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Abstract. Quantum Private Query (QPQ) is an unconditional secure mis-

trustful cryptographic primitive which is assumed to be a probabilistic version
of the Oblivious Transfer (OT) schemes or an imperfect version of Symmetric

Private Information Retrieval (SPIR) schemes. Recently, Maitra et al. (Phys.

Rev. A, 2017) identified that the B92 QKD-based QPQ scheme proposed by
Yang et al. (Quant. Inf. Process., 2014) is vulnerable whenever the devices

involved in that scheme are dubious and to improve the overall security, they

suggested a semi-Device Independent (DI) proposal for that QPQ scheme by
introducing a local test at the server’s end. In this work, we overcome the lim-

itation of the Maitra et al. proposal by removing trustworthiness from all the

(involved) devices, and suggest a full DI proposal for the Yang et al. scheme,
exploiting a proper self-testing mechanism of observables along with the local

version of the tilted CHSH game. We compare the performance of our proposal

with a recent full DI-QPQ scheme (arxiv 1901.03042) and discuss their relative
advantages. Additionally, we present a DI proposal for a modified version of

the Yang et al. scheme, enabling the client to retrieve maximum raw key bits
during the oblivious key generation phase. We evaluate the security of all our

proposals with a formal analysis.

1. Introduction. The field of quantum cryptography has expanded greatly since
Bennett and Brassard [8] first proposed it in 1984. One area that has received sig-
nificant attention is Quantum Private Query (QPQ). It’s a two-party cryptographic
primitive where a client queries a database held by a server to get the values of the
data bits corresponding to the queried indices while allowing only a small amount
of information about the unintended data bits to the client and the client’s privacy
is ensured in a cheat-sensitive way where it is assumed that the server will not cheat
if a non-zero probability exists of being caught cheating.

The idea of QPQ originates from the idea of Private Information Retrieval (PIR)
and Oblivious Transfer (OT) schemes. However, QPQ is closely related to a variant
of the PIR scheme known as Symmetric PIR (SPIR). In PIR, the client wants to
know some bits from the database holds by the server and the server sends the
complete database to the client so that the client can retrieve the required bits.
Although the server can not learn anything about the queries of the client, the
client can retrieve many more bits from the database other than the required bits.
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This inefficiency of the PIR is mitigated in the SPIR primitive where database
security is also taken into account along with the client’s privacy. The functionality
of the SPIR scheme is similar to the 1 out of N OT where the client wants to know
some data bits such that both the user privacy and the data privacy is maintained.

Functionally, QPQ, SPIR, and OT are related but have some differences. SPIR is
similar to OT but it is not possible to design an unconditional secure OT scheme in
either quantum or classical settings. However, unconditional secure SPIR schemes
can be designed in a distributed database setting [14] with non-communication
assumptions. QPQ is similar to 1 out of N OT or SPIR but with a weaker security
requirement that allows the malicious user to learn a small amount of additional
information about the database, and expects the server not to cheat if a non-zero
probability exists of being caught. Because of this weaker security requirement,
QPQ is considered a probabilistic version of 1 out of N OT or an imperfect version
of SPIR schemes and this enables the design of unconditional secure QPQ schemes
in a single database setting.

The history of Quantum Private Query (QPQ) started with the proposal by
Giovannetti et al. [15], followed by [16] and [28]. However, all those initial schemes
incorporated the idea of quantum memories and none of those were possible to
implement practically. The first practical QPQ protocol was proposed by Jakobi et
al. [19], which was based on Quantum Key Distribution (QKD) [32]. In 2012, Gao
et al. [13] proposed a flexible generalization of this QPQ scheme. Rao et al. [29]
suggested two more efficient modifications to the protocol’s classical post-processing
in the same year. Zhang et al. [36] proposed a counterfactual QKD [27] based QPQ
scheme in 2013, and Yang et al. proposed a flexible QPQ scheme [35] based on B92
QKD [7] in 2014.

It is already discussed that designing QPQ protocols emerged as a response to
the difficulties encountered in developing unconditionally secure single-server SPIR
schemes that enforce a cheat sensitivity in the adversarial model assuming that if
there is a non-zero probability of being caught cheating then the server will not
cheat. In reality, the desired primitive is as follows.

• The malicious client’s knowledge of additional data bits is limited to a small
fraction beyond what is intended to know by her. The server’s goal is to min-
imize dishonest clients’ knowledge of extra information about the database.

• While being honest, the server can only gain limited information about the
client’s query indices. Jakobi et al. [19] demonstrated that a dishonest server
can’t obtain both conclusiveness information and the values of the raw key
bits recorded by the client during the oblivious key generation phase. If the
server attempts to retrieve more information about the client’s query indices,
there is a risk of providing false information about the intended data bits to
the client, which would damage the server’s reputation as a database owner.
Thus, in the QPQ primitive, it is assumed that the server will not cheat if
there exists a non-zero probability of being caught cheating.

Very recently, Maitra et al. [25] identified that the security of the existing QPQ
schemes is based on the trustful assumptions over the devices (source as well as
measurement devices) involved in that particular protocol. As an example, they
consider the Yang et al. [35] QPQ scheme and showed that the client can retrieve
more data bits than the intended one if the source device (which supplies the shared
states) does not work accordingly. To overcome this security loophole and remove
the trustful assumptions over the devices, they suggested a Device Independent (DI)
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version of the QPQ scheme [35] in [25]. They introduced a local testing phase at
the server side in [25] which certifies the measurement devices at the server side and
the state generation device. However, this test does not certify the measurement
devices on the client’s side. So, their proposal in [25] is a semi-DI version of the
QPQ scheme [35]. Although this limitation is mentioned in [5], to the best of our
knowledge, the procedure for proper DI certification of the QPQ scheme [35] is not
mentioned anywhere.

Figure 1. Evolution of QPQ schemes in the DI scenario. The
highlighted portion (in red) is the main difference between the QPQ
scheme [5] and the QPQ scheme [35]

In this direction, here we overcome the limitations in [25] and propose a full
DI version of the Yang et al. QPQ scheme [35]. Our proposed scheme exploits
the proper self-testing mechanism of the observables involved in [35] along with
a local version of the tilted CHSH test to certify all the measurement devices.
We also compare the performance of this proposed full DI version of the QPQ
scheme [35] with the performance of the full DI-QPQ scheme mentioned in [5] and
discuss the relative advantages of both these protocols. We further come up with
a DI proposal for a modified version of the QPQ scheme [35] where the client can
retrieve the maximum number of raw key bits at her end. In opposition to current
DI-QPQ approaches, here in this modified proposal, we replace the usual projective
measurement at the client’s side with the optimal POVM measurement to retrieve
the maximum number of shared raw key bits. A flow diagram involving the evolution
of the QPQ scheme [35] in the DI scenario is shown in Figure 1.

1.1. Revisiting the QPQ scheme [35] and its DI version in [25]. In this
section, we first revisit the QPQ protocol mentioned in [35] and then restate the
DI version of this QPQ scheme introduced in [25]. In [35], the authors proposed a
QKD-based QPQ scheme exploiting the idea of B92 QKD protocol. Their proposed
QPQ scheme is composed of mainly two phases namely the key generation phase
and the private query phase.
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In the key generation phase of the QPQ scheme [35], the server Bob and the
client Alice share non-maximally entangled states between them which are of the
form 1√

2
(|0〉 |φ0〉+ |1〉 |φ1〉) where |φ0〉 =

(
cos θ2 |0〉+ sin θ

2 |1〉
)

and |φ1〉 =(
cos θ2 |0〉 − sin θ

2 |1〉
)

(at the beginning of the protocol, the exact value of this θ
is decided by the server Bob to the third party based on the number of raw key
bits that Bob wants Alice to know after the key generation phase). Bob initially
receives states from the third party and subsequently sends the second particle of
each state to Alice. Upon receiving the particles, Alice declares instances where she
receives them correctly, discarding those instances where reception is incorrect. For
each successfully shared state, Bob measures his particle in the |0〉 , |1〉 basis, while
Alice randomly measures her particle in either the |φ0〉 ,

∣∣φ⊥0 〉 basis or the |φ1〉 ,
∣∣φ⊥1 〉

basis. Post-measurement, Bob assigns the i-th raw key bit as 0 if the corresponding
measurement outcome is |0〉 and 1 (i.e., for outcome |1〉) otherwise.

Analysis of the states used in the QPQ scheme [35] reveals that, for a given
instance, if Bob observes the outcome |0〉 (|1〉) at his end, the corresponding state
at Alice’s side collapses to |φ0〉 (|φ1〉). Since |φ0〉 and |φ1〉 are non-orthogonal, Alice
can conclusively determine Bob’s raw key bits only for instances where she observes
outcomes

∣∣φ⊥0 〉 or
∣∣φ⊥1 〉. When Alice observes

∣∣φ⊥0 〉 for an instance, she deduces that
the state at her side is surely |φ1〉 and the corresponding raw key bit at Bob’s side is
1. Similarly, if she observes

∣∣φ⊥1 〉, she concludes that the state at her side is surely
|φ0〉 and the corresponding raw key bit at Bob’s side is 0. After measurement, Alice
and Bob engage in classical post-processing on their raw key bits, reducing Alice’s
knowledge of the final key to one bit. Consequently, after this key generation phase,
Bob possesses the entire key, whereas Alice knows only a subset of bits (ideally, just
one bit after post-processing)

In the private query phase, if Alice knows the j-th bit of the final key and wants to
retrieve the bit indexed by i of the database then she declares the integer s = (j− i)
publicly. Bob then shifts his key by s bits, encrypts the database with this shifted
key using the one-time pad, and sends it to Alice. Alice decrypts the j-th bit and
gets the required element of the database.

It is already mentioned in [35] that by following the specified strategy, Alice

can conclusively retrieve only sin2 θ
2 (on average) fraction of bits of the entire raw

key obtained by Bob. This guarantees the security of the proposed QPQ scheme
because although Alice gets the whole encrypted database, she can not retrieve all
the database bits because of her partial knowledge about the raw key as well as the
final key.

However, it was shown in [25] that if the dishonest Alice colludes with the third
party and supplies the states of the form (α |0〉 |φ0〉+β |1〉 |φ1〉) where |α|2 =

(
1
2 + ε

)
and |β|2 =

(
1
2 − ε

)
then the dishonest Alice can retrieve additional 2ε2 sin2 θ fraction

of bits of the entire raw key. For this reason, to overcome the security loophole (a
schematic diagram of different phases of the DI-QPQ scheme [25] is shown in the
left picture of Figure 3), a DI version of the QPQ scheme [35] was proposed in [25].

In the DI scheme proposed in [25], the server Bob performs a tilted version
of the original CHSH test locally to certify the devices. Although this local test
certifies the states and Bob’s measurement devices (as depicted in [25, Theorem
1 & Theorem 2]), this local test actually fails to provide any certification about
Alice’s measurement devices (we have demonstrated an attack in Section 2 which
shows this limitation of the DI-QPQ proposal [25]) as those devices aren’t involved
in the local test mentioned in [25]. This implies that the scheme mentioned in [25]
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is a semi-DI version of the Yang et al. [35] QPQ scheme. Here we overcome this
limitation of the scheme [25] and propose a full DI version of the Yang et al. [35]
QPQ scheme.

1.2. Preliminaries. A quantum state in the qubit system can be represented as
a unit (column) vector in the C2 plane, spanned by the basis states |0〉 and |1〉
represented as follows.

|0〉 =

[
1
0

]
, |1〉 =

[
0
1

]
Any general one qubit state |ψ〉 can be written as a superposition of the basis

states in the following way.

|ψ〉 = α |0〉+ β |1〉 =

[
α
β

]
(1)

The conjugate transpose of a quantum state |ψ〉 is denoted as 〈ψ| = (|ψ〉)† and
is represented as a row vector as follows.

〈ψ| =
[
α
β

]†
=
[
α† β†

]
The inner product between two quantum states |ψ1〉 and |ψ2〉 is denoted as

〈ψ1 |ψ2〉 and is represented as follows.

〈ψ1 |ψ2〉 =
[
α†1 β†1

]
.

[
α2

β2

]
= α†1α2 + β†1β2

The outer product between two quantum states |ψ1〉 and |ψ2〉 is denoted as
|ψ1〉 〈ψ2| and is represented as follows.

|ψ1〉 〈ψ2| =
[
α1

β1

]
.
[
α†2 β†2

]
=

[
α1α

†
2 α1β

†
2

β1α
†
2 β1β

†
2

]
For the system of pure state (i.e., the system having all the states of the same form

say like the one mentioned in equation 1), the state of that corresponding system
can also be represented (along with the representation mentioned in equation 1) as
ρ = |ψ1〉 〈ψ1| which is known as the density matrix representation.

If a quantum system is in a state {|ψi〉}1≤i≤n with probability pi then the state
of that system is called a mixed state. A mixed state can only be written in the form
of a density matrix or a density operator which is a positive semidefinite operator
having unit trace and is represented in the following form.

ρ =
∑
i

pi |ψi〉 〈ψi| .

Note that, a quantum state ρ is pure if it satisfies Tr[ρ2] = 1, and is mixed if it
satisfies Tr[ρ2] < 1.

Quantum measurement is described by a collection {Mm} of measurement oper-
ators that act on the state space of the system being measured. The measurement
operators must satisfy the completeness condition i.e.,∑

m

M†mMm = I.
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Here, ‘m’ refers to the measurement outcome generated after the experiment. If
a quantum system |ψ〉 is measured then after measurement, the probability Pr(m)
of occurring the result m is given by,

Pr(m) = 〈ψ|M†mMm |ψ〉 .
After the measurement, the state of the system will be,

Mm |ψ〉√
〈ψ|M†mMm |ψ〉

.

For example, one can consider the state |ψ〉 as mentioned in equation 1. If this
state |ψ〉 is measured in {|0〉 , |1〉} basis, then the measurement outcome will be |0〉
with probability |α|2 and |1〉 with probability |β|2.

There are basically two types of measurement, projective measurement and
POVM. A measurement is called projective measurement if the measurement op-
erators Πm = M†mMm are orthogonal projectors i.e., they satisfy the property
Π2
m = Πm and they sum up to the identity matrix. This measurement has the

property that performing the same measurement again immediately after the one
yields the same result with probability 1.

If the post-measurement state is not of particular interest, then one can per-
form a more efficient measurement known as Positive-Operator-Valued Measurement
(POVM). This measurement is described by a set of positive semi-definite hermitian
matrices that sum to the identity matrix i.e., {Em} such that

∑
mEm = I where

the index m denotes the measurement outcome. If a pure quantum state |ψ〉 is
measured then for this measurement, the probability of getting the measurement
outcome m is given by,

Pr(m) = 〈ψ|Em |ψ〉 .
A significant distinction lies in the fact that the elements of a POVM are not

necessarily orthogonal. Consequently, the count of POVM elements can exceed
the dimension of the corresponding Hilbert space they act on. Conversely, for a
projective measurement, the number of elements is constrained to be at most equal
to the dimension of the Hilbert space.

1.2.1. Notations used in our scheme. Here, we enlist different notations that are
used in our schemes.

• K: The total number of states needed, assumed to be large.
• |ψ〉BiAi : The ith shared state with the first qubit belonging to Bob (Bi) and

the second to Alice (Ai).
• ρBiAi : The density matrix of the ith state.
• ρAi and ρBi : The reduced density matrices for Alice and Bob, respectively, of

the ith state.
• X: The database held by Bob, with N bits.
• R and RA: The entire raw key at Bob’s and Alice’s sides, respectively, each

with kN bits.
• F and FA: The entire final key at Bob’s and Alice’s sides, respectively, each

with N bits.
• Ri and RAi : The ith raw key bit of Bob and Alice, respectively.
• Fi and FAi : The ith final key bit of Bob and Alice, respectively.
• Il: The set of query indices made by Alice.
• D: Alice’s POVM device in a modified proposal.
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• A and B: Alice and Bob’s measurement outcomes, respectively.
• A and A∗: Alice with honest or dishonest behavior.
• B and B∗: Bob with honest or dishonest behavior.
• |φ0〉 = cos θ2 |0〉+ sin θ

2 |1〉
• |φ1〉 = cos θ2 |0〉 − sin θ

2 |1〉.

1.2.2. Adversarial model. In a QPQ primitive, none of the parties trust each other,
resulting in different security goals for each party. Protocol Correctness refers to
the security of the entire protocol, while Data Privacy protects the security of the
server (Bob) and User Privacy protects the security of the client (Alice). This work
revisits the security definitions previously defined in [5] for the QPQ primitive.

