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Abstract. A new non-Archimedean approach to interacted quantum fields is presented. In
proposed approach, a field operator ¢(x,t) no longer a standard tempered operator-valued
distribution, but a non-classical operator-valued function. We prove using this novel approach
that the quantum field theory with Hamiltonian P(¢), exists and that the corresponding C*-
algebra of bounded observables satisfies all the Haag-Kastler axioms except Lorentz
covariance. We prove that the A(¢?"),,n = 2 quantum field theory models are Lorentz
covariant.

1. Introduction

Extending the real numbers R to include infinite and infinitesimal quantities originally enabled
D. Laugwitz [1] to view the delta distribution §(x) as a nonstandard point function. Independently A.
Robinson [2] demonstrated that distributions could be viewed as generalized polynomials. Luxemburg
[3] and Sloan [4] presented an alternate representative of distributions as internal functions within the
context of canonical Robinson's theory of nonstandard analysis. For further information on classical
model theoretical nonstandard analysis namely NSA , we refer to [5-8].

Abbreviation 1.1 In this paper we adopt the following canonical notations. For a standard set E we
often write Eg. For a set Eg; let “Eg be a set’Eg; = {*x|x € Es:}. We identify z with °z ie.,z = %z
for allz € C. Hence, °Eq=FEy if ESC, eg., °C=C, °“R=R, °P=P, °L| =1L}, etc.
Let "Re "Ret "Rfin, "Re, and *Ng, denote the sets of infinitesimal hyper-real numbers, positive
infinitesimal hyper-real numbers, finite hyper-real numbers, infinite hyper-real numbers and infinite
hyper natural numbers, respectively.

Note that: "R, = "R\"'Ry, "C = "R+ I'R, *Ci, = "Rein + 'Ry -

Definition 1.1 Let {X, |||} be a standard Banach space. For x € *X and € > 0, & = 0 we define the
open ~-ball about x of radius € to be the set B.(x) = {y € "X|*||x — y|| < &}.

Definition 1.2 Let {{X, ||-||} be a standard Banach space, Y c X, thus *Y "X and let x € *X.Then

x is an *- accumulation point of *Y if for any € € "R, there is a hyper infinite sequence {xn};oilin Y
such that {x,}, o, N (B:()\{x} # ).

Definition 1.3 Let {{X,||"||}be a standard Banach space, let’Y € *X,*Y is *-closed if any
*-accumulation point of *Y is an element of *Y.
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Definition 1.4 Let {{X, ||:||} be a standard Banach space. We shall say that internal hyper infinite
sequence {xn};ozlin *X is * -converges to x € *X as n — oo if for any € € "R, there is N € *N such
that forany n > N: *[|x — y|| < &.

Definition 1.5 Let {{X, ||'[Ix}, {{Y, ||y} be a standard Banach spaces. A linear internal operator
A:D(A) € "X - 'Y is *-closed if for every internal hyper infinite sequence {xn};ozl in D(A) *
-converging to x € *X such that Ax, >y €'Y as n— "o one has x € D(A) and Ax =y.
Equivalently , A is *-closed if its graph is * -closed in the direct sum *X @ *Y.

Definition 1.6 Let H be a standard external Hilbert space. The graph of the internal linear
transformation T: *"H — *H is the set of pairs {{¢, Tp)|@ € D(T)}. The graph of T, denoted by I'(T), is
thus a subset of *H X *H which is internal Hilbert space with inner product ({¢1, 1), {2, Y¥5)) =
(1, 02) + (Y1,¥,) . The operator T is called a *-closed operator if T'(T) is a *-closed subset of
Cartesian product *H X *H.

Definition 1.7 Let H be a standard Hilbert space. Let T; and T be internal operators on internal
Hilbert space *H. Note that if ['(T?) o I'(T), then T; is said to be an extension of T and we write T; D
T.Equivalently, T; D T if and only if D(T;) 2 D(T) and Ty¢p = T¢ for all ¢ € D(T).

Definition 1.8 Any internal operator T on *H is *-closable if it has a *-closed extension. Every
*-closable internal operator T has a smallest *-closed extension, called its *-closure, which we denote
by *-T.

Definition 1.9 Let H be a standard Hilbert space. Let T be a *-densely defined internal linear
operator on internal Hilbert space *H. Let D(T™*) be the set of ¢ € *H for which there is a vector ¢ €
*H with (TY, ) = (¢, &) for all Y € D(T), then for each ¢ € D(T™*), we define T* ¢ = &. T" is called
the * -adjoint of T. Note that S c T implies T* € S*.

Definition 1.10 Let H is a standard Hilbert space. A *-densely defined internal linear operator T on
internal Hilbert space *H is called symmetric (or Hermitian) if T < T*. Equivalently, T is symmetric if
and only if (To,y) = (@, TY) for all ,y € D(T).

Definition 1.11 Let H be a standard Hilbert space. A symmetric internal linear operator T on
internal Hilbert space *H is called essentially self- *-adjoint if its *-closure *-T is self- *-adjoint. If T
is *-closed, a subset D € D(T) is called a *-core for T if *- (m) =T. If T is essentially
self- x-adjoint, then it has one and only one self -*-adjoint extension.

Let F be the standard Fock space [9, 10] for a massive, neutral scalar field in four-dimensional
space-time [10]. The elements of *F are internal sequences of functions on internal momentum
space“R3. Let the standard annihilation and creation operators be normalized by the relation

[a(k),at (k)] = 83k — k") (1.1)
so that the free-field Hamiltonian with finite momentum cut-off ¢ € °R is

Hoo, = f|k|sa at(KNa()uk)d3k, u(k) = k2 + k2+k2 . (1.2)
From (1.1) by transfer one obtains

[*a(k), *at (k')] =*853(k — k"), (1.3)
so that internal free-field Hamiltonian with hyperfinite cut-off »# € "R, ., is

"Hos = Jyere "at kD ("al0) ("u(k))d3k. (1.4)

The t = 0 internal field "¢, (x) with hyperfinite momentum cut-off » € "Ry, is

* R . k[t SN L
00 = fe e [ at (k) + a (k)] Vo)

The spatially cut-off internal interaction Hamiltonian with hyperfinite momentum cut-off » €
Ry 18

*Hp,(g9) = ;¥=0 (j) *f|k1|s;:'" *f|kj+1|s;{m *f|k4|su at(ky) *af(kj )*a(_kj+1) X

(1.5)
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x *a(=ke) ("9(Zhor k) ) Ty w2k (1.6)
We also need internal number operator with hyperfinite momentum cut-off € "R .

*N,, = *f|k|sn “at(k) *a(k)d3k (1.7)
and the domain

Dose = Nuew D("Hs)- (18)

Remark 1.1 Note that the domain Dy ,, is a nonstandard external set so there is no standard set D
such that Dy ,, = *D.
Proposition 1.1 Let W, be a standard operator W;: F = F of the form

W, = flkllsa '"f|km|50W(k1 s k) at(k 1) = a(=ky) [T, d3k; (1.9)
and let N, be a standard operator N;: F — F of the form
Ny = [ a7 k) (3K (1.10)

Assume that for all o such that 0 < o < oo the inequality holds

m
ff Xo (ke s kW2 (ky oo k) d3k; < oo,

i=1

where y,(kq, ..., k) = 1if |k;| <o foralll <i <m, and y,(ky, ..., ky) = 0 otherwise. Then for
all o such that 0 < o < 0o and for all j such that ljl <m the mequahty holds
N, + DI, N, + 12 |s
1
< (f S xoCka, oo k)W (ky oo k) TI , Pk )2 (1.11)
Proposition 1.2 Let *IV,, be internal operator *W,,: *F — *F of the form
W= S Do WOk o) " (k) = *a(—le) T, @K, (1.12)

Then for all » such that » € "R, and for all j such that |j| < m,m € "N, the inequality holds

J (m-))
| (N, + D) 2W, (N, + 1) 2 || <

S(*f"'*f Loy cees o) W2 ey ooy b)) TIy d3 ks )2 (1.13)

Proof It follows directly from (1.11) by transfer.
Remark 1.2 It follows from (2.11) that:
(1) *Hy ,,(g) is well defined on the domain Dy,,,
(2) there is a *-closure *-*H; ,,(g) with domain D(* -*H,_,{(g)) D Do,
(3) external set D ,, is a *-core for *Hy,,(g) i.e., *- (*H,IH(g) r DO,;{) = "H;,.(9)

Remark 1.3 The operator *-*H;, (g) is external mapping *-*H;, (g):"F = *F ie., there is no
standard operator T:F — F with domain D(T) such that:

(1) *D(T) = D(*-"Hy,,(g)) and (2) °T 1 *D(T) =+-"H;,.(g) I D(x -"H;,.(9)).

Thus we cannot derive the desired properties of the operator * -*Hj ,,(g) by using Robinson transfer
principle [2-7].

As that has been explained in [8] classical model theoretical nonstandard analysis NSA does not
power enough to resolve the stated in [8] problems in constructive quantum field theory related to
physical dimension d = 4,

In order to avoid any difficultness mentioned above, in this paper as in [8] we deal by using
minimal non-conservative extension of NSA developed in [11-14].We will denote this extension by
NSA#. The formal theory NSA* is based on the following definitions and axioms presented below.

Remind that Robinson nonstandard analysis (NSA) many developed using set theoretical objects
called super-structures [5-7]. A superstructure V(S) over a set S is defined in the following way:
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Vo(S) =S, Vuy1(S) = Viu(S) UP(V,(S)), V(S) = Unen Vns1(S). Making S =R will suffice for
virtually any construction necessary in analysis. Bounded formulas are formulas where all quantifiers
occur in the form: Vx (x €y = -+ ),3x (x € y = -+ ). A nonstandard embedding is a mapping *:
V(X) —» V(Y) from a superstructure V(X) called the standard universe, into another superstructure
V(Y) called nonstandard universe, satisfying the following postulates:
1.Y ="X
2. Transfer Principle For every bounded formula ®(xy, ..., x,) and elements a4, ...,a, € V(X)
the property ®(aq, ..., a,) is true for ay,...,a, in the standard universe if and only if it is
true for *ay,..,"a, in the nonstandard universe V(X) |=<1>(x1, v Xp)  ©
V() EeCay, .., *ay).
3. Non-triviality For every infinite set A in the standard universe, the set {*a|a € A} is a proper
subset of *A.

Definition 1.12 A set x is internal if and only if x is an element of *A for some A € V(R). Let X
be a set and A = {4;};¢; a family of subsets of X .Then the collection A has the infinite intersection
property, if any infinite sub collection J € I has non-empty intersection. Nonstandard universe is o -
saturated if whenever {4;};¢; is a collection of internal sets with the infinite intersection property and
the cardinality of [ is less than or equal to o.

Remark 1.4 For each standard universe U = V(X) there exists canonical language Ly and for each
nonstandard universe W =V (Y) there exists corresponding canonical nonstandard language
*L =1Ly [5,7]

4.The restricted rules of conclusion If Let A and B well formed, closed formulas so that A, B €
*L.If W = A, then =A ¥gyp B. Thus, if a statement A holds in nonstandard universe, we
cannot obtain from formula —A any formula B whatsoever.

Definition 1.13 [8] A set S € "N is a hyper inductive if the following statement holds in V(Y):

(aeS—>ates).
a€e*N

Here ™ = a + 1.0bviously a set *N is a hyper inductive.

5. Axiom of hyper infinite induction
VS(S € "N){VB(B € *N)[A1<a<pla €S > at € 5)| » S = *N}.

Example 1.1 Remind the proof of the following statement: structure (N, <,=) is a well-ordered
set.

Proof Let X be a nonempty subset of N. Suppose X does not have a <-least element. Then consider
the set N\X. Casel. N\X = @. Then X = N and so 0 is a < -least element but this is a contradiction.
Case2. N\X # @. Then 1 € N\X otherwise 1 is a < -least element but this is a contradiction. Assume
now that there exists some n € N\X such that n # 1, but since we have supposed that X does not have
a < -least element, thus n + 1 & X. Thus we see that for all n the statement n € N\X implies that n +
1 € N\ X. We can conclude by axiom of induction that n € N\X for all n € N. Thus N\X = N implies
X = @. This is a contradiction to X being a non-empty subset of N. Remind that structure (*N, <, =) is
not a well-ordered set [5-7]. We set now X; = *N\N and thus*N\X; = N. In contrast with a set X
mentioned above the assumption n € *N\X; implies that n + 1 € *N\X; if and only if n is finite,
since for any infinite n € *N\N the assumption n € *N\X; contradicts with a true statement V(Y) E
n € *N\X;=N and therefore in accordance with postulate 4 we cannot obtain from n € *N\X; any
closed formula B whatsoever.

For further information on non-classical nonstandard analysis namelyNSA®, we refer to [8—13].

Abbreviation1.2 In this paper we adopt the following notations [8]. For a standard set E we often
write Egt, let °Eg; = {"x|x € Eg}.We identify z with °z i.e.,z = 9z for all z € C. Hence, °Es; = Eg; if
EcCCeg, °C=C, °‘R=R,etc. Let *RE, *RE_,*R¥ _,, *]Rf_ﬁn ,"R¥ ., ,*N,, de-note the sets of
Cauchy hyper-real numbers, Cauchy infinitesimal hyper-real numbers, Cauchy positive infinitesimal
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hyperreal numbers, Cauchy finite hyper-real numbers, Cauchy infinite hyper-real numbers and infinite
hypernatural numbers, respectively. Note that *]Rﬁ’ﬁn = "RE\*R¥ .

Definition 1.13 Let H be external hyper infinite dimensional vector space over the complex field
*C# = *R¥ +i*R¥. An inner product on H is a*C¥-valued function, {-,'): H X H — *C¥, such that (1)
(ax + by, z) = (ax,z) + (by,z), 2) {x,y) = (y,x), 3) l|x||?* = (x,x) = 0 with equality {x,x) = 0 if
and only if x = 0.

Theorem 1.1 (Generalized Schwarz Inequality) Let {H, (-,/)}be an inner product space, then for all
x,y € H: [{x, )| < |lx|llly|l and equality holds if and only if x and y are linearly dependent.

Theorem 1.2 Let {H, (-,;)}be an inner product space, and ||x||4 = +/(x,x) . Then ||| is a *R¥ -
valued #-norm on a space H. Moreover (x, x) is #-continuous on Cartesian product H X H, where H is
viewed as the #-normed space {H, ||*||4}-

Definition 1.14 A non-Archimedean Hilbert space H is a #-complete inner product space.

Two elements x and y of non-Archimedean Hilbert space H are called orthogonal if (x,y) = 0.
Definition 1.15 The graph of the linear transformation T: H — H is the set of pairs {{¢, T¢)|(¢ €
D(T))}. The graph of the operator T, denoted by I'(T), is thus a subset of H X H which is a non-
Archimedean Hilbert space with the following inner product ({¢p1, Y1), (¢, ¥,)). Operator T is called
a #-closed operator if ['(T) is a #-closed subset of H X H.

Definition 1.16 Let T; and T be operators on H. If['(T;) © ['(T), then T; is said to be an
extension of T and we write T; D T. Equivalently: T; D T if and only if D(T;) 2 D(T) and Ty¢p =
T¢ for all ¢ € D(T).

Definition 1.17 An operator T is #-closable if it has a #-closed extension. Every #-closable
operator has a smallest #-closed extension, called its #-closure, which we denote by #-T.

Theorem 1.3 If T is #-closable, then ['(#-T) = #-I'(T).

