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Abstract. A new non-Archimedean approach to interacted quantum fields is presented. In 
proposed approach, a field operator 
��� �� no longer a standard tempered operator-valued 
distribution, but a non-classical operator-valued function. We prove using this novel approach 
that the quantum field theory with Hamiltonian ��
�� exists and that the corresponding ��� 
algebra of bounded observables satisfies all the Haag-Kastler axioms except Lorentz 
covariance. We prove that the 
�
����� � � � quantum field theory models are Lorentz 
covariant. 

1.  Introduction 
Extending the real numbers � to include infinite and infinitesimal quantities originally enabled         
D. Laugwitz [1] to view the delta distribution ���� as a nonstandard point function. Independently   A. 
Robinson [2] demonstrated that distributions could be viewed as generalized polynomials. Luxemburg 
[3] and Sloan [4] presented an alternate representative of distributions as internal functions within the 
context of canonical Robinson's theory of nonstandard analysis. For further information on classical 
model theoretical nonstandard analysis namely�����, we refer to [5–8]. 

Abbreviation 1.1 In this paper we adopt the following canonical notations. For a standard set � we 
often write ���� For a set ��� let ����

�  be a set ��� � � ��� ��  ���!�
� . We identify " with "��  i.e., " # "��  

for all�"  $. Hence, �%& � ����
�  if � ' $� e.g., $�� � $, ��� � �, (�� � (, )*+�� � )*+ ��etc. 

Let� ��� ��� ��� �*�� ��� ,-.�� ��� /, and 0�� / denote the sets of infinitesimal hyper-real numbers, positive 
infinitesimal hyper-real numbers, finite hyper-real numbers, infinite hyper-real numbers and infinite 
hyper natural numbers, respectively. 

Note that: ��� ,-.� � ��� 1 ��� /�� $ ��
� ��� 2 � ��� , $�� ,-.� � ��� ,-.� 2 � ��� ,-.�� 

Definition 1.1 Let �3� 454!  be a standard Banach space. For �  3��  and 6 7 8� 6 9 8�we define the 
open 9-ball about � of radius 6 to be the set�:;��� � �<  3�� � 4� = <4�

� > 6!. 
Definition 1.2 Let {�3� 454!�be a standard Banach space, ? � 3� thus ?�� � 3��  and let �  3�� .Then � is an 	- accumulation point of ?��  if for any�6  ��� �* there is a hyper infinite sequence ��@!@
A/�� in ?��  

such that  ��@!@
A/�� B �:;���1��! C D�� 
Definition 1.3 Let {�3� 454!�be a standard Banach space, let ?�� ' 3�� , ?��  is 	 Eclosed if any 

	­accumulation point of ?��  is an element of ?�� � 
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Definition 1.4 Let {�3� 454!�be a standard Banach space. We shall say that internal hyper infinite 

sequence ��@!@
A/�� in 3��   is 	 Econverges to �  3��  as F � G��  if for any 6  ��� �*�there is �  0��  such 
that for any F 7 �H 4� = <4�

� > 6� 
Definition 1.5 Let {�3� 454I!, {�?� 454J! be a standard Banach spaces. A linear internal operator �HK��� ' 3�� � ?��   is 	 Eclosed if for every internal hyper infinite sequence ��@!@
A�/�� in K��� 	Econverging to �  3��  such that ��@ � <  ?��  as F � G��  one has �  K��� and �� � <� 

Equivalently , � is 	­closed if its graph is 	 Eclosed in the direct sum 3�� L ?�� � 
Definition 1.6 Let � be a standard external Hilbert space. The graph of the internal linear 

transformation MH ��� � ��
�  is the set of pairs��NO�MOP�O  K�M�!. The graph of M� denoted by�Q�R�, is 

thus a subset of ��
� S ��

�  which is internal Hilbert space with inner product��NOA�TAP� NOU�TUP� ��OA�OU� 2 �TA�TU�.The operator M�is called a 	­closed operator if  Q�R� is a 	 Eclosed subset of 
Cartesian product� ���

� S ��
� . 

Definition 1.7 Let � be a standard Hilbert space. Let MA and M be internal operators on internal 
Hilbert space� ��

� . Note that if�Q�MA� V Q�M�, then MA is said to be an extension of M and we write�MA VM. Equivalently, MA V M if and only if K�MA� V K�M� and MAO� � MO for all O  K�M�� 
Definition 1.8 Any internal operator M on ��

�  is 	­closable if it has a 	­closed extension. Every 
	­closable internal operator M has a smallest 	­closed extension, called its 	­closure, which we denote 
by 	­MW� 

Definition 1.9 Let � be a standard Hilbert space. Let M be a 	­densely defined internal linear 
operator on internal Hilbert space� ��

� . Let K�M�� be the set of O  ��
�  for which there is a vector X  

��
�  with �MT�O� � �O� X� for all T  K�M�� then for each O  K�M���  we define M�O � X� M� is called 
the 	 Eadjoint of�M. Note that � � M implies M� � ��� 

Definition 1.10 Let � is a standard Hilbert space. A 	­densely defined internal linear operator M on 
internal Hilbert space ��

�  is called symmetric (or Hermitian) if�M � M�. Equivalently, M is symmetric if 
and only if ��MO�T� � �O�MT� for all O�T  K�M�� 

Definition 1.11 Let � be a standard Hilbert space. A symmetric internal linear operator M on 
internal Hilbert space ��

�  is called essentially selfE 	­adjoint if its 	­closure 	­MW is selfE 	­adjoint. If M 
is 	­closed, a subset K � K�M� is called a 	­core for M if   	­ YM Z KWWWWWWW[ �� M� If M is essentially 
selfE 	­adjoint, then it has one and only one self ­	­adjoint extension. 

Let \ be the standard Fock space [9, 10] for a massive, neutral scalar field in four-dimensional 
space-time [10]. The elements of \��  are internal sequences of functions on internal momentum 
space ��� ]. Let the standard annihilation and creation operators be normalized by the relation ^_�`��_a�`b�c � �]�` = `b�       (1.1) 

so that the free-field Hamiltonian with finite momentum cut-off  d  ���   is  

�e�� � 
 _a�`b�_�`���`�f]`�
����� � ��`� � g`AU 2 `UU2`]U .    (1.2) 

From (1.1) by transfer one obtains  ^ _�� �`�� _�� a�`b�c � ��� ]�` = `b��       (1.3) 
 so that internal free-field Hamiltonian with hyperfinite cut-off h  ��� *�/ is  �e���� � � _�� a�`b�Y _�� �`�[Y ��� �`�[f]`��	
	���

�
      (1.4) 

The i � 8 internal field O��� ���  with hyperfinite momentum cut-off h  ��� *�/ is O��� ��� � AjUk�
�� � l�� mnj���	^ _�� a�`�� 2 _�� �=`�c 
��
�o Up�� j�	q
�

 ��

�����
�

�
    (1.5) 

The spatially cut-off internal interaction Hamiltonian with hyperfinite momentum cut-off h  ��� *�/ is 

�r���� �s� � � t��u�
��e � 555�

�������
�

 � 555 � ��
��v����

� _�� a�`A���w�xy�w���

� 555 _�� aY �̀
�[ _�� Y= �̀*A[ S 
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S _�� �=`�� t sz�� Y� `n�n�A [u� ��� �`�A�Uf]`n�n�A �      (1.6) 

We also need internal number operator with hyperfinite momentum cut-off h  ��� *�/ ���� � � _�� a�`���
������

� _�� �`�f]`       (1.7) 

and the domain Ke��� � � KY �e��@�� [�@{ ��
         (1.8) 
Remark 1.1 Note that the domain Ke���  is a nonstandard external set so there is no standard set | 

such that Ke��� � |���  
Proposition 1.1 Let �� be a standard operator ��H \ � \ of the form 

�� � � }� ~�`A��} �`���
�������

������ _�� a�`�A� 555 _�� �=`��� f]`n�n�A    (1.9) 

and let �� be a standard operator ��H \ � \ of the form ���� � � _�� a�`���
������

� ��`�f]`�       (1.10) 

Assume that for all d such that 8 > d > G the inequality holds �555 � ���`A�} �`��~U�`A��} �`��� f]`n�
n�A

�

�
�> G���

�
 

where ���`A�} �`�� � � if �`n� � d for all�� � � � �, and � �`A�} �`�� � 8 otherwise. Then for 
all d such that 8 > d > G  and for all ! such that �!� � � the inequality holds ���� 2 ��m�U����� 2 ��j�m�	U � � 

� t� 555 � ���`A�} �`��~U�`A��} �`��� f]`n�n�A�
� �

�
� u���     (1.11) 

Proposition 1.2 Let ����  be internal operator ���� H \�� � \��  of the form 

���� � � } � ~�� �`A��} �`���
��"����

��
�������

� _�� a�`�A� 555 _�� �=`��� f]`n��n�A    (1.12) 

Then for all h such that h  ��� *��and for all ! such that �!� � ���  0�� /  the inequality holds 

���� 2 ��m�U����� 2 ��j�m�	U � � 

� � � 555 � ���� �`A�} �`�� ~U�� �`A��} �`��� f]`n�n�A�
��

�
�

�
��

� ����    (1.13) 

Proof It follows directly from (1.11) by transfer. 
Remark 1.2 It follows from (2.11) that: 
(1) �r���� �s� is well defined on the domain Ke��� � 
(2) there is a #­closure #­ �r���� �s�WWWWWWWWWWW with domain KY# E �r���� �s�WWWWWWWWWWW[ V Ke��� � 
(3) external set Ke���  is a #­core for �r���� �s� i.e., #­ Y �r���� �s� Z Ke���WWWWWWWWWWWWWWWWWWW[ �� �r���� �s� 

Remark 1.3 The operator #­ �r���� �s�WWWWWWWWWWW is external mapping #­ �r���� �s�WWWWWWWWWWWH \�� � \��  i.e., there is no 
standard operator  MH \ � \ with domain K�M� such that: 

(1) K�M��� � KY# E �r���� �s�WWWWWWWWWWW[ and (2) M Z�� K�M��� �#­ �r���� �s�WWWWWWWWWWW Z KY# E �r���� �s�WWWWWWWWWWW[� 
Thus we cannot derive the desired properties of the operator # E �r���� �s�WWWWWWWWWWW by using Robinson transfer 

principle [2–7]. 
As that has been explained in [8] classical model theoretical nonstandard analysis �$� does not 

power enough to resolve the stated in [8] problems in constructive quantum field theory related to 
physical dimension f � ��   

In order to avoid any difficultness mentioned above, in this paper as in [8] we deal by using 
minimal non-conservative extension of ��� developed in [11–14].We will denote this extension by  
����� The formal theory ���� is based on the following definitions and axioms presented below. 

Remind that Robinson nonstandard analysis (NSA) many developed using set theoretical objects 
called super-structures [5–7]. A superstructure ���� over a set � is defined in the following way: 
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�e��� � �� �@*A��� � �@��� � �Y�@���[� ���� � � �@*A���@{	 � Making � � � will suffice for 
virtually any construction necessary in analysis. Bounded formulas are formulas where all quantifiers 
occur in the form:  
����  < � � ��,������  < � � ��. A nonstandard embedding is a mapping  
�
��3� � ��?� from a superstructure  ��3�  called the standard universe, into another superstructure 
��?� called nonstandard universe, satisfying the following postulates: 

1. ? � 3��  
2. Transfer Principle For every bounded formula ���A�} � �@�  and elements _A�} �_@  ��3� 

the property ��_A�} �_@�� is true for  _A�} �_@  in the standard universe if and only if it is 
true for _A��} ��� _@��  in the nonstandard universe���3������A�} � �@� �
��?���� _A��} ��� _@�� �. 

3. Non-triviality For every infinite set  �  in the standard universe, the set  � _�_  ��� !  is a proper 
subset of ��� � 

Definition 1.12 A set � is internal if and only if � is an element of  ���  for some��  ����. Let  3  
be a set and � � ��n!n{r a family of subsets of  3 .Then the collection  � has the infinite intersection 
property, if any infinite sub collection � � � has non-empty intersection. Nonstandard universe is  d -
saturated if whenever ��n!n{r  is a collection of internal sets with the infinite intersection property and 
the cardinality of  � is less than or equal to d� 

Remark 1.4 For each standard universe  � � ��3� there exists canonical language )� and for each 
nonstandard universe � � ��?�  there exists corresponding canonical nonstandard language  ) � )���  [5, 7] 

4.The restricted rules of conclusion If Let � and : well formed, closed formulas so that ��:  )�� ��If � � �, then �� ���� :. Thus, if a statement � holds in nonstandard universe, we 
cannot obtain from formula  �� any formula : whatsoever. 

Definition 1.13 [8] A set � � 0��  is a hyper inductive if the following statement holds in���?�:  � ��  � � �*  ���
�{ 	��

 

Here �* � � 2 �.Obviously a set 0��  is a hyper inductive. 
5. Axiom of hyper infinite induction  


��� � 0�� ��
��� � 0�� �^� ��  � � �*  ��A���� c � � � 0�� �. 
Example 1.1 Remind the proof of the following statement: structure �0�>��� is a well-ordered 

set. 
Proof Let 3 be a nonempty subset of  0� Suppose X does not have a <Eleast element. Then consider 

the set 013� Case1. 013 � D. Then 3 � 0 and so 8 is a > Eleast element but this is a contradiction. 
Case2. 013 C D.  Then �  013 otherwise � is a > Eleast element but this is a contradiction. Assume 
now that there exists some F  013 such that F C �� but since we have supposed that 3 does not have 
a > Eleast element, thus F 2 � � 3��Thus we see that for all F the statement F  013 implies that F 2�  013� We can conclude by axiom of induction that F  013 for all F  0� Thus 013 � �0 implies 3 � D��This is a contradiction to 3 being a non-empty subset of 0� Remind that structure � 0�� �>��� is 
not a well-ordered set [5–7]. We set now 3A � 0�� \0 and thus 013A�� � 0. In contrast with a set 3 
mentioned above the assumption F  013A��  implies that F 2 �  013A��   if and only if F is finite, 
since for any infinite F  01�� 0 the assumption F  013A��   contradicts with a true statement ��?� �F � 013A�� =0 and therefore in accordance with postulate 4 we cannot obtain from F  013A��  any 
closed formula : whatsoever. 

For further information on non-classical nonstandard analysis namely����, we refer to [8–13]. 
Abbreviation1.2 In this paper we adopt the following notations [8]. For a standard set � we often 

write ���� let ��� � � ��� ��  ���!�� .We identify " with "��  i.e., " # "��  for all�"  $. Hence, ��� � �����  if � ' $� e.g., $�� � $, ��� � �, etc. Let � ����  � ����� �� � ��*��� �� � �,-.��� �� � �/��� �� 0�� / de-note the sets of 

Cauchy hyper-real numbers, Cauchy infinitesimal hyper-real numbers, Cauchy positive infinitesimal 
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hyperreal numbers, Cauchy finite hyper-real numbers, Cauchy infinite hyper-real numbers and infinite 
hypernatural numbers, respectively. Note that � �,-.��� � � ��� 1 � �/��� � 

Definition 1.13 Let � be external hyper infinite dimensional vector space over the complex field    
� $�� �� � ��� �� 2 ¡ ��� ��. An inner product on � is a $�� ��-valued function, N5�5PH� S � � $�� ��� such that (1) N_� 2 ¢<� "P � N_�� "P 2 N¢<� "P�  (2) N��<PWWWWWWW � N<� �P� (3) 4�4U # N�� �P £ 8 with equality N�� �P � 8 if 
and only if � � 8� 

Theorem 1.1 (Generalized Schwarz Inequality) Let ��� N5�5P!be an inner product space, then for all ��<  �H �N��<P� � 4�44<4 and equality holds if and only if � and < are linearly dependent. 

Theorem 1.2 Let ��� N5�5P!be an inner product space, and  4�4� � gN�� �P . Then 454� is a ��� �� -
valued ¤Enorm on a space��. Moreover N�� �P is ¤-continuous on Cartesian product�� S �, where � is 
viewed as the ¤Enormed space ��� 454�!� 

Definition 1.14 A non-Archimedean Hilbert space � is a ¤Ecomplete inner product space. 
Two elements � and < of non-Archimedean Hilbert space � are called orthogonal if  N��<P � 8� 

Definition 1.15 The graph of the linear transformation MH� � � is the set of pairs �N¥�M¥P��¥  K�M��!��The graph of the operator M� denoted by�Q�R�, is thus a subset of � S � which is a non-
Archimedean Hilbert space with the following inner product��N¥A�TAP� N¥U�TUP�. Operator  M is called 
a #-closed operator if Q�R� is a #-closed subset of � S �� 

Definition 1.16 Let �M  and M be operators on H. If�Q�M � V �Q�R�, then MA is said to be an 
extension of  M and we write�MA V M. Equivalently: MA V M if and only if K�M � V K�M��and MA¥� �M¥ for all ¥  K�M�� 

Definition 1.17 An operator M is ¤Eclosable if it has a ¤Eclosed extension. Every ¤Eclosable 
operator has a smallest ¤Eclosed extension, called its ¤Eclosure, which we denote by ¤ET. 

Theorem 1.3 If M is ¤Eclosable, then Q�¤EMW� � ¤EQ�M�WWWWWW� 
Definition 1.18 Let K�M�� be the set of O  � for which there is an X  � with �MT�O� � �T� X� 

for all T  K�M�� !or each O  K�M��� we define M�O � X.The operator M� is called the ¤Eadjoint of  M� Note that O  K�M�� if and only if ��MT�O�� � "4T4��for all T  K�M�� Note that � � M implies M� � �� 
Remark 1.5 Note that for X to be uniquely determined by the condition �MT�O� � �T� X� one need 

the fact that K�M� is ¤Edense in �� If the domain K�M�� is ¤­dense in �� then we can define  M�� ��M���� 
Theorem 1.4 Let M be a ¤Edensely defined operator on a non-Archimedean Hilbert space �� Then: 

(a) M� is ¤Eclosed. (b) The operator M�is ¤Eclosabie if and only if K�M�� is -dense in which case M �M��� (c) If T is ¤Eclosable, then �¤EMW�� � M�� 
Definition 1.19 Let M be a ¤Eclosed operator on a non-Archimedean Hilbert space �� A complex 

number�#  $�� �� is in the resolvent set ¦�M�, if #� = M is a bijection of  K�M�  onto � with a finitely or 
hyper finitely bounded inverse. If complex number�#  ¦�M�, $§ � �#� = M�mA is called the resolvent 
of M at #� 

Definition 1.20 A ¤Edensely defined operator M on a non-Archimedean Hilbert space is called 
symmetric or Hermitian if�M � M�, that is, K�M� � K�M�� and MO � M�O for all O  K�M� and 
equivalently, M is symmetric if and only if �MO�T� � �O�MT� for all�O�T  K�M�. 

