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Summary

In this paper, optimal control theory is applied to the
design of decentralized sensor systems. Lagrange inequality
multipliers are used to determine the optimal design param-
eters. Several models of possible response functions are fully
discussed as examples of our technique.

1. Introduction and Definition of the Problem

There are many situations in science and engineering in
which information is gathered from a variety of sensors and
must be abstracted or summarized for future processing in or-
der to comply with communication, storage, or processing con-
straints. The simplest example is the case in which a binary
decision must be made based upon information sources that
are constrained to transmit a binary signal. Examples include
data from devices monitoring the performance of a power net-
work, data from an array of elementary particle detectors, the
coordination of radar or infrared signals, and so on.

In general, the communication restrictions may be lifted
with some increase in cost; thus the examples under discussion
represent a special case. As we shall see, even this simple case
{two alternative states, two possible actions, two-fold signals,
and two detectors) presents challenging problems of analysis.
Discussions have been given by Srinivasan for more than two
detectors! and with applications to a specific choice of the de-
tector characteristics.?

Discussion of a case with distributed action is given by Ten-
ney and Sandell.® A discussion for specific (series) topologies
is given by Ekchian and Tenneyl.# Related problems have been
discussed by Chair and Varshney,® by Reibman and Nolte,?
and by Sadjadi.’

Quite generally, the performance of an entire network is
summarized by four probabilities p,(y, H), of which only two
are independent. (Here, H = Hy, H; represents two hypothesis
about the world and y = yo,¥) represents two possible actions
or determinations. This notation will be made more precise
shortly.)

Several problems may be formulated, including
(i) min p,(y1, Ho) subject to pr(yo, H1) < 55,.
(ii) min pr(yo, H1) subject to p,(y1, Ho) < pj}.
(iii) min Ap,(y1,Ho) + Bp,(yo, H1).

The first and second problems correspond to setting ac-
ceptable error rates; the third arises when there is a tradeoff
between the two types of error. The coefficients A, B may be
positive or negative.

The physical characteristics of an individual detector
constrain the achievable values of p (1, Ho) and p,(vo, H1).
The design of a network is then a selection from among a dis-
crete set of topologies, with each topology tuned to give its
best possible performance. The tuning is a constrained opti-
mization, with the constraints determined by the achievable
values of pr(y1, Ho) and p,(yo, H1)-
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Our work has many points of contact with previous work.
We utilize a Lagrangian formulation to deal with the
optimization problem involving equality and inequality con-
straints. Three problems are presented in detail, involving the
cases of exponential response functions, special sums of expo-
nentials, and block functions. We trace the behavior of the
system tuning and the optimal cost as a function of the detec-
tor discrimination.

This paper is the first of a series whose goal is to clarify
the relations between topics in distributed detection, optimal
control, and experimental design, thereby leading to a more
intuitive or “physical” understanding of the problems of dis-
tributed detection and sensing.

1.1 General Introduction

There are two possible states (of the world) Ho and H;.
The prior probabilities of these two states are pg and p;, where

Po = Prior(Ho) (1)
PL = Prior(H1) .
There are two possible courses of action {“measures”) denoted
by mo and m;.
The assumed cost function is C(m, H), where
C(mo,Ho) = ug C(mo,Hl) = u; + woi (2)
C(ml,Ho) = ug + wio C(ml,Hl) = Uy .

The expectation value of the cost function is to be minimized
over the various design parameters, those in the response func-
tions and those in the probability functions. As will become
clear later in our discussion, the separate cost parameters ug
and u; do not matter when the expected cost is minimized;
the minimum depends only on a ratio involving the differences
in the cost for a given H;, namely w;o and wo;.

The essential point is that for the case of only two possible
states of the world, the preferred action is determined by a
single real number, determined by the posterior odds for the
H;. This is true because, using linear cost theory, the informa-
tion in Eq. (2) is summarized by the intersection point of two
straight lines; one describes the cost of action mg as a function
of po while the other describes the cost of action m,.

1.2 Properties of the Integrator

For our model we choose a fusion structure in which signals
are processed locally at each detector, with messages fed to a
single integrator

A— C+— B.