Definition 1.1. Correctness of the protocol:
In case of honest implementation, after the key generation phase, Alice is highly

likely to correctly retrieve the expected number of data bits through a single query.
This means that if Alice is aware of X data bits and is expected to know Y data
bits (according to the scheme), then following the key generation phase,

Pr(|X − Y | ≤ δt ∧ the scheme doesn’t abort) ≥ Pc (2)

where Bob tolerates a deviation of δt and the probability of X being within the
range of [Y − δt, Y + δt] is referred to as Pc, which should ideally be high.

Definition 1.2. Robustness of the protocol:
For honest implementation of our schemes, the likelihood of Alice knowing none

of the final key bits (or data bits) and the protocol needing to restart after the key
generation phase is low. More formally,

Pr(the parties abort the scheme in honest scenario) ≤ Pa (3)

where the likelihood that no final key bits are known to Alice and the protocol
terminates is represented by Pa, which ideally should be low.

Definition 1.3. Privacy of the database owner:
The privacy of the database owner is protected in a QPQ scheme if, in a single

query, the dishonest Alice (A∗) can only retrieve (on average) at most τ fraction of
bits from the N -bit database X, where τ (0 < τ < 1) is very small compared to N ,
or if the scheme aborts with a high probability in the long run. If the number of
bits extracted (on average) by dishonest Alice in a query is denoted as DA∗ , then
according to the above definition,

ER(DA∗) ≤ τN (4)

where the expectation is calculated over the random coins R utilized in the protocol.

Definition 1.4. Privacy of the user:
A QPQ scheme ensures user privacy if either dishonest server Bob (B∗) can

correctly guess, on average, at most a small fraction δ of indices from Il (the query
index set of Alice) or the scheme terminates with high likelyhood in the long run.
If the number of correctly guessed indices by dishonest Bob is denoted by IB∗ then
according to the above definition,

ER′(IB∗) ≤ δl (5)

where the expectation is based on the random coins R′ used in the protocol.
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1.3. Our contribution: In this paper, we focus on the Yang et al. [35] QPQ
scheme that provides privacy for both the user and the database owner in a clas-
sical database search. While Maitra et al. [25] proposed a semi-DI version of that
scheme for improved security, we present a further improvement with a full DI ver-
sion. Our main contributions in this work are the proposals of different testing
phases (for the QPQ scheme [35] and a modification of it) and the rigorous mathe-
matical analysis that justify the incorporation of those testing phases towards the
certification of the functionality of all the involved devices. All the proof techniques
and the mathematical tools employed in our proposals to certify the full DI security
are firmly rooted in standard linear algebra principles. The main operational de-
scriptions of our contributions along with their corresponding mathematical tools
and proof techniques can be summarized as follows.

1. In the DI proposal [25], the server Bob locally performs a variation of the
actual CHSH test (where he measures the qubits using some randomly chosen
orthogonal projectors instead of the actual orthogonal projectors defined for
the CHSH test) which only involves the entangled states and his own mea-
surement devices. Here, we show that the local test mentioned in [25] fails to
preserve the data privacy of the database (as the client’s measurement devices
are not tested in [25]), and the client Alice can retrieve some additional raw
key bits (as well as the data bits in a single database query) if she performs
an optimal POVM measurement instead of the actual projective measurement
mentioned in [35].
• Mathematical tools behind this contribution : In Section 2, we show that

for the semi DI-QPQ proposal [25], if Alice performs a particular mea-
surement at her end that is composed of a specific collection of positive
semi-definite Hermitian matrices (i.e., the optimal POVM operator that
provides optimal distinction between the two specified non-orthogonal
states), differing from the set of the particular orthogonal projectors
stated in [35], then she can pass the testing phase in [25] and can re-
trieve some additional raw key bits (that may result in the retrieval of
some additional data bits in a single database query) which violates the
data privacy.

2. We propose a full DI version of the QPQ scheme [35] by exploiting a local
version of the tilted CHSH test (mentioned in [1, 4]) at both the server and
the client’s side (in the source device and Bob’s measurement device verifica-
tion phase of our scheme) along with the self-testing of orthogonal projectors
(mentioned in [20]) at the client Alice’s side (in the Alice’s measurement device
verification phase of our proposal). Additionally, we perform a comparative
evaluation between our proposed full DI version and the full DI-QPQ scheme
introduced in [5], considering different parameters and discussing the relative
advantages of both these schemes.
• Mathematical tools behind this contribution : In Appendix B, we show how

our mentioned TiltedCHSH test (in the full DI proposal of the QPQ
scheme [35]) utilizes the sum-of-squares decompositions for the Bell op-
erators to achieve tight upper bounds on the maximum quantum value
of the corresponding tilted CHSH expression and certify the actual par-
tially entangled state mentioned in [35] and the Hermitian and dichotomic
operators (i.e., the observables) at the server Bob’s side. For certifying
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the set of orthogonal projectors at Alice’s side, we adopt a commutation-
based measure technique from [20] and discuss (in Appendix C) how our
mentioned OBStestAlice authenticate the anticommuting observables at
Alice’s side from the observed Bell violation, dealing with rank-deficient
reduced density matrices.

3. We further come up with a full DI proposal for a modified version of the QPQ
scheme [35] where the client Alice can retrieve the maximum number of raw
key bits at her end during the oblivious key generation phase by performing
the optimal POVM measurement.
• Mathematical tools behind this contribution : In our modified proposal, we

exploit the proper self-testing mechanism of a particular class of posi-
tive semi-definite Hermitian matrices (i.e., POVM devices) along with
the local version of the tilted CHSH test (mentioned in [1, 4]) and the
self-testing of orthogonal projectors (mentioned in [20]) to certify all the
devices. For the certification of non-maximally entangled states and or-
thogonal projectors at Bob’s side, we follow the same approach as in our
first proposal. However, for certifying the specific optimal set of positive
semi-definite Hermitian matrices on Alice’s side, we come up with a new
distinct technique. We treat each matrix (i.e., every POVM element)
from the set of positive semi-definite Hermitian matrices as a generalized
form of the Bloch vector, and based on defined constraints and condi-
tions, we solve relevant equations to demonstrate (in Appendix D) that
if Alice attains the intended value of the security parameter defined in
our POVMtestAlice algorithm, then it serves as authentication for her
measurement device.

2. An attack on the DI-QPQ scheme [25]. In the DI-QPQ scheme [25], the
server Bob first selects some entangled states (from the set of states that will be
used for the QPQ scheme [35]) and performs a tilted version of the local CHSH test
to certify the states and the measurement devices involved in the QPQ scheme [35].
However, this local test does not certify Alice’s measurement devices as it only
involves the entangled states and Bob’s measurement devices. This implies that if
Alice performs some other measurement at her side instead of the actual projective
measurement (mentioned in [35]), then the local test mentioned in [25] can not
detect that fraudulent device.

In the QPQ scheme [35], it is shown that if the involved devices behave accurately
according to the proposed scheme, then Alice can guess (on average) approximately
sin2 θ

2 fraction of bits from the entire raw key. Now suppose, for the QPQ scheme [35],
Alice measures her qubits using the POVM D = {D0, D1, D2} instead of performing
the projective measurements in {|φ0〉 ,

∣∣φ⊥0 〉} or {|φ1〉 ,
∣∣φ⊥1 〉} basis randomly where

D0 ≡
(sin θ

2 |0〉+ cos θ2 |1〉)(sin
θ
2 〈0|+ cos θ2 〈1|)

(1 + cos θ)

D1 ≡
(sin θ

2 |0〉 − cos θ2 |1〉)(sin
θ
2 〈0| − cos θ2 〈1|)

(1 + cos θ)

D2 ≡ I −D0 −D1
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In this case, Alice can successfully pass the local CHSH test (mentioned in [25])
if Bob’s measurement devices measure correctly in all the bases mentioned in algo-
rithm 1 of [25] and the states are of the actual form. So, Alice and Bob proceed
further for the QPQ scheme where Alice measures her qubits using the POVM
D = {D0, D1, D2}.

Now, in this case, whenever Alice gets the outcome D0, she concludes that Bob’s
measurement outcome for that instance is |0〉 and the raw key bit at Bob’s side
is 0. Similarly, whenever Alice gets the outcome D1, she concludes that Bob’s
measurement outcome for that instance is |1〉 and the raw key bit at Bob’s end is
1. However, if Alice gets the outcome D2, she remains inconclusive about the value
of the raw key bit at Bob’s side.

We now calculate the success probability of Alice in guessing the raw key bits
correctly. Let us assume that Pr(Dj | |φi〉) denotes the probability of getting the
result Dj whenever the state at Alice’s side is |φi〉 i.e.,

Pr(Dj | |φi〉) = 〈φi|Dj |φi〉
This implies that whenever the state at Alice’s side is |φ0〉, the success probabil-

ities are

Pr(D0| |φ0〉) = 〈φ0|D0 |φ0〉
= (1− cos θ)

Pr(D1| |φ0〉) = 〈φ0|D1 |φ0〉
= 0

Pr(D2| |φ0〉) = 〈φ0|D2 |φ0〉
= cos θ

Similarly, one can calculate the success probabilities whenever the state at Alice’s
side is |φ1〉. We formalize all the conditional probabilities in the following table (i.e.,
Table 1).

Cond. Probability of Alice

Bob

Alice
A=D0 A=D1 A=D2

B=|φ0〉 1− cos θ 0 cos θ

B=|φ1〉 0 1− cos θ cos θ

Table 1. Probabilities of Different POVM Outcomes

According to this strategy, whenever Alice gets the outcome D0(D1), she con-
cludes that the raw key bit at Bob’s side is 0(1). Thus, the success probability of
Alice in guessing Bob’s i-th raw key bit can be written as

Pr(Ri = RAi)

= Pr(Ri = 0, RAi = 0) + Pr(Ri = 1, RAi = 1)

= (1− cos θ).

One can check that this success probability (i.e., (1-cos θ)) is always greater than

or equal to the actual success probability sin2 θ
2 that Alice should obtain in case of

honest implementation of the QPQ scheme [35]. The superiority of Alice’s success
probability using the mentioned POVM over the success probability achieved with
the actual projective measurement in [35] is illustrated in Figure 2 for different
values of θ.
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Figure 2. Comparison between the success probabilities of getting
a raw key bit using projective and POVM measurements

In Theorem 1 and Theorem 2 of the paper [25], it is already discussed how the
local test mentioned in [25] certifies the involved devices. As this local test does not
involve Alice’s measurement device, this will not be able to certify the functionality
of the measurement devices of Alice.

That means whenever the shared states are of the form 1√
2
(|0〉 |φ0〉+ |1〉 |φ1〉) and

Bob’s measurement devices measure correctly in all the bases specified in the local
test in [25], Alice can successfully pass the testing phase in [25] using any measure-
ment device (other than the actual projective measurement device specified in [35])
at her side. If Alice utilizes the POVM device described in the aforementioned
example, she can obtain more raw key bits at her side. Consequently, this enables
her to retrieve more data bits in a single query, thereby compromising the database
privacy of the protocol [35].

Thus, our proposed attack reveals the vulnerability of the DI proposal in [25]
showing that the proposal in [25] actually fails to preserve the data privacy of the
QPQ scheme [35]. That’s why, a full DI version of the Yang et al. [35] QPQ scheme
is necessary to guarantee the database security as well as the user privacy.

3. Full DI proposal for the QPQ scheme [35]. In this section, we describe our
proposal for certifying all the devices involved in the QPQ scheme [35]. We split
up this entire section into three subsections. In the first subsection, we mention
our assumptions that are required for the security of our proposed scheme. In the
next subsection, we introduce different steps of our proposed scheme, and in the
last subsection, we mention the security related issues of our proposal.

3.1. Assumptions for the full DI scheme: The assumptions that are required
for the security of our proposed full DI version of the QPQ scheme [35] are more or
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less the same as the assumptions for the full DI-QPQ proposal in [5] that can be
summarized as follows.

1. This proposal assumes that the devices, including the measurement devices
and state generation device, involved follow the principles of quantum me-
chanics and generate outcomes as per the Born rule.

2. In this proposal, we follow a similar assumption as in [9], which is based on
the bounded-quantum-storage-model and computational assumptions. Our
assumption is that the measurement devices and the state generation devices
involved in the scheme are described by a tensor product of Hilbert spaces, one
for each device. This means that the devices behave the same in all trials and
each use is independent of previous uses. It implies that the statistics for all
rounds are independent and identically distributed. Additionally, the inputs
chosen by the honest party for each round are also assumed to be random and
independent.
Note. In order to detect any fraudulent behavior by a dishonest party in
QPQ, it is reasonable to assume that the input choices made by the honest
party are independent and identically distributed. More general scenarios
without this assumption may be explored, but are not covered in this work.

3. The only way for an honest party to interact with unknown devices is by
making input queries and receiving the outcomes. Before the protocol starts,
a dishonest party is allowed to manipulate any devices, but after the protocol
starts, he is restricted from manipulating any devices at the honest party’s
end or opening up his own devices. Then he must interact with the devices in
the same way as the honest party. It is also assumed that the dishonest party
operates his data in an independent and identically distributed manner.

4. The scenario assumes a distrustful primitive where each party wants to gather
as much information as possible while leaking as little of their own information
as they can. In each testing phase, the party who wants to detect cheating
must act honestly, as if both parties act deceitfully the fraudulent activities
will remain undetected.

For local tests, there is no communication between the laboratories as the
honest party randomly selects the input bits for his own device. However, in
distributed tests, the honest party selects the input bits for both the parties
and communicates the input while the dishonest party generates the corre-
sponding output bits and announces those outputs. The honest party is also
assumed to have the ability to shield their devices to prevent any information
leakage.
Note. In distributed tests, the dishonest party may not measure their devices
according to the input bits selected by the honest party. Our proposal includes
a device-independent security analysis that explains how the honest party can
detect this dishonest behavior in the corresponding testing phases.

5. In self-tests, the device generating the input bits for one party must be inde-
pendent and uncorrelated (classically or quantumly) with the devices of the
other party. The inputs must be selected freely without any influence from
the other systems involved in the protocol.

6. For the QKD-based QPQ schemes, it is already shown in [19] that if the
server attempts to retrieve more information about a client’s query indices,
then there is a risk of providing false information about the intended data
bits to the client, which would damage the server’s reputation as a database
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owner. That’s why for the QPQ schemes, it is assumed that the server will
not cheat if there exist a non-zero probability of being caught cheating. For
this proposal, the server can cheat without being detected because of the
underlying computational hiding commitment scheme. But here, we assume
that the server has limitations on his computational resources and he is a
polynomial time adversary i.e., the server will try at most polynomial time to
guess a committed value of the client.
Note. For the QKD-based QPQ schemes, the size of the final key is equal to
the size of the database which is usually very large, and the number of raw
key bits is even more than that (usually some integer multiple of the number
of final key bits). In this situation, it is impractical that the server spends
more than the polynomial time to retrieve a raw key bit. For this reason, the
polynomial time assumption seems justified here.

3.2. Proposed full DI version of the scheme [35]: Depending on the function-
ality, our entire protocol is divided into four phases. The first phase is termed as
Source Device and Bob’s Measurement Device Verification Phase. This phase certi-
fies that the states are of the specified form and Bob’s device measures correctly on
the specified basis. In this phase, Bob first receives all the states (that will be used
for the protocol) from a third party (need not be a trusted one and may collude
with the dishonest party) and shares those states with Alice. After that, they check
the functionality of the devices in two subphases where at first Bob acts as a referee,
chooses some samples randomly, and performs a tilted version of the original CHSH
test locally to certify the states and his devices. In the next subphase, Alice also
does the same that Bob did in the previous subphase and certifies the states.

After the certification of this source device and Bob’s measurement device, they
proceed to Alice’s Measurement Device Verification Phase. This phase certifies the
measurement bases of Alice specified in [35]. In this phase, Alice and Bob consider
the remaining shared states and perform some measurements assuming their devices
as unknown boxes. Then from the outcomes, Alice concludes about the functionality
of her measurement device for those specified bases. After successful completion of
these two testing phases, Bob and Alice conclude that the states given to them are
of the specified form and their measurement devices measure correctly in the bases
specified in [35].

