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Abstract

Single hole spins in silicon quantum dots are emerging as a promising candidate for use

in spin qubit applications. However, experimental studies of single-hole spins have been

hindered by challenges in fabricating stable hole-based devices. Particularly, it has been

challenging to define silicon quantum dots that are capable of operating down to the

last hole. The primary motivation for reaching the last hole is that the fundamental

properties of quantum dots, such as the orbital momentum, g-factor, and spin coherence

time are strongly dependent on the total charge occupation. Reaching the last hole

allows systematic and reproducible studies of the physical properties of hole spin states.

These studies are therefore fundamental for optimizing single-hole spins towards spin

qubit applications.

In this thesis we perform electrical studies of planar silicon MOS quantum dot devices.

These devices include an adjacent charge sensor, allowing direct measurement of the

number of holes on the quantum dot. We demonstrate an extremely stable single and

double quantum dot, that is suitable for excited-state and magnetic spectroscopy mea-

surements

Next, we characterise the orbital shell structure of a planar silicon MOS quantum dot.

The results show that the first six holes occupy the Fock-Darwin orbitals with spin filling

consistent with Hund’s rule. The hole-hole Coulomb interaction energy is found to be

large, approximately 90% of the orbital energy, which has the potential to complicate

hole spin-orbital states in quantum dots containing many holes.

We then isolate a single hole in a known orbital state and study the Landé g-tensor.

These results show that the hole g-tensor is primarily defined by the symmetry of the

electrostatic confinement profile. We find the g-tensor orientation can be electrically

controlled, and that the effective g-factor can be modulated to take any value between

0 and 4. Finally, we develop a 3D Luttinger model of the single hole quantum dot in

order to quantitatively explain the physical origin of the observed g-tensor modulation.

Overall this thesis demonstrates a step towards fully characterised single hole spins for

use in spin qubit application.
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General Introduction

Building artificial atoms using holes

Electricity is usually considered to be the flow of negatively charged electrons. How-

ever, this is not always true. In a special class of materials, known as semiconductors,

electricity is sometimes carried by a different type of particle. These particles are called

holes, and they carry a positive charge. Although they sound unfamiliar, holes are used

in half of all semiconductor electronics. Today, the state-of-the-art in electronics is arti-

ficial atoms: nano-scale transistors so small they behave like man-made atoms. Artificial

atoms harness the quantum behavior of individual electrons, and can be used to develop

a new generation of computers, known as quantum computers. However, despite over 50

years of research, almost all technological developments have focused on electron-based

electronics. There is still very little understanding of holes. Could it be possible to build

an artificial atom out of holes?

This thesis involves studying the properties of holes using tiny nano-scale transistors.

With precise control over the electromagnetic environment we have, for the first time,

isolated one individual hole using silicon Metal-Oxide-Semiconductor (MOS) technology.

This is a huge step in bringing the understanding of holes back on par with electrons.

Using these devices we have studied the unique properties of artificial atoms that are

made using holes, instead of electrons. Our results show that hole artificial atoms have

very different properties to electron artificial atoms. By understanding and harnessing

the unique properties of holes, we will have more tools to develop new and exciting

semiconductor electronic devices. Holes, which sound like nothing, may just be the

thing that future computers are made of.
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Introduction and outline

"Silicon is the second most abundant element present within the earths crust. Due to

its solid state electrical properties it has found prolific use in the modern

micro-electronics industry. Historically silicon has been manufactured by compressing 3

million kg of oxygen into a volume of 1 cm3 and then heating this system to 2 billion

Kelvin (3.6 billion Fahrenheit). It is distributed at random by stellar winds, and during

supernova explosions."

Thesis Introduction

What is a Quantum Dot?

A semiconductor quantum dot is a small structure capable of trapping an exact and

tunable number of electrons or holes. Using modern nano-fabrication techniques it has

become possible for some quantum dot systems to trap just one single electron. The

size of a quantum dot is such that the trapped charge is confined in all three spatial

dimensions. Therefore, quantum dots are a real world example of the textbook quantum

mechanics problem, the ‘particle in a box’. The specific size of confinement required

for a quantum dot is determined by the Fermi wavelength λF . The Fermi wavelength

λF in semiconductors is typically on the order of tens of nanometers1. This size scale

is achievable with modern semiconductor processing techniques, and a wide range of

studies on quantum dots have been performed beginning, in the 1990’s. Studies of

quantum dots continue today, as quantum dots are developed for new materials and

optimised for specialized applications.
1For comparison, the Fermi wavelength in metals is typically less than a nanometer.
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How can a quantum dot be formed?

There are a number of ways in which semiconductor quantum dots can be formed. The

confinement of a quantum dot is typically achieved through electrostatic potentials or

material interfaces, and often includes a combination of both. Electrostatic confinement

has the advantage that it can be tuned in-situ, while material based confinement is fixed.

The exact symmetry of the quantum dot confinement profile influences the quantized

energy spectrum, and therefore can determine the properties of the device.

In Figure 1 we briefly summarize four different examples of semiconductor quantum

dots. The quantum dot structure used in this thesis is based on silicon Metal-Oxide-

Semiconductor (MOS) technology. This particular structure is shown in the final column

labeled planar (2D) quantum dots in Figure 1. The schematic shows the basic operation

of a planar quantum dot. A sheet of electrons or holes is formed at the heterojunction

interface, indicated by the blue dashed line. This sheet of charge is confined in the

vertical direction by the heterointerface band bending. However, the charge is free to

move in the other two dimensions, hence the name 2D (or planar) structures. The metal

gates are fabricated into specific shapes and are used to deplete the sheet of charge

directly below each gate. This is indicated by the scanning electron micrograph image,

which shows an example of a MOS device, where a quantum dot is formed at the region

indicated by the white circle [1].

Why are quantum dots valuable?

The ability to localize single electrons (or holes) in a controllable structure has significant

applications for both fundamental research, and in technological applications. In terms

of fundamental research, quantum dots are ideal for investigating the quantum properties

of individual charge states, particularly the spin. Prior to the development of quantum

dots, spin properties were typically investigated using ensemble averaged measurements.

However, quantum dots offer the ability to localize and measure one individual spin state

and perform measurements in a controlled manner. This has allowed valuable insight

into the underlying spin physics of semiconductor systems.

The ability to control the spin and charge state of a quantum dot has a range of new and

novel technological applications. These include the use of quantum dots as extremely

2
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Nanowire based

quantum dots

Planar (2D)  

quantum dots 

Schematic

Example of 

a device

Key 

Properties

Source Drain

 - Deterministically placed 

dopant atom as quatum dot. 

 - Charges are confined by 

radially symmetric atomic 

potential.

 - Single atom transistor is 

conceptially beautiful.

 - Tunnel coupling set 

primarily by dopant spacing.

 - Maximum occupation of 

two charges bound to the 

dopant.

 - Extremely low disorder.

 - Nano-crystal as a zero 

dimensional structure.

 - Confinment symmetry 

defined by the shape and 

structure of the nano-crystal.

 - Hard wall potential as 

confinement.

 - Placement and integration 

of multiple quantum dots is 

difficult.

 - Tunnel coupling set 

primarily by spacing between 

nano-crystals.

 - Material based hard wall 

confinement in 2D and 

electrostatic confinement in 

1D.

 - In-situ control of tunnel rate 

with barrier gates.

 - Difficult to couple multiple 

quantum dots across 

different nanowires.

-Interface disorder potential 

very close to confined 

charge.

 - 2DEG or 2DHG formed at 

the heterojunction.

 - Electrostatic control of 

lateral confinement by surface 

gates.

 - Allows wide range of in-situ 

tunability.

 - Freedom to fabricate an 

arbitrary gate patern including 

multiple adjacent quantum 

dots or adjacent charge 

sensors (QPC's or SET's).

-Interface disorder potential 

very close to confined charge.

Structure

Nano-crystal

Dopant

Figure 1: Comparison of different quantum dot structures: First column is for quantum dots
formed using single dopant atoms. The example shows a deterministically placed phosphorus atom
coupled to a source (S) and (D) contact [2]. Second column is for quantum dots formed using zero
dimensional material structures. The example image shows a self assemble Ge ’hut’ nanocrystal that
is deposited on a Si substrate. Source and drain contacts are fabricated for electrical measurements
[3, 4]. Third column is for quantum dots formed by one dimensional nanostructures. The example
shows an InSb nanowire, with a layer a electrostatic gates directly below, which can be used to form
the quantum dot [5]. Fourth column is for quantum dots formed using two dimensional structures.
The example shows an SEM of an AlGaAs/GaAs quantum dot. Light grey gates deplete the 2DEG
at the heterointerface and form a quantum dot in the location of the white circle [1]. Schematics are
reproduced from [6].

sensitive electrometers [7], for storing quantum information as a qubit1 [8], for use as

artificial atoms [9], or for analogue quantum simulations [10, 11]. A primary motivation

for the research in this thesis is the use of quantum dots for storing quantum information

by controlling the spin spin state of a trapped electron or hole.

What is the state-of-the-art for single-spin control in quantum dots?

In 1997 Loss & DiVincenzo [8] first proposed that quantum computation can be achieved
1Analogous to the bit, which is a unit of classical information used in computing. A qubit (short for

quantum bit) is the fundamental unit of quantum information, used for quantum computing.
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by using the spin projection of a single-electron in a quantum dot as a qubit. Operation

of this type of qubit (typically known as a Loss-DiVincenzo qubit or a single-spin qubit)

requires the ability to achieve high fidelity coherent control of a single-electron (or single-

hole) spin-state in a quantum dot. Significant progress towards full control of a single-

spin was initially made using laterally defined AlGaAs/GaAs quantum dots. In 2000

Ciorga et al. [1] demonstrated control of a lateral GaAs quantum dot down to the single

electron regime1. In 2004 Elzerman et al. [12] demonstrated single-shot readout of the

single-electron spin state. Following this, in 2006 Koppens et al. [13] demonstrated

coherent control of a single-electron spin using Electron Spin Resonance (ESR). The

ESR was driven using a proximal strip-line to produce an oscillating magnetic field at

the quantum dot. It was found that a major challenge for coherent spin control in

GaAs quantum dots is the abundance of the magnetic nuclei. The nuclear spins strongly

interact with the single electron spin, and this limits the time scale for coherent spin

control to tens of nanoseconds in GaAs quantum dots [14, 15].

An attractive way to increase the time scale for coherent spin control is to move to mate-

rials with predominately non-magnetic nuclei. This has provided significant motivation

for research into quantum dots based in Group IV material systems, since they can be

purified to remove nearly all the magnetic isotopes. Silicon MOS based quantum dots

are a particularly promising candidate for developing single-spin qubits. This is because

they have the potential for integration with the modern micro-electronics industry, which

is already based on silicon MOS technology. In 2009 Lim et al. [16] demonstrated control

of a lateral silicon MOS quantum dot down to the single electron regime. Following this,

in 2014 Veldhorst et al. [17] achieved coherent control of a single-electron spin for time

scales up to 120µs. This showed that by using magnetically quiet materials it is possible

to enhance the spin coherence time by a factor of 105.

Electron spins in lateral (MOS) silicon quantum dots are an extremely successful system

for spin control [6, 18]. The challenge now is scaling the technology up, so that multiple

spin states (spin qubits) can be individually controlled on a single quantum device.

The technological challenges for scaling up are; (1) maximizing the spin lifetime, (2)
1Similar to the stunning results of Tarucha et al. [9] who used vertically defined AlGaAs/GaAs

quantum dots to show artificial atom shell structure in 1996.

4



LIST OF FIGURES

maximizing the speed of coherent spin control, (3) ensuring individual control of multiple

spin states, and (4) ensuring that there is controllable coupling between the spin states1.

In 2015 Veldhorst et al. [19] used a lateral (MOS) quantum dot in isotopically purified

silicon to achieve coherent control of two coupled spin states with an individual spin

control speed of around 400kHz (one full spin rotation every 2.5µs).

A promising way to scale up single-spin qubit systems is to use electric fields to control

the spin state, rather than magnetic fields. All-electric spin control has the advantage

that quantum dot designs already include local electric gates, which are suitable for

addressing individual spin states. This would remove the need for a bulky ESR strip

line, and free up space in the design for scaling up to multiple coupled quantum dots.

In addition, spin manipulation speed depends on the proximity of the driving field to

the spin state. Therefore the local electric gates could provide faster spin control than

magnetic manipulation, since the local electric gates are closer to the spin state than

the magnetic strip line. However, electron spins in Group IV quantum dots do not

intrinsically couple to electric fields.

Hole spins in Group IV quantum dots have recently received significant interest for use

as fast scalable single-spin qubits [18]. The enhanced spin-orbit coupling of the valence

band allows an intrinsic mechanism for hole spins to couple to electric fields. Using hole

spins, instead of electrons, can potentially keep the advantages of long spin coherence

times, and industry compatibility that the Group IV material systems offer, while adding

the potential for scalable, fast electric manipulation.
1(1) defines how long quantum information can be stored using a spin state. (2) defines the time

required to control the spin state. Together criteria (1) and (2) can be used to determine how many
spin control operations can be performed before the quantum information is lost. (3) is important for
scalability since it should be possible to selectively control each spin on a device with multiple quantum
dots. (4) is required in order to achieve the entangled states necessary for quantum computation.

5
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What is the state-of-the-art for single hole-spin control in Group IV quantum

dots?

The majority of the research into single-spin qubits has focused on electron spin states.

Recently, there have been a number of promising experimental developments for hole

spins confined in Group IV quantum dots1. The most significant recent developments

have been the demonstration of rapid all-electric control of hole spins quantum dots

based on silicon nanowires by Maurand et al. [20, 21] (2016), germanium hut-wires by

Watzinger et al. [22–24] (2018), and germanium MOS devices by Hendrickx et al. [25,

26] (2019). Hole spins have been shown to have spin control rates up to 150MHz (one

full spin rotation in 7ns), which demonstrates the potential of single-hole spins for use

as fast scalable spin-qubits. While these recent experiments have shown a improvement

in the spin control speed, the coherence time of hole spins has been found to be short,

on the order of several hundred nanoseconds. Determining the underlying mechanisms

that lead to this short spin coherence times, even in group IV quantum dots, is an open

question for hole spin physics.

These recent experiments have shown the high potential that hole-spins have for spin

qubit applications. However, there still remains fundamental gaps in the understanding

and technology of hole based quantum dots. While it is now standard for n-type MOS

quantum dots to reach the last electron regime, it has proven a challenge to reach the

last hole regime in identical MOS devices [27–29]. The previously mentioned hole-spin

manipulation experiments of Maurand et al., Watzinger et al. and Hendrickx et al. have

been performed in the few-hole regime, where the absolute number of holes occupying

the quantum dot is unknown. While this is not inherently a draw-back, most electron

spin-qubit experiments have operated in the one electron regime [6, 30].

Reaching the last hole regime would allow two key advantages; (1) it becomes possible

to isolate a single hole and perform a systematic study the spin properties, and (2) it

is possible to sequentially add holes back into the quantum dot in order to characterise

the quantum dot orbital structure and observe hole-hole interaction effects. Studies

of quantum dot orbital structures and the single electron spin physics have provided
1These have been reviewed in the opening literature review sections of chapters 2, 3 and 4 of this

thesis.
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significant insight and have been key in the development of electron spin qubits in silicon

quantum dots [6] (as discussed in the previous subsection). However, since it remains

a challenge to isolate a single hole in silicon, many questions about the underlying spin

physics of holes remain unanswered.

What new information does this thesis produce?

There are three primary questions that we address in this thesis:

(1) - Is it possible to isolate one single hole in a silicon MOS quantum dot?

(2) - What is the orbital shell structure for holes in silicon MOS quantum dots?

(3) - What are the underlying physical properties of a single-hole spin?

To address these questions we study the electrical and magnetic properties of p-type

silicon MOS quantum dots. We demonstrate operation down to the last hole, allowing

the isolation of one single hole, thereby achieving for p-type MOS technology what

has been achieved for n-type quantum dots more than 10 years earlier [16, 31]. A

full set of electrical characterisation measurements is included, which demonstrates that

these devices offer a stable and tunable platform for hole spin control. Experimental

operation down to a single hole provides access to a range of valuable spectroscopic

measurements. We study the orbital spectrum of the hole quantum dot, and characterise

the sequence that hole spins fill into the quantum dot. Finally, we have characterised

the 3D Landé g-factor anisotropy of a singly occupied hole quantum dot and developed

a theoretical model to describe a single hole spin in a silicon quantum dot. This provides

new understanding of the underlying spin-orbit physics of holes spin states. This thesis

presents a systematic study of the fundamental physics of single hole spins in silicon

quantum dot devices, and demonstrates a step forwards for the technology available to

p-type quantum electronic devices.
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Thesis Outline

Chapter 1 provides the background information and concepts relevant for the experi-

mental work of this thesis.

Chapter 2 reports the first operation of a silicon MOS single quantum dot down to the

last hole.

Chapter 3 reports spectroscopic measurements characterising the orbital shell structure

and the spin filling sequence of a single hole quantum dot.

Chapter 4 reports an experimental characterisation of the single hole Landé g-tensor,

and includes a theoretical model to support the analysis of the underlying physics for

single hole spin states.

Chapter 5 concludes this thesis by providing a summary of the key results, an outlook,

and suggestions for future work.
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Chapter 1

Background information

"Despite what you may have been told,

holes are not simply heavy electrons."

Alex Hamilton

Introduction

In this chapter we provide the background information relevant to the experimental

results presented in chapters 2, 3 and 4. In section 1.1 we introduce fundamental elec-

trostatic properties of quantum dots. In section 1.2 we discuss the operation and optimi-

sation techniques employed in quantum dot charge sensing. In section 1.3 we introduce

the background details of the orbital physics involved in quantum dots. In section 1.4

we discuss spin-qubits, which are a primary motivation for studying spins in quantum

dots. Finally in section 1.5 we summarize the main difference between hole and electron

spin states in silicon devices. This background chapter concludes with Table 1.2, where

we compare the observed spin properties of electrons and holes in recent experiments.

9



1. Background information

1.1 Electrical transport properties for quantum dots

One of the most fundamental techniques to characterise semiconductor quantum dots is

to observe the transport through the device. In this section we provide the background

information related to electrical transport in single and double quantum dot devices. In

section 1.1.1 we introduce the constant interaction model and the key parameters for

understanding the electrostatic response of a quantum dot. In section 1.1.2 we discuss

the fundamental details of transport through a single quantum dot. In section 1.1.3 we

discuss how transport measurements can provide spectroscopic insight into quantum dot

orbital structure. Finally, in section 1.1.4 we review transport through two quantum

dots in series.

1.1.1 Constant interaction model

The fundamental properties of electrical transport through a quantum dot can be under-

stood in terms of the discrete quantized energy levels. These energy levels are defined

by two factors: the charging energy due to Coulomb interactions, and the discrete single

particle energies of the quantized system. The constant interaction model is a model that

describes the electrostatic response of the quantum dot energy levels. In the constant

interaction model it is assumed that the two factors (the capacitive Coulomb interactions

and the single particle energy levels) are independent. In this section we focus on the

Coulomb interactions, and the corrections due to the single particle energy spectrum are

discussed in section 1.3.

A schematic circuit digram of a single quantum dot is shown in Figure 1.1(a). The total

energy of the quantum dot can be controlled using voltages applied to the Source VS, the

Drain VD and the Gate (or gates) VG, which capacitively couple to the charges confined

in the quantum dot (CS, CD, and CG respectively). The energy spectrum of the dot can

be modelled by treating the system as an capacitor with an integer charge occupation.

This simplified electrostatic model is known as the constant interaction model. The

10



1.1. Electrical transport properties for quantum dots
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Figure 1.1: Single quantum dots and Coulomb blockade: (a) Shows an electrostatic model of a
single quantum dot coupled to a source and drain ohmic contact. A source-drain bias VSD = VS-VD

can drive a current, which is then monitored using a current (I/V) preamplifier. Tunneling between
the dot and contacts is represented by resistor and tunnel rates Γi. (b) Shows a schematic of the
electrochemical potential levels when the Nth quantum dot level µN lies in the small source-drain bias
window (µS − µD). A source-drain current can pass via tunneling onto and off the µN quantum dot
level, as indicated by the green arrows. (c) Here the quantum dot chemical potential has been tuned
such that the total charge of the dot is fixed at N. In this configuration the source-drain current is
Coulomb blocked. (d) Schematic of the source-drain current ISD for a quantum dot as a function of
the plunger gate voltage VG. Blue and red dots indicate the VG that corresponds to the schematic of
(b) and (c) respectively. Reproduced from [30].

energy of a single quantum dot (shown in Figure 1.1(a)) U(N) is given by,

U(N) =
(−|e|(N −N0) + CSVS + CDVD + CGVG)2

2C
+
∑
N

En,l(B) (1.1)

where N is the number of charges confined in the dot, N0 is the background charge offset,

and C is the total capacitance given by C = CS+CD+CG. The last term in Equation

1.1 is the sum over all occupied single-particle energy levels to include orbital and spin

effects to the constant interaction model. This model gives a ladder of discrete energy

levels identified by the charge occupation.

The electrochemical potential µ(N) of the dot can be calculated from the energy differ-

ence between two consecutive energy levels. Based on the constant interaction model

11



1. Background information

(Equation 1.1),

µ(N) = U(N)− U(N − 1)

= (N −N0 −
1

2
)EC −

EC
|e|

(CSVS + CDVD + CGVG) + EN (1.2)

= (N −N0 −
1

2
)EC − (αSVS + αDVD + αGVG) + EN , (1.3)

where EC = e2/C and is known as the Coulomb charging energy. In Equation 1.3 we

introduce the parameter αi = eCi/C, where αi is the lever arm of gate i and has units of

J/V. The electrochemical potential of the quantum dot is linear in the applied voltages.

Due to this linearity in Vi, the electrochemical potential is the most convenient parameter

for discussing quantum dot quantized states.

The spacing between the consecutive ground state electrochemical potentials is called

the addition energy Eadd. The addition energy varies with different charge occupation,

where Eadd(N) is the energy required to add one more electron to an N-electron quantum

dot. Based on the constant interaction model the addition energy is given by

Eadd(N) = µ(N + 1)− µ(N) = EC + ∆E(B) (1.4)

where ∆E(B) is the energy separation between the quantum levels occupied by the

(N+1)th and the Nth charges. ∆E(B) can have a magnetic field dependence when spin or

orbital effects are considered1. Eadd(N) is a useful parameter to monitor since it contains

the Coulomb interaction contribution (EC), plus the quantum confinement contribution

(∆E(B)). Therefore differences in Eadd for different N can indicate if consecutive charges

are added into the same or different orbital levels. Similarly, monitoring the effect of

a magnetic field on a specific Eadd(N) can be used to determine the spin state of the

quantum dot. These effects are discussed in more detail in section 1.3.2.
1See section 1.3 for further discussion.
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1.1. Electrical transport properties for quantum dots

1.1.2 Low bias regime and Coulomb blockade

Electrical transport through a single quantum dot can be understood in terms of the

ladder of quantum dot electrochemical levels, and the window due to the difference

between source and drain electrochemical potentials (µS and µD respectively). The

difference between µS and µD opens a range of energies, referred to as the source-drain

bias window (∆ESD = µS − µD). In most experiments µD = eVD = 0 and µS = eVS,

hence the bias window is typically tuned experimentally using only VS.

We begin by considering the linear response regime where the bias window is small

enough that only one of the quantum dot levels can be aligned within the bias window

at a time. In this case, if µdot(N) is within the source-drain bias window µD ≤ µdot ≤ µS a

source-drain current can flow. This current flows by carriers tunneling from the source,

onto the µdot(N) level, then finally from the dot into the drain. This configuration

is schematically shown in Figure 1.1(b). When there are no quantum levels available

within the source-drain bias window, the total charge of the dot is fixed, and the current

is blocked. This is known as Coulomb blockade and is shown schematically in Figure

1.1(c).

In Figure 1.1(d) we show a schematic of the current through a single quantum dot as a

function of gate voltage VG. Sweeping VG shifts the ladder of µdot levels through the nar-

row source-drain bias window. As consecutive µdot levels move through the source-drain

bias window, the current periodically shows discrete peaks followed by regions where the

current is Coulomb blocked. The spacing between consecutive peaks is proportional to

the addition energy Eadd defined in Equation 1.4. The width of each individual peak is

defined by two factors: the width of the source-drain bias window, and any broadening

of the discrete electrochemical levels (for example thermal broadening of source or drain

Fermi distributions, or finite lifetime effects).

The Coulomb blockade of a single quantum dot for low source-drain bias can be used

to determine the energy scales of a quantum dot. Coulomb blockade measurements

typically include: counting the number of Coulomb peaks to determine the discrete

charge occupation, extracting the addition energy from the Coulomb peak spacing, or

13



1. Background information

determining the reservoir charge temperature using the Coulomb peak width [32, 33].

Coulomb blockade measurements are a primary analysis tool used throughout this thesis.

1.1.3 High bias regime and excited state spectroscopy

We now consider the case where the source-drain bias window is large enough for multiple

quantum dot levels to be accessible for tunneling from the source. In Figure 1.2 we show

a schematic of the source-drain current ISD through a single quantum dot device for a

large source-drain bias window (∆ESD = µS − µD). Inset (i) of Figure 1.2 shows the

initial case where VG has been tuned such that µS = µ(N). At this point (αGVG = 0) ISD

increases from zero since charge can flow between the source and drain via tunneling onto

the µ(N) ground state. Inset (ii) of Figure 1.2 shows the case where the µ(N) excited

state (green line) is within the bias window. Similarly, inset (iii) of Figure 1.2 shows the

case where the second µ(N) excited state is available for tunneling from the source.

The presence of an additional levels within the bias window can increase the source-

drain current ISD1. However, the exact profile of ISD with respect to VG depends on the

coupling between the individual quantum levels and the leads. Typically, ISD is largest

when a quantized level is aligned µS, and this is shown schematically in Figure 1.2. The

structure of ISD shown in Figure 1.2 is defined by the alignment of the quantum dot

energy levels within the source-drain bias window. Therefore observing the structure in

ISD as a function of VG allows spectroscopic measurements of the quantum dot excited

states [30].

For the schematic profile of ISD in Figure 1.2 we have shown the case where the source-

drain bias window (eVSD), is less than the addition energy (Eadd(N)). For this case the

quantum dot will be in Coulomb blockade when eVSD < αGVG < Eadd(N). Inset (iv) of

Figure 1.2 schematically shows the Coulomb blockade region for a high source-drain bias

window. Although the two µ(N) excited states (green lines) are within the bias window,

the µ(N) ground state is below µD, and the total charge of the dot is Coulomb blocked

at N. Since the charge is fixed at N, the µ(N) excited states are not accessible, and ISD
1Provided the tunnel coupling is weak enough for additional levels to have an impact on the tunnel

rate. A more detailed discussion is presented in section 3.7.1 and Figure 3.13.
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1.1. Electrical transport properties for quantum dots
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Figure 1.2: High bias excited state spectroscopy: This figure shows a schematic of ISD as a function
of VG when a large source-drain bias VSD = VS − VD is applied. The x-axis is the quantum dot gate
voltage VG, which has been scaled to units of energy using the lever arm αG and offset so that the µ(N)
ground state aligns with the zero point of electrochemical potential. The insets show the alignment of
the quantum dot levels as VG shifts the ladder of quantum dot electrochemical potentials. Dark blue
lines indicate ground state levels, and the green lines are the N excited states. Green arrows highlight
the tunneling paths available. eVSD is the energy of the source-drain bias window and Eadd(N) is the
energy required to add the (N+1)th charge to the quantum dot.

drops to zero. Coulomb blockade will be lifted once αGVG = Eadd since a current will

flow through the µ(N+1) ground state, as shown in inset (v) of Figure 1.2.

1.1.4 Transport in double quantum dots

In this section we discus the electrical transport properties when two quantum dots are

connected in series, known as a double quantum dot. An electrostatic model of a double
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quantum dot is shown in Figure 1.3(a). The most significant additions from the single

quantum dot model is the effect of mutual capacitance between the two dots CM , and

the additional cross capacitance of Vg2 on Dot 1 parameterized as C1,2 (and Vg1 on Dot

2, C2,1). It is possible to apply the constant interaction model, similar to the single dot

case in section 1.1.1, and this is discussed in detail in the reviews of Van der Wiel et al.

[34] and Hanson et al. [30]. However, the explicit mathematical form of the double dot

constant interaction model is not relevant for this thesis1.

a) b)
Source

VSD

CS

ΓS

CM

ΓM

C1,1 C2,2

Vg1 Vg2

C1,2 C2,1

CD

ΓD

Dot 1

  N1

Dot 2

  N2
Drain

I/V

Figure 1.3: Schematic of a double quantum dot: (a) Shows an electrostatic model of a double
quantum dot. N1 and N2 are the charge occupations of Dot 1 and Dot 2 respectively. The inter-dot
tunnel rate is represented as ΓM , and the inter-dot capacitive coupling is CM . (b) This SEM shows a
typical MOS double quantum dot structure. Crossed boxes are ohmic contacts, and white circles show
the location of the two quantum dots. Reproduced from [35].

An example of a real double quantum dot structure is shown in Figure 1.3(b). This shows

a Scanning Electron Microscope (SEM) image of a typical lateral double quantum dot

[35]. Here the grey metal gates deplete electrons at the GaAs/AlGaAs interface below

and allow the formation of two quantum dots, indicated by the white circles. Transport

through the double quantum dot occurs as indicated by the arrows and label IDOT .

The transport properties of double quantum dots are typically analyzed using a charge

stability diagram. A charge stability diagram is a 2D map identifying the charge state

of each dot (N1, N2) as a function of the two plunger gate voltages Vg1 and Vg2. In

Figure 1.4(a) we show a schematic charge stability diagram for two quantum dots with

no mutual coupling (CM = 0). The text indicates the charge occupation of each quantum

dot (N1, N2) while the nearly-vertical and nearly-horizontal lines indicate the N1 and N2

charge transitions respectively. The slope of the charge transitions is due to the cross

capacitance of Vg1 on Dot 2 and Vg2 on Dot 1 respectively. The color scale indicates the
1For example see Equation (32) in [30].
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1.1. Electrical transport properties for quantum dots

source-drain current ISD for the double quantum dot in low bias regime. In the low bias

regime ISD can only occur when energy levels of both dots lie within the bias window.

When CM = 0, ISD can only occur at the charge transition intersections, shown by the

blue circles.

CM = 0 CM > 0

(0,0)

(0,1)

(0,2)

(1,0)
(2,0)

(1,2)
(2,2)

(2,1)

(0,0)

(0,1)

(0,2)

(1,0)(2,0)

(1,1)

(1,2)
(2,2)

(2,1)

ISD

0

max

a) b)

V
g

2

Vg1

V
g

2

Vg1

(1,1)

Figure 1.4: Schematic double dot charge stability diagrams: (a) When the inter-dot capacitive
coupling CM is zero the double dot stability diagram forms a tilted checkerboard. Vertical (horizontal)
grey lines show the Dot 1 (Dot 2) charge transition regions, where the tilt is due to the coupling of Dot 1
(Dot 2) with Vg2 (Vg1). Text indicates the (N1, N2) charge occupation. (b) When the inter-dot capacitive
coupling CM is non-zero the double dot stability diagram forms into a honeycomb pattern. Solid green
lines indicate the inter-dot transitions, and dashed green lines indicate translations in (Vg1, Vg2) that
maintain constant total charge occupation of the double dot system (N1 + N2). The blue color scale
highlights regions on the stability diagram where a source-drain current ISD is typically observed. Figure
is modified from [30].