The problem is to design an integrator C and tune the
sensors (A, B). Each of the two sensors detects some signal
(y) and sends the central integrator a signal u,;. In general,
these signals need not be binary. The integrator then chooses
action mg or m;, and this choice is determined by the fusion
rules. The rules for both the sensors and the integrator are to
be chosen so that the expected cost is minimized.

The integrator’s actions are completely described by a
matrix (with two adjustable parameters) that describes the
probability of choosing measure mg, given the signals u;
from detector 1+ = a,b. This matrix will be denoted by
p(m;|ug, up), where
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p(mol0,0) = 1 p(mol0,1)
p(mol1,0) = d  p(mo|1,1)
or, in an alternative matrix notation,

S0 ©

up =0 uy =1
u, =0 1
=2 3 8 ) W

The probability of choosing m; must be the complement,
element by element,

p(mili) = 1— p(molv) . ()
We exclude the possibility of a third course of action. The
design parameters g and d are to be fixed by the optimization;
they define the rule to follow when the two detectors disagree.
If the two detectors are identical, then we expect that d = ¢
and that they will be 0 or 1 depending on the costs and the
details of the sensitivities of the detectors.

1.8 Definition of the Detectors

Now consider the detectors in more detail. Each detector,
labeled a or b, produces a single “meter reading” y;, (1 = a,b),
in response to the state of nature. The probabilities, pi(y, H),
that the value of the reading is y for the state of the environ-
ment H for each detector is

Detector— a b
pa(y; Ho) f8y) ()
pa(viHi)  f2(y) R

The quantity y must now be converted to a yes or no signal
{(u=0o0ru=1).

The effect of the decision process at each detector may be
summarized completely by a table giving the decision strategy
or probability of response p;(u; H) for each of the detectors.
For detector a:

Hy H,
mim= 220(,%0 13Y). @
while for detector b:
Hy H,
mem = 225(,%, 13%). )

1.4 Design Parameters

Therefore, the full set of parameters to be determined by

optimization is
g,d a,A,b,B .

The first two describe the operation of the “integrator” that
processes the two signals « of the sensor stations to form the
output decision m. The last four describe the operation of
the “sensors” — they take the detected signals, apply their
respective detection criteria, and form their individual output
signals 4.

1.5 Properties of the Detectors

A generalized detector uses the rule: if the signal y is in the
region R, then the signal uo is sent to the integrator. Similarly,

if the signal is in the complement of R, i.e., if ye R, then u;
is sertt.

If the external state is indeed Hp, then the response func-
tion of the detector is fo(y), but if it is H, the detector re-
sponds with f;(y) [see the table below Eq. (5)].

 Forany choice of R, the detection probability [see Eq. (6)]
is

o= [wiw, (®)
R

and this then implies for A,

a=[anw. ©
R
Similar relations hold for b and B. If the response functions

have interlaced maxima, then the region R (and R) may be
disconnected.

As R expands, clearly R contracts. For any fixed value of
a there is a maximum and a minimum possible value for A.
If the response functions fo(y) and f;(y) overlap, which is the
general and expected case, then these limits on the value of A
have important consequences.

The possible values A for a fixed value of a, are traversed
as the region R is varied. It is clear that to make A as large as
possible for a given value of a, R should contain those points
whose contribution to A would be as small as possible (i.e., the
ratio f1/fo small) while the complement contains those points
with large values of this ratio. This is the familiar likelihood
ratio threshold rule.

If a goes to 1, then A goes to zero. Also, if A is 1, then a
must vanish. This follows trivially from the unit normalization
of the response functions.

Finally, note that an ideal detector with perfect discrimi-
nation has response functions that satisfy fo(y) x fi1(y) = 0 for
all y. In this case, the values of a and A are independent. We
will return to this limiting case shortly.

2. The Cost Function
The expected value of the cost function is

(©€) = 3 Clmi, Hy)prior (Hy)p(milHy) ,  (10)
(8]
where p(m|H) is directly expressed in terms of the detector
properties, and we assume that the signals received by the
detectors are stochastically independent:

p(milHy) = Y plmilua, us)p(ualHy) p(us|Hy) . (11)
ua,us
Using the explicit form of the cost matrix, Eq. (2), (10) can be
expressed as

(C) = wor p(mo|Hy) p1 + wio p(ma|Ho) po + vopo +uipr .

