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Abstract. 
This paper argues that noninteger dimensionality creates a hitherto unexplored 
source of nonlocal noise, called “ND noise” or NDN, that is likely to play a role in 
measurements at very small distances. New analysis on scale invariant probability 
distributions arising from noninteger dimensionality is presented. The significance 
of this when considering performance and noise-correction coding in models of 
quantum computing is indicated. It is argued that NDN noise will lead to 
decoherence even without interaction with the environment and it is likely to be 
relevant also in models of cognition. 
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1. Introduction 

The basic intuition regarding dimensionality appears to be consistent with the 
convention in science that space is three-dimensional [1]. This is slightly modified 
in relativity theory that shows that one may consider time on an equal basis with 
space, giving us a dimensionality of 3+1. But, logically, reality need not be integer-
dimensional for there is a mathematical theory of spaces with noninteger 
dimensions [2].  
 
Noninteger dimensionality is a consequence of optimality of information [3] and as 
nature is optimal, it should show up both in physical space [4][5], and be associated 
with scale invariance as is known from the theory of fractals [6]. It is also as an 
organizing principle for data [7][8] with the optimal dimension of e. Based on 
empirical data from a variety of areas, we know that the Newcomb-Benford (NB) 
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distribution is a commonly occurring scale invariant process [9][10], which we 
know is related to a wide range of power laws. 
 
Scale-invariance in classical systems is evidenced by the effective use of nonlocal 
operators to denoise images [11][12][13]. Noninteger dimensionality leads to many 
scale-invariance properties that are commonly found in natural phenomena 
[14][15]. 
 
In a reductionist or local theory, one must explain the aggregate properties in terms 
of the accumulative components. But noninteger dimensional systems do not lend 
themselves to straightforward reductionist analysis and they are often characterized 
by nonlocal properties. In particular, one will encounter nonlocal noise that may be 
relevant in many applications. 
 
In a noninteger dimensional system, if the data does not conform to the NB 
distribution, there will be underlying processes (either from the environment or 
from the data itself, or both) that will change the statistics to this distribution, which 
shift may be seen as noise. This noise will tend to change the distribution of the 
aggregate process towards scale invariancy. We call this noise noninteger 
dimensionality noise (NDN). In a quantum system, it may be seen as self-
decoherence arising from overarching dimensionality conditions.  
 
The objective of the current paper is to present new results related to NDN with 
possible applications to information communication and engineering. It will be 
shown that since noninteger dimensionality leads to scale invariance, it will cause 
the data to tend to move into a scale invariant format, which will thus tend to modify 
the data. Specifically, the quantum computing data register will have additional 
noise through some process of self-entanglement. 
 

2. Nonlocality, decoherence and self-similarity 

The existence of amplitude-squeezed light, which exhibits intensity noise below the 
shot noise level, that is now interpreted as an intrinsic property of the light field is 
like the ND noise described in this paper. Nonlocal aspects of shot noise have been 
described in the literature [16] [17][18]. 
 
In quantum information processing, the term decoherence is used to describe 
different kinds of noise such as random driving forces from the environment 
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(Brownian motion), interactions that produce entanglement between the system and 
the environment, and statistical imprecision in the experimental controls on the 
system. Noise seen via the lens of decoherence [19][20] is a result of interaction 
between the quantum system and its environment, in which a preferred set of states, 
usually called the ‘‘pointer basis’’, determines which observables will receive 
definite values. In this environment-induced superselection, arbitrary 
superpositions are dismissed, and the preferred states transition to classical states: 
they become the definite readings of the apparatus pointer in quantum 
measurements. But this approach has been criticized for circularity of reasoning 
[21]. 
 
Although noninteger dimensional physical space is e-dimensional, our cognitive 
systems see it projected on a three-dimensional map and likewise so in 
mathematical theory. As mentioned before, the characteristic of noninteger 
dimensionality is self-similarity and scale invariance. From the optimization 
perspective, having more or less than e bins leads to reduction in performance, and 
from the perspective of resources, this implies Pareto optimality.  
 
Pareto efficiency means that it is impossible to make one party better off without 
making another party worse off. Thus it requires that resources be allocated in the 
most efficient way possible, and this is captured by power law distributions. 
 