In Figure 1.4(b) we show a schematic charge stability diagram when mutual coupling

between the two dots is included (CM > 0). The effect of mutual coupling separates the

charge transition intersections (blue points in Figure 1.4(a)) into ’triple points’. This is a

result of the change in electrostatic energy of one dot when charge is added to the other

dot. The triple points are the only location on the low bias double dot stability diagram

where ISD can occur as indicated by the color scale (discussed further in section 1.1.4).

The separation of the triple points is determined by the mutual inter-dot capacitance

CM . The line connecting two adjacent triple point is known as the inter-dot transition

(solid green lines). Translating across an inter-dot transition (indicated by the dashed

green line) shuffles charge between the two quantum dots while the total charge of the

double quantum dot remains fixed.
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Figure 1.5: Schematic charge stability diagram at the (0,0)-(1,1) transition for realistic CM :
The grey lines mark the boundaries of the different charge transitions and red text highlights the charge
occupation (N1, N2). Insets schematically show the alignment of levels for the indicated regions. The
blue dots highlight the triple points. The solid green line is the inter-dot transition, where the (1,0)
and (0,1) ground states are degenerate. This schematic is for small source-drain bias µS ≈ µD ≈ 0 and
CM > 0. Figure is modified from [30].

We now discuss the alignment of the electrochemical potential levels around a set of

triple points in a double dot charge stability diagram. In Figure 1.5 we show a schematic

of the (1,0) to (0,1) region of the charge stability diagram for a low source-drain bias

window. We use this charge configuration for simplicity, however the general model can

be applied to any (N1, N2) ground state charge configuration. Solid grey lines indicate

the regions in the (Vg1, Vg2) profile where the total charge on the double dot will change.

Insets (i),(iii),(v),(vii) schematically show the electrochemical levels at the respective

charge transitions.

The triple points are indicated by blue circles in Figure 1.5 and correspond to the posi-

tions where the available states in both dots align with the source and drain levels (which

we take as approximately zero for low bias regime). Inset (ii) shows the schematic of the

upper triple point where µ1(1, 0) = µ2(0, 1) = 0, while inset (vi) shows the schematic of

the lower triple point where µ1(1, 1) = µ1(1, 1) = 0. For low source-drain bias, the triple

points are the only region of a double dot stability diagram when a source-drain current

can occur.
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1.2. Charge sensing measurements of semiconductor quantum dots

The inter-dot transition is indicated by the solid green line in Figure 1.5. This region

of the charge stability diagram is particularly interesting for the double quantum dot

systems. Translations across the inter-dot transition will shuffle a single electron between

the left and right quantum dot, while keeping the total charge of the double dot constant.

Further, along the inter-dot transition the (1,0) and (0,1) energy levels are degenerate, as

shown in inset (iv). Therefor, at the inter-dot transition it is possible for one electron to

simultaneously occupy both quantum dots. This can have uses in initializing entangled

states for quantum computing [8], or for simulating molecular bonding [10, 11].

In this section we have discussed the main features of electrical transport for a double

quantum dot. Specifically, we have considered the low bias regime. In the case of

high source-drain bias the triple points evolve into a pair of so called bias triangles.

As with single quantum dots, studies of double transport in the high bias regime can

provide spectroscopic information about the double quantum dot system. However, these

measurements are not relevant to this thesis. For further discussion of these effects see

reviews of Van der Wiel et al. [34] and Hanson et al. [30].

1.2 Charge sensing measurements of semiconductor quan-

tum dots

The two most common all-electrical techniques for studying a quantum dot are (1)

measurements of the transport through the system, or (2) sensing of the total charge

occupation of the quantum dot using a coupled electrometer. In section 1.1 we discussed

the main properties of quantum dots with respect to transport measurements. Charge

sensing can be used to extract the same information as transport measurements. In

section 1.2.1 we briefly outline the advantages of using a charge sensor over transport

measurements. The experimental techniques for charge sensing are then discussed, with

section 1.2.2 detailing the basic operation, section 1.2.3 outlining how excited state spec-

troscopy is performed and section 1.2.4 introducing methods to optimize charge sensor

operation. All measurements of quantum dots presented in the experimental results of
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this thesis employ the charge sensing techniques discussed here.

1.2.1 How charge sensor improves quantum dot characterisation

Charge sensing measurements require an extremely sensitive electrometer to be coupled

to the charge state of the quantum dot [36, 37]. This requirement demands additional

circuit design and fabrication. However, charge sensing enables experiments that would

be difficult or impossible using standard transport measurements. A major advantage

of using a charge sensor is that this lifts the source-drain tunnel rate requirements.

Transport measurements are limited to a minimum tunnel rate, otherwise the source-

drain current is undetectable. For example, when the tunnel rates are of order 1MHz the

source-drain current will be only 0.2pA, which is reaching the limit of most experimental

signal-to-noise demands.

Charge sensing does not require current to flow through the quantum dot. Thus, charge

sensing can monitor quantum dots operating down to very weak coupling between the

confined charge and a lead. This is valuable for reaching the last charge regime of a

quantum dot, since tunnel rates typically drop significantly as the quantum dot ap-

proaches the last charge. In addition charge sensing of a quantum dot is non-invasive, as

it does not require transport through the quantum dot. Since transport is not required,

a charge sensor can monitor the charge state of a quantum dot that is coupled to a single

reservoir1.

1.2.2 How to use a charge sensor

Charge sensing can be performed using any system that shows a strong response to a

small change in the local electric field. Commonly used systems for charge sensing are

Quantum Point Contacts (QPC) and Single Electron Transistors (SET)2, since these

devices can be extremely sensitive to electric fields. In addition QPCs and SETs are

suitable for fabrication directly adjacent to the quantum dot under study, allowing max-
1As opposed to transport measurements, where coupling to two reservoirs (source and drain) is

required.
2In p-type devices Single Hole Transistors (SHT) can be used.
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imum capacitive coupling to an adjacent quantum dot. As an example, Figure 1.6(a)

shows a double quantum dot device with an adjacent QPC charge sensor. The conduc-

tance profile of the QPC is shown in red in Figure 1.6(b). The region indicated by the

dashed cross is the optimum configuration for using the QPC as a charge sensor. The

rise of the first plateau (indicated by the dashed cross) is extremely steep, causing the

QPC current to be extremely sensitive to local electric fields, including the field caused

by the number of charges confined in the quantum dot.

d

a

b

Figure 1.6: QPC charge sensing: (a) A SEM image of a double quantum dot (two white circles) with
an adjacent QPC charge sensor. (b) The red data shows the QPC conductance profile (right axis) as a
function of VQPC−L (top axis). The dashed cross indicates the region where the QPC is most sensitive
to the local electrostatic environment. In this case the most sensitive region is on the rise of the first
QPC conductance plateau. To perform charge sensing the QPC is tuned conductance G=e2/h and the
voltage of gate M is swept. The black data shows the QPC current with respect to VM . (c) The top
panel shows the transport current though the double dot, while the bottom panel shows the derivative of
the black data in (b). The two measurements were taken simultaneously. (d) Measurement of a double
dot charge stability diagram where the color scale is the derivative of the QPC signal. Text indicates
the charge occupation of the left and right quantum dot as N1N2. Reproduced from [35].

An example of QPC charge sensing is shown by the black data in Figure 1.6(b). The

QPC is configured to the optimal conductance1 and the gate M voltage is swept over a

range that changes the quantum dot occupation by two electrons. The black data shows
1This is the region of highest transconductance (dGQPC/dVQPC), which occurs around G = e2/h.
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two discrete steps in QPC current, which are superimposed on a rising background.

The rising background is due to the capacitive coupling of the QPC with VM . Figure

1.6(c) compares the quantum dot transport signal with the derivative of the QPC signal

showing that the Coulomb peaks in transport correspond with the spikes in the sensor

signal dIQPC/dVM . This confirms that the discrete steps in IQPC occur when the total

charge of the coupled quantum dot changes by one electron. Finally, in Figure 1.6(d) the

QPC charge sensor has been used to observe the charge stability diagram of the double

quantum dot. The color scale of Figure 1.6(d) is dIQPC/dVM , and the clear honeycomb

pattern of a double quantum dot can be observed. Overall, in this section we have

introduced the fundamental features and typical operation of a charge sensor.

1.2.3 How to use a charge sensor for excited state spectroscopy

In section 1.1.3 we have shown how excited state spectroscopy can be performed using

transport measurements. In this thesis charge sensing measurements are employed rather

than transport measurements. In this section we discuss how excited state spectroscopy

measurements can be performed using charge sensing methods.

The charge sensor spectroscopy technique used in this thesis was first demonstrated by

Elzerman et al. [38] in 2004. Figure 1.7(a) shows a SEM image of a device studied by

Elzerman et al. The device is a single lead (reservoir) quantum dot with an adjacent

QPC charge sensor1. Spectroscopy of the excited states is performed by applying a

continuous square pulse of amplitude VP > 0 to the plunger gate. The tunnel rate onto

the quantum dot depends on the number of states that are energetically accessible during

the load phase of the square pulse. This change in tunnel rate effects the average charge

occupation of the quantum dot, and this is observed in the charge sensor signal. This

pulse technique is often referred to as pulse-bias spectroscopy.

Figure 1.7(b) shows the results of the pulse-bias spectroscopy measurement obtained by
1Here the quantum dot is only connected to a single lead and so this device is referred to as a single-

lead quantum dot. For comparison, transport measurements require two leads, a source and a drain.
Single lead quantum dots have advantages for some applications since coupling to the leads can degrade
the performance of quantum dots. Hence, minimizing the number of leads coupled to the quantum dot
can be desirable to enhance performance of quantum dot devices, particularly in qubit applications [30].
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(c) (d)
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Figure 1.7: Pulse-Bias spectroscopy: (a) SEM image of a single-lead (reservoir) quantum dot with
an adjacent QPC charge sensor. Electrons are confined in a quantum dot indicated by the dashed circle.
A continuous square wave of amplitude VP is applied to the gate labeled P. (b) The charge sensor
signal (y-axis) as the dot is swept across the N=0 to N=1 charge transition. (c-d) Schematics of the
Ground State and Excited State levels during the load and unload phase of the square pulse. The level
configuration corresponds to the VM indicated by the c and d labels in (b).

Elzerman et al. [38]. Here the y-axis is the sensor signal, the x-axis is the voltage of

the M gate (VM), and the measurement is performed while a continuous square pulse of

amplitude VP=6mV is applied to the P gate. Initially in the N=0 region the sensor signal

shows an approximately constant value with respect to VM . This is because no quantum

dot levels are accessible in the pulse window, and so the average charge occupation of

the quantum dot is fixed over the pulse period. As VM is made more negative, the

µ(1) ground state becomes accessible for tunneling during the load phase of the square

pulse (as indicated in Figure 1.7(c)). At the VM voltage indicated by the label c the

square pulse changes quantum dot charge occupation between N=1 (load) and N=0

(unload). This changes the time averaged charge occupation of the quantum dot, which

is reflected in the charge sensor signal. When the µ(1) excited state becomes available

for tunneling the effective tunnel rate (Γeff) increases (as indicated in Figure 1.7(d).

This changes the average charge occupation of the quantum dot1 and can be observed

as additional structure in the sensor signal. Finally, the charge sensor signal returns to

the background level once the µ(1) ground state falls bellow the pulse window and the

quantum dot occupation remains Coulomb blocked at N=1.
1When an excited state is available the load time will be shorter since there are two possible states.

However, in general the unload period will remain unchanged. Hence the dot spends more time (on
average) in the N=1 state when additional excited state levels are available for tunneling.
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The results of Figure 1.7(b) demonstrate how excited state spectroscopy can be per-

formed using a finite amplitude pulse technique. The pulse-bias technique is analogous

to the high-bias transport spectroscopy technique1. The advantage of pulse-bias spec-

troscopy is it provides access to time domain measurements. If the pulse period is shorter

than the tunneling time (1/Γeff) then no signal can be observed, and the tunnel rate can

be deduced [38]. Alternatively, if the sensor bandwidth exceeds the tunnel rate then

single charge tunneling event can be observed in real time using a single shot charge

sensor measurement [39].

1.2.4 How to get the most out of a charge sensor

Optimal operation of a charge sensor involves maintaining the sensor in the configuration

where it is maximally responsive to the local electrostatic environment. During exper-

iments several factors can cause the sensor shift away from the optimal configuration.

The most common effect is due to cross capacitance of the sensor with the array of gates

used to control the dot. Unexpected effects such as random charging events or drifts

of voltage sources can similarly displace the charge sensor from optimal configuration.

When the maximal sensitivity can be identified by a specific sensor parameter (for ex-

ample the sensor conductance), digitally controlled feedback techniques can be employed

to maintain optimal sensor performance [40].

In this thesis we use a dynamic feedback compensation technique developed by Yang

et al. [40] to optimize our charge sensing measurements. In this section we describe how

dynamic feedback compensation significantly improves charge sensor operation. Figure

1.8(a) shows a SEM of the silicon quantum dot device studied by Yang et al.. The

device has a single quantum dot (bottom) coupled to a Single Electron Transistor (SET)

charge sensor (top). Figure 1.8(b) shows transport through the quantum dot ID (black),

which exhibits as series of Coulomb peaks as the dot plunger gate VPD is swept. The

current through the charge sensor (IS) is simultaneously measured (purple data in Figure

1.8(b)). Initially the charge transitions are clear in IS. However, as VPD is reduced the
1For example compare the structure of the charge sensor signal in Figure 1.7(b) to the structure in

ISD in Figure 1.2.
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a) b)

L3 L4

Figure 1.8: Charge sensor compensation: (a) A SEM image a silicon MOS quantum dot device
(bottom) with an adjacent SET charge sensor (top). (b) Transport through the quantum dot ID
(black) shows Coulomb peaks as the dot plunger gate VPD is swept. The current through the SET
sensor IS (purple) shows charge transition signals superimposed on a decaying background. The charge
transition signals are the discrete jumps in IS , and they correspond with the Coulomb blockade peaks
in ID. The decaying IS can be compensated by adding a fixed linear correction (using VPS) as shown
in the blue data. The derivative of the compensated IS is shown in yellow. Reproduced from [40].

sensor shifts away from the most sensitive region and eventually pinches off. This results

in non-uniform amplitude of charge transition signals, and limits the range of sensor

operation.

The drift in IS can be corrected by applying a fixed linear compensation to one of the

sensor gates. The blue data in Figure 1.8(b) shows IS when a compensation is applied

to maintain the sensor current at approximately 50pA, and the yellow trace shows the

numerical derivative of the blue data. The compensation is achieved by incrementally

stepping the voltage applied to the sensor plunger gate VPS after each measurement.

The use of compensation on the sensor has clear advantages and significantly improves

the sensor operation. When compensation is applied all charge transitions have approx-

imately the same amplitude. This allows Yang et al. to identify that the transition

indicated by the red arrow is likely related to a charge trap, and not the quantum dot1.

Further, the compensation prevents the sensor from pinching off allowing operation over

a larger range of VPD without the need for retuning.

The compensation used in Figure 1.8(b) is a fixed increment in VPS. Yang et al. note

that the compensation can be further improved using a dynamic feedback method, which

takes IS as the feedback signal and incrementally adjusts feedback gate VPS after each

measurement. The advantage of a dynamic feedback is that it is more robust to changes
1Based on the difference in the amplitude compared with other transitions.
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in the sample, such as random ’jumps due to charge trap movement. In this thesis

all experimental results of the quantum dot charge state are performed using dynamic

feedback charge sensing1.

1.3 Quantum dots as artificial atoms

In section 1.1 we discussed the electrostatic properties of quantum dots with reference to

the constant interaction model. Here we introduce the discrete orbital energy spectrum

that arises due to the spatial confinement. This orbital spectrum give rise to atom-like

properties of quantum dots, and justifies the label of quantum dots as artificial atoms.

In this thesis we focus on quantum dots based on silicon MOS structures. Therefore,

this section focuses on the unique atom-like properties of 2D quantum dots.

In section 1.3.1 we introduce the orbital structure of a well defined 2D quantum dot,

which has become known as the Fock-Darwin energy spectrum. We then discuss the

grounds state (section 1.3.2) and excited state (section 1.3.2) spin filling sequence for

the Fock-Darwin orbital shells. This spin filling sequence can be understood in terms

of Hund’s Rules. Finally, we conclude this section by introducing two relevant factors

that strongly influence the quantum dot orbital structure and spin filling. These are the

effect of the conduction band degenerate valley states (section 1.3.4), and Spin-Orbit

Interactions (section 1.3.5).

1.3.1 Energy spectrum of a 2D quantum dot

In this subsection we define the main features of the orbital shell structure for two-

dimensional quantum dots. When a quantum dot is based on a two-dimensional struc-

ture2 lateral surface gates are typically used to electrically confine charge. The shape of

2D quantum dots can be considered disk-like, where the diameter is much larger than the

vertical thickness3. When the lateral confinement is electrically defined it can be consid-
1Unless explicitly stated otherwise.
2See Figure 1 for comparison of different dimensional quantum dot structures.
3For a disk-like quantum dot the 2D sub-band spacing should be much larger than the energy

separation of the lateral energy levels.
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ered a soft boundary, which can be approximated as a harmonic oscillator confinement.

For the case of circularly symmetric 2D harmonic confinement, the energy spectrum at

zero magnetic field is given by

En,l = (2n+ |l|+ 1)~ω0, (1.5)

where n(=0,1,2...) is the radial quantum number, l(= 0,±1,±2...) is the angular mo-

mentum number and ω0 defines the confinement oscillator frequency.

The energy spectrum of Equation 1.5 gives rise to a series of orbital levels separated1

by ~ω0. The occupancy of each level can be determined by considering the number of

degenerate states2. The lowest energy level (n, l)=(0,0) has two-fold degeneracy and is

occupied by a Pauli spin-pair. The second orbital-shell can contain up to four charges

due to the degeneracy of the (0,1)=(0,-1) energy levels. The third shell has triple orbital

degeneracy since the (0,2)=(0,-2)=(1,0) energy levels and can hold six electrons. This

shell structure is known as the Fock-Darwin spectrum [41, 42] and is often described

with magic numbers N = 2, 6, 12, ..., which label the total occupation at which each

consecutive orbital shell is full.

The most common experimental technique used to study the atom-like properties of

quantum dots is extracting the addition energy Eadd (see Equation 1.4). The addition

energy is the energy needed to add an extra charge to a quantum dot, and is analogous

to the electron affinity (or ionization energy) of atoms. As with the ionization energy

in atoms, the addition energy of artificial atoms shows orbital structure. However, it

is necessary to know the absolute charge occupation of a quantum dot in order to use

the structure observed in Eadd to characterise orbital structure of an artificial atom.

Therefore it is vital that a quantum dot can reach the last charge, since this allows the

study of Eadd starting from zero charge.

The Fock-Darwin orbital shell filling has been observed in the addition energy of quantum

dots with well defined 2D confinement3. Figure 1.9(a) shows the transport measurement
1In a typical experiment with a 2D quantum dot ~ω0 is on the order of a few meV.
2Keeping in mind that each (n, l) state can hold two charges with opposite spin.
3As an example see references for vertical GaAs quantum dots [9], lateral GaAs quantum dots [1]

and lateral (MOS) silicon quantum dots [16].
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Eadd(2)

Figure 1.9: Shell Structure of a 2D atom: (a) Transport measurement of a vertically defined GaAs
quantum dot. The absolute charge occupation is identified with text labeled N. As an example the N=2
addition energy Eadd(2) is shown. Inset shows the addition energy for the first 20 electrons. Bold text
highlights the magic number shell filling. Smaller spikes in the addition energy occur at N=4, 9 and 16
as a result of Hund’s rule spin filling (see section 1.3.2). (b) Schematic of the shell structure of a 2D
circularly symmetric artificial atom. Reproduced from [43].

of a single quantum dot down to the last electron [43]. The inset in Figure 1.9(a) shows

the addition energy, which is extracted by measuring the spacing between consecutive

Coulomb peaks. The addition energy show distinct spikes at N = 2, 6 and 12 consis-

tent with the Fock-Darwin magic numbers. Figure 1.9(b) schematically shows the shell

structure of a 2D artificial atom. This indicates that when an orbital shell is full the ad-

dition energy includes both the Coulomb charging energy e2/C and the energy required

to occupy the higher orbital ∆E.

In the case that the 2D confinement is parabolic but not circularly symmetric the shell

filling will depart from the Fock-Darwin magic number shell structure. The 2D non-
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symmetric harmonic confinement is given by

V (x, y) =
1

2
mω2

xx
2 +

1

2
mω2

yy
2 (1.6)

where ωx and ωy define the x and y axis harmonic oscillator frequencies respectively. In

this case the four-fold degeneracy of the second orbital shell is lifted by the energy ∆E =

(ωx−ωy)~. This splitting of the second orbital shell can be described by non-degenerate

px and py orbitals. Similarly the higher shells will also be influenced by asymmetries

in the lateral confinement. Observation of the orbital shell filling can therefore provide

insight into the spatial confinement profile of a quantum dot1 [44, 45].

1.3.2 Ground state spin filling of Fock-Darwin orbitals

In this section we introduce the spin-filling sequence of the Fock-Darwin orbital shells.

The spin filling sequence can be understood in terms of three main effects: (1) The

Pauli exclusion principle, which forbids two charges with equal spin from occupying

the same orbital; (2) The Zeeman effect2, which splits the energy between the spin-up

and spin-down states by ∆EZ = 2|EZ | = g∗µBB; and (3) the Coulomb interaction

energy (exchange energy), which can lead to a difference in energy between states with

symmetric or anti-symmetric orbital wavefunctions.

First we briefly introduce the primary technique for spin-state spectroscopy. Spin states

are typically identified by observing the evolution of energy levels as a magnetic field is

applied. These experiments are referred to as magnetospectroscopy measurements. The

approached used in this thesis is to observe the evolution of the addition energy Eadd

when a magnetic field is applied in the plane of the 2D charge3. The change in addition

energy with respect to a magnetic field is given by

δEadd
δB

= g∗µB[∆SZ(N)−∆SZ(N − 1)], (1.7)

1If the shell filling is consistent with the magic numbers this can indicate a symmetric confinement,
while variations from the magic numbers can indicate an asymmetric confinement.

2Where g∗ is the effective g-factor, µB is the Bohr magneton constant and B is the magnitude of the
applied magnetic field.

3In-plane fields are used to reduce the coupling the magnetic field to orbital states.
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where ∆SZ(N) = SZ(N)− SZ(N − 1) and SZ(N) is the spin of the dot with N charges.

Since adding one charge changes SZ(N) by ±1
2
, this give three possible magnetic depen-

dencies of Eadd,
+g∗µB for ↓↑

dEadd
dB

= −g∗µB for ↑↓

0 for ↑↑ or ↓↓

(1.8)

where the first and second arrow depicts the spin filling sequence of the (N+1)th and

N th holes respectively1. The spin filling sequence can be determined by observing the

slope of Eadd(N) with respect to B, starting from the N=1 charge state. Similarly, the

spin filling sequence can be determined from the magnetic evolution of states in excited

state spectroscopy measurements. Alternatively, magnetic fields can be used to identify

the orbital filling sequence using Pauli exclusion principle [9, 43].

We now outline the ground state spin-filling sequence observed for the Fock-Darwin

spectrum. Since the first orbital of the Fock-Darwin spectrum is two-fold degenerate the

first two charges form a Pauli spin pair. The first charge fills the lowest energy Zeeman

state of the (n, l) = (0, 0) orbital and the second charge fills into the quantum dot with

opposite spin2. The second orbital has four-fold degeneracy. It has been found that the

third electron has (n, l, SZ) = (0,+1, ↓) and the fourth electron fills the quantum dot

with (n, l, SZ) = (0,−1, ↓) [1, 9].

The spin filling sequence of the third and fourth charges is consistent with Hund’s rule

in atomic physics, which states that electrons fill into atomic orbital such that the net

spin is maximized. The alignment of the spin for the third and fourth charges is due to

a reduction in the interaction energy when the third and fourth charges occupy different

orbitals. This reduction in energy can be observed in the addition energy measurements

of Figure 1.9, where there is a reduction of Eadd for adding the fourth and sixth electrons,
1There are several assumptions made to simplify this equation. First we have assumed that the

effective g-factor of consecutive levels is the same. This may not be the case in systems with strong
spin-orbit interactions. Secondly, ground state transitions of SZ larger than 1/2 can occur when strong
interaction effects are present between charges in the quantum dot [30].

2By convention we take spin-down (↓) as aligned with the external magnetic field, and spin-up (↑) as
anti-aligned with the external magnetic field. The Zeeman effect splits spin states by ∆EZ = 2|EZ | =
gµBB. The lowest energy Zeeman state will be either spin-down (aligned with B) or spin-up (anti-
aligned with B) depending on the g-factor. For example the electron g-factor is negative in GaAs and
positive in Si.
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and an increase in Eadd for the adding the fifth electron. The spin filling for higher Fock-

Darwin shells continues in this way, following Hund’s rules for atomic physics based on

the degeneracy of the 2D orbitals.

1.3.3 Excited states of a few charge single quantum dot

In section 1.3.2 we discussed the ground state spin filling. Here we focus on the excited

states of the N=1 and N=2 charge configurations.

A quantum dot with just one charge forms a basic single spin system. To determine

the energy levels we consider the orbital energy Eorb = ~ω0 and the Zeeman energy of a

single spin Ez = gµBB/2. The first four energy states of a single spin systems are

E↓,0 = −Ez (1.9)

E↑,0 = +Ez (1.10)

E↓,1 = −Ez + Eorb (1.11)

E↑,1 = +Ez + Eorb , (1.12)

where ESZ ,l represents the energy of one charge with spin orientation SZ = (↑ or ↓)

occupying an orbital with angular momentum l. At zero magnetic field the energy

separation between the ground state and the first excited state will be Eorb.

We now consider the two charge system. A quantum dot with two charges will always

have a spin singlet |S〉 as the ground state at zero magnetic field [46]. The first excited

states of the two-charge quantum dot are the spin triplets (|T+〉 , |T−〉 , |T0〉). At zero

magnetic field the three triplet states are degenerate. However in the presence of a

magnetic field the triplets are split based on their different spin components SZ = +1 for

|T+〉, SZ = 0 for |T0〉, and SZ = -1 for |T−〉. For the triplet states, the two charges occupy

different orbitals. The antisymmetry of the orbital wavefunctions and the occupation of

different orbital shells reduces the Coulomb energy for the triplet states. This reduction

in energy can be included in the model using the term EK . The modified singlet triplet

energy spacing can then be defined as EST = Eorb − EK . The first four states of the
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two-charge system are,

ES = E↓,0 + E↑,0 + EC

= EC (1.13)

ET− = E↓,0 + E↓,1 + EC − EK

= −2EZ + (Eorb − EK) + EC

= −2EZ + EST + EC (1.14)

ET+ = +2EZ + EST + EC (1.15)

ET0 = E↓,0 + E↑,0 + EST + EC

= EST + EC , (1.16)

where EC is the Coulomb charging energy.

The first take away of these equations is that at zero magnetic field the spacing between

the N=2 ground state and first excited state is EST = Eorb − EK and not Eorb = ~ω0.

Excited state spectroscopy for N=1 will allow insight into the single particle energy

spectrum. However, for all higher charge occupations the Coulomb interaction EK will

influence the excited state spectrum. This provides a motivation for reaching the last

charge, in order to measure the single particle energy spectrum without interactions. The

second take away of these equation is that if we compare ES with ET− we can see that

the N=2 ground state can be a triplet state if 2EZ > EST . It is possible to determine

EST using by observing the Zeeman energy required to induce a singlet to triplet ground

state transition1. This form of magnetospectroscopy is used in combination with pulse

bias spectroscopy in this thesis.

Figure 1.10(a) shows the energy level spectrum defined by Equations 1.13-1.16. The

purpose of Figure 1.10(a) is to illustrate the energy spectrum of a two charge quantum

dot, and to highlight the transitions available for the N=1 to N=2 occupation. The

colored lines indicate transitions that are available based on spin conservation. We

highlight that this schematic is for GaAs where the g-factor is negative, hence the spin-
1In addition, the ability to polarize the ground state has applications in spin-based technology [47].
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up at |T+〉 are the lowest in energy1.

Figure 1.10: Two-charge spin states: (a) Shows the energy level spectrum available at the N=1 to
N=2 charge transition for a GaAs quantum dot. These are the energy levels described in Equations
1.13-1.16. The colored lines indicate transitions that are available based on spin conservation. The
horizontal dashed line indicates that the total charge state of the quantum dot has changed from N=1
to N=2. Crossing the dashed line adds EC energy to the quantum dot. Note that this schematic is
for electrons in GaAs where the g-factor is negative, hence the ↑ and |T+〉 are the lowest in energy.
Reproduced from [47].

1.3.4 Valley states in silicon quantum dots

In the previous sections of this introduction we have discussed the orbital structure

of 2D quantum dots (section 1.3.1) and discussed the spin filling sequence into these

orbitals (section 1.3.2 and section 1.3.3).Electrons in silicon quantum dots have an addi-

tional level of complexity due to the presence of valleys in the silicon conduction band.

However, when the valley states are well defined, they can be exploited for use in new

technology [6]. The challenge is that valley physics is complex, and relies on atomic scale

properties. Therefore substantial differences in valley properties are observed between

nominally identical devices. In this section we discuss the main aspects of valley physics

for silicon MOS quantum dots2. We conclude by discussing that the additional com-

plexity introduced by conduction band valley states provides a motivation for studying
1The orbital excited state structure can be complicated for silicon due to the degeneracy of the valley

states. See section 1.3.4 for further discussion.
2For a more detailed review see Zwanenburg et al. [6].

33



1. Background information

valence band holes in silicon quantum dots, since valley states are not present in the

valence band.

a) b) c)

Figure 1.11: Silicon Band structure and valley degeneracy: (a) This figure shows the bulk silicon
band structure. The pink arrow indicates the Conduction Band (CB) minima, which occurs at k 6=0.
(b) Zoom of the region indicated by the blue rectangle in (a). (c) Schematic diagram of the splitting of
valley states for bulk (grey), 2D (red) and quantum dots (blue). In bulk the CB minimum has 6-fold
degeneracy. however, in 2D structures the 6-fold degeneracy is lifted by strain. The splitting between
the 2-fold Γ level and the 4-fold ∆ level is typically tens of meV [48]. The degeneracy of the 2D valley
states is further lifted by electric confinement. Typical splitting of the Γ levels is 0.1-1meV [49]. Silicon
band diagram is reproduced from [50], schematic reproduced from [6] .

