos
e mχ̃1 . Nessas tabelas temos os alcances das massas dos squarks e gluinos exibidos através de
valores mínimos e máximos. Esses limites circunscrevem regiões de discernimento.

4.1.3 Descoberta e posterior discernimento de nova física

A análise derradeira do nosso trabalho ocorre quando combinamos os resultados obtidos na
descoberta e discernimento. A discriminação de modelos é um passo secundário, realizado depois
da con�rmação que um determinado conjunto de eventos, de fato, contém informações de nova
física. Assim as regiões de discernimento de nova física só são validadas se constatarmos que
também pode-se alcançar descoberta nessas regiões. Para isso criamos a Fig. 4.4, na qual refere-
se à apenas cenários de L = 100 e 3000 fb−1, com mχ̃1 = 50 e 300 GeV, excluímos os resultados
para mχ̃1 = 1 TeV pelas razões discutidas na seção anterior. As incertezas sistemáticas usadas
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seguem o conjunto, Todos Sistemáticos, com εtaxa = 20% e conjunto Cortes Ótimos foi aplicado.
As curvas contínuas denotam a descoberta de supersimetria e foram retiradas da Fig. 4.2 e
as curvas tracejadas referem-se ao discernimento de supersimetria e MUED e foram obtidas da
Fig. 4.3, apropriadamente. A região destacada na Fig. 4.4 denota o alcance real da análise
multivariada usada nesse trabalho, a chamaremos de região descoberta-discernimento. Essa
região é completamente descrita pelas curvas de discernimento, Fig. 4.3, pois a descoberta de
supersimetria engloba toda essa região. Portanto, as observações e limites estimados na seção
4.1.2 são os mesmos para os limites de descoberta de supersimetria e discernimento desse modelo
com relação ao modelo de MUED. Com isso os limites para região descoberta-discernimento
coincidem com os discutidos nas tabelas 4.1 e 4.2, para mχ̃1 = 50, 300 GeV, respectivamente.

Estima-se que em 2016 o LHC conseguirá funcionar de acordo com suas especi�cações pro-
jetadas, a partir disso espera-se que a aquisição de dados alcance 50 fb−1 em pouco mais de um
semestre de funcionamento. Em 2020 estima-se uma luminosidade integrada de 300 fb−1, com a
aquisição anual de 100 fb−1 a partir de então, veja [101].
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Figura 4.4: Regiões em destaque referem-se às massas que possuem potencial para descoberta
e discernimento de supersimetria para determinados cenários. Foram empregados o conjunto
Cortes Ótimos e Todos os sistemáticos com εtaxa = 20%.

Podemos observar que na Fig. 4.4a e 4.4b, cenários de 100 fb−1, onde estima-se alcança-los
em meados de 2016 a 2017, têm regiões de descoberta-discernimento para massas de: 1.4 TeV <
mq̃ < 2.2 TeV e 1.5 TeV < mg̃ < 4.7 TeV com mχ̃1 = mB(1) = 50 GeV. Notamos um encolhi-
mento da região de descoberta-discernimento quando a massa da matéria escura passa para 300
GeV, essa observação �ca mais clara com os resultados da seção anterior Fig. 4.3. Agora as
regiões de descoberta e possível discernimento de supersimetria e MUED, para mχ̃1 = 300 GeV,
passam para 1.4 TeV < mq̃ < 2.1 TeV e 1.4 TeV < mq̃ < 4.4 TeV. As regiões onde mg̃ > 3.5
TeV e mq̃ ∼ 1.8 TeV, no caso de luminosidade integrada de 100 fb−1, apresentam uma limitação
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para discernimento, veja a seção 4.1.2 item 6.
Já na Fig. 4.4c e 4.4d, vemos que as regiões de descoberta e discernimento não privilegiam

aumento de massas em qualquer direção para ZLLR. Nesse cenário a alta luminosidade compensa
os efeitos de baixa estatística após cortes duros, porém algumas coisas não mudam, como o baixo
alcance na massa dos squarks em comparação com a massa dos gluinos. Justamente porque na
região que demq̃ < mg̃ temos a contribuição de um canal a mais para produção de jatos e MET. A
região que pode ser testada com nosso trabalho para L = 3000 fb−1 é de 1.4 TeV < mq̃ < 2.6 TeV
e de 1.4 TeV < mg̃ < 5.0 TeV.

Note que aumentar a luminosidade integrada em 30 vezes traz um aumento da região de
exploração para descoberta e discernimento de aproximadamente 35%. Esse é um resultado
previsto para investigações de produção de partículas coloridas em altas energias [102]. A sen-
sibilidade do LHC para alcançar massas cada vez maiores é limitada, estima-se que esse limite
seja saturado por volta de 300 fb−1. A partir de então, a coleta de dados será feita basicamente
para tomar medidas de precisão do bóson de Higgs e de algum possível sinal de nova física na
escala TeV que se manifeste antes desse limite de luminosidade. Por isso está planejado uma
atualização para alcançar luminosidades de 3000 fb−1 no LHC.

4.2 Eventos de monte carlo para mχ̃1
= 1 TeV
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Figura 4.5: Curvas de níveis para frações de eventos de Monte Carlo depois e antes dos cortes.
Região acima de uma dada curva tem maior fração de eventos do que a região abaixo da mesma
curva.