Definition 1.21 A ¤Edensely defined operator  M is called self-¤Eadjoint if�M � M�, that is, if and 
only if M is symmetric and K�M� � K�M��� 

Remark 1.6 A symmetric operator M is always ¤Eclosable, since K�M� ¤Edense in��. If M is 
symmetric, M� is a ¤Eclosed extension of  M so the smallest ¤Eclosed extension M�� of M must be 
contained in�M�. Thus for symmetric operators, we have M � M�� � M�� for ¤Eclosed symmetric 
operators we have M � M�� � M� and, for self-¤Eadjoint operators we have M � M�� � M�� Thus a ¤Eclosed symmetric operator M is self-¤Eadjoint if and only if M� is symmetric. 
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Definition 1.22 A symmetric operator M is called essentially self-¤Eadjoint if its ¤Eclosure ¤EMW is 
self-¤Eadjoint. If M is ¤Eclosed, a subset K � K�M� is called a core for M if  ¤E M Z KWWWWWWW �� M� 

Remark 1.7 If M is essentially self-¤Eadjoint, then it has one and only one self-¤Eadjoint extension. 
Theorem 1.5 [8] (see [8], sect.15.1) If s  �,-.� Y ���  �¨[ is real, then 

��r�%�s� � ��iE& H O%�'���H s����
(�� )%� f�]�      (1.14) 

is essentially self ¤Eadjoint on the domain Ke�%� � * KY�e�%@ [/��@+e �  
Here O%���� is a nonstandard pointwise-defined operator valued function O%�H ���  �] � )Y©�[ O%���� � AjUk,-./ ��iE& ���iE�0ª«=��`� ��¬�^_a�`�� 2 _�=`�c 1%-2o Up�� j2, �

�
�2��%��    (1.15) 

where h  ��� �*�/� � 
The main purpose of the present paper is to extend the result of [8] to #�OU@�'�F 7 3� Our notation 

and definitions are the same as in [8]. 

We remind that for every function�­  "e/�� Y ���  �,-.�' � ���  �,-.� [� ), the averaged free quantum field O%��­� � AjUk,-./ ��iE& ���iE�0ª« i4�� �`� = ��`� ��¬�^_a�`�� 2 _�=`�c­��� 1%-2o Up�� j2,f�'���
�2��%��  (1.16) 

is a self-¤Eadjoint operator on a non-Archimedean Fock space ©� [8]. 
A non -Archimedean "��Ealgebra of local observables ®� is defined as the #Enorm #Eclosure [8] ®� � ¤E� �®��¯�5WWWWWWWWWWWWW,        (1.17) 

where the union takes place over bounded regions ¯ of space-time, and ®��¯� is the von Neumann 
#Ealgebra generated by [8]: °��iE�0ªt�O%��­� 2 �±%��­�u �­  "e/�� Y ���  �,-.�' � ���  �,-.� [²� 

A non –Archimedean near standard "���Ealgebra of physical local observables ®�� �¯� is defined as ®�� �¯� � �³  ®��¯��4³4�  ���  *�,-.� �� 
Let 6��  be the restricted Poincare group of transformations of 4-dimensional Minkowski space-time 

'́ . Poincare transformations °_�µ�7
jn,²  6��  generated by a Lorentz boosts along the �nEdirection � ���3�8 and space-time translation � � � 2 _�_ � ��A��U��]� 9� are °_�µ��jA,² ��� i� � � ��A 2 �A �¶·¸�A 2 i ·¡:¸�A� 9� 2 �A ·¡:¸�A 2 i �¶·¸�A��U 2 �U��] 2 �]��  (1.18) °_�µ�/

jU,² ��� i� � � ��A 2 �A��U 2 �U �¶·¸�U 2 i ·¡:¸�U��] 2 �]� 9� 2 �U ·¡:¸�U 2 i �¶·¸�U��  (1.19) °_�µ�-
j],² ��� i� � � ��A 2 �A��U 2 �U��] 2 �] �¶·¸�] 2 i ·¡:¸�]� 9 2 �A ·¡:¸�] 2 i �¶·¸�]��  (1.20) 

Theorem 1.6 For every °_�µ�7
jn,²  6� � � ��3�8��  and for every bounded set  ¯ � ���  �,-.�]  there 

exists a unitary operators �5
jn,� � � ��3�8 such that, for all ­  "e/�� Y ���  �,-.�' � ���  �,-.� [ 

�5
jn,^��iE�0ªY�O%��­��[c t�5

jn,u� 9 ��iE�0ª¹�O%� ¹­;<�=�7
>7?@º�º� � � ��3�8�   (1.21) 

where ­;<�A�7
>7?@��� i� � ­ �°_�µ�7

jn,² ��� i���  This mappings extends to a representation d;<�=�7
>7?@ of  


­automorphisms of  ®�such that  d;<�=�7
>7?@ t®�� �¯�u 9 ®�� t°_�µ�7

jn,² ¯u� � � ��3�8�     (1.22) 

The formal expressions for the Hamiltonian and Lorentz transformation generators are given by [8] 

�% � �e�% 2 �r�% � ��iE& tMe�%��� 2 Mr�%���u f�]���
(�� �
%-                    (1.23) 
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B%e2 � Be�% 2Br�% � ��iE& �2 tMe�%��� 2 Mr�%���u f�]���
(�� �
%- � ��3�8�   (1.24) 

where Me�%��� � AU »H ±%�U���H2CUH O%�U���H2H t¼D�� O%����uU H 2H t¼D/
� O%����uU H2H t¼D-

� O%����uU H ½ (1.25) 

 is the free energy density with hyperfinite cut-off h  ��� �*�/� , and where  the interaction energy 
density Mr�%��� reads Mr�%��� �HO%�U@���H�        (1.26) 

Formally one verifies the commutation relations «��%�B%e2¬ � (%2�` � ��3�8        (1.27) 
and «��%�(%2¬ � 8�` � ��3�8�        (1.28) 

where (%2�` � ��3�8 are the momentum operators (%2 � ��iE& (%2����
(�� �
%- f�]� with densities defined 

by (%2��� � AU ^H ±%����¼DE
� O%����H2H ¼DE

� O%����±%����H c�     (1.29) 

We wish to prove that ��iE�0ª����B%e2 implements Lorentz rotations on suitable domain ^��iE�0ªY��B%e2[cO%���� i�^��iE�0ªY=��B%e2[c � O%� �µ��
j2,��� i�� �` � ��3�8�  (1.30) 

where  O%���� i� � «��iE�0ª��i�%�¬O%����«��iE�0ª�=�i�%�¬�     (1.31) 

and µ��
j2,��� i� � °8�µ��

j2,² ��� i�� 
In differential form (1.30) becomes «�B%e2�O%���� i�¬ 9 i¼DE

� O%���� i� 2 �2¼¾�O%���� i��` � ��3�8�    (1.32) 
We define now 

B%e2�i� � «��iE�0ª�=�i�%�¬B%e2«��iE�0ª��i�%�¬�` � ��3�8�    (1.33) 
and using the commutation relations (1.27) and (1.28) we obtain 

B%e2�i� # ��iE 	 FGHjmn¾I&,¿ÀJ��ÀKL �&LE
M�% � B%e2 = i(%2�     (1.34) 

since second order and higher terms in i vanish identically. Thus we get «�B%e2�O%���� i�¬ � «��iE�0ª��i�%�¬«�B%e2�i��O%����8�¬«��iE�0ª�=�i�%�¬ � � «��iE�0ª��i�%�¬«�B%e2 = �i(%2�O%����8�¬«��iE�0ª�=�i�%�¬�` � ��3�8�   (1.35) 
Since O%����8� commutes with Br�% by a standard computation we get «�B%e2�O%����8�¬ � ^�Be�%e2 �O%����8�c � �2±%����8��` � ��3�8�    (1.36) 
Also we get «�(%2�O%����8�¬ � =¼DE

� O%����8��` � ��3�8�      (1.37) 
Substituting (1.36) and (1.37) into (1. 35), we obtain the desired commutation relation (1. 32). 
The three main steps to convert the above argument into a rigorous proof are (a) to introduce a 

spatial cut-off into the Lorentz boost generators in such a way that we obtain a self-¤Eadjoint operators 
�B%�Ne2 � ` � ��3�8; (b) to show that for suitable bounded regions�¯ � ���  �,-.�] , (1.34) holds in the sense 

that for every ­  "e/�� Y ���  �,-.�] � ���  �,-.� [�  ^�B%�Ne2 �i��O%��­�c 9 ^�B%�Ne2 = �(%�N2 �O%��­�c�      (1.38) 
where�(%�N2 ,�` � ��3�8 are the locally correct momentum operators. Note that (1. 38) states that B%�Ne2  
are the locally correct Lorentz boost generators for the region ¯ corresponding to the exact 
cancellation of higher order terms in (1.34) is the fact that second and higher order terms in B%�Ne2 �i� 
are localized 9 Eoutside region ¯ and hence 9 Ecommutes with�O%��­�. From (1. 38) one obtains the 
relations ^�B%�Ne2 �i��O%��­�c 9 =O%� ti O%P

O%DE
2 �2 O%P

O%¾u �` � ��3�8�     (1.39) 
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and its direct consequence ^��iE�0ªY��B%�Ne2 [cO%���� i�^��iE�0ªY=��B%�Ne2 [c 9 O%� �µ��
j2,��� i�� �` � ��3�8�  (1.40) 

Definition 1.23 If �] � «_� ¢¬] � «_� ¢¬ S «_� ¢¬ S «_� ¢¬ is a cube in ���  �,-.�] � where «_� ¢¬ is an 
#Eclosed interval in ���  �,-.� � A causal shadow of �] is defined to be the diamond ¯r- � ���A� �U� �]� i��_ 2 �i� > �2 > ¢ = �i�Á ` � ��3�8!�     (1.41) 

Remark 1.8 Note that because we can always translate in the positive �2�` � ��3�8 directions, it is 

sufficient to prove Theorem 1.6 for sets Â such that both Â and ÃQ�
jÄ,Â�Å � Æ�Ç�È are contained in ÂR� for some #Eclosed interval�É � ��� ��STÊ*� . The advantage of working over� ��� ��STÊ*�¨  is that the locally 

correct Lorentz boost generators�ËU�VWÄ �Å � Æ�Ç�È are bounded be1ow. 

2.  Properties of the Lorentz boost generators ËU�VWÄ �Å � Æ�Ç�È 
In this section we consider the basic properties of �%�N and B%�Ne2 �` � ��3�8 in particular, the first order 
estimates they satisfy. Note that �%�N and�B%�Ne2 �` � ��3�8 are well defined operators on a non-
Archimedean Fock space�©�. We take the definition of ©� and the definition of the pointwise-defined 
time-zero field operators on ©� as in [8] (see [8, Section 9]). The spatially cut-off Hamiltonian is 
defined as self-¤Eadjoint operator on a non-Archimedean Fock space ©� [8]. 

Let s � �se�sA!� where  se � °sej2,² �` � ��3�8��sej2,�sA  "e/�� Y ���  �,-.*�] � ��� ��,-.� [ and sej2,�sA £8�` � ��3�8� The spatially cut-off Hamiltonian reads  
�%�N � �%�s� � �e�% 2 Mr�%�sA��       (2.1) 
where Mr�%�­� � ��i­& ­���Mr�%���f�]��

(�� �
%-   and  Mr�%��� �HO%�U@���H        (2.2) 

is the interaction energy density. The operator �%�s� has been studied in [8] and is known to be a 
selfE#Eadjoint semibounded operator on�©�� For the region�¯r-, defined above in section 1 we set now 

B%�Ne2 � ��e�% 2 Me�% t�2sej2,u 2 Mr�%��2sA�      (2.3) 

with � 7 8� and  Me�%�­� � ��i­& ­���Me�%���f�]��
(�� �
%- � 

We assume now that � 2 �2sej2,��� � �2sA� ��� � �2�` � ��3�8 on  �] � «_� ¢¬] � ��� ��,-.*�¨    (2.4) 
and two additional technical conditions on the s � �se�sA!  �2sej2,��� � X2U��� £ 8� X2�  "e/�� Y ���  �,-.*�] � ���  �,-.� [�` � ��3�8    (2.5) 
and   �2sA��� � Ì� 2 �2sej2,���Í sA����       (2.6) 

We rewrite now the operator Me�%�­� as  Me�%�­� � Me�%jA,�­� 2 Me�%jU,�­� ���i­& ��iE& ijA,�`A�`U�_��`A�_�`U��
�2/��% f�]`A�

�2���% f�]`U    (2.7) 

 2��i­& ��iE& ijU,�`A�`U�«_��`A�_��=`U� 2 _�=`A�_�`U�¬�
�2/��% f�]`A�

�2���% f�]`U � ��i­& ��iE& Î�`A�h�Ï�`U�h�ijA,�`A�`U�_��`A�_�`U��
(�� �
%- f�]`A�

(�� �
%- f�]`U 

 2��i­& ��iE& Ï�`A�h�Ï�`U�h�ijU,�`A�`U�«_��`A�_��=`U� 2 _�=`A�_�`U�¬�
(�� �
%- f�]`A�

(�� �
%- f�]`U�   

  ijA,�`A�`U� � �¶:·' 5 Î�`A�h�Ï�`U�h�^��iE­Ð�`A = `U�c S «4�`A� 2 4�`U� 2 N`A�`UP 2CU¬ S  
  S «4�`A�4�`U�¬mAYU�        (2.8) 
  ijU,�`A�`U� � �¶:·' 5 Î�`A�h�Î�`U�h�^��iE­Ð�`A = `U�c«=4�`A� 2 4�`U� 2 N`A�`UP 2CU¬ S  S «4�`A�4�`U�¬mAYU�        (2.9) 
where 
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Î�`��h� � Ñ��¡(��`�� � h�8�¡(��`�� 7 h�        (2.10) 

Note that   ijA,� ijU,  )U�Y ��� ��Z[� 
It follows that Me�%jn,�­���% 2 ��mA� � � ��3 are bounded, ÒMe�%jn,�­���% 2 ��mAÒ� � �¶:·' 5 Óijn,Ó[/%

� 
 Let (%2�­� (%2�­� � ��i­& ­���(%2���f�]��

(�� �
%- �       (2.11) 

Where (%2��� is given by (1.29) and ­  "e/�� Y ���  �,-.�] � ���  �,-.� [�  
Here �% is the number operator with hyperfinite cut-off h and we have used the �%-estimate [8]:  

Let � be a Wick monomial 
�% � ��i­& f�]`A }�

�2���% ��i­& f�]`M~�`A�} �`M�_a�
�2À��% �`A� 555 _�`M�   (2.12) 

with a kernel ~  )U�Y ��� ��]M[��then Ó��% 2 ��m<YU���% 2 ��m\YUÓ� � �¶:·' 5 4~4[/% �     (2.13) 

where _ 2 ¢ £ ]. A similar decomposition holds for�(%2�­��` � ��3�8. The result reads: 

Proposition 2.1 [8] Let � � Me�%jn,�­�� � � ��3 or (%2�­� with�­  "e/�� Y ���  �,-.�] � ���  �,-.� [. Then, ÒY�e�% 2 �[mnYU�Y�e�% 2 �[m^YUÒ� > G�� �      (2.14) 

That is convenient to approximate the operators B%�Ne2 �` � ��8�8 by the operators B%�_�Ne2 �` � ��8�8  
with an additional momentum cut-off 

B%�_�Ne2 � ��e�%�_ 2 Me�%�_ t�2sej2,u 2 Mr�%�_��2sA��  
where Me�%�_ and Mr�%�_ are defined by cutting off all the momentum integrals at �`� 7 `� That is, Me�% 
and Mr�%, are expressed as a sum of Wick monomials (2.12) each of which is replaced in the definition 
of Me�%�_ and Mr�%�_ by 

�%�_ � ��i­& f�]`A }�
�2���% ��i­& f�]`M�_�`A�} �`M�~�`A�} �`M�_a�

�2À��% �`A� 555 _�`M�� 
Here �_�`A�} �`M� � � if �`n� � ` � h for all�� � � � ], and �_�`A�} �`M� � 8 otherwise. We 

abbreviate also  

Be�%�_�Ne2 � ��e�%�_ 2 Me�%�_ t�2sej2,u �` � ��3�8� 
Note that as a rule, estimates that hold for B%�Ne2  also hold for�B%�_�Ne2 , uniformly in�`. For example, 

for all `  � *�/��� � ` � hH  ÒY�e�%�_ 2 �[ma�YUMe�%�_jn, �­�Y�e�%�_ 2 �[ma/YUÒ� � �¶:·'� � � � ��3    (2.15) 

and ÒY�%�_ 2 �[ma�YUMe�%�_jn, �­�Y�%�_ 2 �[ma/YUÒ� � �¶:·'� � � � ��3    (2.16) 

for bA 2 bU £ 3, where the constants are independent of `. As a domain of admissible vectors in ©� |,-.� � °T�T � �Te�TA�}�  ©��T@  "e/�� Y ���  �,-.*�]@ � ���  �,-.� [�T@ # 8�(¶)�*�)c��F  0�� ��²� (2.17)�
Remark 2.1 The operators B%�N�e2 �` � ��3�8 as constructed above, enjoys the property of being 

semibounded. 
Theorem 2.2 Let s � �se�sA! satisfy the condition (2.4). Then there are constants _ and ¢ such 

that for all ` > h  
�e�% � _YB%�_�Ne2 2 ¢[�` � ��3�8       (2.18) 

on the domain |,-.� S |,-.� � 
Proof For 6 7 8, there is a constant f such that [8] 8 � �e�% 2 Mr�%�_Y�2sA���[ 2 f�` � ��3�8      (2.19) 
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on the domain |,-.� S |,-.� � For 6 7 8, there is a constant d such that [8] 8 � �e�% 2 Me�%�_ ��2sej2,���� 2 d�` � ��3�8      (2.20) 

on the domain |,-.� S |,-.� �  The inequalities (2.18) follows from adding (2.19) and (2.20). 
Proposition 2.3 There are positive constants _� ¢� d such that 

B%e2 � _��% 2 ¢� � dYB%e2 2 ¢[�` � ��3�8      (2.21) 
on the domain |,-.� S |,-.� � 
Proof Note that for ` � ��3�8 _��% 2 ¢� =B%e2 � �_ = ���e�% = Me�% ��2sej2,���� 2 Mr�%Y�_ = �2�sA���[ 2 _¢� 
By choosing constant  _ larger than  +�02 «·eª��2�sA��� C 8!¬� we have �_ = �2�sA��� 7 8 and 

therefore as in (2.19) 
�e�% 2 Mr�%Y�_ = �2�sA���[ £ 8� 

Moreover, by (2.14) we can choose _ so that �_ = � = ��Y�e�% 2 �[ = Me�% ��2sej2,���� £ 8� 
The second part of (2.21) follows by a similar consideration,  

3.  Quadratic estimates 
In this section we prove the selfE#Eadjointness of the operators B%�_e2 �` � ��3� by interpreting the 
operator Me�%�_�  as generalized Kato perturbation [8]. Thus we need proving quadratic inequalities  Y�e�% 2 �[U � __Y�e�% 2 #Me�%�_� Y­e�2[ 2 Mr�%�_� �­A� 2 ¢[U�    (3.1) 
where __ and ¢ are constants with __ depending on `. Here # is finite constant and ­e�2 ��mA�2sej2,��� where sej2,��� satisfies conditions (2.5). 