Definition 1.18 Let D(T™*) be the set of ¢ € H for which there is an é € H with (Ty, @) = (¥, &)
for all ¢ € D(T).For each ¢ € D(T"), we define T*¢@ = &.The operator T* is called the #-adjoint of
T. Note that ¢ € D(T") if and only if |(Ty, )| < C||ip||4 for all Y € D(T). Note that S < T implies
T* cS.

Remark 1.5 Note that for ¢ to be uniquely determined by the condition (T, ¢) = (¥, &) one need
the fact that D(T) is #-dense in H. If the domain D(T*) is #-dense in H, then we can define T** =
(r)".

Theorem 1.4 Let T be a #-densely defined operator on a non-Archimedean Hilbert space H. Then:
(a) T* is #-closed. (b) The operator T is #-closabie if and only if D(T*) is -dense in which case T =
T**.(c) If T is #-closable, then (#-T)* = T*.

Definition 1.19 Let T be a #-closed operator on a non-Archimedean Hilbert space H. A complex
number A € *C¥ is in the resolvent set p(T), if Al — T is a bijection of D(T) onto H with a finitely or
hyper finitely bounded inverse. If complex number A € p(T), Ry = (Al — T)~ ! is called the resolvent
of T at A.

Definition 1.20 A #-densely defined operator T on a non-Archimedean Hilbert space is called
symmetric or Hermitian if T < T*, that is, D(T) € D(T*) and T¢e = T*¢ for all ¢ € D(T) and
equivalently, T is symmetric if and only if (T, ) = (@, TY) for all ¢,y € D(T).

Definition 1.21 A #-densely defined operator T is called self-#-adjoint if T = T, that is, if and
only if T is symmetric and D(T) = D(T™).

Remark 1.6 A symmetric operator T is always #-closable, since D(T) #-dense inH. If T is
symmetric, T* is a #-closed extension of T so the smallest #-closed extension T** of T must be
contained inT*. Thus for symmetric operators, we have T < T™* c T*, for #-closed symmetric
operators we have T =T c T" and, for self-#-adjoint operators we have T =T = T". Thus a
#-closed symmetric operator T is self-#-adjoint if and only if T* is symmetric.
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Definition 1.22 A symmetric operator T is called essentially self-#-adjoint if its #-closure #-T is
self-#-adjoint. If T is #-closed, a subset D © D(T) is called a core for T if #-T I D =T.

Remark 1.7 If T is essentially self-#-adjoint, then it has one and only one self-#-adjoint extension.

Theorem 1.5 [8] (see [8], sect.15.1) If g € Sﬁn(*Rfﬂ is real, then

His(9) = Ext- [.gus: 03* (x): g (x) d"x (1.14)
is essentially self #-adjoint on the domain D§,, = ﬂ;ooo D(HE,,).
Here ¢;, (x) is a nonstandard pointwise-defined operator valued functlon e *R#3 - L(T #)

pi(x) = 2 )3/2 Ext- f|k|< (Ext-exp[—i(k, X)])[aT(k) +a(- k)]

where » € ]Rc+ o
The main purpose of the present paper is to extend the result of [8] to A(¢?™),,n > 2. Our notation
and definitions are the same as in [8].

We remlnd that for every function f € C, °°( R¥#

m (1.15)

cfinr R¢ fm) ), the averaged free quantum field

on(f) = z )3/2 Ext- fk|< (Ext-exp[ tu(k) — ik, x)] )[aT(k) +a(— k)]f(x)m ey (1.16)

is a self-#-adjoint operator on a non-Archimedean Fock space F* [8].

A non -Archimedean Cj-algebra of local observables A* is defined as the #-norm #-closure [8]
A = #-U, A*(0), (1.17)
where the union takes place over bounded regions O of space-time, and *(0) is the von Neumann
#-algebra generated by [8]:

{Ext'exp (l(P% (f) +im (f)) |f €C OO(*]Rc fll’l’ cfln)}
A non —Archimedean near standard C;~-algebra of physical local observables U% (0) is defined as
AL (0) = {Q € W(OIIQlly € "RE, gin}

Let ?G be the restricted Poincare group of transformations of 4-dimensional Minkowski space-time
M, . Poincare transformations {a, Agl)} € 9G generated by a Lorentz boosts along the x‘-direction i =
1,2,3 and space-time translation x - x + a,a = (al, a?, a3, 1) are

()=

= (a! + x* cosh B, + tsinh By, T + x*sinh B; + t cosh B, a? + x2, a3 + x3), (1.18)
fa} oo =
= (a! + x', a® + x? cosh B, + tsinh By, a® + x3,7 + x? sinh 8, + t cosh 5,), (1.19)
fejon -
= (a! + xt, a® + x?,a® + x3 cosh B5 + t sinh B3, 7 + x* sinh B3 + t cosh f33). (1.20)
Theorem 1.6 For every { Ag)} 9G,i =1,2,3 and for every bounded set O C *]RC fin there
exists a unitary operators Ug),l = 1,2,3 such that, for all f € C, OO( ]RC fins R, #in)
U [Ext-exp(ipf ()] (Uf;)) ~ Ext-exp <i<pﬁ <f{a, A;?}) > i =123, (121)

. — @ : . . _
where f {a' Agi}(x' t)=f ({a, ABi}(x, t)). This mappings extends to a representation a{a’ Agz} of
*-automorphisms of U¥such that

(o)) (ut(0)) ~ ut ({a, 05} 0), i = 1,23, (122)
The formal expressions for the Hamiltonian and Lorentz transformation generators are given by [8]
H, = Hy, + Hp, = Ext- f*Rﬁ3 (TO,H('X) + Tl,u(x)) d"3x, (1.23)
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MR* = Mo, + My, = Ext- [ 4 x* (Toyx(x) + T,,,(x)) d*x, =1,2,3, (1.24)
C

where

1 2 2 2
To(x) = > i2(x): +m?: f? (x): +: (afl(pff(x)) i+ (afz(pff(x)) i+ (afs(pﬁ(x)) :] (1.25)

is the free energy density with hyperfinite cut-off » € *R§+,00a and where the interaction energy
density Ty ,,(x) reads

Ty, () =1 2™ (x):. (1.26)
Formally one verifies the commutation relations

[iH,,M2*] = P¥,k =1,2,3 (1.27)
and

[iH,,P¥1 =0k =123, (1.28)

where P,k = 1,2,3 are the momentum operators Py = Ext- [..4s P (x) d**x with densities defined
by

PEQ) = 3 [:mf ()3, oh (0): +: 04, 0l COmf (2): . (129)
We wish to prove that Ext-exp (i) M2¥ implements Lorentz rotations on suitable domain

[Ext-exp(iBM2¥)]pk (x, t)[Ext-exp(—iBM2¥)] = ¢} (Ag‘) (x, t)) k=123, (1.30)

where

@3 (x,t) = [Ext-exp(itH,)] s (x)[Ext-exp(=itH,)], (1.31)

and AY (x,t) = {0, Ag‘)} (x,1).
In differential form (1.30) becomes

[iM2K, o (x, )] = t0f, @i (x,t) + xi0f @ (x, 1), k = 1,2,3. (132)
We define now
MO¥(t) = [Ext-exp(—itH,)|M2¥[Ext-exp(itH, )], k = 1,2,3, (1.33)

and using the commutation relations (1.27) and (1.28) we obtain

*00 s T ok
MK (e) = Ext- ZrmaCACUD) MEE _ ok _ypre (134)

since second order and higher terms in t vanish identically. Thus we get
[iMR¥, @5 (x, )] = [Ext-exp(itHu)] [iMR<(®), @k (x, 0)][Ext-exp(—itH,)] =

= [Ext- exp(itH,{)]['M(’k itPk, o (x,0)][Ext-exp(—itH,)], k = 1,2,3. (1.35)
Since ¢ (x,0) commutes with M, ,, by a standard computation we get

[iM3¥, i (x,0)] = [iMJ%, pfi(x,0)] = x,mi(x,0),k = 1,2,3. (1.36)
Also we get

[iP¥, ¢k (x,0)] = =05, @5 (x,0),k = 1,2,3. (1.37)

Substituting (1.36) and (1.37) into (1. 35), we obtain the desired commutation relation (1. 32).

The three main steps to convert the above argument into a rigorous proof are (a) to introduce a
spatial cut-off into the Lorentz boost generators in such a way that we obtain a self-#-adjoint operators
MR%, k = 1,2,3; (b) to show that for suitable bounded regions O *]R{C fin» (1.34) holds in the sense
that for every f € C, w(*RC fins *]RC fin)»

[iM25 (D), 0l ()] ~ [iM2G — iPEg, 9k ()], (1.38)
where P;fg, k = 1,2,3 are the locally correct momentum operators. Note that (1. 38) states that MS”E,
are the locally correct Lorentz boost generators for the region O corresponding to the exact
cancellation of higher order terms in (1.34) is the fact that second and higher order terms in MS’; (3]

are localized ~ -outside region O and hence ~ -commutes with ¢f(f). From (1. 38) one obtains the
relations

[iM2% (1), 0 ()] ~ o} (t 552 o'y ) k=123 (1.39)
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and its direct consequence

[Ext-exp(iBM2%) | @i (x, t)[Ext-exp(—iBM2%)] = @i (Ag{) (x, t)) Jk=1,2,3. (1.40)
Definition 1.23 If I° = [a,b]® = [a,b] X [a,b] X [a,b] is a cube in "R¥%,, where [a,b] is an

#-closed interval in *]Rc#yﬁn. A causal shadow of I3 is defined to be the diamond

0,3 = {(x1, x5, x3,)|a+ [t] <x, <b—|t];k =1,23}. (1.41)

Remark 1.8 Note that because we can always translate in the positive xi, k = 1,2,3 directions, it is
sufficient to prove Theorem 1.6 for sets O such that both O and A%k)o,k =1,2,3 are contained in
0,3 for some #-closed interval I *]Rf'ﬁn +. The advantage of working over *Rf;in 4+ 1s that the locally

correct Lorentz boost generators M?,,"g, k =1, 2,3 are bounded below.

2. Properties of the Lorentz boost generators M% k =1,2,3

n,g’
In this section we consider the basic properties of H,, ; and M,({"’fg, k = 1,2,3 in particular, the first order
estimates they satisfy. Note that H, , and M,gffq,k = 1,2,3 are well defined operators on a non-

Archimedean Fock space F*#. We take the definition of F*# and the definition of the pointwise-defined
time-zero field operators on F # as in [8] (see [8, Section 9]). The spatially cut-off Hamiltonian is
defined as self-#-adjoint operator on a non-Archimedean Fock space F# [8].

Let g = {go, g1}, where g, = {ggk)},k =1,2,3 ,g(()k),gl € COOO(*Rf%m, *R‘iﬁn) and g((,k),gjL >
0,k = 1,2,3. The spatially cut-off Hamiltonian reads

Hy g = Hy(9) = Hos + T1,(g1), 2.1
where T, (f) = Ext-[.pus £ () Ty, (x)d*3x and
T5(x) =: 0" (x): 22)

is the interaction energy density. The operator H,,(g) has been studied in [8] and is known to be a
self-#-adjoint semibounded operator on F*. For the region 0,3, defined above in section 1 we set now

Mlg = atoy + Tou (xkgék)) + Tp e (x1e91) (2.3)
with @ > 0, and
To,x(f) = Ext'f*mm f(x)TO_,{(x)d#3x.
We assume now that

a+ xkg(()k)(x) = x,9,(x) = x,,k =1,230n I3 =[a,b]? c *Rﬁ%m 2.4
and two additional technical conditions on the g = {go, g1}
%938 (1) = h2(x) = 0,y € C,° ("R, "RE ) ke = 1,2,3 (2.5)
and
_ (k)
2691 (%) = |a + 11987 ()] 92 (). (2.6)
We  rewrite now the  operator Tp,(f) as To(f) = To(,}{) )+ To(,i) ()=
Ext-f o Ext- [ o, tD (ky, ky)a* (k) a(ky) d*3k, d*3k, (2.7)
+Ext-| Ext- |, t @ (ky, ky)[a* (k) a*(—ky) + a(—ky)a(k,)] d*3k, d*3k, =

|kqlsx |ky|<x

Ext—f*R% Ext- f*R#3 O ks, 2)0 (ky, 1)t M (ky, ky)a” (ky)alky) d*3ky d*3k,
+Ext-f*R#3 Ext- f*]}z{#3 0 (ky, )0 (kq, )t P (ky, ko) [a*(k))a* (—ky) + a(—kya(k;)] dky d*3k,,
t(l)(kp k;) = const- ®(k1,K)@(k2,”)[Ext'f(k1 - kz)] X [u(ky) + ulky) + ke, ko) + mz] X

X [u(k)u(k)]7Y2, 2.8)
t@(ky, k) = const - O(ky, )0 (ky, 1) [Ext-f (ky — ko) |[—ulks) + ulky) + (kq, kz) + m?] x
X [u(k)u(k)]7Y2, 2.9)
where
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1if |k | < x,
— 2.1
Ok, ) {Oif|k|>%. 2.10)

Note that t™W),¢@ e L§(*RE).
It follows that T(l) W), + )71, i = 1,2 are bounded,
||T(l)(f)(N +1)~ || < const - ||t(‘)||
Let PX(f)
PE(f) = Ext-[.gus f GO BE(0)d % x, (2.11)

Where B¥(x) is given by (1.29) and f € C °°( ]RC fins *]R#fm)
Here N,, is the number operator with hyperfinite cut-off » and we have used the N,,-estimate [8]:
Let W be a Wick monomial

W,, = Ext- f|k e d*3k, ... Ext- flk e dB3k,w(ky, ..., k)at (ky) = a(k,) (2.12)
with a kernel w € L‘;( Rf”), then
(N, + D=2 W (N, + D7P/?||,, < const - [[wll4, (2.13)

where a + b = 7. A similar decomposition holds for P¥(f), k = 1,2,3. The result readS'
Proposition 2.1 [8] Let A = T2 (f),i = 1,2 or PX(f) with f € C,” ("R ). Then,

| (Hose + 1) A(Ho, + 1) ||# (2.14)

That is convenient to approximate the operators M}?"‘g, k = 1,3,3 by the operators M}?,',‘C'g, k=133
with an additional momentum cut-off

M}?Ifcg = aHO,u,;c + TO,}{,K (xkg(()k)) + Tl,u,x(xkgl);
where T ,, . and T;,,, are defined by cutting off all the momentum integrals at |k| > k. That is, Ty,
and Tj ,,, are expressed as a sum of Wick monomials (2.12) each of which is replaced in the definition
of To ., and Ty ,, . by

W, = Ext- f|k |<H d*3k, ...Ext- flk e A3k, x (ke o, kp)w(ky, ..., k)at (ky) - a(k,.).

