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Abstract.

This paper argues that noninteger dimensionality creates a hitherto unexplored
source of nonlocal noise, called “ND noise” or NDN, that is likely to play a role in
measurements at very small distances. New analysis on scale invariant probability
distributions arising from noninteger dimensionality is presented. The significance
of this when considering performance and noise-correction coding in models of
quantum computing is indicated. It is argued that NDN noise will lead to
decoherence even without interaction with the environment and it is likely to be
relevant also in models of cognition.

Keywords: noninteger dimensionality, nonlocal noise, scale invariance, quantum
computing, self-decoherence

1. Introduction

The basic intuition regarding dimensionality appears to be consistent with the
convention in science that space is three-dimensional [1]. This is slightly modified
in relativity theory that shows that one may consider time on an equal basis with
space, giving us a dimensionality of 3+1. But, logically, reality need not be integer-
dimensional for there is a mathematical theory of spaces with noninteger
dimensions [2].

Noninteger dimensionality is a consequence of optimality of information [3] and as
nature is optimal, it should show up both in physical space [4][5], and be associated
with scale invariance as is known from the theory of fractals [6]. It is also as an
organizing principle for data [7][8] with the optimal dimension of e. Based on
empirical data from a variety of areas, we know that the Newcomb-Benford (NB)



distribution is a commonly occurring scale invariant process [9][10], which we
know is related to a wide range of power laws.

Scale-invariance in classical systems is evidenced by the effective use of nonlocal
operators to denoise images [11][12][13]. Noninteger dimensionality leads to many
scale-invariance properties that are commonly found in natural phenomena
[14][15].

In a reductionist or local theory, one must explain the aggregate properties in terms
of the accumulative components. But noninteger dimensional systems do not lend
themselves to straightforward reductionist analysis and they are often characterized
by nonlocal properties. In particular, one will encounter nonlocal noise that may be
relevant in many applications.

In a noninteger dimensional system, if the data does not conform to the NB
distribution, there will be underlying processes (either from the environment or
from the data itself, or both) that will change the statistics to this distribution, which
shift may be seen as noise. This noise will tend to change the distribution of the
aggregate process towards scale invariancy. We call this noise noninteger
dimensionality noise (NDN). In a quantum system, it may be seen as self-
decoherence arising from overarching dimensionality conditions.

The objective of the current paper is to present new results related to NDN with
possible applications to information communication and engineering. It will be
shown that since noninteger dimensionality leads to scale invariance, it will cause
the data to tend to move into a scale invariant format, which will thus tend to modify
the data. Specifically, the quantum computing data register will have additional
noise through some process of self-entanglement.

2. Nonlocality, decoherence and self-similarity

The existence of amplitude-squeezed light, which exhibits intensity noise below the
shot noise level, that is now interpreted as an intrinsic property of the light field is
like the ND noise described in this paper. Nonlocal aspects of shot noise have been
described in the literature [16] [17][18].

In quantum information processing, the term decoherence is used to describe
different kinds of noise such as random driving forces from the environment



(Brownian motion), interactions that produce entanglement between the system and
the environment, and statistical imprecision in the experimental controls on the
system. Noise seen via the lens of decoherence [19][20] is a result of interaction
between the quantum system and its environment, in which a preferred set of states,
usually called the ‘‘pointer basis’’, determines which observables will receive
definite values. In this environment-induced superselection, arbitrary
superpositions are dismissed, and the preferred states transition to classical states:
they become the definite readings of the apparatus pointer in quantum
measurements. But this approach has been criticized for circularity of reasoning
[21].

Although noninteger dimensional physical space is e-dimensional, our cognitive
systems see it projected on a three-dimensional map and likewise so in
mathematical theory. As mentioned before, the characteristic of noninteger
dimensionality is self-similarity and scale invariance. From the optimization
perspective, having more or less than e bins leads to reduction in performance, and
from the perspective of resources, this implies Pareto optimality.

Pareto efficiency means that it is impossible to make one party better off without
making another party worse off. Thus it requires that resources be allocated in the
most efficient way possible, and this is captured by power law distributions.

If X is a random variable with a Pareto (Type I) distribution, then the probability
that X is greater than some number X, that is the survival function, is given by

Pr(X > x) = {(me)a X 2 Xm (1)
1 x < X

The x,,, and «a that are both positive, are the scale and shape parameters and when
used to model wealth a is known as the Pareto index. Clearly, the probability
density function associated with it is:

axm®

fr(x) = {0— X Z X @)

x < Xp

The density function is inversely proportional to x, with a power of —a — 1.
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Figure 1. Four plots of Pareto distribution x,,, = 2 and a=2.4, 2, 3, 4

The shape parameter shifts the plot.

3. Scale invariance

Let X be a scale-invariant continuous random variable with probability density
function f(x) and cumulative density function F(x). Let the lower bound u be X.
Then scale invariance means that for any a > 0,

P(u<X<x)=P(u<%X<x)=P(au<X<ax)
3)

Hence F(ax) — F(au) = F(x) — F(u). Differentiating with respect to x, we see
that af (ax) = f(x), so

1
flax) = 2f () @
Now we consider two distributions that present good approximations to (4).

3.1. Newcomb-Benford (NB) distribution

Let us consider



fO0) = (=) )

x
1/a
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X

(6)

This may be simplified by the use of the binomial theorem to:

1
f(ax) =In (1 +—+ O(ax)‘z)
ax
By leaving out the third term between the parentheses above, we may write

f(ax) = In (1 + i) (7)

When we consider the discrete case of (5) and make the range finite, we must
replace the natural log with the logarithm equal to the number of discrete points,

and this constitutes the NB distribution.