(12)

Additive constants do not matter in the minimization; the

last two terms are fixed, and are the cost for an ideal system.

For such a system with perfect discrimination, the off-diagonal

probabilities p(mo|H;) and p(m;|Ho) both vanish since A =
1 — a. The cost must be a minimum:

(13)

(C)min = Yopo+u1pr -
The quantity that we want to minimize is the additional cost
due to imperfections in the system; this has the form

(6C) = (C) — (Chnin

(14)
= woy p(mo|H1) p1 + wio p(m1|Ho) po .

Note that the position of the minimum will depend on the
ratio
w = 2P (15)
wo1 P1
which is the relative expected cost of being wrong if the state
of the environment is Ho (and responding with m;) compared
to the cost of being wrong if it is H; (and responding with mo).
The magnitude of the minimum cost will depend multiplica-
tively on the factor wo; p1.

It is convenient to rewrite the cost function as

J = {(6C) [(wor p1) » (16)

J = p(mo|H1) + W1 — p(mo|Ho)] - 17

The minimization of the expected value of the cost is equivalent
to minimizing J.

or



Some interesting limits on J can now be determined. The
perfect detector has J = 0. It is amusing to note that a detec-
tor that is always wrong has J = 1+ W. (One would then use
such a detector “backward.”) A more interesting case follows
from noting that if W is sufficiently small, i.e., the cost w;o (of
erroneously choosing m, ) is small, then a good strategy is to al-
ways choose m;. This implies that p(mo|H,) = p(mo|Ho) = O,
and J = W (and ¢ = d = 0). If, on the other hand, W is
larger than 1, then one wants to always choose my; in this
limit,J = 1 (and ¢ = d = 1). The final cost for this limit-
ing case may be expressed in terms of the step function 8(z)
(8(z) = 1,z > 0,0(z) =0,z < 0)

Jmaz = WO(1 —W)+8(W —1) 18
g=4d=60W-1). (18)

This result arises in another way. If the response functions are
the same, fo(y) = fi(y), then no discrimination is possible,

and we find A = 1 — a. Using this relation in the probabilities,
we find the above result by choosing the obvious optimum.

The general optimization problem consists of choosing the
design parameters so the expected cost lies as far below Jpaz
as possible and as close to the ideal case, J = 0, as possible.
We now turn to a general discussion of the problem of finding
extrema when the constraints define a connected subset of the
real line for each variable.

3. General Minimization with Inequalities

Using the form of the probabilities defined in Eqs. (6) and
(7), one finds the explicit expressions
p(mo|Hi) = 1-p(m|H1),
= (1-A){(1-B)+g¢g(1—A)B+dA(1-B),
(19)
and
1- P(ml IHO) y
ab+ga(l -b)+d(1—a)b.
Using Eqgs. (19) and (20), the minimization problem can be
re-cast explicitly as
J=W+I[S+¢T+dU], (21)

p(mo|Ho) (20)

where
S = (1-A)(1-B)-Wab
T = (1-A)B-Wa(1-9) (22)
U= A(1-B)-W(1-a)b,
and all the variables must satisfy inequality constraints. A
complete mathematical treatment for problems of this type
can be found in the excellent book by Hestenes.® A reference

that discusses such variational problems in a language perhaps
more familiar to physicists and engineers is available.?

