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Measurement-based preparation
of stable coherent states of a Kerr
parametric oscillator

Yuta Suzuki'?, Shohei Watabe-3, Shiro Kawabata?* & Shumpei Masuda®***

Kerr parametric oscillators (KPOs) have attracted increasing attention in terms of their application to
quantum information processing and quantum simulations. The state preparation and measurement
of KPOs are typical requirements when used as qubits. The methods previously proposed for state
preparations of KPOs utilize modulation of external fields such as a pump and drive fields. We study
the stochastic state preparation of stable coherent states of a KPO with homodyne detection, which
does not require modulation of external fields, and thus can reduce experimental efforts and exclude
unwanted effects of possible imperfection in control of external fields. We quantitatively show that
the detection data, if averaged over an optimal averaging time to decrease the effect of measurement
noise, has a strong correlation with the state of the KPO, and therefore can be used to estimate the
state (stochastic state preparation). We examine the success probability of the state estimation taking
into account the measurement noise and bit flips. Moreover, the proper range of the averaging time to
realize a high success probability is obtained by developing a binomial-coherent-state model, which
describes the stochastic dynamics of the KPO under homodyne detection.

Kerr parametric oscillators (KPOs)'~* or Kerr-cat qubits, which are parametric phase-locked oscillators in the
single-photon Kerr regime*, have attracted much attention in terms of their application to quantum information
processing® and study of quantum many-body systems®”. KPOs can be implemented>-1° by a superconducting
resonator with Kerr-nonlinearity driven by an oscillating pump field in the circuit-QED architecture. Two coher-
ent states in opposite phases are long-lived in a KPO and their lifetime rapidly increases with the amplitude of
the pump field. The long-lived coherent states, which we refer to as stable coherent states, can be used as qubit
states. In the KPO, the phase-flip error dominates the bit-flip error because of the robustness of the coherent
states against photon loss. Because of such a biased feature of errors, it is expected that quantum error correction
for KPOs can be performed with less overhead than for qubits without such biased noise!""'%.

Quantum annealing®'*-" and universal quantum computation®'*?° using KPOs were studied theoretically,
and single-qubit operations were demonstrated experimentally'’. Two-qubit gates preserving the biased feature
of errors were proposed®!, and high error-correction performance by concatenating the XZZX surface code!?
with KPOs?? was numerically presented. Other research subjects on KPOs include fast gate operations and
controls®*~%, spectroscopy?”*%, tomography®'®?, Boltzmann sampling®, effects of strong pump field*', quantum
phase transitions®’, quantum chaos"*?, and trajectories®~*.

The state preparation and measurement of qubits discussed in this paper are typical requirements for develop-
ing quantum computers. For example, accurate state preparation is desirable for precise evaluation of properties
of qubits such as lifetime and the fidelity of qubit gates. Importantly, the stationary state of a KPO under a pump
field is a mixed state of the long-lived coherent states in contrast to transmons where a vacuum state is naturally
realized as a stationary state. This is the reason why one may consider that temporal controls of system param-
eters are required for preparation of a pure state of a KPO. In KPO systems, preparations of predetermined qubit
states were studied, using modulation of a pump field>'**! and an additional drive field*®, of which amplitude
should be surpressed over a proper period of time. However, the accuracy of the preparation method using
modulation of a pump field is degraded by the decoherence caused by photon loss®!. Although the method with
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an additional drive field with optimized phase and time dependent amplitude can have high accuracy, seeking
such proper parameters will actually require experimental efforts, e.g., phase matching between the drive and
pump fields?® and evaluation of the accuracy of the preparation with measurement of a KPO. In addition, the
achievable preparation accuracy will be influenced by the measurement accuracy when the former is optimized
using measurement results.

In this paper, we propose an alternative approach: a spontaneous and stochastic preparation of stable coherent
states of KPOs based on homodyne detection, which does not require modulation of the pump field nor a drive
field in contrast to the conventional methods and thus can reduce experimental efforts, and moreover we show
a proper range of the averaging time to realize high success probability of the preparation. The stable coherent
states are natural initial states for measurement of lifetime of a KPO, which is an essential parameter chracter-
izing the qubit. Therefore, it will be beneficial that a method to prepare the states is simple and independent
of controllability of external fields. Very recently after the initial submission of our paper, measurement of the
lifetime of the stable coherent states and their superpositions (cat states) were reported®. The authors prepare
a stable coherent state using a measurement procedure, while their system has an auxiliary readout resonator
compared to ours. Such simple measurements of the lifetime of the stable coherent state use only a continuous
measurement of a KPO, and do not need repeated resets of the KPO using a temporally controlled drive field.
Thus, our method can offer a simple way to extract the lifetime of a KPO. The state preparation protocol was
used also to observe resonant cancellation of tunneling in a KPO?’.