If X is a random variable with a Pareto (Type I) distribution, then the probability 
that X is greater than some number x, that is the survival function, is given by 
 

Pr(𝑋𝑋 > 𝑥𝑥) = ��
𝑥𝑥𝑚𝑚
𝑥𝑥
�
𝛼𝛼

       𝑥𝑥 ≥ 𝑥𝑥𝑚𝑚
 1                𝑥𝑥 < 𝑥𝑥𝑚𝑚

            (1) 

 
The 𝑥𝑥𝑚𝑚 and 𝛼𝛼 that are both positive, are the scale and shape parameters and when 
used to model wealth 𝛼𝛼 is known as the Pareto index. Clearly, the probability 
density function associated with it is: 
 

𝑓𝑓𝑋𝑋(𝑥𝑥) = �
𝛼𝛼𝛼𝛼𝑚𝑚𝛼𝛼

𝑥𝑥𝛼𝛼+1
        𝑥𝑥 ≥ 𝑥𝑥𝑚𝑚

 0                𝑥𝑥 < 𝑥𝑥𝑚𝑚
         (2) 

 
The density function is inversely proportional to x, with a power of −𝛼𝛼 − 1. 
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Figure 1. Four plots of Pareto distribution 𝑥𝑥𝑚𝑚 = 2 and 𝛼𝛼=2.4, 2, 3, 4 

 
The shape parameter shifts the plot. 
 

3. Scale invariance  

Let 𝑋𝑋 be a scale-invariant continuous random variable with probability density 
function 𝑓𝑓(𝑥𝑥)  and cumulative density function 𝐹𝐹(𝑥𝑥). Let the lower bound 𝑢𝑢 be 𝑋𝑋. 
Then scale invariance means that for any 𝑎𝑎 > 0, 
 

𝑃𝑃(𝑢𝑢 < 𝑋𝑋 < 𝑥𝑥) = 𝑃𝑃(𝑢𝑢 < 1
𝑎𝑎
𝑋𝑋 < 𝑥𝑥) = 𝑃𝑃(𝑎𝑎𝑎𝑎 < 𝑋𝑋 < 𝑎𝑎𝑎𝑎) 

           (3) 
 
Hence 𝐹𝐹(𝑎𝑎𝑎𝑎) − 𝐹𝐹(𝑎𝑎𝑎𝑎) = 𝐹𝐹(𝑥𝑥) − 𝐹𝐹(𝑢𝑢). Differentiating with respect to x, we see 
that 𝑎𝑎𝑎𝑎(𝑎𝑎𝑎𝑎) = 𝑓𝑓(𝑥𝑥), so 
 

𝑓𝑓(𝑎𝑎𝑎𝑎) = 1
𝑎𝑎
𝑓𝑓(𝑥𝑥)          (4) 

 
Now we consider two distributions that present good approximations to (4). 

3.1.  Newcomb-Benford (NB) distribution 

Let us consider 
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𝑓𝑓(𝑥𝑥) = 𝑙𝑙𝑙𝑙 �𝑥𝑥+1
𝑥𝑥
�           (5) 

Using (4), we have that 𝑓𝑓(𝑎𝑎𝑎𝑎) = 1
𝑎𝑎
𝑙𝑙𝑙𝑙 �𝑥𝑥+1

𝑥𝑥
� = 𝑙𝑙𝑙𝑙 �𝑥𝑥+1

𝑥𝑥
�
1/𝑎𝑎

= 𝑙𝑙𝑙𝑙(1 + 1/𝑥𝑥)1/𝑎𝑎 

               (6) 

This may be simplified by the use of the binomial theorem to: 

𝑓𝑓(𝑎𝑎𝑎𝑎) = ln �1 +
1
𝑎𝑎𝑎𝑎

+ 𝑂𝑂(𝑎𝑎𝑎𝑎)−2� 

By leaving out the third term between the parentheses above, we may write 

𝑓𝑓(𝑎𝑎𝑎𝑎) ≈ ln �1 + 1
𝑎𝑎𝑎𝑎
�    (7) 

 

When we consider the discrete case of (5) and make the range finite, we must 
replace the natural log with the logarithm equal to the number of discrete points, 
and this constitutes the NB distribution. 
 