Theorem 3.1 The operators Be�%�_n2 �` � ��3�8 are essentially self-#Eadjoint on�K�. There are 
constants _ and ¢ independent of�`, such that for ` > h and ` � ��3�8 Y�e�% 2 �[U � _YBe�%�_e2 2 ¢[�       (3.2) 

Remark 3.1 For O'U@ we use the “pull through formula” (3.5). Let M% � ¤EY�e�% 2 �%[WWWWWWWWWWWWWWW and�$�"� ��M% = "�mA. Then  _�Å�$�"� � $Y" = 4�Å�[_�Å� = $Y" = 4�Å�[«_�Å�� �¬$�"��    (3.3) 
We shall always be concerned with operators T that are essentially self-#Eadjoint on domain |,-.�  

defined in (2.17), and whose perturbation � is a finite sum of Wick monomials with #Esmooth kernels. 
It follows that _�Å��is defined on the #Edense domain |,-.�b � �M% = "�|,-.�         (3.4) 

and that (3.3) holds on this domain. 

Lemma 3.2 Suppose that M% � ¤EY�e�% 2 �%[WWWWWWWWWWWWWWW satisfies the above conditions. Let�T  |,-.�b , where �" = d�  is in the resolvent set of M% for all�d £ 8. Then for ]  0 a positive integer _jA�M,$T � ��iEf �=��^gGh�� $i��%r�$i/ 555 $ix�%rx$ixy�_rxy�T�    (3.5) 

where � � ��A�} � �j! be a set of distinct ordered positive integers, ��� ]� � ��� 3� � � � � ]!� _r ���iEk _ja+A Y`nl[ for m 7 8�  _r � �  for m � 8� The sum in (3.5) takes place over all partitions of ��� 3� � � � � ]! into disjoint subsets �A�� � � � � �̂ *A (including permutations among the subsets) for n� � 0, �� � � � � ]. The elements of each��n are taken in natural order. Let $il � $�o�� $�"� � �M% = "�mA� where 
o � " = ��iEf 4�`n�n{il  and �a � �a � �̂ *A � }� �̂ *A� Let �r � ^_Y`n�[�} � ^_Y`n,[� �c} c for m 7 8�  
and �r � 8 for m � 8��Note that the sum (3.5) includes terms where �̂ *A is empty but not��A�� � � � � �̂ ; 
this convention adjusts the sign �=��^ correctly. The n� � 0 term is simply  $A_jA�M,T� 

Proof In order to apply (3.5) to the proof of (3.1) we must be able to estimate the commutators �
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3%�_
jn, �`� � ^_�`��Me�%�_� �­�c        (3.6) �� � �� 3, for sufficiently large�`, where ­  "e/�� Y ���  �,-.*�] � ���  �,-.� [� 

Lemma 3.3 Ò3%
jU,�`���% 2 ��mAYUÒ� � ¯�«4�`�¬mA��      (3.7) 

Proof 3%
jU,�`�) is certainly #Edensely defined, say on domain K; it is sufficient to prove (3.7) on K 

and then 3%
jU,�`���% 2 ��mAYU extends to a bounded operator on all vectors of �©�. Now we set 3%

jU,�`� � ��iE� ~�`�Ô� _�� �=Ô�f�]Ô��

�2��%
 

where by (2.9) the kernel ~�`�Ô� can be estimated by  �~�`�Ô�� � �X�` = Ô��«4�`�¬mAYU«4�Ô�¬mAYU 
where X  �,-.� Y ���  �]�[ is rapidly decreasing. According to (2.13), by a simple calculation one obtains Ò3%

jU,�`���% 2 ��mAYUÒ� � �¶:·'�S 4~�`�5�4�U � ¯�«4�`�¬mA�� 
Lemma 3.4 For arbitrary T  ©� and d 7 8 

� � ��iE& f�]` Õt�e�% 2 d 2 4�`�um�/ 3%
jA,�`�Y�e�% 2 d[m�/TÕ

�

U
�
�2��% � �¶:·'�S 4T4�U� (3.8) 

Proof Let ©@��F  0��  be the F-particle Fock space. Now 3%
jA,�`� is defined on K for all ` and 

since 3%
jA,�`� maps ©M� into�©MmA� , it is sufficient to prove that (3.8) holds for T  K B ©@� with the 

constant independent of F. We remark that by the methods of the previous lemma it is easy to show 
that the integrand in (3.8) is uniformly bounded in�`, but different methods are necessary to prove it 
integrability. Now we define 3%

jA,�`� � ��iE� ijA,�`�Ô�_��Ô�f�]Ô��

�2��%
 

where ijA,�`�Ô� is given by (2.9); therefore we obtain �% � ��iE� f�]`�

�2��%
��iE� f�]ÔA�

�p���%
555 ��iE� f�]Ô@mA�

�p-.���%
S 

S ÌY��iEf 4�Ôn� 2 4�`�@mAn+A 2 d[mAYU FAYU S  

S ��iE& f�]Ô�
�p��% ÖijA,�`�Ô�ÖY��iEf 4�Ôn� 2 4�`�@mAn+A 2 d[mAYU�T�ÔA�} �Ô@mA�Ô��ÍU� (3.9) 

where _�Ô� has destroyed a particle by �_�Ô�T��ÔA�} �Ô@mA�Ô� � FAYUT�ÔA�} �Ô@mA�Ô��     (3.10) 
By the definition (2.9) we obtain  ÖijA,�`�Ô�Ö���iEf 4�Ôn� 2 4�`�@n+A 2 d�mAYU � �¶:·'�S «4�`�¬AYUYÖ��iE­Ð�` = Ô�Ö[. 
Replacing now ` by Ô@ in (3.9) we get �% � _ S F S ��iE� f�]ÔA�

�p���%
555 ��iE� f�]Ô@�

�p-.���%
S 

  Ì«4�Ô@�¬AYU���iEf 4�Ôn�@n+A 2 d�mAYU��iE& f�]Ô�
�p��% YÖ��iE­Ð�Ô@ = Ô�Ö[�T�ÔA�} �Ô@mA�Ô��ÍU �  

  � _ S ��iEf ��iE& f�]ÔA�
�p���% 555 ��iE& f�]Ô@�

�p-��% S@̂+A   

S Ì��iE& f�]Ô�̂ �ÔA�} �Ô@�YÖ��iE­ÐYÔ^ = Ô[Ö[�
�p��% ÖTYÔA�} �Ô^mA�Ô�Ô^*A�} �Ô@[ÖÍU�  (3.11) 

where _ is a constant and 

�̂ �ÔA�} �Ô@� � »4YÔ^[q ���iE× 4�Ôn�@
n+A 2 d�½AYU 
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We shall write this symbolically as �̂ YÔ^[� suppressing the other variables. In obtaining (3.11) we 
have interchanged Ô^ and Ô@��and exploited the symmetry of�T. In (3.1 I) we wish to replace �̂ YÔ^[ by �̂ �Ô� to get 

�%b � _ S ��iE× ��iE� f�]ÔA�

�p���%
555 ��iE� f�]Ô@�

�p-��%
S@

^+A  

S Ø��iE� f�]Ô�̂ �Ô�YÖ��iE­ÐYÔ^ = Ô[Ö[�

�p��%
ÖTYÔA�} �Ô^mA�Ô�Ô^*A�} �Ô@[ÖÙU 

For then the integral over p is a convolution between ¥^�Ô� � �̂ �Ô�ÖTYÔA�} �Ô^mA�Ô�Ô^*A�} �Ô@[Ö 
and X�Ô� � Ö��iE­Ð�Ô�Ö, and the integral over Ô^ is the square of the )U� ¤Enorm of this convolution. 

Now we get 

��iE� f�]Ô^ Ø��iE� XYÔ^ = Ô[¥^�Ô�f�]Ô��

�p���%
ÙU�

wpxw�%
� ÓY��iEXÚ[ S Y��iE¥rÛ[Ó�UU � 

� Ó��iEXÚÓ /��U S Ó¥^Ó�UU  

and Ó��iEXÚÓ /��U � ��iE� t��iE­Ð�Ô�u f�]Ô� > G��

�p���%
 

Therefore, 

  �%b � �¶:·'�S ��iEf Ó�̂ YÔ^[T�ÔA�} �Ô@�Ó�UU � �¶:·'�S ÒY��iEf �̂U@̂+A [AYUTÒ�U
U@̂+A �   � �¶:·'�S 4T4�UU �  

In order to justify the replacement of �̂ YÔ^[ by��̂ �Ô�, we set �̂ YÔ^[ � ��̂ �Ô� 2 t�̂ YÔ^[ = ��̂ �Ô�u 

and therefore we obtain 

Ø��iE� f�]Ô�^YÔ^[ÖY��iE­Ð[TÖ�

�p���%
ÙU � Ø��iE� f�]Ô�^�Ô�ÖY��iE­Ð[TÖ�

�p���%
ÙU 2 

2 Ø��iE� f�]Ô t�̂ YÔ^[ = ��̂ �Ô�u ÖY��iE­Ð[TÖ�

�p���%
ÙU 2 3 Ø��iE� f�]Ô�^�Ô�ÖY��iE­Ð[TÖ�

�p���%
Ù S 

S Ì��iE& f�]Ô t�̂ YÔ^[ = ��̂ �Ô�u ÖY��iE­Ð[TÖ�
�p���% Í�     (3.12) 

Applying the operation _ S ��iEf ��iE& f�]ÔA�
�p���% 555 ��iE& f�]Ô@�

�p-��%
@̂+A  to (3.12), we 

obviously get �%�  on the left and �%b  from the first term on the right. To estimate the second term, we 
note that 

Ö�̂ YÔ^[ = ��̂ �Ô�Ö � Ü�̂ YÔ^[U = ��̂ �Ô�UÜAU � 

  ÜY��iEf 4�Ôn��ns^ 2 d[ t4YÔ^[ = 4�Ô�uÜAYU Ö���iEf 4�Ôn��� 2 d�Y��iEf 4�Ôn��ns^ 2 4�Ô� 2 d[ÖmAYU 

� �¶:·'�S Fm�/Ö4YÔ^[ = 4�Ô�Ö�/ � �¶:·'�S Fm�/ ÜÓÔ^Ó� = 4Ô4�Ü�/ � �¶:·'�S Fm�/ÓÔ^ = ÔÓ�
AYU�  

where 454�is Euclidian ¤E norm in ��� ��]�Therefore the integral of the second term in (3.12) can be 
estimated by 
�¶:·'�S FmA S ��iEf ��iE& f�]ÔA�

�p���% 555 ��iE& f�]Ô@�
�p-��%^ S  

Ø��iE� f�]ÔÓÔ^ = ÔÓ�
AYU

� Üt��iE­ÐYÔ^ = Ô[uTYÔA�} �Ô^mA�Ô�Ô^*A�} �Ô@[Ü�

�p���%
Ù� 
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But, as before, this is the square of the )U�E ¤Enorm of the convolution of the function T with a 
rapidly decreasing function and so it can be estimated by  
�¶:·'�S F S ��iEf 4T4�U^ � �¶:·'�S 4T4�U �  
where the constant is independent of F  0�� . The third term resulting from (3.12) can then be 
estimated by the generalized Schwarz inequality applied to���iEf ��iE& f�]ÔA�

�p���% 555@̂+A��iE& f�]Ô@�
�p-��%  . Hence �%�  is bounded as claimed. The single commutators (3.6) are all that we 

need estimate. For let�� � ��A�} � �j!; then �Me�%jA,�­��r � 8 if �Me�%jU,�­��r and �Me�%jU,�­��r � 8 when 

m 7 3. When�m � 3, �Me�%jU,�­��rreduces to the constant�3Î�`��h�ijU,�`A = `U�; thus for all�m,�Me�%jU,�­� 
satisfies  

Õ�Me�%jU,�­��r ��% 2 ��mAYUÕ
�
� �¶:·'�S ��iEk «4�`n�¬mAYUn{r     (3.13) 

by virtue of (3.7) and (2.11). 
Remark 3.2 We now go to prove (3.1) by using the formula (3.5). For convenience, we work now 

with operators M%�_e2�#� � ¤E Ìt�e�% 2 #Me�%�_� Y­e�2[ 2 Mr�%�_� �­A�u Z KÍWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW
     (3.14) 

which are B%�_e2  up to constants. To apply the pull-through formula (3.5) it is necessary to know that 
the operators M%�_e2�` � ��3�8 are self-¤Eadjoint. For the moment we assume this, postponing the proof 
until Theorem 3.8. We remark though that in the case # � 8� M%�_e2  reduces to �%�_� �­A� which is known 
to be self-¤Eadjoint. The next lemma gives an estimate on commutators such that 3%�_
j],�`� � ^_�`��Mr�%�_� �­A�c        (3.15) 

which is finite or hyperfinite polynomial of degree �3F�= ��� in the field O%����. Since M%�_e2  
remains semibounded (Theorem 2.2) when perturbed by a polynomial in the field of degree less 

than�3F, we have the following estimate in terms of the resolvent�$%�_�"� � YM%�_ = "[mA: 
Lemma 3.5 Let ]  0��  be a positive integer. There is a "e > 8 independent of ` and ] such that, 

for "A � "e� "U � "e Ò$%�_AYU�"U�M%�_jA�M,$%�_AYU�"A�Ò� � �¶:·'�Sk «4�`�¬m�/Mn+A �     (3.16) 

where the constant is independent of  "A,�"U. Here, in the notation of Lemma 3.2, Mr�%�_jA�M,e2 � Ì_�`A�� ^555 ^_�`M��Mr�%�_� �­A�c 555cÍ. 
Theorem 3.6 Assume that the operators M%�_e2  are given by (3.14) is self-#Eadjoint, where�`� � h. 

Then there are positive constants�¢� d�`�, and f�`� all independent of # such that Y�e�% 2 �[U � Yd�`� 2 #Uf�`�[YM%�_e2 2 ¢[U�      (3.17) 
Proof Obviously it is sufficient to prove that Ó�Y�e�%�_ 2 �[$%�_�=¢�TÓ�

U � Yd�`� 2 #Uf�`�[4T4�U     (3.18) 

for T in the dense set KA�2 � YM%�_e2 2 ¢[K as in (3.4). This choice of T ensures that �$%�_�=¢�T  KA�2 is in the domain of all the operators we wish to apply to it. Here ¢ is chosen so large that 

Ò�Y�e�%�_ 2 �[AYU$%�_�=¢�AYUÒ�
U � �¶:·'��      (3.19) 

(see 2.18) and so that (3.16) holds with ] � �� Ò$%�_AYU�"U�3%�_
j],�`�$%�_AYU�"A�Ò� � �¶:·'�S Î�`�� `�«4�`�¬m�/    (3.20) 

for "n > =¢� Now we get Ó�Y�e�%�_ 2 �[$%�_�=¢�TÓ�
U � 
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��iE& �t�e�%�_ 2 � 2 4�`�uAYU _�`�$%�_� �=¢�T�
�

U�
�2��_ 4�`�f�]`�    (3.21) 

But by the pull-through formula (3.3) we get 
�_�`�$%�_�=¢�T � $%�_� Y=¢ = 4�`�[_�`�T = $%�_� Y=¢ = 4�`�[ S S Ì#3%�_

jA,�`� 2 #3%�_
jU,�`� 2 3%�_

j],�`�Í �$%�_�=¢�T� 
where 3%�_

jn, �`�� � � �� 3� are defined by (3.6) with a momentum cut-off `. Substituting this into (3.21), 
we obtain by generalized Schwarz’ inequality, ÓY�e�%�_ 2 �[�$%�_� �Ý ¢�TÓ�

U � 

� ���iE& f�]`4�`��4�_�`�T4�U�
�2��_ 2 Ò�3%�_

j],�`��$%�_�=¢�TÒ�
U 2  

2#Uf Ò�3%�_
jn, �`��$%�_�=¢�TÒ�

UUn+A Þ�       (3.22) 

where  � � t�e�%�_ 2 � 2 4�`�uAYU $%�_� Y=¢ = 4�`�[� But by (3.19) we obtain 

4�T4� � �¶:·'�S Ò$%�_AYUY=¢ = 4�`�[TÒ� � �¶:·'�S Õt�e�%�_ 2 4�`�um�/TÕ
�
. 