Here Xy, o k) =1i0f |kl <k <xforalll<i<r,and y,(kq,.., k) = 0 otherwise. We
abbreviate also

C, fln' c f1n

k
MO;ncg = aHO,J{,K,' + TO,%,K (xkg(() )) ,k=1,2,3.
Note that as a rule, estimates that hold for M,S];] also hold for M,?f,‘c,g, uniformly in k. For example,
forall k € *]RH_ o, K < 1

| (Hosere+ D)7 T () (Hose + 1) 77|, < comst., i = 1,2 (2.15)
and
| e+ D) Y (W + 1) 7| < comst., i = 1.2 (2.16)

for I; + [, > 2, where the constants are independent of k. As a domain of admissible vectors in F#

Df, = {¢|1/J = (Wo, Y1, ..) € F¥p, € 7 (CREFL,, *RE ), 9, = 0 forlargen € *N } (2.17)
Remark 2.1 The operators MS’; ,k =1,2,3 as constructed above, enjoys the property of being
semibounded.
Theorem 2.2 Let g = {go, g1} satisfy the condition (2.4). Then there are constants a and b such
that for all k <
Ho, < a(M ,+b), k=123 (2.18)
on the domain Dff  x D .
Proof For € > 0, there is a constant d such that [8]
0 < Hope + Tpoue(xk91()) + d k = 1,2,3 (2.19)
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on the domain Dff | x DE . For & > 0, there is a constant ¢ such that [8]
0 < Hose + Toser (16980 (0)) + . = 12,3 (220

on the domain Dﬁn X Dﬁn. The inequalities (2.18) follows from adding (2.19) and (2.20).
Proposition 2.3 There are positive constants a, b, ¢ such that
MI¥ < a(H, +b) < c(MX* +b),k =123 (221)
on the domain D x DE .
Proof Note that for k = 1,2,3
a(Hy +b) — M2 = (a — a)Ho, — Tox (xkgék) (X)) + Ty ((a = x1) 91(x)) + ab.
By choosing constant a larger than mléix[sup{xkl g1(x) # 0}], we have (a — x)g;(x) > 0 and
therefore as in (2.19)

Hy, + Tl,u((a - xk)gl(x)) = 0.
Moreover, by (2.14) we can choose a so that

(a—a-— 1)(H0,}, +1) = To, (xkg((,k)(x)> > 0.
The second part of (2.21) follows by a similar consideration,

3. Quadratic estimates
In this section we prove the self-#-adjointness of the operators M}?,’,‘C,k = 1,2, by interpreting the
operator Ty ,, . as generalized Kato perturbation [8]. Thus we need proving quadratic inequalities

(Ho . + 1)2 < a(Hope + ATo s pc(fo i) + Tropenc(f1) + b)z' (3.1
where a, and b are constants with a, depending on k. Here A is finite constant and fy, =
atx gék) (x) where gék) (x) satisfies conditions (2.5).
Theorem 3.1 The operators Mé’_ﬁ{,,c, k = 1,2,3 are essentially self-#-adjoint on D*. There are
constants a and b independent of k, such that for ¥k < > and k = 1,2,3
(Hop +1)° < a(MZ% . +b). 32)
Remark 3.1 For ¢3™ we use the “pull through formula” (3.5). Let T), = #-(Ho,, + V;,) and R(z) =
(T, — z)~1. Then
a(k)R(z) = R(z - u(k))a(k) — R(z - u(k))[a(k), VIR (2). (3.3)
We shall always be concerned with operators T that are essentially self-#-adjoint on domain Dgn

defined in (2.17), and whose perturbation V is a finite sum of Wick monomials with #-smooth kernels.
It follows that a(k) is defined on the #-dense domain

Dfin = (T — 2)Df, (34)

and that (3.3) holds on this domain.

Lemma 3.2 Suppose that T,, = #'(Ho,x + V},) satisfies the above conditions. Lety € Df*it;l, where
(z — ¢) is in the resolvent set of T, for all c = 0. Then for r € N a positive integer
aqn R = Ext- Zpart.(_l)] R]1VJ411R/2 R]jV;]R]j+1a1j+1l/)' (3.5)
where I = {iy,..,is} be a set of distinct ordered positive integers, (1,7) ={1,2,...,7r}, a; =
Ext-[[i-,a (kil) for s >0, a; =1 for s =0. The sum in (3.5) takes place over all partitions of
{1,2,...,7} into disjoint subsets I ,...,[;;; (including permutations among the subsets) for j = 0,
1,...,7. The elements of each [; are taken in natural order. Let R;, = R({), R(2) = (T, — z)~1, where
{=z—Ext-Yie;u(k) and J; = ;U [;1;1 U ..U Ljyq. Let V! = [a(ky,), ..., [a(k;,), V] ... ] for s > 0
and V! = 0 for s = 0. Note that the sum (3.5) includes terms where Jj+1 is empty but not Iy ,..., [;
this convention adjusts the sign (—1)/ correctly. The j = 0 term is simply Rya(; .

Proof In order to apply (3.5) to the proof of (3.1) we must be able to estimate the commutators

10
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x9 (k) = [a(h), T, 3.6
H,K( )_ [a( )r O_K,K(f)] ( . )
i = 1,2, for sufficiently large k, where f € C,” ("R¥%,,,, "R¥ ).
Lemma 3.3
[xZ G, + D172 = otut1 . (3.7)

Proof X}(tz)(k)) is certainly #-densely defined, say on domain D; it is sufficient to prove (3.7) on D
and then X ,52) (k)(N,, + 1)~1/? extends to a bounded operator on all vectors of F#. Now we set
X200 = Bxt- | wllep)al-p)d*p,

|k|<x

where by (2.9) the kernel w(k, p) can be estimated by

lw(k, p)| = |h(k — p)|[(k)]~/*[u(@)] /2
where h € Sffn(*R? ) is rapidly decreasing. According to (2.13), by a simple calculation one obtains

|X2 o, +D772|| < constax w(e)llz = 0[uGT™.
Lemma 3.4 For arbitrary ¢ € F* and ¢ > 0

2
A=Ext-[ _ d*k

|k|<x

< const.X ||| (3.8)
#

Proof Let F,n € *N be the n-particle Fock space. Now X}(f) (k) is defined on D for all k and

since X}({l) (k) maps F# into F}*_;, it is sufficient to prove that (3.8) holds for 1 € D N F with the
constant independent of n. We remark that by the methods of the previous lemma it is easy to show
that the integrand in (3.8) is uniformly bounded in k, but different methods are necessary to prove it
integrability. Now we define

XD (k) = Ext- f Dk, p)al p)d*p,

‘(Ho,x et u0) XU (Hop + )

|k|<x
where ¢t (k, p) is given by (2.9); therefore we obtain
A, < Ext- d*k Ext-f d*3py - Ext-f d*3p,_q x
k|=s [p1lsa |Pp1lsn

_ -1/2
X [(Ext- St u(py) + plk) +c) /2 p1/2 x

- -1/2
X Ext- f|p|5}{ d#3p |t(1) (kﬂ p)l(Ext' Z?:ll :u(pl) + ,U.(k) + C) W)(pl; oy Pn-1s p) |]
where a(p) has destroyed a particle by

(a(p)l/)) (pl: oy Pn-1, p) = nl/zl/)(plr vy Pn-1, p) (310)
By the definition (2.9) we obtain

|t (k, p)[(Ext- Ty u(pi) + u(k) + ©)7/? < const.x [u(k)]Y/?(|Ext-f (k — p)]).
Replacing now k by p,, in (3.9) we get

A, < aXnx Ext- d#*3p, - Ext-f d*3p, x

[pylsx [Pn-1lsx

a 2
| (2 (Ext- By w(p) + )7 V2Ext- [ d*3p (|Ext-f (P = D)Y@, e Pro1 DI =
=ax Ext-Y7_, Ext—flpllsﬂ d*3p; - Ext-flp lex d*3p, x

x |Ext- [ d™pE;y, ... o) (Ext-F (p; = P)|) (1, oo Pjors 0, P o )]
where a is a constant and

Ej(py, - pn) = [u(pj)/ (Ext-z;u(pi) + C)]

2
)

39

2
’

(3.11)

1/2

11
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We shall write this symbolically as Ej (p j), suppressing the other variables. In obtaining (3.11) we

have interchanged p; and p,, and exploited the symmetry of ¥. In (3.1 I) we wish to replace E; (p j) by
Ej(p) to get

n
A, =ax Ext-z Ext—f d*3p; - Ext—f d*3p, x
j=1 Ipglsn 2B

2

Ext- fl | d®pE;(p)(|Ext-f (p; = p)|) [¥(p1, - Pj-1. 2. Djs1, ---,pn)l]
plsx

For then the integral over p is a convolution between

;) = E;®)|Y(p1, - Pj—1, P, Dj+1, - Pn)|

and h(p) = |E xt-f (p) |, and the integral over p; is the square of the L% #-norm of this convolution.
Now we get

Ext-f d*3p;
|pjl<x

X

2
Bxt- [ hoy =)@ | = |(Exe) x (Exe ), <
plsx
2

~ 2
< ||Exe-hll.,, < |5,

and

|Ext-A

foo = Ext-f (Ext-f(p)) d*3p < oo,
|p|sx

Therefore,

2
A, < const.X Ext- 2;?:1||Ej(pj)zp(p1, ...,pn)”iZ = const.X ”(Ext- )2y Ejz)l/zl/J”#z <
< const.X [|y]|%,.
In order to justify the replacement of E; (p j) by Ej(p), we set

() = E@ + (E(p;) - E®))
and therefore we obtain

[Ext- flp|5kd#3PEj(Pj)|(Ext'f)‘plr - [Ex't'ﬁ

plsx

2
d#3pEj(p)|(Ext-f)1/J|] N

2
+[Ext- fl (5 - Ej(p))|(Ext-f)lp|] +2[Ext- fl | d#3pEj(p)|(Ext-f)1/J|]x
plsn plsx

x |Ext- [ d"p (Ei(p)) — E;®))|(Ext-f)w]| (3.12)

Applying the operation a X Ext-Y7_; Ext-flpllsx d*3p; - Ext-flp |ex d*3p, to (3.12), we
obviously get A,, on the left and A}, from the first term on the right. To estimate the second term, we
note that

1
IEi(p) — E®)| < |E(p)" - E@?| =

|(Ext- S0y 1) + €) (1)) = 1®)| 1Ext-3 1po) + ) (Ext- S o) + 1) + )

1 1 1 1 1
< const.X n_5|y(p]-) - ,u(p)|2 < const.Xxn 2 ||pj||# - ||p||#|2 < const.x n_5||pj — p||;/2,

where ||-||is Euclidian #- norm in *R#3.Therefore the integral of the second term in (3.12) can be
estimated by

-1 B3 Erte #3
const.x n~! x Ext-Y,; Ext- flpllsud py - Ext flpnISHd P X

Ext—fl | dpllp; =l |(Ext-F (o; = p)) WPy, s -1 P D1, ---.pn)|]-
plsx

12
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But, as before, this is the square of the L%- #-norm of the convolution of the function 1 with a
rapidly decreasing function and so it can be estimated by
const.x n X Ext-Y;|[yllF < const.x [[y]lZ,
where the constant is independent of n € *N. The third term resulting from (3.12) can then be
estimated by the generalized Schwarz inequality applied to Ext- Z}Ll Ext- flpll < d*3p; -

Ext- |,

o<t d"*3p, . Hence A, is bounded as claimed. The single commutators (3.6) are all that we
nl<

I I I
need estimate. For let] = {iy, ..., i}; then (To(;f)(f)) =0 if (Téf?(f)) and (To(,i)(f)) = 0 when

e

i
s> 2. Whens =2, (To(,i) (f)) reduces to the constant 20 (k , #)t® (k; — k,); thus for all s, To(z)(f)

satisfies

1
(T2) M+ D42|| < constx Ext-Mier (k]2 .13
#

by virtue of (3.7) and (2.11).
Remark 3.2 We now go to prove (3.1) by using the formula (3.5). For convenience, we work now
with operators

T ) = #-[(Hos + ATy e (for) + Trerc () 1 D] (3.14)

which are M,E,’; up to constants. To apply the pull-through formula (3.5) it is necessary to know that
the operators T,?_’,ﬁ, k = 1,2,3 are self-#-adjoint. For the moment we assume this, postponing the proof
until Theorem 3.8. We remark though that in the case 4 = 0, T}?,’,ﬁ reduces to H,, , (f;) which is known
to be self-#-adjoint. The next lemma gives an estimate on commutators such that
X300 = [@(k), Ty e ()] (3.15)
which is finite or hyperfinite polynomial of degree (2n — 1) in the field ¢j(x). Since T2K
remains semibounded (Theorem 2.2) when perturbed by a polynomial in the field of degree less

than 2n, we have the following estimate in terms of the resolvent R,, ,(z) = (T,{,,C — Z)_lz

Lemma 3.5 Let r € *N be a positive integer. There is a zy < 0 independent of k and r such that,
for z; < zy,2, < z

1/2 , 1/2 _1
”R,ZK ZZ)T,S:)RH'/K (Zl)”# < const.X [[i—;[u(k)] 2, (3.16)
where the constant is independent of z;, z,. Here, in the notation of Lemma 3.2,

TIFiZZ)Ok = [a(kl)' [ [aCr), T e ()] ]]

Theorem 3.6 Assume that the operators T,0% are given by (3.14) is self-#-adjoint, where k < x.
Then there are positive constants b, c(k), and d (k) all independent of A such that

(Hop + 1) < (c(k) + 22d () (T + b)*. (3.17)
Proof Obviously it is sufficient to prove that
| (Hosese + DR (b)Y, < (cCl) + 22d () Ip 13 (3.18)

for 1 in the dense set Dy j = (T,% + b)D as in (3.4). This choice of 1 ensures that R, ,(—b)y €
D;  is in the domain of all the operators we wish to apply to it. Here b is chosen so large that

2
” (Hopex + I)I/ZRH,K(—b)l/ZH# < const,, (3.19)
(see 2.18) and so that (3.16) holds with r = 1,
1
|RE @)X Q0R L @], < constx 0k, W)[utOT (3.20)

for z; < —b. Now we get
” (HO,M,K + I)Rx,x(_b)lp”i =

13
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Ext- |,

Iklsk u(k)d#?’k (321)

(Hopewe +1+ y(k)) “ 4R,

But by the pull-through formula (3.3) we get

a()Ryc (=b)th = Ryye(=b — pu(k))alk)yp — Ry (=b — u(k)) X
x [1x 200 + X2 k) + X0 Ry (=),

where X ,9,)( (k),i = 1,2, are defined by (3.6) with a momentum cut-off x. Substituting this into (3.21),
we obtain by generalized Schwarz’ inequality,

(| (Hoepe + 1) Roec (- b)lll”z <
2
< 4Ext- [, AP ku(O{llAatOpllf + ||AXff,3(k) RK,K(_b)lp”# n

2
+22 % ||AXfZ3<(k) Rz,x(—b)wn#}, (3.22)
1/2
where A = (HO%K +1+ y(k)) Ryec(—b — (k). But by (3.19) we obtain

[|[AY|l4 < const.Xx ||R1/2( b— u(k))l,b” < const.X (HO,{K +u(k)) 11/)

#
Therefore from (3.22) we get

[(Hosoe+ 1) R - DY, <
2

+ || axSar) Rx,x(_b)lp”i ¥
#

const.X Ext- flklsx d*3ku(k) {H(HO'%K + ,u(k))_E a(k)y

+2? ZZ
i=1

The integral of the first term on the right can be written as

Ext- flkl w0 [JaGo; 2| a%i = |22 | < i,
<K

N 2
(Hose + 1)) 2 XSk) Ry e (—bYp

#

where H, K/K is taken equal to zero on the Fock vacuum. The terms in the integrand involving

the XU2.(k),i = 1,2,3, are all bounded by const.x @(k, k) by virtue of (3.20) and (2.13). Hence the
integral is hyperfinite and the bound (3.18) holds. We remark that because of the momentum cut-off it
was not necessary to use the full force of Lemmas 3.3-3.5, but only the estimates

||R1/ 2x8 (k)RY? , < const.x O(k, K). (3.23)

Remark 3.3 We now prove the self-#-adjointness of Mg’j, .k = 1,2,3 by treating T, 0 ,{ « as a Kato
perturbation. Generalized Kato’s criterion is [8]:
Proposition 3.7 Let T is a self-#-adjoint operator and let D be a #-core for T. Suppose that A is
symmetric and that there are positive constants a and b with a < 1 such that
IAYllx < all(T + byl
forally € D(T). Then T + A is self-#-adjoint on D(T) and essentially self-#-adjoint on D.
Theorem 3.8 For k < » and g satiating (2.4), Mg’; -k = 1,2,3 are essentially self-#-adjoint on D.