O discernimento de modelos para neutralinos ou KK-fótons de 1 TeV não é possível usando
a análise multivariada. Isso pode ser entendido através da Fig. 4.5, aqui avaliamos a fração de
eventos de Monte Carlo (fMC) que passam pelo conjunto Cortes Ótimos para supersimetria.
Ressaltamos que MUED tem comportamento parecido.

fMC =
N cortes ótimos
MC

N sem cortes
MC

. (4.1)

Por ser uma �gura com curvas de níveis de valores diferentes, em contraste ao que estamos
usando até aqui Fig. 4.1, devemos interpretá-la de maneira diferente. Agora regiões acima de
uma determinada curva têm maior fração de eventos de Monte Carlo que passam pelo conjunto
Cortes Ótimo, e regiões abaixo das curvas o contrário, por consequência. Podemos observar que,
para um dado valor �xo de fMC , as curvas em azul da Fig. 4.5, referentes à mχ̃1 = 1 TeV, sempre
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estão acima das curvas pretas e vermelhas, mχ̃1 = 50, 300 GeV, respectivamente. Denotando que
um neutralino pesado necessita de um espectro de squarks e gluinos mais pesados para fornecer
a mesma fração fMC de eventos de Monte Carlo, após cortes duros, quando comparado com os
espectros mais leves analisados nesse trabalho. Com poucos eventos após cortes retangulares,
temos distribuições cinemáticas parecidas, e o discernimento de modelos para neutralinos de 1
TeV �ca prejudicado.

4.3 Formato das distribuições para diferentes mχ̃1

Podemos fazer uma observação interessante sobre a descoberta de supersimetria e discerni-
mento de modelos, baseado no formato das distribuições. Veja a Fig. 4.6, que contém os nove
observáveis físicos usados nesse trabalho, para dois casos de massas de neutralino (KK-fótons),
de 50 e 300 GeV. As curvas sólidas representam o modelo de supersimetria, enquanto que as
curvas pontilhadas o modelo de MUED, para massas de neutralino de 50 e 300 GeV. Note que,
curvas sólidas de cores diferentes tem formato parecido, a mesma observação pode ser feita para
as curvas pontilhadas, de MUED. Isso denota algo importante, no teste de hipóteses. Baseado
na forma das distribuições cinemáticas, um modelo de supersimetria (MUED) com massas de
neutralino com diferenças de alguns GeV têm formas parecidas, mostrando que, em um cenário
de descoberta de supersimetria (MUED), a in�uência da massa desses neutralinos será pequena,
ou seja, os resultados para as duas massas serão parecidos. Em contrapartida, se compararmos
as curvas contínuas com as curvas pontilhadas, vemos que em uma análise de discernimento
entre esses dois modelos, exitem diferenças signi�cativas com relação à massa dos neutralinos, ou
seja, os resultados para mχ̃1 = 50 e 300 GeV, na discriminação de modelo, serão bem diferentes.
Comportamento observado na descoberta e discernimento de modelos de nova física 4.2 e 4.3.
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Figura 4.6: Dependência da forma da distribuições para supersimetria e MUED em dois cenários
de massa de neutralinos (KK-fótons).
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Conclusão

A análise multivariada log-likelihood ratio utilizada em nosso trabalho mostra-se diferenciada,
pois seu poder de descoberta de nova física é melhor do que a contagem de eventos. Isso porque
na análise multivariada é possível combinar diversas informações contidas nas distribuições cine-
máticas. Em média, o ganho de signi�cância quando apenas um observável físico é utilizado na
análise multivariada, é de 25%. Constatamos também que o tagging de jatos de quarks e glúons
potencializa a descoberta de supersimetria, mesmo em cenários com incertezas sistemáticas no
sinal e backgrounds, nesse caso o ganho de signi�cância é de quase 100%. E ainda, na análise
multivariada, a aplicação de incertezas sistemáticas pode ser feita de uma maneira direta através
da marginalização do likelihood com a devida escolha de priors. As incertezas sistemáticas na
taxa e formato da distribuições impõe restrições para a descoberta e discernimento de nova física.
Apesar de alguma vezes negligenciada em trabalhos fenomenológicos, essas incertezas podem in-
viabilizar o alcance de muitas conclusões sobre processos envolvendo produção de partículas em
colisores.

Em nosso caso, onde analisamos a produção de jatos e MET no LHC com
√
s = 14 TeV,

partículas com carga de cor da QCD no estado �nal di�cultam a descoberta e discernimento
de modelos, devido basicamente a: grande topologia de diagramas envolvidos, os grandes back-
grounds da QCD, as incertezas sistemáticas na taxa e formato das distribuições cinemáticas,
a aplicação de cortes retangulares muito duros, o parton shower e a hadronização de partons.
Todos esses processos in�uenciam fortemente a potencial correlação de novas partículas com
os jatos produzidos de seus decaimentos. Além disso, não usamos modelos aproximados para
supersimetria e MUED, onde os gluinos e KK-glúons estão desacoplados.

Nosso trabalho analisou cenários para squarks e gluinos de até 5.0 TeV. Nos limites para a
massa do gluino vimos que nosso teste possui alcance maior do que 5.0 TeV, assim o espaço de
massa veri�cado acabou limitando as massas de gluinos dentro das regiões de 5σ. É bem provável
que a análise tenha um alcance maior do que 5.0 TeV para gluinos.