Therefore from (3.22) we get ÓY�e�%�_ 2 �[�$%�_� �Ý ¢�TÓ�
� � 

�¶:·'�S ��iE& f�]`4�`� ßÕt�e�%�_ 2 4�`�um�/ _�`�TÕ
�

U
�
�2��_ 2 Ò�3%�_

j],�`��$%�_�=¢�TÒ�
U 2  

2#U× àt�e�%�_ 2 4�`�umAU 3%�_
jn, �`��$%�_�=¢�Tà

�

UU
n+A á� 

The integral of the first term on the right can be written as ��iE� 4�`� Ò_�`��e�%�_mAYUTÒ�
U f�]` ��

�2��_
Ò�e�%�_AYU �e�%�_mAYUTÒ�

U � 4T4�U � 
where �e�%�_mAYU is taken equal to zero on the Fock vacuum. The terms in the integrand involving 

the�3%�_
jn, �`�, �� � ��� 3� 8� are all bounded by �¶:·'�S Î�`�� `� by virtue of (3.20) and (2.13). Hence the 

integral is hyperfinite and the bound (3.18) holds. We remark that because of the momentum cut-off it 
was not necessary to use the full force of Lemmas 3.3-3.5, but only the estimates Ò$%�_AYU3%�_

jn, �`�$%�_AYUÒ� � �¶:·'�S Î�`�� `��      (3.23) 

Remark 3.3 We now prove the self-#Eadjointness of�BN�%�_e2 ,` � ��3�8 by treating Me�%�_e2  as a Kato 
perturbation. Generalized Kato’s criterion is [8]: 

Proposition 3.7 Let M is a self-#Eadjoint operator and let K be a #Ecore for�M. Suppose that � is 
symmetric and that there are positive constants _ and ¢ with _ > � such that 4�T4� � _4�M 2 ¢�T4� 

for all T  K�M�. Then M 2 �� is self-#Eadjoint on K�M� and essentially selfE#Eadjoint on K� 
Theorem 3.8 For ` � h and s satiating (2.4), BN�%�_e2 ,` � ��3�8 are essentially selfE#Eadjoint on K� 

Proof We show that M%�_e2  given by (3.14) is self-#Eadjoint where ­e�2 � °�2sej2,q�² � ­A � �2sAq��  ` � ��3�8�and λ = 1; this is equivalent to the statement of the theorem. We use Theorem 3.6 to prove 
Theorem 3.8 in spite of the fact that the conclusion of the second theorem appears as a hypothesis of 
the first. By Lemma 2.1 we know that there is a constant dA such that ÓM%�_e2�­�TÓ� � dAÓY�e�% 2 �[TÓ�       (3.24) 
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for all T  KY�e�%[. We choose � to be a sufficiently large integer such that dAYd�`� 2 f�`�[AYU >��where d�`��and f�`��are the constants in (3.17). Let us consider the sequence of values # � nq�� n � 8� � � � � �. Let (̂ �2 be the statement that M%�_e2�nq�� is selfE#Eadjoint and ³^�2 the statement that �mAMe�%�_e2 Y­e�2[ is a Kato perturbation of�M%�_e2�nq��, i.e., Ó�mAMe�%�_e2 Y­e�2[TÓ� � _ÓYM%�_e2�nq�� 2 ¢[TÓ� 

for constants _ and ¢ with a < 1. As we have already observed, (e�2 holds since M%�_e2�8� reduces to the 

Hamiltonian��P��%�_
� . Note that (̂ �2 implies ³^�2�` � ��3�8 since, for�T  K t�M%�_e2�nq��u, 

Ó�mAMe�%�_e2 Y­e�2[TÓ� � dA�mAÓY�e�% 2 �[TÓ� � dA�mAdAYd�`� 2 f�`�[AYUÓYM%�_e2�nq�� 2 ¢[TÓ�   
by the inequality (3.24) and (3.17). However, by Proposition 3.7, the statement ³^�2implies�(̂ *A�2�` � ��3�8. 

4.  Higher order estimates 
In this section we derive higher order estimates of the following form 

�e�%^ � __YB%�_e2 2 ¢[ � d_Y�e�% 2 �[@^      (4.1) 
and 

�e�%U 2 �%U@ � _YB%�_e2 2 ¢[U@�       (4.2) 
where __ and d_ are constants depending on `. The estimates (4.1) are used to prove that the powers YBe�%�_e2 [^ are essentially selfE#Eadjoint on |,-.�  and do not survive in the #Elimit: ` �� h; on the other 
hand, the estimate (4.2) does transfer to the #Elimit ` � h and, in fact, enables us to prove that this 
#Elimit exists. For real 9  ��� �� we define the generalized number operator with hyperfinite 
momentum cut-off h  � �/��� � �%�t�� � ��iE& _�� a�`��«4�`�¬t�

�2��%�� _�� �`�f�]`�      (4.3) 

Note that �%�e � �% and �%�A � �e�% � 
Lemma 4.1 (1) If 9 � u, then �%�t � �¶:·'�5 �%�t�        (4.4) 
(2) If 9 7 8� ] 7 8� then �%M
jA*t, � �e�%tM �%�tM �        (4.5) 

(3) Let 9  ��� ��  and ]  0��  a positive integer, then for any vector�T  K t�%�tMYUu, 

Õ�%�t
MU TÕ

�
� 

��iEf Ì��iE&f�]`A 555 f�]`̂ ÔM^Y4At�} � 4t̂[ t��iEk Ît`̂ ��huv
/+A u Ó_jA�^,TÓ�

UÍM̂+A �  (4.6) 

where Î�`��h� is defined by (2.10), _jA�^, is defined in Lemma 3.2, and ÔM^ is a homogeneous 
polynomial of degree ]  0��  with positive coeficients that satisfies, for �n 7 8,  Y��iEk �a^

a+A [Y��iEf �a^
a+A [Mm^ � ÔM^Y�A�} � �̂ [ � �¶:·'�5 Y��iEk �a^

a+A [Y��iEf �a^
a+A [Mm^ �� (4.7) 

In this section we set  

B%�_e2 � ¤E^Y�e�% 2 �%�_[ Z KcWWWWWWWWWWWWWWWWWWWWWWWW,  
where  �%�_j2,

� � Me�%�_� Y­e�2[ 2 Mr�%�_� �­A��` � ��3�8� Let $2�=¢� � YB%�_e2 2 ¢[mA� 
Lemma 4.2 Let ]  0��  be a positive integer. Then there are constants __ and ¢ where __ depends 

on�` > h, such that ÒY�e�%�_ 2 �[MYUTÒ� � __ �YB%�_e2 2 ¢[À/T�
�
�` � ��3�8     (4.8) 

for all  T  K �YB%�_e2 2 ¢[À/�� 
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Proof (4.8) is proved by hyper infinite induction on ]  0�� H the cases ]� � ���3 are already known 
by Theorem 2.2 and 3.6. Let�T  KA�2 � KYB%�_e2 2 ¢[�` � ��3�8, where ¢ � ="e is chosen 
sufficiently large that (3.16) and (3.19) hold. By (4.6), �M*A��%�_ � ÒY�e�%�_ 2 �[jM*A,YU$2�=¢�TÒ�

U � ��iEf ��iE& f�]`A�
�2���_ 555 ��iE& f�]`̂ ÔM^Y4A� �} � 4�̂ [ S�

�2-��_
M̂+A   

S �Y�e�%�_ 2 ��iEf 4�`n���^n+A 2 �[AYU_jA�^,$2T��

U �     (4.9) 

where me have converted all but one Y�e�%�_ 2 �[AYU into an integral of products of annihilation 
operators. We apply the pull through formula (3.5) to pull the _jA�^, through the�$2, and we dominate 

the factor Y�e�%�_ 2 ��iEf 4�`n���^n+A 2 �[AYU by 

$2�i�
AYU � $2 t=¢ = ��iE×4�`n�u 

by using (3.19). This gives �M*A��%�_ � ��iE× ��iE� f�]`A�

�2���_
555 ��iE� f�]`̂ ÔM^Y4A� �} � 4�̂ [ S�

�2-��_

M
^+A  

S ���iEf Ò$i�
AYU�%r�$i/

AYU 555 $i7
AYU�%r7$i7y�AYU _r7y�TÒ�

U
gGh��w,�jA�^, ��    (4.10) 

Let us consider a typical factor�$il�%rl$ily�, regarded as a function of the variables�`n� �} �`n0, 
where �x  �a� u � ��} � i. Because of the momentum cut-off, the estimates (3.16) and (3.23) hold: Ò$il

AYU�%rl$ily�AYU Ò� � �¶:·'�S �%Y`n� �} �`n0[� �%Y`n� �} �`n0[ � ��iEk Ît`n� ��hu¾�+A . 

Note that when i £ 3, tMe�%�_� Y­e�2[url is a multiple of the identity. Therefore, from (4.10) and 

(3.19),  �M*A��%�_ � �¶:·'�S S ��iE× ��iE� f�]`A�

�2���_
555 ��iE� f�]`̂�

�2-��_
��iE × ÔM^jA�^,+y�1y/

M
^+A �%�âA� S 

S ÒY�e�%�_ 2 ��iEf 4�`n����n{y/ 2 �[mAYU_y/TÒ�
U
,     (4.11) 

where we have set âA � � �p � ��A�} � �̂ mj�np+A , âU � �n*A � �nA�} � nj!� �%�âA� � �%�_ t`n� �} �`nx.,u� 
By the binomial expansion and (4.7) we get ÔM^Y4A� �} � 4�̂ [ � �¶:·'�S «4�`�¬^mj S ��iE� 4�`n�n{y/

«�n = m�4�`� 2¬Mm^ 

Here the const. depends on ` � h and Ôj*¾�j�âU� � �¶:·'�S Ôj*¾�j t4Y`̂ �[�} � 4Y`̂ ,[u� 
By (4.7), since 4�`� 7 C 7 8� Ô¾jY4A� �} � 4�̂ [ � �¶:·'�S Ô¾2j�4A� �} � 4j� �� 
if i > iz. In the above sum over�i� m�2 �i > ]; therefore, ÔM^Y4A� �} � 4�̂ [ � ÔMj�âU� 
Integrating out the variables in�âA, in (4.11), we obtain �M*A��%�_ � ��iEf ��iEf ��iE&��iEk Ï�`n � `�f�]`nn{y/y/�>��x?M̂+A ÔMj�âU� S  

S Ò_y/Y�e�%�_ 2 �[mAYUTÒ�
U � �¶:·'�S ÒY�e�%�_[MYUY�e�%�_ 2 �[mAYUTÒ�

U
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by virtue of (4.6) with�9 � �. Setting�T � YB%�_e2 2 ¢[¥�` � ��3�8, where ¥ is an arbitrary element 
of the domain�K, we obtain ÒY�e�%�_ 2 �[jM*A,YU¥Ò�

� � �¶:·'�S ÒY�e�%�_ 2 �[jMmA,YUYB%�_e2 2 ¢[¥Ò�
�
   (4.12) 

By the inductive assumption we have  

ÒY�e�%�_ 2 �[jMmA,YUYB%�_e2 2 ¢[¥Ò�
� � �¶:·'�S ÕYB%�_e2 2 ¢[>Ày�?/ ¥Õ

�

�
�   (4.13) 

which appears to prove the lemma. However, we do not yet know that K is a #Ecore for 

YB%�_e2 2 ¢[>Ày�?
/   and so we must argue more carefully. Define now the operators :2�#�=Y�e�%�_ 2 �[jMmA,YUY�e�%�_ 2 #Me�%�_e2 2 Mr�%�_e2 2 ¢[, ` � ��3�8 on the domain �K. It is sufficient to prove that K is a #Ecore for�:2���. For then (4.12) 

extends from K to K�:2����Á by induction (4.13) holds on�K ¹YB%�_e2 2 ¢[>Ày�?
/ º � K�:2����, and the 

proof of the lemma is complete. As in the proof of Theorem 3.8, we consider a sequence of 
values�#̂ � �nq�� n� � �8��� � � � � �, and regard the operator  ���� � �mAY�e���� 2 �[j�mA�	UMe����
  

as a perturbation of :���
�. By (4.12) ÒY�e���� 2 �[j�*A�	U¥Ò�
 � �Ó:���
�¥Ó� 

for any ¥  
K, where the constants ¢ and � are seen to be independent of �
  «8��¬. But, as in the 
next lemma, ÒY�e���� 2 �[j�mA�	UMe����
 Y�e���� 2 �[mj�*A�	UÒ�
 � �� > G
� �  

Hence, by choosing hyperinteger
�  0
� /� � 7 ���, we have for
¥  
K, 

Ó����¥Ó� � �mA�� ÕY�e���� 2 �[�Ày��� ¥Õ� � Ó:�Y�
[¥Ó��    (4.14) 

where _ � �mA���< 1. That is, � is a Kato perturbation of
:���
�. Note that domain K is a #Ecore 
for
:��8�. This follows from the facts that (4.8) holds when � � 8�
 i.e. when ����e�  is replaced 

by
����e� � �e���� 2 Mr����e� , and that powers Y����e� [� are essentially self E#Eadjoint on
K. From 4.14 we 
see that K is also a #Ecore for :��8� 
2 
�
 � :���A� and that K�:���A�� 
� K�:��8�� Continuing in 
this way we reach the conclusion that K is a #Ecore for
:����. To complete the estimate (4.1), we 
dominate powers of ����e� � ` � ����� by powers of
�e����. 

Lemma 4.3 Let �  0
�  be a positive hyperinteger. Then there are positive constants ¢ and
��, 
where �� depends on � such that ÒY����e� [
TÒ� � �� ÒY�e���� 2 ¢[@
TÒ�� ` � ������     (4.15) 

Here �F is the order of the interaction. 

Proof Here �F is the order of the interaction. Since Y�e���� 2 ¢[@
 is essentially self-#Eadjoint on K it is sufficient to prove (4.15) for
T  K. Now because of the momentum cutoff, �e����e�  has the form �e����e�  = �e���� 2 ��n, where �n is a Wick monomial (2.12) whose kernel has #Ecompact support. 
Each such monomial �n maps domain K into a set of vectors which have a finite number of particles 
and which are of #Ecompact support and � /
� Y �
� ��

[ #Ealmost everywhere in the momentum variables. 

It follows that Y�e����e� [
 can be expanded on K into a sum of welldefined products of the form � ���iE� �e����n��y��� e �n��y� where
��iE� �!"! A � �, and � represents a typical Wick monomial 
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in
�e����e�  . Each such product can be dominated by Y�e���� 2 ¢[@
provided that ¢ is chosen sufficiently 
large, say
¢ 7 �F�#���. It suffices to show that �Y�e���� 2 _[mn � t�e���� 2 _ = �F#���umn*@ :�     (4.16) 

where : is a bounded operator. For then it is clear by hyper infinite induction that �Y�e���� 2 ¢[m@
 is 
bounded. Take W of the form (2.12) with
$ > �F. Then �Y�e���� 2 _[mn � 

� t�e���� 2 _ = �F#���umn 
��iE% f�]`A
&��&'� 555 ��iE% f�]`�(�`A
 �} �`�
 � S
&�)&'�   S _��`A� 555 _�`��� 
where (�`A
 �} �`�
 � � t�e���� 2 _ = �F#���un t�e���� 2 _ 3 #�`A� 3�3 #�`��umn � 
where the 3 is chosen according to whether the corresponding _��`� is an _ or _��`�. Since =�F#��� � 3#�`A� 3�3 #�`�� 

the operator #Enorm 4(�`A
 �} �`�
 �4� � �~�`A
 �} �`�
 ���   
By an extension of the basic estimate (2.13) to cover the case of operator-valued kernels, it follows 

that : � t�e���� 2 _ = �F#���um@ ��iE% f�]`A
&��&'� 555 ��iE% f�]`�(�`A
 �} �`�
 � S
&�)&'�   S _��`A� 555 _�`��� 
is a bounded operator. This completes the proof of the lemma. Note that by the generalized spectral 

theorem [8], the � dependence of ¢ can be incorporated into constant �� � 
Theorem 4.4 Let �  0
�  be a positive integer. Then the operators Y�e����e� [
�` � ����� are 

essentially selfE#Eadjoint on K� 
Proof Let �� 
� K� � K tY����e� 2 :[@
u �` � ������ where ¢ is a large positive number. By the 

previous two lemmas we have that  K� * �� * K tY�e����
 2 :[@
u * K tY����e� [
u      (4.17) 

Since K is a #Ecore for
Y�e����
 2 :[@
, it follows from (4.15) that K t¤EY����e� [+ Z KWWWWWWWWWWWWWWWu V K tY�e����
 2 :[@
u. 