Proof We show that T}?K given by (3.14) is self-#-adjoint where fq, = {xkg /a}, fi=x91/,

k =1,2,3 and A = 1; this is equivalent to the statement of the theorem. We use Theorem 3.6 to prove
Theorem 3.8 in spite of the fact that the conclusion of the second theorem appears as a hypothesis of
the first. By Lemma 2.1 we know that there is a constant ¢; such that

2wl < el (Hou + D, (3.24)

14
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for all Y € D(H,, ). We choose ] to be a sufficiently large integer such that ¢; (c(k) + d (k))l/2 <

J,where c(k) and d (k) are the constants in (3.17). Let us consider the sequence of values A = j/J, j =
0,...,J. Let P;; be the statement that T,?,’,ﬁ(]' /]) is self-#-adjoint and Q;, the statement that

JATQ% (fox) is a Kato perturbation of T2K(j/]), i.e., ||]_1T(§’_f,7,c(f0,k)1,b||# < a||(T2kG /D + b)w,l)”#
for constants a and b with a < 1. As we have already observed, P, j holds since T;?_ﬁ (0) reduces to the

Hamiltonian Hy, ,, . Note that P,  implies Q;, k = 1,2,3 since, for ) € D ( Tk (j /])),
778 Fos )|l < el | (Hope + D], < e ea(cCo) + d()) ([T G/ + bYW,

by the inequality (3.24) and (3.17). However, by Proposition 3.7, the statement
Qj ximplies Py, k = 1,2,3.

4. Higher order estimates
In this section we derive higher order estimates of the following form

H, < @ (M2% +b) < c(Hop + 1) (4.1)
and
HZ, + N2" < (MO + b)™", 4.2)

where a,, and ¢, are constants depending on k. The estimates (4.1) are used to prove that the powers

(ngg,,c)’ are essentially self-#-adjoint on Dﬁn and do not survive in the #-limit: ¥ —4 3; on the other
hand, the estimate (4.2) does transfer to the #-limit ¥ = » and, in fact, enables us to prove that this
#-limit exists. For real T € *R¥ we define the generalized number operator with hyperfinite
momentum cut-off x € *R¥ ,

N, . = Ext- flklsu at (k) [u)]F a(k)d*3k. 4.3)
Note that N,, o = N,, and N,, ; = Hy ,,.
Lemma 4.1 (1) If T < v, then

N, < const.- N,, ;. 44

(2)IfT> 0,7 > 0, then
N, < HELNG . 4.5)

(3) Let T € *R¥ and r € *N a positive integer, then for any vector }) € D (N,:,/TZ),

T
Ny =
#

Ext-Y7%_, [Ext- [ d®3ky = d*3kip, (i, ..., 15) (Ext- [1}-.0 (kj ,}[)) ||a(1,j)tp||i], 4.6)

where O(k,) is defined by (2.10), a(y,j) is defined in Lemma 3.2, and p,; is a homogeneous
polynomial of degree r € *N with positive coeficients that satisfies, for x; > 0,

(Ext- ]_[{=1 x;)(Ext- Z{zl xl)r_] < Prj (1, e, xj) < const.- (Ext- ]_[{=1 x;)(Ext- Z{zl xl)r_]. 4.7
In this section we set

MRK = #-[(Hop + Viexc) I D],
where V% =T, (for) + T (fi), k = 1,2,3. Let Ry (—b) = (M +b) ™.

Lemma 4.2 Let r € *N be a positive integer. Then there are constants a, and b where a, depends
on k < »x, such that

[+ 10, =

forall ¥ € D ((M,‘}_’fc + b)E).

(M2% + b)Y

| k=123 4.8)
#
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Proof (4.8) is proved by hyper infinite induction on r € *N: the cases r = 1,2 are already known
by Theorem 2.2 and 3.6. Lety € Dyy = D(M,‘},’fc + b),k =1,2,3, where b = —z; is chosen
sufficiently large that (3.16) and (3.19) hold. By (4.6),

(r+1)/2 2
Ar+1,,u,x = ||(H0,K,K' + 1) Rk(—b)'l)”# =
# #
Ext-Y7_; Ext-f|k1|SKd 3k, = Ext- flanSKd 3kiprj(pa, 0 1) X
i 1/2 2

| o+ Ext- Lyt +1) i pRuat]|
where me have converted all but one (HO,;{,K + 1)1/2 into an integral of products of annihilation
operators. We apply the pull through formula (3.5) to pull the a, j) through the Ry, and we dominate

; 1/2
the factor (Ho,z,x + Ext- Z{=1,u(ki) + I) by

RE =Ry (—b - Ext-z ,u(ki))

4.9)

by using (3.19). This gives

T

Ao < Ext-zl Ext- f d*3k, - Ext- f d*3kipyi(ugs o) X
j=1 [k1lsk lknlsk
1/2¢,1; p1/2 1/24,1; p1/2 2
x (Ext-zpartom,j) |RY/2v R - Ry lRE ,i+11p||#). (4.10)
Let us consider a typical factor R ]zV% R 141> regarded as a function of the variables k; ey k; .

where i, € [}, v = 1, ..., t. Because of the momentum cut-off, the estimates (3.16) and (3.23) hold:
1/2,11 p1/2
”R/ V! ]l/ || <const><)(,{(kll, . klt) )(%(kll, . klt) Ext-T14,2 1®(k ,}f).

Note that when t > 2, (To,}m (fO,k)) is a multiple of the identity. Therefore, from (4.10) and

(3.19),
T
X Ext-z Ext-j
j=1 |

k1lsk

Ari1 0 < cOnst.X

d*3k, - Ext-f d*3k; Ext- Z Prj Xx(Z1) X
|kn|<k (1,)=Z1VZ;

2
az ¥ @.11)

X ||(H0,x,;c + Ext-Yiez, u(ky) + I)_l/z

where we have set

Zy = Uiy = {is, s ijosh. Zo = Lz = Uty o Jsh X (Za) = 2o (Ko oK)
By the binomial expansion and (4.7) we get

ey (it oo t17) < constx [GOV ™ x Ext- | | e [ = )pt) +17
Here the const. depends on k < 3 and
ps+t,s(ZZ) < const.X Ps+t,s (.u(kjl)v uu(kjs))-
By (4.7), since u(k) > m > 0,
pes (11, ...,uj) < const.X pyrg(Uy, o\ Us).
if t < t’. In the above sum over t,s + t < r; therefore,
Prj (i1, 0 1) < Prs(Z2)
Integrating out the variables in Z;, in (4.11), we obtain
Ari100 < Ext- Z 1 Ext- Zzzc(l,j) Ext- f Ext- Hiezz 0 (k;, K)d#3ki Drs(Z2) X

x [laz, (o + 17| < constx || (Hosew) " (Hosex + 1)

)r/z lp”i
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by virtue of (4.6) with t = 1. Setting p = (M,‘}ffc + b)¢, k = 1,2,3, where ¢ is an arbitrary element

of the domain D, we obtain
(r+1)/2

| (Hosex + 1) ¢||# < constx || (Hopene + 1) (M2 + b)d)”# (4.12)
By the inductive assumption we have
- @+1)
| (Fosere + 1) (M2 + )@ < comstx [|(M2 +b) = |, (4.13)
#

which appears to prove the lemma. However, we do not yet know that D is a #-core for
(r+1)

(M;?"fc + b)T and so we must argue more carefully. Define now the operators
(r-1)/2
Bk (A):(HO,}{,K + I) (HO,J{,K + AT(?,JI-{LK + TI(.)ilt(,K + b)’
k = 1,2,3 on the domain D. It is sufficient to prove that D is a #-core for B, (1). For then (4.12)

(r+1)

extends from D to D(By(1)); by induction (4.13) holds on D ((M;g,’; + b)T> c D(Bx(1)), and the

proof of the lemma is complete. As in the proof of Theorem 3.8, we consider a sequence of
values A; = j/J,j = 0,1,...,], and regard the operator

Coe =) Y(Hoper + 1)
as a perturbation of By (4;). By (4.12)

| (Hoser + 1) 78| < cllB8l,
for any ¢ € D, where the constants b and ¢ are seen to be independent of A; € [0,1]. But, as in the
next lemma,

| (Hosese + D7 Topepe (o + 1)
Hence, by choosing hyperinteger ] € "N, ] > cc,, we have for ¢ € D,

(r+1)
[Gustl, <17 o) = 0| < 101001
#
where a = J~'cc,< 1. That is, C is a Kato perturbation of By (4;). Note that domain D is a #-core

for B (0). This follows from the facts that (4.8) holds when 2 =0, ie. when M2X is replaced
by HRK. = Hy 0 + TI?,’{‘,K, and that powers (H,?_’,‘C)r are essentially self -#-adjoint on D. From 4.14 we
see that D is also a #-core for B, (0) + C = B (4,) and that D(By(4,)) = D(By(0)) Continuing in
this way we reach the conclusion that D is a #-core for By (1). To complete the estimate (4.1), we
dominate powers of M,‘}ffc, k = 1,2,3 by powers of Hy ,, .

Lemma 4.3 Let j € *N be a positive hyperinteger. Then there are positive constants b and ¢,
where ¢, depends on k such that

|m2) ]|, < e || (Howx +0) 0| & = 123, 4.15)
Here 2n is the order of the interaction.

(r-1)/2
TO,%,K

(r+1)/2

(r-1)/2

T <<
#

" (4.14)

Proof Here 2n is the order of the interaction. Since (Ho,u,x + b)n] is essentially self-#-adjoint on
D it is sufficient to prove (4.15) for ip € D. Now because of the momentum cutoff, Mg_’f{r,c has the form
M{,’,’f{,,C = Hy, + 2 W;, where W; is a Wick monomial (2.12) whose kernel has #-compact support.
Each such monomial W; maps domain D into a set of vectors which have a finite number of particles
and which are of #-compact support and C *°°(*]R{c# ) #-almost everywhere in the momentum variables.
It follows that (Mg"f{,,c)] can be expanded on D into a sum of welldefined products of the form 4 =

Ext- anoné’z}’t’};l Wiem+2 where Ext-Y;_,i; = j, and W represents a typical Wick monomial
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in M(‘))_’f{,,c . Each such product can be dominated by (HO,,{,K + b)njprovided that b is chosen sufficiently
large, say b > 2nju(k). It suffices to show that

—i —i+n
W(Hop + @) = (Hops +a—2nu(c)) B, (4.16)
where B is a bounded operator. For then it is clear by hyper infinite induction that A(HO,%,K + b)_nj is
bounded. Take W of the form (2.12) with r < 2n. Then
-
| W(Hopr +a) =
-
= (HO‘%,K +a-— ZnM(K)) EXt'f|k1|s;c d*3k, -~ Ext- flanSK
X a*(ky) = alky),

A3k, v(ky, ..., ky) X

where
i —i
v(kl' e kr) = (HO,J{,K +a-— 27’1[.1(1()) (HO,J{,K +a i .u(kl) i i ﬂ(kr)) i
where the + is chosen according to whether the corresponding a® (k) is an a or a*(k). Since
—2nu(x) < tu(ky) £ £ plky)
the operator #-norm

lvlks, .. k)l < lw(ky, ..., k).
By an extension of the basic estimate (2.13) to cover the case of operator-valued kernels, it follows

that
-n
B = (HO,;{,K +a-— Znu(;c)) Ext- f|k1|s;c d*3k, - Ext- flknlsrc A3k, v(ky, ..., k) X

x a*(ky) - a(k,).
is a bounded operator. This completes the proof of the lemma. Note that by the generalized spectral
theorem [8], the x dependence of b can be incorporated into constant c,.

Theorem 4.4 Let j € "N be a positive integer. Then the operators (Mg,'f{',c)j,k =1,2,3 are
essentially self-#-adjoint on D.

Proof Let C, =D, =D ((M,g"fC + B)nj),k = 1,2,3, where b is a large positive number. By the
previous two lemmas we have that
nj ok }/
Dy © G © D ((Hopene + B)"”) < D ((M25)) (4.17)
Since D is a #-core for (HO',{_K + B)n] , it follows from (4.15) that
D (#-(MY&) 1 D) 2 D ((Hopere + B)").
Therefore, by (4.17),

#-(M2k) 1D o #-(M2L) 1 ¢,
since Cy, is a core for (Mgffc)], k=1,23.

Theorem 4.5 Let T >0 and r € *N be a positive integer. Then there are constants a and b

independent of k such that
1022 N}Ef,gi)f/zz/)”# <a ”(M,B_’fc +b)7y

0,7,k

(4.18)

,
forall € D ((Mg_’;c + b)i).
Proof The proof is by hyper infinite induction on r, the case r = 1 being (3.19). By the previous
theorem it is sufficient to prove (4.18) fory € D. We set now ¢ = (Mﬁffc + b)l/) € D,, where b =

— z, is chosen sufficiently large that (3.16) and (3.19) hold. By a now familiar procedure we expand

2
_ 1/2 \7/2
Ar+1,%,rc - ||Ho,x,KNu,K,—rl»b||#

by (4.6) and apply the pull-through formula. The result is similar to (4.10)
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Ari1c < const.x Ext-Y7_; Ext- flk e @73y Ext'fuc . APy (UL, oo 1577 X

1/2,1 p1/2 1/2,1;
X (Ext-zpart_of(llj)||Rh/ VR - RV R]ma,m(p” ) (4.19)
By (4.7) one obtains

- -7 -7
Prj (U5, ;™) < constX (g X X pj)
We insert this inequality into (4.19) and estimate the integral over the “variables” of I;. Say I; =
{i1, ..., i }. We must estimate

=T
Ext- [, o @™ ke Ext- [\ d"k;, (“ (ki, ) "'X“(kit)) X

where

2

, (4.20)
#

1 1
2 ylhip2
RhV” R]2¢1

1 20,11 p1/2 1/2,1;
¢1 = / 1R 2 R]i/ Ve R]i+1a1i+1¢
does not depend on the variables of I, for Wthh werecall that [, = Ul ;1 VU ..Ul ;. Now
Vi = Toome + T + T

0,7,k 0,,K
and by the triangle inequality it is sufﬁclent to estimate each of these three contributions to (4.20)

separately. By (3.16) the contribution of Tj,, , can be dominated by
-1-7
const.x Ext-f d*3k, - Ext-f d*3k;, (,u (ki) X X (kit)) X |lpq112 <
|ki |SK

|k1lsk
< const.X |13, (4.21)
where the constant is independent of «. As for the TT(;)M terms, when t > 1 we have

€Y}
(To;uc) =0,

and by (3.13) and (3.19), we have
|R1/2 (T(Z) ) R1/2

for all t. Thus the contribution of To(i);c

()" =% (k)
when t = 1. By (3.19) and (3.8), we have
2
Ext- f, (oo @k [|RSPXD (i, ) R, < Npal

iq K
1
Hence we have integrated out the variables of I;
AT+1HK‘ < const.X Ext- Z} 1EXt Zpartof(l J) Ext- -flk |k Ext- Hlelzu 3kl[.u(kl)]

" R]i+1a1i+1¢||#'
In this way we integrate over the variables of I, U ... U I; to obtain

< const.X Ext- 1_[[# (k )]_1/2

i€l
to the integral (4.20) is bounded as in (4.21). It remains to
estimate

«

T 1
Ar i1 < cOnst.x Ext-z  Ext- z Ext-f Ext- 1_[ d®3 ke, [uk)]™™ fa,d)
J=1 1S ) lfey|=x lel
By a change of variables we can rewrite the sum over j and [ as a sum over subsets {1,2, .. .,s} of

(1,2,...,7r). Using the estimates (3.19) and (4.7), we get

ATH;,,c < const.X Ext-Yt_, ey <k d*3k, - EXt_flkslsx A3 kpss(UTT, ooy 15T X

-1/2 2

1lii_T + 1) A1,5)P

N

(Ho_},_,c + Ext-

i= #

_ 2
where the s = 0 term is simply || (Ho,u,x +1 ) 1/2(]5 || R It follows from the expansion (4.6) that
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-1/2 2
Arsipexc S CONSEX H(N;_K,_T + 1) (Hopore +1) ¢|| < const.x ||(NZ + D2 o |[°
#

(r-1)

by (4.4). Since¢p € D, € D <(M0 i T b) 2 >, we obtain by the inductive hypothesis,

(r- 1)

_ 1/2 r/2
Arpipen = ||H0’}”c Tll)” < const.X

(MG%x +b) 2

#

= const.X

(MOHKZ + b)zlll #:

where the constant is independent of k.
Corollary 4.6 Let § > 0 and r be a positive integer. Then there are constants a and b independent
of k such that

||H(1 5)/2N(r+6)/21p|| <a

(r+1)

(M2 +b) > IPH (422)
#

0,%,K HK,—T

(r+1)

forally € D ((M,g’ffc + b)T> ke =1,2,3.

