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Measurement‑based preparation 
of stable coherent states of a Kerr 
parametric oscillator
Yuta Suzuki 1,2, Shohei Watabe 1,3, Shiro Kawabata 2,4 & Shumpei Masuda 2,4*

Kerr parametric oscillators (KPOs) have attracted increasing attention in terms of their application to 
quantum information processing and quantum simulations. The state preparation and measurement 
of KPOs are typical requirements when used as qubits. The methods previously proposed for state 
preparations of KPOs utilize modulation of external fields such as a pump and drive fields. We study 
the stochastic state preparation of stable coherent states of a KPO with homodyne detection, which 
does not require modulation of external fields, and thus can reduce experimental efforts and exclude 
unwanted effects of possible imperfection in control of external fields. We quantitatively show that 
the detection data, if averaged over an optimal averaging time to decrease the effect of measurement 
noise, has a strong correlation with the state of the KPO, and therefore can be used to estimate the 
state (stochastic state preparation). We examine the success probability of the state estimation taking 
into account the measurement noise and bit flips. Moreover, the proper range of the averaging time to 
realize a high success probability is obtained by developing a binomial-coherent-state model, which 
describes the stochastic dynamics of the KPO under homodyne detection.

Kerr parametric oscillators (KPOs)1–3 or Kerr-cat qubits, which are parametric phase-locked oscillators in the 
single-photon Kerr regime4, have attracted much attention in terms of their application to quantum information 
processing5 and study of quantum many-body systems6,7. KPOs can be implemented5,8–10 by a superconducting 
resonator with Kerr-nonlinearity driven by an oscillating pump field in the circuit-QED architecture. Two coher-
ent states in opposite phases are long-lived in a KPO and their lifetime rapidly increases with the amplitude of 
the pump field. The long-lived coherent states, which we refer to as stable coherent states, can be used as qubit 
states. In the KPO, the phase-flip error dominates the bit-flip error because of the robustness of the coherent 
states against photon loss. Because of such a biased feature of errors, it is expected that quantum error correction 
for KPOs can be performed with less overhead than for qubits without such biased noise11,12.

Quantum annealing3,13–19 and universal quantum computation3,13,20 using KPOs were studied theoretically, 
and single-qubit operations were demonstrated experimentally10. Two-qubit gates preserving the biased feature 
of errors were proposed21, and high error-correction performance by concatenating the XZZX surface code12 
with KPOs22 was numerically presented. Other research subjects on KPOs include fast gate operations and 
controls9,23–26, spectroscopy27,28, tomography9,10,29, Boltzmann sampling30, effects of strong pump field31, quantum 
phase transitions6,7, quantum chaos1,32, and trajectories33–35.

The state preparation and measurement of qubits discussed in this paper are typical requirements for develop-
ing quantum computers. For example, accurate state preparation is desirable for precise evaluation of properties 
of qubits such as lifetime and the fidelity of qubit gates. Importantly, the stationary state of a KPO under a pump 
field is a mixed state of the long-lived coherent states in contrast to transmons where a vacuum state is naturally 
realized as a stationary state. This is the reason why one may consider that temporal controls of system param-
eters are required for preparation of a pure state of a KPO. In KPO systems, preparations of predetermined qubit 
states were studied, using modulation of a pump field3,13,31 and an additional drive field28, of which amplitude 
should be surpressed over a proper period of time. However, the accuracy of the preparation method using 
modulation of a pump field is degraded by the decoherence caused by photon loss31. Although the method with 
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an additional drive field with optimized phase and time dependent amplitude can have high accuracy, seeking 
such proper parameters will actually require experimental efforts, e.g., phase matching between the drive and 
pump fields28 and evaluation of the accuracy of the preparation with measurement of a KPO. In addition, the 
achievable preparation accuracy will be influenced by the measurement accuracy when the former is optimized 
using measurement results.

In this paper, we propose an alternative approach: a spontaneous and stochastic preparation of stable coherent 
states of KPOs based on homodyne detection, which does not require modulation of the pump field nor a drive 
field in contrast to the conventional methods and thus can reduce experimental efforts, and moreover we show 
a proper range of the averaging time to realize high success probability of the preparation. The stable coherent 
states are natural initial states for measurement of lifetime of a KPO, which is an essential parameter chracter-
izing the qubit. Therefore, it will be beneficial that a method to prepare the states is simple and independent 
of controllability of external fields. Very recently after the initial submission of our paper, measurement of the 
lifetime of the stable coherent states and their superpositions (cat states) were reported36. The authors prepare 
a stable coherent state using a measurement procedure, while their system has an auxiliary readout resonator 
compared to ours. Such simple measurements of the lifetime of the stable coherent state use only a continuous 
measurement of a KPO, and do not need repeated resets of the KPO using a temporally controlled drive field. 
Thus, our method can offer a simple way to extract the lifetime of a KPO. The state preparation protocol was 
used also to observe resonant cancellation of tunneling in a KPO37.