Therefore, by (4.17),  ¤EY����e� [+ Z KWWWWWWWWWWWWWWW V ¤EY����e� [+ Z ��WWWWWWWWWWWWWWWW 
since �� is a core for Y����e� [
�` � ������ 
Theorem 4.5 Let , 7 8 and $  0
�  be a positive integer. Then there are constants _ and ¢ 

independent of � such that Ò�e����A	U ������m-j�mA�	UTÒ� � _ �Y����e� 2 ¢[À�T��      (4.18) 

 for all T  K �Y����e� 2 ¢[À��� 
Proof The proof is by hyper infinite induction on $, the case $ � � being (3.19). By the previous 

theorem it is sufficient to prove (4.18) for
T  K. We set now 
¥ � Y����e� 2 ¢[T  KA, where ¢ �=
"e is chosen sufficiently large that (3.16) and (3.19) hold. By a now familiar procedure we expand ��*A���� � Ò�e����A	U �����m-�	U TÒ�U 

by (4.6) and apply the pull-through formula. The result is similar to (4.10) 
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��*A���� � .¶/·0�S ��iE� ��iE% f�]`A
&��&'� 555 ��iE% f�] 
̀Ô�
Y#Am-�} � #
m-[ S
&�)&'��
 A   

S ���iE� Ò12�A	U3�r�12�A	U 555 124A	U3�r4124y�
 _r4y�¥Ò�U567�89,
jA�
� ��    (4.19) 

By (4.7) one obtains Ô�
Y#Am-�} � #
m-[ � .¶/·0�S Y#A
 S}S #

 [m-� 
We insert this inequality into (4.19) and estimate the integral over the “variables” of �A. Say �A ���A�} � �¾!� We must estimate 

��iE% f�]`A
&��&'� 555 ��iE% f�]`n: t#

Y`n�[ S }S #

Y`n:[um- S Õ12��� 3�r�12��� ¥AÕ�
U
&n:&'� �  (4.20) 

where ¥A � 12�A	U3�r�12�A	U 555 124A	U3�r4124y�
 _r4y�¥ 

does not depend on the variables of �A, for which we recall that   �! � �! � �!*A � }� �n*A� Now 3��� � Me����jA� 2 Me����jU� 2 Mr����
  
and by the triangle inequality it is sufficient to estimate each of these three contributions to (4.20) 

separately. By (3.16) the contribution of  Mr����
  can be dominated by .¶/·0�S ��iE� f�]`A

&��&'� 555 ��iE� f�]`n: t#

Y`n�[ S }S #

Y`n:[umAm- S 4¥A4�U


w�4:w'� � 

� 
.¶/·0�S 4¥A4�U �         (4.21) 

where the constant is independent of �. As for the M;<�&�=
jn�  terms, when i 7 � we have 

tMe����jA� ur� � 8, 

and by (3.13) and (3.19), we have �1
A	U tMe����jU� ur� 1
A	U�� � .¶/·0�S ��iE�^#

Y`n
[cmA	Un{r�
 

for all i. Thus the contribution of Me����jU�  to the integral (4.20) is bounded as in (4.21). It remains to 
estimate tMe����jA� ur� � 3jA� t`n�
u 

when i � �. By (3.19) and (3.8), we have  ��iE% f�]`n�

w�4�w'� Ò12�A	U3jA� t`n�
u12�A	U¥AÒ�U � 4¥A4�U  

Hence we have integrated out the variables of �A ��*A���� � .¶/·0�S ��iE� ��iE� ��iE% ��iE� f�]`!«#�`!�¬
m-!{r�>
888

>r4
&�?&'�567�89,
jA�
��
 A S  

S Ò12�A	U3�r� 555 124y�
 _r4y�¥Ò�U�  
In this way we integrate over the variables of �U �
� ��

� �n to obtain 

��*A���� � .¶/·0�S ��iE× ��iE × ��iE� ��iE�f�]`!«#�`!�¬
m-!{r


&�?&'�r4
jA�
�

�

 A Õ1rAU_r¥Õ�

U� 
By a change of variables we can rewrite the sum over � and � as a sum over subsets ��� �
� � � � � @! of    ��� �
� � � � � $�. Using the estimates (3.19) and (4.7), we get  ��*A���� � .¶/·0�S ��iE� % f�]`A
&��&'� 555 ��iE% f�]`"Ô""�#Am-�} � #"m-� S
&�A&'��" e   

S Õ��e���� 2 ��iE× #nm-"
n A 2 ��mA	U _jA�"�¥Õ�

U � 
where the @ � 8 term is simply ÒY�e���� 2 �[mA	U¥Ò�U. It follows from the expansion (4.6) that  
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��*A���� � .¶/·0�S �Y�����m-� 2 �[A	UY�e���� 2 �[mA	U¥��
U � .¶/·0�S Ó��m-� 2 ��A	U
¥Ó�U 

by (4.4). Since
¥  KA * K ¹Y�e����e� 2 ¢[�ÀB��� º, we obtain by the inductive hypothesis, 

��*A���� � Ò�e����A	U �����m-�	U TÒ�U � .¶/·0�S ÕY�e����e� 2 ¢[�ÀB��� ¥Õ� �  

� .¶/·0�S �Y�e����e� 2 ¢[À�T���  
where the constant is independent of �. 

Corollary 4.6 Let � 7 8 and $ be a positive integer. Then there are constants _ and ¢ independent 
of � such that 

Ò�e����jAmC�	U�����m-j�*C�	UTÒ�
 � _ÕY����e� 2 ¢[�Ày��� TÕ�     (4.22) 

for all T  K ¹Y����e� 2 ¢[�Ày��� º �` � ������ 
Proof The Corollary follows immediately from the Theorem by means of (4.5). 
Remark 4.1 The estimates (3.19) and (4.22) do not permit us to dominate the operator �e����
  itself 

by the operators
����e� 2 ¢�` � ����. However we can dominate �e����
  as in (4.2) if we abandon the 
requirement that the powers of �e����
  and ����e�  agree. The inequality   �e��U  � _Y����e� 2 ¢[
        (4.23) 

we prove with � � �F. 

Corollary 4.7 There are constants _ and ¢ independent of � such that for all T  KtY�e����e� [@u Ó�e����
 TÓ� � _ÒY����e� 2 ¢[@TÒ��       (4.24) 

Proof By Theorem 4.4 it is sufficient to prove (4.24) for
T  K. Since K * KY�e����e� [ B KYMr��[ 
obviously we have Y�e����e� 2 ¢[T � Y����e� 2 ¢[T = Mr��T.      (4.25) 

Since Mr���­A� is a sum of Wick monomials with )U�Ekernels and maximum order �F [8], it follows 
from the basic estimate (2.13) that ÒMr����Y�e����
 2 �[m@Ò� � .¶/·0��       (4.26) 

where the constant is independent of �. Therefore from the identity (4.25) we obtain ÓY�e����e� 2 ¢[TÓ� � ÓY����e� 2 ¢[TÓ� 2 ÒMr����Y�e����
 2 �[m@Ò� S ÒY�e����
 2 �[m@TÒ� 

by (4.22). But by Theorem 3.1 we obtain Ó�e����
 TÓ� � .¶/·0�S ÓY����e� 2 ¢[TÓ�  
and therefore the estimate (4.24) is proved.  

5.  Essential selfE#Eadjointness of the ¤E�5D56 ËE�VFÄ  as G H� I 
In the previous two sections we established a number of properties of the hyperfinite ultraviolet cut-off 
Lorentz boost generators ����e� �` � ����� by methods that depended on � > h being hyperfinite. Now 
we take the #Elimit � H� h and find that many of the properties of ����e�  transfer to the ¤Elimiting 
operators
��e��` � ����� . As the next lemma states, ����e� �` � �����  #Econverges to 
��e��` � �����  
on the #Edense domain  K@ � KY�e��[ B KY��@ 

[�F  0�
� 
       (5.1) 
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Note that #Econvergence in this sense is not strong enough to control the #Elimiting operator and in 

Theorem 5.3 we prove that the resolvents 1���j���"� � Y����e� = "[mA�` � ����� #Econverge in #Enorm. 
From this it follows that the operators ��e��` � ����� are essentially self-#Eadjoint on K� 

Lemma 5.1 Let
T  K@� then ����e�T H� �e��e�T�` � ����� as � H� h� 
Proof We write now  �����Je� � �e���� 2 Me���� t��sej��u 2 Mr�������sA��` � ����� of the form ����e� � �e���� 2 Me����Y­e��[ 2 Mr�����­A��` � �����. 
By the estimates (2.15), (2.16), and (4.26), Me����Y­e��[ and Mr���� are defined on domain
K@, for � � h. In fact, precisely these estimates prove #Econvergence. For consider the difference ���� � Mr���­A� = Mr�����­A��  
 ���� can be written as a sum of Wick monomials whose kernels are the tails of )U� kernels. 

Therefore, by (2.13), Ó������� 2 ��m@Ó�  bounded by the )U�-#Enorms of these tails which go to zero 

as � H� h. Since a similar argument can be made for Me����jU� �­
� it follows that on K@ Me����jU� 2 Mr���� H� Me��jU� 2 Mr�� �       (5.2) 
The strong ¤Econvergence of the differences  :���j�� � Me��Y­e��[ = Me����Y­e��[�` � ����� 
to zero on KY�e��[ does not follow from a corresponding statement of #Enorm ¤Econvergence, 

since Ò:���j��Y�e�� 2 �[mAÒ� �� 8        (5.3) 

as � H� h. However, by (2.15) Ò:���j��Y�e�� 2 �[mAÒ� is uniformly bounded in
�. It is thus 

sufficient to show that :���j��T� H� 8 for $  0
�  particle vector
T� � T�ÔA�} �Ô��  K. By (2.8) one 
obtains  t:���j��
T�u �ÔA�} �ÔA� � ��iE� ��iE% f�]`~���Y`�Ô
[TYÔA�} �Ô
mA�`�Ô
*A�} �Ô�[

�
 A � (5.4) 

where  ~����`�Ô� � ijA��`�Ô�YÎ�`
�h�Î�Ô
�h� = Ï�`
� ��Î�Ô
� ��[�    (5.5) 
where Î�`
� �� is defined by (2.10) with h � �. Therefore,  Ü:���j��TÜ � ���iE� ��iE% f�]`ijA�Y`�Ô
[TYÔA�} �Ô
mA�`�Ô
*A�} �Ô�[
&�&K��
 A �  (5.6) 

where by (2.15) the right side is an )U� function in variables �ÔA�} �Ô�� whose ¤Enorm is bounded by 

const. ÒY�e�� 2 �[mA
T�Ò�. Moreover, as
� H� h, t:���j��
T�u �ÔA�} �Ô�� H� 8 pointwise so that by 

the dominated #Econvergence theorem
Ò:���j��
T�Ò� H� 8. For the proof of resolvent #E convergence 

we require a #Enorm #Econvergent statement for
Me����jA� Y­e��[. The failure in (5.3) is to be expected, for, 

roughly speaking; we can regard Me����jA� Y­e��[ as �e���� and obviously ���� � Y�e�� = �e����[Y�e�� 2�[mA does not ¤Econverge to zero in ¤Enorm. However, this argument indicates that Ò:���j��Y�e�� 2�[m-Ò� H� 8 for , 7 �� 
Lemma 5.2 Let �� �  0
�  be nonnegative integers, and ­  �e/
� Y �
�  �,-.*�]@ � �
�  �,-.� [�  
(1) For � 2 
� 7 �� ÒY�e�� 2 �[mn	U �Me��jA��­
� = Me����jA� �­
�� Y�e�� 2 �[m
	UÒ� H� 8  as � H� h   (5.7) 

(2) For � 2 
� £ ��
ÒY�e�� 2 �[m�	L �Me��jU��­
� = Me����jU� �­
�� Y�e�� 2 �[m/	LÒ� H� 8  as � H� h   (5.8) 
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(3) For � 2 
� £ �F�
ÒY�e�� 2 �[mn	U tMr��
 �­
� = Mr����
 �­
�u Y�e�� 2 �[m
	UÒ� H� 8  as � H� h   (5.9) 

Proof Equation (5.7) is a consequence of estimates developed in [8] for Wick monomials with one 
creating and one annihilating leg. These estimates involve )A�
E
) /
��M  #Enorms on the kernels such that 4~4�A�- �9 EN··eª� �«#�`�¬m- t��iE% �~�`�Ô��
&O&'� f�]Ôu��    (5.10) 

Given a ¤Emeasurable function ­H �
�  �] H �
�  � [16], the 9 Eessential supremum of ­ is the smallest 
number � such that the set ��  �
�  �]�­��� 7 �! has infinite small Lebesgue #Emeasure, i.e.,  #�����­��� 7 �!� 9 8� The essential supremum of a function ­ is denoted 9 EN··eªP�­�� The 
essential supremum of the absolute value of a function �­� is denoted 4­4 /
��M  and this serves as the 

#Enorm for  ) /
��M  Einfty-space. 
As an example of (5.7), we consider the case �
 � 
� and
�
 � 
�. As in (5.4), :��� � Me��jA��­� = Me��jA��­� � ��iE% ~����`�Ô�_��`�

 _�Ô�f�]`f�]Ô�  
We see that for $ particle vector T� � T�ÔA�} �Ô�� the inequality holds 

Q:���Y�e�� 2 �[m{LT�ÔA�} �Ô��Q � 

��iE ß× ��iE� f�]` Ö~���Y`�Ô
[Ö^#YÔ
[cA	U





�

 A ÖTYÔA�} �Ô
mA�`�Ô
*A�} �Ô�[ÖR� 

Therefore Ò:���Y�e�� 2 �[m{	LT�Ò� is bounded by the #Enorm of 

�����T�� � ��iE� Ö~����`�Ô�Ö«#�Ô�¬mA	UÎ�Ô
�h�


 _��`�_�Ô�f�]`f�]Ô�T�� 

and 

ÕY�e�� 2 �[mAU:���Y�e�� 2 �[mAÕ� � ÕY�e�� 2 �[mAU����Y�e�� 2 �[mAUÕ� � 

� Ó~����`�Ô�«#�Ô�¬mA	UÓ�A�A�  
see [8]. According to the definition (5.10) by (5.5) and (2.9) we obtain Ó~����`�Ô�«#�Ô�¬mA	UÓ�A�A � ·eª��«#�Ô�¬mA��iE%Ö~����`�Ô�«#�Ô�¬mA	UÖ f�]Ô� � .¶/·0�S  

S �9 EN···eª� Ñ«#�`�¬mAU��iE�Ö��iE­Ð�` = Ô�Ö YÎ�`
�h�Î�Ô
�h� = Î�`
� ��Î�Ô
� ��[f�]ÔÞ� � ��h� �� H� 8  as  � H� h�        (5.11) 
Theorem 5.3 There is a semibounded self-#Eadjoint operator |S such that for T sufficiently 

negative ÒtY����e� = "[mAu = �M� = "�mAÒ� H� 8   as � H� h�     (5.12) 

Proof We first establish the #Enorm #Econvergence of the �F-th powers «1��=¢�¬U@ of the 
resolvents for all ¢ sufficiently large. Then the #Enorm ¤Econvergence of 1��=¢� follows by taking �F-th roots and applying the generalized Stone-Weierstrass Theorem [8]. Let � � h be two values of 
the hyperfinite ultraviolet cut-off. We use the following formula 1�U@ = 1�U@ � ��iE� 
1�U@*AmnY��e� =��e�[U@n A 1�n �     (5.13) 

The differences ��e� =��e��` � ����� contain of three terms :jA� � Me��jA� = Me��jA��:jU� � Me��jU� = Me��jU��:j]� � Mr��
 = Mr��
 � 
By (4.22) we get  Ó1�U@*Amn:j
�1�n Ó� � .¶/·0 S Ó��� 2 ��mU@mA*n:j
���� 2 ��mnÓ� 

where the constant is independent of �. Therefore by (5.8) and (5.9) when �
 � 
� or �� 



IC-MSQUARE-2023
Journal of Physics: Conference Series 2701 (2024) 012113

IOP Publishing
doi:10.1088/1742-6596/2701/1/012113

23

 
 
 
 
 
 

Ó1�U@*Amn:j
�1�n Ó� H� 8 as � H� h�  
As for :jA�, at least one of � or �F 2 � = � is greater than F� Therefore by (4.24) and (3.19),   

Ó1�U@*Amn:jA�1�n Ó� � .¶/·0 S �ÕY�e�� 2 �[mAU:jA�Y�e�� 2 �[mnÕ� 2 

2�Y�e�� 2 �[m��:jA�Y�e�� 2 �[mn��Þ H� 8 as � H� h� 
by (5.7). This obviously establishes the ¤Econvergence of
1�U@. Let
1��"� 
� 
¤EU¡+�V%�1��"�. As 

a ¤Elimit of resolvents, 1��"� is itself the resolvent of an operator if and only if the null space ��1��"�� � 
8 for some " [8]. But notice that this is a direct consequence of Lemma 5.1: Suppose that  T  ��1��=¢�� where ¢ is sufficiently large so that 1��=¢� ¤Econverges. Take vector W arbitrary 
in
K@ . Then  NW�TP� � NY��e� 2 ¢[W� 1��=¢�TP� H� NY��e� 2 ¢[W� 1��=¢�TP� � 8� 

so that T � 8. Therefore, 1��=¢� is invertible, and M � «1��=¢�
¬mA = ¢  as a #Edensely defined, 
#Eclosed, symmetric operator with the sufficiently negative real axis in its resolvent set, is actually                 
selfE#Eadjoint and bounded below. 

Theorem 5.4 ��e��` � ����� are essentially self-#Eadjoint on K� 
Proof From the strong #Econvergence of ����e�  to ��e� on K@ it follows by a simple argument that  ��e� Z K@ * M� �         (5.14) 
Note that by the independence of  �E cutoff, the estimate (4.2) transfers to
M�, i.e., �e��U 2 ��U@ � _�M� 2 ¢�U@        (5.15) 
and therefore � � K�M�U@� * K@, and from (5.14) one obtains M� Z � * ��e� Z K@ . Now the 

domain � is a #Ecore for
M�, hence M� � ¤EM� Z �WWWWWWWW * ¤E��e� Z K@WWWWWWWWWWWW 
a symmetric extension of a self-#Eadjoint operator and therefore we conclude that   M� � ¤E��e� Z K@WWWWWWWWWWWW.  
Essential self-#Eadjointness of ��e��` � ����� on the domain K follows from self-#Eadjointness on 

the domain
K@ by a standard argument. 
Corollary 5.5 For suitable constants _� ¢� � and ` � ����� �� � _Y��e� 2 ¢[�        (5.16) ��U � �Y�e��U 2 ��U@ 2 �[ � _Y��e� 2 ¢[U@�      (5.17) 
The same inequalities hold with the roles of �� and ��e� interchanged so that KY��� 2 ¢�A	U[ � K tY��e� 2 ¢[A	Uu�      (5.18) K���@� * KY��e�[�        (5.19) KtY��e�[@u * K�����        (5.20) 

Proof Since K is a #Ecore for
��e��` � �����, it is a #Ecore for Y��e� 2 ¢[A	U and (5.16) follows 
from closing (2.2). (5.17) is just a restatement of (5.15). Since �� is a special case of ��e� obtained by 

setting, sej����� � 8, it is clear that the higher order estimates (5.15) hold for M� � ��; hence the roles 
of �� and 
��e��` � ����� can be interchanged in (5.16) and (5.17).   

6.  Lorentz covariance 
According to the discussion in Section 1 this amounts to showing that if �] � «_� ¢¬] * �
� ���,-.*�]  and if ­ is a �e/
� Y �
�  �,-.*�X � �
� ��,-.� [ function with
·eªª�­� � ·eªª t­Y�u * ¯r-, then on suitable near 

standard domain ^��iEN0ªY���e��[cO��­�^��iEN0ªY=���e��[c 9 O� t­Y�u�    (6.1) 
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Notice that (6.1) is operator equality, since for �
� ��,-.�  valued function
­, O��­� is a selfE#Eadjoint 

operator whose domain includes K tY��n� 2 ¢[A	Uu�  In addition, we prove on the domain 

K tY��n� 2 ¢[A	Uu S K tY��n� 2 ¢[A	Uu that  ^��iEN0ªY���n��[cO���� i�^��iEN0ªY=���n��[c � O� tµ���� i�u�    (6.2) 

Here the vectors ��� i� and µ���� i� are in
¯r-, and the forms in (6.2) are #Econtinuous in � and i 
by the first-order estimate (5.16) and results of [8] sect.6. 