Proof The Corollary follows immediately from the Theorem by means of (4.5).

Remark 4.1 The estimates (3.19) and (4.22) do not permit us to dominate the operator Hy ,, . itself
by the operators MQ’,‘C + b,k = 1,2,. However we can dominate Hy, , as in (4.2) if we abandon the
requirement that the powers of Hy ,, , and M,g r agree. The inequality
H3, < a(M2k + b)’ (4.23)

we prove with j = 2n.

Corollary 4.7 There are constants a and b independent of k such that for all ¢ € D((Mg_ﬁ‘{t,c)n)

1Houenbll, < af| (M2 + b)”¢||#. (4.24)
Proof By Theorem 4.4 it is sufficient to prove (4.24) fory € D. Since D C D(Mg,',‘{,,c) n D(T,,,c)

obviously we have

(M3% . + b)Y = (MK + b)Y — T) 9. (4.25)
Since T; (f1) is a sum of Wick monomials with L%-kernels and maximum order 2n [8], it follows

from the basic estimate (2.13) that

[Tise (No s + 1)'"||# < const, (4.26)
where the constant is independent of k. Therefore from the identity (4.25) we obtain
1085+ Bl = 10025+ DY, + [ Tos W+ D" ¢ | Mo +1) "0
by (4.22). But by Theorem 3.1 we obtain

||H0_H,K1/J||# < const.x ||(M2k + b)l/J”#
and therefore the estimate (4.24) is proved.

5. Essential self-#-adjointness of the #-limit M2 g aS K Dy i

In the previous two sections we established a number of properties of the hyperfinite ultraviolet cut-off
Lorentz boost generators M,‘g’;, k = 1,2,3 by methods that depended on < x being hyperfinite. Now
we take the #-limit k —4 » and find that many of the properties of MQK. transfer to the #-limiting
operators MO¥, k = 1,2,3 . As the next lemma states, M3%, k = 1,2,3 #- converges to M2,k =1,2,3
on the #-dense domain

D, = D(Hy,) nD(N),n € *N. (5.1)
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Note that #-convergence in this sense is not strong enough to control the #-limiting operator and in
Theorem 5.3 we prove that the resolvents Rf,k,z (z) = (MY — Z)_l, k = 1,2,3 #-converge in #-norm.
From this it follows that the operators M2¥, k = 1,2,3 are essentially self-#-adjoint on D.

Lemma 5.1 Let ¢ € D,,, then MJXy -, Mg’f,w, k=123ask -4 xn.

Proof We write now M2¥ o = Ho .o + To 0k (xkg(()k)) + T e (X 91), k = 1,2,3 of the form

M}?’l{c = HO,K,K + TO,H,K(fO,k) + TI,u,K(fl): k=123.

By the estimates (2.15), (2.16), and (4.26), To,u,;c( fo,k) and T, , are defined on domain D,,, for
Kk < x. In fact, precisely these estimates prove #-convergence. For consider the difference

Apy = Tl,u(fl) — T (-

A, can be written as a sum of Wick monomials whose kernels are the tails of L% kernels.

Therefore, by (2.13), | Ay (N, + 1 )_"” , bounded by the L% -#-norms of these tails which go to zero

as Kk — ». Since a similar argument can be made for To(,i),x( f) it follows that on D,,

TO(,E{),K + TI,H,K 4 To(,i) + TI,}{' (5 .2)
The strong #-convergence of the differences

k
B;E;c) = TO,u(fO,k) - To,z,x(fo,k)' k=123
to zero on D(Ho,;{) does not follow from a corresponding statement of #-norm #-convergence,
since
k -1
| B2 (Houe + 1) ”#ﬁ#o (53)

as Kk —4 x. However, by (2.15) ||B,({k,€)(H0,{ +I)_1|| is uniformly bounded ink. It is thus
’ ’ #

sufficient to show that B,ERK) Y, =4 0 for r € *N particle vector ¢, = Y(py, ..., py) € D. By (2.8) one

obtains

(BJ«({{(K) lpr) (pl' "'lpl) = Ext- Z;:l Ext'f d#ngM,K(k' p])lp(pll ""pj—l' k, pj+1' ---'pr)' (54)
where

Wi (k,p) =tV (k, p) (0(k,2)0(p, %) — O(k,)O(p, K)), (5.5)
where O(k, k) is defined by (2.10) with % = k. Therefore,

|B}({I,CK)¢| < 2Ext- Z;:l Ext- f|k|>l€ d#gkt(l) (kl pj)l/)(pli 'pj—l' kl pj+1: ey pr): (56)

where by (2.15) the right side is an L% function in variables (py, ..., p,) whose #-norm is bounded by

const. ||(H0,}( + I)_1 [» R Moreover, as kK =4 x, (B,({k,c) z/;r) (p1, -, pr) =4 0 pointwise so that by

the dominated #-convergence theorem ”B}Sk,c) Yr|| —# 0. For the proof of resolvent #- convergence
’ #

we require a #-norm #-convergent statement for To(,;),x (fox)- The failure in (5.3) is to be expected, for,
roughly speaking; we can regard T()('Qk(folk) as Hy, , and obviously G, , = (HO,% - HO_,{,K)(HO_,{ +
k)

-1 . . -
I) does not #-converge to zero in #-norm. However, this argument indicates that ”B}({_K (Ho_,{ +
I)_T” -4 0fort > 1.
#

Lemma 5.2 Let i,j € *N be nonnegative integers, and f € C(:w(*Rf_?f{r‘l + *Rﬁ‘ﬁn).
(HFori+ j> 2,

”(Ho,u + I)_i/z (To(;:)(f) - T(J(;:).x(f)) (Hoy + 1)_j/2||# -4 0 ask -y x (5.7
) Fori+ j =2,
[ o+ )7 (T332 = T2 (o + 7| 40 a5 4 (58)
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(3)F0ri+j;2n, _
| o + 1) (T2 (P = Trsesc ) (Hoe + )77 24 0 as 1 = ¢ (5.9)

Proof Equation (5.7) is a consequence of estimates developed in [8] for Wick monomials with one
creating and one annihilating leg. These estimates involve L¥ - L~ #-norms on the kernels such that

llse = -essupi (101 (Ext- [, Iwlh, )l d¥9p) ). (5.10)

Given a #-measurable function f: *R#3 — *R# [16], the ~ -essential supremum of f is the smallest
number « such that the set {x € *R¥3|f(x) > a} has infinite small Lebesgue #-measure, i..,
w#({x|f(x) > a}) =~ 0. The essential supremum of a function f is denoted = -essup,(f). The
essential supremum of the absolute value of a function |f] is denoted ||f||¥> and this serves as the
#-norm for L7 -infty-space.

As an example of (5.7), we consider the case i = landj = 2. Asin (54),
Bux = Tl (F) = Tg,l () = Ext- [ wi(k, p)a’ (k) a(p)d**kd**p.

We see that for r particle vector . = Y (py, ..., py) the inequality holds

1
‘BJ{,K(HO,J{ + I) le(plr ---'pr)‘ <

T W. k’ .
Ext- {Z  Ext- f d#g’ka/]z)| |w(p1, s Pj—1, K Djs1s s r) |}
=t [u(p))]

Y, || is bounded by the #-norm of
#

Ay lipy| = Ext- f (W (ks D) | [ )T 20(p ) @ (K)a(p)d* kd**plap,|

Therefore ||Bx,,c (H(m +1 )_1/2

and

<
#

<
#

1 1
(Hope +1) 24, ,(Hop +1) 2

1 _
H(HO,,{ +1) 2B, (Ho, +1)

< [[wiew (k. DY @2, -
see [8]. According to the definition (5.10) by (5.5) and (2.9) we obtain
[[wsese G, DI@N 2., | = supi{[R@)] 7 Ext- [ |y (k, D) [(p)]71/2] d*p} < const.x

X (z -esssupy {[,u(k)]_%Ext-ﬂExt-f(k — p)| (G)(k,%)@(p,%) - @(k,K)@(p,K))d#gp})

=68(,K) =>4 0 as k >y x. (5.11)
Theorem 5.3 There is a semibounded self-#-adjoint operator T, such that for z sufficiently

negative

”((M,?’fc - z)_l) — (T, — z)_1||# -4 0 ask oy n. (5.12)

Proof We first establish the #-norm #-convergence of the 2n-th powers [R,(—b)]?" of the
resolvents for all b sufficiently large. Then the #-norm #-convergence of R,(—b) follows by taking
2n-th roots and applying the generalized Stone-Weierstrass Theorem [8]. Let k¥ < » be two values of
the hyperfinite ultraviolet cut-off. We use the following formula
RZ™ — RZ" = Ext- 37l RE™H( MRk — M¥) RL. (5.13)

The differences M2¥ — M2¥, k = 1,2,3 contain of three terms

BW =T53) — 15, B = 153 — T2, B =T, — Ty
By (4.22) we get
|[RE*=EBDRL ||, < const x ||(N,, + D72+ BO(WN, + D7,

where the constant is independent of «. Therefore by (5.8) and (5.9) whenj = 2 or 3,
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||R,%"+1‘iB(f)R£,||# -y 0as k -y .

As for B(l), at least one of [ or 2n + 1 — i is greater than n. Therefore by (4.24) and (3.19),

1 .
(Hop +1) 2BV (Ho, + 1) || +

||R,%“+1‘iB(1)R£,||# < const x {
#

1 .
+ ”(HO,,{ +1)2BD(Hy, + 1)

}—>#Oasx—>#%.
#

by (5.7). This obviously establishes the #-convergence of R2". Let R,,(z) = #-lim,_, B (2). As
a #-limit of resolvents, R, (z) is itself the resolvent of an operator if and only if the null space
N(R,(z)) = 0 for some z [8]. But notice that this is a direct consequence of Lemma 5.1: Suppose that
Y € N(R,,(—b)) where b is sufficiently large so that R, (—b) #-converges. Take vector 6 arbitrary
in D,, . Then

(0,94 = (M +b)0, R (=b))y =4 (MZ¥ + b)6, Ry, (—b)h)y = 0,

so that i = 0. Therefore, R,,(—b) is invertible, and T = [R,,(=b) ™! — b as a #-densely defined,
#-closed, symmetric operator with the sufficiently negative real axis in its resolvent set, is actually
self-#-adjoint and bounded below.

Theorem 5.4 M2*, k = 1,2,3 are essentially self-#-adjoint on D.

Proof From the strong #-convergence of M,gf,‘c to M2¥ on D,, it follows by a simple argument that

MY ' D, cT,. (5.14)
Note that by the independence of k- cutoff, the estimate (4.2) transfers to T}, i.e.,
H§, + N2" < a(T,, + b)*" (5.15)

and therefore C = D(TZ") c D,,, and from (5.14) one obtains T, [ C € M3* I D,, . Now the

domain C is a #-core for T,,, hence
T,=#T,1Cc#M¥1D,

a symmetric extension of a self-#-adjoint operator and therefore we conclude that
T, = #-M2* I D,.

Essential self-#-adjointness of M,gk, k = 1,2,3 on the domain D follows from self-#-adjointness on
the domain D,, by a standard argument.

Corollary 5.5 For suitable constants a, b, c and k = 1,2,3

H, < a(M2¥ +b), (5.16)

HZ < c(HZ, + NZ" + 1) < a(M% + b)*". (5.17)
The same inequalities hold with the roles of H,, and MQ¥ interchanged so that

D((Hy +b)V%) = D ((MZ* + b)l/z), (5.18)

D(HE) < D(M2¥), (5.19)

D((Mgk)") < D(H,). (5.20)

Proof Since D is a #-core for M,?k, k =1,2,3, it is a #-core for (Mgk + b)l/z and (5.16) follows
from closing (2.2). (5.17) is just a restatement of (5.15). Since H,, is a special case of M}?k obtained by
setting, g(()k) (x) = 0, it is clear that the higher order estimates (5.15) hold for T,, = H,,; hence the roles

of H,, and M,‘}k, k = 1,2,3 can be interchanged in (5.16) and (5.17).

6. Lorentz covariance

According to the discussion in Section 1 this amounts to showing that if I* = [a, b]? c *]R{ffﬁn + and if

f is a C;oo(*Rf_‘%inJr, *]Riﬁﬁn) function with supp(f) U supp (fAﬁ) C 0,3, then on suitable near
standard domain

[Ext-exp(iM3*B)]w, ()[Ext-exp(—iM2*B)] =~ ¢, (fAﬁ). (6.1)
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Notice that (6.1) is operator equality, since for *]Rf'ﬁn valued function f, ¢, (f) is a self-#-adjoint

operator whose domain includes D ((M}i,k + b)l/z). In addition, we prove on the domain
D (M +5)"*) x D (M +b)"'*) that
[Ext-exp(iMiFB)] @, (x, ) [Ext-exp(—iM¥B)] = ¢, (Aﬁ (x, t)). (6.2)
Here the vectors (x,t) and Ag (x,t) are in 0,3, and the forms in (6.2) are #-continuous in x and t
by the first-order estimate (5.16) and results of [8] sect.6.
Notice that the main part in the proof of (6.1) is to verify the commutation relation (1.15) for f €
COOO(O 3 *]Rf‘ﬁn) and g a cut-off function for the region 0;s . For convenience, we assume that a
function f* with support contained in the region O, defined by
O ={(xy, x5, x3,)|[a+ e+ |t| <xp, <b—e—|t|,k =123;|t] <&}, (6.3)
and where € > 0 is some small enough number. This represents no loss of generality since any f in
COOO(O 3 *]R{f'ﬁn) can be presented as a sum of such f. It follows from this assumption that if |s| < &,
then external integral
[Ext-exp(iH,(t + )] {Ext- Jogrs 0 (O (x, t)d#3x} [Ext-exp(—iH,(t +5))] (6.4)
is related to a non-Archimedean von Neumann algebra R 3) generated by the set
{Ext exp(ig,(hy)) + Ext-exp(im, (hy))}|h; € C 00( R REG ), supp(hy) c I3,i =1 2}.
The main parts of the proof are as follows:
Partl. For i) € D(HZ*® ) we define

Fe(®) = (@, [iM(0), 0 (D]0ds 6.5)
where M (t) = [Ext-exp(—itH,,)|M¥[Ext-exp(itH,,)]. Note that F;,(t) is well-defined and three
times #-continuously #-differentiable by (5.19) and [8, Section 6]:

[|(Hye + Y720, (f) (Hy + b)"UFD/2|| | < *oo. (6.6)
forj=10,1,2,.... Obviously one obtains,

LI - <¢Hﬂmeaﬂ¢uUﬂwm. 6.7)

ddi—ltkz(t) =-i(y, [[Hw [HH: Mzbk(t)]] ’ (ph'(f)] )y (6.8)

Part2.The commutators in (6.7)-(6.8) can be evaluated. On D x D} one obtains, in the sense of
bilinear forms,

[iH,,, M¥]| = P¥ + Ext- f*mg 2n: 2" 1 (x0)m, (x): g1 (x) (xk —a-— xkg(()k) (x)) d*3x (6.9)

where P,f, k = 1,2,3 is a locally correct momentum operators

Pk = Pk< (xkgok) (x))) (6.10)
By (2.6) the integral in (6.9) vanishes, and in analogy to (1.27),

[iH,, M%¥] = Pk (6.11)

on the domain D(H,’}) X D(HL‘) c D x Df. Since the operators P¥ and MY are defined on
D(H,’} ), extends to an operator equality on D(H,’}Jrl ) Therefore, we obtain on the domain
D(H}*?) x D(H}*?) that
(i, [iH,e, MO¥]| = [iH,,, P¥] = S, (6.12)

where
% = Ty, [ (mg00)) ) -
M d xk 0
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—m2Ext- [, 4s: @2(x): a” (y 9P 00 )d*x -, (g (6.13)
*]Rgs'. M . d#xlzc k 0 I, d#xk . .