Em cenários com baixa incerteza sistemática na taxa dos eventos de background (εtaxa),
menor do que 10%, o alcance de descoberta de um modelo simpli�cado de supersimetria para
squarks é de até 2.95 TeV com gluinos de até 5.0 TeV, para neutralinos de 50 a 300 GeV com
luminosidade integrada de 100 fb−1. Aumentar a luminosidade para 3000 fb−1, com esse nível
de incerteza sistemática, traz um ganho para o alcance de squarks de 13 %. Com εtaxa = 20%,
temos uma diminuição do alcance das massas dos squarks de, em média, 5% para 100 fb−1,
e 7% para 3000 fb−1. Cenários com mχ̃1 = 1 TeV, mostram-se acessíveis para descoberta de
supersimetria, com εtaxa = 10% temos acesso a esses eventos com squarks de até 2.9 TeV, porém
para mq̃ ∼ 1.4 e mg̃ > 4.0 TeV perdemos a capacidade de descobrir supersimetria com 5σ, com
um neutralino pesado. Ressaltamos que uma procura de supersimetria com neutralinos de 1 TeV
possui poucos limites estabelecidos nos dias de hoje. A descoberta de supersimetria não se altera
signi�cativamente se o neutralino possuir massa de 50 ou 300 GeV, porém, no discernimento de
modelos, essa diferença de massas in�uencia na capacidade de discernir supersimetria de MUED.

74



CAPÍTULO 5. CONCLUSÃO 75

O discernimento de modelos, para erros sistemáticos na taxa de eventos de backgrounds de
20%, alcançam 2.15 TeV para massa dos squarks e 4.3 TeV para a massa gluinos com mχ̃1 =
mB(1) = 0.3 TeV, quando a luminosidade integrada é 100 fb−1. Aumentando a luminosidade
para 3000 fb−1, temos um ganho de ∼ 25% para mq̃ e de no mínimo 17% para mg̃. Diminuindo
a massa da matéria escura para 50 GeV praticamente não altera o alcance de mq̃, enquanto que
mg̃ aumenta em média de 30% para 100 fb−1. Controlar a incerteza sistemática εtaxa a níveis
de 10%, no discernimento de modelos, leva a um ganho médio de 50 GeV para mq̃ e de 100
GeV para mg̃, quando comparado com o caso de εtaxa = 20%. Para mχ̃1 = mB(1) = 1 TeV,
o discernimento de SUSY versus MUED acaba sendo possível somente nos �ctícios cenários de
ausência de erros sistemáticos na taxa dos backgrounds. O discernimento de nova física, como
um todo, ocorre em regiões do plano de massas de menor área quando comparado à descoberta
de supersimetria. Isso denota que, para uma nova física do tipo supersimetria, poderemos dizer,
inequivocamente, que temos um excesso com relação ao Modelo Padrão muito antes de poder
confrontar supersimetria com MUED. Dependendo das incertezas sistemáticas, somente colisores
do futuro poderão discernir possíveis modelos de nova física.

Nosso trabalho fez uso de técnicas já empregadas nos estudos de dados de nova física no LHC,
junto à quantidade de trabalho computacional e concatenação de resultados que realizamos,
através de modelos simpli�cados de�nidos como teorias efetivas na escala de energia do LHC,
promovem nosso trabalho a uma análise sólida e pertinente na determinação dos limites desse
colisor. Alcançamos resultados interessantes e outros trabalhos podem ser explorados com o
que realizamos aqui. Pode-se testar hipóteses onde confronta-se modelos supersimétricos com
paridade-R manifesta e parcialmente quebrada. Ou modelos de diferentes spin para matéria
escura. Nossa análise mostra-se relevante não somente para análises de jatos e MET.



Apêndice A

Obtenção das Lagrangianas

A.1 Notação

A métrica de η é de�nida como ηµν = (+,−,−,−).
As matrizes γ em 4 dimensões são dadas por,

γ5 =

[
−1 0
0 1

]
, γ0 =

[
0 1
1 0

]
, γi =

[
0 σi
−σi 0

]
.

Um espinor em de quatro componentes pode ser dado por,

ψ =

[
ψL
ψR

]
,

Onde,

PR,Lψ = ψR,L =
1

2
(1± γ5)

[
ψL
ψR

]
.

As matrizes γµ 4x4 podem ser, eventualmente, representadas por matrizes 2x2 de Pauli
σ1,2,3 ≡ ~σ,

γµ =

[
0 σµ

σ̄µ 0

]
.

Onde σµ = (1, ~σ) e σ̄µ = (1,−~σ)1. De forma mais geral temos:

σ̄µα̇α = εα̇β̇εαβσµ
ββ̇
. (A.1)

Espinores de Majorana serão dados por,

ΨM =

[
ψ
ψ†

]
,

A componente ψ possui índices espinoriais que possuem uma métrica não diagonal, dada por:

εαβ = −εαβ =

[
0 1
−1 0

]
. (A.2)

De modo que ψα = εαβψ
β . Todas as componentes espinorias são grassmanianos, ou seja,

{ψα, ψβ} = 0. Uma relação equivalente pode ser estipulada para os índices com pontos ψα̇ =

εα̇β̇ψ
β̇ , esse índices transformam-se sob uma representação complexa do grupo de Lorentz com

relação aos índices sem pontos. Pode-se de�nir ψ†α = ψ∗α̇
2.

1Os índices espinoriais para essa relação devem ser (σµ)αα̇ e (σ̄µ)α̇α.
2O complexo conjugado pode ser escrito assim pois os campos desses espinores anti-comutantes são considerados

clássicos.
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Os índices M,N são reservados para análises em 5 dimensões, onde a dimensão extra é
fechada. As matrizes Γ tornam-se: ΓM = (γµ, iγ5). A métrica torna-se:

gMN =

[
ηµν 0
0 −1

]
.