Previously, it was shown that a KPO under homodyne detection is basically in either of two coherent states 
with opposite phases34,35, and that the state of a qubit based on a KPO can be measured with homodyne detec-
tion, however without crucial analysis on detection data with measurement noise. We quantitatively show that 
the detection data, if it is averaged over an optimal averaging time to decrease the effect of measurement noise, 
has a strong correlation with the state of the KPO, and therefore can be used to accurately estimate in which 
coherent state the KPO is (stochastic state preparation). The success probability of the estimation (preparation) 
is examined taking into account the effect of the measurement noise and bit flips. We obtain the proper range of 
the averaging time to realize high success probability by using a developed minimum model, which describes 
the stochastic dynamics of the KPO under homodyne detection (similar techniques were used, e.g., to estimate 
the state of a two-level system38 and also to generate entanglement between qubits39,40). Moreover, we examine 
the dependence of the success probability on the measurement efficiency and the relative phase between the 
pump field and a local oscillator.

It is known that Rx41 and ZZ gates42 can be performed without modulation of the pump and drive fields. 
Our method of state preparation will be useful also in experimental studies of the gate operations, for example 
aiming at higher fidelity, because the method can exclude unwanted effects of possible imperfection in controls 
of the pump and drive fields. Furthermore, our method can offer implementation of the quantum information 
processing based on KPOs without temporal controls of the pump amplitude, because the universal gate sets41 
can also be performed without modulation of the pump amplitude.

Model and methods
We consider homodyne detection of a KPO illustrated in Fig. 1. Classical coherent light generated by a local 
oscillator and microwave photons emitted from the KPO are splitted by a 50/50 beam splitter and are detected 
at detectors 1 and 2. The KPO is connected to a transmission line (TL), where the emitted photons propagate. 
We refer readers to a paper which implemented a heterodyne measurement of a KPO28.

In order to take into account the effect of the homodyne detection on the density matrix of the KPO ρc , we 
use a stochastic master equation (SME) represented as34,43

KPO Detector 1

Local Oscillator

Detector 2

50/50 

TL

 

Beam splitter

Figure 1.   Schematic illustration of homodyne detection of a KPO attached to a transmission line (TL). The 
signal from the KPO and the classical coherent light from a local oscillator passing through a beam splitter are 
detected by detector 1 and 2. Information about the KPO is obtained after subtraction of the photocurrents at 
the detector 1 and 2 (Circle with a horizontal line).
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where χ , β and κ are the anharmonicity parameter of the KPO, amplitude of the pump field and the decay rate 
to the TL, respectively. We refer readers to, e.g., Refs. 9,31 for the connection between the system parameters to 
circuit models of KPOs. In Eq. (1), �LO is the relative phase of the classical coherent light of the local oscillator 
and the pump field. �W is the noise in the photon numbers measured by the two detectors, which is assumed to 
be Gaussian white noise with the mean of 0 and variance τ , and �W2 = τ43. We hereafter refer to �W as noise. 
â is the annihilation operator for the KPO, and Â�LO is defined by Â�LO = i

√
κ[exp (i�LO)â

† − exp (−i�LO)â] . 
The solution ρc(t) of the SME (1) for a given �W  represents one possible realization of the dynamics under 
homodyne detection. The ensemble average of ρc(t) over �W in the SME (1) coincides with the density operator 
of the master Eq. (S2) which governs time evolution of the KPO when it is not measured (See Supplementary 
Section S1 for the Hamiltonian and master equation of a KPO).

Our model assumes infinitely large bandwidth of the detectors43, while an actual detector should have finite 
bandwidth. However, we consider that this will not make a considerable difference in results from measurements 
with finite bandwidth because we do not use an additional external field which excites the KPO and we consider 
a sufficiently strong pump field which narrows the spectrum of the output field9.