To minimize J, in the case that the variables ¢ and d occur
linearly in J, but have a restricted range from zero to one, it
is convenient to form the variational functional Jy,,, where

Joar = J — '79(1 - g) - 5d(1 - d) . (23)
The optimum will be a saddle point in (v, §) versus (g,d). In
this case J is a linear function of g and d, hence the extrema will
occur at the endpoints. The Lagrange inequality multipliers
~ and § must be zero if their associated variable g or d is
inside the allowed range, and non-negative if they are on the
boundary.® As usual, the derivative with respect to g must
vanjsh at the minimum and this yields the condition

0 =T-~(1-2g). ' (24)
This takes the place of paired Kuhn-Tucker conditions for
g > 0and g < 1. If T is nonzero, which is the typical case, then
the minimum must be on the boundary (v cannot be zero). If
T is positive, then g vanishes; if negative, then g is unity. A

similar argument holds for d and U. The result can be ex-
pressed as

g = 0(-T)

5
d = 6(-0), (29)

and the minimum of Jyss becomes
Jn = W+ [S+To(-T)+U6(-U)] . (26)

Note that if T or U vanish, there is no uncertainty in the
minimum of J, even though g and d are not determined.

The variables left to consider are a, A, and 4, B. Each of
these variables has a restricted range, so inequality multipliers
will again be used. As was noted before, the possible values
of A are limited by the form of the response function and the
value of a. This can be expressed as the statement that for any
choice of the region R, with a given by (8), one must have

Amin(a) < A(R) < Amaz(a) - (27)
Of course, similar restrictions apply to B.

These inequalities can be treated as above. Write the vari-
ational functional in the form

Jvar = Jm"‘F—f » (28)
where
F=as(A- Amin)(Amaz — A) + BB (B — Bmin){Bmaz — B),
(29)
and
f = aa(l —a)+B8b(1-0b). (30)

Again, the Lagrange inequality multipliers a4,8p,a and
must be zero if their associated variable is inside the allowed
range and non-negative if they are on the boundary.

Now the variation with respect to A yields
aJ,
204 (A - Abar) = _a_: s

where Ayyy = (Amin + Amaz)/2.

(31)

It is a straightforward task, though somewhat tedious, to
discuss the general case. First note that the above equation
becomes

204 (A—Ap,) = +(1-B)+B6(-T)—(1-B)é(-U) . (32)
Since the right-hand side is never negative, a4 cannot vanish,
and hence A must be at its boundary. Since a4 must also be

non-negative, it follows that A must be above A;,,. Repeating
the same argument for B we find that

A= Amaz(a) ’
B Bz (b) .
These are computable functions of a and b given the response
functions of the detectors. They correspond to the so-called
Receiver Operating Characteristic used in several of the pa-
pers cited above. We shall term these functions the DOC, or

Detector Operating Characteristic, and they will play a funda-
mental role in our analysis.

(33)

The next stage is to vary a and b within their allowed range
to achieve the overall minimum. One can anticipate that there
may be symmetric (¢ = b) and nonsymmetric minima; which
particular one is the global minima must be determined from
a more detailed examination using the explicit forms for the
response functions. This will be carried out in the explicit
examples discussed in the next section. First let us discuss the
boundary behavior in a and b.

Double boundary: The boundary region in which both vari-
ables are at their limits consists of four terms. They will be
denoted by L(a,b), where a and b can take on the values zero
or one.

L(0,0Z: For this case, A= B =1, and J, =W forall W.



L(1,0) and L({0,1): TFor these cases, A = 0B = 1, or the re-
verse,and [S=0=U,T=1-W and g = §(W — 1)]

Jn = W+ (1-W)8W -1), (34)
the Jpmqz discussed earlier.

L(1,1): For this limit, A= B =0,

Jn = 1. (35)
Therefore, the minimum of J, on this double boundary is al-
ways given by Eq. (34) which amounts to setting the detectors

to always signal oppositely. Now let us turn to the single vari-
able boundaries.

Single boundary: This boundary region is symmetric in both
variables and hence we need only treat the case in which b is
at its limits while a is in the interior. The reversed situation
will yield the same minima. These will be denoted as:

L(a,0): For this Wca.se, B =1,and S = U = 0. The quantity
T is not zero, with

Jm W +To(-T)

T =1-A—-Wa.

As noted, A should be equal to its maximum value for a fixed

value of a in order to achieve the minimum value of T, as was

shown earlier. The limit cases of a = 0 and a = 1 are on

the double boundary. Any minimum for a in the interior must
satisfy

(36)

8T(a) _ 9Amszla) —w

8a da (37)

= 0.