The band structure of bulk silicon has a conduction band minimum at a non-zero mo-

mentum. This gives rise to six degenerate valley states in the conduction band, as

shown in Figure 1.11(a-b). While the valleys do not significantly influence conventional

electronics, the presence of degenerate ground states plays a critical role for quantum

electronics. In quantum electronic devices the valley degeneracy is typically broken by

various effects. For electrons in a 2D quantum well the in-plane strain splits the six

valley states into a 2-fold degenerate ground state (Γ valleys) and a 4-fold degenerate

excited state (∆ valleys), as shown schematically in Figure 1.11(c). The typical splitting

between the Γ and ∆ valleys is on the order of tens of meV [48]. Electric confinement of

a quantum dot then lifts the degeneracy of the Γ valleys, with typical valley splitting of

order 0.1-1 meV. However, the exact magnitude of the Γ valley splitting is determined

by atomic scale details of individual devices. The variability and complexity of valley

physics introduces a challenge for engineering reproducible silicon quantum dots towards

specific applications, such as qubits.

Qubit applications require quantum dots with a robust two level energy state that is well

separated from higher energy excitations. Valley states complicate the energy spectrum
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by introducing an additional degree of freedom. The relevant energy scales to consider are

the valley splitting EV and the orbital energy ∆E. When the EV is large compared to ∆E

the electrons occupy the well defined orbital levels n=1,2,3 and the lowest energy valley

state V1. Alternatively if ∆E is large compared to EV then four electrons sequentially

fill into the Γ valley states V1 and V2 with orbital number n=1, followed by the V1 and

V2 states with orbital number n=2. These two trivial cases are shown schematically in

Figure 1.12(a) and (b).

Figure 1.12: Valley-orbit mixing in silicon: (a-b) Schematic of the energy levels when the valley
splitting and orbital energy are not comparable. The orbital number is given by n, and the two non-
degenerate Γ valley states are indicated by valley numbers V1 and V2. (c) When EV and ∆E are
comparable the orbital and valley states hybridize into valley-orbit states. The valley-orbit states
become the relevant single particle states indicated by VO1, VO2,... which are separated in energy
by EV O. Reproduced from [6].

Valley and orbit states can hybridize into mixed single particle levels, and this com-

plicates the orbital shell structure of electron quantum dots in silicon. The effects of

hybridization can be most clearly observed when the valley splitting is comparable to

the orbital energy, as shown in Figure 1.12(c). Mixed single particle states are known

as valley-orbit states, and the relevant splitting is the valley-orbit splitting EV O. The

valley-orbit mixing and valley-orbit splitting are determined by complex atomic scale

phenomena, and understanding the physical mechanisms remains a topic of active re-

search. The bulk silicon valence band is not complicated by degenerate valley states.

The bulk silicon valence band is not complicated by degenerate valley states. This has
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provided a motivation for studying hole states in silicon quantum dots. At the valence

band maximum the Heavy Holes (HH) and Light Holes (LH) are degenerate, as shown

in Figure 1.11(b). However, electrical confinement lifts the degeneracy of the Heavy and

Light Holes based on the different effective masses, with typically LH-HH splitting on the

order of a few to tens of meV1. This allows p-type silicon quantum dots have to have a

Heavy Hole ground state [28]. Pure heavy holes in silicon quantum dots are expected to

occupy the well known Fock-Darwin orbital states, without the complexity of additional

valley mixing. This would allow p-type quantum dots the have the simple and well

defined energy structure observed in GaAs, while maintaining the advantages of silicon

as a material system. However, there have been no studies of the orbital shell structure

for holes in 2D silicon quantum dots that can be used to confirm this prediction.

1.3.5 Spin-Orbit Interaction

A wide range of non-trivial spin effects can be observed when the spin and orbital

degrees of freedom are coupled together [51]. Any effect that couples the spin and

orbital momentum is referred to as a Spin-Orbit Interaction (SOI). In this section we

describe the two primary types of spin-orbit interaction that effects both electrons and

holes in semiconductor quantum dots. Specifically these are the Dresselhaus effect and

the Rashba effect. The focus is to provide a qualitative description of these main effects,

with insight into their physical origins. For full details see Winkler [51].

In atomic physics the Spin-Orbit Interaction (SOI) arises as a relativistic correction due

to the motion - or orbit - of an electron in a static electric field. The electric field
~E produces an internal magnetic field proportional to ~E × ~p, where ~p is the electrons

momentum. This internal magnetic field acts on the spin state, and the strength of the

interaction depends on the orbital momentum. Hence, the presence of electric fields can

mediate the spin-orbit coupling.

In solid state devices the Spin-Orbit Interaction (SOI) experienced by both electrons

and holes arises from two distinct types of electric field2. The first case occurs due
1This is discussed further in section 1.5.1.
2Holes have an additional Luttinger Spin-Orbit Interaction (SOI), which doesn’t occur for electrons.
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to Bulk Inversion Asymmetry (BIA) of the atoms in the crystal lattice. The Spin-

Orbit Interaction (SOI) produced by Bulk Inversion Asymmetry (BIA) is known as the

Dresselhaus effect [51]. The strength of the Dresselhaus effect is determined by the

crystal lattice and basis. Bulk silicon has a diamond lattice with no BIA, hence there is

no Dresselhaus SOI in bulk silicon [6]1. The Dresselhaus effect is present in zinc-blende

crystals such as GaAs, and is stronger for heavier atoms since heavier atoms produce a

larger atomic electric field.

The second case of semiconductor Spin-Orbit Interaction (SOI) is due to Structural

Inversion Asymmetry (SIA) of the confinement potential. The Spin-Orbit Interaction

(SOI) produced by Structural Inversion Asymmetry (SIA) is known as the Rashba effect

[51]. The strength of the Rashba SOI is determined by the asymmetry of the confine-

ment potential, defined by ∇ · V (~r). This can lead to interesting since the confinement

symmetry is typically tunable in MOS quantum dot devices. This allows the strength

of the Rashba spin-orbit coupling to be tuned in-situ [51]. In devices with symmetric

confinement the Rashba SOI is suppressed regardless of the mixing between bands.

Both the Rashba and Dresselhaus effects mix the spin states between the valence and

conduction bands. As such, the strength of the both Spin-Orbit Interaction effects is

determined by the band gap. In materials with a small band gap, such as InAs and InSb

the mixing between conduction and valence bands is large resulting in strong SOI for

typical devices. Alternatively, in silicon the large band gap strongly suppresses mixing

between the conduction band and the valence band, resulting in extremely weak Rashba

SOI.

Typically the Luttinger SOI is the larger than BIA and SIA for Holes. This is discussed in more detail
in section 1.5.2.

1However, there is evidence for the interface-Dresselhaus effect, which arises due to BIA at the
Si/SiO2 oxide [52]. This interface-Dresselhaus effect occurs since the SiO2 inherently sets an interface
orientation breaking the spatial invariance of the bulk. The interface-Dresselhaus effect produces a
coupling that is identical to the typical bulk Dresselhaus effect and scales based on the proximity of the
charge to the interface.
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1.4 Single-spin qubits

A major application for semiconductor quantum dots is their use in quantum compu-

tation technology. Quantum computation aims to use quantum states to perform al-

gorithms that are either not possible or not feasible for classical computers. The basic

unit of quantum information - a quantum bit - is known as a qubit. While classical bits

must either be in the ’0’ or ’1’ state, a qubit can exist in superposition of the ’0’ and

’1’ states. The current state-of-the-art in quantum computational technology to deter-

mine the optimum physical implementation of a qubit, with a focus on scaling up to

multi-qubit structures. The success in fabrication and the well defined quantized energy

levels makes semiconductor quantum dots ideal for use as qubits. Implementing and

optimizing quantum dots as reliable qubits continues to be a major field of research in

quantum information technology.

There are three main physical qubits that can be implemented using semiconductor

quantum dots: charge qubits [53, 54], singlet-triplet qubits [14, 15] and single-spin qubits

[8]. The single-spin qubit (sometimes known as the Loss-DiVincenzo qubit [8]) is the

most relevant to this thesis. The basis states of a single-spin qubit are the spin down

|↓〉 and spin up |↑〉 Zeeman spin states of a quantum dot. It is possible to define a

spin qubit in a quantum dot containing a large number electrons (or holes), however

the most intuitive spin qubit is formed by a single electron in a static magnetic field.

This provides a motivation for reaching the last charge in quantum dot systems, since

the most promising spin qubit experiments have been performed using quantum dots

containing just one electron [17, 19, 55].

1.4.1 Single-spin qubit time scales

The parameters used to determine the suitability of a qubit to store quantum information

are the relaxation time, and the coherence time. The relaxation time T1 is the time scale

over which an excited state decays to the ground state. In spin qubits T1 corresponds

to the time scale for the spin to relax from the higher energy Zeeman state to the

lowest energy Zeeman state. This relaxation involves a change in energy and angular
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momentum, which is typically dissipated through the phonon bath or nuclear spin bath.

The behavior of T1 can then be understood in terms of: (1) the density of states of the

nuclear spin bath, (2) the density of states of the phonons, (3) the hyperfine coupling

(mediating the nuclei-electron spin coupling), and (4) the spin orbit coupling strength

(mediating the spin-phonon coupling). In typical spin-qubit experimental conditions

the Zeeman splitting of the spin states is large enough to suppress relaxation via the

nuclei spin bath, and relaxation is primarily via spin-phonon coupling mediated by the

spin-orbit interaction.

The phase coherence time T2 describes the timescale over which quantum phase in-

formation can be preserved. In spin qubits this corresponds to how long a coherent

superposition of the |↓〉 , |↑〉 basis states can be preserved. The quantum phase for a spin

qubit is defined by the phase of the Larmor spin precession. Quantum phase random-

ization in spin qubits is primarily due to fluctuations and inhomogeneity in the nuclei

spin bath, which alters the spin precession frequency by changing the local magnetic

field. Therefore developing spin qubits in materials with an extremely low density of

magnetic nuclei or weak hyperfine coupling has been a major focus for enhancing spin

qubit coherence times [6, 18].

Phase decoherence mechanisms can be considered to have components occurring on

two different time scales: (1) The quasi-static component, which is constant over one

measurement but may vary between consecutive measurements1; and (2) the fluctuating

component, which varies over the course of a single measurement. Due to these two

components measurements of the spin decoherence time are extremely sensitive to the

way the measurements are performed. The decoherence time time, labeled as T∗2 is

the free precession phase coherence time observed over a set of different measurements.

Therefore T∗2 is sensitive to the variations of the quasi-static component, which changes

between measurements. It is possible to significantly enhance the measured decoherence

time by using spin refocusing techniques.

Spin refocusing techniques dynamically decouple the spin from the quasi-static dephasing
1The most common quasi-static component is the slowly varying background nuclei spin bath [6, 30,

56].
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sources [57]. Using dynamical decoupling methods can enhance the observed decoherence

time by several orders of magnitude [14, 56]. The spin coherence time that has been

measured using a dynamic decoupling technique is typically presented as T i2, where the

text ′i′ indicates the particular protocol used. For example, in single-spin qubits Hahn

echo (THahn
2 ) or CPMG (TCPMG

2 ) techniques are commonly used to refocus the spin.

Using refocusing techniques it can be possible to enhance the observed decoherence time

up to the fundamental limit given by T2 ≤ 2T1 [30, 58].

A key challenge for qubit systems is to maximize the relaxation time, and the coherence

time. Silicon is a particularly attractive system for maximizing the T1 and T2 of spin

qubit systems. Natural silicon contains 95% non-magnetic nuclei, and can be purified to

nearly 100% non-magnetic nuclei. The absence of a nuclear spin bath suppresses spin

relaxation and phase randomization. In addition, electrons in silicon experience very

weak Spin-Orbit Interactions (SOIs), which limits the spin coupling to phonons and

charge noise. Due to these favorable properties electrons in silicon quantum dots can

achieve an extremely long T∗2 and high fidelity manipulation1. In the next section we

introduce the methods to produce spin manipulation in semiconductor quantum dots.

1.4.2 Spin manipulation

Electrons in quantum dot based spin qubits can be manipulated using Electron Spin

Resonance ESR. This involves applying an oscillating magnetic field perpendicular to a

static magnetic field. Coherent spin rotations between the |↑〉 and |↓〉 qubit basis states

are driven when the frequency of the oscillating magnetic field matches the Zeeman

energy of the spin split states (~fosc = gµBB). The frequency of the spin rotations is

known as the Rabi frequency (fRabi) and is proportional to the square root of P, where

P is the power of the driving field at the qubit site. Typically spin-qubits driven by ESR

can experience fRabi up to several MHz [13, 17, 55].

While ESR can be used to drive long lived, highly coherent spin qubits [19], there are
1A T∗2 of 120µs, TCPMG

2 up to 28ms and control fidelity of 99.6% has been observed by Veldhorst
et al. [17] in a single spin-qubit based on a silicon MOS quantum dot. Recently in a two-qubit silicon
MOS control fidelities of up to 98% have been observed (Huang et al. 2019 [55]).
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some challenges in scalability. It is difficult to address individual spins in a multi-qubit

device, since producing localized magnetic fields is challenging. Generally an oscillating

magnetic field is produced using a bulky proximal strip line, and this takes up space on

a device and requires additional fabrication. There are additional challenges related to

the qubit operation speed (1/fRabi). The maximum Rabi frequency is limited since high

power magnetic fields generated by a strip line produce heat, which will degrade qubit

performance. Each of these effects is a challenge for scaling up spin qubits towards the

multi-qubit systems needed for quantum computing.

Spin qubits driven by electric fields are a potential solution to overcome the challenges in

the scalability of spin qubits. All-electric driving of the spin states is known as Electric

Dipole Spin Resonance (EDSR) and has been demonstrated in 2007 by Nowack et al. [59].

Recently Hendrickx et al. [25] have achieved all electric spin manipulation for spin qubits

with fRabi exceeding to 100MHz and qubit control fidelities of 99.3%. This demonstrates

the potential for fast scalable qubit control and there currently considerable research

interest in developing EDSR based spin qubits.

The challenge of using electric fields to control spin states is that the magnetic moment

of a free electron (or hole) spin does not intrinsically couple to electric fields. Electric

manipulation must be mediated via a physical mechanism that allows an oscillating

electric fields to produce an oscillating effective magnetic field. There are three main ways

to achieve this in semiconductor devices: (1) using the intrinsic Spin-Orbit Interaction

(SOI), where an oscillating electric field can produce an effective oscillating internal

magnetic field [60]; (2) using g-Tensor Modulation Resonance (g-TMR), where electric

field oscillations can induce an oscillating Landé g-factor [61, 62]; or (3) Using a micro-

magnet, where electric fields can spatially displace the wavefunction through a non-

uniform magnetic field [63]. The first two approaches (SOI and g-TMR) can be mediated

by an intrinsic spin orbit coupling1. There has been an increase in research of systems

with strong spin-orbit coupling due to their potential for use as scalable spin-qubits2.
1 In contrast the micro-magnetic approach requires the inclusion of bulky micro-magnet in the

fabrication process. This reduces one of the advantages of electric manipulation, which was the ability
to remove the bulky ESR strip line.

2This approach, including the underlying physical mechanisms is discussed in much more detail in
the literature review of Chapter 4.

41



1. Background information

In this section of the thesis we have outline the main aspects of spin qubits and detailed

how they are related to semiconductor quantum dots. The research presented in Chapters

2, 3, and 4 of this thesis is focused on understanding the fundamental physics of hole

spins in silicon quantum dots. A primary motivation for enhancing the understanding of

hole spin states is to determine the feasibility of implementing hole spins as spin qubits.

In the following section we will discuss the current state of silicon hole spin physics.

1.5 Holes in silicon quantum dots

So far in this introduction we have discussed physics that applies to both electrons and

holes in silicon quantum dots. In this section we highlight some of the main aspects that

distinguish hole from electron based quantum dots in silicon. In section 1.5.1 we intro-

duce the background physics of the silicon valence band. In section 1.5.2 we introduce

the 4x4 k·p model known as the Luttinger model, which describes the lowest energy

valence band states. Finally, in section 1.5.3 we present a high level summary of the key

factors that distinguish holes from electrons in quantum dot applications.

1.5.1 Valence band states in silicon

The spin physics of holes varies from electrons since holes occupy the valence band rather

than the conduction band. The valence band is made from atomic p-orbitals1 (l=1) and

the hole states can therefore have total angular momentum2 of J=1/2 or J=3/2. These

two states (J=1/2 and J=3/2) are split in energy due to spin-orbit coupling, where

the splitting is known as the spin-orbit gap (∆SO). The J = 1/2 states have just one

projection of the total orbital momentum jz = ±1/2, however the J=3/2 bands has

two projections defined by jz = ±3/2 and jz = ±1/2. Overall this gives rise to the

three distinct energy levels in the valence band, which are shown schematically in Figure

1.13(a) (red, blue and purple).

The spin-orbit gap (∆SO) is typically much larger than the energy scales in semiconductor
1Recall that the atomic shell filling of silicon is [Ne]3s22p2.
2J = L+ S, where L = 1 for the valence band and S = 1/2 is the spin angular momentum.
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Figure 1.13: Schematic of silicon valence band: (a) Schematic of the bulk silicon band structure.
The valence band has three distinct energy levels; Heavy Holes (HH, red), Light Holes (LH, blue) and
the Split-Off band (SO, purple). The distinct total angular momentum (J) and projections (jz) are
identified for each band. (b) Schematic of the silicon band structure when 2D confinement has been
imposed. The 2D confinement lifts the degeneracy of the HH and LH bands, with HH moving to higher
energy. The LH and HH states experience an avoided crossing due to the mixing of HH and LH states.
The effects of confinement on the conduction band have been discussed in section 1.3.4. Figure modified
from [64].

quantum devices, and the J=1/2 band can be neglected since it is generally unoccupied1.

Therefore, it is the J = 3/2 states that are primarily considered in the hole physics of

semiconductor quantum dots. Since these states have J = 3/2, they are conventionally

referred to as having effective spin S=3/2. The two J = 3/2 bands have different effective

masses. Therefore, these two bands are known as the Heavy Hole (HH, jz = ±3/2) and

Light Hole bands (LH, jz = ±1/2). These Heavy and Light hole bands are degenerate

at the valence band maximum (k=0). In the next section we discuss a model for these

4 low energy valence band states (jz = ±1/2 and jz = ±3/2).

1.5.2 Luttinger Model of the Valence band

Full k·p models can successfully describe the semiconductor band structure including

the effects of non-parabolically, spin-splitting, and electric and magnetic field induced

effects [51, 65]. However, these full k·p models also require solving large 14x14 matrices.

Typically in semiconductor quantum devices only the low energy valence band states

are occupied, making it unnecessary to solve the full 14x14 matrices in order to describe
1∆SO = 40meV in silicon and ∆SO = 341meV in GaAs [51]. Typical energy scales for electrically

addressable quantum dots are 0.1 to 20meV.

43



1. Background information

the underlying valence band physics. The Luttinger model is a 4x4 k·p model used to

describe low energy hole spectrum in cubic semiconductors [51, 66]. The general form of

the Luttinger Hamiltonian (HL) has three main contributions, which are given by

HL = (Kinetic) + (Spin-orbit) + (Cubic Crystal Symmetry)

HL = HK +HSO +HC

HL =

(
γ1 +

5

2
γ2

)
π2

2m
− γ3
m

(π · J)2 +
γ3 − γ2
m

(π2
xJ

2
x + π2

yJ
2
y + π2

zJ
2
z ) (1.17)

where γi are Luttinger material parameters (see Table 1.1), π = k - eA is the long

momentum, A is the vector-potential, axes x, y and z are oriented along the crystal axes

[1,0,0], [0,1,0] and [0,0,1] respectively, m is the bare electron mass, and J = (Jx, Jy, Jz)

is the hole angular momentum (spin 3/2). In the following sections we discuss the main

physical effects that are described in this Luttinger model.

Material composition in Luttinger model

The effects of the material composition are included in the Luttinger Hamiltonian by the

Luttinger parameters γ1,2,3 and κ. In this thesis we have focused on silicon. However,

the valence band of other materials can be described by including the relevant Luttinger

parameters. A summary of the relevant bulk Luttinger parameters is included in Table

1.1.

γ1 γ2 γ3 κ
Si 4.29 0.34 1.45 -0.42

GaAs 6.98 2.06 2.93 1.2
InAs 20.4 8.3 9.1 8.78
InSb 37.1 16.5 17.7 15.6
Ge 13.4 4.24 5.69 3.41

Table 1.1: Bulk Luttinger parameters: See Winkler [51] Table D.
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1.5. Holes in silicon quantum dots

Effective mass in the Luttinger model

The Luttinger Hamiltonian gives the effective mass1 of the Heavy Holes (HH) and Light

Holes (LH) as,

mHH =
m

γ1 − 2γ2
= 0.28m, mLH =

m

γ1 + 2γ2
= 0.20m (1.18)

where m is the free electron mass, and γi are the bulk Luttinger parameters. The specific

numbers given in Equation 1.18 are for silicon.

When 2D confinement is introduced the difference in the effective masses lifts the degen-

eracy of the Heavy and Light hole bands at the valence band maximum. A schematic

of the 2D valence band structure is shown in Figure 1.13(b). The result of 2D confine-

ment is that the ground state of a 2D Hole Gas is the Heavy Hole states (at k≈0). The

magnitude of the Heavy Hole Light Hole splitting (∆HH−LH) at k=0 depends on the

strength of the 2D confinement, and is typically on the order of 4-10meV in 2D systems.

For a simple square well confinement the splitting between the first (n=1) Heavy Hole

and Light Hole states can be given as

∆HH−LH =
π2n2~2

2mLHd2
− π2n2~2

2mHHd2

=
2γ2π

2~2

md2
(1.19)

where d defines the square well width, and the masses are taken from Equation 1.18. As

a rough estimate in silicon for a square well of width 10nm, ∆HH−LH ∼ 5meV.

The Light Hole states are typically unoccupied for low energy scales. However, for k6=0,

the different curvature of the bands brings the Heavy Hole and Light Hole bands together

allowing mixing. This mixing can influence the hole spin physics [51] by effecting the

angular momentum of a hole state. The magnitude of the HH-LH mixing will depend on

∆HH−LH and the Fermi momentum, however it can be electrically controlled by tuning

the 2D confinement potential (analogous to changing d in Equation 1.19 ). It is the
1Here we show the perpendicular effective mass for growth direction [001]. See Ref [51] Equations

4.33 for directional dependence of effective masses.
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1. Background information

HH-LH mixing that causes the avoided crossing of the bands, shown schematically in

Figure 1.13(b).

Luttinger spin-orbit coupling

Valence band holes in silicon experience an enhanced spin-orbit coupling compared to

electrons. This enhanced spin-orbit coupling is due to the p-orbital (l=1) nature of the

valence band holes and is included in the Hamiltonian as as the Luttinger spin-orbit

term

HSO = −γ3
m

(π · J)2. (1.20)

In silicon the Luttinger Spin-Orbit Interaction (SOI) is strongest spin-orbit coupling term

acting on the hole states1. For holes confined in silicon quantum dots, the Luttinger SOI

captures the 3D orbital symmetry of the confinement. This allows anisotropic spin-orbit

coupling to arise based on anisotropy in the orbital confinement profile.

The enhanced spin-orbit coupling of holes in silicon has been experimentally observed by

studying the spin-orbit length (λSO). The spin-orbit length is a useful parameter since

it defines the distance a charge must travel for the spin-orbit interaction to produce a π

rotation of the spin2. Holes in silicon MOS quantum dots have spin-orbit lengths mea-

sured to be 110nm [28]. This is comparable to the strength of the spin-orbit coupling

of electrons in small band gap systems such as InAs (λSO = 127nm [67]). The large

spin-orbit coupling experienced by valence band holes provides motivation for their im-

plementation as all-electric spin qubits3. Holes in silicon MOS based quantum dots are

particularly promising due to the Heavy Hole ground state with no valley degeneracy

and the advantages of silicon MOS fabrication. However, there are limited experimental

studies of hole spin-orbit coupling interactions in these devices. There still remains many

open questions regarding the complex spin-orbit coupling of holes states.
1Dresselhaus and Rashba spin-orbit coupling are suppressed in silicon due to the large band-gap and

lattice structure.
2Shorter spin-orbit lengths (λSO) occur for systems with stronger net spin-orbit interaction strengths.
3See the Literature review presented in Chapter 4 for further details.
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1.5. Holes in silicon quantum dots

Cubic crystal symmetry in the Luttinger model

The effect of the cubic lattice symmetry is described by the term

HC =
γ3 − γ2
m

(π2
xJ

2
x + π2

yJ
2
y + π2

zJ
2
z ). (1.21)

To determine the significance of this term it is useful to compare the magnitude of the

HC coefficient with the HSO coefficient. This can be parameterized by considering the

value of

η =
γ3 − γ2
γ3

. (1.22)

In systems such as InAs η = 0.1 and the HC term can be ignored or treated as a

perturbation. However, in silicon η = 0.77 andHC can introduce crystal based anisotropy

to the Hamiltonian.

Zeeman splitting in the Luttinger model

To complete the model of the valence band Hamiltonian it is necessary to include the

effect of an external magnetic field B. The simplest magnetic response comes from the

Zeeman effect,

HZ = −gµBB · J (1.23)

where J is the hole ’spin 3/2’ and the g is the g-factor. The bulk g-factor is given

by g = 2κ. Typically the Zeeman effect is characterised by observing the linear in B

splitting of an energy level. The Zeeman effect is then parameterized by the g-factor,

which can be extracted from the slope dE/dB. In this sense, the experimental g-factor

is defined by all the linear in B terms in the Hamiltonian, where the total Hamiltonian

is given

H = HL +HZ

H = HK +HSO +HC +HZ
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In addition to the Zeeman term (HZ), magnetic fields also enter into the Luttinger

Hamiltonian (HL) through the vector potential in the long momentum π = k − eA.

The Luttinger Spin-Orbit (HSO) and cubic asymmetry (HC) terms can both introduce

linear in B terms to the total Hamiltonian, which will modify the effective g-factor. As

a simple example we can consider vector potential A = (Bzy, 0, 0) which defines the

magnetic field B = (0, 0, Bz). Then the spin orbit Hamiltonian becomes

HSO =
γ3
m

(π · J)2

=
γ3
m

((kx − eBzy)Jx + kySy + kzJz)
2 . (1.24)

If we collect the terms that are linear in B in Equation 1.24, then the spin-orbit contri-

bution to the effective Zeeman1 splitting is given by,

HZ
SO = −2yeγ3

m
(k · J)BzJx

= g∗SOµBBzJx

where

g∗SO = −4yγ3
~

(k · J). (1.25)

This highlights how the Luttinger Spin-Orbit Hamiltonian can modify the effective hole

g-factor2. Similarly the Cubic term HC can produce linear in B terms, which can further

modify the effective hole g-factor. This discussion of the hole g-factor is continued in

Chapter 4 of this thesis, where we present an experimental and theoretical study of the

g-factor for a single hole in a silicon MOS quantum dot.
1The terms in Equation 1.24 that have no B dependence contribute a constant energy shift, and the

terms that are quadratic in B are small and can be neglected.
2The observed effective g-factor will be given by the tensor sum of the Zeeman g-factor g and the

spin orbit g-factor g∗SO.
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1.5. Holes in silicon quantum dots

1.5.3 Comparison of spin properties in different group IV quan-

tum dot structures.

In section 1.5.1 and section 1.5.2 we have discussed some of detailed underlying physics

that distinguishes hole spin states from electron spin states. In this final section we

present a summary of the different properties of holes and electrons in silicon quantum

electronic devices. The summary is presented in Table 1.2. The focus is primarily on

differences in spin properties with a focus on spin-qubit applications. Three distinct

device categories are presented in Table 1.2: electrons in MOS quantum dots, which

currently are the most successful spin-qubit systems; holes in MOS quantum dots, which

are a promising candidate and the focus of this thesis; holes in germanium quantum

dots, which have shown amazing progress in the recent year achieving all electric qubit

operations in Ge MOS [25] and Ge hut wires [23].

1.5.4 Conclusion of background for holes in quantum dots

In sections 1.5.1, 1.5.2, and 1.5.3 we have covered the background physics for hole quan-

tum dots that is relevant for the experimental chapters of this thesis. Each Chapter

of this thesis begins with a literature review. In Chapter 2 we present a review of the

development of hole based quantum dots in silicon MOS structures. In Chapter 3 we

cover the literature for spectroscopy measurements of hole quantum dots in a range of

materials and quantum dot structures. Finally, in Chapter 3 we review the physical

mechanisms that are related to g-tensor modulation in semiconductor quantum dots.
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Chapter 2

Single and double quantum dots in

silicon MOS structures

Abstract

Hole quantum dots in many materials are attracting attention for uses in spin based ap-

plications, such as spin qubits. While single electrons confined in planar Si quantum dots

are one of the most successful electron spin-qubit systems, there has been limited study

of single holes in identical 2D structures. To date, no-one has presented measurements of

a stable 2D hole quantum dot in silicon operating down to the last hole, which is the most

widely used regime for spin-based quantum computation applications. In this chapter

we present such measurements of a hole quantum dot device. Confirmation of the ab-

solute charge occupation is possible since the device includes an adjacent charge sensor.

We present a full set of characterisation measurements demonstrating that this is device

structure allows stable, well defined single hole quantum dots, suitable for spin based

applications. Finally, we tune the device to the double quantum dot regime, and present

measurements of a 2D Metal-Oxide-Semiconductor (MOS) silicon double quantum dot.

These results represent a significant step forward in the understanding, fabrication, and

potential applications of p-MOS quantum electronic devices.
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2. Single and double quantum dots in silicon MOS structures

Publication

The results presented in this chapter appear in the article and supplementary material

of: Liles, S. D., Li, R., Yang, C. H., Hudson, F. E., Veldhorst, M., Dzurak, A. S., and

Hamilton, A. R. (2018). Spin and orbital structure of the first six holes in a silicon

metal-oxide-semiconductor quantum dot. Nature communications, 9(1), 3255.

2.1 Chapter introduction

The spin states of electrons confined in semiconductor quantum dots form a promising

platform for quantum computation [6, 8, 30]. Recent studies of silicon complementary

MOS (CMOS) qubits have shown coherent manipulation of electron spin states with

extremely high fidelity [17]. However, manipulation of single electron spins requires

large oscillatory magnetic fields to be generated on-chip, making it difficult to address

individual qubits when scaling up to multi-qubit devices [13, 17]. In addition, electron

spins experience a strong hyperfine coupling to the nuclei spin of the host crystal, which

limits spin coherence times [14]. While coherence time can be significantly improved by

using isotopically purified material systems such as silicon [17], the isolation of electron

spins makes it difficult to perform fast operations, thereby sacrificing operation speed

for coherence time.