The next phase is termed Key Generation Phase where Bob generates a key
and Alice knows some bits of that key and Bob can not guess the known indices
of Alice. The last phase is termed as private query phase where Bob encrypts the
entire database using the key generated in the previous phase and sends it to Alice.
Alice then decrypts the intended bits of the database using her partial knowledge
about the final key bits.

Our scheme consists of several steps, which are described below. It should be
noted that channel noise is not considered in this description, so it is assumed that
all operations are error-free.

Source Device and Bob’s Measurement Device Verification Phase

1. Bob starts with K (we assume here that K is asymptotically large) number of
states (say |ψ〉BA) provided by the third party and shares those states with
Alice in such a way that the first particle of each state corresponds to Bob
and the second particle corresponds to Alice.
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Algorithm 1: TiltedCHSH(S,P)

• For every i ∈ S, P does the following-
1. If yi = 0, P’s device applies the measurement operator B0

0 or B0
1

randomly on the i-th state’s first qubit and generates the output bits
bi = 0 and bi = 1 respectively.

2. If yi = 1, P’s device applies the measurement operator B1
0 or B1

1

randomly on the i-th state’s first qubit and generates the output bits
bi = 0 and bi = 1 respectively.

3. Similarly, if xi = 0, P’s device applies the measurement operator A
′0
0 or

A
′0
1 randomly on the i-th state’s second qubit and generates the output

bits ai = 0 and ai = 1 respectively.
4. If xi = 1, P’s device applies the measurement operator A

′1
0 or A

′1
1

randomly on the i-th state’s second qubit and generates the output bits
ai = 0 and ai = 1 respectively.

• From these inputs and outputs, the following quantity is estimated by P,

βB = αB
∑

a∈{0,1}

(−1)a〈ψBA|I⊗A
′0
a |ψBA〉

+
∑

x,y,a,b∈{0,1}

(−1)dxyab〈ψBA|Byb ⊗A
′x
a |ψBA〉

where αB = 2√
1+2 tan2 θ

(for the same θ chosen for the states) and dxyab is

defined as follows,

dxyab :=

{
0 If xy = a⊕ b
1 otherwise.

• If βB = 4√
1+sin2 θ

(for the θ chosen for the states) then P continues with the

protocol, otherwise P aborts the protocol.
(In the case of honest implementation, this exact desired value of βB and

also the exact values of other security parameters in other mentioned
algorithms can be obtained for asymptotically large number of samples.
However, in practice, with finite number of samples, it is nearly always
impossible to exactly match with the desired value of the estimated statistic.
Hence, a small deviation from the desired value is allowed in practice. A
discussion regarding the variation of the deviation range with the sample size
is mentioned in Appendix A. However, how the existing security definitions
will vary with the noise parameter, is out of the scope of this present work
and we will try to explore this issue in our future works.)

2. Bob chooses γ1K
2 instances randomly from these K shared states (in practice,

how Bob and Alice choose the specific value of γ1 from the set [0, 1] is men-
tioned in Appendix A), declares those instances publicly and constructs the
set ΓBCHSH with these chosen instances.

3. For all the instances in ΓBCHSH, Alice sends her qubits to Bob.
4. For the instances in ΓBCHSH, Bob plays the role of the referee as well as the

two players and plays TiltedCHSH game.



508 JYOTIRMOY BASAK AND KAUSHIK CHAKRABORTY

Algorithm 2: OBStestAlice(S)

• Bob has already measured his share of every i-th state of the remaining
instances for inputs yi = 0 and yi = 1, and obtained outputs bi = 0 or bi = 1.

• Similarly, Alice has already measured her share of every i-th state of the
remaining instances for inputs xi = 0 and xi = 1, obtained outputs ai = 0 or
ai = 1, and sent the commitments of those ai values to Bob.

• For every i ∈ S, Bob and Alice do the following-
1. Alice reveals the commitments of ai values only for the instances chosen

in the set S.
2. Bob then estimates the following quantity from the declared outcomes,

βA =
1

4

∑
x,y,a,b∈{0,1}

(−1)d
′
xyabα1⊕y

A 〈ψBA|Byb ⊗A
x
a|ψBA〉

where αA = cot θ (for the same θ chosen for the shared states) and d′xyab
is as follows,

d′xyab :=

{
0 If xy = a⊕ b
1 otherwise.

3. If βA = 1
2 sin θ (for the θ chosen for the shared states) then Bob continue

with the protocol, otherwise Bob abort the protocol.

5. For every i-th sample in ΓBCHSH, Bob randomly generates input bits xi and yi
for his two measurement devices (these devices act as separate parties without
any communication), with xi, yi ∈ {0, 1}.

6. Bob performs TiltedCHSH(ΓBCHSH, Bob), according to the procedure outlined
in algorithm 1 for the set ΓBCHSH.

7. If Bob passes this TiltedCHSH(ΓBCHSH, Bob) test then both Alice and Bob
proceed further, otherwise they abort.

8. From the rest
(
K − γ1K

2

)
shared states, Alice randomly chooses γ1K

2 (in prac-

tice, how Bob and Alice choose the specific value of γ1 from the set [0, 1] is
mentioned in Appendix A) instances, declares those instances publicly and
constructs the set ΓACHSH with these chosen instances.

9. For all the instances in ΓACHSH, Bob sends his qubits to Alice.
10. For these instances in ΓACHSH, Alice plays the role of the referee as well as the

two players and plays TiltedCHSH game.
11. For every i-th sample in ΓACHSH, Alice randomly generates input bits xi and yi

for her two measurement devices (these devices act as separate parties without
any communication), with xi, yi ∈ {0, 1}.

12. Alice performs TiltedCHSH(ΓACHSH, Alice), according to the procedure out-
lined in algorithm 1 for the set ΓACHSH.

13. If Alice passes the TiltedCHSH(ΓACHSH, Alice) test then both Alice and Bob
proceed to the next phase where Alice self-tests her measurement device.

Alice’s Measurement Device Verification Phase:

1. Alice and Bob consider the rest (K − γ1K) states and do the following-
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• For every i-th state, Bob randomly generates an input bit xi ∈R 0, 1 for
Alice’s device and publicly declares all (K − γ1K) xi values. After all xi
values are declared, Alice acknowledges receipt to Bob.
• Bob further generates another random bit yi ∈R {0, 1} for every i-th

state, as the input of his device.
• If yi = 0, Bob applies measurement operator B0

0 or B0
1 randomly on his

share of the i-th state and generates the output bit bi = 0 and bi = 1
respectively.
• If yi = 1, Bob applies measurement operator B1

0 or B1
1 randomly (here

B1
0 = B0

0 and B1
1 = B0

1) on his share of the i-th state and generates the
output bit bi = 0 and bi = 1 respectively.
• Similarly, if xi = 0, Alice applies measurement operator A0

0 or A0
1 ran-

domly on her share of the i-th state and generates the output bit ai = 0
and ai = 1 respectively.
• If xi = 1, Alice applies measurement operator A1

0 or A1
1 randomly on her

share of the i-th state and generates the output bit ai = 0 and ai = 1
respectively.
• Alice encodes all her ai values using a computational hiding perfect binding

commitment scheme (Computationally hiding statistically binding com-
mitment schemes are easy to design from a pseudo-random generator and
one-way permutation [26, 30, 31]. As these schemes are perfectly binding,
Alice can’t cheat at all. For the hiding part, we assume that Bob has lim-
itations on his computational resources and he is a polynomial adversary.
That means, we assume that Bob can try at most polynomial time to
guess a committed bit value. In the multi-client scenario, it is also possi-
ble to use some relativistic bit commitment schemes [24, 10, 12]. However,
these are outside the scope of this work.) and send those commitments of
ai values to Bob (The inclusion of a commitment scheme is crucial in this
context because here Alice performs a non-optimal projective measure-
ment at her end. This introduces the possibility that she might perform
the exact projective measurement during the testing phases and later
switch to the optimal POVM measurement discussed in Section 2 for the
instances used in the private query phase. To eliminate this possibility,
bit commitment is required as it prevents Alice from postponing mea-
surements for any of her particles and ensures that Alice measures all her
particles using the actual projective measurement).

2. Bob then chooses γ2(K− γ1K) instances randomly from these rest (K− γ1K)
instances (in practice, how Bob chooses the specific value of γ2 form the set
[0, 1] is mentioned in Appendix A), constructs a set Γobs with those chosen
instances and declares those instances publicly.

3. Alice reveals the commitments of ai values for all the instances chosen in the
set Γobs.

4. Bob then performs OBStestAlice(Γobs), by following the procedure mentioned
in algorithm 2, for the set Γobs.

5. If Alice passes the OBStestAlice(Γobs) then Bob and Alice proceed to the next
phase of the protocol where they generate the raw key bits at their end.
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Key Generation Phase:

• Alice and Bob consider the rest (K− |ΓCHSH| − |Γobs|) samples and construct
a set ΓQPQ with those instances where |ΓQPQ| = kN .

• For 1 ≤ i ≤ (|ΓQPQ|), Bob and Alice do the following-
– If Bob’s measurement device generates the outcome bi = 0(bi = 1) for the
i-th shared state, Bob considers Ri = 0(Ri = 1).

– Alice already knows the ai values for all these instances. If Alice’s mea-
surement device receives the input xi = 1 (xi = 0) and generates the
outcome ai = 1 for her share of the i-th state, Alice considers RAi =
0(RAi = 1).

– If Alice’s measurement device receives the input xi = 0 or xi = 1 and
generates the outcome ai = 0 for her share of the i-th state, Alice remains
inconclusive about the value of the raw key bit indexed by i.

Private Query Phase: Alice and Bob perform the following steps (as mentioned
in [35]) for the rest |ΓQPQ| samples.

• Alice and Bob share a kN bit raw key after the key generation phase, with
Bob having full knowledge of the raw key and Alice knowing some unknown
bits (corresponding indices unknown to Bob).

• The raw key is divided into k substrings of length N and a bitwise XOR
operation is performed to produce the N bit final key.

• If Alice wants to retrieve the bit indexed by j of the database and knows only
the i-th bit Fi of Bob’s final key F , she declares the shift number s = (i− j).

• Bob shifts his key F by s positions and encrypts the database using one-time
pad.

• The encrypted database can be retrieved by Alice as the j-th database bit is
encrypted with Fi (the final key bit indexed by i) known to her.

Figure 3. Schematic diagrams of the semi DI proposal in [25]
(left figure) and our full DI proposal of the QPQ scheme [35] (right
figure)

A schematic diagram of the full device independent proposal for the QPQ scheme
[35] is shown in the right subfigure of Figure 3.

3.3. Analysis of our scheme: Here, we examine the performance of the proposed
full DI version of the QPQ scheme [35]. First, we determine the values of relevant
parameters. Then, we evaluate the DI security of our proposed scheme. Finally, we
assess the security of the database and user in our proposal.
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Note that here we present all our analyses considering the asymptotic scenario.
In reality, the values of different parameters (derived here) may deviate from their
derived value depending on the chosen sample size.

3.3.1. Estimation of parameters for private query phase: Here, we perform param-
eter estimation for maintaining both user and data privacy. In this scheme, after
the key generation phase, Bob has kN many raw key bits such that Bob knows
all the bits but Alice knows only some of those bits. In the private query phase ,
both Bob and Alice cut their raw keys in some particular positions to prepare N

substrings of length k such that k =
|ΓQPQ|
N where |ΓQPQ| denotes the total number

of samples at the private query phase and N denotes the number of database bits.

Estimation of θ for improved security : Similar to the QPQ scheme [5], here also
the server Bob wants the client Alice to retrieve only one data bit in a single query
for database security.

In the QPQ scheme of [35], Alice and Bob share kN raw key bits, with Alice able

to retrieve on average
(

sin2 θ
2

)
of them. The expected value of the number of raw

key bits known by Alice after the key generation phase (denoted as nr here) can be
calculated as follows,

E[nr] ≈
(

sin2 θ

2

)
kN (6)

Alice’s probability of correctly guessing a final key bit is roughly Pf ≈
(

sin2 θ
2

)k
since she must correctly guess all k corresponding raw key bits, which are XORed
to form the final key bit.

Here, the number of final key bits known by Alice, nf (let’s say), is a binomial

random variable with N total bits and a success probability of Pf =
(

sin2 θ
2

)k
.

So, the expected number of final key bits known by Alice after the key generation
phase is,

E[nf ] = PfN ≈
(

sin2 θ

2

)k
N (7)

In the scheme, dishonest Alice needs to perform correct basis measurements (as
specified in [35]) to successfully complete DI testing phases. That means, if the
protocol does not abort, the maximum probability of dishonest Alice in guessing Ri
(the raw key bit indexed by i) correctly will be atmost sin2 θ

2 i.e.,

Pr[RA∗i = Ri] ≤
sin2 θ

2
(8)

where A∗i denotes dishonest Alice’s subsystem corresponding to the i-th shared
state.

It is clear that after Bob’s measurement, Alice’s states are independent and we
assume that the measurement devices at dishonest Alice’s side are also independent
and memoryless. So, the guessing probability of dishonest Alice for Fi (i.e., the

final key bit indexed by i) will be upper bounded by
(

sin2 θ
2

)k
i.e.,

Pr[FA∗i = Fi] = Pf ≤
(

sin2 θ

2

)k
(9)
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Based on the equations 7 and 9, it can be seen that the maximum expected
number of final key bits that a dishonest Alice can correctly guess, assuming the
protocol does not abort, will be limited to a maximum of,

E[FA∗ ] ≤
(

sin2 θ

2

)k
N (10)

In our scheme, the expected number of data bits correctly guessed by dishonest

Alice in a single query is also limited to
(

sin2 θ
2

)k
N as the database is encrypted by

XORing with the final key and correctly guessing a final key bit implies correctly
guessing a corresponding database bit, provided the protocol does not abort. This
implies that,

E[DA∗ ] ≤
(

sin2 θ

2

)k
N (11)

In our scheme, for the protocol to continue, Alice must know at least one final
key bit, while Bob wants Alice to know less than two final key bits. Thus, the
following condition must be met in the non-abort scenario.

1 ≤ E[nf ] < 2

This implies that,

1 ≤
(

sin2 θ

2

)k
N < 2

1

N
≤
(

sin2 θ

2

)k
<

2

N
(12)

All these results boil down to the following conclusion,

Corollary 3.1. To ensure that the client Alice only knows less than two final key
bits and the proposal doesn’t terminate, the server Bob must select the values of θ
and the parameter k such that,

1

N
≤
(

sin2 θ

2

)k
<

2

N

Estimation of Pa and Pc for improved security :
Here, we first determine the likelihood that the protocol will not terminate in an

honest scenario. Then using the derived bound on the value of sin2 θ, we can obtain
a lower bound on the value of Pc from the Chernoff-Hoeffding inequality [17] (we
estimate the value of Pc using Chernoff-Hoeffding inequality because we consider
here the i.i.d scenario).

In our scheme, the probability of Alice not correctly guessing a final key bit is

calculated as

[
1−

(
sin2 θ

2

)k]
based on the success probability of Alice in guessing

a final key bit, which is
(

sin2 θ
2

)k
.

So, the probability that Alice does not know any of the N final key bits is
approximately, [

1−
(

sin2 θ

2

)k]N
≈ e−

(
sin2 θ

2

)k
N

(13)
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That means the following bound on Pa can be obtained for our proposed scheme.

Pa ≤ e
−
(

sin2 θ
2

)k
N

(14)

If Bob sets θ such that
(

sin2 θ
2

)k
= 1

N , then equation 14 gives us the following

result according to the relation in equation 12.

Pa ≤ e−1 (15)

That means this scheme offers a small Pa value. So, the likelyhood of the proposal
not aborting in the honest scenario (i.e. Alice knowing at least one final key bit) is

Pr(protocol doesn’t terminate in honest scenario) ≥
[
1− e−1

]
(16)

So, our proposed scheme has a high probability of not aborting in the honest
scenario. We now refer to the Chernoff-Hoeffding inequality in [17].

Proposition 3.2. (Chernoff-Hoeffding Inequality) Let X = 1
m

∑
1≤i≤mXi be the

average of m independent random variables X1, X2, · · · , Xm with values (0, 1), and
let E[X] = 1

m

∑
1≤i≤m E[Xi] be the expected value of X. Then for any δCH > 0, we

have Pr [|X − E[X]| ≥ δCH ] ≤ exp(−2δ2
CHm).