Previously, it was shown that a KPO under homodyne detection is basically in either of two coherent states
with opposite phases*?*, and that the state of a qubit based on a KPO can be measured with homodyne detec-
tion, however without crucial analysis on detection data with measurement noise. We quantitatively show that
the detection data, if it is averaged over an optimal averaging time to decrease the effect of measurement noise,
has a strong correlation with the state of the KPO, and therefore can be used to accurately estimate in which
coherent state the KPO is (stochastic state preparation). The success probability of the estimation (preparation)
is examined taking into account the effect of the measurement noise and bit flips. We obtain the proper range of
the averaging time to realize high success probability by using a developed minimum model, which describes
the stochastic dynamics of the KPO under homodyne detection (similar techniques were used, e.g., to estimate
the state of a two-level system® and also to generate entanglement between qubits**°). Moreover, we examine
the dependence of the success probability on the measurement efficiency and the relative phase between the
pump field and a local oscillator.

It is known that Rx*! and ZZ gates*? can be performed without modulation of the pump and drive fields.
Our method of state preparation will be useful also in experimental studies of the gate operations, for example
aiming at higher fidelity, because the method can exclude unwanted effects of possible imperfection in controls
of the pump and drive fields. Furthermore, our method can offer implementation of the quantum information
processing based on KPOs without temporal controls of the pump amplitude, because the universal gate sets*!
can also be performed without modulation of the pump amplitude.

Model and methods
We consider homodyne detection of a KPO illustrated in Fig. 1. Classical coherent light generated by a local
oscillator and microwave photons emitted from the KPO are splitted by a 50/50 beam splitter and are detected
at detectors 1 and 2. The KPO is connected to a transmission line (TL), where the emitted photons propagate.
We refer readers to a paper which implemented a heterodyne measurement of a KPO?*.

In order to take into account the effect of the homodyne detection on the density matrix of the KPO p., we
use a stochastic master equation (SME) represented as****

50/50
4 Beam splitter

—
—
Y
\ 4

KPO Detector 1

Local Oscillator

Figure 1. Schematic illustration of homodyne detection of a KPO attached to a transmission line (TL). The
signal from the KPO and the classical coherent light from a local oscillator passing through a beam splitter are
detected by detector 1 and 2. Information about the KPO is obtained after subtraction of the photocurrents at
the detector 1 and 2 (Circle with a horizontal line).
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pe(t +7) = pe(t) — i[-%&*&*aa TGt + aa),pc(t)] T+ {K&pc(t)iﬂ - g{aTa, pc(t)}] T
— iv/k [exp (—iOL0)dpc (t) — exp (i®L0)Pc(t)aT} AW () — Tr[pc(t) Ao, 10c () AW (1),

where x, p and « are the anharmonicity parameter of the KPO, amplitude of the pump field and the decay rate
to the TL, respectively. We refer readers to, e.g., Refs. 931 for the connection between the system parameters to
circuit models of KPOs. In Eq. (1), ©10 is the relative phase of the classical coherent light of the local oscillator
and the pump field. AW is the noise in the photon numbers measured by the two detectors, which is assumed to
be Gaussian white noise with the mean of 0 anq variance 7, and AAW2 = 7. We hereafter refer to AW as noise.
a is the annihilation operator for the KPO, and Ag,, is defined by Ag,, = i /k[exp (iBr0)a’ — exp (—i®10)al.
The solution pc(t) of the SME (1) for a given AW represents one possible realization of the dynamics under
homodyne detection. The ensemble average of p. (t) over AW in the SME (1) coincides with the density operator
of the master Eq. (S2) which governs time evolution of the KPO when it is not measured (See Supplementary
Section S1 for the Hamiltonian and master equation of a KPO).