As matrizes de Gell-Mann para a QCD (SU(3)C) são dadas pelas 8 matrizes λa. Essas
matrizes satisfazem a relação de comutação:

[λa, λb] = 2ifabcλc. (A.3)

fabc é totalmente anti-simétrico em seus índices. De�niremos T a = λa

2 nesse trabalho.
As lagrangianas serão explicitadas com índices de cor SU(3) suprimidos, nas exceções diremos

previamente a mudança. Os estados gauge (dubleto SU(2)L) serão denotados por:

Q =

[
Qu

Qd

]
. (A.4)

Os estados físicos por:

q =

[
qL
q†R

]
. (A.5)

E os parceiros supersimétricos por q̃L e q̃R.
Para os campos 5 dimensionais é comum de�ní-los como funções trigonométricas periódicas

na dimensão extra. As relações de ortogonalidade de funções trigonométricas utilizadas nesse
trabalho foram:

1

2

∫ πR

−πR
dy cos(
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) cos(
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R
) =

πRδm
2

,

1

2

∫ πR

−πR
dy sin(

my

R
) sin(
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R
) =

πRδmn
2

,

1

2

∫ πR

−πR
dy cos(
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R
) sin(
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) = 0,

1

2
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dy cos(
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) cos(
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) cos(
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πR∆1
mnl

4
,

1
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dy sin(
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) cos(

ly
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) =

πR∆4
mnl
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,

1
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dy sin(
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) sin(
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) sin(

ly

R
) = 0,

1

2

∫ πR

−πR
dy sin(

my

R
) cos(

ny

R
) cos(

ly

R
) = 0. (A.6)

Onde,

∆1
mnl = δl,m+n + δn,m+l + δm,l+n, (A.7)

∆4
mnl = −δl,m+n + δn,m+l + δm,l+n. (A.8)

A densidade lagrangiana será sempre denotada por L, de modo que a lagrangiana total é
dada por L =

∫
dx4L.
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A.2 Supersimetria

A álgebra supersimétrica em 4 dimensões (xµ = (t, ~x)) é dada por geradores fermiônicos que
satisfazem as seguintes condições:

{Qα, Q†α̇} = 2σµαα̇Pµ, {Qα, Qα} = {Q†α̇, Q
†
α̇} = 0,

[Pµ, Qα] = [Pµ, Q†α̇] = 0. (A.9)

Onde P é o momento no espaço-tempo quadridimensional. Os operadores Q e Q† são os geradores
de supersimetria e transformam-se sob boosts e translações como objetos de spin-1/2.

Os geradores Q e Q† podem ser escritos em teoria quântica de campos como correntes con-
servadas. Aproveitando o fato de que o momento Pµ comuta com esses geradores, podemos
construir representações irredutíveis de supersimetria.

As representações de supersimetria são dadas por um conjunto de estados com mesma massa
m (P 2 = m2). Além disso temos o mesmo número de graus de liberdade bosônicos e fermiônicos,
para uma dada representação. O conjunto de partículas que compõe uma dada representação
pode ser agrupado em um supercampo. Esses campos são explicitados em um superespaço
(xµ, θ, θ†). Na linguagem de supercampos as transformações de supersimetria tornam-se uma es-
pécie de transformações de gauge com parâmetros grassmanianos (ε, ε†) e as lagrangianas podem
ser escritas com a invariância supersimétrica explícita, chamamos de lagrangianas com supersi-
metria manifesta.

As transformações supersimétricas δξ, onde ξ é um parâmetros grassmaniano, podem ser
escritas como:

δξF (x, θ, θ†) = (ξQ+ ξ†Q†)F (x, θ, θ†). (A.10)

Onde F pode ser um supercampo quiral Φ:

Φ(xµ) ≡ {φ(x), ψ(x), F (x)}. (A.11)

Esse supermultipleto é composto por um campo escalar complexo φ(x), um campo espinorial de
duas componentes ψ(x) e um campo auxiliar3 complexo F (x).

F também pode ser uma supercampo vetorial ou real V = V †, nesse caso o supermultipleto
contém campos vetoriais, que também possui invariância gauge. No gauge de Wess-Zumino o
campo vetorial torna-se:

V (xµ) ≡ {Aµ, λ, λ†, D}. (A.12)

Onde Aµ é um campo vetorial, λ e λ† são as componentes de um espinor de majorana e D um
campo escalar real. O gauge de Wess-Zumino pode ser de�nido em teorias gauge não-abelianas.

Para termos supersimetria manifesta em uma lagrangiana com um campo escalar e seu par-
ceiro supersimétrico precisamos das seguintes transformações supersimétricas:

δξφ =
√

2ξψ, (A.13)

δξψ = i
√

2σµξ†∂µφ+
√

2ξF, (A.14)

δξF = i
√

2ξ†σ̄µ∂µψ. (A.15)

Onde a lagrangiana invariante sob esse conjunto de transformações (δξL) é:

Lquiral = iψ†σµ∂µψ + φ∗∂2φ+ F ∗F. (A.16)

3Campos auxiliares são todos aqueles que não têm um termo cinético na lagrangiana.
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Aqui φ é um campo escalar complexo, ψ um espinor de Weyl de duas componentes e F um campo
auxiliar, escalar e complexo. O campo auxiliar é introduzido para tornar supersimetria uma
simetria fora da camada de massa. Caso despreze-se o campo auxiliar F , perde-se a igualdade
de graus de liberdade bosônicos e fermiônicos, assim as transformações de supersimetria só serão
uma simetria da lagrangiana Lquiral se usarmos as equações de movimento para φ e ψ, chamamos
esse tipo de simetria de supersimetria na camada de massa.

A lagrangiana para os glúons (gaµ) e seu parceiro supersimétrico, o gluino (g̃a em notação de
4 componentes ou λ, λ† para a notação em 2 componentes), é escrita na representação adjunta
de SU(3)C . No gauge de Wess-Zumino é necessário a introdução de um campo auxiliar escalar
real (Da) também na representação adjunta de SU(3)C para as transformações de supersimetria
tornarem-se uma simetria da lagrangiana sem equações de movimento.