Hole spins in semiconductor quantum dots are attracting significant attention as can-

didates for fast, highly coherent spin qubits [78, 79]. These two key factors for qubit

operation, coherence and speed, can be enhanced due to the unique spin properties of

valence band holes. Hole spins are predicted to have long coherence times due to the

weak hyperfine coupling to nuclear spins [80, 81]. Optical studies of hole quantum dots

suggest a 10 to 100 times enhancement of T∗2 over electron spins [82, 83]. By significantly

suppressing a leading source of decoherence, p-type materials may provide highly coher-

ent spin qubit systems. Hole spin based qubits have been demonstrated to have rapid

operation times [20, 22], due to the inherently strong spin-orbit coupling1, which allows
1While Spin-Orbit Coupling (SOC) will decrease the decoherence time via charge noise, the SOC

also enables orders of magnitude decrease in gate operations time. ESR driven spin qubits have typical
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2.1. Chapter introduction

spin states to be controlled locally with electric fields applied to gate electrodes [59, 60,

84, 85]. Hole spins therefore provide a highly scalable system of easily addressable, fast

qubits.

Despite these promising properties, hole based quantum dots still face technological

challenges that have been overcome in electron systems more than a decade ago [6].

Planar silicon CMOS quantum dots are amongst the most promising semiconductor

system to implement spin qubits. This type of device is suitable for high frequency spin

manipulation experiments [59], and is optimized for scalability up to many qubits [86,

87]. However, creating a planar silicon CMOS quantum dot capable of confining a single

hole has been a challenge [28, 29, 70, 88]. Previous studies of planar silicon-based hole

quantum dots have used transport measurements to study the addition spectrum of the

quantum dot [28, 29, 88]. However, as these devices approach the few hole regime, the

tunnel barriers become extremely opaque, and the transport signal falls precipitously.

This has hampered studies of hole quantum dots containing one and two holes, which is

the most widely used regime for spin-based quantum computation applications.

In this chapter we present an experimental study of a surface-gated silicon metal-oxide-

semiconductor quantum dot capable of reaching the last hole. Confirmation that the

device can reach the single hole regime is possible since the device incorporates a charge

sensor. In addition, we demonstrate a double hole quantum dot operating in the last

hole regime. These results are a promising step towards developing hole quantum dots

towards spin based application such as spin qubits. Finally, we note that these hole

quantum dots are formed using same planar geometry that has already proven highly

successful for electron spin qubits [17, 19, 59].

gate times of around 1µs [17], while electrically driven spin-orbit qubits have shown gate times around
10ns [22] (See Table 1.2) . The key factor is the ratio of spin decoherence time to the gate operation
time. Experiments are still required to quantify the decrease in decoherence time for hole spins due to
charge noise.
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2. Single and double quantum dots in silicon MOS structures

2.2 Literature review - Single spins in silicon MOS

quantum dots

Semiconductor quantum dots are a rich and interesting research field. For quantum

physicists, quantum dots can act as artificial atoms or molecules, allowing access to a

quantum mechanics lab on a semiconductor chip. In addition, quantum dots can serve as

platforms for new applications and technology. In particular, the electrically addressable

quantum dots are ideal for spintronics, and spin based quantum information applications,

since the quantum dot serves as an ideal structure to confine and manipulate individual

spins. In this literature review I will discuss the development of silicon MOS quantum

dot structures towards spin based applications. The focus of this review is to highlight

the significance of reaching the last hole in a silicon MOS quantum dot within the context

of the silicon MOS semiconductor technology.

a)

G
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a
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)

c)

d)b)

Figure 2.1: Early examples of Coulomb blockade in Si and GaAs: (a) Shows the layout of the
silicon based device studied by Scott-Thomas et al.. Accidental quantum dots form due to disorder in
the narrow silicon channel. (b) Shows the conductance oscillations due to Coulomb Blockade, measured
as as function of the Lower gate voltage. Reproduced from [89]. (c) Shows the schematic layout of the
GaAs/AlGaAs quantum dot device studied by Meirav et al.. (d) Shows the conductance as a function
of the gate bias above threshold, with clear well defined Coulomb blockade. Reproduced from [90].
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A defining feature of a quantum dot is the ability to observe Coulomb blockade. The first

evidence of Coulomb blockade in a semiconductor was observed in 1989 using a Si/SiO2

MOSFET device [89]. Figure 2.1(a) shows a schematic of the device, which consists

of a one dimensional etched silicon channel. Reproducible periodic oscillations in the

conductance of the device are shown in Figure 2.1(b). These conductance oscillations

are due to the formation of a quantum dot along the narrow one-dimensional channel.

The current becomes blockaded by the repelling force of adding more electrons to the

quantum dot. In these early silicon devices the charge islands were formed by disorder

effects where electrons are confined into ’puddles’ of trapped charges by impurities in

the material.

From 1990 significant progress in the understanding and measurement of quantum dots

was made using GaAs as a material system. In addition to the well developed nano-

technology for GaAs nano-electronics, the low disorder allowed fabrication of reliable,

reproducible and highly controllable quantum dot devices. Figure 2.1(c) shows the

schematic of an early GaAs MOS quantum dot, and Figure 2.1(d) shows the high quality

of the Coulomb blockade. GaAs quantum dots were of high enough quality to act as

artificial atoms and in 1996 Tarucha et al. observed orbital shell structure [9]. Further

successes allowed measurements of Pauli spin blockade [91], where the current through

a device is blocked based on the spin configuration of a double quantum dot. Finally

in 2006 Koppens et al. showed ESR measurements of electrons confined in GaAs planar

structures [13, 59].

In addition to demonstrating the progress of GaAs based quantum dots, the ESR mea-

surements also highlighted a key challenge that limits GaAs as a material for spin based

applications. The spin coherence time of electrons in GaAs was found to be limited to

tens of nanoseconds due to the abundance of magnetic nuclei [14]. The magnetic mo-

ment of the Ga and As nuclei interact with the electron spins via the strong hyperfine

coupling, leading to decoherence. Dynamical decoupling mechanisms can extend the

electron spin coherence times [56, 92, 93], however the low concentration of magnetic

nuclei in silicon provided motivation for large scale research focus on silicon as a base

material for quantum dots.
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2.2.1 Electrons in silicon MOS quantum dots

In this subsection I discuss the key developments using silicon MOS quantum dots to

confine electrons1. Here we particularly focus on the development of these systems for

spin based electronic applications, such as spin-qubits.

In order for quantum dots in a particular material to be full developed towards spin

based applications there are four broad criteria the devices should be able to fulfill.

These criteria are;

1 - Controllable demonstration of Coulomb blockade.

2 - Control of the absolute charge occupation.

3 - Ability to readout the spin state.

4 - Ability to manipulate the spin state.

1 - Controllable Coulomb Blockade: The first observation of Coulomb blockade

in a semiconductor occurred in 1989 using a planar silicon MOSFET device [89], and by

1999 controllable Coulomb blockade was achieved by Simmel et al. [94] in silicon MOS

quantum dots. Figure 2.2(a) shows a vertical schematic of the device studied by Simmel

et al. [94]. This device employed a multi-layer structure with a large metallic upper gate

used to form a 2DEG, while two lower gates deplete the 2DEG and form a controllable

quantum dot. The upper oxide layer was 80nm and the lower oxide layer was 20nm thick.

The surface layout of the device is shown in Figure 2.2(b) showing the conceptual idea

of deliberately forming an electron island, between the source and drain 2DEG regions.

Silicon quantum dots improved as technology of multilayer gates was developed. Fujiwara

et al. [96] (2006) and Angus et al. [95] (2007) each studied a well defined quantum dot

with tunable tunneling barriers. An example of the device layout used by Angus et al.

(2007) is shown in Figure 2.2(c). The major improvement on previous silicon MOS

quantum dots is the significant decrease in the oxide thickness. Thin oxide reduces the

impact of disorder at the SiO2 interface on the confinement profile, allowing the formation
1For a full reference of all silicon quantum dot structures such as self assembled, nanowires and

dopant quantum dots see Zwanenburg et al. [6].
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a)

b)

c)

d)

Figure 2.2: Multi-layer silicon MOS quantum dots: (a) Schematic of the multilayer silicon MOS
quantum dot studied by Simmel et al. in 1995. An upper gate forms a 2DEG, while the lower gates
form the electron Island as demonstrated in (b). The upper oxide layer is 80nm thick and the lower
oxide layer is 20nm thick. Reproduced from [94]. (c) SEM image of the multilayer devices studied by
Angus et al. in 2007 with (d) showing the corresponding vertical schematic. Here the thickness of the
SiO2 and the oxidized aluminum are both several nanometers thick. The scale bar labeled d represents
the lower gate separation, which is less than 40nm. Reproduced from [95].

of well defined, tunable quantum dots1. Angus et al. use a 5nm thick SiO2 layer, while

the multilayer stack of aluminum gates is insulated by an AlOx layer that is only several

nanometers thick. This extremely thin oxide allows the gates to be placed very close to

the 2DEG, providing excellent control of the dot tunnel barriers and chemical potential.

An SEM of the layout of these MOS quantum dots is shown in Figure 2.2(d). In 2009 Lim

et al. used these multilayer devices to observe silicon electron quantum dots reaching the

few hole regime. However, a key challenged remained with these structures; the quantum

dot chemical potential was controlled by the same gate which forms the 2DEG lead. This

limited the range of operation of the quantum dot, and made reaching the last electron

difficult.

This subsection demonstrates the major developments allowing controllable Coulomb

blockade of electron MOS quantum dots in silicon. Coulomb blockade indicates the
1Scott-Thomas et al. [89] show that the disorder effects in silicon MOS devices are strong enough to

form quantum dots even when there is no electrostatic gates present. The thin oxide used by Angus
et al. allows the gates to provide a strong electric confinement, overpowering the effects of the SiO2

interface disorder. Thin oxide (on the order of a few nanometers) is not necessary for GaAs quantum
dot devices due to the low disorder of the samples.
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ability to isolate an island of charge within a quantum dot and is an important step

towards development of spin based electronics. However, the experiments presented in

this subsection have all been in the many electron regime, where the absolute number of

electrons is unknown. This makes interpretation of the physical properties such as energy

structures and magnetic response challenging, since the quantum dot charge and orbital

configuration is unknown and therefore cannot be reproduced across multiple devices.

The next step forward in the technology is to demonstrate control of the absolute number

of charges on the dot.

2 - Control of the absolute charge occupation: The ability to control the absolute

charge occupation hinges on the ability to fully deplete all charges from the dot1. Ob-

servations of silicon quantum dots reaching the last electron were demonstrated by Liu

et al. [31] (2008) and Lim et al. [16] (2009). Lim et al. (2009) achieved this control by

adding an additional layer of aluminum gates. An SEM of the device by Lim et al. (2009)

is shown in Figure 2.3(a), and a schematic is shown in 2.3(b). The key feature was the

addition of the P gate, allowing the dot chemical potential to be tuned independently of

the 2DEG leads. Evidence that the last electron has been reached is shown in 2.3(c). As

the number of electrons decreases, the charging energy increases, which is typical of the

few electron regime. Finally no additional Coulomb diamonds are observed, confirming

the last electron has been reached (therefore labeled N = 0).

The results of Liu et al. [31] (2008) and Lim et al. [16] (2009) show confirmation of

the last electron through charge transport measurements. Typically charge transport

measurements do not provide strong confirmation that the last charge has been reached.

This is because additional transitions can be missed as a result of the tunnel barriers

becoming opaque. In cases where transport measurements are used to determine the

occupation, supporting results are typically required to confirm the last hole has been

reached. Lim et al. [98] characterised the spin and valley state using magnetic field spec-

troscopy, and found the results consistent with the device last electron. Confirmation

of the absolute charge occupation is most convincing when the device incorporates an
1Confirmation that the last hole has been depleted typically requires a charge sensor. However, in

cases with large clear source-drain current it is possible to observe full depletion of the dot in Coulomb
diamonds.
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a)
c)

b)

Figure 2.3: Single electron silicon MOS quantum dots: (a) SEM of the device studied by Lim
et al. and (b) corresponding vertical schematic. The advantage of this device is that the gates L1 and
L2 can form a 2DEG, while the P-gate acts as an independent plunger gate, allowing fine control of
the quantum dot potential. (c) Shows the Coulomb diamonds, which confirm the dot has reached the
last electron. Assignment of N=0 is due to no more transitions being observed even for very large
source-drain. Reproduced from [16].

adjacent charge sensor.

This subsection highlights the developments allowing silicon MOS quantum dots to reach

the last electron regime. The key feature was the implementation of a separate plunger

gate to control the quantum dot. Reaching the last charge is a major step towards de-

veloping spin based electronics, since it allows access to the absolute number of charges

confined in a dot. The ability to know the absolute number of electrons provides a plat-

form for meaningful spectroscopic measurements of spin, valley and orbital states. Lim

et al. (2011) [98] and Yang et al. (2012) [49] used the multilayer silicon MOSFET’s to

study the behavior of a silicon artificial atoms, providing insight into the valley-orbit

states expected in silicon quantum dots.

3 - Ability to readout the spin state: Reading out the spin state of electrons in a

quantum dot requires a spin-to-charge conversion mechanism. Pauli spin blockade is a

widely used feature of double quantum dots, which can allow spin state readout due to

the spin selective transport. Spin measurements of electrons confined in planar silicon

quantum dots became possible with the observation of Pauli spin blockade in these de-

vices [31, 99].

59



2. Single and double quantum dots in silicon MOS structures

4 - Ability to manipulate the spin state: In 2004 Veldhorst et al. [17] used an

improved design of the multi-layer quantum dots to demonstrate electron spin resonance

of single electrons in Si MOSFET quantum dots. The layout is shown in Figure 2.4(a)

with a schematic shown to the left. This device is a single lead quantum dot, where the

quantum dot is coupled to a single reservoir. The metal gate labeled C (green) provides

tight confinement of the quantum dot. The remaining gates (labeled G1 - G4) can act as

plunger gates or tunnel barrier, depending on the location of the dot. A single electron

transistor (SET) is adjacent to the dot and is used to readout the state of the quantum

dot. Finally, an ESR strip line is shown in blue. This device layout highlights the advan-

tages of 2D quantum dots, since all features (strip-line, dot and SET) can be fabricated

on the surface, using multiple layers, within several hundred nanometers of each other.

a)a)

b)

Figure 2.4: ESR of electrons in Si MOS quantum dots: (a) False color SEM image of the single
lead quantum dot device studied by Veldhorst et al.. The grey gates labeled ST, LB and LR for the
SET. LB and RB are the right and left barrier gates, which are fabricated bellow ST. This allows the
formation of a SET in the same way as Angus et al. shown in Figure 2.2(d). The remaining gates
are described in the main text. Next to the SEM shows a schematic of the typical operation of the
device. (b) Shows the measurement of ESR for a single electron. Here the y-axis is the electron spin
projection and the x-axis is the length of time microwaves are applied for. The black dots are individual
measurements. The spin projection oscillates between up and down, at a Rabi period of 4µs and a
dephasing time of 120µs. Reproduced from [17].

The results of the ESR measurements performed by Veldhorst et al. are shown in Figure

2.4(b). The key result is an observed spin dephasing time, T∗2 of 120µs, which is orders

of magnitude improvement on GaAs (T∗2 is of order 10ns [15]) and other semiconductor

quantum dots. The reason for such long spin dephasing times is due to the material

used. Veldhorst et al. use an epitaxially grown isotopically purified 28Si epilayer with
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only 800ppm residual concentration of 29Si. Removing the majority of the magnetic
29Si nuclei suppresses the main source of decoherence, allowing long spin lifetimes for

electrons in 28Si quantum dots.

2.2.2 Holes in silicon MOS quantum dots

Long spin coherence times and the ability to perform high fidelity spin manipulation

positions electrons in silicon MOSFET quantum dots as a leading spin qubit system.

However, despite these clear technological successes there are still some challenges and

aspects that can be improved. Electron spins are not coupled to electric fields and

spin manipulation must be performed by ESR, applying oscillating magnetic fields via

adjacent strip-lines (see Figure 2.4(a)). Since the Rabi frequency (spin manipulation

frequency) is linear with respect to the square root of the microwave power, the maximum

Rabi frequency (fRabi) for ESR has experimentally imposed limits. The metallic strip-

line must be placed away from the quantum dot, which reduces the power received by the

dot. Further, since the magnetic field is generated by a alternating current, increasing

the microwave power heat’s the sample. In contrast, if electrical manipulation of spins

is possible, then Electric Dipole Spin Resonance (EDSR [60, 62]) can be driven with

the adjacent plunger gates using oscillating voltage, rather than a oscillating current.

Hence, the isolation of electron spins from electric fields makes it difficult to perform fast

operations, thereby sacrificing operation speed for coherence time.

An attractive solution to these challenges is to use holes instead of electrons. The strong

spin-orbit coupling of holes provides a mechanism for electric fields to couple to spin

states, allowing fast local spin manipulation, while retaining the advantages of silicon

as a material system. In this subsection I will discuss the key developments of p-type

MOS quantum dots. I will highlight the development of hole based Si MOS quantum

dots along the four technology criteria introduced in the previous section. In particular,

I highlight that there have been no previous demonstrations of a silicon MOS quantum

dot operating down to the last hole.

1 - Controllable Coulomb Blockade: The first observation of a single hole tran-
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sistor was by Leobandung et al. in 1995 [100]. Figure 2.5(a) shows a schematic of the

device, which uses silicon-on-insulator technology. The quantum dot is formed by etching

an abacus shaped bead in the narrow silicon channel. Stable hole quantum dot devices

using silicon MOS technology were achieved in 2013 by Li et al. [27] and Spruijtenburg

et al. [29]. These devices used the same multi-layer aluminum gate layouts that had

proved successful for electron devices. Figure 2.5(b) shows the schematic used by Li et

al., which is exactly same lithography as used by Lim et al. [16] to reach the last electron.

The only change in the device was the polarity of the ohmic contacts. It is interesting

that although n-type devices reached the last electron with this layout, p-type devices

were unable to reach the last hole 1. This is shown by the Coulomb diamonds in Figure

2.5(c). Since the Coulomb diamonds increase in size as hole occupation decreases, it

is clear the device has reached the few hole regime. However, the current drops to an

unmeasurable level before it is possible to confirm the dot has been fully depleted.

Despite not reaching the last hole, excited states can be clearly observed in the source-

drain bias measurements in Figure 2.5(c). Observation of excited state energies can give

access to confinement energy of the quantum dot, and can be used to characterise spin

properties such as the g-factor. Excited state energies around 800µeV are comparable

to the excited state energies of the last few electrons in devices with the same lithogra-

phy. Given the similar effective mass of electrons and heavy-holes in silicon (0.19me and

0.21me respectively), this suggests that Li et al. were close to the last hole. However, the

current to drops below the noise level before the last Coulomb diamond can be observed.

This suggests that in order to reach the last hole, charge sensing methods must be used.

There has been no measurements of a silicon MOS quantum dot reaching the last hole

to date2.

Experiments studying ambipolar quantum dots have provided insight into the differences

between the electric properties of hole and electron devices. The first ambipolar silicon

quantum dot measurements were performed in 1999 using a silicon-on-insulator device
1It is unclear why the identical hole device did not reach the last hole. Recent experimental results

suggest that optimal hole quantum dots may require a smaller spacing between gates than electron
devices [101].

2The last hole regime has been achieved for planar GaAs quantum dots [102], InAs self assembled
quantum dots [103], and silicon nanowires quantum dots [104].
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a)

b)

c)

Figure 2.5: Hole MOS quantum dot development: (a) Schematic of the silicon-on-insulator device
studied by Leobandung et al. [100]. (b) Vertical schematic of the multilayer MOS device studied by Li
et al.. The lithography is identical to the multilayer devices studied by Lim et al. [16], including the
nanometer-thin oxide layers. (c) Coulomb diamonds observed in the source-drain bias measurements of
Li et al.. Additional triangles remain for VP1> -1.45V, where the current becomes to weak to measure.
Reproduced from [27].

[105]. Further experiments have used ambipolar devices fabricated using the multilayer

aluminum gate technique [70, 106, 107]. Figure 2.6 inset (i) shows an example of the

ambipolar quantum dot device studied by Mueller et al. [107]. The quantum dot is

formed by using a two layer aluminum gate stack. Two sets of ohmic contacts are made

on either side of the quantum dot, and electrons or holes can flow between the source

and drain depending on the polarity of the Lead gate, as shown in insets (ii) and (iii).

The first important result of ambipolar measurements is the difference in MOSFET

conduction properties between the two polarities. The black line in Figure 2.6 shows the

pinch-off characteristics of the device as a function of the Lead gate voltage. Positive

Vgate allows for electron conduction, while negative Vgate allows for hole conduction. The

turn on voltage is around 1.5V for electrons, and around 2.5V for holes. Further, the

saturation current for electrons is around 7nA for electrons and 2nA for holes. These
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differences in the conductance and turn-on voltage are typical for experiments comparing

electrons and holes. Despite the differences, the main experimental result is that the

threshold voltage for n-type and p-type conduction is below the oxide breakdown voltage

(we have found this to be around 4-5V experimentally), and the current signal is strong

enough to observe reproducible Coulomb blockade.

The second important result of ambipolar studies is comparing the properties of an elec-

tron and hole quantum dot, formed on exactly the same device. The green and red trace

show measurements of the quantum dot Coulomb oscillations for holes and electrons re-

spectively. Despite the differences in conductance and threshold voltage, the n-type and

p-type channel show comparable quality Coulomb blockade oscillations. This provides

evidence supporting the approach of taking the well establish lithographic designs used

for n-type quantum dots and applying it to p-type devices. Translating the same lithog-

raphy between n-type and p-type devices is often not possible for other hole structures,

such as GaAs where the hole and electron effective masses necessarily require different

confinement profiles [102, 108, 109].

2 - Controllable of absolute charge occupation: Previous studies of hole MOS

quantum dots have not reached the last hole regime [27–29]. While silicon electron

quantum dots have strong transport signal even down to the last electron [16, 98], sili-

con p-type devices typically show lower conductance resulting in weak transport signals.

This has made it difficult to confirm the last hole in transport, since the current fall

precipitously in the few hole regime, and the last transition cannot be confirmed [27,

29]. This challenge could be overcome by incorporating a charge sensor to silicon hole

quantum dot devices.

3 - Ability to readout the spin state: In 2015 Li et al. observed Pauli spin blockade

of holes using a double quantum dot [28]. An SEM of the device used is shown in Figure

2.7(a). The device is a double quantum dot, where two dots are formed directly under

G1 and G2. Figure 2.7(b) shows the double dot stability diagram, with the characteristic

honey-comb pattern indicated by black dashed lines. Inset (i) shows the bias triangles
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(iii) (ii)

(i)

Figure 2.6: Measurements of ambipolar MOS quantum dots: Inset (i) shows the schematic of
the device, which includes 10nm SiO2, an Al/Pd Lead gate used to accumulate charge, and a Al bottom
gate, which can form a quantum dot below. The device has p-type and n-type ohmic contacts on either
side allowing conduction via holes or electron as shown in insets (ii) and (iii). Black data shows the
turn on curves where both the the Lead gate and the back gate are ramped together. The n-type
channel pinch-off shows Coulomb blockade, while the p-type does not. Mueller et al. [107] suggest that
negative charge traps at the Si/SiO2 interface provide a possible explanation for this difference. For
small source-drain bias these negative charge traps can act as tunnel barriers to electrons, causing the
formation of Coulomb islands. The red and green curves show the Coulomb blockade of the hole and
electron quantum dot as a function of bottom gate voltage (Lead gate is held fixed). Colored triangles
indicate where the conductance saturates. Reproduced from [107].

for negative source-drain bias. When the bias is reversed the base of the bias triangle

has current blocked, consistent with Pauli Spin Blockade [91]. The ability to observe

Pauli spin blockade demonstrated a step forward for holes in silicon quantum dots, since

Pauli spin blockade is a fundamental technique used to read out the spin state.

4 - Ability to manipulate the spin state: Spin manipulation has not yet been per-

formed for holes in 2D silicon MOS quantum dots. However, recent results using different

quantum dot structures have confirmed that holes can have extremely fast spin manip-

ulation times. In 2016 Maurand et al. used CMOS etched silicon nanowires [73, 110,

111] to show hole Rabi frequencies of 60MHz [20]. Rabi frequencies reaching 150MHz

have been observed using self assembled Ge quantum dots [4, 23, 24] and in Si/Ge MOS

quantum dots [25, 26, 112].

Conclusion of holes in silicon MOS quantum dots review

Holes in Si MOS quantum dots have shown the ability to address three of the four key

criteria for spin based application. However, the criteria step two, demonstrating a de-
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a)

(i)
(ii)

b)

Figure 2.7: Pauli spin blockade in hole double quantum dots: (a) Shows a SEM of the multilayer
p-type double quantum dot studied by Li et al.. (b) Stability diagram of the double dot, where the
x and y axes are the G1 and G2 gate voltage respectively. Here the color scale is the source-drain
current. Black dashed lines indicate the honeycomb pattern of a double quantum dot. (i) Shows a zoom
of the bias triangle for negative DC source-drain voltage. (ii) Shows the same bias triangle for positive
source-drain voltage. The current at the base of the triangle has been blocked by Pauli spin selection
rules preventing transport between the two dots. Reproduced from [28].

vice operating down to the last hole, has remained an open challenge. Fulfilling this

remaining criteria is the focus of the research presented in this chapter. The motivation

for reaching the last hole regime is that from the last hole the absolute charge occupation

can be determined. Knowledge of the absolute charge occupation provides valuable con-

text to spectroscopy measurements of spin and orbital states. Ambipolar experiments

have shown it is viable to use the same lithography for n-type and p-type silicon quan-

tum dots. Here we draw on the success of the n-type device design used by Veldhorst

et al. [17] to achieve a single and double hole quantum dot operating down to the last hole.

2.3 Credits for sample fabrication

Unless otherwise stated, all samples studied in this thesis were fabricated by Australia

Nanotechnology Fabrication Facility (ANFF) process engineers F.E. Hudson and M.

Veldhorst. Design and lithographic layout of the samples has been developed with in

collaboration with F.E. Hudson, M. Veldhorst, R. Li, A.R. Hamilton, A. Dzurak, and
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S.D. Liles (thesis author).

All measurements presented in this thesis have been performed by S.D. Liles (thesis

author). Similarly all analysis and interpretation of results presented in this thesis has

been performed by S.D. Liles (thesis author)

2.4 Sample layout and schematic

In this section we outline the key details regarding the fabrication of the Si MOSFET

devices studied in this thesis. This includes details of the MOSFET fabrication, Scanning

Electron Microscope (SEM) images of the device structure and a brief discussion of the

ideal operation of the device.
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Figure 2.8: SEM and schematic outline of the device: (a) Shows the SEM image of a device
identical to the devices studied in this thesis. Clockwise, the Aluminum gates are the Electron Spin
Resonance (ESR) Line, the Reservoir gate (R-gate), gates 1 to 4 (G1 to G4), the Confinement Gate
(C-gate), the Sensor Top Gate (S-TG) and the Sensor Left and Right Barrier gates (SLB and SRB).
The green squares labeled ’S’, ’D’ and ’R’ indicate the relative positions of the three p-type ohmic
contacts. The black dashed line indicates the shape of the C-gate, which is on the bottom layer. (b)
Vertical cross section indicated by the blue dashed line in (a). This shows the operation of the device as
a double quantum dot. On the right the Reservoir gate accumulates a 2D reservoir of holes at the SiO2

interface (blue). G1 and G3 are operating as tunneling barriers, indicated by the dashed red regions
below. G2 and G4 are in accumulation mode, forming two potential wells at the interface directly
below the respective gates. (c) Vertical cross section indicated by the red dashed line in (a), showing
the sensor operating as a Single Hole Transistor (SHT). S-TG accumulates a sheet of 2D charge at the
hetero-junction. The gates SLB and SRB are biased to act as tunneling barriers. SRB and SLB form a
single quantum dot in series with the sensor circuit.

All devices studied in this thesis are silicon MOSFET structures. These devices are
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fabricated using high resistivity natural (001) silicon as a substrate. All p-type ohmic

regions are prepared by boron diffusion. A 5.9nm gate dielectric (SiO2) is grown by dry

oxidation in the active region of the device. Subsequently, the gate pattern is fabricated

using multilayer Al-Al203 gate stack technology [27]. These gates are fabricated in several

layers. The first layer is the R-gate and C-gate. Layer 2 is gates SLB, SRB, G1 and G3.

The final layer is gates G2, G4 and ST. Between each layer the previous layer of gates

are exposed to low pressure oxygen plasma to form a several nanometer thin native AlOx

oxide. Fabrication of the multiple layers in this order is important, since it allows the

lower level gates to act as depletion gates. The final stage of fabrication is a forming gas

(95% N2 5% H2) anneal to reduce SiO2 interface disorder and enhance low temperature

performance [95].

Figure 2.8(a) shows the SEM image of a fully fabricated device. The labels in Figure

2.8(a) identify the name for each gate based on the desired function (see caption). In the

top of the SEM image the ESR line is visible, although the ESR line was not used for any

experiments in this thesis, it demonstrates the flexibility of MOS device layouts. Ohmic

contact is achieved by overlapping the respective accumulation gates with a degenerately-

doped region far away from the active sample region. The ohmic contacts associated with

their relative accumulation gates are shown by the green squares in Figure 2.8(a).

The design of this device is optimized to operate as a quantum dot, with an adjacent

charge sensor. An example of typical operation of the quantum dot is shown in Figure

2.8(b). The C-gate provides strong confinement for the quantum dot. In addition to

providing confinement the C-gate also ensures there is no current path between the

quantum dot and the charge sensor. The R-gate accumulates a 2DHG, which acts as

a reservoir of holes connected to the grounded ohmic labeled ’R’ (green square). The

gates G1 to G4 can be selectively biased to act as accumulation gates or tunnel barriers.

Holes from the 2DHG reservoir can tunnel in and occupy the quantum dot based on the

finely tuned voltage applied to gates G1, G2, G3, G4 and C.

The second region of the device is the charge sensor circuit. An example of the charge

sensor operating as a Single Hole Transistor (SHT) is shown in Figure 2.8(c). The charge

sensor circuit consists of the two p-type ohmic contacts ’S’ and ’D’, which act as the
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source and drain of the charge sensor circuit. A current can flow between ohmic contacts

S and D, underneath S-TG, with SRB and SLB acting as tunneling barriers. The sensor

circuit is isolated from the quantum dot circuit provided the voltage applied to the C-

gate is sufficiently depleting. The sensor is adjacent to the quantum dot allowing the

sensor current to be maximally sensitive the changes in hole occupation. Further, the

orientation of the sensor with respect to the quantum dot gates (G1, G2, G3 and G4)

allows the sensor current to be sensitive to not only the total charge of the quantum dot,

but also the spatial position. This is because holes accumulated under G1 will be further

from the sensor than holes accumulated under G4, and will therefore have a different

capacitive effect on the charge sensor.