Since Amaz(a) is a decreasing function of a, there will in general
be a solution in this region if W is in an appropriate range. This
could yield a smaller minimum than that given by the double
boundary result, Eq. (34); however, for this case, we haveg = 1
and d is not determined, but its value does not matter since
U = 0 and one can arbitrarily choose d = 1 also.

L(a,1): For this situation, B=0=Tand S=1- A - Wa,
with U =1 —-W — 8. If U is positive, then J,, = 1, while if
it is negative, then J, = W + S. Both these cases have arisen
before, and there are no new minima of J,.

Interior: Inthe interior region, the inequality multipliers must
vanish and the standard variational equations become symmet-
ric in form. One can safely assume that there will be minima
in this region, but whether any is the global minimum requires
detailed study. Note that generally there will be (local) minima
with T'(and/or U) both positive and negative with the corre-
sponding limiting values of g (and d). Since this is a standard
well-discussed variational problem, further general treatment
here is not necessary. Let us now turn to a exhaustive discus-
sion of some explicit examples.

4. Exponential Response Functions

Consider a detector with response functions given by
fo = nXexp{—niy}
fi = dexp{-Ay}.

We will assume that n is greater than one without any loss
of generality, so that the likelihood ratio (f1/fo) is less than
one for y < z, where Az = (fnn)/(n — 1). Using the above
argument, to achieve the extrema of A for these monotonic
response functions, the region R must be either the range below
or the range above some point z whose value will be determined
by the optimization process.!?

(38)

Therefore, it is easy to see that there are two cases to
discuss:

Case I Case II
R 0<y<r«z z<y<oo
R z<y<oo 0<y<z
a 1 — exp{—nAz} exp{—niz}
A exp{—Az} 1 — exp{—Az}
A (1—a)l/» 1—al/",

Thus, A must lie in the region
1-ad/"<Aa<(1-a)/, (39)

and its position in this interval is determined by the particular
choice of the region R. Similar relations hold for b and B.

As an example, consider the case n = 2, and then the
feasible region for A as a function of a is labeled F in the
graph shown in Fig. 1.

2-88 5952A1

Fig. 1. The allowed region of A is plotted for
‘n =2 as a function of a and labeled F.

Figure 2 shows the graph for the value n = 4.

2-88 5952A2

Fig. 2. Same as Fig. 1 but with n = 4.

We see that as n increases, the allowed region increases to
eventually include all values of A between zero and one.

4.1 Ezplicit Minimization

Using the general results derived in the previous chapter,
we have A and B at their maximum allowed values:

A= (1-a

B = (1-b/". (40)



Varying J,, with respect to a and b and introducing inequality
multipliers « and 8 to keep these variables between zero and
one, we find the conditions

na(l — 2a)
nf(1—-2b) =

A""(1- B) — nWb
B!""(1 - A) — nWa

(41)

whose solution should contain all relevant minima. Let us ex-
amine the boundary and interior minima in that order. Recall
that n-> 1 in the following discussion, and we have assumed
for the moment that T and U are positive. This will be proven
shortly for our solutions.

Boundary: The double boundary region has been discussed in
general and the result is a minimum of the form (a = 0,b =1
ora=1,b=0)

IJn = W+ (1-W)0(1-W) = Jngz - (42)
L(a,0): For this single boundary problem, the task is to find

the minimum of T where T = 1 - Apmqaz — Wa. The result is
with p=1/(n—1)

1
Ao = (=5)F
=1
a0 nW ~

For Ag to be less than one, nW > 1. The value of T at this
minimum is negative, and
-1
Ao . (44)

Jn(Bnd) = 1-"—

If nW is slightly larger than one, nW = 1 + ¢, then it is easy
to see that to lowest order

Im(Bnd) ~ Jmaz —

n

€?

2(n—1) "

L{a,1): Forthiscase, B=0=TandU=1-W-S.IfUis
negative, then the minimum of Jp, is 1. If it is positive, then
S must be minimized, and this is just the problem discussed
above.

(45)

In summary, Jy, has a minimum on the boundary given by
Eq. (42) or Eq. (44), depending on the value of nW.