Lgauge = −1

4
GaµνGaµν + iλ†aσ̄µDµλa +

1

2
DaDa. (A.17)

Onde Gaµν = ∂µg
a
ν − ∂νgaµ + gfabcgbµg

c
ν .

As derivadas covariantes para campos na representação fundamental (φ) e adjunta (φa) são
dadas por:

Dµφ = ∂µφ− igsgµφ, (A.18)

Dµφa = ∂µφ
a + gsf

abcgbµφ
c. (A.19)

Onde gµ = gaµT
a. Onde T a são as matrizes de Gell-Mann A.1 a menos de um fator 1

2 .
As transformações supersimétricas para o glúon, gluino e campo auxiliar são:

δξg
aµ = −iλa†σ̄µξ + iξ†σ̄µλa, (A.20)

δξλ
a = σµνξgaµν + iξDa, (A.21)

δξD
a = −ξσµDµλ

†a −Dµλaσµξ†. (A.22)

Enquanto que as transformações gauge, com parâmetro in�nitesimal Θ, são:

δgaugeg
a
µ = ∂µΘa + gsf

abcgbµΘc
ν , (A.23)

δgaugeλ
a = gsf

abcλbΘc, (A.24)

δgaugeD
a = gsf

abcDbΘc. (A.25)

A introdução de interações entre os campos de gauge SU(3)C , os glúons, e a matéria, os
quarks, pode ser feita de maneira supersimétrica e invariante de gauge. Para uma descrição
completa da QCD temos que ter os campos de matéria na representação fundamental do grupo
de gauge, ou seja, os quarks, os squarks e os campos auxiliares. Porém as componentes Left

e Right dos quarks têm números quânticos gauge diferentes, e por isso deve-se incluí-los em
supermultipletos separados. Isso implica na introdução de dois squarks diferentes, q̃R e q̃L,
como parceiros supersimétricos do spinor de Dirac para o quark q = (qL qR). A lagrangiana de
interação é:

Linteração = −
√

2gs(q̃i
∗T aqi)λ

a −
√

2gsλ̄
a(q̄iT

aq̃i) + gs(q̃
∗T aq̃)Da. (A.26)

Uma das notáveis características de supersimetria é que a interação dos squarks, glúons e algu-
mas das componentes dos gluinos ocorrem com o mesmo acoplamento gs. Esse fato propicia o
cancelamento de divergências quadráticas na massa do bóson de Higgs para o MSSM.

A lagrangiana total:

Lsusy-QCD = Lquiral + Lgauge + Linteração. (A.27)
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Onde Lquiral e Lgauge são construídas através das substituições:

∂µq̃i → Dµq̃i = ∂µq̃i − igsgaµT aq̃i (A.28)

∂µqi → Dµqi = ∂µqi − igsgaµT aqi (A.29)

Todos os índices de cores estão subentendidos e os índices i referem-se às quiralidades, Left e
Right.
Lsusy-QCD invariante sob as transformações supersimétricas:

δξ q̃i = ξqi, (A.30)

δξqi = −iσµξ̄Dµq̃i + ξFi (A.31)

δξFi = −iξ̄σ̄µDµqi +
√

2gsT
aq̃iξ̄ ¯̃ga. (A.32)

Temos condições agora de deduzir a lagrangina usada para criar o modelo de supersimetria
usado na produção de jatos e MET com decaimento direto de squarks em jatos e neutralino (2.9).

• O termo Lgq̃q̃ vem da derivada covariante para os squarks (A.28) e do termo cinético
escalar de (A.16). É interessante rearranjar o termo cinético de q̃∗∂2q̃ para −∂µq̃∗∂µq̃ +

(derivadas totais). Usamos q̃∗
←→
∂µ q̃ = (∂µq̃

∗)q̃ − q̃∗(∂µq̃). Então obtemos,

Lgq̃q̃ = −igs
∑
q

[q̃∗L
←→
∂µ q̃L + q̃∗R

←→
∂µ q̃R]T agaµ. (A.33)

• O termo Lgg̃g̃ virá da derivada covariante (A.28) para o gluino da lagrangiana (A.17).
Porém a lagrangiana está escrita em termos de espinores de duas componentes, para escre-
vermos na forma de espinores de 4 componentes precisamos de�nir o spinor de majorana
para o gluino da seguinte forma,

g̃a =

[
−iλa
iλ̄a

]
. (A.34)

O resultado será (2.11),

Lgg̃g̃ = i
1

2
gsf

abc ¯̃gaγµg̃
bgcµ. (A.35)

• Para Lggq̃q̃ devemos recuperar o termo cinético de (A.28) com a derivada covariante para
os squarks, mantendo os termos que contém 2 glúons e dois squarks temos,

Lggq̃q̃ = gs
2
∑
q

[q̃∗Liq̃Lj + q̃∗Riq̃Rj](T
aT b)ijg

aµgbµ. (A.36)

Onde os índices em negrito i, j = 1, 2, 3, referem-se à representação fundamental SU(3)C ,
as cores dos quarks e squarks.