For κ/4|χα|2 ≪ 1 , which was realized, e.g. in Ref.9, the stationary state of the master equation (S2) is approxi-
mately represented as (|α��α| + |−α��−α|)/2 with8,44

As shown later, the state of the KPO jumps between |α� and |−α� . We aim at stochastically preparing either of the 
states using the data measured by the detectors. In order to evaluate the efficiency of the protocol, we use the fidel-
ities defined by F± = F [ρc(t), |±α��±α|] , where F [ρa, ρb] =

(

Tr[
√√

ρaρb
√
ρa]

)245. (The fidelities between 
the state of a KPO and these coherent states have not been examined with SME (1) to the best of our knowledge.) 
In numerical simulations, we assume the followings: the initial state of the KPO is (|α��α| + |−α��−α|)/2 to 
which the KPO relaxes due to the decay to the TL44 when the KPO is not measured; all the system parameters 
are fixed during the homodyne detection. We used QuTiP46 for a part of numerical simulations.

In Ref. 47, the authors aim at taking a cat state out of a KPO avoiding unwanted disturbance due to the Kerr 
nonlinearity. To avoid such disturbance of emitted photons, they use tailored time dependence of a pump field. 
On the other hand, we do not aim at taking the cat state out of a KPO, but rather aim at clarifying the correlation 
between measurement results and the state of the KPO from a point of view of state preparation. Therefore, we 
use a fixed pump field in contrast to their paper, and the Kerr nonlinearity does not cause a crucial problem to 
our purposes.

Results
Figure 2a,b shows the time dependence of the fidelities F± , where we assumed that there is no photon loss 
(the effect of photon loss is examined in the section entitled “Imperfect detection”). The time dependence of 
F± implies that the state of the KPO jumps between |α� and |−α� , and remains in either of the coherent states 
between jumps. Importantly, we cannot obtain F± in actual measurements. In the following, we investigate how 
accurately we can estimate the state of the KPO from the measurement results.

(1)
ρc(t + τ) = ρc(t)− i

[

−
χ

2
â†â†ââ+ β(â†â† + ââ), ρc(t)

]

τ +
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κ âρc(t)â
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κ

2

{

â†â, ρc(t)
}

]

τ

− i
√
κ
[

exp (−i�LO)âρc(t)− exp (i�LO)ρc(t)â
†
]

�W(t)− Tr[ρc(t)Â�LO ]ρc(t)�W(t),
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(
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χ2
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Figure 2.   Time dependence of the fidelities, F± = F [ρc(t), |±α��±α|] . Panels (a) and (b) are for F+ and F− , 
respectively. The used parameters are χ/2π = 3 MHz , β/2π = 3 MHz and κ/2π = 3 MHz . α given by Eq. (2) 
is approximately 1.38− 0.18i . These parameters are experimentally feasible9.
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State estimation.  Measurement results that observers can obtain in the homodyne detection is the differ-
ence between the numbers of photons detected by the two detectors. We use this data for the estimation of the 
state of the KPO. The difference between the numbers of photons detected by detectors 1 and 2 from t to t + τ 
is represented as43,48

where τ is much smaller than β−1,χ−1 and κ−1 . Here, ǫ−1 is the product of the square root of phase velocity in 
the TL and the intensity of the classical coherent light43. When the KPO is in either the two coherent states, that 
is, ρc = |±α��±α| , �N can be written as

with δθ = arg[α] −�LO . Importantly, the sign and amplitude of the second term depend on the state of the KPO 
and δθ , respectively. We mainly discuss the case for δθ = π/2 , which maximizes the second term of Eq. (4). The 
effect of the deviation of δθ from π/2 is examined in the section entitled “Imperfect detection”.

If the amplitude of the noise |�W | is always smaller than 2|α|
√
κτ , we can identify the state of the KPO from 

the sign of �N(t) . However, as shown below, |�W | can be larger than 2|α|
√
κτ . Therefore, it is important to 

take time average of �N(t) for a certain period of time to decrease the effect of the noise. The photon-number 
difference averaged from t − Ta to t is represented as

where we assume Ta is integer multiple of τ.
We estimate the state of the KPO at time t using the sign of N̄ , that is, we estimate the KPO to be in |α��α| for 

N̄ > 0 and |−α��−α| for N̄ < 0 , respectively. The estimated state is represented as

Figure 3a–c shows the time dependence of N̄  for various values of Ta . For Ta = 10−4 µ s, the fluctuation of N̄ 
is too larger to identify the state of the KPO due to the noise (Fig. 3a). On the other hand, for Ta = 10−1 µ s, N̄ 
approximately takes either of ±2|α|