Interior: In the interior region, the inequality multipliers «
and B must vanish and Eqgs. (41) become symmetric in form.
Thus there is a symmetric solution with @ = b and A = B.
Unsymmetric solutions will be searched for later. In the sym-
metric case, the equation for the optimal probability A is

nWA*1(1- A" = (1-A4), (46)
which does not have an analytic solution for general n. The
limiting behavior of the solution is easily extracted. For large

W, A approaches zero, and a approaches one with the behavior
[recall that p = 1/(n — 1))

1 4
A~ (n_W) + ...,

1 \1+?
1-|—
(#)

This is similar to one of the boundary solutions. The minimum
of J in this limit has the form

n
J ~1—-2——A+.... 48
At (48)

(47)

a

R

Let us now discuss small values of W. Note that as W
decreases, a decreases. The value of W where a vanishes is

W(a=0)=1/n%.  (49)

For values of W smaller than this value, there is no interior

symmetric solution. At this critical value, S = 0. Finally, note

that for this symmetric solution, T = U, and using the above
equations,

T = (n—1)We4", (50)

which is positive definite. Therefore, the T and U terms do
not contribute to this minimum because ¢ = d = 0.

Using the equation for A, we find at the minimum
Im(Int) = W+ (1 - A)?-W(1 - A")?2. (51)
This is smaller than the minimum arising from the boundary.

To see this, study the difference of Eq. (44) and Eq. (51)
for sufficiently large W (so that the former exists). If W is
eliminated between Eqs. (46) and (43), the result is

1-A"
— p
o = ACEY, (52)
which shows that A9 = Ag(A) > A. The difference becomes

Jm(Bnd) — Im(Int) = [1— (1 A)%) - (%)A(‘)_"

n—1 (53)

1-(1-4™)?%) - Ao .

For large W this difference approaches zero as (n — 1)/(n?W).
For all values of nW larger than one it is a simple matter to
show that it is positive (a numerical proof is easiest).

Some sample numerical results are:

n=2 n=4
nw a J-W a J-W
0-1 0.00 -0.000 0.00 -0.00
1.0 0.00 -0.000 0.00 -0.00
1.1 0.120 -0.0001 0.082 -0.0000
1.2 0.218 -0.0009 0.150 -0.0001
1.3 0.299 -0.0026 0.210 -0.0003
1.4 0.367 -0.0054 0.261 -0.0007
1.6 0.475 -0.0144 0.346 -0.0018
1.8 0.556 -0.0278 0.413 -0.0036
2.0 0.618 -0.0451 0.467 -0.0061
3.0 0.791 -0.175 0.636  -0.0260
4.0 0.866 -0.348 0.725 -0.091
6.0 0.930 -0.757 0.815 -0.131
8.0 0.957 -1.203 0.862 -0.219
10.0 0.971 -1.669 0.890 -0.315
12.0 0.979 -2.144 0.909 -0.417
16.0 0.987 -3.117 0.933 -0.629

Recall that ¢ = d = 0 for this global minimum. Therefore,
if either detector signals 1, one should make the choice m; for
any value of W,

Perhaps it is more understandable to present this data in
another format:

n=2 n=4

w a J J/Jmaz a J J/Imaz
0.25 0.260 0250 1.0 0.725 0.195 .78
04 0.475 0.386 .97 0.827 0.252 .63
0.5 0.618 0.455 .91 0.862 0.281 .56
075 0.791 0575 .77 0.909 0.333 .44
1.0 0.866 0.652 .65 0.933 0.371 .37
1.5 0930 0.743 .74 0.957 0.423 .42
2.0 0.957 0.797 .80 0.969 0.459 .46
2.5 0.971 0.831 .83 0976 0.486 .49
3.0 0.979 0.856 .86 0.980 0.508 .51
4.0 0.987 0.883 .88 0.986 0.541 .54
5.0 0992 0.909 .91 0989 0.567 .57
6.0 0994 0923 .92 0991 0.586 .59
8.0 0.997 0.941 .94 0.994 0.616 .62
10.0 0.998 0952 .95 0.995 0.639 .64

The column labeled J/Jmaz gives the ratio of the minimum
J to the quantity Jm,, defined in (18). Again, for this global
minimum, g =d = 0.
4.2 Global Minimum

As a check that the symmetric minimum is indeed the
global minimum, we have evaluated J throughout the allowed
region of the six variables g,d and a,A,b,B. We could




find no point where J was below the value at the symmetric
minimum given above.