2.5 Device comparison: from electrons to holes
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Figure 2.9: Feasibility tests using ambipolar devices: (a) A SEM image of the active region of an
ambipolar device used for testing. Colored squares indicate the relative location of four ohmic contacts.
The red squares indicate p-type regions, while the blue squares indicate the n-type region. The top and
bottom circuits are identical and can be separated by the barrier. (b) Shows the turn on characteristics
of the n-type (blue) and the p-type (red) channels. Here the x-axis is the relevant top gate (nTG for
blue data and pTG for red data), while the y-axis is the conductance in units of 2e2/h. For both
measurements the left and right barrier gates (nRB,nLB,pRB,pLB) are left at 0V. The colored text is
the maximum slope for each pinch-off. Solid colored dots indicate the observed conductance when the
voltage source was at its limit of |4V| (individual measurements at ±4V from laboratory note book).
Dotted lines are a guide to the eye. Measured at 4K. Credit to Anderson West for fabrication of this
device.

It is important to determine the feasibility of fabricating multi-layer p-type quantum
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2. Single and double quantum dots in silicon MOS structures

dot devices using the same layout schematic as n-type quantum dot devices. Prior

to fabricating the batch of p-type devices shown in section 2.4, the channel turn on

properties were investigated using basic ambipolar MOS quantum dot devices. Figure

2.9(a) shows an SEM image of the active region of the ambipolar device. The devices

consist of four ohmic contacts, two of which are p-type (red squares) and two n-type

regions (blue squares). The device consists of two identical circuits. Each has a Top

Gate (TG), and a Left and Right Barrier gate respectively (LB and RB). The barrier

gates are fabricated underneath the Top Gate in the same way as shown in Figure 2.8(c).

This allows a current to flow between the two ohmic contacts when gates TG, RB and

LB are appropriately biased.

The turn on characteristics of the p-type and n-type channels are shown in Figure 2.9(b).

The key result of Figure 2.9(b) is the distinct difference in the maximum slope of the

pinch-off curves, and in the different apparent maximum current. Continuous sweeps are

shown over the pinch-off region, and single data point1 is added indicating the current

at ±4V respectively (data is connected by dotted line, which is a guide to the eye).

From this data we can calculate the maximum slope and infer the saturation current for

n-type and p-type conduction. The maximum slope of the n-type pinch-off is 4.5 times

larger than the maximum slope of the p-type pinch-off. If we approximate the system as

a MOSFET with I = A
L
µne, then the ratio of the slopes for identical channel Area (A)

and Length (L) can occur from either a difference in hole and electron mobilities (µ) or

density of states (dn/dV). For this section we are interested in the slope of the pinch-off

since dG/dV is an indicator of how strongly the charge sensor will respond to a change

in the charge occupation of a nearby quantum dot.

The n-type saturation conductance is approximately a factor of 5 larger than the p-

type saturation conductance. This difference in saturation conductance has often been

observed in ambipolar MOSFET devices [70, 106, 107] the origin needs further systematic

investigation. Possible explanations include the different doping concentrations of the

n-type and p-type regions, the difference in hole and electron mobility (possibly resulting

from larger interface roughness for holes), or a difference in the p-type contact resistance.
1Recorded in S. Liles laboratory note book. We have found that devices are typically damaged when

voltages larger than |4|V are applied.
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2.6. Characterising the quantum dot device

The turn on voltage for holes is -2V, which is much larger than for electrons (-0.9V).

This is likely due to the presence of positively charged Si/SiO2 traps at the interface

[113]. However, it is not significant as this voltage does not exceed the oxide breakdown

voltage (≈4.5V). In this section we are interested in the sensor conductance, since this

will influence the signal strength and the integration time required for operation of the

charge sensor.

We have observed that the p-type and n-type channels show similar pinch-off behav-

ior, and have discussed the quantitative differences. A more detailed discussion of the

mechanisms causing these differences is beyond the scope of this section. The primary

aim of this section is to compare n-type and p-type MOS devices in-order to asses the

suitability of using n-type lithography to make p-type devices. Since the p-type pinch-off

slope is smaller than the n-type slope we expect that the p-type charge sensor will be

less sensitive the charge of an adjacent quantum dot than an equivalent n-type charge

sensor. In addition since the conductance of the p-type channel is less, the p-type charge

sensor may require longer integration times than equivalent n-type charge sensors. This

longer integration time could mean that single shot measurements are not possible for

these p-type devices. Although the p-type channel has a smalled dI/dV and saturation

current, the features are still clearly observable showing that this p-type device is viable.

In conclusion, these results provide motivation for moving forward to fabrication and

characterisation of p-type silicon MOS quantum dot devices.

2.6 Characterising the quantum dot device

Within this section we demonstrate the typical electrical behavior of the quantum dot

devices studied in this thesis. The main purpose of this section is to highlight the typical

behavior and properties of these silicon p-type MOS quantum dot devices. A major as-

pect of experimental studies of quantum electronic devices is test and characterisation.

This is because these are state-of-the-art devices designed to push forward into previously

undeveloped technology. As such, yield of functioning devices can be low1, and it is par-
1On average we have found that about one third of these type devices function as designed. Typically,

in devices that are not optimal the issue is an electrical short through the thin oxide between adjacent
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2. Single and double quantum dots in silicon MOS structures

ticularly valuable to establish a suite of characterisation measurements and parameters.

In this section we present the suite of characterisation measurements used to evaluate the

p-type silicon MOS quantum dots. The figures in this section show the typical results of

these characterisation measurements, obtained from fully functional devices. Finally, we

highlight several specific results that allow the calculation of experimental parameters

that will be used in future sections.

2.6.1 Characterising the quantum dot gate characteristics
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Figure 2.10: Gate electrode pinch-off characteristics: (a) False Color SEM image of a typical
device. Green squares represent the p-type ohmic contacts and the black dashed line indicates the path
of the current. The scale bar is 500nm. (b) Pinch-off characteristics of the Reservoir Top gate. All
other gates are biased to -3V. In all figures here the solid and dashed curves are for the two different
sweep directions, highlighting the reproducibility of the features. The hysteresis is due to filters in the
measurement set-up, and the sweep rate is 7mV/s. (c) Pinch-off characteristics of the C-gate. The
sweep rate is 7mV/s (d) Example pinch-off characteristics of two gates G1 and G4, for sweep rate of
20mV/s. All measurements are performed at base temperature of 30mK, with a source drain bias of
100µV. The conductance in units of 2e2/h is shown on the right axis of each graph.

The first characterisation measurement performed is to determine the functionality of

overlapping gates.
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2.6. Characterising the quantum dot device

the quantum dot gates. To check this gate functionality, we investigate the electrostatic

pinch-off of the key gates related to forming a quantum dot. Figure 2.10(a) shows the

schematic for the first set of measurements. We monitor the current between the ohmic

under the Reservoir Top Gate (top green square) and one of the ohmic contacts of the

sensor (bottom green square). First we check that a current can be measured between the

two ohmic contacts (shown as a black dashed line in Figure 2.10(a)) when all gates are

tuned to be sufficiently negative. Typically this occurs when all gates are approximately

-3V. This measurement allows confirmation that the two ohmic contacts are operational

and the holes can be accumulated across the entire device as required. Typical minimum

resistance of these devices is around 250-500kΩ. Similar electron devices, measured in

the same way have a resistance of around 10-25kΩ.

We then systematically test the pinch-off of individual electrodes. In Figure 2.10(b) we

show the pinch-off of the Reservoir top gate (all other gates are biased to -3V). The

measurement of the Reservoir top gate pinch-off is vital since it identifies the VR voltage

required to accumulate a reservoir of 2D holes under the Reservoir Top Gate. In this

case we find that VR should be set to less than -2.8V to accumulate a 2D Hole Gas

(2DHG).

The next characterisation measurement is to determine the pinch-off characteristics of

the Confinement gate (C-gate). In Figure 2.10(c) we present the pinch-off measurement

of the C-gate. The main function of the C-gate is to isolate the sensor and quantum dot

regions of the device, and to provide a confinement profile for the quantum dot. The

complete pinch-off of the current by VC=-0.75V demonstrates that the C-gate should be

kept more positive than -0.75V during quantum dot experiments, in order to keep the

sensor and reservoir 2DHG regions separated.

The final test for this configuration is investigating the pinch-off measurements of the

four gates (G1, G2, G3, and G4). The aim of this test is to determine the functionality

of each individual dot gate. Due to the size and shape of the C-gate it is necessary to

bias the C-gate close to pinch-off, otherwise the current can run along the left edge of

the C-gate, and cannot be pinched-off by gate G1 to G4. In Figure 2.10(d) we present

typical pinch-off measurements for G1 and G4. The exact profile of each measurement is
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2. Single and double quantum dots in silicon MOS structures

strongly influenced by the C-gate voltage, however the key observation of Figure 2.10(d)

is that a series of reproducible conductance oscillations, can be observed as a function of

G1 and G4, typical of the formation of a large quantum dot, followed by saturation at

around 200pA. The oscillations are reproducible as shown by the reverse direction sweep

(dotted line in Figure 2.10(d). Measurements for G2 and G3 are qualitatively similar to

that of G1 and G4. During these measurements one gate is swept, while all other gates

are held at -3V, except the C-gate which is biased to -0.85V.

2.6.2 Characterising the charge sensor
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Figure 2.11: Charge sensor characterisation: (a- inset) Shows a SEM image with false colors
highlighting the gates relevant to the charge sensor. Schematic on the left indicates the measurement of
the sensor current, with an AC current being passed through the device between the two ohmic contacts,
indicated as green squares. Scale bar is 500nm. (a) We show the pinch-off characteristics of the charge
sensor as a function of VSLB . Here ST and SRB are tuned to be fully accumulating, and all other gates
are at 0V. The horizontal dashed line shows the initial Isensor current used in (b). (b) We measure the
sensor current when sweeping one gate from 0V to 1V while all other gates are held constant. As each
gate is made more negative the sensor current increases, following the same trend as in (a), indicated by
the blue dashed line in (a). The C-gate has the largest effect due to its size and proximity to the sensor.
G1, G2, G3 and G4 have approximately the same coupling to the sensor. For this data VSLB was set
to -1.62V, and the sensor VSD = 100µV AC. The right axis on each figure shows the conductance in
units of 2e2/h (a and b have the same axis scale).

The next set of measurements demonstrate the typical operation characteristics of the

charge sensor. In the inset of Figure 2.11(a) we present an SEM image of the device

with the charge sensor gates highlighted in false color. A 100µV AC voltage is applied

to the sensor source ohmic contact and the sensor source-drain current, Isensor, is moni-
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2.6. Characterising the quantum dot device

tored using standard lock-in techniques. In Figure 2.11(a) we present a typical pinch-off

measurement of the sensor current, Isensor, using the voltage applied to the Sensor Left

Barrier (SLB).

Typically the optimal operation point of a charge sensor is defined by a particular sen-

sor conductance (or current). Standard operation of a device will involve large voltage

sweeps of multiple quantum dot gates. These gates will capacitively couple to the charge

sensor, and can cause the sensitivity of the sensor to vary during the measurements. In

order to compensate for this effect we calculate the cross capacitance between the Sensor

Left Barrier and the relevant dot gates. We tune VSLB to the pinch-off region indicated

by the horizontal dashed line in Figure 2.11(a). We then individually sweep the voltage

applied to gates C, G1, G2, G3, and G4, and measure the effect on the sensor current.

An example of the effect of each gate on the sensor current is presented in Figure 2.11(b).

We quantify the cross capacitance in terms of the ratio dVgate/dVSLB, as shown in the

Table 2.6.2.

Gate dIsensor/dVgate (Ω−1 x10−10) dVSLB/dVgate

SLB 13.3±0.02 1
C 4.86±0.03 0.365 ± 0.005
G1 0.871±0.003 0.065 ± 0.001
G2 0.865±0.012 0.065 ± 0.001
G3 0.763±0.013 0.057 ± 0.001
G4 0.930±0.012 0.070 ± 0.001

Table 2.1: Transconductance of the sensor for various gates: This table summarizes the effect
of each gate on the sensor current. The measurement is for the sensor initially tuned to the base of the
blue arrow in Figure 2.11 (a). The first column indicates the respective gate. The second column is
the transconductance extracted from the linear region in Figure 2.11(a)-(b). The third column is the
ratio between the SLB gate and the other respective gates. This ratio can be used to determine the
compensation of VSLB required when other gates are shifted.

2.6.3 Pulse bias measurement technique

Charge sensing measurements are performed by monitoring the transconductance of the

charge sensor. We experimentally measure the transconductance using the pulse-bias
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Figure 2.12: Final characterisation measurements: (a) A SEM image of a typical device with false
colors highlighting the gates related to bias pulse charge sensing measurements. The sensor source-drain
signal is measured using two lock-in amplifiers, giving the reading of Ipulse and Isensor. A square pulse
is added to the DC voltage applied to G3. (b) Pinch-off of the sensor current Isensor as a function of
the two sensor barrier gates SLB and SRB. (c) Ipulse measured simultaneously to the measurement in
(b). A clear signal can be seen in Ipulse in regions where Isensor is rapidly changing. This is indicated
by the green ellipse, which is placed in the same location for (b) and (c). The strongest Ipulse signal
occurs at VSLB = -2.05 and VSRB = -2.61V. (d) The Solid curves show the sensor current pinch-off
when G3 is depleting (black) and accumulating (red) a 2DHG. The solid curves are measured on the left
axis. The dashed curves show the Ipulse signal measured simultaneously to the corresponding Isensor
measurement (red or black).
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measurement technique, which has been fully described in section 1.2.4. Figure 2.12(a)

shows a SEM image of the device with gates relevant to charge sensing in false color

A 1mV DC voltage and a 100µV AC voltage (fsensor = 77Hz) is applied to the source

ohmic. The sensor current, Isensor is monitored using a lock-in referenced to fsensor. To

measure the transconductance a square pulse of amplitude Vpulse at frequency fpulse is

added to the DC voltage of G3. This square pulse modulates the DC sensor current

at fsensor. The modulation of the DC sensor current, which we call Ipulse is measured

by a lock-in which has been reference to fpulse. The signal Ipulse is proportional to the

transconductance dIsensor/dVG3 at a given VSLB.

In Figure 2.12(b) we show the sensor current, Isensor, with respect to the two barrier

gates SLB and SRB. This shows a typical corner-corner plot with SLB and SRB able to

pinch the current off. We note that it is possible to form a single quantum dot by fine

tuning SLB, SRB and ST. However, unlike in n-type samples with the same lithography,

the single dot formed in these sensors is not suitable for stable charge sensing. We

have found that the single dot formed in the p-type charge sensor is not sensitive to the

quantum dot gates G1, G2, G3, or G4. We suspect that in the the sensor dot is formed

on either side of the SLB or SRB, and not in the middle as desired. It is likely that the

pitch of the sensor barrier gates needs to be optimised for holes in p-type sensors1.

Figure 2.12(c) shows the measurement of Ipulse taken simultaneously to the measurement

of Figure 2.12(b). A clear signal in Ipulse can be observed at the regions of VSLB and

VSRB where Isensor is rapidly changing, indicated by the green ellipse in Figures 2.12(b-c).

Evaluating the Ipulse signal in this way allows VSLB and VSRB to be tuned to the region

of highest transconductance, which is where the sensor is most sensitive to the quantum

dot charge state. In all measurements in this thesis chapter the sensor is operated in the

region where Ipulse is largest.

The final characterisation measurement identifies the voltage ranges at which a 2DHG

is formed under gates G1, G2, G3, and G4. This measurement is vital, since once the C-

gate has separated the sensor and reservoir gates it is difficult to determine the voltages
1The pitch of the sensor SLB and SRB gates used here is identical to that used in n-type SET charge

sensors. We suspect that the pitch may need to be adjusted slightly to optimize p-type SHT charge
sensing [114].
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2. Single and double quantum dots in silicon MOS structures

required to accumulate holes into a quantum dot. In Figure 2.12(d) the solid black line

shows the sensor current pinch-off as a function of VSLB. In this measurement all gates

G1, G2, G3 and G4 are biased at 0V. The black dashed line in Figure 2.12(d) is the

simultaneous measurement of Ipulse. A distinct peak in Ipulse is observed on the region

where Isensor rapidly changes, since Ipulse is proportional to dIsensor/dVSLB.

We then bias G3 to -3V in order to accumulate a 2D Hole Gas (2DHG) below G3. The

solid red curve in 2.12(d) shows the sensor pinch-off measured when G3 is -3V. The slope

and saturation of the red and black solid curves are the same, with the only difference

being the offset to more positive VSLB. The key result can be seen in the measurement

of Ipulse when VG3 has accumulated a 2D Hole Gas (2DHG). The dashed red line shows

Ipulse measured simultaneously with the solid red data. Despite the similarity of the

solid curves, the dashed red and black curves are distinctly different. The reason for the

difference is due to the accumulation of the 2DHG. When the 2DHG is accumulated,

the holes below G3 screen the square pulse applied to the gate. Thus, the Ipulse signal of

transconductance is suppressed when a 2DHG is formed. This is a useful measurement

for identifying and fine tuning the voltages at the final stages of tuning single lead

quantum dot devices. This measurement can be repeated for all dot gates (G1-G4),

providing valuable information for the approximate voltages to form a quantum dot. We

have found that all gates accumulate at similar voltages, which are typically in the range

of 1.5V and 2.5V.

2.7 Measurement of a single-hole quantum dot in the

last hole regime

Figure 2.13(a) shows a schematic of the device, and Figure 2.13(b) shows a scanning

electron microscope image of a nominally identical device to the one used in this study.

This device features a planar hole quantum dot connected to a single reservoir (R) of

two-dimensional (2D) holes, with an adjacent charge sensor (SHT). The number of holes

on the dot N is controlled with the bias on gate G3, and the charge occupation in the
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Figure 2.13: Silicon quantum dot with charge sensor, capable of reaching the last hole: (a)
Schematic of the device concept. The device consists of a quantum dot coupled to a single reservoir
(R), with an adjacent single hole transistor (SHT) charge sensor. The tunnel rate between the dot and
reservoir (Γ) can be tuned using the C-gate voltage (VC), and the dot occupation can be controlled with
G3-gate voltage (VG3). (b) False-colored scanning electron microscope image of an identical device,
with the measurement schematic. The scale bar is 500nm. (c) Depletion of the last 10 holes in the
quantum dot, showing the Vpulse induced signal on the charge sensor measured at VC = 0.47V. (d)
Charge stability diagram, showing the number of holes on the dot as a function of the confining gate
(C-gate) and pulse gate (G3) potentials. The horizontal white lines highlight the disappearance of the
charge transition signals in distinct groupings, indicating shell filling (discussed further in Chapter 3).
Measurements performed for Vpulse = 3mV and fpulse = 333Hz. A slight bending in the lines in the
vicinity of (VG3 = −2V,VC = 0.55V) is due to coupling to nearby confined charge. The specific gate
voltages are VR = -3.50V, VG1 = -3.50V, VG2 = -1.01V and VG4 = 0V.

dot is monitored using an adjacent charge sensor. The dot-reservoir tunnel rate Γ can be

tuned without significantly affecting the dot confinement shape using the bias applied

to the C-gate. By measuring the charge occupation with a charge sensor we are able

to study hole states even when the tunnel rate between the dot and reservoir is much

smaller than can be detected in transport.

When operating the device, the reservoir top gate is negatively biased to accumulate a

2D hole system at the Si/SiO2 interface below. The quantum dot is defined by positively

biasing gates G1, G2, G4, and the C-gate (see caption). G3 acts as the dot plunger gate

and is operated in the negatively biased regime. It is possible to operate this device in

the double dot regime down to the (0,0) charge state, using gate G2 as the second dot’s
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2. Single and double quantum dots in silicon MOS structures

plunger gate (in section 2.8 we present more data regarding the double dot configuration).

In order to observe the charge stability diagram for the holes in this quantum dot we

employ a pulse-bias technique [38], which allows the charge occupation of the dot to

be monitored using an adjacent single hole transistor (SHT) charge sensor. We apply

a 1mV DC excitation to the SHT’s source ohmic contact (top green square in Figure

2.13(b), and add a continuous square wave of magnitude Vpulse and frequency fpulse to

gate G3. The modulation of the DC sensor current by Vpulse, called Ipulse, is sensitive

to dQdot/dVG3 (as long as Γ > 2fpulse). In Figure 2.13(c) we show a measurement of

Ipulse as VG3 is swept. At specific values of VG3 a hole is able to tunnel on and off the

dot during the positive/negative phase of Vpulse. This charge movement decreases the

DC sensor current, causing a negative spike in Ipulse of width Vpulse in the VG3 scan. The

measurement of Figure 2.13(c) was repeated over a range of VC to produce the charge

stability diagram in Figure 2.13(d). The identification of the last hole in the dot is

confirmed by the absence of any additional charge transitions beyond the region labeled

N=0 in Figure 2.13(d).

2.7.1 Tunnel rate independent measurements

The absolute hole occupation N presented in the previous section is inferred from mea-

surements of Ipulse in Figure 2.13(d). However, Ipulse is sensitive to the dot tunnel rate Γ

[38]1. Therefor it is possible that additional charge transitions are present, however they

remain undetected due to the long tunnel time compared to the pulse frequency fpulse.

The sensor conductance, measured via Isensor, is sensitive to the quantum dot charge

occupation and is independent of the dot tunnel rate. In this section we present mea-

surements of Isensor allowing confirmation of the absolute hole occupation in a manner

that is not limited by tunnel rates.

In Figure 2.14(a) we present a charge stability diagram obtained by measuring Ipulse while

sweeping VG3 and VC. Horizontal dashed lines indicate the values of VC where Γ ∼ 2fpulse.
1If the tunnel time 1/Γ is longer than 1/2fpulse then hole will not load/unload over the period of the

square pulse. Therefore the visibility of the charge transition can be lost as a function of tunnel rate.
We note that the tunnel rate between the dot and the reservoir can be controlled using VC .
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Figure 2.14: Tunnel rate independent measurements of hole occupation: (a) Ipulse charge
stability diagram over a larger range than in Figure 2.13(d). The horizontal black lines highlight the
disappearance of the charge transition signals, which occurs as VC become more positive causing the
tunnel rate for to become much less than fpulse = 333Hz. The red and blue circle represent the
device configuration for the red and blue data in Figure 2.15(a). (b) Measurement of Isensor obtained
simultaneously to the data presented in (a). Isensor is monitored by adding a 50µV AC 77Hz excitation
to the sensor source ohmic contact. Horizontal red lines are drawn at the same VC and VG3 as the black
dashed lines in a, highlighting that the Isensor charge transitions are visible well beyond the VC when
the Ipulse charge transition signals are no longer visible. For both Figures a and b the experimental
parameters are the same as Figure 2.13(d), except VG2 = -1.0V. The difference in VG2 explains the
difference in the position of the black dashed lines between this Figure and the white dashed lines in
Figure 2.13(d).

In addition to measuring Ipulse, we simultaneously monitor the sensor conductance using

a standard lock-in measurement. In Figure 2.14(b) we show the measurement of Isensor

obtained simultaneously to the measurement of Ipulse. We observe charge transitions

in Isensor, which correspond to the same charge transition signals in Figure 2.14(a). In

Figure 2.14(b) horizontal lines are drawn at the same values of VC and VG3 as in Figure

2.14(a). Each charge transition signal in Isensor continues well beyond the VC at which the

corresponding Ipulse charge transition is no longer visible. This demonstrates that Isensor

is sensitive to charge transitions that have very low tunnel rates. We see no additional

charge transitions in Isensor beyond the last transition providing further evidence that

the device is operating down to the last hole.
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2. Single and double quantum dots in silicon MOS structures

2.7.2 Control of tunnel rates
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Figure 2.15: Control of the dot-to-reservoir tunnel rate: (a) 〈IDC〉 measured as a function of
time while a 3ms square pulse is applied to G3 (Vpulse = 3mV). The vertical dotted line separates the
x-axis into the load phase (0-1.5ms) of the square pulse and the empty phase (1.5-3ms)of the square
pulse. The blue and red lines are measurements when the device is in the configuration shown by the
blue and red circles in Figure 2.14(a). The black dashed lines are an exponential fit to the decay of the
〈IDC〉 signal. (b) 〈IDC〉 for progressively more negative VG2, where VG2 controls the coupling between
the dot and the reservoir. (c) The hole tunnel time as extracted from an exponential fit to the decay
in 〈IDC〉 for each trace in b. The error bars are extracted from the standard deviation of the fit to the
exponential decay (600 data points).

In this section we demonstrate control of the dot tunnel rate Γ. Figure 2.15(a) compares

the DC sensor signal when the device is at a charge transition (red) and away from a

charge transition (blue). In Figure 2.15(a) the y-axis is the average DC sensor signal

〈IDC〉, which is plotted as a function of time. To obtain 〈IDC〉 we perform 1024 single

shot measurements over a 3ms square wave, which is applied to G3. 〈IDC〉 is the time

resolved average of all 1024 single shot measurements. The blue data in Figure 2.15(a)

is a measurement of 〈IDC〉 when the dot is far away from a charge transition (indicated

by the blue circle in Figure 2.14(a). 〈IDC〉 follows the shape of the square wave due to

capacitive coupling of the sensor conductance to the load and empty phase of the square

pulse. The red data in Figure 2.15(a) is the same measurement of 〈IDC〉, however the dot

is now tuned to be at a charge transition (indicated by the red circle in Figure 2.14(b).

In the load phase, where the square pulse is in the negative phase, 〈IDC〉 initially increases

as the sensor conductance follows the capacitive coupling. However, when a hole tunnels

onto the dot, the additional positive charge causes an exponential decay in 〈IDC〉. In the

empty phase, where the square pulse is in the positive phase, the reverse of this process

occurs. 〈IDC〉 exponentially decays due to holes tunneling out from the dot, reducing

the positive charge and returning 〈IDC〉 to the non-transition value. The width of the
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2.8. Double quantum dot in the last hole regime

exponential decay in 〈IDC〉 results from the average tunnel time of holes over the 1024

single shot measurements.

In Figure 2.15(b) we demonstrate control of the tunnel rate by presenting measurements

of 〈IDC〉 at three different VG2. As VG2 is made more negative the tunnel barrier height

between the dot and reservoir is decreased, causing a decrease in the dot to reservoir

tunnel time. We extract the tunnel time by fitting an exponential function to the decay

in 〈IDC〉. In Figure 2.15(c) we plot the extracted tunnel time for VG2 = -0.715 V, -0.725

V and -0.735 V, which is found to be 0.37±0.07 ms, 0.13±0.01 ms and 0.11±0.05 ms

respectively. This shows the device is tunable and behaves as expected.

2.8 Double quantum dot in the last hole regime
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Figure 2.16: Operation of device as a double quantum dot: (a) Ipulse double dot charge stability
diagram for VG3 and VG2 (Vpulse = 10mV, fpulse = 333Hz). White text shows the hole occupation
(NG2,NG3). (b) Zoom- in of the (0,1) to (1,0) charge transition highlighted by the red dashed box in
(a). A weak inter-dot signal is visible connecting the two anti-crossed charge transitions, as indicated
by the dashed white rectangle.

When VG2 is made sufficiently negative G2 no longer behaves as a tunnel barrier, but

begins to act as an accumulation gate. In Figure 2.16(a) we show a measurement of

Ipulse as a function of VG2 and VG3. We observe a honeycomb pattern consistent with a

double dot charge stability diagram. The absolute hole occupation (NG2,NG3), of the

double dot can be assigned since we see no additional charge transitions in Ipulse or Isensor

beyond the region labeled (0,0). The magnitude of the Ipulse signal for the G2 dot charge

transitions (horizontal lines of the ’honey-comb’ pattern) is less than the magnitude of
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2. Single and double quantum dots in silicon MOS structures

the Ipulse signal for G3 dot charge transitions1. This is because G2 is further from the

sensor, causing the G2 dot to have a weaker capacitive coupling to the sensor. Finally, in

Figure 2.16(b) we show the (0,1) to (1,0) charge transition region. We observed a weak

signal in Ipulse along the axis between the (0,1) and (1,0) region. This weak signal results

from inter-dot charge transitions induced by the square wave. Inter-dot transitions can

be seen for many transitions in Figure 2.16(b). These results highlight the full tunability

of the the device, in addition to the remarkable electrical stability for a p-type quantum

dot2.

2.8.1 Tuning tunnel rates in the double dot configuration
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Figure 2.17: Control of tunnel barrier in double dot regime: Charge stability diagram when the
device is tuned to have a double dot under G2 (y-axis) and G3(x-axis). We present measurements for
three different tunneling barrier configurations (a) VG1 = -0.72, (b) VG1 = -0.71, and (c) VG1 = -0.70.
In all three figures the red and blue dashed lines highlight the equivalent transitions for reference. This
demonstrates the effects of the tunnel barrier, G1, on the inter-dot and charge transition signals.

We now investigate the way the double dot is influenced by changing the tunnel barrier

between the dots and the lead. The device has a single reservoir of holes, and the

tunnel rate can be controlled by varying VG1. However, the plunger gates for the double

dot, G2 and G3, also influence the tunnel rate. In Figure 2.17 the double dot charge

stability diagram is presented for three different tunnel barrier tunneling rates. In Figure

2.17(a) when VG1 = -0.72V a clear honeycomb structure can be observed, and part of
1Notice that the horizontal lines have a weaker amplitude than the vertical lines.
2The measurement in Figure 2.16 took approximately 4 hours, and is reproducible over a period of

several days.
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2.9. Conclusion and outlook of Chapter Two

the structure is highlighted by the red and blue dashed lines. However, in Figure 2.17(a)

when VG2 > -1.3V (top of image) the charge transition lines become less visible. In

contrast the inter-dot signals can be clearly observed even up to VG2 = -1.15V. To

configure a more opaque tunneling barrier we set VG1 = -0.71V and present the stability

in Figure 2.17(b). For VG1 = -0.71V the charge transition lines can be only observed

for VG2 <-1.15V. However, the remaining inter-dot signals can clearly be observed. We

highlight this by including the red and blue dashed lines on the same transitions as

presented in Figure 2.17(a).

Finally, in Figure 2.17(c) we present the double dot stability diagram for VG1 = -0.70V.

As the tunnel barrier finally becomes too opaque to allow charge transitions at fpulse,

however all inter-dot transitions can clearly be observed1. We show red and blue dashed

lines to demonstrate the honeycomb pattern connecting the inter-dot signals of the double

dot. In Figures 2.17 we have not presented the absolute charge occupation, as we have

in Figure 2.16. The reason for this is that as VG1 is made more positive, an accidental

quantum dot forms close to G1, making the absolute charge occupation unclear.

2.9 Conclusion and outlook of Chapter Two

Chapter Two first presents a literature review of silicon MOS quantum dots. This high-

lights that a fundamental gap has been the inability to form a hole quantum dot where

the absolute charge occupation is known. Within this chapter we have presented results

of a single and double quantum dot operated down to the last hole regime. In addition to

presenting a full electrical characterisation, we demonstrate the tunability of this device

by showing control of the tunnel rates for both configurations.