Our model assumes infinitely large bandwidth of the detectors*’, while an actual detector should have finite
bandwidth. However, we consider that this will not make a considerable difference in results from measurements
with finite bandwidth because we do not use an additional external field which excites the KPO and we consider
a sufficiently strong pump field which narrows the spectrum of the output field’.

For /4| xa|> <« 1, which was realized, e.g. in Ref.’, the stationary state of the master equation (S2) is approxi-
mately represented as (|a) («| + |—a)(—a|)/2 with®*

22 1/4
|| = (4'3)(72’(/4) , argla] = %arcsin <—£) 2

As shown later, the state of the KPO jumps between |«) and | —«). We aim at stochastically preparing either of the
states using the data measured by the detectors. In order to evaluate the efficiency of the2 protocol, we use the fidel-
ities defined by F+ = F [p. (1), | £a) (*a|], where F [pa, pp] = (Tr[« /\/p»apb\/@]) 45 (The fidelities between
the state of a KPO and these coherent states have not been examined with SME (1) to the best of our knowledge.)
In numerical simulations, we assume the followings: the initial state of the KPO is (Ja) (| + |—a) (—et|)/2 to
which the KPO relaxes due to the decay to the TL* when the KPO is not measured; all the system parameters
are fixed during the homodyne detection. We used QuTiP* for a part of numerical simulations.

In Ref. ¥/, the authors aim at taking a cat state out of a KPO avoiding unwanted disturbance due to the Kerr
nonlinearity. To avoid such disturbance of emitted photons, they use tailored time dependence of a pump field.
On the other hand, we do not aim at taking the cat state out of a KPO, but rather aim at clarifying the correlation
between measurement results and the state of the KPO from a point of view of state preparation. Therefore, we
use a fixed pump field in contrast to their paper, and the Kerr nonlinearity does not cause a crucial problem to
our purposes.

(1)

Results

Figure 2a,b shows the time dependence of the fidelities F, where we assumed that there is no photon loss
(the effect of photon loss is examined in the section entitled “Imperfect detection”). The time dependence of
F. implies that the state of the KPO jumps between |a) and | —«), and remains in either of the coherent states
between jumps. Importantly, we cannot obtain F4 in actual measurements. In the following, we investigate how
accurately we can estimate the state of the KPO from the measurement results.
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Figure 2. Time dependence of the fidelities, F+ = . [p.(t), |£a) (Fa|]. Panels (a) and (b) are for Fy and F_,
respectively. The used parameters are x /2w = 3 MHz, 8/2n = 3 MHz and k /2w = 3 MHz. « given by Eq. (2)
is approximately 1.38 — 0.18i. These parameters are experimentally feasible®.

Scientific Reports|  (2023) 13:1606 | https://doi.org/10.1038/s41598-023-28682-1 nature portfolio



www.nature.com/scientificreports/

State estimation. Measurement results that observers can obtain in the homodyne detection is the differ-
ence between the numbers of photons detected by the two detectors. We use this data for the estimation of the
state of the KPO. The difference between the numbers of photons detected by detectors 1 and 2 from ttot +
is represented as*>*

1 ~
AN() = - (AW + Trlpcda, ), (3)

where 7 is much smaller than =, x ' and « ~!. Here, € ~!is the product of the square root of phase velocity in
the TL and the intensity of the classical coherent light*’. When the KPO is in either the two coherent states, that
is, p. = |£a){£al, AN can be written as

ANy = é(AW(t) + 2|a| kT sin(36)) (4)

with 60 = arg[a] — Oro. Importantly, the sign and amplitude of the second term depend on the state of the KPO
and 86, respectively. We mainly discuss the case for 60 = /2, which maximizes the second term of Eq. (4). The
effect of the deviation of 60 from 7 /2 is examined in the section entitled “Imperfect detection”.

If the amplitude of the noise | A W|is always smaller than 2|a|/k T, we can identify the state of the KPO from
the sign of AN (t). However, as shown below, |AW| can be larger than 2|a|/k t. Therefore, it is important to
take time average of AN (t) for a certain period of time to decrease the effect of the noise. The photon-number
difference averaged from t — T, to t is represented as

Ta/T

N, T,) = Ti kz AN(t — k1), (5)
=0

where we assume T, is integer multiple of . ~
_ We estimate the state of the KPO at time ¢ using the sign of N, that is, we estimate the KPO to be in|e) (| for
N > 0and|—a)(—alfor N < 0, respectively. The estimated state is represented as

[ledel (T > 0),
Pest(t: Ta) = { I—a)(—al (N(t,T,) < 0). (6)

Figure 3a-c shows the time dependence of N for various values of T,. For T, = 10~* iis, the fluctuation of N
is too larger to identify the state of the KPO due to the noise (Fig. 3a). On the other hand, for T, = 10~! us, N
approximately takes either of £2|a|,/k T (Fig. 3b). For T, = 10 us, the second term of Eq. (4) is smeared because
of bit flips and the long averaging time (Fig. 3¢).