Part3.Since S¥, k = 1,2,3 are local operators whose kernels vanishes on I3 we expect that S, k =
1,2,3 commutes with R(I%). The exact statement is [S¥,R(I®)] = 0,k = 1,2,3 on domain D} x D,
Note that Djf c D(S*), k = 1,2,3.1t follows from (6.4) and (6.6) on domain Dji x D that
[Sk, [Ext-exp(isHu)go},(f)Ext-exp(—isH,{)]] =0 (6.14)

for |s| < & and supp(f) c O,

Part4.The rigorous counterpart of the formal expansion (1.34) is to write F;(t) in terms of its
generalized Taylor series [8,Theorem 2.27]. For some s, |s| < |t]

Fir(t) = Fy (0) + tFf (0) + S Fi (s). (6.15)
For [t| < & (6.15) on domain D(HZ*® ) x D(HE*® ) reads
[iM2¥ (), ()] = [iME, @, ()] — iliBE, 0 ()] (6.16)

Part5.The commutators on the right of (6.16) can be evaluated by passing to the sharp time fields,

@ (firt) = Ext- f £(x,8) 0 (r ¥,
*R?3

where the subscript s indicates the time dependence of a function f. The result for |t| < & reads

o*f,
[iMJgk(t)' (p}f(ftﬁ 0)] = T[J»t(xkftr 0) - t(p}t < f 0>

a#xk ’
on domain D(H2+3 ) x D(HZ*3). That is, for |t| < & we get

[MZ*(E), @ (fi O] = e Carfor ) = e (6 225 ). (6.17)

a#xk !
Since supp(f) < O, we can integrate (6.17) with respect to t and thus on domain D(HJ}*3) x
D(HZ*® ) we obtain
o*f

(M), @ (fis O] = e Ciif 1) = @ (£ ) = = (e S+ £ 220), (6.18)

6#xk’ 6#xk

Part6. In order to deduce (6.1) frpm (6.18) we must show that the equality (6.18) hplds on a
domain of the formD ((M,gk)]) XD ((M,gk)]). Note that ify €D ((M,?k)J), then
Ext-exp(—iM$*g)yp € D ((M¥)’) and

gk (xﬂ t, B) = (EXt'eXp(_iMJ?tkﬁ)lp: (pu(x: t)Ext'eXp(_lM}?kﬁ)>#
is a #-continuous function of x and t [8, Section 6] with a distribution #-derivative in 3,

# #
(Ext-exp(—iM2*B), {xk 2 (’;;;(tx’t) +t2 :;‘:kc't)} Ext-exp(—iM2*B))y

by the equality (6.18).Thus G, (x,t,B) satisfies the distribution differential equation in partial
#-derivatives

¥ Gr(xt.B) _ _ 9*Gr(xtp) 3G (x,t.B)
g#ﬁ = x ’g#t ;#xk : (6.19)

The distribution differential equation (6.19) has a unique solution with initial condition G (x, t, 0):
k(% 6,0) = (i, @, (x, D)y

This proves (6.2) on D ((M}?k)J) x D ((M,gk )]) and, by extension, on the domain
D (M2 +b)"*) x D (M + b))

Obviously the operator statement (6.1) is follows immediately. It remains only to prove the
following.

Lemma 6.1 Let I3 *Rf}im, g satisfy (2.4)-(2.6),e > 0,and f € CSOO(Og, *]R{ﬁ,ﬁn). Then, in the
sense of bilinear forms

[iM2(0), 9, ()] = = (e L tﬁ) (6.20)

a#xk

+t
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on D(H, ) x D(H,, ) oron D(M2* ) x D(M2¥).

Proof As we know that (6.20) holds on D(H}*3 ) x D(H}*® ). Lety € D(H,, ); since D(HE*3)
is a #-core for H,,, there exists a hyper infinite sequence Y;,l € *N in D(H,’}Jr3 ) such that Y; =4 Y
and H,; =4 H, as | = “oo. By the first order estimate, we have for some constants a and b

||(M3’< +a)"* (H, + b)~1/2 ||# < *oo. (6.21)
and by (6.6) we get
ll0s (i) (H, + B)712|, < o0 (6.22)
# # *
where up = Xy 27{ +t aa#xfk isin COOO(*]R%M, *]R’j‘ﬁn). Therefore,
1/2 1/2
(MRK +a) "y =4 (ME¥ +a) "y (6.23)
and
O WY1 =4 05 (W)Y (6.24)
Moreover, by (6.6) we obtain
(| (H,e + 5) 20, (F) (Hy + b) /2|, < *oo, (6.25)
From (6.21) and (6.25) one obtains D(H,, ) < D ((H” +b)Y2g, (f)) and that
1/2 1/2
(M2 +a) " @ (Y1 =4 (MR* +a) "0, (). (6.26)
Note that

(y, [IMOK(E), @y (F)T0)s = i (M2 + @) apy, (ME* + a)

. 1/2 1/2
—i{(M2* + a) " @ (NP1, (MK + a) ")
And therefore from (6.23) (6.24), and (6.26) we conclude that (6.20) extends by #-continuity to

domain D(H,,) X D(HH ) By (5.20), (6.20) is then exactly valid when restricted to D((M,gk)n) X

D((M;?k )n) Finally, the extension to domain D(M,gk ) X D(M,gk ) follows directly as above from the
inequality
lonr (g + )2 <o

()P =

7. The spectral theorem related to bounded in*R{ operators
In this section, we will discuss the generalized spectral theorem in its many aspects.  This structure
theorem is a concrete description of all self-#-adjoint operators. There are several apparently distinct
formulations of the spectral theorem. In some sense they are all equivalent. The form we prefer in this
section, says that every bounded in *R¥ self-#-adjoint operator is a multiplication operator. This
means that given a bounded in *R¥ self-#-adjoint operator A on a non-Archimedean Hilbert space H*,
we can always find a #-measure u” on a #-measure space M and a unitary operator U: H* —
L4(M,d* u*) so that (UAUTf)(x) = F(x)f(x) for some bounded *R¥-valued #-measurable
function F on M. In practice, M will be a union of copies of *R¥ and F will be x so the core of the
proof of the theorem will be the construction of certain #-measures. Our main goal in this section will
be to make sense out of f(A), for f a #-continuous function. We will consider also the #-measure
defined by the functional: f = (), f (A)y) for fixed p € H*.

Definition 7.1.The operator #-norm of a linear operator A: H* — H* is the largest value by
which A stretches an element of H¥,

Allsop = llAll gy = sup{llAxllg|x € H*, llx|ly = 1}.
An operator 4 is called bounded in *R# if | All40p < "o, otherwise operator A is called unbounded

in *R¥. We often write bounded operator instead bounded in *R# and unbounded operator
correspondingly.

26



IC-MSQUARE-2023 IOP Publishing
Journal of Physics: Conference Series 2701(2024) 012113 doi:10.1088/1742-6596/2701/1/012113

Definition7.2. A linear operator A: H* — H* is called finitely bounded if ||A||L( o) = 1Al 40p €

*]R{f’ﬁn ie.,if ||All4op is a near standard number.

Definition7.3. Let C*(U) be the linear space of *C¥- valued #-continuous functions of #-compact
support U © *R# endowed with the essential sup #-norm ||f||+o, = ess supyey{f(x)}. An function f
in C*(U) is called finitely bounded if ||f]|+s € *]Rf_ﬁn i.e.,if |||+ is a near standard number.

Definition7.4.We define now C& (U) € C*(U) by
a0 = {fIIf € FWIA[Ifll-en € "REgin] }-

An function f is called finitely bounded if f € Cf; (U) ie.if ||If|l-w € "R g, Note that Cf, (U) is
a linear space over field *]R{C#'ﬁn.

Theorem7.1. (#-continuous functional calculus) Let A be a bounded in*R¥ self-#-adjoint operator
on a non-Archimedean Hilbert space H* . Then there is a unique map ¢: C*(c(4)) - L( H #) with the
following properties:

(a) ¢ is an algebraic * -homomorphism, that is,

$UD =N @d AN =2¢d W =1Ld )= ¢ &)

(b) ¢ is #-continuous, that is, ||¢ (f)llL( i) < Cllf -

(c) Let f be the function f(x) = x; then ¢ (f) = A.
Moreover, ¢ have the additional properties:

(d) If Ap = Aap, then ¢ ()Y = (D).

@) alp ()] ={f(D)|A € 0(A)} [Spectral mapping theorem].

HIff>0,then (f) = 0.

@ 6 (Ol swy = If I

Remark 7.1.The proof which we give below is quite simple, (a) and (c) uniquely determine ¢ (P)
for any hyperfinite polynomial P(x). By the generalized Weierstrass theorem 7.3, the set of
hyperfinite polynomials is #-dense in C*(a(4)) so the main part of the proof is showing that
IP(A)l40p = Supres(aylP(A)|. The existence and uniqueness of ¢ then follow from the generalized
B.L.T. theorem 7.4. To prove the crucial equality, we first prove a special case of (e) which holds for
arbitrary bounded in *R¥ operators.

Lemma7.1. Let P(x) = Ext-YN_,_oc,x™,N € *N. P(A) = Ext-YN_, _, c,A". Then
a(P(4)) = {P(D|1 € a(A)}.

Proof Let A € a(A). Since x = A is a root of P(x) — P(4), we have P(x) — P(1) = (x — 1)Q(x),
SO

P(A) — P(A) = (A—21)Q(A). Since (A —A) has no inverse neither does P(A) — P(4) that is,
P(2) € o(P(A)). Conversely, let u € o(P(A)) and let A;,...,4, be the roots of P(x)— u, that
is, P(x) —pu = a(Ext-[Tle1(x — 4). If A4,..., 4, & 0(A), then (P(A) —u)~t = a [Ext-[TlL,(x —
A)71] so we conclude that some 4; € o (A) that is, u = P(A) for some A € o (A).

Definition 7.5. Let 7(A) = supjeg(a) |4|-Then r(A) is called the spectral radius of A.

Theorem 7.2. Let X be a non-Archimedean Banach space, A € L(X). Then ﬁ_!lgl VIA™ | 40p
exists and is equal to r(A). If X is a non-Archimedean Hilbert space and A is self-#-adjoint, then
r(4) = Al

Lemma 7.2 Let A be a bounded self-#-adjoint operator. Then

”P(A)”#op = SUPjeo(4) |P(A)|
Proof By theorem 6.2 we obtain

”P(A)”iz'top = ”P(A)*P(A)”#op = ”(PP)(A)”#op = SUPieqs((PP)(A)) 4]
By Lemma 7.1 we obtain

_ 2
SUP)ea ((PP)(A)) |Al = SUPjeo(A) |PP(A)| = (SUPAEG(A) |P(/1)|) .
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Notation7.1.We often write ¢4 (f) or f(A) for ¢ (f) in order to emphasize the dependence on
operator A.

Definition7.6. (Hyperfinite Bernstein Polynomials) For each n € *N, the n-th hyperfinite Bernstein
Polynomial B (x, f) of a function f € C*([a, b], "R¥) is defined as

Bi(x,f) = Ext—z;of (g) (Z) x*(1 = x)" k.

Theorem7.3. (Generalized Weierstrass approximation theorem) Let f € C#([a, b], *]Rf), [a, b] €
*R#. Then there is a hyper infinite sequence of polynomials p, (x),n € *N that #-converges uniformly
to f(x) on [a, b].

Proof Consider first f € C#([O,l], *Rﬁ). Once the theorem is proved for this case, the general
theorem will follow by a change of variables. Since [0, 1] is #-compact, the #-continuity of f implies
uniform #-continuity. So, given & > 0, there exists d > 0 such that: Vx,y(x,y € [0,1])[]x — y| <
§ = |f(x) = f()| < €/2]. Now, let M = ||f||+e- Note that M exists since f is a #-continuous
function on a #-compact set. Now, fix & € [0,1]. Then, if [x —&| < &, then the inequality holds
[f(x) = f(&)] £ €/2 by #-continuity. Alternatively, if |[x — &| = §, then

¥ — &2
1)~ r@n < 2m < 2m (S5 4 e

From the above two inequalities, we obtain that

_ a2
viGee 0D [IF) - FOI < 2M (S5) + &2,
The hyperfinite Bernstein Polynomials can be used to approximate f(x) on [0, 1]. First, note that
BiCx,f —f(§) = Bilx,f)— f(©)Bi(x,1)
and for alln € *N

Bf(x,1) = Ext- ZZZO(Z)xk(l —x)"k=(x +(1 - )" =1,
where the generalized Binomial Theorem was used in the second equality. Thus,

-&\2 2M
|BE(x, f — ()| < B} (x, 2M (x = f) + g) =SB (x — O+ ¢/2,
where in the second step the fact that 0 < B (x,f) for 0 < f and B¥(x,g) < Bf(x,f) if g<f
were used. Both can be proven directly from the definition of B (x, f). It can also be shown that
Bi(x,(x — ) =x? + n71 (x — x?) —2&x + &2.

So
5t - 1] ) )

In particular,

|BI(E, £ — F()] < &+ 28,

né?
A simple calculation shows that on [0, 1], the maximum of z — z? is 1/ 4 . Thus,
2M

BIEf~f@O) <>+

So, take N > 2(1;1_25’ forn = N we get

1BE (5. £ = £l

This proves the theorem for #-continuous functions on [0, 1]. Now we let g € C*([a, b]). Consider
the function ¢ : [0,1] - [a, b] defined by ¢ : x = (b —a)x — a, ¢ is clearly a homeomorphism.
Thus, the composite function f = g o ¢ is a #-continuous on [0, 1]. By application of the theorem for
functions on [0, 1], the case for an arbitrary interval [a, b] follows.