To derive the bound on Pc, we consider Xi = 1 when Alice knows the value of
the final key bit indexed by i (or its corresponding data bit) in a non-abort scenario
(meaning all raw key bits related to the final key bit indexed by i give either

∣∣φ⊥0 〉 or∣∣φ⊥1 〉 as an outcome at Alice’s side). If the final key has N many bits, the random

variable X is defined as X =
∑N
i=1Xi.

We have already determined that in the scenario where the proposal doesn’t

terminate, the expected final key bits known to Alice is
(

sin2 θ
2

)k
N out of a total of

N final key bits. To ensure that the number of known final key bits (X) falls within

an error margin δCH = ε
(

sin2 θ
2

)k
N (where ε is a small constant that depends

on the number of samples, one may refer to Appendix A for details), we use the
Chernoff-Hoeffding inequality. This is because the final key bits are independent
and the measurement devices at Alice’s end are also independent and memoryless.
The calculations of X and E[X] are based on the non-abort scenario. So, we can
write the following from the Chernoff-Hoeffding inequality in proposition 3.2.

Pr [|X − E[X]| < δCH ∧ protocol doesn’t terminate]

≥ 1− exp(−2δ2
CHm) (17)

After the key generation phase, Bob has N final key bits and we want Alice’s

known final key bits to fall within the range of [p−εp, p+εp], where p =
(

sin2 θ
2

)k
N

and δCH = ε
(

sin2 θ
2

)k
N is the accepted deviation. Plugging in δCH and m = N

into equation 17 gives,

Pr [|X − E[X]| < δCH ∧ protocol doesn’t terminate]

≥ 1− exp(−2δ2
CHN)

where δCH = ε

(
sin2 θ

2

)k
N

(18)
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In equation 12, the following bound is already derived on
(

sin2 θ
2

)k
.

1

N
≤
(

sin2 θ

2

)k
<

2

N

By setting
(

sin2 θ
2

)k
= 1

N in equation 18, we obtain,

Pr [|X − E[X]| < ε ∧ protocol doesn’t terminate]

≥ 1− exp(−2ε2N)

If the scheme is implemented honestly, the following lower bound of the parameter
Pc can be obtained from the definition 1.1 as guessing a final key bit correctly means
correctly guessing the corresponding data bit.

Pc ≥ [1− exp(−2ε2N)] (19)

As in practice, N is large, this probability will be significant. That means, in
case of honest implementation of our proposed scheme, the probability that Alice
knows the expected number of data bits (with atmost ε deviation from the expected
number) and the protocol does not abort is high.

The bound on δCH can be obtained from equation 12 as δCH = ε
(

sin2 θ
2

)k
N .

ε ≤ δCH < 2ε (20)

From this, it’s clear that ε must satisfy the constraint 2ε ≤ 1, resulting in an up-
per bound of ε ≤ 1

2 . Now we move to discuss the security concerns of our proposed
scheme.

3.3.2. Security in device independent scenario: In this work, we propose a full
DI version of the QPQ scheme [35]. The correctness of this scheme is already
mentioned in [25]. Hence, we mention here only the security related issues of our
full DI proposal. Based on the results obtained from Theorem 3.3 and Theorem 3.4,
here we conclude about the DI security of the QPQ scheme [35].

Theorem 3.3. (DI testing of shared states and Bob’s measurement devices) In the
TiltedCHSH test of the source device and Bob’s measurement device verification
phase, either the devices achieve βB = 4√

1+sin2 θ
for both Alice and Bob (i.e., the

states provided by the third party are identical with the actual states as mentioned
in the QPQ scheme [35] and Bob’s measurement device measures correctly in the
{|0〉 , |1〉} basis) or the scheme is likely to abort with high probability (as the limit
approaches infinity).

The proof of this theorem exactly follows from the results mentioned in [1] and
[4]. We present an outline of this proof in Appendix B.

So, Theorem 3.3 guarantees that either the states shared between Alice and
Bob are of the specified form and Bob’s measurement device measures correctly
in {|0〉 , |1〉} basis or the scheme terminates with high likelyhood (as the limit ap-
proaches infinity). The next DI testing is done in Alice’s measurement device verifi-
cation phase. This phase basically guarantees the functionality of Alice’s measure-
ment device. Alice and Bob lead to this phase whenever they successfully pass the
first DI testing phase. In this phase, Alice measures in {|φ0〉 ,

∣∣φ⊥0 〉} or {|φ1〉 ,
∣∣φ⊥1 〉}
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basis randomly whereas Bob measures in {|0〉 , |1〉} basis. From the measurement
outcome, they estimate the value of a parameter βA and check whether this value
is equal to 1

2 sin θ . Theorem 3.4 guarantees that either Alice’s devices measure cor-

rectly in the specified basis, resulting in βA = 1
2 sin θ , or the protocol will abort with

high probability as the limit approaches infinity.

Theorem 3.4 (DI testing of Alice’s measurement devices). In OBStestAlice, either
Alice’s measurement devices achieve the value of the parameter βA = 1

2 sin θ (i.e.,

her devices correctly measure in {|φ0〉 ,
∣∣φ⊥0 〉} and {|φ1〉 ,

∣∣φ⊥1 〉} basis) or the protocol
terminates with a high likelihood of failure (as the limit approaches infinity).

The proof of this theorem is explained in detail in Appendix C and follows the
same method outlined in [20] for certifying non-maximally incompatible observables.

Note. Here, we claim that if Alice and Bob successfully pass both the TiltedCHSH
test and the OBStestAlice mentioned in our full DI proposal, then in the QPQ
scheme [35], neither of Alice and Bob can retrieve any additional information in the
noiseless scenario. Now, suppose that our claim is wrong i.e., Alice and Bob can
pass all the tests mentioned in our scheme and later Alice can retrieve more data
bits (than what she intends to know) in a single query or Bob can guess the query
indices of Alice with a more certain probability (than his intended probability).

Similar to the analysis in [5], here also we discuss this issue in the context of
a particular form of non-i.i.d. attack, where a specific number of states are inde-
pendently corrupted (more general attacks are also possible but these are outside
the scope of this work). In this context, we will show that if some of the corrupted
states are included during the testing phases, then there is some probability of being
caught as the limit approaches infinity.

At the beginning of our scheme, the untrusted third party provides all the states
to the server Bob and then Bob shares those states with Alice. As in the source
device and Bob’s measurement device verification phase, both the parties choose
the states randomly from the shared instances for the local tests at their end, the
dishonest party can not guess beforehand the shared instances that the honest party
will choose at his end for the local test. According to our assumption, the dishonest
party can not manipulate the honest party’s device once the protocol starts. So, to
successfully pass the TiltedCHSH test at the honest party’s end, the shared states
must be of the actual form as specified in [35]. Similarly, in the TiltedCHSH test
performed at Bob’s side, the honest Bob must measure the states in the specified
basis (to detect the corrupted states) which also certifies the specific measurement
bases of Bob. This implies that the source device and Bob’s measurement device
verification phase certifies all the states provided by the untrusted third party and
also certifies the measurement device of Bob for the standard basis.

We now explain these things more formally. Let us suppose that initially, the
untrusted third party colludes with either the dishonest Alice or the dishonest Bob
and shares either KA corrupted states in favour of Alice (let us denote this type
of states as A-type) or KB corrupted states in favour of Bob (let us denote this
type of states as B-type) among K shared states. So, while choosing randomly for
the TiltedCHSH test at honest Bob’s end, the probability that a chosen state is
of A-type is KAK . Similarly, for the TiltedCHSH test at honest Alice’s end, the

probability that a chosen state is of B-type is KBK . Let us further assume that for
the A-type states, the value of the parameter βB is β′A (where β′A = βB + εA such
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that εA > 0) and for the B-type states, the value of the parameter βB is β′B (where
β′B = βB + εB such that εB > 0).

Now, suppose that only Alice is dishonest and the third party suppliesKA number
of corrupted states (in favour of Alice) along with (K−KA) actual states. Then, in
the local test at Bob’s end, the probability that a chosen state is not of the A-type is(
1− KAK

)
. One can easily check that this probability is also same for a chosen state

in the final QPQ phase. As, dishonest Alice’s aim is to gain as much additional data
bits as possible, she needs to choose the value of KA such that (K−KA) = c where
c is exponentially smaller than K (i.e., she will try to maximize the probability that
a state chosen for the final QPQ phase is of the A type). Then, the probability
that Bob will choose none of the corrupted states (i.e., the A type states) among

his chosen γ1K
2 states for the TiltedCHSH test at his end is,(

1− KA
K

) γ1K
2

=
( c
K

) γ1K
2

which is negligible in K. Similarly, whenever Bob is dishonest, the same thing can
be shown for the local TiltedCHSH test at Alice’s end. This implies that if the
third party colludes with the dishonest party and supplies corrupted states then
the probability that none of those corrupted states are chosen for the local test at
the honest party’s end is negligible.

In our scheme, we consider the ideal scenario where there are no channel noise.
So for dishonest Alice, to successfully pass the TiltedCHSH test at the honest Bob’s
end, the following relation must hold in the noiseless condition.

KAβ′A
K

+
(K −KA)βB

K
= βB

KAβ′A + (K −KA)βB = KβB
KA(β′A − βB) = 0

Now, replacing the values of β′A from the relation β′A = βB + εA, one can get,

KAεA = 0 (21)

As the value of εA > 0, from this relation, one can easily conclude that in the
noiseless scenario, the value of KA must be zero to successfully pass the local test
at the honest Bob’s end. Similarly, one can show that whenever Bob is dishonest,
the value of KB must be zero to successfully pass the local test at the honest Alice’s
end. In practice, for finite number of samples, one can show that the values of KA
and KB must be negligible to successfully pass the local test at the honest party’s
end.

In this proposal, we consider a scenario where the shared states are exchanged
between the two parties before the start of the protocol, and the dishonest party
cannot manipulate the honest party’s device after the start of the protocol. As we
focus on the i.i.d. case, it’s clear from the proof of Theorem 3.3 in Appendix B that
either the scheme terminates with high likelyhood (as the limit approaches infinity),
or the TiltedCHSH test will certify that the shared states in the QPQ scheme [35]
reach the desired value of the parameter βB.

Similarly, the TiltedCHSH test at the honest Bob’s end also confirms that either
Bob aborts the scheme with high probability (as the limit approaches infinity), or
the TiltedCHSH test at his end certifies that his measurement devices achieve the
intended value of the parameter βB.
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The next DI testing is done in Alice’s measurement device verification phase where
Bob and Alice perform distributed test to certify Alice’s projective measurement
device. Here, one may think that if Bob is dishonest, then for the instances cho-
sen in Alice’s measurement device verification phase, he will measure in the actual
measurement basis at his end to detect the fraudulent behaviour of Alice, and later
for the instances to be used for the actual QPQ phase, he will measure in some
different basis to guess the positions of Alice’s known key bits.

From the result obtained in Lemma 3.10, it is clear that for Bob to guess Alice’s
query indices with more certainty, he must reveal more data bits to dishonest Alice
in a single query. But doing so violates assumption 4, which states that neither Alice
nor Bob leaks more information (from their side) to gain additional knowledge from
the other party. Therefore, Bob should act honestly for all the instances in Alice’s
measurement device verification phase as well as in key generation phase to ensure
the validity of Alice’s measurement device, prevent dishonest Alice from obtain-
ing any additional information, and also to maintain his reputation as a database
owner. For our proposal, Bob has a chance to cheat because of the inclusion of the
computational hiding perfect binding commitment scheme. However, we assume
that Bob has limitations on his computational resources and he is a polynomial-
time adversary. This assumption bounds Bob to guess a committed bit of Alice.
It is also impractical that Bob spends more than the polynomial time to retrieve a
particular raw key bit. That’s why the computational hiding commitment scheme
introduced in our scheme will not leak any additional information to Bob.

As Bob acts honestly for Alice’s measurement device verification phase and
chooses the input bits randomly for both the parties in OBStestAlice, there is no
possibility that the inputs for OBStestAlice are chosen according to some dishonest
distribution. As the focus of this proposal is on the i.i.d. scenario, it can be easily
concluded (based on the proof of Theorem 3.4 in Appendix C) that either Alice and
Bob will abort the scheme with high likelihood (as the limit approaches infinity), or
OBStestAlice will confirm that Alice’s measurement devices achieve the intended
value of βA.

That means we can conclude the following from all these discussions.

Corollary 3.5. Our DI scheme either terminates with high likelyhood (as the limit
approaches infinity) or certifies that the devices in the QPQ scheme [35] achieve the
desired values of βB and βA in the TiltedCHSH test and OBStestAlice respectively.

Given the discussion above on some types of non-i.i.d. attack in our DI proposal,
the statement in corollary 3.5 can probably be generalized to some non-i.i.d. cases,
but it is outside the scope of this work.
3.3.3. Security of database against dishonest alice: Here we estimate the amount
of raw key bits that dishonest Alice can guess in the key generation phase, and the
probability of her retrieving more than the expected data bits in a single query.
Dishonest Alice can guess additional raw key bits either from the loophole of the
underlying bit commitment scheme or by manipulating the other devices and using
an optimal measurement device at her side.

For the underlying computational hiding and perfect binding bit commitment
scheme using a pseudo-random generator, the security of the database against dis-
honest Alice follows from Claim 3.1 in [26] which states that for any i-th committed
bit ai, Alice can fool Bob (i.e., Alice can successfully verify the commitment for a
different bit other than the committed one) with probability at most 2−n where n is



518 JYOTIRMOY BASAK AND KAUSHIK CHAKRABORTY

the security parameter which is chosen such that no feasible machine can break the
underlying pseudorandom generator for seeds of length n. That means, dishonest
Alice can’t retrieve more raw key bits and if she tries to do so and commits the ai
values obtain from the optimal measurement then it will be detected by Bob during
OBStestAlice. More precisely, the security of the entire bit commitment protocol
follows from the result mentioned in [26, Theorem 3.1] which states the following.

Corollary 3.6. If the underlying device G is a pseudorandom generator, then for
all polynomials p and large enough security parameter n, the corresponding bit com-
mitment protocol obeys the following.

• After commitment, no probabilistic polynomial-time Bob can guess any com-

mitted ai value with probability greater than
(

1
2 + 1

p(n)

)
.

• Alice can reveal only the committed bit, except with probability less than 2−n.

In the case of the manipulation of the other devices and her device, the estimation
follows from the DI results in corollary 3.5 which states that after the DI testing
phases, either the scheme will abort with high probability (as the limit approaches
to infinity) or the devices involved in [35] will meet the intended values of parameters
βA and βB as indicated in our proposal.

Theorem 3.7. In our scheme, in the absence of OBStestAlice, dishonest Alice can
retrieve, at most,

(
1
2 + 1

2 sin θ
)

fraction of the entire raw key, inconclusively (i.e.,
the indices of the correctly guessed bits are unknown), during the key generation
phase.

The proof of this Theorem directly follows from the proof of Theorem 5 in [5].
The only difference here is that in this scheme, Alice needs to distinguish between
the two non orthogonal quantum states |φ0〉 and |φ1〉 as compared to the two non
orthogonal states |0〉 and |0′〉 (or |1〉 and |1′〉) in [5].

In our full DI proposal, dishonest Alice (A∗) can not perform any other mea-
surement other than the projective measurement mentioned in [35] because if she
performs any other measurement at her side then it will be detected in Alice’s mea-
surement device verification phase. Because of this, we can get a bound on the
number of raw key bits that dishonest Alice can retrieve (on average) in this full DI
proposal of the QPQ scheme [35].

Lemma 3.8. Either our protocol terminates with high probability in the long run,

or dishonest Alice (A∗) can retrieve (on average) sin2 θ
2 fraction of bits from the

entire raw key after the key generation phase of our scheme.

Proof. According to the QPQ scheme [35], after the measurements at the server
Bob’s side, the client Alice has kN independent non-orthogonal qubits at her end.
For each of the instances, Alice now tries to distinguish between the non-orthogonal
states |φ0〉 and |φ1〉.

From the QPQ scheme [35], it is clear that if Alice measures her qubits in
{|φ0〉 ,

∣∣φ⊥0 〉} and {|φ1〉 ,
∣∣φ⊥1 〉} basis randomly, then Alice can guess a raw key bit

with certainty whenever the outcome is either
∣∣φ⊥0 〉 or

∣∣φ⊥1 〉.
From the correctness of the QPQ scheme [35], it is clear that for each of the

instances, the probability of getting the outcome
∣∣φ⊥0 〉 or

∣∣φ⊥1 〉 using projective

measurement is sin2 θ
2 .