• O termo Lqq̃g̃ virá da lagrangiana de interações (A.26). Novamente teremos que colocar a
lagrangiana em notação para espinores de 4 componentes, para isso usaremos novamente
g̃a e o espinor de quatro componentes para os quarks A.5,

Lqq̃g̃ = −
√

2gs
∑
q

[q̄PRT
ag̃aq̃L − q̄PLT ag̃aq̃R] + h.c.. (A.37)

• O termo Lqq̃χ̃1 depende do esquema de quebra soft de supersimetria, tabela 2.2. Porém
estamos interessados em modelos onde o decaimento de squarks seja totalmente em quarks
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e uma partícula pesada, neutra e que interage fracamente (g). Isso pode ser alcançado de
uma forma geral com,

Lqq̃χ̃1 = − g√
2

¯̃χ0
1[(lLq PL + rLq PR)q̃∗L + (lRq PL + rRq PR)q̃∗R]q

= +h.c. (A.38)

Assumimos um valor inicial para esses parâmetros de modo a alcançar os valores de taxas
e massas explicitados na tabela 3.2.

Os vértices relevantes para produção de squarks e gluinos estão explicitados na Fig. A.1.
Os diagramas de Feynman relacionados com a produção de squark no LHC e na produção de
squarks e gluinos estão listados nas Fig. 3.2 e 3.3.

q̃i q̃∗i q q̃∗i

g̃

g̃ g̃q q̃∗i

Figura A.1: Vértices envolvidos na produção de squarks e gluinos através de colisões próton-
próton.

A.3 MUED

Assumindo que todos os campos do Modelo Padrão podem se propagar pela dimensão extra
compacta de raio R. Podemos observar que o momento p5 é conservado e os campos obedecem
condições periódicas na dimensão extra, ou seja φ(x, y) = φ(x, y + 2πR). Com isso os campos
podem ser expandidos em D=4 como:

φ(x, y) =
1√
πR

∞∑
n=0

[φ(n)(x) cos(
nπy

R
)) + φ̂(n)(x) sin(

nπy

R
)] (A.39)

Onde φ(n)(x) e ˆφ(n)(x) são as componentes em 4D de um campo φ(x, y). Ou de forma equivalente
podemos explicitar o modo zero n = 0 junto ,

φ(x, y) =
1√
2πR

φ0(x) +
1√
πR

∞∑
n=1

[φ(n)(x) cos(
nπy

R
)) +

φ̂(n)(x) sin(
nπy

R
)]. (A.40)

A normalização do modo zero dever ser diferente, pois as integrações de seno e cosseno fornecem
resultados diferentes da integração da dimensão extra somente.

Em D=5 não é possível de�nir matrizes que comutem entre si e cumpram (A)2 = 1 assim como
feito para as matrizes γµ em A.1. Por isso trata-se os férmions em D=5 como um espinor de 4
componentes, denotaremos por ψ(x, y). Porém sabemos que férmions são quirais e interagem com
o modelo eletro-fraco de maneira distinta. Para os férmions teremos uma expansão equivalente
a (A.40), porém com duas quiralidades ψL e ψR.

Para os campos de gauge A(x, y) também teremos uma expansão idêntica à (A.40). Porém
a característica vetorial desses bósons leva a um campo extra escalar em D=4, o A5(x) (AM ≡
(A5, Aµ)).

De�ne-se uma paridade na quinta dimensão, Z2 : y → −y, de modo que a dimensão extra
reduz-se a S1/Z2 Fig. 2.6. Podemos observar que assumindo φ(x, y) par sob Z2 (A.40), ou seja,
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φ(x, y) → +φ(x,−y). Então teremos modo zero. Caso contrário o modo zero deve deixar a
expansão:

φ+(x, y) =
1√
2πR

φ+
0 (x) +

1√
πR

∞∑
n=1

φ+(n)(x) cos(
nπy

R
) (A.41)

φ−(x, y) =
1√
πR

∞∑
n=1

φ−(n)(x) sin(
nπy

R
) (A.42)

Onde φ+ indica um campo par sob Z2 e φ− indica um campo ímpar sob Z2.
O mesmo pode ser feito para os bósons de gauge (campos vetoriais em 5D). Se A(x, y) for

par sob Z2 teremos modo zero para esse campo. Com isso deve-se ter A5(x, y) ímpar sob Z2,
para conservação da ação gauge, logo A5 não terá modo zero. O que é uma grande vantagem,
pois teríamos que inserir um escalar A5 para cada bóson de gauge do Modelo Padrão. Assim
temos,

Aµ(x, y) =
1√
2πR

A0
µ(x) +

1√
πR

∞∑
n=1

A(n)
µ (x) cos(

nπy

R
), (A.43)

A5(x, y) =
1√
πR

∞∑
n=1

A
(n)
5 (x) sin(

nπy

R
).

Os KK-bósons de gauge (A(n)(x)) adquirem massa através dos bósons escalares A(n)
5 (x), porém

o modo zero de Aµ permanecem sem massa, pois A5 não tem modo zero4. É possível ainda
�xar um gauge usando invariância gauge em D=5 (AM → AM + ∂MΛ(x, y)). Resultando em
A5(x, y) = 0 enquanto que o bóson de gauge Aµ(x, y) permanece como o dado em (A.43) e com
massa n

R .
Para os férmions iremos assumir o seguinte:

γ5ψ
(n)
L (x) = −ψ(n)

L (x), (A.44)

γ5ψ
(n)
R (x) = +ψ

(n)
R (x). (A.45)

Assim podemos de�nir a operação Z2 sobre espinor ψ = (ψL ψR) como γ5ψ(x, y) = ±ψ(x, y).
Explicitamente teremos,

ψ+(x, y) =
1√
2πR

ψ0
R(x) +

1√
πR

∞∑
n=1

[ψ
(n)
R (x) cos(

nπy

R
) + ψ

(n)
L (x) sin(

nπy

R
)],

ψ−(x, y) =
1√
2πR

ψ0
L(x) +

1√
πR

∞∑
n=1

[ψ
(n)
L (x) cos(

nπy

R
) + ψ

(n)
R (x) sin(

nπy

R
)].