√
κτ (Fig. 3b). For Ta = 10 µ s, the second term of Eq. (4) is smeared because 

of bit flips and the long averaging time (Fig. 3c).
Figure 3d–f shows the fidelity of the estimation defined by F [ρest(t,Ta), ρc(t)] . The fidelity is close to 0 or 

1 most of the time, and thus the distribution of the fidelity is bimodal. The fidelity of approximately zero cor-
responds to the case that the estimated state is |±α� while the KPO is actually in |∓α� . The fidelity is larger than 

(3)�N(t) =
1

ε

(

�W(t)+ τTr[ρcÂ�LO ]
)

,

(4)�N± =
1

ǫ

(

�W(t)± 2|α|
√
κτ sin(δθ)

)
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τ
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Ta/τ
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k=0
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Figure 3.   Time dependence of N̄ and F [ρest(t,Ta), ρc(t)] for Ta = 10−4 µs (a, d), Ta = 10−1 µs (b, e), 
Ta = 10 µs (c, f). The used parameters are the same as in Fig. 2. The data is represented by lines and dots in the 
upper and lower panels, respectively.



5

Vol.:(0123456789)

Scientific Reports |         (2023) 13:1606  | https://doi.org/10.1038/s41598-023-28682-1

www.nature.com/scientificreports/

0.99 most of the time for Ta = 10−1 µs . On the other hand, the fidelity for Ta = 10−4 µ s and 10 µ s can become 
approximately zero due to the too short and too long averaging times, respectively, thus the time-averaged fidel-
ity is decreased.

Proper averaging time for accurate estimation.  Figure  4 shows the Ta dependence of 
F [ρest(t,Ta), ρc(t)] time averaged over a 1000 µ s period. Hereafter, we refer to the averaged fidelity as the suc-
cess probability of estimation. The success probability is higher than 0.987 around Ta = 10−1 µ s. It is clearly seen 
that there is a proper range of Ta to obtain the high success probability. The proper range of Ta for a given value 
of the success probability K is bounded from below due to the noise and bounded from above due to smearing 
by the time averaging. In the following, we obtain the upper bound TU

K  and lower bound TL
K of Ta for a given 

success probability K.

Lower bound TL
K

.  We consider the case that the averaging time Ta is much shorter than the typical duration in 
which the KPO remains in either of |±α� . Then, �N(t) is typically represented as Eq. (4) and fluctuates around 
either of ±2|α|

√
κτ/ε due to the Gaussian noise �W , except when jumps occur. The fluctuation of N̄(t) has the 

Gaussian distribution with the standard deviation of σ(Ta) =
√

τ 2/Taε2 , where the effect of jumps to N̄(t) is 
neglected because jumps seldom occur in Ta . Then, the success probability K can be related to Ta as

where K is the same as the ratio of the colored area to the total area under the Gaussian curve illustrated in Fig. 5a. 
Ta in Eq (7) equals to the lower bound of the averaging time, TL

K , to obtain the success probability higher than or 
equal to K. Therefore, we can obtain TL

K by solving Eq. (7). For example, TL
K for K = 0.95 is

Upper bound TU
K

.  Averaging over a long period of time can degrade the accuracy of the estimation of the state 
of the KPO due to the jump. We assume that this smearing effect determines TU

K  , and derive TU
K  by developing a 

binomial-coherent-state model that describes the stochastic dynamics of the KPO in Eq. (1).
In the binomial-coherent-state model, we assume that the state of the KPO can only take either of |±α� , and 

jumps between them with a probability of p (= �dt) in a small time dt. This stochastic process can be represented 
as the binomial process in the two coherent states. Then, the mean time interval between jumps is

because � is the average rate of jumps. Figure 5b illustrates a typical time evolution of N̄ . Due to smearing effect 
and jumps, wrong estimations occur in the period of Ta/2 per jump. The error rate, defined by the ratio of the 
duration of the wrong estimation to the total measurement time, can be written as Ta/2E[Ti] , and the error rate 
is also written as 1− K  . Thus, we obtain 1− K = TU

K /2E[Ti] , where we replaced Ta by TU
K  . Using Eq. (9), we 

obtain TU
K  as

(7)K =
∫ ∞

−2|α|
√
κτ/ε

dx
1

σ(Ta)
√
2π

exp
[ −x2

2σ 2(Ta)

]