Our DI proposal requires dishonest Alice to independently measure each of the
kN qubits at her end in a specified basis to pass the testing phases. If she performs
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random and independent projective measurements in the |φ0〉 ,
∣∣φ⊥0 〉 and |φ1〉 ,

∣∣φ⊥1 〉
basis, on average, she can retrieve

(
sin2 θ

2

)
kN raw key bits correctly. This concludes

the proof.

In this DI proposal, the database contains N data bits. Although there is a
chance that dishonest Alice can successfully pass all tests and learn more data bits
than allowed through statistical fluctuations, the likelihood of this happening is low
according to Corollary 3.5. Now, based on Definition 1.3 and equation 11, we can
conclude the following.

Corollary 3.9. In the case of dishonest Alice and honest Bob, either the proposed
scheme will likely abort (as the limit approaches infinity) or dishonest Alice will, on
average, be able to obtain τ fraction of bits from the entire final key, where

τ ≤
(

sin2 θ

2

)k
(22)

By using the upper bound from equation 12 in place of
(

sin2 θ
2

)k
, we can obtain

the following upper limit for the value of τ .

τ <
2

N
(23)

It shows that our full DI proposal results in τ being significantly smaller than N .
It is possible to validate the data privacy of our scheme in another way (other than

the data privacy definition mentioned in Definition 1.3) showing that the probability
with which dishonest Alice can successfully guess more than the expected number
of final key (or equivalently data) bits (with a deviation more than the ε fraction
from the expected number) such that the protocol doesn’t terminate is low.

Like the discussion in Subsection C 1 (entitled “parameter estimation for private
query phase”), here also we assume that the random variable X denotes the number
of final key bits known to the dishonest Alice and E[X] be the expected value in
honest scenario. The probability Pr [|X − E[X]| > δ ∧ protocol doesn’t terminate]
can be shown to be negligible using the properties of basic probability theory. As we
consider the i.i.d assumption in our proposal, there will be two different subcases-
1) all the devices attain the ideal TiltedCHSH value, or 2) all the devices do not
attain the ideal TiltedCHSH value.

Note that Pr [|X − E[X]| > δ ∧ protocol doesn’t terminate] is upper bounded by
both Pr [|X − E[X]| > δ] and Pr [protocol doesn’t terminate], according to the prop-
erty of basic probability theory (which says Pr[A ∧ B] ≤ Pr[A] and Pr[A ∧ B] ≤
Pr[B]).

Now for the first subcase, from the correctness result (i.e., the value of Pc for
our scheme in equation 19) and the DI security statement in Theorem 3.4, one can
easily conclude that Pr [|X − E[X]| > δ] ≤ negl(N).

For the second subcase, by an analysis similar to the proof of Theorem 3.4, it
can be concluded that Pr [protocol doesn’t terminate] ≤ negl(N). This implies that
for both of these two subcases, Pr [|X − E[X]| > δ ∧ protocol doesn’t terminate] ≤
negl(N) (under the i.i.d. assumption).
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3.3.4. Security of user against dishonest bob:
In this subsection, we determine the number of indices (lB∗) that dishonest Bob

can accurately guess from Il (the query index set of Alice). Additionally, we calcu-
late the probability of Bob correctly guessing more indices than expected. Generally,
for any QKD-based QPQ schemes, if Bob attempts to cheat, there is a risk of pro-
viding false information about the intended data bits to Alice, potentially harming
his reputation as a database owner [19]. Therefore, for the QPQ primitive, Bob is
assumed not to cheat if there is a non-zero probability of being caught. Our scheme
provides Bob a chance to cheat without being detected due to the underlying bit
commitment scheme. However, we assume that Bob is a polynomial-time adversary
and has computational limitations. For this reason, even with the existence of a
computational hiding bit commitment scheme, Bob cannot gain any information
about Alice’s committed bits. So, the calculation here is only based on the results
of corollary 3.5, which states that either the scheme terminates with high likelihood
or the devices in [35] achieve the desired values of βA and βB after the DI testing
phases. Based on these results and those in [5], we can conclude the following.

Lemma 3.10. Dishonest Bob can correctly guess a maximum of l
N fraction of the

indices from the query set Il of Alice after l queries to the N -bit database (in the
QPQ scheme [35]), i.e, for a particular index i,

Pr(Bob correctly guesses i ∈ Il) ≤
l

N

Proof. At the key generation phase of our proposal, Alice does not broadcast any-
thing about her measurement outcome. So, dishonest Bob has no information about
Alice’s measurement outcomes and her known key bits. Now, Alice queries l many
times to the database and retrieves l many data bits. After these l many queries,
dishonest Bob will try to guess those query indices of Alice. As, Bob has no infor-
mation about the known final key bits of Alice, he has to guess these l many indices
(out of the N data bits) randomly.

So, for any i-th data bit, dishonest Bob can guess whether i ∈ Il with probability
atmost l

N . This completes the proof.

This implies that Bob can guess whether a database index is in Il (the query
index set of Alice) with a probability of at most l

N . Assuming Alice only knows
one data bit per query, if Bob guesses l bits, the expected number of correct guesses
Bob can make from Alice’s query set Il will be,

E[IB] = Pr(Bob correctly guesses i ∈ Il).l

≤ l2

N
(24)

This DI-QPQ proposal includes tests to prevent Bob from discovering too much
about Il (the query index set of Alice), but due to statistical fluctuations, Bob still
has a chance of passing the tests and obtaining more information than a negligible
fraction of the indices. As the limit approaches infinity, Bob’s likelyhood of passing
all the tests becomes low according to Corollary 3.5. Furthermore, if Bob wants to
increase the certainty of guessing a query index, he would need to allow Alice to
know more data bits (as stated in the result of Lemma 3.10), which goes against
assumption 4.

Comparing the expression in definition 1.4 with equation 24 provides the follow-
ing upper bound for δ in our proposal.
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Corollary 3.11. The DI-QPQ proposal will either abort with high likelyhood (as
the limit approaches infinity), or dishonest Bob will be able to correctly guess, on
average, δ fraction from Il (the query index set of Alice) where,

δ ≤
(
l

N

)
(25)

In practice, the number of data bits in the database, N , is significantly larger
than the size of Il (i.e., l), with N approximately equal to ln for some positive
integer n. Using this information and equation 25, the following upper bound on
the value of δ can be obtained.

δ ≤ 1

l(n−1)
(26)

This equation shows that the value of δ is smaller than l in our DI-QPQ proposal.

3.4. Comparison with the QPQ scheme [5]. Recently, a DI scheme was pro-
posed in [5] addressing the same problem of Quantum Private Query. Here we
mention a comparative study between the full DI proposal of the QPQ scheme [35]
mentioned in this paper and the full DI-QPQ scheme mentioned in [5].

• Total number of samples: In the DI-QPQ scheme mentioned in [5], there
are total 6 phases namely entanglement distribution phase, source device ver-
ification phase, DI testing phase for Bob’s measurement device, DI testing
phase for Alice’s measurement device, key establishment phase and private
query phase. On the other hand, in our proposed DI version of Yang et
al. [35] QPQ scheme, there are total 4 phases namely source device and Bob’s
measurement device verification phase, Alice’s measurement device verifica-
tion phase, key generation phase and private query phase. For consistency and
simplicity of comparison, here we consider that each of the protocols starts
with N number of samples (i.e., states) and whenever Alice and Bob choose
some samples for testing purpose, they choose γ fraction of instances all the
time (i.e., for the scheme [5], here we consider γ1 = γ2 = γ3 = γ). Here we
show that if Alice and Bob starts with same number of initial states (i.e.,
N) for both the protocols and choose γ fraction of samples for all the testing
phases (how the specific value of γ is chosen from the set [0, 1] is mentioned
in Appendix A), then Alice and Bob can use more number of samples in the
private query phase for this proposed full DI version of the QPQ scheme [35]
as compared to the number of samples used in private query phase for the
DI-QPQ scheme [5].

So, for the DI-QPQ protocol mentioned in [5], considering K = N and
γ1 = γ2 = γ3 = γ, Alice and Bob first chooses γN samples for their local
CHSHtest which certifies the given states. Next in OBStest, each of Alice
and Bob independently chooses γ

2 (N − γN) samples randomly from the rest
(N − γN) states to certify Bob’s measurement device. So, the total number
of samples used in the OBStest is γ(N − γN). Next in the DI testing phase
for Alice’s measurement device, Alice chooses γ fraction of samples randomly
from the rest (1 − γ)(N − γN) samples to certify her measurement device.
Atlast, the rest [(1− γ)(N − γN)− γ(1− γ)(N − γN)] = (1− γ)3N samples
are used for private query phase. This implies that in the DI-QPQ scheme [5],
the server Bob can generate a raw key of length (1−γ)3N bits using N number
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of states. So, if we consider that in the QPQ scheme [5], Alice and Bob use
Fold fraction of initial samples for private query phase then Fold = (1− γ)3.

Similarly, for the full DI version of the QPQ scheme [35] mentioned here,
considering K = N and γ1 = γ2 = γ, Bob and Alice first chooses γN samples
randomly for their local TiltedCHSH test which certifies the given states and

Bob’s measurement device. Each of Alice and Bob then chooses γ(N−γN)
2

samples randomly from the rest (N − γN) states for OBStestAlice which
certifies Alice’s measurement device. Atlast, the rest (N−γN)−γ(N−γN) =
(1−γ)2N samples are used for key generation. This implies that in the full DI
version of the QPQ scheme [35] mentioned here, the server Bob can generate
(1 − γ)2N raw key bits using N number of states. So, if we consider that
in this scheme, Alice and Bob use Fnew fraction of initial samples for private
query phase then Fnew = (1− γ)2.

A comparative study between the number of samples used for raw key
generation in two different protocols for different values of γ is shown in Figure
4. From this figure, it is clear that for any value of γ (where γ ∈ (0, 1)), the
size of the raw key generated in the proposed full DI version of the QPQ
scheme [35] is always greater than the size of the raw key generated in the
DI-QPQ scheme [5]. This implies that to generate a raw key of a particular
size, the DI-QPQ scheme mentioned in [5] requires more number of initial
samples as compared to the full DI version of the QPQ scheme [35] mentioned
here. So, in terms of the total number of samples, this full DI version of the
QPQ scheme [35] is more efficient as compared to the DI-QPQ scheme [5].

Figure 4. Comparison between the fraction of samples used for
raw key generation in two different protocols for different values of
γ

• Projective measurement Vs. POVM: The DI-QPQ schemes in this pa-
per and in [5] are QKD-based, using non-orthogonal state distinction for key
generation. In [5], the client uses POVM measurements to distinguish non-
orthogonal states, while this paper’s full DI version of the Yang et al. QPQ
scheme uses projective measurements.
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Although it is well-known that POVM measurements can be implemented
as a projective measurements in the higher dimension, it requires additional
gates as compared to the projective measurements in actual dimension. This
implies that the implementation of POVM measurement is complicated as
compared to the projective measurement. So, from the viewpoint of practical
implementation of the measurement devices, the full DI version of Yang et al.
scheme mentioned here is more efficient as compared to the DI-QPQ scheme
mentioned in [5].

• It is well-known that the maximally entangled states are easy to prepare as
compared to the non-maximally entangled states. The DI-QPQ scheme men-
tioned in [5] uses maximally entangled states whereas the full DI version of
the QPQ scheme [35] mentioned here uses non-maximally entangled states.
So, from the viewpoint of practical implementation of the source device, the
DI-QPQ scheme mentioned in [5] is more efficient as compared to the DI-QPQ
schemes mentioned in this work.

4. Full DI proposal for a modified version of the QPQ scheme [35]. From
the analysis of section 2, it is clear that for the QPQ scheme [35], the client Alice
can retrieve more number of database bits in a single query, if she performs optimal
POVM measurement at her side instead of the projective measurements mentioned
in [35]. In this direction, here we propose a full DI protocol for a modified version
of [35] where the client Alice can retrieve optimal number of raw key bits at her
end.

We divide this entire section into two subsections. In the first subsection, we
propose different steps of our modified DI-QPQ scheme and in the last subsection,
we mention the security related issues of this modified proposal. The assumptions
for this modified DI-QPQ scheme is also same as the assumptions of our previous
full DI-QPQ proposal (which are mentioned in subsection III A).

4.1. Modified full DI protocol. Like the previous DI proposal, here also we
divide the entire protocol into four phases based on the functionality. The first
phase which certifies the state generation device and Bob’s measurement device is
termed Source Device and Bob’s Measurement Device Verification Phase. The next
phase certifies the measurement devices for the client Alice and is termed Alice’s
Measurement Device Verification Phase. After successful completion of these two
testing phases, Bob and Alice conclude that the states given to them are of the
specified form and their measurement devices measure correctly in the specified
bases (here ’specified’ refers to the state and measurement bases mentioned in this
modified QPQ proposal). After these testing phases, Bob and Alice proceed to the
Key Generation Phase where Bob generates a key and Alice knows some bits of that
key such that Bob can not know anything about Alice’s known key bits. At last,
they proceed to the private query phase where Bob encrypts the entire database
using the key generated in the key generation phase and sends it to Alice. Alice
then decrypts the intended bits of the database using her partial knowledge about
the final key bits.

Now we describe different steps of our entire protocol. Note that like our previous
scheme, here also we consider that there is no channel noise i.e., all the operations
are perfect.
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Algorithm 3: KeyGenAlice(S)

• For each index i ∈ S, Alice performs the following steps-
1. Alice uses the measurement device D = {D0, D1, D2} to measure her

qubit of the shared state indexed by i.
2. Alice concludes the raw key bit indexed by i as 0(1) if she gets the

measurement outcome D0(D1) for the shared state indexed by i.
3. Alice remains uncertain about the raw key bit indexed by i if she gets

the measurement outcome D2 for the shared state indexed by i.

Algorithm 4: POVMtestAlice(S)

• For each index i ∈ S, Bob and Alice perform the following steps-
1. Bob first declares the value of Ri (i.e., the raw key bit indexed by i).
2. Whenever Ri = 0 (Ri = 1), Alice considers that the state at her side is
ρ0 (ρ1).

• Alice then computes the parameter

Ω =
∑

Ri,RAi∈{0,1}

(−1)Ri⊕RAiTr[DRAi
ρRi ]

where DRAi
is Alice’s measurement outcome in KeyGenAlice() for the i-th

instance.
• If for the set S,

Ω =
2 sin2 θ

(1 + cos θ)

then they continue with the protocol, otherwise they abort.

Source Device and Bob’s Measurement Device Verification Phase:

1. Bob starts with K (we assume here that K is asymptotically large) number of
states (say |ψ〉BA) provided by the third party and shares those states with
Alice in such a way that the first particle of each state corresponds to Bob
and the second particle corresponds to Alice.

2. Bob chooses γ1K
2 instances randomly from these K shared states (in practice,

how Bob and Alice choose the specific value of γ1 from the set [0, 1] is men-
tioned in Appendix A), declares those instances publicly and constructs the
set ΓBCHSH with these chosen instances.

3. For all the instances in ΓBCHSH, Alice sends her qubits to Bob.
4. For the instances in ΓBCHSH, Bob plays the role of the referee as well as the

two players and plays TiltedCHSH game.
5. For every i-th sample in ΓBCHSH, Bob randomly generates input bits xi and yi

for his two measurement devices (these devices act as separate parties without
any communication), with xi, yi ∈ 0, 1.

6. Bob performs TiltedCHSH(ΓBCHSH, Bob), according to the procedure outlined
in algorithm 1 for the set ΓBCHSH.

7. If Bob passes this TiltedCHSH(ΓBCHSH, Bob) test then both Alice and Bob
proceed further, otherwise they abort.
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8. From the rest
(
K − γ1K

2

)
shared states, Alice randomly chooses γ1K

2 (in prac-

tice, how Bob and Alice choose the specific value of γ1 from the set [0, 1] is
mentioned in Appendix A) instances, declares those instances publicly and
constructs the set ΓACHSH with these chosen instances.

9. For all the instances in ΓACHSH, Bob sends his qubits to Alice.
10. For these instances in ΓACHSH, Alice plays the role of the referee as well as the

two players and plays TiltedCHSH game.
11. For every i-th sample in ΓACHSH, Alice randomly generates input bits xi and yi

for her two measurement devices (these devices act as separate parties without
any communication), with xi, yi ∈ 0, 1.