Figure 3d-f shows the fidelity of the estimation defined by .7 [ pest (¢, Ta), pc(t)]. The fidelity is close to 0 or
1 most of the time, and thus the distribution of the fidelity is bimodal. The fidelity of approximately zero cor-
responds to the case that the estimated state is |+o) while the KPO is actually in |F«). The fidelity is larger than
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Figure 3. Time dependence of N and F [ peg(t, Ta), pc (£)] for Ty = 1074 s (a, d), T = 1071 us (b, e),
Ty = 10 us (¢, f). The used parameters are the same as in Fig. 2. The data is represented by lines and dots in the
upper and lower panels, respectively.
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0.99 most of the time for T, = 10~! us. On the other hand, the fidelity for T, = 10~* s and 10 us can become
approximately zero due to the too short and too long averaging times, respectively, thus the time-averaged fidel-
ity is decreased.

Proper averaging time for accurate estimation. Figure 4 shows the T, dependence of
F [pest (t, Ta), pc(t)] time averaged over a1000 us period. Hereafter, we refer to the averaged fidelity as the suc-
cess probability of estimation. The success probability is higher than 0.987 around T, = 107! us. It is clearly seen
that there is a proper range of T, to obtain the high success probability. The proper range of T, for a given value
of the success probability K is bounded from below due to the noise and bounded from above due to smearing
by the time averaging. In the following, we obtain the upper bound TY and lower bound T¥ of T, for a given
success probability K.

Lower bound TIIg. We consider the case that the averaging time T, is much shorter than the typical duration in
which the KPO remains in either of [+£a). Then, AN(#) is typically represented as Eq. (4) and fluctuates around
either of +2|ar|/k /¢ due to the Gaussian noise AW, except when jumps occur. The fluctuation of N (¢) has the
Gaussian distribution with the standard deviation of o (T,) = /72/Tae?, where the effect of jumps to N(¢) is
neglected because jumps seldom occur in T,. Then, the success probability K can be related to T, as

K_/OO dx ! ex [ —x’ ] )
= sgiee 0T T 22T )

where K is the same as the ratio of the colored area to the total area under the Gaussian curve illustrated in Fig. 5a.
T, in Eq (7) equals to the lower bound of the averaging time, T, to obtain the success probability higher than or
equal to K. Therefore, we can obtain Tk by solving Eq. (7). For example, T for K = 0.95is

2
Lo Lest
095 ™ 4la |2k

(8)

Upper bound T,L(J. Averaging over a long period of time can degrade the accuracy of the estimation of the state
of the KPO due to the jump. We assume that this smearing effect determines TY, and derive T¥ by developing a
binomial-coherent-state model that describes the stochastic dynamics of the KPO in Eq. (1).

In the binomial-coherent-state model, we assume that the state of the KPO can only take either of |+«), and
jumps between them with a probability of p (= Qdt) in a small time dt. This stochastic process can be represented
as the binomial process in the two coherent states. Then, the mean time interval between jumps is

1
ETil= o )
because  is the average rate of jumps. Figure 5b illustrates a typical time evolution of N. Due to smearing effect
and jumps, wrong estimations occur in the period of T, /2 per jump. The error rate, defined by the ratio of the
duration of the wrong estimation to the total measurement time, can be written as T, /2E[T;], and the error rate
is also written as1 — K. Thus, we obtain1 — K = T}g/ZE[Ti], where we replaced T, by T}(J. Using Eq. (9), we
obtain TY as
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Figure 4. Success probability, defined by 7 [ pest (¢, Ta), pc(t)] time-averaged over a 1000 us period, as a
function of T,. The used parameters are the same as in Fig. 2.
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Figure 5. Panel (a): Schematic illustration of the distribution of N fluctuating around AN’ = 2|a|\/kt/e. The
ratio of the colored area to the total area under the Gaussian curve is the same as the success probability K. Panel
(b): Schematic illustration of a typical time evolution of N in the binomial-coherent-state model in which the
noise is neglected. The dashed and solid lines represent N for T, = 0 (without time averaging) and 0 < T, < Tj
(with time averaging), respectively.