Theorem 7.4. (Generalized B.L.T. theorem) Suppose that Z is a non-Archimedean normed space,
Y is a non-Archimedean Banach space, and S C Z is a #-dense linear subspace of Z. If T:S =Y isa
bounded in*R¥ linear transformation (i.e. there exists C < *oo such that ||Tz||4 < C ||z||4 for all z €
S), then T has a unique extension to an element of L(Z,Y).
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Definition 7.7. (Unital Sub-Algebra, Separating Points). Let K be a #-compact metric space.
Consider the non-Archimedean Banach algebra C*(K,*R¥) = {f: K —» *R¥ | f is #-continuous}
equipped with the sup-norm, ||f]|*w. Then, (1) A € C* (K, *R¥) is a unital sub-algebra if 1 € A and
if f,g € A,a,f € "R¥ implies that af + fg € A andfg € A. (2) A c C* (K,"R¥) separates
points of K if for all s,t € K with s # t, there exists f € A such that f(s) # f(t).

Proof of the Theorem 7.1. Let ¢p(P) = P(A). Then || ¢ (P)||L(H#) = |IPll¢c#(o(ayy SO ¢ has a

unique linear extension to the #-closure of the polynomials in C* (o (A). Since the polynomials are an
algebra containing I, containing complex conjugates, and separating points, this #-closure is all
of C¥(a(A). Properties (a), (b), (c), (g) are obvious and if ¢ obeys (a), (b), (c) it agrees with ¢ on
polynomials and thus by #-continuity on C*(a(A4). In order to prove (d), note that ¢ (P)y =P(1)yP
and apply #-continuity. To prove (f), notice that if f > 0, then f = g with g is *R#-valued and g €
C*(a(A). Thus ¢ (f) = ¢ (g9)* with ¢ (g) self-#-adjoint, so ¢ (f) = 0.
Remark 7.2 Notice that in addition the following statements hold:
(1) ¢(f) = 0if and only if f = 0.
(2) Since fg = gf for all f,g, {f(A)|f € C¥(a(A))} forms an abelian algebra closed under
adjoints.
(3) Since ll¢ (NIl 5#) = [Ifll-co and C*(0(A)) is #-complete, {f (A)|f € C*(a(4))}
is #-norm-#-closed. It is thus a non-Archimedean an abelian C* algebra over field *C¥ of
operators.
(4) Ran(¢p) is actually the non-Archimedean C*-algebra generated by A that is, the smallest
C*-algebra over field *C¥ containing A.
(5) Notice that C#(O'(A)) and the non-Archimedean C*-algebra generated by A are
#-isometrically isomorphic.
(6) The statement (b) actually follows from (a) and Proposition 7.1. Thus (a) and (c) alone
determine ¢ uniquely.
Proposition 7.1 Suppose that ¢p: C*(X) —» L(H*¥) is an algebraic *-homomorphism, X a #-compact
metric space. Then: (a) if f = 0,then ¢ (f) = 0,(b) [|¢ (f)llL(H#) < f 4o -

8. The spectral #-measures
Definition 8.1. [16] (6%- Algebra). Let X be any set. A family F < 2% is called a 6#- algebra on X, if:
(i) @ € F;
(ii) F is closed under complements, i.e. A € F implies X\A € F;
(iii) F is closed under hyper infinite unions, i.e. if A,,n € *N is a hyper infinite sequence in F
then UnE*N An EF.
Proposition 8.1.If F is a o%- algebra on X then:
1. F is closed under hyper infinite intersections, i.e. if A,,,n € *N is a hyper infinite sequence in F
then Nye+n An-
2.X€eF.
3. F is closed under hyperfinite unions and hyperfinite intersections.
4. F is closed under set differences.
5. F is closed under symmetric differences.
Proposition 8.2.Suppose F c 2% is a family of subsets satisfying the following:
1.0 €eF;
2. F is closed under complements;
3. F is closed under hyper infinite intersections.
Then F is a - algebra.
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Proposition 8.3.If F,,a € I is a collection of ¢*- algebras on X, then N, F, is also a ¢*- algebra
onX.

Proposition 8.4.( o%- algebra generated by subsets). Let K be a collection of subsets of X.There
exists a o”- algebra, denoted 0¥ (K) such that K ¢ ¢#(K) and for every other o*- algebra F such
that K © F we have thato #(K) ¢ F . We call ¢#(K) the o#- algebra generated by K.

Proof Define o#(K) 2 N{F|F is a ¢*- algebra on X, K c F}. This obviously is a 6¥- algebra with
the required properties.

Proposition 851If K c £ then o"(K) co%(L). Also, if K< F and F is a o"- algebra,
then o*(K) c F.

Definition 8.2. [16] (Borel - algebra). Given a topological space X, the Borel - algebra is the
o®- algebra generated by the open sets. It is denoted B¥ (X); specifically in the case X = *R¥¢ d € *N
we have that by definition B#(*]Rfd) = o*(U|U is an -open set).

Definition 8.3.A Borel-#-measurable set, i.e. a set in B¥ (X), is called a #-Borel set.

Definition 8.4. Let f be a *R¥-valued function defined on a set X. We suppose that some o*-
algebra Q € P(X) is fixed. We say that f is #-measurable, if f~1([a, b]) € Q for any hyperreals a, b €
*R# such that a < b.

Proposition 8.6. [16] Let f: X — *R¥ be a function. Then the following conditions are equivalent:

(a) f is #-measurable;

(b) £71([0, b)) € Q for any hyperreal b € *R¥;
(c) f71((b, ")) € Q for any hyperreal b € *R¥;
(d) £71(S) € Qforany S € B*("R¥).

Proposition 8.7. Let f and g be #-measurable functions, then

@) (@ X f) + (B x g) is #-measurable for any a, b € *R¥;

(b) functions max{f, g} and f X g are #-measurable;

(c) functions f, = max{f, 0},f- = (—f)+ and |f| = f. + f_ are #-measurable.

Definition8.5. A pair (X, F) where F is a g%- algebra on X is call #-measurable space. Elements
of F are called #-measurable sets. Given a #-measurable space (X,F), a function p*: F — [0, *o0] is
called #-measure on (X, F) if:

L.p#(@) = 0;

2. (Hyper infinite additivity) For all hyper infinite sequences A,,n € *N,A4,, € F of pairwise

disjoint sets in F, we have that p#(Unen An) = Ext- Ynen 1 (An).

Definition8.6. [16] (X, F, u¥) is called a #-measure space. A #-measure space (X, F, u¥*) is called
hyperfinite if p* (X) < *oo . It is called o#- hyperfinite if X = U,c«y A, Where 4,, € F and p*(4,) <
*oo for alln € *N.

Definition 8.7.Let F is a ¢”- algebra of subsets of a setX, and let E = (E,|| - ||+) be a non-
Archimedean Banach space. A function p# :F — E U {*o0} is called a vector-valued #-measure
(or E-valued #-measure) if:

1.u#(@) =0;

2. 1 (Unern An) = Ext- Tpewn 1¥(4,,) for any pairwise disjoint sequence 4,,n € *N, 4, € F;

3.Forany S € F, u#(S) = *oo, there exists B € F such that B € S and 0 < ||u#(B) s < *00.

Definition 8.8. (a) Let F be a o¥- algebra of subsets of a set X. A function p# : F —» *C¥ U {*0} is
called a complex #-measure if:

1.p*(®) = 0;
2. 1 (Unesn An) = Ext- Tpewn 1¥(4,,) for any pairwise disjoint sequence 4,,n € *N, 4, € F;
3.Forany S € F, p#(S) = *oo, there exists B € F such that B € S and 0 < u#(B)|# < *oo,

(b) Let F be a o¥- algebra of subsets of a set X. A function p* : F - *R¥ U {*o0} is called a signed
#-measure if:
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1.u%(0) = 0;
2. 1 (Unesn An) = Ext- Tpewn 1*(4,,) for any pairwise disjoint sequence 4,,n € *N, 4, € F;
3.Forany S € F, p#(S) = *oo, there exists B € F such that B € S and 0 < |u#(B)|# < *oo,

Definition 8.9. If a certain property involving the points of #-measure space is true, except a subset
having #-measure zero, then we say that this property is true #-almost everywhere (abbreviated as
#-a.e.).

Definition 8.10.Let (X, F, u™) is a #-measura space and let f,,,n € *N be a hyper infinite sequence
of *R¥-valued functions defined on X. We say that:

1. f =4 f pointwise, if f(x) =4 f(x) forall x € X;

2. fn—a f almost #-everywhere (#-ae.), if f,(x) =4 f(x) for all x € X except a set of
#-measure 0;

3. fu = f #-uniformly, if for any € > 0,& = 0 there is N(¢) € *N such that sup{|f,(x) —
f)|:x € X} < eforalln = N(¢).

In the following definitions, we fix a - hyperfinite #-measure space (X, F, u¥).

Definition 8.11.Let A; € F,i = 1,...,n € *N be such that p#(4;) < *oo foralli,and A4; N Aj =
@ for all i # j. The external function defined by
f(x) = Ext- X2y Ai Xa, (%),

A; € *R¥, is called a simple external function. The Lebesgue external integral (Lebesgue
#-integral) of a simple external function f(x) is defined as
Ext- [ f()d*u* = Ext- S, 4 wi*(4).

Definition 8.12.Suppose the #-measura p* is hyperfinite. Let f:X - *R¥ be an arbitrary
nonnegative bounded in *R¥ #-measurable external function and let f,,n € *N, be a hyper infinite
sequence of simple external functions which #-converges #-uniformly tof. Then the Lebesgue
#-integral of f is
Ext- [, f()d*p# = #-limy, o (Ext- [, fr(x)d*p*).

Definition 8.13. [16] Let f: X > *R¥ be a #-measurable function. Then the Lebesgue #-integral of
f is defined by

Ext-jf(x)d#u# = Ext-ff+(x)d# #— Ext-ff‘(x)d#u#.
X X X

If both of these terms are finite or hyperfinite then the function f is called #-integrable.In this case
we write f € L*I(X, F, u#).

Notation 8.1. [16] Assume that f, g: X — *R¥ are #- integrable functions and such that f < g
#-ae. .If

Ext-ff(x)d#u# < Ext-fg(x)d#u#
X X

we abbreviate f <; g.

Proposition 8.8. (1) Let f: X — *R¥ be an arbitrary nonnegative #-measurable function then

Ext- fo(x)d#u# = sup{Ext- fX @(x)d*u* |¢ is a simple function such that 0 < ¢(x) < f(x)}.
() If f,g:X - *R¥ are #-measurable, g is #-integrable, and |f(x)| <; g(x), then f is #-integrable
and

Ext—ff(x)d#u# < Ext-fg(x)d#u#.
X X

(3) Ext- [ |f (x)|d*u* = 0 if and only if f(x) = 0 #-a.e.

4) If fo,fa...fo: X > *R¥ n € N are #-integrable then, for A4, 15,...,1, € *R¥, the linear
combination Ext- };j-, A;f; is #-integrable and
Ext- [ (Ext-Yi-y A;f)d*n* = Ext- Y7, 4;(Ext- [, fid*p*).
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(5)Let f € L# (X, F, u#), then the equality
v*(4) = Ext- f FOxa()d** 2 Ext- f FaodHt
X A

defines a signed #-measure on the o*- algebra F.

Theorem 8.1. [16] (The generalized monotone #-convergence theorem) If f,, ,n € *N is a hyper
infinite sequence in LﬁH(X ,F, u#) such that f; < fj;, forall j € "N and f(x) = suppe-nfn (X) then
Ext- [ f)d*p# = #-limy, o (Ext- [ f(0)d*p*).

Theorem 8.2. [16] (The generalized dominated #-convergence theorem) Let f and g be
#-measurable, let f,, be #-measurable for any n € *N and such that |f, (x)| < g(x) #-ae.,
|fn X)| <5 g(x) forany n € *N and f,, (x) =4 f(x) #-a.e. Then f is also #-integrable and
Ext- [, f()d*p* = #-lim, o (Ext- [ f(x)d*p¥).

Definition 8.14. If F € X; X X, and x; € X, x; € X, we define
Ex, = {x € X3|(x1,x) € E} and E*2 = {x € X1: (x,x;) € E}.

If f:X; XX, > *Rlis a function, we define f:X, » *RE and f*2: X; » *R¥ by f,, (x) =
f(x1,x) and 72 (x) = f(x, x2).

Theorem 8.3. [16] (The generalized Fubini's theorem) Let p#, i3 be o*-hyperfinite #-measures on
(X1, F1) and (X2, F2), (X1 X Xz, F1 @ Fo, 1f ® 15) = (X, Fu, 1) X (X2, Fz, 13), and let
f €LY (X1 X X2, F1 ® Fa, 1f ® p3).Then fy, € Lf (X2, Fa, 1) pi-#-ae.,

and f*2 € L# (Xl,iF'l, uf) uh-#-a.e., and the following equalities hold:

Ext-f fd*(pf @ub) = Ext-.[ [Ext-f e d#ug] = Ext-_[ [Ext- fe, d#ug].
XXX, X, X1 X1 X2

We introduce now the #-measures corresponding in natural way to a bounded in*R¥ self-#-adjoint
operators. Let A be bounded in *R¥ self-#-adjoint operator. Lety € H*. Then

f= W, f(A)y

is a positive *R¥-valued linear functional on C#(J(A)). Thus, by the generalized Riesz-Markov
theorem, see Theorem 8.1, there is a unique #-measure uf;, on the #-compact set g(A4) with the

property
W, FAY)y = Ext- f Fd*
a(4)

Definition 8.15. [8] The #-measure yﬁ, is called the spectral #-measure associated with the
vector i) € H* The first and simplest application of the ,uf;, is to allow us to extend the #-continuous
functional calculus to B*(*R¥ ), the bounded in *R¥ #-Borel functions on *R¥. Let g € B¥(*R¥ ). It
is natural way to define g(A) so that (), g(A)Y)s = Ext- fd( 2 g()d* pjj,. The polarization identity
lets us recover (Y, g(A)Y)y from the functional (P, g(A)Y)s and then the Generalized Riesz lemma
lets us construct g(A).

Theorem 8.1. [8] (Generalized Riesz-Markov theorem) Let X be a locally #-compact non-
Archimedean metric space endowed with *R#-valued metric. Let C#(X) be the space of #-continuous
#-compactly supported *C#-valued functions on X. For any positive linear functional ® on C#(X),
there is a unique #-measure yﬁ, on X such that Vf € C#(X): ®(f) = Ext- fo(x)d# u (x).

Theorem 8.2. [8] (Generalized Riesz lemma) Let Y be a #-closed proper vector subspace of a
#-normed space (X,||-||4) and let @ € *R¥ be any real number satisfying 0 < a < 1.Then there
exists a vector u € X of unit #-norm ||u||z = 1 such that ||u — y||z = a forall y €Y.

Theorem 8.3. [8] (spectral theorem-functional calculus form) Let A be a bounded in *]Ri‘g self-
#-adjoint operator on non-Archimedean Hilbert space H*. There is a unique map ¢: B#(*RﬁE ) -
L( H #) so that: (a) ¢ is an algebraic * -homomorphism.
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(b) @ is #-norm #-continuous: ||<ﬁ(f)||L( ) = I1f Il *co0 -

(c) Let f be the function f(x) = x; then ¢(f) = A.

(d) Suppose fn(x) —4 f(x) for each x as n —4 *coand hyper infinite sequence ||f;|l* is
bounded in*R¥ Then ¢ (f,) =4 @(f), as n =4 *oo strongly.

Moreover ¢ has the properties:

(e) If Ayp = 2, then $(f) = f (D).

() If f = 0, then ¢(f) = 0.

(g) If BA = AB then ¢(f)B = Bo(f).