12. Alice performs TiltedCHSH(ΓACHSH, Alice), according to the procedure out-
lined in algorithm 1 for the set ΓACHSH.

13. If Alice passes the TiltedCHSH(ΓACHSH, Alice) test then both Alice and Bob
proceed to the next phase where Alice self-tests her measurement device.

Alice’s Measurement Device Verification Phase:

• Alice and Bob consider the rest (K − γ1K) samples and construct a set Γtest

• For 1 ≤ i ≤ |Γtest|, Bob does the following-
– Bob applies measurement operator B0

0 or B0
1 randomly on his particle of

the shared state indexed by i and generates the output bit bi = 0 and
bi = 1 respectively.

– If the outcome of Bob’s device for the shared state indexed by i is bi = 0,
Bob considers the raw key bit indexed by i as Ri = 0.

– If the outcome of Bob’s device for the shared state indexed by i is bi = 1,
Bob considers the raw key bit indexed by i as Ri = 1.

• Alice chooses γ2|Γtest| instances (in practice, how Alice chooses the specific
value of γ2 from the set [0, 1] is mentioned in Appendix A) randomly from
these |Γtest| states, constructs a set ΓPOVM with those samples and declares
those instances (Note that no commitment scheme is required here like our
previous proposal as in this modified scheme, Alice is performing optimal
individual measurements at her end. So, Alice can’t retrieve any additional
bits in the key generation phase by performing any other measurements. Alice
can at most perform joint measurements to retrieve the final key bits instead
of the individual raw key bits. However, these optimal joint measurements
are already shown to be inconclusive [19, 5] and are of no use to Alice).

• Alice first performs KeyGenAlice(ΓPOVM), according to the procedure intro-
duced in algorithm 3 for the set ΓPOVM.

• Bob and Alice then perform POVMtestAlice(ΓPOVM), according to the pro-
cedure introduced in algorithm 4 for the same set ΓPOVM.

• If Alice and Bob pass the POVMtestAlice(ΓPOVM) then they proceed to the
next phase of the protocol where they generate the shared key.

Key generation phase:

• Alice and Bob consider the rest (|Γtest| − |ΓPOVM|) samples, construct a set
ΓQPQ with those instances and do the following-

1. Alice performs KeyGenAlice(ΓQPQ), as mentioned in algorithm 3 for the
set ΓQPQ.

2. Bob already generates the raw key bits for each of the instances in ΓQPQ.
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Private query phase:

• Alice and Bob then use classical methods to process the raw key and move
to the private query phase described in [35] (detailed procedure is already
mentioned in the previous proposal of this paper).

A visual illustration of different steps of this full device-independent proposal for
a modification of the QPQ scheme [35] is depicted in Figure 5.

Figure 5. Visual representation of our modified DI-QPQ scheme

4.2. Analysis of the modified scheme: Here, we address the functionality of
this proposal. At first, we prove its correctness, and next, we discuss the security
aspects.
4.2.1. Correctness of our modified scheme: First, we prove the correctness of this
modified scheme.

Theorem 4.1. If the modified proposal is implemented honestly, then after the key
generation phase, Alice is able to retrieve only (1− cos θ) fraction of the entire raw
key.

Proof. After the key generation phase, Bob and Alice share |ΓQPQ| raw key bits.
These raw key bits were generated from |ΓQPQ| copies of shared entangled states
which are of the form

1√
2

(|0〉 |φ0〉+ |1〉 |φ1〉)

where, |φ0〉 = cos θ2 |0〉 + sin θ
2 |1〉 and |φ1〉 = cos θ2 |0〉 − sin θ

2 |1〉. Here θ may vary
from 0 to π

2 .
Bob and Alice generate these |ΓQPQ| many raw key bits as follows-
For each of the states in the set ΓQPQ, Bob measures his qubits in {|0〉 , |1〉}

basis. For any i-th instance, if Bob receives the outcome |0〉, he considers Ri = 0
and Ri = 1 otherwise (i.e., for outcome |1〉).

Now, Alice understands that after Bob’s measurement, her qubits corresponding
to each of the shared states collapse to either |φ0〉 or |φ1〉. However, to obtain the
value of the raw key bit, Alice has to distinguish these two states conclusively. As,
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|φ0〉 and |φ1〉 are non-orthogonal states (when θ 6= π
2 ), Alice cannot distinguish

these two states with certainty.
According to the strategy mentioned in this modified protocol, Alice chooses the

POVM {D0, D1, D2} for measurement. After measurement, if Alice receives the
outcome D0 for i-th instance, she concludes that Bob’s corresponding measurement
outcome was |0〉. In such case, Alice concludes that RAi = 0. Similarly, if Alice
receives the outcome D1 for i-th instance, she concludes that Bob’s corresponding
measurement outcome was |1〉. In such a case, Alice concludes that RAi = 1.
However, if the measurement outcome is D2, then Alice remains inconclusive about
the value of the raw key bit.

Now, we calculate the success probability of Alice in guessing each Ri correctly.
Let us assume that Pr(Dj | |φi〉) denotes the corresponding success probability of
getting the result Dj when the given state is |φi〉 i.e.,

Pr(Dj | |φi〉) = 〈φi|Dj |φi〉
We now calculate the corresponding success probabilities of getting different re-

sults for the states |φ0〉 and |φ1〉.
For |φ0〉, the success probabilities will be

Pr(D0| |φ0〉) = 〈φ0|D0 |φ0〉
= (1− cos θ)

Pr(D1| |φ0〉) = 〈φ0|D1 |φ0〉
= 0

Pr(D2| |φ0〉) = 〈φ0|D2 |φ0〉
= cos θ

Similarly, for the state |φ1〉, the success probabilities will be

Pr(D0| |φ1〉) = 〈φ1|D0 |φ1〉
= 0

Pr(D1| |φ1〉) = 〈φ1|D1 |φ1〉
= (1− cos θ)

Pr(D2| |φ0〉) = 〈φ1|D2 |φ1〉
= cos θ

We formalize all the conditional probabilities in table 1. Thus, the success prob-
ability of Alice in guessing Ri of Bob can be written as

Pr(RAi = Ri)

= Pr(RAi = 0, Ri = 0) + Pr(RAi = 1, Ri = 1)

= (1− cos θ).

So, the success rate of Alice in guessing each bit of Bob’s raw key in this modified
proposal’s key generation phase is (1 − cos θ), meaning she can determine with
certainty the positions of the correctly guessed bits and retrieve an average of (1−
cos θ) fraction of bits from the entire raw key.
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4.2.2. Estimation of parameters for private query phase: Considering the honest
implementation of this modified scheme, here we determine the values for different
parameters to ensure both user privacy and data privacy.

Estimation of the parameter θ for security purpose: Like our previous full DI ver-
sion of the QPQ scheme [35], here also the server Bob wants that for database
security, the client Alice should not know more than one final key bit. In this modi-
fied proposal, the server Bob has a raw key with kN many bits and the client Alice
can correctly guess each of those bits with probability around (1− cos θ). So, the
expected number of raw key bits that Alice can know in (1− cos θ)kN .

Then each of Alice and Bob XOR k number of raw key bits to generate every bit
of the final key at their end. So, Alice can correctly guess every bit of Bob’s final

key with probability around (1− cos θ)
k
.

Now, if FA denotes the number of final key bits known to Alice then we can
conclude that the expected value of FA will be,

E[FA] ≈ (1− cos θ)
k
N (27)

In this modified DI scheme, for dishonest Alice to pass DI testing phases, she
must measure correctly for all instances. Moreover, it is known that the optimal
probability in distinguishing two non orthogonal states is (1− cos θ), which means
dishonest Alice’s probability of correctly guessing a raw key bit and a final key bit
without causing the protocol to terminate is capped at (1−cos θ) and (1−cos θ)k, re-
spectively. That means, when the protocol doesn’t terminate, the expected number
of correctly guessed final key bits by dishonest Alice is at most limited by,

E[FA∗ ] ≤ (1− cos θ)
k
N (28)

Like the Yang et al [35] QPQ scheme, here also the database is encrypted with
the final key by performing bitwise XOR. Hence, in non abort scenario, the expected
maximum number of correctly guessed data bits by dishonest Alice in a single query
is limited to (1− cos θ)kN . i.e.,

E[DA∗ ] ≤ (1− cos θ)
k
N (29)

Now, like the previous proposal, here also for the protocol to continue, Alice
must know atleast one final key bit, while Bob wants Alice to know less than two
final key bits i.e.,

1 ≤ E[FA] < 2

This implies that,

1 ≤ (1− cos θ)
k
N < 2

1

N
≤ (1− cos θ)

k
<

2

N
(30)

These results boil down to the following conclusion.

Corollary 4.2. To ensure that the client Alice only knows less than two final key
bits and the protocol doesn’t terminate in this modified proposal, the server Bob must
select the values of θ and the parameter k such that,

1

N
≤ (1− cos θ)

k
<

2

N
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Estimation of the security parameter Pa and Pc : Proceeding to the similar way as
discussed in corollary 3.1, here we can assert that Alice can’t guess any final key
bit with probability

Pr(the protocol aborts) ≈ [1− (1− cos θ)k]N

≈ e−(1−cos θ)kN (31)

So, for the parameter Pa, we get the following upper bound for this modified
scheme.

Pa ≤ e−(1−cos θ)kN (32)

If Bob sets θ so that (1− cos θ)k = 1
N , then equation 30 and 32 yield

Pa ≤ e−1 (33)

This implies that this modified proposal has a small Pa value. So, the probability
of the protocol not aborting in the honest scenario is,

Pr(protocol doesn’t terminate in honest scenario)

≥ (1− e−1) (34)

Hence, this modified proposal has a high probability of not aborting in the honest
scenario.

Like the previous scheme, here also (proceeding to the similar way) one can
achieve the below mentioned bound on Pc for this modified scheme.

Pc ≥ [1− exp(−2ε2N)] (35)

where ε ≤ 1
2 for security purpose.

We now proceed to the security aspects of this modified proposal.

4.2.3. Security in device independent scenario: In this subsection, we discuss about
the DI security of this modified QPQ proposal. Based on the results obtained
from Theorem 4.3 and Theorem 4.4, here we conclude about the DI security of this
modified QPQ scheme.

Theorem 4.3 (DI testing of shared states and Bob’s measurement devices). In
the TiltedCHSH test of the source device and Bob’s measurement device verification
phaseof our modified proposal, either the devices achieve βB = 4√

1+sin2 θ
for both

Alice and Bob (i.e., the states provided by the third party are identical with the actual
states and Bob’s measurement device measures correctly in the {|0〉 , |1〉} basis) or
the scheme is likely to abort with high probability (as the limit approaches infinity).

Proof. This proof is same as the proof of theorem 3.3.

So, Theorem 4.3 guarantees that either the states shared between Alice and
Bob are of the specified form and Bob’s measurement device measures correctly
in {|0〉 , |1〉} basis or this modified scheme aborts with high likelyhood in the long
run. The next testing for full DI certification is done in Alice’s measurement de-
vice verification phase. This phase basically guarantees the functionality of Alice’s
POVM device. They lead to this phase whenever both of them successfully pass
the first DI testing phase. In this phase, Alice performs the POVM measurement
D = {D0, D1, D2} on the chosen states. From the measurement outcome, Alice
computes the value of the parameter Ω and checks whether this value is equal to
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2 sin2 θ
(1+cos θ) . Theorem 4.4 guarantees that either Alice measures correctly using the

measurement device {D0, D1, D2} (i.e., the devices achieve Ω = 2 sin2 θ
(1+cos θ) ) or this

modified proposal terminates with high probability (as the limit approaches infin-
ity).

Theorem 4.4 (DI Testing of Alice’s POVM D). POVMtestAlice either results in
a high probability of termination of this modified proposal (as the limit approaches

infinity), or it guarantees that Alice’s measurement devices attain Ω = 2 sin2 θ
(1+cos θ) ,

meaning they are of this specified form (up to a local unitary),

D0 =
1

(1 + cos θ)
(
∣∣φ⊥1 〉 〈φ⊥1 ∣∣)

D1 =
1

(1 + cos θ)
(
∣∣φ⊥0 〉 〈φ⊥0 ∣∣)

D2 = I−D0 −D1,

where
∣∣φ⊥1 〉 =

(
sin θ

2 |0〉+ cos θ2 |1〉
)

and
∣∣φ⊥0 〉 =

(
sin θ

2 |0〉 − cos θ2 |1〉
)
.

The detailed proof of this theorem is mentioned in Appendix D. In the proof,
we consider a general form of a single qubit three outcome POVM {D0, D1, D2}
and show that if the input states are chosen randomly between |φ0〉 = (cos θ2 |0〉 +

sin θ
2 |1〉) and |φ1〉 = (cos θ2 |0〉−sin θ

2 |1〉) then either Ω = 2 sin2 θ
(1+cos θ) i.e., {D0, D1, D2}

are of the specified form as mentioned in POVMtestAlice or this modified proposal
terminates with high likelyhood(as the limit approaches infinity).

Note that in our proof, we have not imposed any dimension bound like the self-
testing of POVM in a prepare and measure scenario in [34]. So, the devices that
perform a Neumark dilation of this mentioned POVM (i.e., the equivalent larger
projective measurement on both the original state and some ancilla system instead
of the actual POVM measurement) could still achieve the intended value of Ω. But
both of these operations produce the same output probabilities, which is sufficient
for the purposes of this work.

Like the previous full DI proposal of the QPQ scheme [35], here also one can argue
in a similar way that this modified scheme either terminates with high probability
(as the limit approaches infinity) or it certifies that the devices in this modified QPQ
proposal achieve the desired values of the parameters βB and Ω in the TiltedCHSH
test and POVMtestAlice respectively.

4.2.4. Security of database against dishonest alice: Here, we estimate the amount
of raw key bits guessed by dishonest Alice during the key generation phase of this
modified scheme. Similar to the result in Theorem 3.7, here also we can conclude
the following-

Theorem 4.5. For this modified DI-QPQ scheme, in the absence of POVMtestAl-
ice, dishonest Alice can retrieve, at most,

(
1
2 + 1

2 sin θ
)

fraction of the entire raw key,
inconclusively (i.e., the indices of the correctly guessed bits are unknown), during
the key generation phase.

The proof exactly follows from the proof of Theorem 5 in [5].
In this modified DI-QPQ proposal, Alice performs a particular POVM measure-

ment to distinguish the non-orthogonal states at her end which is also the optimal
measurement to distinguish that specified non-orthogonal states. Because of this



FULLY DEVICE INDEPENDENT QUANTUM PRIVATE QUERY 531

specific measurement, we can get a bound on the number of raw key bits guessed
(on average) by dishonest Alice in this proposed scheme.

Lemma 4.6. Either our modified protocol terminates with high probability in the
long run, or dishonest Alice (A∗) can retrieve (on average) (1−cos θ) fraction from
the entire raw key after the key generation phase of this modified scheme.

The proof of this Lemma is based on the Theorem 4.1 which establishes the
correctness of this modified scheme.

One can also note that this (1−cos θ) is the optimal probability (this optimality is
proven in [18]) of success in distinguishing two non-orthogonal states with certainty
(which is the main objective of the client Alice here in this modfied proposal).

Now, proceeding to the similar way as mentioned in corollary 3.9, the bounds
on τ and Pd can be achieved for this modified scheme. At first, equation 29 and
definition 1.3 yield the following bound on τ .

Corollary 4.7. In the case of dishonest Alice and honest Bob, either this modified
proposal will likely abort (as the limit approaches infinity), or dishonest Alice will,
on average, be able to obtain τ fraction of bits from the entire final key, where

τ ≤ (1− cos θ)k (36)

By using the upper bound from equation 30 in place of (1−cos θ)k, we can obtain
the following upper limit for the value of τ .

τ <
2

N
(37)

It shows that this modified proposal results in τ being significantly smaller than
N .

4.2.5. Security of user against dishonest bob:
In this subsection, we estimate the number indices that dishonest Bob can cor-

rectly guess from Il (the query index set of Alice) after successfully passess the key
generation phase of this modified scheme. Similar to the result in Lemma 3.10, here
also we can conclude the following-

Lemma 4.8. Dishonest Bob can correctly guess a maximum of l
N fraction of the

indices from the query set Il of Alice after l queries to the N -bit database (in this
modified proposal), i.e, for a particular index i,

Pr(Bob correctly guesses i ∈ Il) ≤
l

N
The proof of Lemma 4.8 is identical to the proof of Lemma 3.10.
Like the discussion in corollary 3.11, bounds on δ and Pu can also be obtained

for this modified proposal.