According to the NB probability function, if the counting process is uniformly
distributed over the range {1, ..., S}, with random values of S, then the sum of a
large number of these will satisfy the NB Law, where the leading digit n (n € {1,
..., I - 1}) for number to the base r, r > 2, occurs with probability as a logarithmic

function:

1
Pup(n) = log, (1 + =) (8)
Figure 2 shows a plot of this distribution. This may be written as:

1
In(r

w 1 _
721 ke(nt+1)F

Pyp(n) =

1 (1 1 1 1
In(r) {n 1 2 2 3 1 T dmr Dt }
9)



This may be approximated by

Pyg(n) < (n+ 1)7Y, where y is positive constant

(10)
which is inverse power law quite like (1).
When the number consists of several digits, the same law applies with n replaced
by the appropriate number. As the NB law is scale invariant, if numbers in the data
set are rescaled to another base, the probabilities become adjusted for the new base.
For example, if numbers are represented to base 4, the first digit probabilities will

be

P(1) = log,(2) = 0.5; P(2) =log,(3/2) = 0.292; and P(3)
=log,(4/3) = 0.2075

and so half the random numbers will begin with the digit 1.
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Figure 2. The NB distribution for r = 16

The relation between the Pareto and the Newcomb-Benford (NB) distribution has
been widely investigated [22][23]. It is fascinating that NB is nearly true for the
dimensionless constants of nature [24], and the reason behind it may be the



noninteger dimensionality of the universe as well as the intrinsic dimensionality of
data.

3.2. The Power Law

Since probability in a scale invariant system goes down with the variable as
shown in (4), we now consider the power law function:

flx) =cx™@ (11)
where c is a suitable constant.
Then

flax) =ca % ¢ (12)

This may be rewritten as
f(lax) = %x‘“ (13)

Thus if — ~ =, then the condition f(ax) =~ f () is satisfied and the distribution

will be scale invariant.

Generalizing to the discrete case, we define as scale-invariant any property that
satisfies the power-law expression:

fOn) =2°f(n) (14)

Example 1.
Consider the power law distribution from (11) for the discrete variable n:
p(n) = cn™@ (15)

We wish to see how it compares to the NB distribution in its ability to represent
scale invariance.

If « = 0.87, a number chosen to optimize the fit with respect to the NB distribution,
we get the plots of Figure 3:
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Figure 3. NB (log, (1 + %)) and power law x~%8distributions for x ranging
from 5 through 7

The fit between the NB distribution and the power law x~°%87is excellent.

Now we consider whether the specific value of @ = 0.87 is an artifact of the size
of the data. To examine, this note that this value of o is close to e/3, which is the
characteristic number if we consider one-dimensional data (corresponding to e-
dimensionality for three-dimensional space).

g(x) = cx™¢/3 (16)

We first compare it to the data for NB distribution for the first digit phenomenon
for digits 1 through 9 as in Table 1.



Table 1. NB distribution versus cx~¢/3

number | 1 2 3 4 5 6 7 8 9
NB 0.301 | 0.176 | 0.125 | 0.097 | 0.079 | 0.067 | 0.058 | 0.051 | 0.046
cx~e/3 10325 [0.173 | 0.120 | 0.093 | 0.076 | 0.064 | 0.056 | 0.050 | 0.044

Figure 4 compares the two distributions for a larger sized data set with 18 classes
and we find that the correspondence between the two is excellent.
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Figure 4. NB (log, (1 + % )) and power law x ~¢/3distributions for x over (1,18)

In a noninteger dimensional system, the power of the noise will depend on the
distance between the distribution arising out of known physical processes and the
self-similar intrinsic distribution. The noise will be greater if the distance is larger.
This noise will effect the system even if it is isolated.

4. Quantum system

In a quantum register, one loads only one kind of qubits, say |0) before they are
operated upon by the gates of the hardware. The contents of the register after the
data has gone through a sufficiently larger number of gates will be either |0), |1),
or a qubit that is in a superposition state [25][26][27].

If we consider several qubits together then we can map them to numbers and test
them against the Newcomb-Benford or the Power Law distributions. If the quantum
gate transformations and hardware noise lead to a distribution at any intermediate
stage that varies from the NB distribution that will create an internal noise that will



be in addition to the ones that have been considered in the literature. Since quantum
error models do not take this possibility into account, the implications of this for
the effectiveness of quantum error-correction systems needs to be investigated.

Note further that “The chosen quantum noise model has a drastic impact on the
performance of quantum algorithms. Hence, one must be sure that the assumptions
on the noise present in a physical system are appropriate. Additionally, the effect
of the quantum noise is largely determined by the nature of the quantum algorithm
being performed.” [28]

The problem of self-decoherence in a quantum system has also been investigated
from a traditional perspective [29][30] but that does not consider the question of
scale invariance statistics that complicate the matter.

It is normally assumed that if a quantum system were to be perfectly isolated, it
would maintain coherence. In this paper we presented arguments that negates this
view. The noninteger dimensionality noise described in this paper is an overarching
information theory based phenomenon that will complicate the problem of error
correction in any model of quantum computing.

It has been argued that noninteger dimensionality is relevant in cognitive models
[31], which is also related to quantum models [32][33][34], NDN could have
implications for cognitive science. This needs to be investigated further.

5. Conclusions

This paper argued that noninteger dimensionality creates a hitherto unexplored
source of nonlocal noise, called ND noise or NDN, that is likely to play a role in
measurements at very small distances. New analysis on scale invariant probability
distributions arising from noninteger dimensionality was presented. The
significance of this when considering performance and noise-correction coding in
models of quantum computing was indicated. It was argued that NDN noise will
lead to decoherence even without interaction with the environment and it is likely
to be relevant also in models of cognition.
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