According to the NB probability function, if the counting process is uniformly 
distributed over the range {1, …, S}, with random values of S, then the sum of a 
large number of these will satisfy the NB Law, where the leading digit n (n ∈ {1, 
..., r - 1}) for number to the base r, r ≥ 2, occurs with probability as a logarithmic 
function: 
 

𝑃𝑃𝑁𝑁𝑁𝑁(𝑛𝑛) =  𝑙𝑙𝑙𝑙𝑙𝑙𝑟𝑟 �1 +  1
𝑛𝑛

 �           (8) 
 

Figure 2 shows a plot of this distribution. This may be written as: 
 

𝑃𝑃𝑁𝑁𝑁𝑁(𝑛𝑛) =  1
ln (𝑟𝑟)∑

1
𝑘𝑘(𝑛𝑛+1)𝑘𝑘

∞
1  = 

 
1

ln(𝑟𝑟) �
1

𝑛𝑛 + 1
+

1
2(𝑛𝑛 + 1)2 +

1
3(𝑛𝑛 + 1)3

+
1

4(𝑛𝑛 + 1)4
+ ⋯� 

                                                                              (9) 
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This may be approximated by  
 

𝑃𝑃𝑁𝑁𝑁𝑁(𝑛𝑛) ∝ (𝑛𝑛 + 1)−𝛾𝛾, where 𝛾𝛾  is positive constant     
     (10) 

 
which is inverse power law quite like (1). 
 
 
When the number consists of several digits, the same law applies with n replaced 
by the appropriate number. As the NB law is scale invariant, if numbers in the data 
set are rescaled to another base, the probabilities become adjusted for the new base. 
For example, if numbers are represented to base 4, the first digit probabilities will 
be  
 

𝑃𝑃(1) = 𝑙𝑙𝑙𝑙𝑙𝑙4(2) = 0.5;  𝑃𝑃(2) = 𝑙𝑙𝑙𝑙𝑙𝑙4(3/2) = 0.292;  𝑎𝑎𝑎𝑎𝑎𝑎 𝑃𝑃(3)
= 𝑙𝑙𝑙𝑙𝑙𝑙4(4/3) = 0.2075 

 
and so half the random numbers will begin with the digit 1. 
 

 
Figure 2. The NB distribution for 𝑟𝑟 = 16  

 
The relation between the Pareto and the Newcomb-Benford (NB) distribution has 
been widely investigated [22][23]. It is fascinating that NB is nearly true for the 
dimensionless constants of nature [24], and the reason behind it may be the 
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noninteger dimensionality of the universe as well as the intrinsic dimensionality of 
data.  

3.2.  The Power Law 

Since probability in a scale invariant system goes down with the variable as 
shown in (4), we now consider the power law function: 

𝑓𝑓(𝑥𝑥) = 𝑐𝑐𝑥𝑥−𝛼𝛼     (11) 

where c is a suitable constant. 

Then  

𝑓𝑓(𝑎𝑎𝑎𝑎) = 𝑐𝑐 𝑎𝑎−𝛼𝛼𝑥𝑥−𝛼𝛼    (12) 

This may be rewritten as 

𝑓𝑓(𝑎𝑎𝑎𝑎) = 𝑐𝑐
𝑎𝑎𝛼𝛼
𝑥𝑥−𝛼𝛼    (13) 

Thus if 1
𝑎𝑎𝛼𝛼
≈ 1

𝑎𝑎
, then the condition 𝑓𝑓(𝑎𝑎𝑎𝑎) = 1

𝑎𝑎
𝑓𝑓(𝑥𝑥) is satisfied and the distribution 

will be scale invariant.    

Generalizing to the discrete case, we define as scale-invariant any property that 
satisfies the power-law expression: 

𝑓𝑓(𝜆𝜆𝜆𝜆) = 𝜆𝜆𝑏𝑏𝑓𝑓(𝑛𝑛)        (14) 

 

Example 1. 

Consider the power law distribution from (11) for the discrete variable n:  

𝑝𝑝(𝑛𝑛) = 𝑐𝑐𝑛𝑛−𝛼𝛼     (15) 

We wish to see how it compares to the NB distribution in its ability to represent 
scale invariance.  