Corollary 4.9. In dishonest Bob and honest Alice scenario of this modified DI-
QPQ proposal, the scheme will either abort with high likelyhood (as the limit ap-
proaches infinity), or dishonest Bob will be able to correctly guess, on average, δ
fraction of indices from Il (the query index set of Alice) where,

δ ≤ 1

l(n−1)
(38)

where n is a positive integer such that n > 1. From this relation, one can conclude
that δ is smaller than l for this modified proposal.
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5. Discussion and conclusion. Like most of the initial quantum cryptography
schemes, the security of the initial QPQ schemes also relies on the functionality of
the involved devices. Later, it was shown that if those devices don’t work accord-
ingly then some information may leak to the adversary. Recently, Maitra et al. [25]
first identified this loophole for the QPQ scheme [35] and suggested a tilted version
of the local CHSH test on top of the QPQ scheme [35] to certify the functionality
of the devices. However, their proposed local test at the server-side does not certify
the functionality of the client’s measurement device. Here in this present effort, we
exploit the proper self-testing mechanism of observables along with the local version
of the tilted CHSH test to certify the functionality of all the devices involved in the
QPQ scheme [35]. We also compare the performance of this full DI proposal of [35]
with the performance of our recent full DI-QPQ proposal in [5] and discuss relative
advantages of both these schemes. We further propose a device-independent scheme
for a modification of [35] where the client can retrieve the maximum conclusive raw
key bits. Here, based on some assumptions, we have strengthened the security of
the QPQ scheme [35] by providing a full DI proposal. Following the assumptions
from the recent DI oblivious transfer proposal in [9], here we assume that the de-
vices involved in our full DI proposals are independent and memoryless but it is
not a very practical assumption. Recently, there are some results for multi-round
protocols on bit commitment [3], oblivious transfer and bit commitment [11], weak
string erasure [21] etc. without the i.i.d. assumption. Although in [11] and [21],
there are bounded/noisy storage assumptions. There are also some results in the
single-shot setting (where the i.i.d. assumption is irrelevant) on bit commitment
and coin flipping [33], weak coin flipping [2], XOR oblivious transfer [23] etc. How-
ever, to the best of our knowledge, there is still no result on the DI scenario of the
distrustful primitive QPQ without the i.i.d assumption. We also consider here the
asymptotic scenario where no channel noise is there. Our future aim is to analyze
the performance of these QPQ schemes considering the channel noise. We are also
interested to remove the i.i.d assumption over the devices in our future works.

Acknowledgements. The authors would like to thank the anonymous reviewers
for their thoughtful and valuable comments that helped in improving the technical
as well as the editorial quality of this paper.

Appendix. Here we first revisit the technique of choosing the initial sample size
for this proposed schemes from the discussion in [5]. We also mention the proofs of
Theorem 3.3, Theorem 3.4 and Theorem 4.4 which confirm the device-independent
security of the above mentioned protocols. Atfirst in appendix A, we revisit the
method of choosing initial sample size and the values of γ’s in different phases from
the discsuuion in [5]. Next in appendix B, C and D, we restate Theorem 1, 2 and
8 respectively along with their proofs.

Appendix A: Choice of initial sample size in practice. Similar to the discus-
sion in [5], here in this section, we discuss the strategy of choosing the initial sample
size for the proposed DI-QPQ schemes in finite sample scenario. Although we have
assumed here that the channels are noiseless, in practice, there will be some channel
noise and the parties have to allow some deviation (from the actual values of the
testing parameters because of finite sample size) in each testing phase to certify the
devices.
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It is well known that the number of samples required to distinguish two events
having probabilities p and p(1 + ε) (for small ε) is approximately O( 1

pε2 ). One may

require approximately 64
pε2 samples to achieve a confidence of more than 99% in

distinguishing these two events. Recently, a more involved expression of the sample
size is derived in [6] using Chernoff-Hoeffding [17] bound (stated here in proposition
3.2).

We consider Xi = 1 whenever Bob and Alice win the i-th instance in the testing
phases of our proposed schemes, andXi = 0 otherwise. Now if we consider E[Xi] = p
and want to estimate the success probability p within an error margin of εp and
confidence 1 − η, then we can write (from the result mentioned in [6]) that the
required sample size mreq will be,

mreq ≥
1

2ε2p2
ln

1

η
(39)

From this expression of mreq, the two parties Bob and Alice can estimate the
expected number of samples that are required for a particular testing phase to
certify a device with certain accuracy and confidence.

Now, to ensure that each of Alice and Bob get the expected number of samples
in every testing phase (to conclude with chosen accuracy and confidence) of our
proposed schemes, they can choose their total initial sample size (i.e., the value of
K) as follows-

• Atfirst, before the start of the protocol, Bob and Alice (based on the protocol
description) calculate the minimum number of samples required (according to
the expression in inequality 39) in each testing phase to conclude with chosen
accuracy and confidence.

• Then they choose the value of k to calculate the total number of samples
required for the key generation phase.

• Atlast, they sum up all the number of samples required in every phase along
with the number of samples required in private query phase to calculate the
total initial sample size.

• After getting the total sample size, Bob and Alice proceed to each of the test-
ing phases (according to the protocol description), select the required number
of samples randomly from the shared instances and check for those chosen
samples whether the value of a predefined parameter lies within the inter-
val [V − εp, V + εp] where V is the actual value of the testing parameter in
honest scenario for asymptotically large number of samples. If this is the
case, then with accuracy εp and chosen confidence η, they conclude about the
functionality of their devices.

As an example, here we demonstrate the method of choosing samples for the
first phase namely source device and Bob’s measurement device verification phase.
Before the start of the protocol, Bob and Alice choose the accuracy and confidence
parameter for this phase with which they want to certify the source device and Bob’s
measurement device and let n1 be the required number of samples for this phase.
Now, similar to this source device and Bob’s measurement device verification phase,
they calculate the required number of samples for the other phases also and from
that calculate the value of K i.e., the total number of samples required initially.

Bob and Alice then calculate the value of γ1 such that,

n1 = γ1K
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After getting the value of γ1, Bob first chooses γ1K
2 number of samples randomly

from the K shared states and performs the TiltedCHSH test locally to certify the

states and his devices. Then, from the rest
(
K − γ1K

2

)
samples, Alice randomly

chooses γ1K
2 number of samples and performs the TiltedCHSH test locally to certify

the states. In this similar way, they choose the samples for the remaining testing
phases.

Note that this is a specific way of choosing samples that we demonstrate here
from the several other possibilities. It is needless to say that one may follow any
other strategies for choosing samples in different testing phases.

Appendix B: Statement and proof of Theorem 3.3.

Statement of Theorem 3.3: In the TiltedCHSH test of the source device and
Bob’s measurement device verification phase, either the devices achieve
βB = 4√

1+sin2 θ
for both Alice and Bob (i.e., the states provided by the third party

are identical with the actual states as mentioned in the QPQ scheme [35] and Bob’s
measurement device measures correctly in the {|0〉 , |1〉} basis) or the scheme is likely
to abort with high probability (as the limit approaches infinity).

Proof. Here we prove the result considering that the game is played at the party P’s
end (one can replace P with Alice or Bob for the specific instances). Suppose, the
first measurement operators of P are {Byb }y,b∈{0,1}, for the input y and the output

b and the second measurement operators of P are {A′xa }x,a∈{0,1}, for the input x
and the output a. Here, P’s observable corresponding to the input y ∈ {0, 1} is,

By =
∑

b∈{0,1}

(−1)bByb . (40)

Similarly, P’s observable corresponding to the input x ∈ {0, 1} is,

A′x =
∑

a∈{0,1}

(−1)aA
′x
a . (41)

Note that, in the TiltedCHSH test, the fraction βB is being computed as follows,

βB = αB
∑

a∈{0,1}

(−1)a〈ψBA|I⊗A
′0
a |ψBA〉 (42)

+
∑

x,y,a,b∈{0,1}

(−1)dxyab〈ψBA|Byb ⊗A
′x
a |ψBA〉 (43)

= [〈ψBA|W 1
B|ψBA〉+ 〈ψBA|W 2

B|ψBA〉] (44)

= 〈ψBA|WB|ψBA〉 (45)

where W 1
B := αB

∑
a∈{0,1}(−1)aI ⊗ A′0a , W 2

B :=
(∑

x,y,a,b∈{0,1}(−1)dxyabByb ⊗A
′x
a

)
are the two operators corresponding to βB of the TitedCHSH test and WB :=
W 1
B +W 2

B. We can rewrite the expression of W 1
B in the following way,

W 1
B = αB

∑
a∈{0,1}

(−1)aI⊗A
′0
a

= αB(I⊗A
′0
0 − I⊗A

′0
1 )

= αB[I⊗ (A
′0
0 −A

′0
1 )]
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By substituting the value of (A
′0
0 −A

′0
1 ) from the equation 41 on the right-hand

side of the above expression we get,

W 1
B = αB(I⊗A′0). (46)

Similarly, We can also rewrite the expression of W 2
B in following way,

W 2
B =

 ∑
x=0

y,a,b∈{0,1}

(−1)dxyabByb ⊗A
′0
a

+

 ∑
x=1

y,a,b∈{0,1}

(−1)dxyabByb ⊗A
′1
a


= W 02

B +W 12
B (47)

where W 02
B :=

(∑
x=0

y,a,b∈{0,1}
(−1)dxyabByb ⊗A

′0
a

)
and W 12

B :=(∑
x=1

y,a,b∈{0,1}
(−1)dxyabByb ⊗A

′1
a

)
. Note that, we can simplify further the expres-

sion of W 02
B in the following way,

W 02
B =

∑
x=0

y,a,b∈{0,1}

(−1)dxyabByb ⊗A
′0
a

=
∑
x=0

y,a,b∈{0,1}
a⊕b=0

Byb ⊗A
′0
a −

∑
x=0

y,a,b∈{0,1}
a⊕b 6=0

Byb ⊗A
′0
a

= (B0
0 ⊗A

′0
0 +B1

0 ⊗A
′0
0 +B0

1 ⊗A
′0
1 +B1

1 ⊗A
′0
1 )−

(B0
1 ⊗A

′0
0 +B1

1 ⊗A
′0
0 +B0

0 ⊗A
′0
1 +B1

0 ⊗A
′0
1 )

= [(B0
0 −B0

1)⊗A
′0
0 − (B0

0 −B0
1)⊗A

′0
0 +

(B1
0 −B1

1)⊗A
′0
0 − (B1

0 −B1
1)⊗A

′0
1 ]

= [(B0
0 −B0

1)⊗ (A
′0
0 −A

′0
1 )+

(B1
0 −B1

1)⊗ (A
′0
0 −A

′0
1 )]

= [(B0
0 −B0

1) + (B1
0 −B1

1)]⊗ (A
′0
0 −A

′0
1 ).

By substituting the values of (A
′0
0 − A

′0
1 ), (B0

0 − B0
1) and (B1

0 − B1
1) from the

equation 41 and the equation 40 on the right-hand side of the above expression we
get,

W 02
B = (B0 +B1)⊗A′0. (48)

Using similar approach we get the following simplified version of the expression
W 12
B .

W 12
B = (B0 −B1)⊗A′1. (49)

By substituting the values ofW 02
B andW 12

B from the equation 48 and the equation
49 to the equation 47 we get,

W 2
B = (B0 +B1)⊗A′0 + (B0 −B1)⊗A′0. (50)
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So, the right-hand side of the TiltedCHSH operator WB is of the form,

WB = αB(I⊗A′0) + (B0 +B1)⊗A′0 + (B0 −B1)⊗A′1 (51)

Note that this TiltedCHSH operator is exactly of the same form as the Tilted
CHSH operator mentioned in [1]. Also, the states mentioned in our protocol can be
obtained from the non-maximally entangled states mentioned in [1] by just applying
a local unitary (hadamard gate) on the first qubit of the states mentioned in [1].
So, by following the same strategy as mentioned in [1], we can derive the following
upper bound on the value of βB.

βB ≤
4√

1 + sin2 θ
(52)

One can easily check that for the TiltedCHSH test, the observables of P are of
the following form,

B0 = σz B1 = σx (53)

A′0 = cosµσz + sinµσx A′1 = cosµσz − sinµσx (54)

It is already mentioned in [4] that the maximum value of the Tilted CHSH
operator (here βB = 4√

1+sin2 θ
) certifies that the states are of the form cos θ2 |00〉+

sin θ
2 |11〉 and the observables of P’s are of the same form as mentioned in our

TiltedCHSH test. As the states shared in our scheme is just a local isometry of
the states mentioned in [4], we can easily conclude from the results mentioned in
[4] that the maximum value of βB (i.e., βB = 4√

1+sin2 θ
) certifies the states in our

scheme along with the standard basis of Bob’s measurement device. According to
our DI proposal, whenever the devices don’t achieve the value βB = 4√

1+sin2 θ
, the

protocol aborts. This concludes the proof.

Appendix C: Statement and proof of Theorem 3.4.

Statement of Theorem 3.4: In OBStestAlice, either Alice’s measurement de-
vices achieve the value of the parameter βA = 1

2 sin θ (i.e., her devices correctly

measure in {|φ0〉 ,
∣∣φ⊥0 〉} and {|φ1〉 ,

∣∣φ⊥1 〉} basis) or the protocol terminates with a
high likelihood of failure (as the limit approaches infinity).

Proof. It is already mentioned in the proof of theorem 3.3 that Alice’s measurement
operators are {Axa}x,a∈{0,1}, corresponding to the input x and output a and Bob’s
measurement operators are {Byb }y,b∈{0,1}, corresponding to the input y and output
b. So, Alice’s observable, corresponding to the input x ∈ {0, 1} is,

Ax =
∑

a∈{0,1}

(−1)aAxa. (55)

Similarly, Bob’s observable corresponding to the input y ∈ {0, 1} is,

By =
∑

b∈{0,1}

(−1)bByb . (56)

Note that in the OBStestAlice, the fraction βA is being computed as follows,

βA =
1

4

∑
x,y,a,b∈{0,1}

(−1)d
′
xyabα1⊕y

A 〈ψ|Byb ⊗A
x
a|ψ〉 (57)
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=
1

4
〈ψ|WA|ψ〉, (58)

where WA :=
(∑

x,y,a,b∈{0,1}(−1)d
′
xyabα1⊕yByb ⊗Axa

)
which is the operator corre-

sponding to βA of OBStestAlice. Now, proceeding like the similar way as mentioned
in the derivation of the simplified form for operator W 2

B in the proof of theorem 3.3,
here we can get the following expression of WA,

WA = αAB0 ⊗ (A0 +A1) +B1 ⊗ (A0 −A1). (59)

Note that, the right-hand side of the OBStestAlice operator WA is almost of the
same form as the tilted CHSH operator, described in [20].

So the expression of W 2
A can be written as,

W 2
A = α2

AB
2
0 ⊗ (A2

0 +A2
1 + {A0, A1})

+B2
1 ⊗ (A2

0 +A2
1 − {A0, A1})

= (α2
AB

2
0 +B2

1 + αA{B0, B1})⊗A2
0

+ (α2
AB

2
0 +B2

1 − αA{B0, B1})⊗A2
1

+ (α2
AB

2
0 −B2

1)⊗ {A0, A1} − αA[B0, B1]⊗ [A0, A1].

Using the property B2
j ≤ I, we can rewrite this expression as,

W 2
A ≤ [(α2

A + 1).I + αA{B0, B1}]⊗A2
0

+ [(α2
A + 1).I− αA{B0, B1}]⊗A2

1

+ I⊗ (α2
A − 1){A0, A1} − α[B0, B1]⊗ [A0, A1].