TY =2(1 — K)/ <. (10)

Now, we obtain €2 by the following manner. In the binomial-coherent-state model, the ensemble average of the
density operator can be represented as

N N
Aoty =D NCip* (1 =)V Hedal + D NCipF 1 = pNTF—a)(—al, (11)
k=2n k=2n+1

where N = t/dt, and we assumed that the KPO is in |«) at the initial time. As shown in Supplementary Section S2,
the expectation value of = (a + a') /2 corresponding to gy, (¢) in Eq. (11) is written as (X) = Re[a] exp(—282t)
in the limit of dt — 0. Because the binomial-coherent-state model approximates the dynamics governed by the
SME, py,(t) approximately coincides with the solution of the master equation (S2) (Note that the ensemble aver-
age of p.(t) over AW coincides with the density operator of the master equation). Therefore, we can obtain
by fitting Re[«] exp(—2L2¢) to (X) with the master equation (S2) (the detailed discussion and results of the fitting
can be found in Supplementary Section S2).

In Ref. ?, it is shown that the effect of the quantum jumps between |o) and |—«) manifests itself as finite width
of a peak in power spectral density because the width is determined by the timescale of the fluctuations in the
phase of the state of a KPO. The phase fluctuation is suppressed with the increase of the pump amplitude*’. On
the other hand, in our simulation the jumps are observed more directly in the difference between the numbers
of photons detected by detectors 1 and 2, AN (t). The jump rate determines the upper bound of averaging time
to obtain high success probability.

Numerical results. Figure 6 shows the T, dependence of the success probability together with T(]{ (9[5}) for two
different parameter sets. It is seen that the values of TI%(U) obtained in the above section approximate well the
numerical ones.

Figure 7a represents the high success probability regime in the T,-|a| plane. It is seen that T decreases with
the increase of || as analytically exemplified in Eq. (8) because the effect of the noise to the result of the estima-
tion becomes small for large ||. On the other hand, T,Lg increases with || because E[T;] increases exponentially
with |2 ® as shown in Supplementary Section S2. Thus, the range of T, which gives the high success probability,
increases with |« |. The maximum success probability also increases with |o|. We attribute this to the fact that the
two quasi stable states, between which the KPO jumps, can be approximated by|+«) more accurately in Eq. (2)
when |o| increases?!.

We examine the proper range of the averaging time for smaller photon decay rate . Figure 7b represents the
high success probability regime in the Ty-« plane. It is seen that T increases with the decrease of k because the
output field from the KPO becomes weak as k decreases. This implies that we need longer averaging time due
to the weaker output field for smaller k. However small « rather enlarges the proper range of the averaging time
because T,g increases with the decrease of k due to lengthened E[T;] (see Supplementary Section S2).
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Figure 6. T, dependence of the mean of 7 [pest (£, Ta), pc () [fork = x, 8 = x(a) andk = x, B = x /2
(b). The parameters for panels (a) and (bB correspond @ = 1.38 — 0.18i and o = 0.90 — 0.24i, respectively.
The vertical red (black) line represents TOA(QISJ) = 1.86 x 1072 115 (7.52 x 107! us)in panel (a) and
T&gg) =4.17 x 1072 s (1.04 x 107! us) in panel (b). The other parameters are the same as in Fig. 2.
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Figure 7. (a) T and T as a function of |a|in Eq. (2). The solid and dashed lines are for T and T%,
respectively. The black and red data are for K = 0.95 and 0.99, respectively, where 8 was changed, while K is
fixed, in order to change |« |. (b) The same things as (a) but as a function of k. The other parameters are the same
as in Fig. 2.

Imperfect detection. In the previous sections, we considered the ideal homodyne detection without pho-
ton loss, and we set 60 = 7 /2 in order to maximize the amplitude of the second term of Eq. (4). In this section,
we examine the effect of the photon loss and the deviation of 60 from the ideal value on the success probability
of estimation.