These results present a significant step forward for p-MOS technology. In particular, it

would now be possible to perform spectroscopic measurements in a charge configuration

that can be reproduced across different devices. This reproducibility is not possible

unless the absolute charge occupation is known. Future measurements of interest would
1Inter-dot tunnel rates are typically several orders of magnitude larger than dot-to-reservoir tunnel

rates [115].
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2. Single and double quantum dots in silicon MOS structures

include performing artificial atom type measurements [9], such as observing the hole

spin filling and the orbital structure of holes confined in these devices. These results are

valuable for assessing the suitability of p-MOS devices for spin based applications.

As a final note we discuss the novelty of these devices. Traditional artificial atom devices

have been made using l=0 and s=1/2 (J = 1/2) electrons, just like conventional atoms.

Here we use l=1 and s=1/2 (J = 3/2) electrons (holes) to make an artificial atoms.

This can lead to a complex and rich array of spin-orbit properties for hole based artificial

atoms. These properties have not been studied in great detail, and p-type artificial atoms

provide a valuable opportunity to isolate a single hole for experimental study. These hole-

based artificial atoms have potential for alternative ways to perform spin manipulation

(using electric fields, rather than magnetic fields [60]), and could potentially exhibit

complex spin states as holes fill into the higher orbital of the artificial atom.
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Chapter 3

Spectroscopy of single hole quantum

dots in silicon MOS structures

Abstract

In this chapter we perform the first spectroscopic measurements of a planar silicon

Metal Oxide Semiconductor (MOS) based single hole quantum dot operating in the

last hole regime. The spin shell filling sequence is characterised for the first six holes

using magneto-spectroscopy, and is consistent with the Fock-Darwin states of a circular

two-dimensional quantum dot. At low magnetic field we observe spin filling, which obeys

Hund’s first rule, while at high magnetic field we observe the singlet triplet transition

for the two hole ground state. Finally, we investigate the orbital spectrum using pulse

bias spectroscopy and find that hole-hole interaction energy is 90% of the orbital en-

ergy. These results provide experimental evidence of the orbital spin physics for silicon

surface-gated artificial atoms operating in the last hole regime.

Publication

The results presented in this chapter appear in the article and supplementary material

of: Liles, S. D., Li, R., Yang, C. H., Hudson, F. E., Veldhorst, M., Dzurak, A. S., and
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Hamilton, A. R. (2018). Spin and orbital structure of the first six holes in a silicon

metal-oxide-semiconductor quantum dot. Nature communications, 9(1), 3255.

3.1 Chapter introduction

The majority of research into spin-qubits has focused on electron spins [6, 18, 30]. How-

ever, hole spins confined in silicon MOS quantum dots are an gaining attention as an

attractive candidate for spin based electronic applications [78, 79]. The valley degeneracy

of silicon leads to complex valley-orbit states in electron spin-qubits, which complicates

the spin dynamics of these systems and requires some engineering to overcome [19, 75,

116]. Holes, on the other hand, occupy the valence band, which has no valley degeneracy,

simplifying the energy states. In addition, the 2D confinement of MOS quantum dots

lifts the heavy-hole light-hole degeneracy, leaving heavy hole states as the ground state

[51]. In this case it would be expected that the orbital spectrum of holes in silicon MOS

quantum dots follows the well defined Fock-Darwin structure, and that the single hole

ground state is a well defined spin doublet, similar to the ground state of electrons in

well defined GaAs MOS quantum dots [1, 9]. However, challenges in fabrication of hole

quantum dots have limited the number of studies of hole quantum dots, and to date,

there has been no investigation of the spin and orbital structure of the first few holes in

silicon planar quantum dots.

Recent experimental work studying hole spin manipulation in nanowire [20] and self

assembled [23] quantum dots has demonstrated extremely fast all electric hole-spin ma-

nipulation rates of up to 150MHz. This is significantly faster than spin manipulation

times of equivalent electron spin qubits1, and demonstrates the high potential of holes

for spin qubit applications. However, these hole-spin manipulation experiments also

demonstrated unexpectedly short spin coherence times, on the order of several hundred

nanoseconds. Since these experiments are performed in the few hole regime, the exact

state that is being manipulated is unknown, and determining the exact relaxation mech-
1Electron spins states driven by ESR have manipulation rates measured up to 0.5MHz [17, 55], and

electron spins driven by EDSR (using a micro-magnet) have manipulation rates up to 30MHz [74].
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anisms is difficult. Experiments studying the spin properties of electrons have shown

that the orbital structure and energy spectrum of the host quantum dot play a signifi-

cant role in determining spin lifetimes [6, 30, 49, 117]. Often is is possible to improve

spin lifetimes by orders of magnitude when details of the orbital and spin structure are

well characterised [44, 75]. This demonstrates the need to perform detailed spectroscopic

measurements of hole based quantum dots.

In Chapter 2 we demonstrated a single quantum dot operating down to the last hole.

Since the absolute charge occupation is known, this makes it possible to perform spec-

troscopic measurements of a hole quantum dot in a known and reproducible state. In

this chapter we present the first spectroscopic measurements of a single hole silicon MOS

quantum dot. We observe clear evidence of orbital shell structure in the addition energy

and the tunnel rates. Magneto-spectroscopy studies show magic number shell filling

consistent with the Fock-Darwin states of a circular two-dimensional quantum dot, with

the spin filling sequence of the first six holes consistent with Hund’s rule. Next, we use

pulse bias spectroscopy to determine that the orbital spectrum is heavily influenced by

the strong hole-hole interactions. These results provide a path towards scalable silicon

hole-spin qubits.

3.2 Literature review - Spectroscopy measurements of

single quantum dots

Semiconductor quantum dots are an exciting candidate for developing new and novel

quantum devices. However, in order to fully develop quantum dot devices, it is neces-

sary to gain a full understanding of the underlying physics. Spectroscopic measurements

provide valuable information about the energy spectrum and spin-physics. In this liter-

ature review we demonstrate examples of spectroscopic measurements in quantum dot

devices1. In section 3.2.1 we selectively discus several experiments performed using elec-
1Particularly we will discus characterisation of the excited state spectrum (see section 1.2.3 and 1.1.3)

and the spin filling sequence (see section 1.3.2).
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tron based quantum dots1. Following this, in section 3.2.2 we review the progress of

spectroscopy experiments performed in hole based quantum dots. Hole based quantum

dots typically exhibit non-trivial spin and orbital effects, and in this review we have

grouped experiments based on the material system. The literature review concludes by

highlighting that detailed measurements of the spin and orbital structures are necessary

to determine the suitability of hole spins for spin-based semiconductor technology.

3.2.1 Spectroscopy measurements of electron quantum dots

The discrete energy spectrum fundamentally defines the behavior of each quantum elec-

tronic device. Experiments characterising the orbital shell structure and spin filling

sequence are therefore vital as an initial characterisation measurement of quantum dots.

As one of the earliest examples, Tarucha et al. [9] have studied GaAs quantum dots

and demonstrated the electrons filling into Fock-Darwin orbital shells, with spin filling

consistent with Hund’s rules. Similar experiments performed by Lim et al. [98] using

MOS silicon quantum dots have demonstrated the valley-orbit states of electrons in MOS

silicon quantum dots. These characterisation measurements are most valuable when per-

formed in devices where the absolute charge occupation is known. This allows results

to be reproduced and compared in different devices and by different research groups.

The characterisation of orbital shells and spin filling is the foundation by which quan-

tum dot physics can be understood, and different quantum dot device structures can be

compared.

Spectroscopy for developing new technology

With a clear understanding of the energy structure of a quantum dot, its possible to

determine ways in which the device can be implemented in new technology. An example

of a novel spintronic device made possible through spectroscopic analysis is the quan-

tum dot bipolar spin filter. In 2000 Recher et al. [118] proposed that the discrete spin

resolved energy levels of a quantum dot could be tuned to produce a fully polarized spin

current. Hanson et al. [47] used a lateral GaAs quantum dot to experimentally realize
1These experiments are discussed to demonstrate several key points, and not as a full literature

review of electron spectroscopy measurements.
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this proposal. In Figure 3.1(d) we show the source-drain bias spectroscopy measurement

performed by Hanson et al. of the lateral GaAs single quantum dot. This measurement

was performed with a 12T magnetic field applied, splitting the spin up and down energy

states. The schematic in Figures 3.1(a-c) shows the energy levels of the spin split ground

state at the positions labeled ’a’, ’b’ and ’c’ in Figure 3.1(d). In the region labeled ’I’ of

Figure 3.1(d) the only state available for transport is the spin up state. Hence, in this

region the device will act as a spin filter, transmitting only spin up electrons. The device

can be moved out of the spin filter regime using only electric fields to shift into location

’b’ (using VG) or to the location ’c’ (using VSD).

a) b) c)

d)

e)

f)

g)

Figure 3.1: GaAs examples of novel spectroscopy results: (a-c) Energy level diagrams for the spin
split ground state of a single electron GaAs quantum dot. Level alignment corresponds to the energy
spectrum at the position labeled ’a’, ’b’ and ’c’ in (d). (d) Source-drain bias spectroscopy measurement
of the N=0 to N=1 transition. ’CB’ labels the regions of Coulomb Blockade. (a)-(d) are reproduced
from [47]. (e) Pulse bias spectroscopy measurement allowing the calculation of the excited state energies
Ex and Ey by Amasha et al. [44]. The y-axis is the dot tunnel rate, which is enhanced when an excited
state is energetically available. (f) Schematic of the excited state energies for two different confinement
profiles. Left shows a vertically elongated dot where Ex> Ey. Electric fields can squeeze the dot
confinement into the horizontally elongated configuration where Ex<Ey. (g) The spin relaxation rate,
W, measured for different Ey (where Ey is the closest excited state to the ground state, ie Ex>Ey).
The spin relaxation rate decreases as the splitting between the ground state and the y-excited state
increases. (e)-(g) are reproduced from [47].

Spectroscopy for optimizing spin-qubits

Quantum dots receive considerable and ongoing research interest for their use in quan-

tum information technology. Particularly since quantum dots are an ideal system to

host a semiconductor based spin-qubit. In order to optimize qubit operation the key

physical parameters should be accurately known, including the internal Hamiltonian,

the presence of additional states, and the coupling of the qubit with external electric
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3. Spectroscopy of single hole quantum dots in silicon MOS structures

and magnetic fields. This information provides the ability to determine the suitability of

a qubit system, it gives insight into ways the qubit can be controlled, and allows accurate

calculations of qubit dephasing and state leakage. We now discus the importance that

spectroscopic measurements have for characterising and optimizing the functionality of

quantum dots towards spin qubit technology.

Quantum dots based on GaAs/AlGaAs MOS quantum dots initially emerged as a leading

system for spin based quantum computation [18, 30]. In 2008 Amasha et al. [44] studied

a GaAs lateral quantum dot with tunable orbital confinement. Figure 3.1(e) shows

the spectroscopy measurements that allowed Amasha et al. to determine the excited

state energy spectrum of the device. Figure 3.1(f) shows a schematic of the results,

where tuning the gate voltages allows in-situ control of the confinement shape, thereby

influencing the excited state (Ex and Ey) energy levels. In these devices, spin relaxation

is mediated by spin-orbit coupling, which couples the ground state with the excited states

Ex and Ey [119]. Control of the excited state energy affects the coupling between the

spin and orbital states, allowing in-situ control of the spin relaxation rate. Figure 3.1(g)

demonstrates that characterisation of the excited state spectrum can allow experimental

control of the spin relaxation rate by over an order of magnitude.

Silicon based MOS quantum dots are now a leading candidate for spin based quantum

information applications [6]. However, the valley degree of freedom introduces complex

non trivial physics related to spin qubits [116]. Therefore, spectroscopic measurements

that characterise the valley states of silicon quantum dots are valuable. For example,

the presence of valley degeneracy can greatly complicate the operation of silicon based

qubits [116]. In 2013 Yang et al. [75] studied the valley states in a silicon MOS quantum

dot. Figure 3.2(a) shows the measured valley splitting on the y-axis as a function of the

applied electric field on the x-axis. These results presented in Figure 3.2(a) demonstrate

electric control of the valley states.

The magnitude of the valley splitting is shown by Yang et al. [75] to have significant

consequences on the spin relaxation rate. Figure 3.2(b) shows the spin-valley energy

levels as a function of magnetic field. Critically, when the valley splitting (EV S) matches

the Zeeman energy (EZ), the ν+ and ν− valleys anti-cross. Figure 3.2(c) shows the spin
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relaxation rate measured for two different valley splitting energies EV S (green and red).

If EV S > EZ for all magnetic fields, then the spin relaxation follows a B5 dependency

(green data), and the valleys do not anti-cross in the measured range of magnetic field.

However, if the EV S is tuned such that EV S = EZ at some magnetic field, then a distinct

enhancement in the spin relaxation rate can be observed (red data, EV S = EZ at 2.8T).

The enhancement, or so called ’hot spot’ was an unexpected and unpredicted [75, 80,

120] feature.

a)

c)b)

Figure 3.2: Spin-valley lifetimes in silicon quantum dots: (a) Valley splitting measured as a
function of plunger gate voltage Vp (top axis is the calculated magnitude of the interface vertical
electric field for a given Vp). Red and blue circles are the measured valley splitting, while the green and
purple are the valley splitting calculated using the effective mass and atomistic methods respectively.
Top inset shows a schematic of the device and a simulation of the dot location. The dot is formed
in the red region, underneath the plunger gate (P), and confined by the gates C2 and B. (b) Energy
diagram of the single electron spin-valley states as a function of magnetic field. ν+ and ν− are the two
valley states, which anti-cross where the valley splitting is equal to the Zeeman energy. Colored arrows
indicate the spin projection of each level, and curved vertical arrows indicate potential relaxation paths.
(c) Spin relaxation rate as a function of magnetic field for two different EV S . Green is for the case that
EV S<EZ for all magnetic fields. Red is for the case that EV S=EZ at 2.8T, where a hot spot in the
relaxation is observed at the valley crossing. Note the different y-axes scales for the red and green data.
Reproduced from [75].

Conclusion of electron spectroscopy

These examples demonstrate the necessity of fully characterising the energy spectrum of

quantum electronic systems. In the case of Hanson et al. [47] the excited state spectrum

provided access to a novel operation mode as a spin filter. The detailed analysis of

the excited states and valley states provided insight into the underlying spin physics of

the devices studied by Amasha et al. [44] and Yang et al. [75]. Without this detailed

understanding variations in spin lifetimes over the order of several magnitudes could
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remain unclear.

3.2.2 Spectroscopy measurements of hole quantum dots

We now focus on measurements studying the energy spectrum and spin states of holes in

quantum dots. This results are grouped together based on similar materials and device

structures. For each material system we highlight the key results from hole spectroscopy

measurements. The focus here is to highlight that holes typically exhibit non-trivial spin

and orbital physics. It has not been standard to observe the well defined Fock-Darwin

spectrum in hole quantum dot devices.

Holes in InAs quantum dots

One of the earliest electrical studies showing shell filling of holes was performed by Reuter

et al. [103] in 2005. The device studied by Reuter et al. was an InAs self-assembled

quantum dot. Reuter et al. observed low bias Coulomb blockade down to the last hole,

then investigated the evolution of the Coulomb peaks under a magnetic field up to 32T

in order to determine the shell structure. Figure 3.3(b) shows the Coulomb peaks as a

function of magnetic field with the spin and shell filling indicated in the corresponding

insets. The insets on the left indicate the ground state shell filling at 0T, while the insets

on the right indicate the filling a 32T. The interesting result is that the N=6 ground state

is fully polarized at zero magnetic field, with a half filled p orbital shell and a partially

filled d orbital shell (s,s,p,p,d,d). This is distinctly different to electrons in InAs or GaAs

quantum dots, which exhibit an unpolarized (s,s,p,p,p,p) N=6 ground state at B=0T.

Above 14T the shell filling in Figure 3.3(a) sequence changes due to a crossing of the

single particle energy levels.

The shell filling of holes observed by Reuter et al. [103] deviates from the expected single

particle shell filling sequence, where the s, p and d shells fill in order. The explanation

for this anomalous result is due to the enhanced Coulomb interaction experienced by

holes in InAs quantum dots. Due to the larger effective mass of holes than electrons

in InAs, spatial confinement of holes must be stronger than for electron quantum dots.

This results in stronger hole-hole Coulomb interaction, decreasing the ratio between the
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Figure 3.3: Spin and shell filing of holes in an InAs quantum dot: The energetic positions of
the Coulomb peaks measured by Reuter et al. [103]. N is the total number of holes on the quantum
dot, and the insets show the occupation of holes into the single particle energy levels before (left) and
after (right) the crossing. Colored text indicates the total spin of the quantum dot for low magnetic
field (left) and high magnetic field (right).

Coulomb energy and the quantization energy scale. The fifth and sixth holes fill into the

d orbital since the strong interaction between tightly confined holes makes the higher

momentum d orbital energetically favorable to the half filled p orbital (where the hole

wavefunction overlap would be larger).

Holes in GaAs quantum dots

The low disorder and well developed nano-fabrication techniques for GaAs quantum

devices allowed extremely well defined electron quantum dots with clear orbital shell

structure [1, 9]. Single hole transistors based on GaAs MOS structures have been studied

by Klochan et al. [121] and Tracy et al. [102]. Despite both devices showing excited states

in the few hole [121], and the last hole [102] regimes neither works reported observations

of Zeeman splitting of the single particle states, which is required to perform magneto-

spectroscopy and characterise the spin states.

Wang et al. [108] improved on the GaAs MOS design of Klochan et al. [121] and studied

a well defined single hole dot in GaAs with clear excited states. The evolution of the

devices is shown in Figure 3.4(a). Figure 3.4(b) shows the source-drain bias spectroscopy
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Addition Energy EAdd
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Figure 3.4: Spin and shell filling of holes in GaAs: (a) Evolution of GaAs hole devices in Hamilton
research ground at UNSW. (i) shows SEM of the device studied by Klochan et al. [121]. This device
includes a single Top Gate (TG) accumulating holes in both the quantum dot and the source and drain
regions. Side gates L, PG, and R tune the quantum dot. (ii) Shows a SEM image of the device studied
by Wang et al. [108]. This device improves on the previous design by including a double layer structure,
where depletion gates sit below the accumulating top gate. (iii) Shows a schematic of the double layer
device. (b) Source-drain bias spectroscopy measurement of a GaAs MOS quantum dot studied by Wang
et al. [108]. It is likely that all holes are depleted for Vp > -0.83 due to the open Coulomb diamond.
(c) Top figure shows the raw addition energy measured from (b) in red and an exponential fit to the
decay in black. Bottom Figure in blue shows the difference between the background exponential decay
and the measured addition energy. The exponential decay in addition energy is due to change is the
dot size. There is no evidence for shell filling as no clear increase in addition energy is observed at the
2D magic numbers 2, 6, 12. (d) The line cut indicated by the red dashed line in (b) is measured as
a function of magnetic field. The ground state splits into a spin pair, while the excited state shows a
complex excited state spectrum.

measurements of Wang et al. suggesting they were able to reach the last hole. Unlike

the measurements of electrons in GaAs [1, 9], the addition energy spectrum observed by

Wang et al. did not show clear evidence for orbital shell structure, as shown in Figure

3.4(c). To study the spin states, Wang et al. measured the evolution of the N=2 ground

state and excited states, as indicated by the vertical red dashed line in Figure 3.4(b). The

ground state was observed to split into a spin-pair as shown by the red arrows in Figure
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3.2. Literature review - Spectroscopy measurements of single quantum dots

3.4(d). Observation of a ground state spin pair is an anomalous result1. This could be

explained by a non conventional spin filling sequence, or it could be that the dot is not

completely emptied of all charges in Figure 3.4(b). Distinguishing these effects could be

resolved by implementing a charge sensor to the device. The excited states in Figure

3.4(d) split into four states, which could result from a p-like orbital degeneracy, or could

be due to closely spaced 2-fold degenerate excited states. Despite these anomalous shell

filling results, Wang et al. have observed Pauli spin blockade in the few hole regime of

a lateral GaAs MOS double quantum dot. This demonstrates that is a spin dependent

orbital structure [109] in the few hole regime. However, it is interesting to note that

Wang et al. did not observe Pauli spin blockade in the two hole regime, where it has

typically been observed in GaAs electron quantum dot devices [30, 91].

Bogan et al. [122] have studied the energy spectrum of holes in GaAs double quantum

dots. A schematic of the device is shown in Figure 3.5(a). The device is designed

to allow both transport measurements (IDQD) and charge sensing (ICS). Bogan et al.

use transport measurements to extract the energy spectrum of the double quantum dot.

Importantly the charge sensor allows absolute confirmation of the hole occupation, which

was not possible for Wang et al. [108, 109]. Figure 3.5(b) shows the charge stability

diagram obtained using the charge sensor. Bogan et al. tuned the device to the two

hole regime and used high-bias double dot transport measurements to extract the hole

energy spectrum. A schematic of the results is shown in Figure 3.5, where the magnetic

evolution of the singlet and triplet states has been quantified.

The spectroscopy measurements of Bogan et al. [122] have furthered the understanding

of the consequence of spin-orbit coupling on single hole quantum dots. Since Bogan et

al. have characterised the singlet-triplet energy states, it is possible for them to analyze

double dot transport with respect to known spin and orbital states. This analysis has

demonstrated an anomalous result, which arises due to the strong spin-orbit coupling

experienced by holes. In contrast to electron devices, Bogan et al. found that the hole spin

was not conserved during inter-dot tunneling in GaAs double quantum dot devices. The

presence of spin-flip tunneling prevents the formation of Pauli spin blockade, and similar
1The N=2 ground state is not expected to split into a spin pair, since the two holes would be expected

to form a spin singlet ground state.
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a) b) c)

Figure 3.5: Spectroscopy two hole states in a GaAs double quantum dot: (a) Shows a SEM
image of the device studied by Bogan et al. [122]. The device consists of a double quantum dot with a
charge sensor. Source-drain bias transport measurements can be employed by monitoring the current
through the double dot. Importantly, the charge sensor allows confirmation of the absolute hole occu-
pation. (b) The charge stability diagram of the double quantum dot device, demonstrating operation
down to the last hole. The yellow square indicates the region used to study the energy spectrum of the
N=2 quantum dot. (c) Schematic of the N=2 energy spectrum, which has been extracted from source
drain bias measurement of the double dot.

to Wang et al., Bogan et al. do not observe Pauli spin blockade in the two hole regime.

The conclusions of Bogan et al. are strongly supported thanks to the adjacent charge

sensor, which allows the absolute charge occupation to be independently confirmed.

Characterisation of the two hole energy spectrum in GaAs provided the foundation

for further analysis of hole spin properties. Using the anomalous non-spin conserving

transport combined with the well characterised energy spectrum, Bogan et al. [115]

developed a novel spin-to-charge conversion protocol1. Using this protocol Bogan et al.

performed the first electrical characterisation of T1 for single hole spins in GaAs quantum

dots. These results have shown that GaAs hole spin relaxation occurs via the phonon-

mediated spin–orbit interaction, and T1 is observed by Bogan et al. over a range from

400ns to 60µs with a B5 dependence.

Holes in silicon quantum dots

We begin this section by discussing planar p-MOS silicon quantum dots, which are the

main structure investigated in this thesis2. The few hole regime has been reached by
1Typical double dot spin-to-charge conversion mechanisms have relied on Pauli spin blockade and

spin-conserved inter-dot transport. However, when there is strong spin-orbit coupling spin flip tunneling
is possible, and traditional Pauli spin blockade based spin-to-charge cannot be easily implemented. This
is a motivation for Bogan et al. to implement a novel technique.

2In Chapter 1 we present a full literature review for detailing the development of planar p-MOS
silicon quantum dots.
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3.2. Literature review - Spectroscopy measurements of single quantum dots

in planar single hole silicon p-MOS devices by Li et al. [27] and Spruijtenburg et al.

[29] in (2013). Excited states of the single hole quantum dot were observed by Li et

al. with energies on the order of 800µeV. Li et al. [28] extended their study to double

dot devices, where Pauli spin blockade was observed in transport measurements. Using

high-bias double dot transport spectroscopy Li et al. calculated the spin-orbit strength

and characterised the role of spin-orbit interaction in lifting the Pauli spin blockade for

silicon hole spins. However, in these measurements the absolute charge occupation is

unknown. This introduces a challenge for further analysis, since the extent of hole-hole

interactions and the exact orbital profile both remain unknown. These challenges can be

overcome by incorporating a charge sensor in the silicon MOS devices. This is exactly

the aim of the experimental research in this chapter.

Single

acceptor

a)

b)

c)

Figure 3.6: Acceptor quantum dot in silicon: (a) False colour SEM image of the p-type FinFET
quantum dot device studied by Van der Heijden et al. [123]. This device has two channels formed by the
undoped fin regions, with each channel connected to a source and drain p-type region. If a boron atom
happens to be present in a ’Fin’, it can trap holes and act as a quantum dot. (b) Shows a schematic of
the single acceptor quantum dot, which can be controlled using the gate. (c) Shows source-drain bias
spectroscopy of the ground state, where the colour scale is the transconductance. Four distinct states
are visible as the spin up and spin down Heavy holes (red) and Light Holes (green). The degeneracy is
lifted due to the different g-factors, where gHH = 0.81, and gLH = 0.85.
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3. Spectroscopy of single hole quantum dots in silicon MOS structures

We now briefly discuss silicon based single accepter quantum dots. Acceptor dopants

provide a distinctly different confinement symmetry to planar MOS and nanowire quan-

tum dots. The confinement symmetry of a quantum dot significantly impacts the energy

spectrum. In silicon based single accepter quantum dots spherical symmetry of the con-

finement is retained, and the Heavy-Hole and Light-Hole states remain degenerate. Van

der Heijden et al. [123] have studied the energy spectrum of single holes confined to a

boron dopant in a silicon MOSFET structure. A schematic of the device is shown in Fig-

ure 3.6(a). Van der Heijden et al. use magnetospectroscopy measurements to show that

the single hole ground state has four-fold degeneracy, and is made of degenerate Heavy

Hole and Light Hole states. In planar MOS and 1D nanowire devices the difference in

effective mass and confinement lifts the Heavy Hole Light Hole degeneracy [51]. These

spectroscopy measurements of Van der Heijden et al. confirm that acceptor quantum

dots significance that the confinement symmetry has on the orbital spectrum.

Summary of hole spectroscopy review

In these sections we have presented a review of spectroscopic measurements of holes in

a range of material systems (InAs, GaAs and Si) and device structures (planar MOS,

self assembled, and single dopants). The focus of these sections has been to highlight

the non-trivial spin and orbital physics that has been observed in hole based quantum

dots. Particularly the focus has been on how spin-orbit interactions, confinement, and

different effective masses can lead to the observed orbital spectrum. Readers interested

in further spectroscopy studies of holes can consider the following: Si nanowires [104,

111], physically defined Si [124], Si/Ge nanowires [76, 77], Ge hut wires [72], and Ge

planar MOS [26].

Prospects for hole-spin qubits

A major motivation for studying hole based quantum dots is due to the favorable prop-

erties holes are predicted to have for spin qubit applications [78, 79]. Holes are predicted

to be suitable for fast electric manipulation of spin [60], while also having long spin co-

herence times [80, 81]. Recent experiments by Maurand et al. [20], Hendrickx et al. [26],

and Watzinger et al. [22] have each confirmed that hole spins can have Rabi frequen-
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3.2. Literature review - Spectroscopy measurements of single quantum dots

cies up to 150MHz1. These are promising results, particularly since the observed spin

manipulation times are even faster than theoretically predicted [21, 125]2. However, the

ongoing challenge has been to enhance the hole spin coherence times, which are found

to be much shorter than expected, on the order of hundreds of nano-seconds. On the

one hand, operation speed appears even better than expected, and on the other, spin

lifetimes appear shorter. Each of these hole spin manipulation experiments [20, 22, 26]

were performed in the few hole regime, where the absolute charge occupation and details

of the energy structure are unknown. The success of the hole spin experiments performed

by Maurand et al., Hendrickx et al., and Watzinger et al. highlights the potential of holes

for spin qubit applications. However, the open question of coherence times demonstrates

the need to fully characterise and understand the spin properties of these devices through

detailed spectroscopic measurements.

3.2.3 Conclusion of literature review

Semiconductor quantum dots exhibit a rich energy spectrum, with well defined devices

showing shell structures analogous to atoms. It is often irresistible for physicists to

build up periodic tables of artificial atoms [43]. However, quantum dots with a clearly

observable and well defined orbital shell structure are not typical and should not be

taken for granted. This is particularly true for p-type quantum dots, where a mix of non-

trivial properties can influence the spin and orbital structure. The energetic structure

of a quantum device plays a key role in the properties, particularly those related to

spin. As such, spectroscopic measurements provide vital information allowing physicists

and engineers to asses potential uses, and to understand the electronic and magnetic

properties of a quantum dot. Finally, in order for spectroscopic measurements to have
1These experiments were performed using three different quantum dot structures, Maurand et al.

[20] studied a CMOS silicon nanowire, Hendrickx et al. [25] studied a SiGe MOS quantum dot, and
Watzinger et al. [22] studied a self assembled Ge quantum dot.

2Ares et al. [125] predict a maximum Rabi frequency of 100MHz in SiGe quantum dots and Hendrickx
et al. [25] observe Rabi frequency up to 160Mz in SiGe MOS quantum dots. Crippa et al. [21] model
the Rabi frequency in Si nanowire quantum dots using g-TMR theory and require a free parameter to
fully predict Rabi frequencies. In both cases the unknown mechanism enhancing the Rabi frequency is
likely due to spin manipulation via spatial modulation of the wavefunction [60]. While g-TMR can be
predicted, spatial modulation of the wavefunction is device specific. See Chapter 4 literature review for
further discussion.
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3. Spectroscopy of single hole quantum dots in silicon MOS structures

context with other results and devices, it is necessary to known the absolute charge

occupation.

3.3 Characterising the lever arm

In order to begin studying the energy spectrum of a quantum dot, it is necessary to have

a method allowing changes in energy to be measured. In quantum dots the energy levels

can be measured using a source-drain bias voltage, which can be directly converted to an

energy (see section 1.1.3). Alternatively, it is possible to determine energy scales using

the capacitive coupling between the dot and the gates (see section 1.2.3). In this case an

experimentally determined coefficient that converts gate voltage to energy is required.

The lever arm α is a linear coefficient allowing a change in gate voltage to be converted

to a change in the electrochemical potential ∆E = α∆VG3. Typically in quantum dots,

the lever arm α is determined by varying the source-drain bias, and measuring so called

Coulomb diamonds in single dot transport. However, since the devices described in this

thesis are single lead quantum dot devices, transport measurements through the single

dot are not possible. In order to calculate the lever arm we first tune VG3 so that the

single dot under G3 is on a charge transition (in this case we use the 2nd to 3rd hole

transition). We then apply an 8mV sawtooth wave to G3 causing the hole occupation

of the dot to shift from two holes to three holes over the sawtooth sweep. The average

DC sensor current 〈IDC〉 will shift from high to low as the sawtooth sweeps the dot

electro-chemical potential across the reservoir chemical potential. The width in VG3 of

the shift from high to low 〈IDC〉 is determined by the Fermi distribution of hole states

in the reservoir [32, 33].