Since −2.I ≤ {B0, B1} ≤ 2.I, we have,

[(α2
A + 1).I± αA{B0, B1}] ≥ 0

We can use the property A2
k ≤ I and get the following simplified expression

W 2
A ≤ 2(α2

A + 1).I⊗ I + I⊗ (α2
A − 1){A0, A1}

− α[B0, B1]⊗ [A0, A1]

We can further upper bound the commutators by their matrix moduli and use
the relation |[B0, B1]| ≤ 2.I to get the following expression

W 2
A ≤ 2(α2

A + 1).I⊗ I + TαA ⊗ I (60)

where TαA = (α2
A − 1){A0, A1}+ 2αA|[A0, A1]|

Now the expression of TαA can also be upper bounded by upper bounding the
anticommutators by its matrix modulus. So, the value of TαA will be upper bounded
by,

TαA ≤ (α2
A − 1)|{A0, A1}|+ 2αA|[A0, A1]|

Again one can easily check that,

|{A0, A1}|2 + |[A0, A1]|2

= |A0A1 +A1A0|2 + |A0A1 −A1A0|2

= (A0A1 +A1A0)†(A0A1 +A1A0)

+ (A0A1 +A1A0)†(A0A1 +A1A0)

= 2(A0A1)†(A0A1) + 2(A1A0)†(A1A0) (61)



538 JYOTIRMOY BASAK AND KAUSHIK CHAKRABORTY

Let us consider that the measurement operators are projective i.e., (Asc)
2 = Asc

and (Brb )2 = Brb . Now for the projectors A0
0 and A0

1, (A0
0 + A0

1) = I. From this
relation we can write,

(A0
0 +A0

1)(A0
0 +A0

1)† = I

A0
0.A

0
0
†

+A0
0.A

0
1
†

+A0
1.A

0
0
†

+A0
1.A

0
1
†

= I

(A0
0 +A0

1) + (A0
0.A

0
1
†

+A0
1.A

0
0
†
) = I

This implies,

(A0
0.A

0
1
†

+A0
1.A

0
0
†
) = 0

Now A0 = (A0
0 −A0

1). From this we can get,

A0A
†
0 = (A0

0 −A0
1)(A0

0 −A0
1)†

= A0
0.A

0
0
† −A0

0.A
0
1
† −A0

1.A
0
0
†

+A0
1.A

0
1
†

= (A0
0 +A0

1)− (A0
0.A

0
1
†

+A0
1.A

0
0
†
)

= I + 0 = I

Similarly, it can be shown that, A1A
†
1 = A†1A1 = I.

So, from equation 61, we can write that for unitary observables A0 and A1,

|{A0, A1}|2 + |[A0, A1]|2 = 2(A0A1)†(A0A1)

+ 2(A1A0)†(A1A0)

= 2I + 2I = 4I
This implies,

|{A0, A1}| =
√

4.I− |[A0, A1]|2

So, the simplified expression of TαA will be of the form

TαA = (α2
A − 1)

√
4.I− |[A0, A1]|2 + 2αA|[A0, A1]|

Now one can easily check that the value of |[A0, A1]| for which the value of TαA
becomes maximum is |[A0, A1]| = 4αA

(α2
A+1)

.I and the corresponding value of TαA is

2(α2
A + 1).I. This implies that,

TαA = 2(α2
A + 1).I

From this value of TαA and from the expression of W 2
A mentioned in equation

60, we can easily write that the value of WA is upper bounded by the following
quantity-

WA ≤
√

2(α2
A + 1)I⊗ I + TαA ⊗ I (62)

where TαA = 2(α2
A + 1).I.

Now, the value βA obtained in OBStestAlice of our algorithm can be written

alternatively as βA = Tr(WAρBA)
4 where ρBA is the density matrix representation of

the shared states |ψ〉BA i.e., ρBA = |ψ〉BA 〈ψ|. From this expression of βA, one can
easily derive that the value of β2

A is upper bounded by the following quantity,

β2
A ≤

Tr(W 2
AρBA)

16
(63)
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Now if we assume tαA := 1
4Tr(TαAρA)− 1

2 (α2
A−1) (where ρA is the reduced state

at Alice’s side) then using this value of tα along with the value of WA obtained from
expression 62 and the upper bound on the value of β2

A, we can write that the βA
value mentioned in OBStestAlice is upper bounded by the following quantity,

βA ≤
√
α2
A + tαA

2
, (64)

where, tαA := 1
4Tr(TαAρA)− 1

2 (α2
A − 1).

Now here, the observables are projective (i.e., A2
j = I) and the anticommutator

{A0, A1} is a positive semi definite operator. Since we have already shown that
the value of the anti-hermitian operator |[A0, A1]| is |[A0, A1]| = 4αA

(α2
A+1)

.I for the

maximum value of TαA , the spectral decomposition of [A0, A1] can be written as,

[A0, A1] =
4αA.i

(α2
A + 1)

(PA+ − PA− )

for some orthogonal projectors PA+ and PA− such that (PA+ + PA− ) = I. As it
is well-known that for projective observables, the commutator holds the property
A0[A0, A1]A0 = −[A0, A1], we can easily conclude that A0P

A
±A0 = PA∓ . Let us

consider that {
∣∣e0
j

〉
}j is an orthonormal basis for the support of PA+ and {

∣∣e1
j

〉
}j is

an orthonormal basis for the support of PA− where
∣∣e1
j

〉
= A0

∣∣e0
j

〉
. We define the

unitary operator U0 as

U0

∣∣edj〉 =
1√
2

[|0〉+ (−1)di |1〉] |j〉

for d ∈ {0, 1}. Then we can easily verify that,

U0[A0, A1]U†0 =
4αA.i

(α2
A + 1)

σY ⊗ I

Since {I, σX , σY , σZ} constitute an operator basis for linear operators acting on
C2, without loss of generality we can write

U0A0U
†
0 = I⊗K0 + σX ⊗Kx + σY ⊗Ky + σZ ⊗Kz

for some hermitian operator K0,Kx,Ky,Kz. For projective observable A0, one can
easily check that {A0, [A0, A1]} = 0. This relation satisfies only when K0 = Ky = 0.
As A2

0 = I, Kx and Kz must satisfy the relation

K2
x +K2

z = I and [Kx,Kz] = 0

So, we can easily write Kx and Kz in the following form.

Kx =
∑
j

sin 2γj |j〉 〈j|

Kz =
∑
j

cos 2γj |j〉 〈j|

for some angle γj and some orthonormal basis {|j〉}. This implies that,

U0A0U
†
0 =

∑
j

(sin γjσX + cos γjσZ)⊗ |j〉 〈j|

We now consider the following controlled unitary to align the qubit observables.

U1 =
∑
j

exp(−i0.σY )⊗ |j〉 〈j|
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Now for this defined unitary operator, one can easily check that,

U1U0A0U
†
0U
†
1 = (sin γjσX + cos γjσZ)⊗ I

U1U0[A0, A1]U†0U
†
1 =

4αA.i

(α2
A + 1)

σY ⊗ I

Like observable A0, an analogous reasoning can also be applied for observable
A1 and from that, without loss of generality we can write

U1U0A1U
†
0U
†
1 = σX ⊗K ′x + σZ ⊗K ′z

Since the commutators are positive semi definite and the observables are projec-
tive, we can easily check that

{A0, A1} = |{A0, A1}| =
√

4.I− |[A0, A1]|2

=
2(α2
A − 1)

(α2
A + 1)

.I

Now we define 2γj := arccos
(
α2
A−1

α2
A+1

)
= 0. From this relation, imposing consis-

tency on the anticommutator, we get,

K ′x sin γj +K ′z cos γj = cos 2γj (65)

On the other hand, imposing consistency on the commutator, we get,

K ′x cos γj −K ′z sin γj = − sin 2γj (66)

Now, solving equation 65 and 66, we get,

K ′x = sin γj and K ′z = cos γj

From the relation 2γj := arccos
(
α2
A−1

α2
A+1

)
= 0, we can get the value of αA which

is

αA = cot γj

For this value of αA, we can easily derive that tαA = 1. This implies that the
value of βA corresponding to these observables A0 and A1 will be,

βA =
1

2 sin γj
. (67)

If we consider UA = U†0U
†
1 then the observables A0 and A1 will be of the form

A0 = UA(cos γjσZ + sin γjσX ⊗ I)U†A
A1 = UA(cos γjσZ − sin γjσX ⊗ I)U†A

Setting γj = θ shows that in OBStestAlice, if the value of the parameter βA is
equal to 1

2 sin θ , then the measurement operators at Alice’s side are same as the one
described in the OBStestAlice. In our DI proposal, whenever the devices involved
in OBStestAlice do not achieve the value βA = 1

2 sin θ , the protocol aborts. This
concludes the proof.
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Appendix D: Statement and proof of Theorem 4.4.

Statement of Theorem 4.4: POVMtestAlice either results in a high probability
of termination of this modified proposal (as the limit approaches infinity), or it

guarantees that Alice’s measurement devices attain Ω = 2 sin2 θ
(1+cos θ) , meaning they are

of this specified form (up to a local unitary),

D0 =
1

(1 + cos θ)
(
∣∣φ⊥1 〉 〈φ⊥1 ∣∣)

D1 =
1

(1 + cos θ)
(
∣∣φ⊥0 〉 〈φ⊥0 ∣∣)

D2 = I−D0 −D1,

where
∣∣φ⊥1 〉 =

(
sin θ

2 |0〉+ cos θ2 |1〉
)

and
∣∣φ⊥0 〉 =

(
sin θ

2 |0〉 − cos θ2 |1〉
)
.

Proof. In algorithm KeyGenAlice of this modified protocol, Alice applies the POVM
D on a single qubit state ρRi (where Ri is the raw key bit indexed by i at Bob’s side).
So, without any loss of generality we can assume that Di ∈ D has the following
form,

Di = λi(I + ~di.~σ), (68)

where ~di = [di0, di1, di2] and it is the Bloch vector with length at most one, ~σ =
[σX , σY , σZ ] are the Pauli matrices and λi ≥ 0.

In this case, one may wonder how we can fix the dimension of Di here in the
proof in DI scenario? The answer to this question is that here we are able to fix
the dimension of Di and choose this particular general form because of the tests
mentioned earlier in the source device and Bob’s measurement device verification
phase (corresponding result mentioned in Theorem 4.3) which certifies that the
states shared between Alice and Bob are of the specified form (upto a unitary) as
mentioned in [35] and after Bob’s projective measurements, the reduced states at
Alice’s side are one qubit states.

Now, the condition
∑2
i=0Di = I leads us to the following relations,

2∑
i=0

λi = 1 (69)

2∑
i=0

λi~di = 0. (70)

In terms of Bloch vector we can rewrite ρ0, ρ1 in following way,

ρ0 =
1

2
(I + cos θσZ + sin θσX) (71)

ρ1 =
1

2
(I + cos θσZ − sin θσX). (72)

In the algorithm POVMtestAlice, if Alice would like to maximize her winning
probability then she needs to maximize the following expression,

Ω =
∑

Ri,RAi∈0,1

(−1)Ri⊕RAiTr[DRAi
ρRi ]. (73)

In terms of λi, ~di, ~σ we have,

Tr[D0ρ0] = λ0(1 + d00 sin θ + d02 cos θ)
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Tr[D0ρ1] = λ0(1− d00 sin θ + d02 cos θ)

Tr[D1ρ0] = λ1(1 + d10 sin θ + d12 cos θ)

Tr[D1ρ1] = λ1(1− d10 sin θ + d12 cos θ)

In terms of λi, ~di, ~σ can rewrite Ω as,

Ω = λ0(1 + d00 sin θ + d02 cos θ)

+ λ1(1− d10 sin θ + d12 cos θ)

− λ0(1− d00 sin θ + d02 cos θ)

− λ1(1 + d10 sin θ + d12 cos θ) (74)

As both Tr[D0ρ1] and Tr[D1ρ0] are positive quantity, hence

Ω ≤ λ0(1 + d00 sin θ + d02 cos θ) + λ1(1− d10 sin θ + d12 cos θ) (75)

and this implies that for maximum value of Ω,

λ0(1− d00 sin θ + d02 cos θ) = 0 (76)

λ1(1 + d10 sin θ + d12 cos θ) = 0. (77)

As both of ρ0, ρ1 lie on the XZ plane and due to the freedom of global unitary,
without loss of generality we can assume d01 = d11 = d21 = 0. Due to the positivity
constraint (Di ≥ 0) we have,

d00
2 + d02

2 ≤ 1 (78)

d10
2 + d12

2 ≤ 1 (79)

d20
2 + d22

2 ≤ 1. (80)

Without any loss of generality we can assume that for the maximum value of Ω,
d00

2 + d02
2 = 1. So, we can parameterize d00, d02 as cosα, sinα (−2π ≤ α ≤ 2π).

By substituting d00 = cosα, d02 = sinα in equation 76 we get,

1− cosα sin θ + sinα cos θ = 0

This implies,

sin(θ − α) = 1 = sin
π

2
.

As −2π ≤ α ≤ 2π, so sin(θ − α) = 1 implies,

θ − α =
π

2
and,

α =
(
θ − π

2

)
. (81)

From the equation 81 we get,

~d0 = [sin θ, 0,− cos θ]. (82)

Similarly, for maximum value of Ω, d10
2 + d12

2 = 1. So, we can parameterize
d10, d12 as cosα, sinα (−2π ≤ α ≤ 2π). By substituting d10 = cosα, d12 = sinα in
equation 77 we get,

1 + cosα sin θ + sinα cos θ = 0

This implies,

sin(θ + α) = −1 = sin
3π

2
.
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As −2π ≤ α ≤ 2π, so sin(θ + α) = −1 implies,

θ + α =
3π

2
and,

α =

(
3π

2
− θ
)
. (83)

From the equation 83 we get,

~d1 = [− sin θ, 0,− cos θ]. (84)

By substituting the expression of ~d0, ~d1 in equation 75 we get,

Ω ≤ (λ0 + λ1)(1− cos 2θ). (85)

Now again substituting the values of ~d0, ~d1 in equation 70 we get,

λ0 sin θ − λ1 sin θ + λ2d20 = 0 (86)

−λ0 cos θ − λ1 cos θ + λ2d22 = 0. (87)

Due to the constraint equation 80, similar to ~d0 and ~d1, here also we parameterize
the expression of d20, d22 as sinβ, cosβ respectively. By substituting d20 = sinβ
and d22 = cosβ in the equations 86 and 87 we get,

λ0 sin θ − λ1 sin θ + λ2 sinβ = 0 (88)

−λ0 cos θ − λ1 cos θ + λ2 cosβ = 0. (89)

By solving equation 88 and equation 89 together with equation 69 we get,

λ0 =
sin (θ − β)

[sin (θ + β) + sin (θ − β) + sin 2θ]
(90)

λ1 =
sin (θ + β)

[sin (θ + β) + sin (θ − β) + sin 2θ]
(91)

Hence,

λ0 + λ1 =
sin (θ + β) + sin (θ − β)

[sin (θ + β) + sin (θ − β) + sin 2θ]
(92)

=
cosβ

(cosβ + cos θ)
. (93)

According to equation 85, for getting a tight upper bound on Ω we need to

maximize (λ0 + λ1). By equating d(λ0+λ1)
dβ = 0 in equation 93 we get,

− sinβ cos θ

(cosβ + cos θ)2
= 0. (94)

This implies,
β = 0. (95)

It is also easy to check that for β = 0, the expression d2(λ0+λ1)
dβ2 < 0. Hence,

the expression λ0 + λ1 maximizes at the point β = 0. Substituting this relation in
equations 90 and 91 we get,

λ0 = λ1 =
1

2(1 + cos θ)
. (96)

By substituting the values of λ0 + λ1 in equation 69 we get,

λ2 =
cos θ

1 + cos θ
. (97)
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Hence, we get,

Ω ≤ 2 sin2 θ

(1 + cos θ)
, (98)

and

D0 =
1

2(1 + cos θ)
(I + sin θσX − cos θσZ) (99)

D1 =
1

2(1 + cos θ)
(I− sin θσX − cos θσZ) (100)

D2 =
cos θ

1 + cos θ
(I + σZ). (101)

We can rewrite the above expressions as follows,

D0 =
1

(1 + cos θ)
(
∣∣φ⊥1 〉 〈φ⊥1 ∣∣)

D1 =
1

(1 + cos θ)
(
∣∣φ⊥0 〉 〈φ⊥0 ∣∣)

D2 = I−D0 −D1,

where
∣∣φ⊥1 〉 =

(
sin θ

2 |0〉+ cos θ2 |1〉
)

and
∣∣φ⊥0 〉 =

(
sin θ

2 |0〉 − cos θ2 |1〉
)
. This im-

plies that whenever the measurement devices at Alice’s side achieve Ω = 2 sin2 θ
(1+cos θ) ,

then it certifies that the measurement operators at Alice’s side are the intended
POVM devices. In our modified DI proposal, whenever the devices involved in

POVMtestAlice do not achieve the value Ω = 2 sin2 θ
(1+cos θ) , the protocol aborts. This

concludes the proof.
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