9. The spectral projections
Definition 9.1. [8] Let A be a bounded in *R¥ self-#-adjoint operator and Q a #-Borel set of *R¥.
Po = xq(A) is called a spectral projection of A.

As the definition suggests, Py is an orthogonal projection since yq = y3 = 1pointwise. The
properties of the family of projections {Pn/Q) an arbitrary #-Borel set} is given by the following
elementary translation of the functional calculus.

Proposition 9.1.The family {Pq} of spectral projections of a bounded in *R¥ self-#-adjoint
operator, A4, has the following properties:

(a) Each P is an orthogonal projection.

(b) Py = 0; P_qq) = I for some a € *RY, .

(©) If Q = Ext- U;Ozl Q, with Q, N Q, = @ for all n # m then
N

Pq = s-#- lim (Ext- E Pﬂn>
N—¥oo n=1
(d) Pq,Pq, = Pq,nq,-

Definition 9.2. A family of projections obeying (a)-(c) is called a projection-valued #-measure
(p.v. #-m.).

Remark 9.1. Note that (d) follows from (a) and (c) by abstract considerations. As one might guess,
one can integrate with respect to a p.v.#-m. If Py is a p.v. #-m., then (@, Po@)y is an ordinary
#-measure for any ¢@. We will use the symbol d*(g, P;p)4 to mean integration with respect to this
#-measure. By generalized Riesz lemma methods, there is a unique operator B with (@, Bp)y =
Lot FA* 0, P2}y

Theorem 9.1.If P, is a p.v.#-m. and f a bounded in *R¥ #-Borel function on supp(Py), then
there is a unique operator B which we denote |. i (V) d*{(p, Py@)4 so that

(@, Bo)y = [.gu f(D)A* (@, P2 ).

10. The spectral theorem related to unbounded in *R# self - #- adjoint operators
In this section we will show how the spectral theorem for bounded in *R¥ self-#-adjoint operators
which we developed in section 9 can be extended to unbounded in *R¥ self-#-adjoint operators.

Proposition 10.1.Let (M, u*) be a #-measure space with u* a hyperfinite #-measure. Suppose that
f is a #-measurable, *R¥ -valued function on M which is finite or hyperfinite u*-a.e.. Then the
operator Tr:¢p = f¢p on Lg(M,d#u#) with domain D(Tf) = {<p|f(p € Lg(M, d#y#)} is self-
#-adjoint and O'(Tf) is the essential range of T.

Proposition10.2. Let f and T satisfy the conditions in Proposition 6.4.1. Suppose in addition
thatf € L¥(M,d*u*) for 2 < p < *co. Let D be any #-dense set in L (M, d*u*), where ¢7* + p™* =
1/2. Then D is a #-core for Ty.

Theorem 10.1.(Spectral theorem-multiplication operator form) Let A be a self-#-adjoint operator
on a *oo-dimensional a non-Archimedean Hilbert space H* with domain D(A). Then there is a
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#-measure space (M, u*) with u* a hyperfinite #-measure, a unitary operator U: H* — L% (M, d#y#)
and a *R¥ -valued function f on M which is finite or hyperfinite u#-a.e. so that

(a) ¥ € D(A) if and only if F(-)(UP)() € L (M, d*u*).

(b) If ¢ € U[D(A)], then (VAU *@)(m) = f(m)p(m).

Remark 10.1.There is a natural way to define functions of a self-#-adjoint operator by using the
Theorem 10.1. Given a bounded #-Borel function h on *R¥ we define
h(A) = UTh(f)U_l (101)
where Ty sy is the operator on Lt (M ,d¥ u#)) which acts by multiplication by the function h(f (m)).

Using this definition the following theorem follows easily from Theorem 6.4.1.

Theorem 10.2. (Spectral theorem -functional calculus form) Let A be a self-#-adjoint operator on
H* . Then there is a unique map ¢ from the bounded #-Borel functions on

*R¥ into £( H*), so that

(a) ¢ is an algebraic *-homomorphism.

(b) ¢ is #-norm #-continuous, that is, ||95(h)||,c( H*) = [1A]]*co -

(c) Let h,(x),n € *N be a hyper infinite sequence of bounded in *R¥ #-Borel functions with
#-nllrpOo h, (x) = x, for each x and |h,, (x)| < |x| for all x and n € *N. Then, for any ¢ €
D(A),

#- lim (¢ (h)y) = Ay.

(d) If hy, (x) =4 h(x) pointwise and if the hyper infinite sequence ||k, (x)||*, n € *N is bounded
in *R¥, then ¢ (h,,) =4 @ (h) strongly.

In addition:

(e) If Ay = A then ¢(h) = h(D).
(f)If h = 0, then ¢p(h) = 0.

The spectral theorem in its projection-valued #-measure form follows directly from the functional
calculus. Let Pq be the operator yq(A4) where yq is the characteristic function of the #-measurable set
Q c *R¥. The family of operators {Pq} has the following properties:

Proposition 10.3.The family {Py} of spectral projections of abounded in *R¥ self-#-adjoint
operator, A, has the following properties:

(a) Each P is an orthogonal projection.
(1) Pp =0; P_rep a0y =1 .
©1IfQ = Ext-U,2, Q, with Q, N Qy, =@ foralln # m then

N
Po = s-#- lim (Ext- Z P9n>
N—¥oo n=1
(d) Pﬂlpﬂz = Pﬂlnﬂz'

Definition 10.1. A family of projections obeying (a)-(c) is called a projection-valued #-measure
(p.v. #-m.).

Remark 10.2. This is a generalization of the notion of bounded projection -valued #-measure
introduced in Section 9. In that we only require P ooy =1 rather than Pga =1 for some a €
*R¥, . For vector ¢ € H*, (¢, Pop)s is a well-defined Borel #-measure on *R# which we denote by
(p,Py0)4 asin § 4.3. The complex *C#-valued #-measure d*(¢p, P;y)4 is defined by polarization.
Thus, given a bounded in *R¥ #-Borel function g we can define g(A) by
(9, 9(A) p)y = Ext- L[Rg g)d* (@, Pr¢)4. (10.2)

It is not difficult to show that this map g — g(A) has the properties (a)-(d) of Theorem 10.1, so
g(A) as defined by (10.2) coincides with the definition of g(A) given by Theorem 10.1. Now, suppose
g is an unbounded *C¥-valued #-Borel function and let
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Dy = {@|Ext- [..s gA* (9, Prgp)y < oo}, (103)
Then, D is #-dense in H # and an operator g(A) is defined on Dy by

(@, 9(A) @)y = Ext- [.pu g™ (@, P2 )y (10.4)
As in Section 9, we write symbolically

g(4) = Ext- f*R*g gDd#p,. (10.5)
In particular, for ¢,y € D(4),

(@, 9(A) )y = Ext- [.pu g™ (@, Pr)s. (10.6)

if g is *R¥ -valued, then g(A) is self-#-adjoint on Dy . We summarize:

Theorem 10.3. (Spectral theorem-projection valued #-measure form).There is a one-to-one
correspondence between self-#-adjoint operators A and projection-valued #-measures {Pg} on H* the
correspondence being given by
A = Ext- [, Ad*p,. (10.7)

We use now the functional calculus developed above in order to define Ext-exp(itA).

Theorem 10.4 Let A be a self-#-adjoint operator and define U(t) = Ext-exp(itA). Then

(a) Foreach t € *R¥,U(t) is a unitary operator and U(t + s) = U(t)U(s) for all s,t € *R¥.
(b) If ¢ € H* and t — to, then U(t)p =4 U(to)o.

(c)Forany ¥ € D(A): (U(®)Y —P)/t) >4 iAp ast -4 0.

(d) If ﬁjirg)((U(t)yb —)/t) exists, then p € D(A).

Proof (a) follows immediately from the functional calculus and the corresponding statements for

the *C¥#- valued function Ext-exp(itA). To prove (b) observe that
||Ext-exp(itA)y — ||z = Ext-f |Ext-exp(itd) — 1|12d* g(D)d*(Pyp, ) 4.
*R’g

Since |Ext-exp(itd) — 1|? is dominated by the #-integrable function g(1) = 2 and since for each
A € *R¥ |Ext-exp(itd) — 1|?> -4 0 as t =4 0 we conclude that (U(t)y — ) =4 0 ast —4 0, by the
generalized Lebesgue dominated-#-convergence theorem. Thus t = U(t) is strongly #-continuous
att = 0, which by the group property proves t + U(t) is strongly #-continuous everywhere. The
proof of (c), again uses the dominated #-convergence theorem and the estimate |Ext-exp(itx) —
1|2 < |x|. To prove (d), we define

D(B) = {1/)| #i-_!iron <w> exists}

and let iBY = #i-lim (U(t)#) . A simple computation shows that B is symmetric. By (c), B D 4,

—40
soB = A.

Definition 10.2. An operator-valued function U(t) satisfying (a) and (b) is called a strongly
#-continuous one-parameter unitary group.

Definition 10.3 If U(t) is a strongly #-continuous one-parameter unitary group, then the self-
#-adjoint operator A with U(t) = Ext-exp(itA) is called the #-infinitesimal generator of U (t).

Theorem 10.5. Let U(t) be a strongly #-continuous one-parameter unitary group on a non-
Archimedean Hilbert space H*. Then, there is a self-#-adjoint operator A on H¥ so that ut) =
Ext-exp(itA).

Theorem 10.6. Let U(t) be a one-parameter group of unitary operators on a hyper infinite
dimensional non-Archimedean Hilbert space H*. Suppose that for all ¢,y € H*, (U(t)y, ¢p)u is
#-measurable.Then U (t) is strongly #-continuous.

Theorem 10.7. Suppose that U(t) is a strongly #-continuous one-parameter unitary group. Let D
be a #-dense domain which is invariant under U(t) and on which U(t) is strongly #-differentiable.
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Then i™* times the strong #-derivative of U(t) is essentially self-#-adjoint on D and its #-closure is
the #-infinitesimal generator of U(t).

Theorem 10.8. Let A be a self-adjoint operator on H” and D be a #-dense linear set contained in
D(A).If for all t, Ext-exp(itA): D — D then D is a #-core for A.

Remark 6.4.3. Finally, we have the following generalization of Theorem 10.5. If g(4) is a *R¥-
valued #-Borel function on *R¥, then g(A) = Ext- f*mﬁ g d*#P,. defined on Dy (10.3) is self-

#-adjoint. If g is bounded, g(A) coincides with ¢(g) in Theorem 10.2.

Theorem 10.9. Let U(t) = U(ty,...,t,) be a strongly #-continuous map of *R¥#" into the unitary
operators on a hyper infinite dimensional Hilbert space H* satisfying U(t + s) = U(t)U(s) Let D be
the set of hyperfinite linear combinations of vectors of the form

Or = Ext- [ f(OU@A*E, (10.8)

where ¢ € H*, feCy *OO(*]R‘E”). Then D is a domain of essential self-#-adjointness for each of the
generators Aj of the one-parameter subgroups U (0,0,..., tj, - ,0), each Aj :D - D and the A;
commute, j = 1,...,n. Furthermore, there is a projection-valued #-measure P, on *]Rf" so that

(@, U®Y)y = Ext- [.pun[ Ext-exp(i(t, A)] d* (@, Py (10.9)

for all ¢, € H*.

Remark 10.4.Suppose that A and B are two unbounded self-#-adjoint operators on a non-
Archimedean Hilbert space H* We would like to find a reasonable meaning for the statement: "A and
B commute." This cannot be done in the straightforward way since the operator C = AB — BA may
not make sense on any vector ) € H* for example one might have (Ran(4)) N D(B) = @ in which
case BA does not have a meaning. This suggests that we find an equivalent formulation of
commutativity for bounded self-#-adjoint operators.The spectral theorem for bounded self-#-adjoint
operators A and B shows that in that case AB — BA = 0 if and only if all their projections, P4 and P§,
commute. We take this as our definition in the unbounded case.

Definition 10.3 Two (possibly unbounded in *R¥ self-#-adjoint operators A and B are said to
commute if and only if all the projections in their associated projection-valued #-measures commute.

Remark 10.5. The spectral theorem shows that if A and B commute, then all the bounded in *R¥
#-Borel functions of A and B also commutes. In particular, the resolvents R;(A4) and R, (B) commute
and the unitary groups Ext-exp(itA) and Ext-exp(itA) commute. The converse statement is also true
and this shows that the above definition of "commute" is reasonable.

Theorem 10.10 Let A and B be self-#-adjoint operators on a non-Archimedean Hilbert
space H* Then the following three statements are equivalent:

(a) P(’:‘Lb) and Pg_d) commute.
(b) If ImA and Imy are nonzero, then Ry (A)R, (B) — R, (B)Ry(A) = 0.
(c) Foralls,t € *R#, [Ext-exp(itA)] [Ext-exp(itA)] = [Ext-exp(itA)][Ext-exp(itA)].

Proof The fact that (a) implies (b) and (c) follows from the functional calculus. The fact that (b)
implies (a) easily follows from the formula which expresses the spectral projections of A and B as
strong #-limits of the resolvents together with the fact that s-#- glimo ieR 4 i:(A) = P{‘;‘l}. To prove that

~0

(c) implies (a), we use some simple facts about the Fourier transform. Let f € S #(*Rf), then, by
generalized Fubini's theorem [16],

Ext- [y £(0) ([Ext-exp(itA)]g, ¥y =
=Ext- | f(t) (Ext—f ([Ext-exp(—itd)]) df(Pf(p,lp)#> dit =
*Rg

*Rtf

= VZmExt- [ FQ) LBl 0,0 = [ Zrelo FAND
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Thus, using (c) and generalized Fubini's theorem again,
(0, f(AGBIY)y =
— Ext- f Ext- f £(0) 9(5) (@, [Ext- exp(—itA)][Ext- exp(isB) i)y =
*Rg *Rg

= {9, gB)f (D)
so, for all f, g € S*(*R¥), £(A)G(B) — G(B)f(A) = 0. Since the Fourier transform maps S#(*]Rﬁ)
onto S*(*R¥) we conclude that f(4)g(B) —g(B)f(A) =0 for all f,ge€ S*(*R¥). But, the
characteristic function, y (4 ) can be expressed as the pointwise #-limit of a hyper infinite sequence
fron € *N of uniformly bounded functions such that f, €S #(*]R{ﬁ),n € *N. By the functional
calculus we get

s-#- lim_f,(A) = P{ ).
Similarly, we find uniformly bounded g,, € S #(*]R?), n € "N #-converging pointwise to x . q) and
therefore
s-#-Nlin gn(B) = P(l:d).
Since the f,, and g,, are uniformly bounded in *R¥ and f,,(4)g,,(B) = gn(B)f,.(A) for each n €
N, we conclude that Pél’b) and P(li, ) commute which proves (a).

11. Conclusion

The technique of nonstandard analysis in constructive quantum field theory in order to obtain the
standard model A: @3 (x): by using model theoretical nonstandard analysis (NSA) originally have been
approved by Kelemen and Robinson [17, 18]. As pointed out in author’s papers [8], canonical NSA
does not power enough in order to obtain the standard model A: @f(x): by using the classical
nonstandard analysis, see also explanation in S. Albeverio handbook [5] section 7.4 and section 1 of
this paper. In order to avoid this difficultness related to NSA we apply minimal non-conservative
extension of NSA namely NSA* [11]. Using NSA* Haag-Kastler axioms established for standard
model A(¢*), in author’s papers [8]. It is shown in this paper that the standard quantum field theory
model (9?"),,n =2 is Lorentz covariant see also [8]. For model (¢?™),,n > 2 in unphysical
dimension d = 2 Lorentz covariance has been established in Rosen [19] paper.
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