,

(8)TL
0.95 =

1.652

4|α|2κ
.
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Figure 4.   Success probability, defined by F [ρest(t,Ta), ρc(t)] time-averaged over a 1000 µ s period, as a 
function of Ta . The used parameters are the same as in Fig. 2.
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Now, we obtain � by the following manner. In the binomial-coherent-state model, the ensemble average of the 
density operator can be represented as

where N = t/dt , and we assumed that the KPO is in |α� at the initial time. As shown in Supplementary Section S2, 
the expectation value of x̂ = (â+ â†)/2 corresponding to ρ̄b(t) in Eq. (11) is written as �x̂� = Re[α] exp(−2�t) 
in the limit of dt → 0 . Because the binomial-coherent-state model approximates the dynamics governed by the 
SME, ρ̄b(t) approximately coincides with the solution of the master equation (S2) (Note that the ensemble aver-
age of ρc(t) over �W coincides with the density operator of the master equation). Therefore, we can obtain � 
by fitting Re[α] exp(−2�t) to �x̂� with the master equation (S2) (the detailed discussion and results of the fitting 
can be found in Supplementary Section S2).

In Ref. 9, it is shown that the effect of the quantum jumps between |α� and |−α� manifests itself as finite width 
of a peak in power spectral density because the width is determined by the timescale of the fluctuations in the 
phase of the state of a KPO. The phase fluctuation is suppressed with the increase of the pump amplitude49. On 
the other hand, in our simulation the jumps are observed more directly in the difference between the numbers 
of photons detected by detectors 1 and 2, �N(t) . The jump rate determines the upper bound of averaging time 
to obtain high success probability.

Numerical results.  Figure 6 shows the Ta dependence of the success probability together with TL(U)
0.95  for two 

different parameter sets. It is seen that the values of TL(U)
K  obtained in the above section approximate well the 

numerical ones.
Figure 7a represents the high success probability regime in the Ta-|α| plane. It is seen that TL

K decreases with 
the increase of |α| as analytically exemplified in Eq. (8) because the effect of the noise to the result of the estima-
tion becomes small for large |α| . On the other hand, TU

K  increases with |α| because E[Ti] increases exponentially 
with |α|2 50 as shown in Supplementary Section S2. Thus, the range of Ta , which gives the high success probability, 
increases with |α| . The maximum success probability also increases with |α| . We attribute this to the fact that the 
two quasi stable states, between which the KPO jumps, can be approximated by |±α� more accurately in Eq. (2) 
when |α| increases21.

We examine the proper range of the averaging time for smaller photon decay rate κ . Figure 7b represents the 
high success probability regime in the Ta-κ plane. It is seen that TL

K increases with the decrease of κ because the 
output field from the KPO becomes weak as κ decreases. This implies that we need longer averaging time due 
to the weaker output field for smaller κ . However small κ rather enlarges the proper range of the averaging time 
because TU

K  increases with the decrease of κ due to lengthened E[Ti] (see Supplementary Section S2).

(10)TU
K = 2(1− K)/�.

(11)ρ̄b(t) =
N
∑

k=2n

NCkp
k(1− p)N−k|α��α| +

N
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Figure 5.   Panel (a): Schematic illustration of the distribution of N̄ fluctuating around �N
′ = 2|α|

√
κτ/ε . The 

ratio of the colored area to the total area under the Gaussian curve is the same as the success probability K. Panel 
(b): Schematic illustration of a typical time evolution of N̄ in the binomial-coherent-state model in which the 
noise is neglected. The dashed and solid lines represent N̄ for Ta = 0 (without time averaging) and 0 < Ta < Ti 
(with time averaging), respectively.
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Imperfect detection.  In the previous sections, we considered the ideal homodyne detection without pho-
ton loss, and we set δθ = π/2 in order to maximize the amplitude of the second term of Eq. (4). In this section, 
we examine the effect of the photon loss and the deviation of δθ from the ideal value on the success probability 
of estimation.

We consider the case that a proportion η of photons are detected, while the rest are lost. We assume that 
photons leaked from the KPO do not return to the KPO. We refer η as the efficiency of the measurement. For 
the measurement with the efficiency η , the SME and measurement result are represented as43,51

and

(12)

ρc(t + τ) = ρc(t)− i
[(

ωs − χ −
ωp

2
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â†â−
χ

2
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κex âρc(t)â
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κex
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Figure 6.   Ta dependence of the mean of F [ρest(t,Ta), ρc(t)] for κ = χ , β = χ (a) and κ = χ , β = χ/2 
(b). The parameters for panels (a) and (b) correspond α = 1.38− 0.18i and α = 0.90− 0.24i , respectively. 
The vertical red (black) line represents TL(U)