In Figure 3.7(a) we show 〈IDC〉 for two different fridge mixing chamber temperatures

TMXC. The width of the transition in 〈IDC〉 is sensitive to the thermal broadening of the

reservoir distribution of hole states. We fit 〈IDC〉 to the function

〈IDC〉 =
Ipeak-to-peak

1 + exp[ (VG3−V0)αe
kBT

]
+ Ioffset =

a

1 + exp[VG3−b
c

]
+ d (3.1)
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Figure 3.7: Lever arm calculation: (a) 〈IDC〉 resulting from an 8mV sawtooth wave applied to G3
at fridge temperatures of 15mK and 620mK. Fit lines are shown in yellow (620mK) and grey (15mK)
dashed lines. (b) Fitting parameter c (Equation 3.1) as a function of fridge temperate TMXC. Typical
values for the remaining fitting parameters of Equation 3.1 are approximately constant at a = 3.6pA,
b = 0.32mV, d = −1.8pA. Th is the hole temperature temperature, which depends on the hole bath
temperature T0 and the mixing chamber temperature TMXC (Equation 3.3). The solid black line is a
fit to Equation 3.3, giving T0 = 136±25 mK, and α = 0.174±0.008 eV/V. The dashed black line is a
least squares fit for the data TMXC > 300mK. The resulting slope of the dashed black line gives α =
0.174±0.009 eV/V.

where a, b, c, d are fitting parameters. The smooth dashed lines in Figure 3.7(a) show

the fit to the raw data. By comparing the fitting function to the Fermi-Dirac distribution

we determine that the parameter

c =
kB
αe

√
T 2
0 + T 2

MXC (3.2)

c =
kB
αe
Th (3.3)

where T0 is the constant hole bath temperature, and TMXC is the dilution fridge mix-

ing chamber temperature. Th is the actual hole temperature, which is given by TMXC

and T0 added in quadrature. We extract the lever arm by measuring the temperature

dependence of the fitting parameter c.

In Figure 3.7(b) we plot the fitting parameter c as a function of the fridge mixing cham-

ber temperature TMXC. On the range of 15mK to 130mK the fitting parameter c is

unaffected by changes in the mixing chamber temperature TMXC. Above 130mK the

fitting parameter c increases linearly with TMXC, as shown by the black dashed line in

Figure 3.7(b). We extract the hole bath temperature, T0, to be 136±25 mK. For TMXC

above ∼130mK we infer that the hole bath temperature Th is equal to TMXC. The G3

lever arm αG3 is calculated to be 0.174±0.008 eV/V from fitting the parameter c as a
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3. Spectroscopy of single hole quantum dots in silicon MOS structures

function of TMXC to Equation 3.3. The G3 lever arm αG3 was calculated for the two to

three hole charge transition. We use αG3 = 0.174 eV/V for all analysis presented in the

main text. We note that the lever arm could be dependent on the hole occupation due

to additional screening and changes in the dot size. However, the charge transition lines

are linear in the VG3 VC phase space shown in Figure 2.14(a)1. This indicates that the

lever arm remains within the uncertainty range of 0.174±0.008 eV/V for at least the first

12 holes.

3.4 Evidence for orbital structure of single quantum

dot
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Figure 3.8: Measurement of the Addition Energy: (a) Coulomb blockade of the single quantum
dot reproduced from Figure 2.13(c) in order to provide context. (b) The hole addition energy extracted
from (a), showing peaks at N=2 and 6 consistent with the expected Fock-Darwin 2D shell filling. The
error bars result from the standard error in the mean of 20 measurements over a small range of VC. All
gate voltages are the same as stated in Figure 2.13(c) caption.

The spacing of the charge transition lines in Figure 3.8(a) provides clear evidence for

orbital shell filling of the hole quantum dot[9]. We extracted the addition energy

(Eadd(N) = µN+1 − µN) by measuring the spacing ∆VG3 between consecutive Coulomb

peaks, then converted ∆VG3 to energy using the lever arm of 0.174 eV V−1 (see section

3.3). In Figure 3.8(b) we plot the addition energy Eadd for increasing hole number. A

clear increase in the addition energy is observed for N=2 and N=6, which suggests the
1There is a slight kink around (VG3, VC) = (-1.7, 0.45), however this appears as a result of a nearby

confined charge. Later, in Appendix A section A.2.2 we have confirmed that the lever arm is independent
of the gate voltages.
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orbital shell is full for the second and sixth holes.
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Figure 3.9: Tunnel rate grouping of the single dot: (a) Charge stability diagram reproduced from
Figure 2.13(d) to provide context. The number of holes in the dot are labeled in white text. The
horizontal white lines highlight the disappearance of the charge transition signals in distinct groupings,
indicating shell filling. (b) Schematic diagram depicting the change in the tunnel barrier height between
the VC and VG3 configurations indicated by the green and red circle in (a). The tunnel rate, Γ, between
the dot and the 2D hole gas (2DHG) is influence by changing VC, causing the charge transition signals
to disappear when the tunnel time becomes comparable to the period of the pulses applied to G3. See
methods section for additional experimental parameters.)

Further evidence for orbital shell filling is given by the stair-like disappearance of charge

transition signals. In Figure 3.9(a) we reproduce the charge stability diagram of the

single hole quantum dot. The stair-like disappearance of charge transition signals is

highlighted by the dashed horizontal white lines in Figure 3.9(a). Along each vertical

charge transition line the measured signal decreases as VC is made more positive. As VC

becomes more positive the tunnel barrier becomes more opaque, and subsequently the

tunnel rate from the dot to the reservoir Γ decreases. The charge sensor transition is no

longer visible when Γ < 2fpulse, as shown schematically in Figure 3.9(b). When a hole

in the dot occupies a higher energy orbital shell, its wavefunction span increases, which

increases the tunnel rate. Hence, the charge sensor transition signals should lose visibility

at more positive VC for holes in higher orbitals. A statistical analysis of the visibility

of the charge transition lines (see section 3.4.1) shows that the N=(1,2), (3,4,5,6) and

(7,8) charge transitions become unmeasurable with the pulsed gate technique at almost

the same VC (dashed lines in Figure 3.9(a)). The groupings suggest that these holes fill

105



3. Spectroscopy of single hole quantum dots in silicon MOS structures

the same orbital state, with similar tunnel rates in the same orbital level.

The observation of a shift in addition energy and tunnel rate suggest the first two holes fill

into the first orbital, and the next four holes fill into the second orbital. This shell filling

is consistent with the Fock-Darwin orbital structure for a 2D parabolically confined

quantum dot [41, 42]. Beyond N=6 the observed orbital filling departs from the so-

called 2D magic numbers, which may reflect a loss of circular symmetry of the parabolic

confinement for higher hole occupation, since the higher orbital hole wavefunctions are

more sensitive to a non-circular confinement profile. Other possibilities include many-

body effects [1], which further reduce the energy spacing between different shells.

3.4.1 Statistical analysis of tunnel rate groupings
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Figure 3.10: Charge transition histogram and groupings: (a) Histogram of the data presented in
the charge stability diagram of Figure 3.9. The x-axis shows bin centers for values of measured Ipulse,
while the y-axis shows the number of counts within the bins. The horizontal blue arrow labeled ’Re-
solvable Transition’ highlights the values of Ipulse that correspond to charge transition signals, while the
horizontal red arrow labeled ’Background’ highlights the values of Ipulse that correspond to background
signal. The peak centered at approximately 0pA is the background signal. The two peaks at -1.1pA
and -0.7pA can be identified from the data as the rising and falling edges of the pulse-detected charge
transition. (b) The charge stability diagram from Figure 3.9(a) shown with with binary colour scale.
For the charge transition signal, Ipulse < -0.22pA, data is shown as black, while for the background
single, Ipulse > -0.22pA, data is shown as white. This allows the extraction of the background signal
and easy identification of the loss of visibility of each charge transition. (c) The extracted values of VC
(with uncertainty) at which each transition loses visibility There is a clear overlap of the N = (1,2) the
N=(3,4,5,6) and N = (7,8). The horizontal black lines highlight this overlap, and are draw at the same
respective VC as Figure 3.9(a). The red brackets on the right side highlight the groupings. The error
bars are the deviation in the mean VC value at which the charge transition is no longer visible

In Figure 3.9(a) horizontal white lines are drawn to highlight the stair-like disappearance

of the charge transition visibility. The specific VC at which the horizontal lines are drawn
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3.5. Magnetospectroscopy of first six charge states

has been determined by extracting the value of VC at which the charge transition signal

in Ipulse is no longer distinguishable from the background signal.

In order to determine a value of Ipulse that characterizes the loss of visibility, we take a

histogram of the data presented in the charge stability diagram of Figure 3.9(a). In Figure

3.10(a) we show this histogram with Ipulse on the x-axis and number of counts on the

y-axis. The analysis of 3.10(a) shows three clear distributions. The largest distribution is

the background signal, centered at Ipulse approximately 0pA. The two other distributions,

centered at Ipulse = -1.1pA and Ipulse = -0.7pA make up the rising and falling edges of

the detectable charge transition signal respectively. The blue arrow labeled ’Resolvable

Transition’ marks the range of Ipulse = (-0.15,-0.22)pA, which corresponds to the range

of Ipulse readings where a charge transition is detected. To demonstrate this, in Figure

3.10(b) we plot the charge stability diagram with a binary color scale, with black for

values of Ipulse indicated by the blue horizontal arrow in Figure 3.10(a) (transition) and

white for any value of Ipulse outside this range (background).

Based on the distribution of Ipulse we are able to extract a value of VC at which the signal

is no longer visible. The error bars are determined from the width of the distributions,

and the observed decay in Ipulse. Figure 3.10(c) shows the extracted values of VC for

the charge stability diagram in Figure 3.10(b). The horizontal black lines in 3.10(c)

correspond to the horizontal lines drawn in Figure 3.9(a). The distinct groupings are

highlighted by the red brackets on the right of Figure 3.10(c). There is no overlap

between the distinct groupings, demonstrating the effect of orbital shell filling.

3.5 Magnetospectroscopy of first six charge states

To determine the spin structure of the hole quantum dot, we study the magnetic field

dependence of the addition energy for N=1 to 6 holes. The slope of the N th addition

energy Eadd(N) with respect to B depends on the relative spin orientation of the (N+1)th
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and N th hole, with three distinct possibilities:

+
(
g∗N+g∗N+1

2

)
µB ↓↑

dEadd
dB = −

(
g∗N+g∗N+1

2

)
µB ↑↓

±
(
g∗N+1−g∗N

2

)
µB ↑↑ or ↓↓

(3.4)

where the first and second arrow depicts the spin filling sequence of the (N+1)th and

N th holes respectively. We have the average of the two effective g-factors since Eadd

measures the spacing between the Nth and (N+1)th energy levels, which can occupy

different orbitals and have different g-factors. Notice that the third term will be zero

provided that g∗N = g∗N+1, and can be non-zero when g∗N 6= g∗N+1.

3.5.1 Addition energy magnetospectroscopy measurements

In Figures 3.11(a−e) we show the addition energy, Eadd(N) = µn+1− µn for the first six

holes as a function of in-plane magnetic field B. In all figures we observe a distinct change

in the slope of dEadd/dB at 2.7T, and so we refer to |B |<2.7T as the low field region,

and |B |>2.7T as the high field region. For all data we observe that in both the low and

high field region of Figures 3.11(a−e) the data is linear in B. This is consistent with the

expected behavior of Equation 3.4 allowing the spin filling sequence to be determined1.

In order to infer the spin configuration of the dot for different hole occupations we first

consider the N=1 spin state. The N=1 spin will be aligned with the in-plane magnetic

field B, and we assign this as ’spin down’. The relative spin orientation of the first six

holes can then be determined by observing the slope of the addition energies in Figures

3.11(a-e) and comparing the results with Equation 3.4.

As an example of how the spin orientation is inferred, we first discuss in detail the Eadd(1)

measurement shown in Figure 3.11(e). The N=1 hole fills as spin down (aligned with
1We use an in-plane magnetic field allowing the addition energy behavior to be well described by

Zeeman effects only. It is expected that the hole density is approximately 1012 cm−2, and the thickness
of the 2D layer is of the order of 5nm. This thickness is less than the in-plane magnetic length for all
data presented in this work. Therefore, we consider in-plane magnetic field induced orbital effects to be
negligible. Orbital effects would appear as a non-linear effect in the addition energy.
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3.5. Magnetospectroscopy of first six charge states

the magnetic field), this is shown as the black arrow in the upper left inset of Figure

3.11(e). In the range 0<B<2.7T we observe that the addition energy increases. This

is consistent with the N=2 hole spin anti-aligned with the N=1 spin, and the addition

energy is increasing due to the Zeeman effect. We represent the N=2 spin orientation

with a red arrow in the upper left inset of Figure 3.11(e). At 2.7T the distinct change

in slope suggests a change in the orientation of the N=2 spin state. For B>2.7T the

dEadd/dB is approximately zero, consistent with the N=1 and N=2 spins now both

aligned with the magnetic field1. Due to Pauli’s exclusion principle the N=2 hole must

now occupy a different orbital state to the N=1 hole. Evidence from section 3.4 has

shown that the first orbital level has only 2-fold degeneracy, hence the N=2 state must

occupy a higher momentum orbital than the N=1 state. The relative spin orientation

and orbital occupation for |B|>2.7T is represented in the lower right inset of Figure

3.11(e).

For the higher hole occupations we emphasize that the slope of the addition energy

depends only on the on two highest energy hole spins that are occupied. For example

consider the magnetospectroscopy measurement of Eadd(3) presented in Figure 3.11(c).

In the low field region the slope dEadd/dB is approximately zero, suggesting the N=3

and N=4 hole are spin aligned. Measurements of Eadd(2) determined that the N=3

hole has spin down (the N=3 state is the orange arrow in Figure 3.11(a-c), so the N=4

hole must also be spin down at low magnetic field (the N=4 state is the green arrow in

Figure 3.11(a-c). Consecutive filling of spins with the same alignment is consistent with

the N=3 and N=4 states occupying degenerate px and py orbitals. The inset of 3.11(c)

has two grey arrows representing the spin and orbital level occupied by the N=1 and

N=2 holes. We present both the N=2 and N=1 states as grey in 3.11(c) since they are

indistinguishable in the measurement of Eadd(3).
1When both spins have the same alignment and g-factor the Zeeman effect will not influence the

addition energy. We note that the slope is close to, but not exactly zero. This is due to the difference
in g-factors between the 1s and 2p orbital and is discussed below in section 3.5.2.
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Figure 3.11: Spin filling sequence and orbital structure: (a-e) Addition energy for the first six
holes as a function of in-plane magnetic field. Black dashed lines are a linear fit to the raw data over
the region |B|<2.7T (low field) and |B|>2.7T (high field). The left and right inset shows the inferred
ground state spin filling for the low and high magnetic field regions respectively, where vertical stacking
of the squares represents the orbital structure Each colored arrow corresponds the N th hole (as depicted
by the colored text in g). Since Eadd(N) measures the spacing between the µN+1 and µN , only the two
states relevant to the respective addition energy measurement are shown in color, all other states are
gray. (f) The first five addition energies plotted over the low field region (|B|<2.5T) with data offset
to clarify the linearity of the data, with slopes either positive, negative, or close to zero. Solid lines are
the same least squares fit to the data. The difference in the slope of Eadd(1) and Eadd(4) is due to the
different orbital g∗-factors. (g) Model of the hole orbital shell structure and energy levels for the first
eight holes (ignoring Coulomb charging energy), extracted directly from the data in (a-e). Each line
corresponds to the hole charge occupations in (a-e), and the color of each line corresponds to the color
of the numbers on the left and right of the figure. Experimental parameters are; VR = -3.50V, VC =
+0.55V, VG1 = -3.50V, VG2 = -0.73V and VG4 = -0.10V.

3.5.2 Determining the g∗ from magnetospectroscopy measure-

ments

In Figure 3.11(f) we show the low field region of the first five addition energy measure-

ments. Given the linear data in Figure 3.11(a-e) and the evidence for orbital structure
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3.5. Magnetospectroscopy of first six charge states

of the dot presented in section 3.4 it is possible to extract the effective g-factor, g∗, for

holes occupying different orbitals. We have extracted g∗ from Figure 3.11 to be g∗1s = 1.1

and g∗2p = 1.4. The effective g-factor for the orbital occupied by the 7th hole (N = 7)

is g∗N=7 = 1.6, and can be extracted from the slope of Figure 3.11(b) for |B | larger than

2.7T. The orbital dependence of g∗ provides further evidence for the observed orbital

structure and is due to the strong spin-orbit coupling of holes [126, 127]. We observe

that holes occupying states with larger orbital momentum have larger effective g-factors.

3.5.3 Details of the orbital shell structure and spin filling

The full orbital and spin filling sequence can be determined from the measurements

presented in Figures 3.11(a-e). In Figure 3.11(g) we present the orbital structure of

the single hole MOS quantum dot. Here we will discuss the full spin and orbital filling

sequence in detail, beginning with the low field orbital spin filling. The first and second

holes form a Pauli spin pair in a two-fold degenerate orbital, labeled 1s. The third and

fourth holes fill the 2px and 2py states with spins parallel to each other. The fifth and

sixth holes fill the 2px and 2py states with spins parallel to each-other, but opposite to

the third and fourth holes. We are confident in the assignment of the second orbital as

a four-fold degenerate 2p orbital consistent with the expected spectrum of a symmetric

2D quantum dot. We can rule out the possibility that the apparent four-fold degeneracy

arises from an accidental degeneracy of adjacent orbitals by considering together; (i) the

addition energy measurements of Figure 3.8(b), (ii) the evidence of corresponding tunnel

rate shifts of Figure 3.9(a), and (iii) the distinct effective g-factors extracted from Figure

3.11(f).

We now discuss the spin filling sequence for high field region, |B |≥ 2.7T. The change in

slope of Eadd(1), Eadd(2) and Eadd(3) at B=2.7T can be attributed to a magnetic field

induced crossing of the 1s and 2p orbitals, as shown in Figure 3.11(g). By calculating

the Zeeman energy at the 1s and 2p crossing we determine the singlet-triplet energy

spacing EST for the two hole dot is 0.2meV.

To understand the change in slope of Eadd(4) and Eadd(5), we must first consider the
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3. Spectroscopy of single hole quantum dots in silicon MOS structures

spin filling and orbital degeneracy for the 7th and 8th holes. Although the addition

energy for the 7th and 8th holes is not directly measured, it is possible to determine the

spin filling and orbital degeneracy based on the high field slope of Eadd(4) and Eadd(5)

in Figures 3.11(a) and (b). In Figure 3.11(b), for B>2.7T Eadd(4) decreases with |B|,

demonstrating that the 5th hole ground state is spin down for B>2.7T. Addition energy

measurements in Figure 3.8(b) show that the second orbital is full for six holes. Thus, for

five holes there are no remaining spin down states available in the 2p orbital. Therefore

we conclude that the change in spin filling sequence at B=2.7T of the 5th hole is due

to Zeeman induced crossing between the 2p orbital and the next highest orbital. We

conclude that the 7th and 8th holes occupy a two-fold degenerate orbital. This two-fold

degeneracy is supported by the observation that the 5th and 6th holes fill with opposite

spin at high field, as opposed to the 6th and 7th holes, which fill with spin aligned to the

high field due to the four-fold degeneracy of the 2p orbital.

The change in slope around 2.7T for Eadd(4) and Eadd(5) can be now be attributed to

a crossing between the 2p orbital and the next highest orbital level. The next highest

orbital level above the 2p orbital is two-fold degenerate and is occupied by the 7th and

8th holes as depicted by the solid gray and dashed purple lines in Figure 3.11(g). For

circular 2D confinement the orbital level above 2p is expected to be six-fold degenerate.

We suspect that the two-fold degenerate orbital above the 2p orbital may result from a

loss of circular symmetry of the dot due to for higher hole occupations, or many body

effects [1].

In Figure 3.11(g) we present the hole orbital spectrum extracted directly from the mea-

surements of Eadd in Figures 3.11(a−e). Whereas previous studies of silicon hole quantum

dots typically show alternating spin filling [76, 104, 128, 129] (↑↓, ↑↓), a key result of this

work is the observation of consecutive filling of holes with the same spin orientation (�,

�), which occurs in the 2p orbital. The consecutive spin-orientation shell filling observed

here is consistent with studies of 2D electrons in high quality GaAs quantum dots [1,

9]. Further, the degeneracy of the 2px and 2py orbital levels at B=0 demonstrates that

the quantum dot has remarkably circular confinement. The results in Figure 3.11(g)

provide a clear demonstration of the orbital shell spin structure of the first eight holes
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in a surface-gated silicon quantum dot. In particular, we highlight the observation that

holes have spin polarized filling of the 2p orbital, analogous to Hund’s first rule of orbital

shell filling in atomic physics. This is the first demonstration of holes in silicon quan-

tum dots obeying Fock-Darwin orbital spectrum. The Fock-Darwin orbital spectrum is

well defined and has been well characterised, hence these results demonstrate a highly

suitable system for hole based spin qubits.

3.6 Estimating the dot size and orbital energy

In this section we use the addition energy measurements to estimate the physical size and

the orbital energy of the hole quantum dot. We consider a simple model of a 2D circular

dot. In order to estimate the dot diameter we approximate the dot-gate system as a

parallel plate capacitor and use the measured N=1 to N=2 addition energy, Eadd = 12

meV shown in Figure 3.8(b) in section 3.4. The parallel plate capacitance is given by,

C =
εrε0A

d
(3.5)

where A is the equivalent capacitor area, and d is the oxide thickness. The capacitance

is equated to the standard single dot charging energy,

EC = Eadd =
C

e
(3.6)

Taking the oxide thickness, d, to be 5.9nm and relative permitivity, εr to be 3.9 we find

the equivalent parallel plate capacitor Area, A, to be 2.28x10−15m2. For a circular dot

this gives a radius of (27±3)nm1. A dot radius of 27nm is smaller than previous silicon

MOS hole quantum dots operating in the few hole regime [27, 29, 88]. Hence this result is

consistent, since we would expect this device to be physically smaller than other devices

that did not reach the last hole.

The approximate excited state energy is calculated by modeling the dot as an isotropic
1Uncertainty is introduced due to standard deviation in the fit to the lever arm (α=0.174±0.008)

and uncertainty in the peak spacing used to extract Eadd.
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Figure 3.12: Probability density of wavefunction: Shows ψ2 for the wavefunction given in Equation
3.7. The point of inflection is where the second derivative is zero and is set to be half the physical radius
of the dot. The point of inflection occurs at r = ( ~

m∗ω )
1
2 . For a dot radius of 27nm this allow an estimate

of ~ω. Given the wavefunction of Equation 3.7 the hole has a 95% probability of being located in the
region |r|<27nm.

two dimensional harmonic oscillator. We use the ground state Fock-Darwin wavefunction

given by

ψ0(r) = (
m∗ω

2π~
)
1
4 e
−m∗ωr2

4~ (3.7)

where r is the radial dimension, and m∗ is the effective mass of heavy holes in silicon. We

take the in effective heavy hole mass to be m∗=0.21m0 using Luttinger parameters for

silicon [130]. To evaluate the excited state energy, ~ω, we solve the probability density

function, 〈ψ| |ψ∗〉, and set the point of inflection to be half the calculated dot radius.

d2

dr2
ψ2 = 0 (3.8)

The value of r at the point of inflexion is given by r =
√

~
m∗ω

. Equating r = 27nm
2

gives

ω = 4 × 1012s−1, corresponding to an excited state energy of ~ω = 3meV. Figure 3.12

shows the probability density function of the Fock-Darwin ground state wavefunction.
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3.7. Pulse-spectroscopy of excited states

3.7 Pulse-spectroscopy of excited states

In section 3.6 we have approximated dot to be a 2D circular dot with a radius of 27nm.

If we assume the confinement is harmonic and isotropic we can calculate an expected

orbital spacing of 3meV. In this section, first we present a series of measurements that

demonstrate we are able to observe the excited state spectrum of the quantum dot. We

then perform detailed spectroscopy measurements of the excited states for a quantum

dot with one hole, and a quantum dot containing two holes. The quantum dot containing

only one hole allows us to observe the single particle excited state spectrum, while the

quantum dot with two holes can provide insight into interaction effects. For the quantum

dot with only one hole we find the orbital spacing to be 3.5meV, which is comparable

to the predicted energy of 3meV (see section 3.6). We then show that strong hole-hole

Coulomb interactions has a strong effect on the excited state spectrum when the dot is

occupied by two holes.

3.7.1 Observation of excited states

To experimentally study the orbital shell structure and the nature of the confinement

potential, we examined the excited state spectrum of the quantum dot. In Figure 3.13

we present the excited state energy spectrum measurements. Figure 3.13(a) shows the

charge stability diagram of a single hole quantum dot. However, the charge transition

lines are significantly broader compared to previous stability diagrams (such as in Figure

3.9(a)). The charge transition lines are broadened by increasing Vpulse to 40mV (Vpulse

was 3mV in Figure 3.9(a)). The broadened charge transition window allows single hole

tunneling to occur via either the ground state or, when energetically accessible, via an

excited state. The excited state spectrum can be resolved by observing the additional

structure of Ipulse within the broadened charge transition lines.

As VC increases, the tunnel rate decreases between the dot and the reservoir. In the

region where the tunnel rate is comparable to the measurement pulse frequency, fpulse,

the signal is very sensitive to additional tunneling mechanisms. Excited states become

visible in the broadened Ipulse charge transition signal, since they offer an additional
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Figure 3.13: Observing excited states using high bias spectroscopy: (a) Charge stability diagram
for Vpulse = 40mV. The charge transition lines are broadened compared to the previous stability diagrams
due to the larger pulse amplitude. Additional structure appears in each broadened transition as VC is
made more positive. The region indicated by the blue ellipse, is not a double dot feature. This is a
bending of the transitions, due to nearby charge trap similar to what was observed in Figure 3.9(a). (b)
Line cuts measuring Ipulse for two different VC voltages, corresponding the the black and red dashed line
in (a). Data for VC = -0.55V has been offset by +2pA for clarity. For VC = 0.50 the tunnel rate for all
transitions is large compared to fpulse. However, for VC = 0.55 the tunnel rate for the first and second
transition are comparable to fpulse and additional structure can be observed in the broad Ipulse signal
due to excited states. (c) High resolution image of the N=1 transition. The N=1 excited state spectrum
can be observed in the Ipulse signal, and is labeled with dashed orange lines adjacent, but parallel to
the signal. An excited state for the N=2 transition can also be observed, and this is highlighted by the
yellow dashed line.

tunneling pathway, and thus increase the Ipulse signal. Figure 3.13(b) shows two line-

cuts of the Ipulse signal for two different VC , shown as red and black dashed lines in Figure

3.13(a). For the black data VC is more negative (VC = +0.5V), hence the tunnel rate

between the dot and the reservoir is larger than fpulse, and all except the first transition

show approximately constant signal amplitude. The N=0 to N=1 transition for VC =

+0.5V (black data) shows some reproducible structure, which results from the excited

state spectrum of the dot. This excited state structure becomes easier to observe when

the tunnel rate of all transitions is decreased. The red data in Figure 3.13(b) is for VC =
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+0.55V and reproducible structure can be clearly observed in the first two transitions.

The 3rd and 4th transitions do not yet show any structure since the 3rd and 4th holes

occupy a p-shell orbital, and have a stronger coupling to the reservoir

In Figure 3.13(c) we present a high resolution map of the N=1 transition in the region

where visibility of the N=1 charge transition is lost. The ground state (GS) and a series

of excited states (ES) are labeled with orange text and dashed lines. The angle of the

lines is due to the capacitive coupling of VC to the single quantum dot chemical potential.

We note that the excited states of the N = 2 transition can also be observed in Figure

3.13(c), and we have labeled one of the observed ES levels with a yellow dashed line.

This Figure demonstrates the high visibility of the excited states using the pulse bias

measurement technique. In the following section we will use these measurements to

extract the quantitative excited state energy spectrum.

3.7.2 Excited state spectroscopy measurements

We now present detailed spectroscopy measurements of the single hole quantum dot.

These measurements are performed using the techniques described in the previous sec-

tion. Figure 3.14(a) shows a charge stability diagram of the last hole regime. The

horizontal dashed lines in Figure 3.14(a) indicate the region where the visibility of the

N=1 (b) and N=2 (c) charge transitions begin to lose visibility. Figure 3.14(a) highlights

the relative regions in the charge stability diagram that are used to extract the excited

state spectrum of the single hole occupied (N=1), and two hole occupied (N=2) quantum

dot.

Figure 3.14(b) shows the excited state spectrum for the dot with single hole occupation.

This spectrum is obtained from a high resolution cut of Ipulse vs. VG3 along the dashed

white line labeled (b) in Figure 3.14(a). The x-axis in Figure 3.14(b) is converted to

energy using the lever arm and the ground state is referenced as the zero in energy.

Peaks in Figure 3.14(b) correspond to the single hole tunneling into different orbital

states in the unoccupied quantum dot (0→1 transition).

The extracted orbital energies are plotted as black circles in Figure 3.14(d), and show
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Figure 3.14: Excited state spectroscopy: (a) Charge stability diagram for Vpulse = 40mV and
fpulse = 333Hz. The white dashed lines labeled (b) and (c) correspond to cut taken to obtain the data
in b and c respectively. (b) Measurement of Ipulse over the N=0→1 Coulomb peak. The x-axis has
been converted to energy using the lever arm. The ground state (GS) and excited states (ES1-4) for
the one hole system are labeled, with the brackets indicating the experimentally determined width of
each peak. Additional structure is observed for ES2 and ES3, see text. (c) Same as (b) for the N=1→2
Coulomb peak. The inset demonstrates that the ground state and first excited state are resolvable. Each
dot represents a single data point. (d) Plot of the extracted excited state energies for the one (black)
and two (red) hole system. The black dashed line is a straight line fit to the N=1 data, highlighting
the linear dependence of the excited state energies on the orbital number. The black and red error bars
correspond to the width of the black and red brackets in Figures b and c respectively.

a linear dependence on orbital number. This linearity suggests that the confinement of

the dot is parabolic. We note that additional structure can be observed in Ipulse for the

second excited state (ES2) and the third excited state (ES3) in Figure 3.14(b). This

additional structure is likely due to orbital splitting resulting from ellipticity of the dot

for higher energy orbitals, consistent with the results for the 7th and 8th hole shell filling

in section 3.51.
1ES2 will be occupied by the 7th and 8th holes. In section 3.5 we show that the 7th and 8th holes

depart from the expected spin filling of a circular 2D quantum dot. This is consistent with ES2 orbital
level having its six-fold degeneracy lifted.
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We now briefly discus the case where the quantum dot confinement is not parabolic,

but rather has a different spatial profile. For parabolic confinement the spacing between

consecutive orbital levels is constant (~ω). For a square well the orbital energies are

given as En = (n2π2~2)/(2ma2), where a is the width of the square confinement and n is

orbital number. In this case the spacing between consecutive orbital levels will increase

with n. We do not observe this trend. For a triangular confinement the orbital levels are

given by En =cn(e2F 2~2/(2m))
1
3 where F defines the electric field and c1 u 2.32, c2 u

4.01, c3 u 5.52...[50]. For triangular confinement the spacing between consecutive orbital

levels decreases with n. This trend of decreasing orbital confinement can be partially

observed in Figure 3.14(d), where orbital level one is slightly higher in energy than the

trend-line, while orbital level 4 is slightly lower in energy than the trend-line (data for

N=1). This highlights that although the orbital energy levels fit reasonably well to

the parabolic confinement (linear trend), the experimental confinement is unlikely to be

perfectly parabolic, and it is reasonable to observe some variations from the linear trend.