Notice that the main part in the proof of (6.1) is to verify the commutation relation (1.15) for ­  
�e/
� Y¯r- � �
�  �,-.� [ and s a cut-off function for the region
¯r- . For convenience, we assume that a 
function ­ with support contained in the region ;̄ defined by 
;̄ � ���A� �U� �]� i��_ 2 6 2 �i� > �� > ¢ = 6 = �i��` � �����Á �i� > 6!�   (6.3) 

and where
6 7 8 is some small enough number. This represents no loss of generality since any ­ in 
�e/
� Y¯r- � �
�  �,-.� [ can be presented as a sum of such
­. It follows from this assumption that if
�@� > 6, 
then external integral ^��iEN0ªY���
 �i 2 @�[c °��iE% O����­��� i�f�]�
Z
� �

%- ² ^��iEN0ªY=���
 �i 2 @�[c  (6.4) 

is related to a non-Archimedean von Neumann algebra 7��]� generated by the set °��iEN0ªY�O�
 �[A�[ 2 ��iEN0ªY�±�
 �[U�[!�[n  �e/
� Y �
�  �,-.*�] � �
�  �,-.� [� ·eªª�[n� * �]� � � ���²�  
The main parts of the proof are as follows: 
Part1. For T  KY��@*]

[ we define  \n��i� � NT� ^���n��i��O�
 �­�cTP�       (6.5) 

where ��n��i� � «��iEN0ª�=�i��
 �¬��n�«��iEN0ª��i��
 �¬� Note that \n��i� is well-defined and three 
times #Econtinuously #Edifferentiable by (5.19) and [8, Section 6]:  Ó���
 2 ¢�
	UO�
 �­����
 2 ¢�mj
*A�	UÓ� > G
� �      (6.6) 

for � � 8��� �
� � � �� Obviously one obtains, \%]4Ej¾�\%¾ � NT� Ì^��
 ���n��i�c�O�
 �­�ÍTP��      (6.7) 
\%�]4Ej¾�\%¾� � =� NT� »Ì��
 � ^��
 ���n��i�cÍ �O�
 �­�½ TP��     (6.8) 

Part2.The commutators in (6.7)-(6.8) can be evaluated. On K@� S K@� one obtains, in the sense of 
bilinear forms, ^���
 ���n�c � (�� 2 ��iE% �FH O�U@mA���±����H sA��� ��� = � = ��sej������ f�]�
Z
� �

%-   (6.9) 

where (���` � ����� is a locally correct momentum operators 

(�� # (�� ¹ \%\%PE ���sej������º�       (6.10) 

By (2.6) the integral in (6.9) vanishes, and in analogy to (1.27),  «���
 ���e�¬ � (��         (6.11) 
on the domain KY��@ 

[ S KY��@ 

[ * K@� S K@��
Since the operators (�� and ��n� are defined on KY��@ 

[� extends to an operator equality on KY��@*A

[� Therefore, we obtain on the domain KY��@*U

[ S KY��@*U

[ that   Ì���
 � «���
 ���e�¬Í � «���
 �(��¬ � ���       (6.12) 

where 


�� � Me�� ^ f�Uf���U ���sej������� = 
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=_U��iE% H O�U���H
Z
� �
%-

\%�\%PE� ���sej������f�]� = Mr�� �\%jJ��\%PE
 ��    (6.13) 

Part3.Since ���` � ����� are local operators whose kernels vanishes on �] we expect that ���` ������  commutes with
7��]�. The exact statement is «���7��]�¬ � 8�` � ����� on domain K@� S K@��   
Note that K@� * KY��[�` � ������ It follows from (6.4) and (6.6) on domain K@� S K@�  that Ì��� «��iEN0ª��@��
 �O�
 �­���iEN0ª�=�@��
 �¬Í � 8     (6.14) 

 for �@� > 6  and ·eªª�­� * ;̄  
Part4.The rigorous counterpart of the formal expansion (1.34) is to write \n��i� in terms of its 

generalized Taylor series [8,Theorem 2.27]. For some
@, �@� � �i�   \n��i� � \n��8� 2 i\n��b�8� 2 ¾�U \n��b�@��      (6.15) 

For �i� � 6 (6.15) on domain KY��@*]

[ S KY��@*]

[ reads «���e��i��O�
 �­�¬ � ^���n��O�
 �­�c = �«�(���O�
 �­�¬�     (6.16) 
Part5.The commutators on the right of (6.16) can be evaluated by passing to the sharp time fields, O�
 �­"� i� � ��iE� ­��� @�


Z
� �
%-

O�
 ��� i�f�]�� 
where the subscript @ indicates the time dependence of a function ­. The result for  �i� � 6 reads 

«���e��i��O�
 �­¾ �8�¬ � ±�
 ���­¾ �8� = iO�
 ¹¼�­¾¼��� �8º 

on domain KY��@*]

[ S KY��@*]

[�
That is, for �i� � 6 we get «���e��i��O�
 �­¾ �8�¬ � ±�
 ���­¾ � i� = O�
 ti `%a:`%PE � iu�     (6.17) 

Since
·eªª�­� * ;̄, we can integrate (6.17) with respect to i and thus on domain KY��@*]

[ SKY��@*]

[ we obtain «���e��i��O�
 �­¾ �8�¬ � ±�
 ���­
 � i� = O�
 ti `%a
`%PE � iu � =O�
 t�� `%a
`%¾ 2 i `%a:`%PEu�  (6.18) 

Part6. In order to deduce (6.1) from (6.18) we must show that the equality (6.18) holds on a 

domain of the form
K tY��e�[
u S K tY��e�[
u. Note that if
T  K tY��e�[
u, then 

��iEN0ªY=���e��[T  K tY��e�[
u and 

}���� i��� � N��iEN0ªY=���e��[T�O���� i���iEN0ªY=���e��[P� 
is a #Econtinuous function of � and i [8, Section 6] with a distribution #Ederivative in �,   N��iEN0ªY=���e��[T� °�� `%b&jP�¾�`%¾ 2 i `%b&jP�¾�`%PE ² ��iEN0ªY=���e��[P�  

by the equality (6.18).Thus }���� i��� satisfies the distribution differential equation in partial 
#Ederivatives `%~EjP�¾���`%� � �� `%~EjP�¾���`%¾ 2 i `%~EjP�¾���`%PE �      (6.19) 

The distribution differential equation (6.19) has a unique solution with initial condition
}���� i�8�: }���� i�8� � NT�O���� i�TP�� 
This proves (6.2) on K tY��e�[
u S K tY��e�[
u and, by extension, on the domain 

K tY��e� 2 ¢[A	Uu S K tY��e� 2 ¢[A	Uu.  

Obviously the operator statement (6.1) is follows immediately. It remains only to prove the 
following. 

Lemma 6.1 Let �] * �
�  �,-.*�] , s satisfy (2.4)-(2.6), 6 7 8, and ­  
 �e/
� Y ;̄ � �
�  �,-.� [. Then, in the 
sense of bilinear forms «���e��i��O�
 �­�¬ � =O�
 t�� `%a`%¾ 2 i `%a`%PEu      (6.20) 
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on KY��
 

[ S KY��
 

[ or on KY��e�

[ S KY��e�[� 
Proof As we know that (6.20) holds on KY��@*]

[ S KY��@*]

[. Let
T  KY��
 

[; since KY��@*]

[ 

is a #Ecore for
��
 , there exists a hyper infinite sequence T!� c  0
�  in KY��@*]

[ such that T! H� T 
and ��
 T! H� ��
 T as
c H G
� . By the first order estimate, we have for some constants _ and ¢   ÒY��e� 2 _[A	U���
 2 ¢�mA	UÒ� > G
� .      (6.21) 

and by (6.6) we get ÓO�
 �d�����
 2 ¢�mA	UÓ� > G
� .       (6.22) 

where
d� � �� `%a`%¾ 2 i `%a`%PE is in �e/
� Y �
�  �,-.*�X � �
�  �,-.� [. Therefore, 

Y��e� 2 _[A	UT! H� Y��e� 2 _[A	UT       (6.23) 
and  O�
 �d��T! H� O�
 �d��T        (6.24) 
Moreover, by (6.6) we obtain Ó���
 2 ¢�A	UO�
 �­����
 2 ¢�mA	UÓ� > G�
�       (6.25) 

From (6.21) and (6.25) one obtains KY��
 

[ * K t���
 2 ¢�A	UO�
 �­�u and that 

Y��e� 2 _[A	UO�
 �­�T! H� Y��e� 2 _[A	UO�
 �­�T�     (6.26) 
Note that NT!� «���e��i��O�
 �­�¬T!P� � � NY��e� 2 _[A	UT!� Y��e� 2 _[A	UO�
 �­�T!P� =  =� NY��e� 2 _[A	UO�
 �­�T!� Y��e� 2 _[A	UT!P��  
And therefore from (6.23) (6.24), and (6.26) we conclude that (6.20) extends by #Econtinuity to 

domain KY��
 

[ S KY��
 

[� By (5.20), (6.20) is then exactly valid when restricted to
KtY��e�[@u SKtY��e�[@u. Finally, the extension to domain KY��e�

[ S KY��e�[ follows directly as above from the 

inequality ÒO�
 �­�Y��e� 2 ¢[mA	UÒ� > G�
�   

7.  The spectral theorem related to bounded in �
� �� operators 
In this section, we will discuss the generalized spectral theorem in its many aspects.     This structure 
theorem is a concrete description of all self-¤Eadjoint operators. There are several apparently distinct 
formulations of the spectral theorem. In some sense they are all equivalent.  The form we prefer in this 
section, says that every bounded in �
�  � self-¤Eadjoint operator is a multiplication operator. This 
means that given a bounded in �
�  � self-¤Eadjoint operator � on a non-Archimedean Hilbert space
��, 
we can always find a ¤Emeasure #� on a ¤Emeasure space � and a unitary operator �H 
�� H)U�Y��f�
#�[ so that ����mA­���� � \���­��� for some bounded �
�  �-valued ¤Emeasurable 
function \ on �� In practice, � will be a union of copies of �
�  �  and \ will be � so the core of the 
proof of the theorem will be the construction of certain ¤Emeasures. Our main goal in this section will 
be to make sense out of
­���, for ­ a ¤Econtinuous function. We will consider also the ¤Emeasure 
defined by the functional: ­ � NT� ­���TP� for fixed T  
��� 

Definition 7.1.The operator ¤Enorm of a linear operator �H 
�� H 
��  is the largest value by 
which
�  stretches an element of
��,  4�4�95 � 4�4�e
f%¿ � ·eª�4��4���  
��� 4�4� � �!� 

An operator � is called bounded in �
�  � if  4�4�95 > G�
�  otherwise operator � is called unbounded 
in �
�  �� We often write bounded operator instead bounded in �
�  � and unbounded operator 
correspondingly. 
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Definition7.2. A linear operator �H 
�� H 
�� is called finitely bounded if  4�4�e
f%¿ � 4�4�95  �
�  �,-.�  i.e., if  4�4�95 is a near standard number. 
Definition7.3. Let ����� be the linear space of $
�  �E valued ¤Econtinuous functions of ¤Ecompact 

support � * �
�  � endowed with the essential sup
¤Enorm 4­4 /
� � N··
·eªP{g�­���!� An function ­ 
in ����� is called finitely bounded if  4­4 /
�  �
�  �,-.�  i.e., if 4­4 /
�  is a near standard number. 

Definition7.4.We define now  �,-.� ��� � ����� by  �,-.� ��� � �­�«­  �����¬�^4­4 /
�  �
�  �,-.� c
��  
An function ­ is called finitely bounded if ­  �,-.� ��� i.e. if 4­4 /
�  �
�  �,-.� � Note that �,-.� ��� is 

a linear space over field �
�  �,-.� � 
Theorem7.1. (¤Econtinuous functional calculus) Let � be a bounded in �
�  � self-¤Eadjoint operator 

on a non-Archimedean Hilbert space
��. Then there is a unique map ¥H���d���� H 8Y
��[ with the 
following properties: 

(a)� ¥ is an algebraic h Ehomomorphism, that is, ¥
�­s� � 
¥
�­�¥
�s��¥
��­� � �
¥
�­��¥
��� � ��¥
�­� � 
¥
�­��� 
(b)�¥ is ¤Econtinuous, that is, 4¥
�­�4�e
f%¿ � �4­4 /
� . 

(c)� Let ­ be the function ­��� � �Á then ¥
�­� � �� 
Moreover, ¥ have the additional properties:    
(d) If �T � �T� then ¥��­�T � ­���T� 
(e) d«¥��­�¬ � �­�����  d���! [Spectral mapping theorem]. 
(f) If ­ £ 8� then ¥��­� �£ 8� 
(g) 4¥��­�4����	¿ � 4­4 /�
 �  

Remark 7.1.The proof which we give below is quite simple, (a) and (c) uniquely determine ¥��� 
for any hyperfinite polynomial (���� By the generalized Weierstrass theorem 7.3, the set of 
hyperfinite polynomials is ¤Edense in �
�d���� so the main part of the proof is showing that 4(���4
�� � ·�ª§{�j���(����� The existence and uniqueness of O then follow from the generalized 
B.L.T. theorem 7.4. To prove the crucial equality, we first prove a special case of (e) which holds for 
arbitrary bounded in ���  
 operators. 

Lemma7.1. Let�(��� � ��iE� �@�@�@�A�e ��  0�� . (��� � ��iE� �@�@�@�A�e . Then  d�(���� � �(�����  d���!�  
Proof Let �  d���� Since � � � is a root of (��� = (���� we have (��� = (��� � �� = ��³���� 

so (��� = (��� � �� = ��³���� Since��� = �� has no inverse neither does (��� = (��� that is, (���  dY(���[� Conversely, let �  d�(���� and let ��� � � � � �@ be the roots of (��� = �, that 
is,�(��� = �� � _(��iE� �� = �n����� � If ��� � � � � �@ � d���, then �(��� = ���mA � _mA«��iE� �� =@��A�n�mA¬ so we conclude that some �n � d��� that is, � � (��) for some �  d���� 

Definition 7.5. Let ���� � ·�ª§{�j�������Then ���� is called the spectral radius of �� 
Theorem 7.2. Let 3 be a non-Archimedean Banach space, �  ��3�� Then ¤E ¡!@" /�
 g4�@4
��#  

exists and is equal to ����� If 3 is a non-Archimedean Hilbert space and � is self-¤Eadjoint, then ���� � 4�4�jI� 
Lemma 7.2 Let � be a bounded self-¤Eadjoint operator. Then  4(���4
�� � ·�ª§{�j���(�����  
Proof By theorem 6.2 we obtain 4(���4
��U � � 4(����(���4
��� � 4�(W(����4
��� � � ·�ª§{�jj$%$�j�������� 
By Lemma 7.1 we obtain ·�ª§{�jj$%$�j������� � ·�ª§{�j����(W(���� � Y·�ª§{�j����(����[U� 
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Notation7.1.We often write ¥���­� or ­��� for ¥��­� in order to emphasize the dependence on 
operator �� 

Definition7.6. (Hyperfinite Bernstein Polynomials) For each�F  0�� , the F-th hyperfinite Bernstein 
Polynomial :@
��� ­� of a function  ­  �
Y«_� ¢¬� ���  
[ is defined as 

:@
��� ­� � ��iE× ­ �F̀�@
&�e tF̀u �&�� = ��@m& � 

Theorem7.3. (Generalized Weierstrass approximation theorem) Let ­  �
Y«_� ¢¬� ���  
[� «_� ¢¬ '���  
� Then there is a hyper infinite sequence of polynomials Ô(����F  0��  that ¤Econverges uniformly 
to ­��� on «_� ¢¬� 

Proof Consider first�­  �
Y«8��¬� ���  
[. Once the theorem is proved for this case, the general 
theorem will follow by a change of variables. Since «8��¬ is ¤Ecompact, the ¤Econtinuity of ­ implies 
uniform ¤Econtinuity. So, given    6 7 8� there exists δ > 0 such that: )��<����<  � «8��¬�«���= �<� ������ � �­��� �= �­�<�� �� �6*�¬. Now, let�+ � 4­4 /�
 . Note that + exists since ­ is a ¤Econtinuous 
function on a ¤Ecompact set. Now, fix�X  «8��¬. Then, if��� = X� � �, then the inequality holds �­��� = ­�X�� � �6*� by ¤Econtinuity. Alternatively, if ���= �X� �£ ��� then 

�­��� �= �­�X�� �� ��+� � ��+�� ���= �X� �U 2 �6*���
From the above two inequalities, we obtain that )����  � «8��¬� »�­��� �= �­�X�� �� ��+�� t,�m�-. uU 2 �6*�½.�
The hyperfinite Bernstein Polynomials can be used to approximate ­����on�«8��¬. First, note that :@
��� ­ = ­�X�� ��� �:@
��� ­� = ­�X�:@
������
and for all F  0��  :@
����� = ��iE� Y@&[�&�� = ��@m&@&�e  � � ���2 ���= ����@ �� ����

where the generalized Binomial Theorem was used in the second equality. Thus, Ö:@
��� ­ = ­�X��Ö � :@
 ����+ t,�m�-. uU 2 ;U� � U/.0 :@
��� ���= �X�U� 2 �6*��  
where in the second step the fact that 8� � �:@
��� ­� for 8� � �­ and :@
���s� � :@
��� ­� if s � ­ 
were used. Both can be proven directly from the definition of�:@
��� ­�. It can also be shown that :@
��� ���= �X�U� = �U �2 �FmA����= ��U�� �= �X� 2 �XU�� 

So Ö:@
��� ­ = ­�X��Ö � ;U 2 U/�,m-0¿.0 2 U/�,m,0¿@.0 �   
In particular,  Ö:@
�X� ­ = ­�X��Ö � ;U 2 U/�-m-0¿@.0 � 
A simple calculation shows that on�«8��¬, the maximum of " = "U is��*�1 . Thus,  Ö:@
YX� ­ = ­�X�[Ö � ;U 2 U/@.0� 
So, take � £ /U.0;� for F� £ �� we get  Ó:@
YX� ­ = ­�X�[Ó /�
 � 
This proves the theorem for ¤Econtinuous functions on «8��¬��Now we let�s  �
�«_� ¢¬�. Consider 

the function O � � «8��¬ 2 «_� ¢¬ defined by   O � � 3 �¢ = _�� = _�O is clearly a homeomorphism. 
Thus, the composite function ­ � s 4 �O is a ¤Econtinuous on «8��¬� By application of the theorem for 
functions on�«8��¬, the case for an arbitrary interval «_� ¢¬ follows. 