Note that as a function of W = wjo po/wo1 p1, the largest
fractional improvement in cost is achievable when W = 1. This
is precisely the case in which the prior choice of action is a
matter of indifference, that is,

uopo+¥1pL+Worp1 = YoPo+ WioPo + UL P . (54)
This is intuitively reasonable, as one expects the information
from the sensor to be the most valuable in this case. .

5. Invariant Imbedding

We now consider a detector whose response functions allow
superior discrimination between the two possible states of the
environment and contains the previous example as a special
case. The general form that allows a smooth limit back to the
previous model is

fo = nXexp{-niy}

y n+1 (55)

fio= g2 ee(=2) 1 -z exp{—ndy}] .
For values of z near 1 this allows the improved separation be-
tween fo and f; since the former is large at y = O while the
latter is small there. On the other hand, for z equal to zero,
this is the model of the previous section.

It will again be assumed that n is greater than 1, and
proceeding as before we find:

Case | ase I1
R 0<y<z z<y<oo
R z<y<L oo 0<y<z=z
a 1 — exp{—niz} exp{—niz}
A aTt=3 exp{-)z}

x [n+1— z exp{—niz}]

1- W}_—z exp{~Az}
x [n+ 1 — z exp{—nAz}|

A e peg] 1o [ et

Thus, A must lie in the region

1-al/" [1+-——~——z(1 ) ] <A<(-ai/n [1+——»z“ ] :
n+1-2z n+l—z
(56)
Its position in this interval is determined by the particular
choice of the region R. Similar relations hold for b and B.
Note that the allowed region of A increases as z increases from
zero to one.

To provide maximum contrast with the previous model we
will present data for the value z = 1. For this case, the interior
symmetric minimum exists for all W values. An interesting
new behavior is found in this model for small enough W and
n; the minimum cost occurs for ¢ = d = 0, as before, but as
W increases, these design parameters flip to ¢ = d = 1. The
value of a at the minimum jumps discontinuously.

n=2 n=4

w a J J/Jm, a J J/Jmaz
0.1 0.46 0.088 .88 0.70 0.068 .68
0.2. 0.58 0.160 .80 0.80 0.111 .56
0.25 0.63 0.191 .764 0.82 0.128 .51
0.26 0.64 0.197 .758 0.828 0.131 .504
027 0.24 0.203 .752 0.832 0.134 .496
0.3 0.26 0.22 733 0.84 0.143 .48
0.5 0.35 0.31 .62 0.89 0.191 .38
1.0 0.50 0.47 47 0.94 0.268 .27
1.5 0.60 0.56 .56 0.96 0.316 .32
2.0 0.68 0.63 .63 0.97 0.35 .35
4.0 0.79 0.77 17 0.985 0.44 44

6.0 0.85 0.83 .83
8.0 0.88 0.87 .87
10.0 0.90 0.89 .89

0.990 049 .49
0.993 0.52 .52
0.994 0.55 .55

The columns are the same as in the previous table. Note that
the parameters for the minimum (for n = 2) shows a definite
jump as W passes through the value ~ 0.265. At this point,
the optimum values of g and d change from zero to one; in fact,
we find that g = d = §(W — Wy), where Wy ~ 0.265.

On the other hand, for n = 4, the quantities T and U are
always positive, so that ¢ = d = 0. There does not appear to
be a discontinuity in a.

At the discontinuity, the cost varies smoothly. This is in-
tuitively reasonable, since cost is, ultimately, determined by
the position of some tangent hyperplane, along a normal to
the feasible region, which is connected. However, the jump
in design parameters could have serious consequences because
a small variation in the (frequently subjective) data summa-
rized by the parameter W could require a complete change of
the system parameters g and d. This phenomena has impor-
tant implications for the design of constant false alarm rate
systems, which will be discussed elsewhere.!!