Note que no caso do Modelo Padrão em dimensões extras universais teremos, por exemplo, um
dubleto de quarks QL = (uL dL) junto com KK-quarks Left (u(n)

L ) e Right (u(n)
R ), o mesmo

para os quarks d. Os KK-quarks terão uma interação vetorial com os bósons e KK-bósons de
gauge. O mesmo para os singletos SU(2) do Modelo Padrão uR e dR, terão uma torre KK com
partículas Left e Right, que interagem igualmente com os bósons e KK-bósons de gauge.

A dimensão de massa para os campos fermiônico e bosônico gauge em D=5 é 2 e 3
2 , o que

leva a acoplamentos em D=5 com dimensão de massa negativos. Causando a não-renormalização
de MUED. Porém MUED é tratada como uma teoria efetiva, de validade até uma dada escala
ΛMUED. Essa escala é um dos parâmetros livres para o modelo, assim como o raio de compati�-
cação R.

4O ganho de massa para os bósons de gauge vem do fato de assumir paridades especí�cas para esses campos,
como feito em (A.43).
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Os campos para MUED relevantes para produção de jatos e MET analisados em nosso tra-
balho são os quarks e bósons de gauge. Iremos manter apenas os primeiros estados excitados,
pois esses estados possuem análogos em supersimetria com spins diferentes. Começando pelos
bósons de gauge temos:

Bµ(x, y) =
1√
πR

[B0
µ(x) +

√
2B(1)

µ (x) cos
y

R
],

Gµ(x, y) =
1√
πR

[G0
µ(x) +

√
2G(1)

µ (x) cos
y

R
]. (A.46)

Por questão de adequação com os programas usados para simulação de eventos explicitamos os
campos com uma normalização diferente. A dimensão extra agora estende-se de −πR a +πR.
Bµ é o fóton pesado e Gµ o glúon em 5 dimensões. Todas as componentes da quinta dimensão
desses campos foram retiradas por uma transformação de gauge. O bóson de gauge para o glúon
em D=5, é dado por GM = GaM

λa

2 , onde a são índices da representação adjunta de SU(3)C .
Os campos de massa serão os quarks. Denotaremos dubletos SU(2)L por QL e os singletos

U(1)Y por qR, onde q denotam quarks u, d, c, s. Serão dados por:

Q(x, y) =
1√
πR

[qL(x) +
√

2PLQ
(1)
L (x) cos

y

R
+
√

2PRQ
(1)
R (x) sin

y

R
],

U(x, y) =
1√
πR

[uR(x) +
√

2PLu
(1)
L (x) sin

y

R
+
√

2PRu
(1)
R (x) cos

y

R
],

D(x, y) =
1√
πR

[dR(x) +
√

2PLd
(1)
L (x) sin

y

R
+
√

2PRd
(1)
R (x) cos

y

R
]. (A.47)

Além do conteúdo do Modelo Padrão Q, u e d, deve-se introduzir um conjunto de estados
excitados todos com interações do tipo vetorial. Os dubletos SU(2)L são de�nidos como,

qL(x) =

[
UL(x)
DL(x)

]
, Q1

L(x) =

[
U1
L(x)

D1
L(x)

]
, Q1

R(x) =

[
U1
R(x)

D1
R(x)

]
. (A.48)

Para os singletos de quarks temos uR(x) e dR(x) para os quarks do Modelo Padrão e
u1
R(x), u1

L(x) e d1
R(x), d1

L(x) para os KK-quarks. Para os outro sabores de quarks charm e strange
a obtenção do resultados é semelhante. Os estados que irão compor os KK-quarks e quarks são:

q(x) =

[
qL(x)
qR(x)

]
, Q1

L(x) =

[
U1
L(x)

D1
L(x)

]
, Q1

R(x) =

[
U1
R(x)

D1
R(x)

]
. (A.49)

A lagrangiana gauge efetiva para nossa análise será:

Lgauge =
1

2

∫ +πR

−πR
dy[

1

4
BMNB

MN − 1

4
GMNG

MN ], (A.50)

LKK-quarks =
1

2

∫ +πR

−πR
dy[iQ̄(x, y)ΓMDMQ(x, y) +

+iŪ(x, y)ΓMDMU(x, y) + iD̄(x, y)ΓMDMD(x, y)]. (A.51)

Onde a derivada covariante é de�nida para os campos de matéria como:

DMQ(x, y) = (∂M +
iy3g

(5)
1

2
BM + ig

(5)
3 GM )Q(x, y),

DMU(x, y) = (∂M +
iy4g

(5)
1

2
BM + ig

(5)
3 GM )U(x, y),

DMD(x, y) = (∂M +
iy5g

(5)
1

2
BM + ig

(5)
3 GM )D(x, y). (A.52)
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A lagrangiana gauge (A.50) contém os glúons e KK-glúons junto com fótons e KK-fótons.
Os KK-fótons são estados diagonalizados de B1 e W 1

3 , o ângulo de Weinberg para essa mistura é
pequeno quando R−1 é grande, o que faz com que a primeira excitação KK para o fóton e bóson
Z seja basicamente os campos B1 e W 1

3 , respectivamente. Para exempli�car, o termo para os
glúons e KK-glúons em (A.50) pode ser expandido como,

GMNG
MN = GµνG

µν + 2G5νG
5ν . (A.53)

Analisando somente os termos para o modo zero e primeiro estado excitado (A.46), temos que
o primeiro termo da equação acima fornece a lagrangiana gauge não-abeliana para o glúon gµ e

KK-glúon g(1)
µ . O segundo fornece um termo de massa para g(1) do tipo,

−1

2

(
1

R2

)
(g(1)
µ )2. (A.54)

O mesmo resultado podemos obter para o fóton e KK-fóton. Ressaltamos que os modos zero dos
campos não adquirem massa.