Theorem 7.4. (Generalized B.L.T. theorem) Suppose that â is a non-Archimedean normed space, ? is a non-Archimedean Banach space, and � ' â is a ¤Edense linear subspace of�â. If  MH � 2 ? is a 
bounded in ���  
  linear transformation (i.e. there exists 5 > G��  such that 4M"4
 � 5�4"4
�for all�"  �), then M has a unique extension to an element of ��â�?�� 



IC-MSQUARE-2023
Journal of Physics: Conference Series 2701 (2024) 012113

IOP Publishing
doi:10.1088/1742-6596/2701/1/012113

29

 
 
 
 
 
 

Definition 7.7. (Unital Sub-Algebra, Separating Points). Let 6 be a ¤Ecompact metric space. 
Consider the non-Archimedean Banach algebra �
�6� ���  
� � �­ � �6� 2 � ���  
���­��7�¤E8¶9:¡9�¶�·! 
equipped with the sup-norm, 4­4 /�
 � Then, (1) � ' 5
 �6� ���  
� is a unital sub-algebra if ��  �� and 
if ­�s�  �������   ���  
 implies that �­�2 ��s�  �� and�­s�  ��. (2) � ' � �
��6� ���  
� separates 
points of 6 if for all 7� i�  �6 with�7� C i, there exists ­  �� such that ­�7� C ­�i��� 

Proof of the Theorem 7.1. Let�¥�(� � (���. Then 4�¥��(�4����	¿ �� 4(4;	j�j��� so ¥ has a 

unique linear extension to the ¤Eclosure of the polynomials in��
�d���. Since the polynomials are an 
algebra containing��, containing complex conjugates, and separating points, this ¤Eclosure is all 
of��
�d���. Properties (a), (b), (c), (g) are obvious and if ¥< obeys (a), (b), (c) it agrees with ¥ on 
polynomials and thus by ¤Econtinuity on 5
�d���� In order to prove (d), note that ¥��Р�T �Р���T 
and apply ¤Econtinuity. To prove (f), notice that if�­ £ 8, then ­ � s= with s is ���  
-valued and�s  �
�d���. Thus ¥��­� � ¥��s�= with ¥��s� self-¤Eadjoint, so ¥��­� £ 8� 

Remark 7.2 Notice that in addition the following statements hold: 
(1) ¥�­� £ 8 if and only if ­ £ 8� 
(2) Since ­s � s­ for all ­�s� �­����­  �
�d����! forms an abelian algebra closed under 

adjoints. 
(3) Since 4¥��­�4����	¿ � 4­4 /�
  and �
�d���� is ¤Ecomplete, �­����­  �
�d����! 
is ¤Enorm-¤Eclosed. It is thus a non-Archimedean an abelian �� algebra over field $��  
 of 

operators. 
(4) ��9(¥) is actually the non-Archimedean ��Ealgebra generated by � that is, the smallest 


�Ealgebra over field $��  
�containing �� 
(5) Notice that ��
Yd���[�and the non-Archimedean ��Ealgebra generated by � are ¤Eisometrically isomorphic. 
(6) The statement (b) actually follows from (a) and Proposition 7.1. Thus (a) and (c) alone 

determine ¥ uniquely. 
Proposition 7.1 Suppose that ¥H��
�3� 2 ��>
� is an algebraic ?-homomorphism, 3 a ¤Ecompact 

metric space. Then: (a) if�­ £ 8, then�¥ �­� �£ 8, (b) 4¥��­�4����	¿ � 4­4 /�
 . 

8.  The spectral ¤Emeasures 
Definition 8.1. [16] (d
E Algebra). Let 3 be any set. A family © ' �I is called a d
E algebra on�3, if: 

(i) D  ©; 
(ii) © is closed under complements, i.e. �  © implies 31�  �©Á 
(iii) © is closed under hyper infinite unions, i.e. if �@�F  0��  is a hyper infinite sequence in ©  

then � �@@{ @�
   ©� 
Proposition 8.1.If © is a d
E algebra on 3 then: 
1. © is closed under hyper infinite intersections, i.e. if �@�F  0��  is a hyper infinite sequence in © 

then A �@�@{ @�
  
2. 3  ©� 
3. © is closed under hyperfinite unions and hyperfinite intersections. 
4. © is closed under set differences. 
5. © is closed under symmetric differences. 

Proposition 8.2.Suppose © ' �I is a family of subsets satisfying the following: 
1. D�  ©Á 
2. © is closed under complements; 
3. ©�is closed under hyper infinite intersections. 

Then © is a d
E algebra. 
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Proposition 8.3.If ©B��  � is a collection of d
E algebras on�3, then A ©BB  is also a d
E algebra 
on�3. 

Proposition 8.4.(�d
E algebra generated by subsets). Let 6 be a collection of subsets of 3.There 
exists a d
E algebra, denoted d
�6� such that 6 ' d
�6�  and for every other  d
E algebra © such 
that 6 ' © we have thatd�
�6) ' ©�� We call d
�6� the d
E algebra generated by 6� 

Proof Define d
�6) � A�©�© is a d
E algebra on 3� 6 ' ©!� This obviously is a d
E algebra with 
the required properties. 

Proposition 8.5.If 6 ' �� then d
�6� ' d
���. Also, if 6 ' © and © is a d
E algebra, 
then�d
�6� ' ©. 

Definition 8.2. [16] (Borel d
E algebra). Given a topological space�3, the Borel d
E algebra is the d
E algebra generated by the open sets. It is denoted :
�3�Á specifically in the case�3 � ���  
C,f  0��   
we have that by definition :
Y ���  
C[ � d
���� is an -open set). 

Definition 8.3.A BorelE¤Emeasurable set, i.e. a set in�:
�3�, is called a ¤EBorel set. 
Definition 8.4. Let ­ be a ���  
Evalued function defined on a set�3. We suppose that some d
E 

algebra � ' (�3� is fixed. We say that f is ¤Emeasurable, if ­mA�«_� ¢¬�  � for any hyperreals _� ¢  ���  
 such that _ > ¢� 
Proposition 8.6. [16] Let ­H 3 2 ���  
�be a function. Then the following conditions are equivalent: 
(a) ­ is ¤Emeasurable; 
(b) ­�D�«8� ¢��  � for any hyperreal�¢  ���  
; 
(c) ­�D��¢� G�� ��  � for any hyperreal ¢  ���  
; 
(d) ­�D���  � for any �  :
Y ���  
C[. 

Proposition 8.7. Let ­ and s be ¤Emeasurable functions, then 
(a) �� S ­� 2 �� S s� is ¤Emeasurable for any�_� ¢  ���  
; 
(b) functions max�­�s! and ­ S s are ¤Emeasurable; 
(c) functions�­E � !�F�­�8!,­G � �=­�E� and �­� � ­E2 ­G are ¤Emeasurable. 

Definition8.5. A pair �3�©� where © is a d
E algebra on 3 is call ¤Emeasurable space. Elements 
of © are called ¤Emeasurable sets. Given a ¤Emeasurable space �3�©�� a function�H
:�© 2 «8� G�� ¬ is 
called ¤Emeasure on �3�©� if: 

1. H
�D� � 8Á 
2. (Hyper infinite additivity) For all hyper infinite sequences �@�F  0�� ��@  © of pairwise 

disjoint sets in�©, we have that  H
Y� �@@{ @�
 [ � ��iE� H
��@��@{ @�
  
Definition8.6. [16] �3�©� H
� is called a ¤Emeasure space. A ¤Emeasure space �3�©� H
� is called 

hyperfinite if�H
�3� > G��  . It is called d
E hyperfinite if 3 � � �@@{ @�
   where �@  © and H
��@� >G��  for all�F  0�� . 
Definition 8.7.Let © is a d
E algebra of subsets of a set�3, and let � � ��� 4 i 4
� be a non-

Archimedean Banach space. A function H
 H © 2 � � � G�� ! is called a vector-valued ¤Emeasure       
(or �-valued ¤Emeasure) if: �� H
�D� � 8Á 

2. H
Y� �@@{ @�
 [ � ��iE� H
��@�@{ @�
  for any pairwise disjoint sequence �@�F  0�� ��@  ©Á 
3. For any��  ©, H
��� � G�� , there exists :  �© such that : ' � and  8 > ÓH
�:�Ó
 �> G�� � 

Definition 8.8. (a) Let © be a d
E algebra of subsets of a set�3. A function H
 H © 2 $��  
 � � G�� ! is 
called a complex ¤Emeasure  if: �� H
�D� � 8Á 

2. H
Y� �@@{ @�
 [ � ��iE� H
��@�@{ @�
  for any pairwise disjoint sequence �@�F  0�� ��@  ©Á 
3. For any��  ©,�H
��� � G�� , there exists :  �© such that : ' � and  8 > ÖH
�:�Ö
 �> G�� � 

(b) Let © be a d
E algebra of subsets of a set�3. A function H
 H © 2 ���  
 � � G�� ! is called a signed ¤Emeasure  if: 
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�� H
�D� � 8Á 
2. H
Y� �@@{ @�
 [ � ��iE� H
��@�@{ @�
  for any pairwise disjoint sequence �@�F  0�� ��@  ©Á 
3. For any��  ©,�H
��� � G�� , there exists :  �© such that : ' � and  8 > ÖH
�:�Ö
 �> G�� � 

Definition 8.9. If a certain property involving the points of ¤Emeasure space is true, except a subset 
having ¤Emeasure zero, then we say that this property is true ¤Ealmost everywhere (abbreviated as ¤Ea.e.). 

Definition 8.10.Let �3�©� H
� is a ¤Emeasura space and let ­@�F  0��  be a hyper infinite sequence 
of ���  
-valued functions defined on�3. We say that: 

1. ­@ 2
 ­ pointwise, if ­��� 2
 �­��� for all �  3Á 
2. ­@ 2
 ­ almost ¤Eeverywhere (¤Ea.e.), if ­@��� 2
 ­��� for all �  3 except a set of ¤Emeasure 8Á� 
3. ­@ 2
 ­ ¤Euniformly, if for any 6 7 8� 6 9 8 there is ��6�  0��  such that  ·�ª��­@��� =­����H �  3! � 6 for all F £ ��6�� 

In the following definitions, we fix a d
E hyperfinite ¤Emeasure space �3�©� H
�. 
Definition 8.11.Let �n  ©� � � �� � � � �F  0��  be such that H
��n� > G��  for all��, and     �n B �I �D for all � C J� The external function defined by ­��� � ��iE� �n@n�A ��4����  
 �n  ���  
, is called a simple external function. The Lebesgue external integral (Lebesgue ¤Eintegral) of a simple external function ­��� is defined as ��iEK ­���f
H
�I � ��iE� �n@n�A H
��n�. 
Definition 8.12.Suppose the�¤Emeasura H
 is hyperfinite. Let ­H 3 2 ���  
 be an arbitrary 

nonnegative bounded in ���  
  ¤Emeasurable external function and let�­@�F  0�� , be a hyper infinite 
sequence of simple external functions which ¤Econverges ¤Euniformly to­. Then the Lebesgue ¤Eintegral of ­ is ��iEK ­���f
H
�I � ¤E ¡!@" /�
 Y��iEK ­@���f
H
�I [.   

Definition 8.13. [16] Let ­H 3 2 ���  
 be a ¤Emeasurable function. Then the Lebesgue ¤Eintegral of ­ is defined by  ��iE�­���f
H
�
I � ��iE�­*���f
H
�

I = ��iE�­m���f
H
�
I � 

If both of these terms are finite or hyperfinite then the function f is called ¤Eintegrable.In this case 
we write ­  )A
Y3�©� H
[� 

Notation 8.1. [16] Assume that ­�sH 3 2 ���  
 are ¤E integrable functions and such that  ­ �L s ¤Ea.e.   . If   ��iE�­���f
H
�
I � ��iE�s���f
H
�

I  

we abbreviate ­ �L s� 
Proposition 8.8. (1) Let ­H 3 2 ���  
 be an arbitrary nonnegative ¤Emeasurable function then ��iEK ­���f
H
�I � ·�ª���iEK O���f
H
�I �O�¡·���·¡!ª N�(�98:¡¶9�·�8¸�:¸�:�8 � O��� � ­����� 

(2) If ­�sH 3 2 ���  
 are ¤Emeasurable, s is ¤Eintegrable, and��­���� �L s���, then ­ is ¤Eintegrable 
and  

M��iE�­���f
H
�
I M � ��iE�s���f
H
�

I � 
(3) ��iEK �­����f
H
�I � 8 if and only if ­��� � 8 ¤Ea.e. 

(4) If ­�� ­�� � � � ­@H�3 2 ���  
,�F  0��  are ¤Eintegrable then, for ��� ��� � � � � �@   ���  
, the linear 
combination ��iE� �n­n@N�A  is ¤Eintegrable and ��iEK ���iE� �n­n@N�A �f
H
�I � ��iE� �nY��iEK ­nf
H
�I [�@N�A   
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(5) Let ­  )A
Y3�©� H
[, then the equality 

O
��� � ��iE�­��������f
H
�
I � ��iE�­���f
H
�

�  

defines a signed ¤Emeasure on the d
E algebra ©� 
Theorem 8.1. [16] (The generalized monotone ¤Econvergence theorem) If ­@��F  0��   is a hyper 

infinite sequence in )A
*Y3�©� H
[ such that ­I �L ­I*A for all J  0��  and ­��� � � ·�ª@{ @�
 ­@���� then  ��iEK ­���f
H
 ��I ��¤E ¡!@" /�
 Y��iEK ­@���f
H
�I [�  
Theorem 8.2. [16] (The generalized dominated ¤Econvergence theorem) Let ­ and s be ¤Emeasurable, let ­@ be ¤Emeasurable for any F  0��  and such that �­@����� � s��� ¤Ea.e.,               �­@ (x�� �L s��� for any F  0��  and ­@���� 2
 ­��� ¤Ea.e. Then ­ is also ¤Eintegrable and ��iEK ­���f
H
 ��I ��¤E ¡!@" /�
 Y��iEK ­@���f
H
�I [�  
Definition 8.14.    If � ' 3A S 3U and ��  3A� ��  3U, we define �,� � ��  3U���A� ��  �} and �,0 � ��  3�H ��� �U�  �!� 
If ­H 3A S 3U 2 ���  
is a function, we define ­,jH 3U 2 ���  
 and�­,0:�3A 2 ���  
� by ­,j��� �­���� �� and ­,0��� � ­��� ���� 
Theorem 8.3. [16] (The generalized Fubini's theorem) Let HA
� HU
 be d
Ehyperfinite ¤Emeasures on �3��©���and �3U�©��� �3A S 3U�©A ©U� HA
 HU
� � �3A�©A� HA
� S �3U�©U� HU
�� and let ­  )A
 �3� S 3��©A ©U� HA
 HU
��Then ­,j  )A
�3��©U� HU
� HA
E¤Ea.e., 
and  ­,0  )A
 Y3A�©A� HA
[�HU
E¤Ea.e., and the following equalities hold: 

��iE� ­�
IjPI9 f
YHA
 HU
[ � ��iE� Ø��iE� ­,0�

Ij f
HU
Ù�
I9 � ��iE� Ø��iE� ­,j�

I0
f
HU
Ù�

I� � 
We introduce now the ¤Emeasures corresponding in natural way to a bounded in ���  
 self-¤Eadjoint 

operators. Let � be bounded in ���  
 selfE¤Eadjoint operator. Let�T  �>
. Then  ­! NT� ­���TP
 
is a positive ���  
Evalued linear functional on �
Yd���[� Thus, by the generalized Riesz-Markov 

theorem, see Theorem 8.1, there is a unique ¤Emeasure �Q
  on the ¤Ecompact set d��� with the 
property NT� ­���TP
 � ��iE� ­���f
�

�j�� �Q
 � 
Definition 8.15. [8] The ¤Emeasure �Q
  is called the spectral ¤Emeasure associated with the 

vector�T  �>
.The first and simplest application of the �Q
  is to allow us to extend the ¤Econtinuous 

functional calculus to�:
Y ���  
��[, the bounded in ���  
 ¤EBorel functions on ���  
� Let s  :
Y ���  
��[� It 
is natural way to define s��� so that NT�s���TP
 � ��iEK �s���f
��j�� �Q
 � The polarization identity 

lets us recover NT�s���TP
 from the functional NT�s���TP
 and then the Generalized Riesz lemma 
lets us construct s���� 

Theorem 8.1. [8] (Generalized Riesz-Markov theorem) Let 3 be a locally ¤Ecompact non-
Archimedean metric space endowed with ���  
Evalued metric. Let � 
�3� be the space of ¤Econtinuous ¤Ecompactly supported $�� R
Evalued functions on 3� For any positive linear functional � on�� 
�3�, 
there is a unique ¤Emeasure �Q
  on 3 such that )­  � 
�3�H���­� � ��iEK ­���f
�I ��
���� 

Theorem 8.2. [8] (Generalized Riesz lemma) Let ? be a ¤Eclosed proper vector subspace of a ¤Enormed space �3� 4 " 4
� and let �  ���  
  be any real number satisfying 8 > � > �.Then there 
exists a vector d  3 of unit ¤Enorm 4d4
 � � such that 4d = <4
 £ � for all <  ?� 

Theorem 8.3. [8] (spectral theorem-functional calculus form) Let � be a bounded in� ���  
 self-¤Eadjoint operator on non-Archimedean Hilbert space�>
. There is a unique map  ¥ÚH :
Y ���  
��[ 2�Y�>
[ so that: (a) ¥Ú is an algebraic ? Ehomomorphism. 
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(b) ¥Ú is ¤Enorm ¤Econtinuous: Ó¥Ú�­�Ó����	¿ � 4­4 /�
 . 