We consider the case that a proportion 1 of photons are detected, while the rest are lost. We assume that
photons leaked from the KPO do not return to the KPO. We refer 7 as the efficiency of the measurement. For
the measurement with the efficiency 7, the SME and measurement result are represented as*>>!

@p

. )a*a - %a*a*aa + B@taT + aa), pe(t)|

pett+ 1) = pe(t) — i (0 = x -

~ ~ K At A
+ [Kexapc(t)aT - % a'a, pc(t)}]f

(12)
— i/Kex [exp (—iOL0)apc (1) — exp (iO10) pc(H)a'] /TAW (1)
— Trlpe(H) A0 () /TAW(B),
and
AN(t) = é (ﬁAW + nzTr[pCA(.)LO]). (13)
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As in the previous section, we assume that the averaging time T, is much shorter than the typical duration that
the KPO remains in either of |[+«). When p. = |+a)(+a|, AN fluctuates around £2||/k T sin(86)n/e; the
standard deviation of N is o (T, ) = \/721n/Ta€2. The success probability K can be related to T, as

00 1 2
£ /fzmﬁr sin(80) 1/ de(Ta: M~ 21 P [202(Ta, n)]' (14)

We can obtain Tk by solving Eq. (14). For example, Tk for K = 0.95 is
Tl 1.65 s

- 4|a |2k sin®(80)n

On the other hand, T¥ in Eq. (10) does not depend on 7 and 86 because it is derived by using the master equa-
tion (S2) that does not have 1 and §6.

Figure 8 shows the dependence of the success probability on T, for various values of 7 and 86 with T and
TY. The success probability decreases on the left side of its peak as  decreases or 8 deviates from 77/2. On the
other hand, the right side of the peak is not sensitive to 1 and §6. These results are consistent with the analysis
of Tk and TY.

Conclusions and discussions

We have studied the stochastic state preparation of a KPO based on homodyne detection. We have shown
that the measured data, if it is time averaged with a proper averaging time to decrease the effect of noise, has a
strong correlation with the state of the KPO, and therefore can be used for estimation of the state of the KPO.
We have quantitatively examined the success probability of the estimation taking into account the effect of the
noise and bit flips, and have shown that the success probability is higher than 0.987 with the parameter used. We
have developed a binomial-coherent-state model, which describes the stochastic dynamics of the KPO under
homodyne detection, and by using it we have obtained a proper range of the averaging time to realize the high
success probability. Our analysis based on the binomial-coherent-state model implies that the success probability
is further increased as the size of the coherent state becomes large. Furthermore, we have examined the effect of
the imperfection of the measurement and the choice of the phase of the coherent light of the local oscillator, on
the state estimation. Our scheme of state preparation of KPOs does not require a drive field nor modulation of
the pump field in contrast to conventional methods.

In Supplementary Section S3, we examine alternative protocols, using temporal controls of system param-
eters, for preparation of pure states of a KPO. The protocol with an auxiliary time dependent drive field can give
slightly higher success probability than our method when the phase and time dependence of the amplitude of
the drive field are properly chosen. However, finding the proper parameters will actually require experimental
efforts. Despite its simplicity, the measurement-based protocol can give success probability comparable to that of
the protocol with a temporally controlled drive field. Moreover, our method can give higher success probability
than the method to create a cat state for the used parameters.

Although we focused on preparation of the two stable coherent states in this paper, this method followed by
single-qubit gates conditioned on measurement results can generate an arbitrary qubit state. Our scheme of state
preparation can be applied straightforwardly to multi-KPO systems when the time interval of jumps of KPOs is
sufficiently long. It is also expected that turning on the ferromagnetic or anti-ferromagnetic coupling between
KPOs* can increase the efficiency of state preparation by mitigating bit flips of individual KPOs.
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Figure 8. Dependence of the success probability on T, for various values of 7 and 86. Panel (a) is for 60 = 7/2;
panel (b) is for n = 1. The other parameters are the same as in Fig. 2. In panel (a), the vertical gray, green and
red dashed lines represent T&QS =1.86 x 1072,3.73 x 1072and 1.86 x 10™! us, respectively; in panel (b),

the vertical gray, green and red dashed lines represent T s = 1.86 x 1072,3.73 x 1072and 1.59 x 107! s,
respectively. The vertical black dotted line is for Tls = 7.52 x 10~! us in both panels.
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