If 𝛼𝛼 = 0.87, a number chosen to optimize the fit with respect to the NB distribution, 
we get the plots of Figure 3: 
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Figure 3. NB (𝑙𝑙𝑙𝑙𝑙𝑙𝑥𝑥 �1 +  1
𝑛𝑛

 �) and power law 𝑥𝑥−0.87distributions for x ranging 
from 5 through 7 
 
The fit between the NB distribution and the power law 𝑥𝑥−0.87is excellent.  
 
Now we consider whether the specific value of 𝛼𝛼 = 0.87 is an artifact of the size 
of the data. To examine, this note that this value of α is close to e/3, which is the 
characteristic number if we consider one-dimensional data (corresponding to e-
dimensionality for three-dimensional space).   
 

𝑔𝑔(𝑥𝑥) = 𝑐𝑐𝑥𝑥−𝑒𝑒/3    (16) 
 

We first compare it to the data for NB distribution for the first digit phenomenon 
for digits 1 through 9 as in Table 1. 
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Table 1. NB distribution versus 𝑐𝑐𝑥𝑥−𝑒𝑒/3 
number 1 2 3 4 5 6 7 8 9 
NB 0.301 0.176 0.125 0.097 0.079 0.067 0.058 0.051 0.046 
𝑐𝑐𝑥𝑥−𝑒𝑒/3 0.325 0.173 0.120 0.093 0.076 0.064 0.056 0.050 0.044 

 
Figure 4 compares the two distributions for a larger sized data set with 18 classes 
and we find that the correspondence between the two is excellent. 
 

 
Figure 4. NB (𝑙𝑙𝑙𝑙𝑙𝑙𝑥𝑥 �1 +  1

𝑛𝑛
 �) and power law 𝑥𝑥−𝑒𝑒/3distributions for x over (1,18) 

 
In a noninteger dimensional system, the power of the noise will depend on the 
distance between the distribution arising out of known physical processes and the 
self-similar intrinsic distribution. The noise will be greater if the distance is larger. 
This noise will effect the system even if it is isolated. 
 

4. Quantum system 

In a quantum register, one loads only one kind of qubits, say |0⟩ before they are 
operated upon by the gates of the hardware. The contents of the register after the 
data has gone through a sufficiently larger number of gates will be either |0⟩, |1⟩, 
or a qubit that is in a superposition state [25][26][27]. 
 
If we consider several qubits together then we can map them to numbers and test 
them against the Newcomb-Benford or the Power Law distributions. If the quantum 
gate transformations and hardware noise lead to a distribution at any intermediate 
stage that varies from the NB distribution that will create an internal noise that will 
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be in addition to the ones that have been considered in the literature. Since quantum 
error models do not take this possibility into account, the implications of this for 
the effectiveness of quantum error-correction systems needs to be investigated.  
 
Note further that “The chosen quantum noise model has a drastic impact on the 
performance of quantum algorithms. Hence, one must be sure that the assumptions 
on the noise present in a physical system are appropriate. Additionally, the effect 
of the quantum noise is largely determined by the nature of the quantum algorithm 
being performed.” [28] 
 
The problem of self-decoherence in a quantum system has also been investigated 
from a traditional perspective [29][30] but that does not consider the question of 
scale invariance statistics that complicate the matter. 
 
It is normally assumed that if a quantum system were to be perfectly isolated, it 
would maintain coherence. In this paper we presented arguments that negates this 
view. The noninteger dimensionality noise described in this paper is an overarching 
information theory based phenomenon that will complicate the problem of error 
correction in any model of quantum computing. 
 
It has been argued that noninteger dimensionality is relevant in cognitive models 
[31], which is also related to quantum models [32][33][34], NDN could have 
implications for cognitive science. This needs to be investigated further. 
 
 

5. Conclusions 

This paper argued that noninteger dimensionality creates a hitherto unexplored 
source of nonlocal noise, called ND noise or NDN, that is likely to play a role in 
measurements at very small distances. New analysis on scale invariant probability 
distributions arising from noninteger dimensionality was presented. The 
significance of this when considering performance and noise-correction coding in 
models of quantum computing was indicated. It was argued that NDN noise will 
lead to decoherence even without interaction with the environment and it is likely 
to be relevant also in models of cognition. 
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