6. A Step Function Example

We now consider a detector whose response functions, in
a certain limit, allow a clean discrimination between the two
possible states of the environment. In that limit, A — 1 does
not force a to zero. We will assume simple “square” response
functions for ease of presentation. The response functions are
chosen to be zero for y > 3 and, of course, normalized.

Proceeding as before we find for Case I, 0 < y < z:

Fortherange 0<z<1 1<z<2 2<z<3

fo(z) (1-20) Ao 0

f](z) 0 Al (l - /\1)

a (1 - Ao)z 1+ Ao(z -_ 2) 1

A 1 1-XM(z-1) (Q-XM)38-2) .

A similar table can be evaluated for Case II, z < y < 3. If
either XAy or A; vanish, then this describes an ideal detector
system.

We need the value of Apmga, for a fixed value of a which is
A
Amuz =1- A_l'(a -1 + Ao)a(a -1 + AO) N (57)
0
while the minimum value is

Amin = 31000 = @000 — 0) . (5%)
0

The feasible region for A as a function of a , labeled F in
the graph (Fig. 3), is bounded by straight lines:

In the limit that either Ao or A; vanishes, the allowed region
for A covers the unit square.

It is a simple matter to analyze this problem for the mini-
mum J corresponding to the maximum allowed A and B values
as given above. Consider the cases:

1. A=B=1,and a = b = (1— Xo). For these values, T
and U are negative and J = W¢®.

2. A=B=(1-)) and a = b= 1. For this case T and U
are now positive and J = A2
Thus the final result can be expressed as
J = min[Wio?, A%
g =d = (M - X?W)
a=b=1-20(\-2W)
A=B=1-00X*W-x?%.

The limit of perfect discrimination, Ao and/or A going to zero,
can be easily discussed from the above results.

(59)
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Fig. 3. The allowed region F for the parameter
A as a function of a using the discrete three-step
model.

The proof that the above minimum is indeed a global min-
imum follows simply by letting a and b deviate from the above
values while keeping A and B as close to their optimum values
as allowed by the constraint. For W small enough we have:

a =b=1-Xx(1+¢
A=B-=1 (60)
(S+T+U)min = W (1 - X2 .
It now follows for any positive € that
(S+T+U)~(S+T+U)min = W X*[(1+€)2-1]>0. (61)

For a and b larger than their optimum values, the constraints
on A and B come into play and

a =b=1-Xx(1l~¢

A=B=1—A1€ (62)
and we find
(4T +U)—(S+ T+ Upmin =
2ed1(1 — Ay) + ()\12 - W/\oz) n-@a- a)2] (63)

>0
if (A2 — W Xo?) is positive (and if ¢ is positive, of course).

When W grows so that ()\12 - WAoz) becomes negative,
one should repeat the above procedure around the values a =
b=1and A =B =1~ ) to prove the global nature of the
minimum in this region. Alternatively, one may argue that the
feasible region is defined, in this case, by hyperplanes, so that
the minimum must occur at a vertex, as given above.

7. Summary

We find that the problem of optimal design, with fusion
and detector tuning, is difficult but tractable. Qur simple ex-
amples yield some insight into how the best achievable cost
varies between its bounds and how that best cost depends on
the prior distribution and the cost function itself.

By utilizing the technique of invariant imbedding; that is
by considering a general class of response functions that con-
tain the exponential response model as a particular case, we
can trace a discontinuous change in design parameters, ever
though the optimum cost varies smoothly. We cannot yet give

a detailed explanation of the critical value at which this jump
occurs. The third model studied also has such a discontinuity,
and permitted a continuous transition to the state of complete
information (perfect discrimination). In this case, the cost de-
pends on the degree of ambiguity in a quadratic manner.

Finally, in all cases, we found that the best cost is achieved
with a symmetric choice of parameters for the individual detec-
tors. We do not yet have a general characterization of response
functions for which this is always the case regardless of costs
and prior probabilities.

The problem considered here is not only of theoretical in-
terest, but has many practical applications ranging from opti-
mal design of complex particle detector systems to the design
of seismic and warning systems.
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