0.95 = 1.86× 10−2 µs (7.52× 10−1 µs) in panel (a) and 
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Figure 7.   (a) TU
K

 and TL
K

 as a function of |α| in Eq. (2). The solid and dashed lines are for TU
K

 and TL
K

 , 
respectively. The black and red data are for K = 0.95 and 0.99, respectively, where β was changed, while K is 
fixed, in order to change |α| . (b) The same things as (a) but as a function of κ . The other parameters are the same 
as in Fig. 2.
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As in the previous section, we assume that the averaging time Ta is much shorter than the typical duration that 
the KPO remains in either of |±α� . When ρc = |±α��±α| , �N  fluctuates around ±2|α|

√
κτ sin(δθ)η/ε ; the 

standard deviation of N̄ is σ(Ta, η) =
√

τ 2η/Taε2 . The success probability K can be related to Ta as

We can obtain TL
K by solving Eq. (14). For example, TL

K for K = 0.95 is

On the other hand, TU
K  in Eq. (10) does not depend on η and δθ because it is derived by using the master equa-

tion (S2) that does not have η and δθ.
Figure 8 shows the dependence of the success probability on Ta for various values of η and δθ with TL

K and 
TU
K  . The success probability decreases on the left side of its peak as η decreases or δθ deviates from π/2 . On the 

other hand, the right side of the peak is not sensitive to η and δθ . These results are consistent with the analysis 
of TL

K and TU
K .

Conclusions and discussions
We have studied the stochastic state preparation of a KPO based on homodyne detection. We have shown 
that the measured data, if it is time averaged with a proper averaging time to decrease the effect of noise, has a 
strong correlation with the state of the KPO, and therefore can be used for estimation of the state of the KPO. 
We have quantitatively examined the success probability of the estimation taking into account the effect of the 
noise and bit flips, and have shown that the success probability is higher than 0.987 with the parameter used. We 
have developed a binomial-coherent-state model, which describes the stochastic dynamics of the KPO under 
homodyne detection, and by using it we have obtained a proper range of the averaging time to realize the high 
success probability. Our analysis based on the binomial-coherent-state model implies that the success probability 
is further increased as the size of the coherent state becomes large. Furthermore, we have examined the effect of 
the imperfection of the measurement and the choice of the phase of the coherent light of the local oscillator, on 
the state estimation. Our scheme of state preparation of KPOs does not require a drive field nor modulation of 
the pump field in contrast to conventional methods.

In Supplementary Section S3, we examine alternative protocols, using temporal controls of system param-
eters, for preparation of pure states of a KPO. The protocol with an auxiliary time dependent drive field can give 
slightly higher success probability than our method when the phase and time dependence of the amplitude of 
the drive field are properly chosen. However, finding the proper parameters will actually require experimental 
efforts. Despite its simplicity, the measurement-based protocol can give success probability comparable to that of 
the protocol with a temporally controlled drive field. Moreover, our method can give higher success probability 
than the method to create a cat state for the used parameters.

Although we focused on preparation of the two stable coherent states in this paper, this method followed by 
single-qubit gates conditioned on measurement results can generate an arbitrary qubit state. Our scheme of state 
preparation can be applied straightforwardly to multi-KPO systems when the time interval of jumps of KPOs is 
sufficiently long. It is also expected that turning on the ferromagnetic or anti-ferromagnetic coupling between 
KPOs42 can increase the efficiency of state preparation by mitigating bit flips of individual KPOs.

(14)K =
∫ ∞

−2|α|
√
κτ sin(δθ)η/ε

dx
1

σ(Ta, η)
√
2π

exp
[ −x2

2σ 2(Ta, η)

]

.

(15)TL
0.95 =

1.652

4|α|2κ sin2(δθ)η
.

 0.6

 0.7

 0.8

 0.9
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Figure 8.   Dependence of the success probability on Ta for various values of η and δθ . Panel (a) is for δθ = π/2 ; 
panel (b) is for η = 1 . The other parameters are the same as in Fig. 2. In panel (a), the vertical gray, green and 
red dashed lines represent TL

0.95 = 1.86× 10−2 , 3.73× 10−2 and 1.86× 10−1 µs , respectively; in panel (b), 
the vertical gray, green and red dashed lines represent TL

0.95 = 1.86× 10−2 , 3.73× 10−2 and 1.59× 10−1 µs , 
respectively. The vertical black dotted line is for TU

0.95 = 7.52× 10−1 µs in both panels.
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