(c) Let ­ be the function ­��� � �Á then ¥Ú�­� � �� 
(d) Suppose ­@��� � 2
 ­��� for each x as F 2
 G��� and hyper infinite sequence 4­@4 /�
  is 

bounded in ���  
.Then�¥Ú�­@� 2
 ¥Ú�­�, as F 2
 G��� strongly. 
Moreover ¥Ú  has the properties: 
(e) If �T � �T, then ¥Ú�­� � ­���T� 
(f)  If ­ £ 8��then ¥Ú�­� £ 8. 
(g) If :� � �: then ¥Ú�­�: � :¥Ú�­�� 

9.  The spectral projections 
Definition 9.1. [8] Let � be a bounded in ���  
 self-¤Eadjoint operator and � a ¤EBorel set of� ���  
. (S � �S��� is called a spectral projection of �� 

As the definition suggests, (S is an orthogonal projection since �S � �SU � �pointwise. The 
properties of the family of projections��(S|� an arbitrary ¤EBorel set! is given by the following 
elementary translation of the functional calculus. 

Proposition 9.1.The family �(S! of spectral projections of a bounded in ���  
 self-¤Eadjoint 
operator, �, has the following properties: 

(a) Each (S is an orthogonal projection. 
(b)�(T � 8; (jmUVU�� � � for some _  ���  *
 �� 
(c) If �� � ��iE� �@/�
@�A   with �. B �W � D  for all F C X then   

(S � 7E¤E  ¡!�" /�
 ���iE× (S#
�
@�A � 

(d) (S�(S0 � (S�#S0 � 
Definition 9.2. A family of projections obeying (a)-(c) is called a projection-valued ¤Emeasure 

(p.v.�¤Em.). 
Remark 9.1. Note that (d) follows from (a) and (c) by abstract considerations. As one might guess, 

one can integrate with respect to a p.v.¤Em. If (S is a p.v.�¤Em., then NO�(SOP
  is an ordinary ¤Emeasure for any O. We will use the symbol f
NO�(§OP
  to mean integration with respect to this ¤Emeasure. By generalized Riesz lemma methods, there is a unique operator : with NO�:OP
 �K ­���f
NO�(§OP
�Z�
 )	 � 
Theorem 9.1.If (Y is a p.v.�¤Em. and ­ a bounded in ���  
 ¤EBorel function on ·�ªª�(S�, then 

there is a unique operator : which we denote K ­���f
NO�(§OP
�Z�
 )	  so that NO�:OP
 � K ­���f
NO�(§OP
�Z�
 )	 � 
10.  The spectral theorem related to unbounded in ��� k
 self E�¤E�adjoint operators 
In this section we will show how the spectral theorem for bounded in ���  
 self-¤Eadjoint operators 
which we developed in section 9 can be extended to unbounded in ���  
 self-¤Eadjoint operators. 

Proposition 10.1.Let N+� �
P be a ¤Emeasure space with �
 a hyperfinite ¤Emeasure. Suppose that ­ is a ¤Emeasurable, ���  
 Evalued function on + which is finite or hyperfinite �
Ea.e.. Then the 
operator MZH ¥ 2 ­¥  on  )U
Y+�f
�
[  with domain KYMZ[ � �O�­O  )U
Y+�f
�
[� is self-¤Eadjoint and dYMZ[ is the essential range of�MZ. 

Proposition10.2. Let ­ and �MZ satisfy the conditions in Proposition 6.4.1. Suppose in addition 
that­  )�
Y+�f
�
[ for � > Ô > G�� � Let K be any ¤Edense set in )[
Y+�f
�
[� where \�D2 Ô�D ��*�� Then K is a ¤Ecore for�MZ. 

Theorem 10.1.(Spectral theorem-multiplication operator form) Let � be a self-¤Eadjoint operator 
on a  G�� E�dimensional a non-Archimedean Hilbert space �>
 with domain K���� Then there is a 
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¤Emeasure space N+� �
P with �
 a hyperfinite ¤Emeasure, a unitary operator �H��>
 2 )U
Y+�f
�
[ 
and a ���  
 Evalued function ­ on +    which is finite or hyperfinite �
Ea.e. so that 

(a)   T  K��� if and only if ­�"���T��"�  )U
Y+�f
�
[� 
(b)   If O  �«K���¬� then �����DO��X� �� ­�X�¥�X�� 
Remark 10.1.There is a natural way to define functions of a self-¤Eadjoint operator by using the 

Theorem 10.1. Given a bounded ¤EBorel function ] on ���  
  we define ]��� � �M̂ jZ���D         (10.1) 
where M̂ jZ� is the operator on )U
Y+�f
�
[) which acts by multiplication by the function ]�­�X��� 

Using this definition the following theorem follows easily from Theorem 6.4.1. 
Theorem 10.2. (Spectral theorem -functional calculus form) Let � be a self-¤Eadjoint operator on �>
. Then there is a unique map ¥Ú from the bounded ¤EBorel functions on ���  
 into �Y�>
[� so that 
(a) ¥Ú is an algebraic ?-homomorphism. 
(b) ¥Ú is ¤Enorm ¤Econtinuous, that is, 4¥Ú�]�4����	¿ � 4]4 /�
 . 

(c) Let ]@����F  0��  be a hyper infinite sequence of bounded in ���  
 ¤EBorel functions with ¤E  ¡!@" /�
 ]@���� � �� for each � and �]@����� �� ��� for all � and�F  0�� . Then, for any T  K����  ¤E  ¡!@" /�
 � Y¥Ú��]@�T[ � �T�   
(d) If ]@��� 2
 ]��� pointwise and if the hyper infinite sequence 4]@����4 /�
 �F  0��  is bounded 

in� ���  
, then ¥Ú �]@� 2
 ¥Ú�]� strongly. 
In addition: 
(e) If �T � �T then ¥Ú�]� � ]���T� 
(f) If�] £ 8, then ¥Ú�]� £ 8� 

The spectral theorem in its projection-valued ¤Emeasure form follows directly from the functional 
calculus. Let (S be the operator �S��� where �S is the characteristic function of the ¤Emeasurable set 
� ' ���  
��The family of operators �(S! has the following properties:  

Proposition 10.3.The family �(S! of spectral projections of  abounded in ���  
 self-¤Eadjoint 
operator, �, has the following properties: 

(a) Each (S is an orthogonal projection. 
(b)�(T � 8; (jm /�
 V /�
 �� � � �  
(c) If �� � ��iE� �@/�
@�A   with �. B �W � D  for all F C X then   

(S � 7E¤E  ¡!�" /�
 ���iE× (S#
�
@�A � 

(d) (S�(S0 � (S�#S0 � 
Definition 10.1. A family of projections obeying (a)-(c) is called a projection-valued ¤Emeasure 

(p.v.�¤Em.). 
Remark 10.2. This is a generalization of the notion of bounded projection Evalued  ¤Emeasure 

introduced in Section 9. In that we only require (jm /�
 V /�
 �� � � rather than (jmUVU�� � � for some�_  ���  *
 . For vector�O  >
, NO�(SOP
 is a well-defined Borel ¤Emeasure on ���  
 which we denote by NO�(§OP
  as in § 4.3. The complex $��  
-valued ¤Emeasure f
NO�(§TP
 is defined by polarization. 
Thus, given a bounded in ���  
 ¤EBorel function s we can define s��� by NO�s����OP
 � ��iEK s���f
NO�(§OP
�Z�
 )	 �      (10.2) 

It is not difficult to show that this map s 3 s��� has the properties (a)-(d) of Theorem 10.1, so s��� as defined by (10.2) coincides with the definition of s��� given by Theorem 10.1. Now, suppose s is an unbounded $��  
-valued ¤EBorel function and let 
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K_ � °O���iEK s���f
NO�(§OP
 > G���Z�
 )	 ²�      (10.3) 

Then, K_ is ¤Edense in >
 and an operator s��� is defined on K_ by  NO�s����OP
 � ��iEK s���f
NO�(§OP
��Z�
 )	       (10.4) 

As in Section 9, we write symbolically s��� � ��iEK s���f
(§��Z�
 )	        (10.5) 

In particular, for O�T  K����  NO�s����TP
 � ��iEK s���f
NO�(§TP
�Z�
 )	 �      (10.6) 

if s is ���  
 -valued, then s��� is self-¤Eadjoint on K_. We summarize: 
Theorem 10.3. (Spectral theorem-projection valued ¤Emeasure form).There is a one-to-one 

correspondence between self-¤Eadjoint operators � and projection-valued ¤Emeasures �(S! on >
 the 
correspondence being given by   � � ��iEK �f
(§��Z�
 )	         (10.7) 

We use now the functional calculus developed above in order to define ��iENFª��i��� 
Theorem 10.4 Let � be a self-¤Eadjoint operator and define ��i� � ��iENFª��i���� Then 
(a) For each i�  ���  
����i� is a unitary operator and ��i 2 7� � ��i���7� for all 7� i  ���  
� 
(b) If ¥  >
 and i 2
 i�, then ��i�¥ 2
 ��i��¥� 
(c) For any T  �K���H ����i�T = T�*i� 2
 ��T��·�i 2
 8� 
(d) If ¤E ¡!¾"	e ����i�T = T�*i� exists, then T  �K���� 

Proof (a) follows immediately from the functional calculus and the corresponding statements for 
the $��  
- valued function ��iENFª��i��. To prove (b) observe that  4��iENFª��i��T = T4
U � ��iE� ���iENFª��i�� = ��Uf
s���f
N(§O�TP
��

Z�
 )	
 

Since ���iENFª��i�� = ��U is dominated by the ¤Eintegrable function s��� � � and since for each �  ���  
 ���iENFª��i�� = ��U 2
 8 as i 2
 8 we conclude that ���i�T = T� 2
 8 as�i 2
 8, by the 
generalized Lebesgue dominated-¤Econvergence theorem. Thus i 3 ��i� is strongly ¤Econtinuous 
at�i � 8, which by the group property proves i 3 ��i� is strongly ¤Econtinuous everywhere. The 
proof of (c), again uses the dominated ¤Econvergence theorem and the estimate ���iENFª��i�� =��U � ���� To prove (d), we define 

K�:� � �T�¤E ¡!¾"	e ¹��i�T = Ti º �NF¡·:·`�
and let �:T � ¤E ¡!¾"	e taj¾�QmQ¾ u � A simple computation shows that : is symmetric. By (с), � V �, 

so : � �� 
Definition 10.2. An operator-valued function ��i� satisfying (a) and (b) is called a strongly ¤Econtinuous one-parameter unitary group. 
Definition 10.3 If ��i� is a strongly ¤Econtinuous one-parameter unitary group, then the self-¤Eadjoint operator � with ��i� � ��iENFª��i�� is called the ¤Einfinitesimal generator of ��i��  
Theorem 10.5. Let ��i� be a strongly ¤Econtinuous one-parameter unitary group on a non-

Archimedean Hilbert space >
. Then, there is a self-¤Eadjoint operator � on >
 so that             ��i� ���iENFª��i���  
Theorem 10.6. Let ��i� be a one-parameter group of unitary operators on a hyper infinite 

dimensional non-Archimedean Hilbert space�>
. Suppose that for all�¥�T  >
, N��i�T�¥P
 is ¤Emeasurable.Then ��i� is strongly ¤Econtinuous.  
Theorem 10.7. Suppose that ��i� is a strongly ¤Econtinuous one-parameter unitary group. Let K 

be a ¤Edense domain which is invariant under ��i� and on which ��i� is strongly ¤Edifferentiable. 
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Then ��D times the strong ¤Ederivative of ��i� is essentially self-¤Eadjoint on K and its ¤Eclosure is 
the ¤Einfinitesimal generator of ��i��  

Theorem 10.8. Let � be a self-adjoint operator on >
 and K be a ¤Edense linear set contained in K���. If for all i���iENFª��i��H K 2 K then K is a ¤Ecore for �� 
Remark 6.4.3. Finally, we have the following generalization of Theorem 10.5. If s��� is a ���  
-

valued ¤EBoreI function on� ���  
, then s��� � ��iEK s���f
(§��Z�
 )	  defined on K_ (10.3) is self-¤Eadjoint. If g is bounded, s��� coincides with ¥Ú�s� in Theorem 10.2. 
Theorem 10.9. Let ��b� � ��i�� � � � � i@� be a strongly ¤Econtinuous map of ���  
@ into the unitary 

operators on a hyper infinite dimensional Hilbert space >
 satisfying  ��b2 c� � ��b���c� Let K be 
the set of hyperfinite linear combinations of vectors of the form OZ � ��iEK ­�b���b�f
@i��Z�
 )	#        (10.8) 

where ¥  >
� ­ 5e
 /�
 Y ���  
@[� Then K is a domain of essential self-¤Eadjointness for each of the 
generators �I�of the one-parameter subgroups ��8�8� � � � � iI� � � �8�, each �I � � K 2 K and the �I 
commute, J � �� � � � �F. Furthermore, there is a projection-valued ¤Emeasure (S on ���  
@ so that  NO���b�TP
 � ��iEK «��iENFª��Nb� dP�¬�Z�
 )	# f
NO�(lTP
     (10.9) 

 for all ¥�T  >
� 
Remark 10.4.Suppose that � and : are two unbounded self-¤Eadjoint operators on a non-

Archimedean Hilbert space �>
.We would like to find a reasonable meaning for the statement: "� and : commute." This cannot be done in the straightforward way since the operator  5 � �: = :� may 
not make sense on any vector T  �>
 for example one might have ���9���� B K�:� � D in which 
case :� does not have a meaning. This suggests that we find an equivalent formulation of 
commutativity for bounded self-¤Eadjoint operators.The spectral theorem for bounded self-¤Eadjoint 
operators � and : shows that in that case �: = :� � 8 if and only if all their projections, (S��and�(Se, 
commute. We take this as our definition in the unbounded case. 

Definition 10.3 Two (possibly unbounded in ��� k
  self-¤Eadjoint operators � and : are said to 
commute if and only if all the projections in their associated projection-valued ¤Emeasures commute. 

Remark 10.5. The spectral theorem shows that if � and : commute, then all the bounded in ��� k
  ¤EBorel functions of � and : also commutes. In particular, the resolvents f§��� and fp�:� commute 
and the unitary groups ��iENFª��i�� and ��iENFª��i�� commute. The converse statement is also true 
and this shows that the above definition of "commute" is reasonable. 

Theorem 10.10 Let � and : be self-¤Eadjoint operators on a non-Archimedean Hilbert 
space�>
�Then the following three statements are equivalent: 

(a)  (jUV(��  and (j VC�e  commute. 
(b) If  �!� and �!� are nonzero, then f§���fp�:� = fp�:�f§��� � 8� 
(c)   For all 7� i  ��� R
�  «��iENFª��i��¬ «��iENFª��i��¬ � � «��iENFª��i��¬«��iENFª��i��¬� 

Proof The fact that (a) implies (b) and (c) follows from the functional calculus. The fact that (b) 
implies (a) easily follows from the formula which expresses the spectral projections of � and : as 
strong ¤Elimits of the resolvents together with the fact that 7E¤E  ¡!;"<e �6 fU*n;��� � (gUh� � To prove that 

(c) implies (a), we use some simple facts about the Fourier transform. Let ­  �
Y ��� R
[, then, by 
generalized Fubini's theorem [16], ��iEK ­�i��Z�
 �

	 N«��iENFª��i��¬O�TP
 �  

� ��iE� ­�i��
Z�
 �

	 ¹��iE� �«��iENFª�=�i��¬��
Z�
 �

	 f§
N(§�O�TP
ºf
i � 

� g�±
��iE� ­Ð����
Z�
 �

	 f§
N(§�O�TP
 � g�±
NO� ­Ð���TP
� 
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Thus, using (c) and generalized Fubini's theorem again, NO� ­Ð���sz�:�TP
 � � ��iE� ��iE� ­�i��
Z�
 )	

s�7��
Z�
 )	

NO� «��iE NFª�=�i��¬«��iE NFª��7:�¬TP
 � 

� NO�sz�:�­Ð���TP
 
so, for all ­�s  �
Y ��� R
[� ­Ð���sz�:� = sz�:�­Ð��� � 8� Since the Fourier transform maps �
Y ��� R
[ 

onto �
Y ��� R
[ we conclude that ­���s�:� = s�:�­��� � 8 for all ­�s  �
Y ��� R
[� But, the 
characteristic function, �jUV(� can be expressed as the pointwise ¤Elimit of a hyper infinite sequence ­@�F  0��  of uniformly bounded functions such that  ­@  �
Y ��� R
[�F  0�� � By the functional 
calculus we get � 7E¤E  ¡!�" /�
 ­@��� � (jUV(�� � 

Similarly, we find uniformly bounded s@  �
Y ��� R
[�F  0��  ¤Econverging pointwise to �j VC� and 
therefore 7E¤E  ¡!�" /�
 s@�:� � (j VC�e �  

Since the ­@ and s@ are uniformly bounded in ��� R
 and ­@���s@�:� � s@�:�­@��� for each  F  0�� � we conclude that (jUV(��  and (j VC�e  commute which proves (a). 

11.  Conclusion 
The technique of nonstandard analysis in constructive quantum field theory in order to obtain the 
standard model �H OUi���H by using model theoretical nonstandard analysis (NSA) originally have been 
approved by Kelemen and Robinson [17, 18]. As pointed out in author’s papers [8], canonical NSA 
does not power enough in order to obtain the standard model �H Oii���H by using the classical 
nonstandard analysis, see also explanation in S. Albeverio handbook [5] section 7.4 and section 1 of 
this paper. In order to avoid this difficultness related to NSA we apply minimal non-conservative 
extension of NSA namely ���
 [11]. Using ���
 Haag-Kastler axioms established for standard 
model ��Oi�i in author’s papers [8]. It is shown in this paper that the standard quantum field theory 
model �OU@�i�F £ � is Lorentz covariant see also [8]. For model �OU@�U�F £ � in unphysical 
dimension f � � Lorentz covariance has been established in Rosen [19] paper. 
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