O termo de massa para os KK-quarks pode ser obtido de (A.51), como exemplo realizamos
a expansão para os dubletos 5D (Q),

iQ̄(x, y)ΓMDMQ(x, y) = iQ̄γµDµQ− Q̄γ5∂yQ. (A.55)

Onde usamos G5 = 0. Após a integração na dimensão extra (A.6), o primeiro termo da equação
acima fornece parte da equação de movimento para os quarks Left sem massas e parte do termo
cinético para os KK-quarks. O segundo termo fornece as massas dos KK-quarks,

Q̄γ5∂yQ = − 1

R
(Q̄1

LQ
1
R + Q̄1

RQ
1
L). (A.56)

Assim como:

Ūγ5∂yU = +
1

R
(Ū1

LU
1
R + Ū1

RU
1
L). (A.57)

O mesmo para D(x, y). Para U e D temos um sinal oposto ao usual para massas de Dirac.
Isso não será um problema pois a inserção do bóson de Higgs 5D junto com o acoplamento de
Yukawa fornecem um mistura de estados que necessita de uma diagonalização para obter os
estados físicos. Após essa de�nição teremos, por exemplo, os seguintes estados:

U (1) = f(U1
L, U

1
R), (A.58)

u(1) = f(u1
L, u

1
R). (A.59)

Com massa,

m
q
(1)
tipo−u

=

√
mu

2 +
1

R2
(A.60)

A mesmo resultado é válido para quarks do tipo down. As massas dos quarks em geral serão bem
menores do que a contribuição R−1, o que aparentemente leva a um quadro altamente degenerado
para as massas dos KK-quarks a nível de árvore. Isso é resolvido nos cálculos de 1-loop para
MUED, pois os campos 5D agora recebem contribuições quânticas diferentes, por exemplo um
contra-termo Z para as coordenadas espaço-tempo (µ) e um contra-termo Z5 para a componente
na quinta dimensão (y). Enquanto a simetria de Lorentz em 5D é preservada, esses contra-termos
são iguais e as correções são idênticas, levando a um quadro onde somente correções nas massas
dos modos zero contribuam para a massa dos modos KK. Porém no orbifold temos a quebra
da simetria de Lorentz em 5D, o que leva Z e Z5 a receberem contribuições diferentes. As
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contribuições de Z5 in�uenciam diretamente na massa dos modos KK, levando assim à quebra
da degenerescência observada a nível de árvore [5].

Usando as relações de matrizes Γ da seção A.1, as expansões de campo (A.46 e A.47), as

derivadas covariantes, a identi�cação gi =
g
(5)
i√
πR

e denotando os dubletos de KK-quarks por

Q(1) e os singletos de KK-quarks por q(1). Podemos determinar as lagrangianas relevantes para
produção de jatos e MET.

LKK = Lgq(1)q(1) + Lgg(1)g(1) + Lqq(1)g(1) + Lqq(1)B(1) . (A.61)

Lgq(1)q(1) = −gsQ̄(1)
R,Lγ

µgµQ
(1)
R,L − gsq̄

(1)
R,Lγ

µgµq
(1)
R,L, (A.62)

Lqq(1)g(1) = −gs[q̄Lγµg(1)
µ Q

(1)
L + q̄Rγ

µg(1)
µ q

(1)
R ], (A.63)

Lgg(1)g(1) = −g
2
fabc[(∂µg

a
ν − ∂νgaµ)g(1),bµg(1),cν (A.64)

+(∂µg
(1),a
ν − ∂νg(1),a

µ )gbµg(1),cν − (∂µg
(1),b
ν − ∂νg(1),b

µ )gaµgcν ].

Lqq(1)B(1) = −g[yq̄Lγ
µB(1)

µ Q
(1)
L + y′q̄Rγ

µB(1)
µ q

(1)
R ]. (A.65)

No termo Lqq(1)B(1) , y e y′ são as hipercargas dos quarks qL,R.

A.4 Detalhes de Simulação

Uma ressalva sobre a versão que utilizamos do MadGraph5(2.2.3), ela está com um sério pro-
blema para as imagens de DJR e a análise de matching. Os kernels novos do linux 3.xx estão
sendo disponibilizados com compiladores C++11 e eles não são compatíveis totalmente com os
compiladores C++ padrão usados nas rotinas do MadGraph5, portanto algumas mudanças de-
vem ser feitas para distribuições linux com kernels novos. Além disso a versão atual do rootestá
apresentando um comportamento estranho no momento da análise das distribuições DJR, por-
tanto recomenda-se retirar a passagem do root no scritp create_matching_plots.sh e ajustar
devidamente a rotina .C de mesmo nome para assim termos as �guras para a distribuição DJR.
Espera-se que nas próximas versões esse problema seja resolvido.A produção inclusiva de eventos,
realizada em nossa análise, exige a geração de jatos vindos de radiação de QCD. O programa
Pythiaserá o responsável pelo parton shower (PS) e hadronização dos eventos. Porém, em nosso
caso, poderemos produzir jatos muito energéticos e bem separados no detector, um regime onde
geradores de eventos como o Pythia precisam ser adaptados para um correto tratamento da
transição entre os regimes soft e hard de emsissão de partons extras [85].
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