We now discuss the expected excited state energy scales in order to compare with the

experiment. The quantum dot radius was estimated to be ∼27nm, using the charging

energy of 12meV for the one to two hole charge occupation (see section 3.6). The expected

orbital spacing for a 2D artificial atom with 27nm radius is ∼3meV (see section 3.6). In

Figure 3.14(b) we find that the orbital spacing between the Ground State (GS) and the

first Excited State (ES) is 3.5meV, and that the first four excited states fit to a linear

trend with slope 2.5meV per orbital. The experimentally observed orbital spacing is

consistent with the expected orbital spacing for a 27nm radius circular quantum dot.

Finally, we investigated the energy spectrum of the two hole quantum dot. We can

determine the strength of hole-hole interactions within the quantum dot by comparing

the two-hole energy spectrum with the one-hole energy spectrum. Figure 3.14(c) shows

the excited state spectrum for the two-hole quantum dot, which is a cut along the dashed

white line labeled (c) in Figure 3.14(a). A key feature of the two hole dot is that the

first excited state is now only 0.25meV above the ground state (inset of Figure 3.14(c)),

while the separation between excited states remains comparable to the N=1 transition

excited state energy separation of ∼3meV. The reduction in the spacing between the
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ground state and first orbital state (3.5meV for the one hole system, and 0.25meV for

the two hole system) results from the additional Coulomb interaction energy when one

hole already occupies the lowest energy orbital1. The observation of a 0.25meV excited

state spacing for the two-hole dot is consistent with the 0.2meV Zeeman energy required

to induce a singlet-triplet ground state transition in Figure 3.11(e). Based on the change

in first orbital energy spacing, we estimate that the hole interaction energy is ∼3.25meV,

which is ∼90% of the orbital energy. The measured hole-hole interaction energy is much

larger than the electron-electron Coulomb interaction energy measured in GaAs and

silicon [49] lateral quantum dot devices2. Large hole-hole interaction energies (compared

to the orbital energy) have also been observed in laterally defined GaAs hole quantum

dots [122] and in InAs hole quantum dot devices [103].

The observation of this large Coulomb interaction provides strong motivation for oper-

ating hole spin qubits in the single hole (N=1) regime. In the single hole regime the

qubit basis states are isolated from the additional energy levels by the orbital spacing.

However, when more than one hole is present, strong hole-hole interactions can compli-

cate the energy spectrum and decrease the isolation of the basis states from potential

leakage states. Finally, we note that the large Coulomb interaction provides additional

insight into the analysis of the orbital shell filling. In InAs quantum dots the enhanced

Coulomb interaction has been observed to non-standard shell filling of the Fock-Darwin

orbital states [103]. Therefore the large Coulomb interaction may provide an explanation

for why the 7th and 8th holes depart from the Fock-Darwin magic numbers in this device

(see section 3.5).

3.8 Conclusion and outlook of Chapter Three

In this Chapter we have presented the first experimental evidence of the orbital shell

structure and spin filling sequence of holes in a silicon MOS quantum dot. The orbital
1See section 1.3.2.
2For both GaAs [47] and Si [49] lateral quantum dots the electron-electron Coulomb interaction

energy has been observed to be around 50% of the orbital energy. This has been extracted by comparing
the difference between the N=1 single particle energy spectrum and the N=2 excited state spectrum.
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level spacing and the spin filling suggests that the confinement potential is close to

parabolic. We have extracted the ground state spin filling for N=1 to 6 holes. These

results show that holes in a planar circular quantum dot follow the standard 2D artificial

atom spectrum observed in high quality GaAs electron based devices [1, 9]. We emphasize

that this spectrum is achieved due to the tight confinement provided by the surface

gate structure of the device. Finally, we observe polarized spin filling and determine

that strong hole-hole interactions affects the two-hole energy spectrum. These results

highlight the unique physics of 2D hole artificial atoms, and clearly demonstrates that

spin properties and energy scales are very different to nanowire and electron artificial

atoms [6, 76, 104, 128]. This Chapter demonstrates a step forwards for p-type silicon

MOS quantum devices, by providing experimental evidence for energy structure of a

device in a known and reproducible charge configuration.

A promising result is the observation of the orbital dependence of the hole g-factor. We

observe that the g-factor for an in-plane magnetic field orientation varies from 1.1 to

1.6 across three distinct orbital states. Engineering the g-factor has many applications

in spin based quantum electronics. Variation in the g-factor allows holes in different

orbitals to experience a different Zeeman splitting. This could be used to individually

manipulate hole spins, by tuning the resonance frequency to the Zeeman energy of a

specific state. Further, the change in g-factor for different orbitals suggests the hole g-

factor is dependent on the orbital angular momentum (s-orbital or p-orbital). This has

been observed in other semiconductors with strong spin-orbit coupling, where electric

fields allow fine control over the g-factor [73, 131, 132]. In addition to tuning the g-factor,

an oscillating electric field will produce an oscillating g-factor, allowing local electric spin

manipulation equivalent to ESR [62]. In order to assess the suitability of exploring these

interesting experimental regimes, it would first be important to fully characterise the g-

tensor, and gain some further insight into how the g-tensor is related to the hole orbital

confinement.
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Chapter 4

Electric control of the single hole

g-tensor

Abstract

Studies of the g-tensor are valuable for characterising the spin physics of semiconductor

systems. Hole spins confined in silicon MOS quantum dots are a promising platform for

spin-based electronic applications, however there are only limited studies regarding the

physics of hole spins in these structures. In this Chapter we isolate a single hole in a

quantum dot, place it in a known orbital state, and then study the full 3D anisotropic

g-tensor. We find that the orientation of the g-tensor can be electrically tuned, and that

the components of the g-tensor be electrically controlled by more than a factor of two by

changing the gate voltage by just 0.2V. These results show that both the magnitude and

orientation of the hole g-tensor is strongly electrically tunable. We have developed a 3D

Luttinger model to support these results, which suggests that spatial dependence of the

hole g-factor results from the symmetry of the quantum dot orbital confinement. The

strong electric modulation of the g-factor demonstrates that hole spins in silicon MOS

quantum dots are a promising candidate for spin-qubit applications.
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4.1 Publication

The results presented in this chapter are in preparation for publication. Liles, S. D.,

Martins, R., Miserev, D. S., Thorvaldson, I. D., Rendell, M., Hudson, F. E., Veldhorst,

M., Sushkov, O. P., Dzurak, A. S., Hamilton, A. R. (2019). Electric control of the single

hole g-tensor. Article in preparation.

4.2 Introduction

In 1896 P. Zeeman observed that the atomic spectral lines of sodium could be broadened

by the presence of an external magnetic field. The explanation of this experiment, now

known as the Zeeman effect, was provided by H.A. Lorentz, and both physicists jointly

received the Nobel prize in 1902. Electrons in atomic shells posses a magnetic dipole

moment, which arises from both the orbital and spin angular momentum1. This dipole

moment can interact with magnetic fields, giving rise to a Zeeman splitting of the atomic

orbital spectrum. The Hamiltonian for the Zeeman effect can be written as

HZ = µB(L+ 2S) ·B (4.1)

where L is the orbital angular momentum, S is the spin angular momentum, and B is

the applied magnetic field. However, it is more convenient to work with the total angular

momentum (J = L+ S), and Equation 4.1 is conventionally simplified to the form

HZ = gµBJ ·B (4.2)

by using gJ = (L+ 2S), where g is the Landé g-factor2.
1Historically the influence of the orbital magnetic moment has been known as the normal Zeeman

effect, and could be described by the theory of H.A. Lorentz. At the time, it was not known that
electrons posses an intrinsic spin magnetic dipole, and so the spectral splitting due to spin was known
as the anomalous Zeeman effect.

2For a free spin-state the Landau g-factor is given by

g =
J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)
. (4.3)
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The g-factor is typically extracted by observing the Zeeman splitting of an energy level.

Spin-orbit coupling can give rise anisotropic Zeeman splitting, and this anisotropy is best

described by an anisotropic g-tensor. In this framework, the g-tensor is a 3x3 matrix,

which is diagonal in a suitable choice of coordinate axes. The simplest form of the

g-tensor is written as

g =


g1 0 0

0 g2 0

0 0 g3

 (4.4)

where g1, g2 and g3 are the principal g-factors and the co-ordinate axes that diagonalize

the g-tensor are known as the principal axes, or the principal magnetic axes [57, 133]1.

For an arbitrary magnetic field orientation the observed Zeeman splitting is given by the

effective g-factor

g∗(B) =

√
g21B

2
1 + g22B

2
2 + g23B

2
3

|B|
(4.5)

where B1, B2, B3 are the components of the magnetic field along the three mutually

orthogonal principle axes.

The Landé g-factor is the central parameter that characterizes the response of a spin to

an applied magnetic field. In semiconductors, variations of the Landé g-factor from the

free electron g-factor value arise due to coupling between the spin and orbital degrees

of freedom. The strength of the spin-orbit coupling can be varied through means such

as material composition, crystal orientation or confinement, and these effects can be

observed in the Landé g-factor. Studies of the modulation of the g-factor can therefore

provide detailed insight into the underlying spin physics of electrons and holes semicon-

ductor devices.

A motivation for characterising the Landé g-factor is that in-situ modulation of an elec-

tron or hole spin state has wide applications for spin based electronics. In low dimensional

systems such as quantum dots, the electrically defined confinement profile can result in

This gives a Landé g-factor of 2 for a free electron in a vacuum (L = 0, S = 1/2, and J = L+S = 1/2).
1Conventionally the axes are chosen such that g3>g2>g1.
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an anisotropic and tunable g-factor [51, 127]. Electrical modulation of the g-factor pro-

vides a mechanism for local electric spin manipulation [61, 62], while in-situ control of

the spin-splitting can facilitate selective addressability of single spin states in devices

with multiple adjacent quantum dots. These properties are particularly appealing for

implementation in spin-qubits. As such, localized spins in semiconductors with electri-

cally tunable g-factors are attracting attention for use in spin-based quantum information

applications [5, 20, 21, 23, 26, 72, 122, 125, 132].

Hole spins in silicon quantum dots are a promising platform for spin-based qubits. While

electrons in silicon MOS quantum dots are one of the most successful spin qubit systems

[6, 55], electron spin manipulation requires additional device fabrication such as ESR

strip lines [13] or micro-magnets [63]. For holes, the inherently strong spin-orbit coupling

allows electrical spin manipulation and recent experiments have confirmed that hole spins

exhibit rapid all-electric spin manipulation [20, 23, 26]. However, challenges remain for

hole spin qubits. The spin coherence times for holes has been found to be short, on the

order of hundreds of nanoseconds, and since there are only a limited number of studies

of hole spin properties, identifying the exact mechanism driving the spin manipulation

and decoherence has proven to be challenging [21]. Studies presented in Chapter 2 and

Chapter 3 have shown it is possible to reach the last hole in silicon MOS quantum dots.

Detailed characterisation of the hole g-factor anisotropy in a known charge and orbital

state will provide valuable insight into the underlying properties of the hole spin-states.

4.3 Literature review of g-tensor modulation in semi-

conductors

In this chapter there are two primary motivations for characterising the g-factor of hole

spins confined in silicon MOS quantum dots. The first motivation is that studies of the

g-tensor provide detailed insight into the underlying spin physics. The second motivation

arises since the ability to electrically control the g-tensor demonstrates that a spin system

is highly suitable in various spintronic applications, such as spin-qubits. The aim of this
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literature review is to place these two motivations in the context of recent literature1.

There is a wide range of g-factor studies in the research literature, which covers various

semiconductor systems and uses a variety of experimental techniques. However, the

spin physics of holes in silicon quantum dots is still not well understood. To begin this

review, in section 4.3.1 we present the main physical mechanisms that are known to cause

g-tensor anisotropy and modulation in semiconductor devices. These mechanisms will

serve as the basis for analysis of our experimental results later in this chapter. Finally, in

section 4.3.6 we describe the relationship between electrical modulation of the g-factor

and the ability to perform all electric spin manipulation.

4.3.1 Mechanisms for g-tensor modulation

The Landé g-factor is an experimentally accessible parameter that characterizes the

response of spins to a magnetic field. Experimental studies of the g-factor are therefore a

powerful tool for extracting and understanding the underlying spin physics of a system.

In this section we review experimental studies in order to describe the main physical

mechanisms known to influence the g-factor2. In section 4.3.2 we describe the effect

of semiconductor material composition on the g-factor. In section 4.3.3 we discuss the

effect of the crystal orientation on the g-tensor anisotropy. In section 4.3.4 we show that

orbital confinement in systems with strong-spin orbit coupling significantly influences the

g-factor. Finally, in section 4.3.5 we discuss the effect the that Heavy-Hole Light-Hole

mixing has on the hole g-tensor.
1In that sense, this section is a review of the main physical concepts with support from appropriate

literature, rather than a review of all g-factor literature. See chapter 2 for a literature review of silicon
MOS quantum dot devices, and chapter 3 for a review of spectroscopic measurements of hole quantum
dots.

2This review focuses on providing context and understanding of the key physical mechanisms. Par-
ticularly, in the context of the experimental work that is presented in this chapter. The research selected
in this review is mostly electrical studies of the g-factor in quantum confined semiconductor systems.
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4.3.2 Material composition

The variation of the Landé g-factor from the free value of 2.0 is due to spin-orbit coupling

[134]. For this reason material composition plays an important role in defining the

Landé g-factor in semiconductor devices [135]. The spin-orbit coupling in semiconductors

is mediated by factors including the atoms occupying the lattice, the distinct lattice

symmetry, and the band-gap energy [51, 127, 135, 136](see section 1.3.5). Therefore

devices composed of different semiconductor materials can exhibit g-factors that can vary

significantly in both magnitude and sign1. In addition to inter-device material differences,

variations of the semiconductor material within a single device can significantly impact

the g-factor.

Quantum electronic devices commonly employ heterostructures in order to confine elec-

trons (or holes). The specific materials forming the heterostructure play an important

role in determining the g-factor. This is because the active charge states are typically

confined near the heterointerface. For example, in GaAs/AlGaAs heterostructures elec-

trons are often confined in a GaAs region at or near an AlGaAs interface. This interface

impacts the electron effective g-factor since the g-factor is -0.44 in GaAs, while in Al-

GaAs the electron g-factor is +0.4. When electric fields are used to tune the overlap

of the electron wavefunction into the AlGaAs region it is possible to achieve a weak

modulation of the electron g-factor [137].

Jiang & Yablonovitch [137] studied the electric tunability of the electron g-factor using

the device shown in Figure 4.1(a). This device is an AlGaAs/GaAs heterointerface device

with a top and back gate. Figure 4.1(b) shows the measured g-factor as a function of

the top gate and back gate voltage. The inset in Figure 4.1(b) schematically shows the

effect of the gate voltage, which shifts the wavefunction with respect to the interface.

The main result of Figure 4.1(b) is that the g-factor is weakly tuned to be more like the

AlGaAs value (+0.4) or the GaAs value (-0.44) consistent with the voltage induced shift

in the wavefunction position.

Building on the results of a composition based g-factor modulation, Salis et al. [61]
1Interested readers can see Figure 1 in [136], which shows the the electron g-factor in various III-V

materials.
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Figure 4.1: Electron g-factor modulation in AlGaAs/GaAs heterostructures: (a) Shows the
schematic outline of the AlGaAs/GaAs device studied by Jiang & Yablonovitch [137]. (b) Results of
the electron g-factor measured in device (a) as a function of the front (circle) or back (square) gate
voltage. The inset indicates how the front and back gate control the overlap of electrons wavefunction
into the AlGaAs region. (c) Shows the vertical profile of the Al concentration in the samples studied
by Salis et al. [61]. The Al concentration of the AlGaAs quantum well is varied quadratically from the
well center (z=0) up to 0.4 at the barriers. Labels indicate the Al concentration at z=0. (d) Tunability
of the g-factor measured in [61] as a function of the voltage difference between the front and back gate
voltages Ug. The symbols are the measured values for four different Al concentration profiles and solid
lines are weighted average fits to the data. A particularly interesting result is that for xo = 7% it is
possible to electrically tune the g-factor to 0 (at Ug = 2V), thereby electrically ’turning off’ the spin
response.

showed that it is possible to substantially increase the electric tunability of the electron g-

factor by specifically engineering the composition of an AlGaAs/GaAs/AlGaAs quantum

well device. The devices studied by Salis et al. are grown by Molecular Beam Epitaxy

(MBE) and have an AlxoGa1−xoAs quantum well embedded between two Al0.4Ga0.6As
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barriers, where xo is the Al concentration at the center of the AlxoGa1−xoAs quantum

well. The Al concentration is increased quadratically from xo to 0.4 from the center of

the well to the barrier. Figure 4.1(c) shows examples of the Al concentration along the

vertical axis of the quantum well. Figure 4.1(d) shows electric modulation of the g-factor

due to bias between the front and back gate (Ug) for different xo values. There are two

clear results here: (1) Salis et al. observed that the g-factor shows and approximately

parabolic trend, tending towards the AlGaAs value of +0.44 as larger fields displace the

wavefunction further from the center of the well; (2) the g-factor at the minima (vertical

dashed line) increases towards the AlGaAs value as the Al concentration is increased.

While Salis et al. observed an electrical modulation of the g-factor up to around 75%

(using a specially engineered heterostructure), in the case of a of typical heterojunction

Jiang & Yablonovitch observed a change in the g-factor of only around 1%. This is

typical, and strong electric modulation of the g-factor due to material composition tends

to only occur in specially engineered situations1.

Material composition is most significant when comparing the g-factor of similar quantum

devices fabricated in different materials. However, as we have discussed both Jiang &

Yablonovitch [137] and Salis et al. [61] observed the material based modulation of the

g-factor for electrons within a AlGaAs/GaAs heterojunction device. In the experimental

results of this chapter we study hole spins in a silicon MOS quantum dot. The quantum

dot is formed at the Si/SiO2 interface, and is defined by a lateral gate structure. The

wavefunction is not expected to overlap strongly into the oxide, and so material gradient

effects are expected to be extremely weak.

4.3.3 Crystal orientation

It is possible for the g-tensor to be sensitive to the crystal orientation. This can oc-

cur when the crystal structure gives rise to anisotropic spin-orbit coupling. The most

common example of this is Bulk Inversion Asymmetry (BIA), which can introduce a

Spin-Orbit Interaction (known as the Dresselhaus effect) that is anisotropic with respect
1In situations where strong electric modulation of the g-factor is observed in standard devices, the

explanation is typically one of the mechanisms discussed in the following sections.
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to the crystallographic axes [138]. Since the g-factor is directly linked to the spin-orbit

coupling, Bulk Inversion Asymmetry (BIA) introduces anisotropy to g-tensor based on

the crystal orientation. Effects of BIA are strong in III-V semiconductors, in contrast,

the effects of BIA are extremely weak in bulk silicon due to the diamond lattice.

Due to the suppression of spin-orbit interactions, the Landé g-factor in bulk silicon is

isotropic and close to the vacuum value. However, in MOS silicon quantum devices the

Si/SiO2 necessarily terminates the crystal along a specific atomic plane. This Si/SiO2

interface therefore breaks the inversion asymmetry, and gives rise to a Dresselhaus type

spin orbit interaction [139, 140]. Electrons confined near the Si/SiO2 interface will have

an anisotropic g-tensor, that is defined by the crystal orientation1.

Tanttu et al. [52] studied the g-factor anisotropy of electrons in a silicon MOS quantum

dot. A schematic vertical profile of the device is shown in Figure 4.2(a) where quantum

dots can be formed under the metal gates as indicated by QD1 and QD2. In these devices

the electrons are confined extremely close to the Si/SiO2 interface. Since the sample is

grown in the [001] direction, the Si/SiO2 interface lifts the degeneracy of the in-plane

[11̄0] and [110] orientations. Figure 4.2(b) shows measured the g-factor of QD1 as a

function of the crystal orientation. The red data corresponds to the effective g-factor

measured along the lattice directions indicated in the upper axis of the figure. Despite

the g-factor only changing by ≈1.5%, the observed g-factor anisotropy is consistent with

an interface defined g-tensor anisotropy, with maxima and minima occurring along the

[11̄0] and [110] crystal orientations respectively .

Tanttu et al. [52] are able to clearly observe the weak effect of the crystal orientation on

the electron g-factor in silicon. This is achievable since the other spin-orbit interaction

effects (such as Structural Inversion Asymmetry) are strongly suppressed. In the experi-

mental results presented later in this chapter we study a silicon MOS device with nearly

identical lithography to that of Tanttu et al.. However, we study hole spin states, which

will experience an additional spin-orbit interaction due to the valence band p-orbital

nature (see section 1.5.2). If the crystal orientation is the single strongest component

contributing to the hole g-tensor, we would expect to find that the principal magnetic
1Since all the other spin-orbit interaction effects are weak.
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a) b)

[110]
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Figure 4.2: g-factor modulation in a Si quantum dot: (a) Schematic vertical cross section of the
Si MOS quantum dot studied by Tanttu et al. [52] showing the location of two quantum dots (QD1 and
QD2). The sample plane is the axes parallel to the Si/SiO2 interface. The co-ordinates indicate the
relevant crystal axes, where grey arrow indicates the direction into the page. (b) Shows the g-factor
measurements for QD1. Red data shows the results for an in-plane magnetic field rotation, while the
black data shows the results for an in-plane magnetic rotation where the out-of-plane angle is fixed at
45deg. The angled measurement (black data) was performed to obtain off-diagonal g-tensor elements for
additional analysis. Inset shows the dg/dV (top) as a function of in-plane field orientation. Reproduced
from [52].

axes are fixed by the crystal axes, and cannot be rotated with electric fields.

4.3.4 Orbital confinement

In this section we discus the effects of confinement on the g-tensor. Variations in the

Landé g-factor are mediated by coupling between the spin and orbital angular momen-

tum. Quantum confinement significantly influences the orbital angular momentum of

electrons and holes. Therefore, confinement leads to a modulation of the g-factor, which

is mediated by the strength of the spin-orbit coupling [51, 127]. Confinement effects can

be especially significant in quantum dots with strong spin-orbit coupling [127]. This is

because quantum dot confinement is three dimensional, often electrically defined, and

often anisotropic. This gives rise to electrically tunable, three dimensional, anisotropic

g-tensors. In the following review we present results of electrical studies of the g-tensor

anisotropy in semiconductor quantum dots. The main purpose of presenting these results

is to demonstrate the g-factor modulation and anisotropy in systems with some similar
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properties to holes in planar MOS quantum dots1, which are experimentally studied in

this chapter.

Semiconductors such as InAs and InSb are ideal for investigating the consequences of

orbital confinement on the g-factor since these heavy elements have small band-gaps

leading to strong spin-orbit coupling [51]. Takahashi et al. [141] have studied the full

three dimensional g-factor anisotropy of electrons confined in self-assembled InAs quan-

tum dots. Figure 4.3(a) shows an SEM image of the device studied by Takahashi et al..

The device contains a single self assembled quantum dot that is 30nm high with a 100nm

base. The 100nm base provides weak confinement, allowing the in-plane confinement to

be primarily controlled using electric fields applied by the side gate.

Takahashi et al. characterised the g-factor anisotropy by performing measurements of

the g-factor as the magnetic field orientation was stepped in increments around the x-y,

y-z and x-z sample axis. The results of the x-y, y-z and x-z rotations are shown in Figure

4.3(b),(c) and(d) respectively. The solid red lines in Figure 4.3(b-d) show the best fit of

the raw data and the dashed black lines indicate the orientation of the principal magnetic

axes with respect to the sample x, y and z axes. The principal magnetic axes define the

orientation of the g-tensor. Takahashi et al. studied the g-tensor orientation for multiple

charge occupations and found that the magnitude and orientation of the g-tensor varied

for each case. Since different charge states will occupy different quantum dot orbital

levels, this result suggests that the g-tensor is primarily defined by the symmetry of the

orbital confinement [127].

To demonstrate that it is the orbital confinement symmetry which primarily influences

the spin-states, Takahashi et al. studied the g-factor anisotropy for different confinement

symmetries. The confinement of the quantum dot can be tuned using side gate voltage

Vsg. Figure 4.3(e) shows the x-z anisotropy profile for three distinct side gate voltages. In

each case both the magnitude and the orientation of the g-tensor is different (highlighted
1We begin by discussing electrons in InAs. For electrons in InAs the spin-orbit length has been

measured to be 127nm [67], while for holes in silicon MOS quantum dots it has been measured as
110nm [28], which is comparable. However, there are distinct differences, for example electrons in InAs
are spin 1/2, while the ground state holes in silicon MOS quantum dots are spin 3/2. In addition, we
discuss InAs self assembled and nanowire quantum dots, which have different lithographic confinement
to MOS quantum dots.
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b)a)

c) d)

e)

Figure 4.3: 3D g-factor anisotropy in InAs SAQD: (a) Shows a false color SEM image of an InAs
Self Assembled Quantum Dot (SAQD) on a (001) semi-insulating GaAs substrate. The side gate controls
the confinement symmetry (b-d) Measurements of the g-factor around the x-y, y-z and x-z sample axes
respectively, with dots for data and red solid lines for the best fit. The dashed arrows indicate the
orientation of the principal magnetic axes extracted from the best fit. (e) The g-factor anisotropy in
the x-z sample plane is measured for three different side gate voltages. The orientation of the principal
magnetic axes, gmax is shown as a colored arrow and is electrically tunable. Further, the magnitude of
anisotropy is clearly different between each Vsg measurement. Bopt and ζ indicate the optimum external
magnetic field orientation to achieve the fastest g-TMR spin manipulation. Reproduced from [141].

by the dashed colored arrows), demonstrating that the g-factor anisotropy is sensitive to

orbital confinement profile.

It could be expected that the crystal confinement axes of the Self Assembled Quantum

Dot (SAQD) may define the orientation of the orbital states and therefore the g-factor

anisotropy. However, the result presented in Figure 4.3(e) shows that g-factor anisotropy

is very sensitive to the electric field confinement, even in a Self Assembled Quantum Dot.

One challenge in furthering the analysis of Takahashi et al. is that the device was in an

unknown charge and orbital state. This prevents the ability to reproduce results, or

apply a more detailed model to gain a deeper understanding.

Nanowire quantum dots similarly have a hard radial confinement due to the crystal

growth. Schroer et al. [142] have studied the g-tensor of electrons in InAs nanowires and

show that the g-factor anisotropy is extremely sensitive to electrically defined confine-
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Figure 4.4: Electron g-factor anisotropy in an InAs nanowire quantum dot: (a) This SEM
image shows a nanowire placed on top of an array of gates. The schematic to the right shows the
potential profile in the region indicated by the red square in the SEM. This profile indicates the device
mode when tuned to form a double quantum dot. (b-d) Schroer et al. [142] study g-factor as a function
of magnetic field orientation for a rotation around the y-z, x-z and x-y axes as indicated by the insets.
Two distinct trends can be observed and these are highlighted with red and blue dashed lines. Solid
vertical lines indicate the difference in phase between the red and blue trends. The two g-factor trends
result from the two distinct quantum dots in the double dot device. Reproduced from [142].

ment, and is only weakly related to the crystal growth axes. In Figure 4.4(a) we show

the SEM of a nanowire quantum dot with the a schematic showing the device in the

double quantum dot regime. Figures 4.4(b-d) show the results of g-factor anisotropy,

which is measured by observing the g-TMR resonance frequency as a function of mag-

netic orientation. These measurements were performed in the (1,1) charge regime. Two

trends are present (red and blue dashed lines), which are the distinct g-factor of the left

and right quantum dot in the schematic of Figure 4.4(a). The red and blue trend lines

shows that even for two electrons confined in the same nanowire, separated by only tens

of nanometers, the g-tensor has a different symmetry and magnitude (indicated by the

colored lines to mark the phase). The difference between the g-tensor for two adjacent

quantum dots results from the small differences in the local electric confinement.

The hole g-tensor has been studied in silicon nanowires by Voisin et al. [73] and Crippa

et al. [21]. A false color SEM image of the CMOS nanowire device used by Crippa et al.

is shown in Figure 4.5(a). Using this device a double quantum dot can be formed directly
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c)a) b)

Figure 4.5: Hole g-factor anisotropy in a Si CMOS nanowire quantum dot: (a) Shows a false
colour SEM image of a silicon CMOS nanowire device. The nanowire channel runs underneath G1
and G2, allowing the formation of single or double quantum dots in nanowire channel. The nanowire
is aligned with the y axis as shown in the upper left corner. (b) Shows the g-factor as a function of
the in-plane (ψ) and out-of-plane (θ) angles. The red text indicates the extracted orientation of the
g-tensor axes. While the Y axis is close to the lithographic y-axis (ψ, θ) = (90o, 90o), the X and Z axes
are not aligned with the lithography. (c) Shows the isosurface ∆E2 = (g∗µBB)2 with respect to the
sample axes (x, y, z), highlighting the arbitrary orientation of the g-tensor with respect to the nanowire.
Reproduced from [21].

under gates G1 and G2. Figure 4.5(b) shows a color map of the 3D hole effective g-factor

(g∗). The red text (X, Y, Z) indicates the orientation of the principal axes of the g-tensor.

The principal magnetic axes are aligned arbitrarily to the nanowire axes (see caption).

This is highlighted in Figure 4.5(c), which shows the isosurface of of ∆E2 = (g∗µBB)2

with respect to the (x,y,z) lithographic axes. Similar to the previous results of this

section Crippa et al. find that the hole g-tensor is strongly defined by the symmetry of

the confinement potential. The results of Crippa et al. allow a major advance in the

understanding of the spin physics of holes in silicon quantum dots, which can be built

upon with further study. Particularly, since the charge and orbital state studied by

Crippa et al. is unknown, it would be valuable to perform 3D g-tensor characterisation

using a device capable of reaching the last hole.

In this section we have discussed the effects of quantum confinement on the g-tensor1.

In systems with strong spin-orbit coupling the the orbital confinement symmetry plays a
1In this review we focus primarily on the g-tensor for electrons in InAs. This selection is due to the

similar spin-orbit coupling strength of InAs electrons to holes in silicon. In addition InAs electrons have
had success as spin-orbit qubits [143]. Interested readers can review the g-factor modulation of holes in
GaAs [108, 122], holes in silicon nanowires [20, 21, 73], holes in SiGe quantum dots [125, 132], or holes
in germanium hut wires [22, 72]. Many of these results have been reviewed in the literature review of
Chapter 3.
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major role in determining the spin physics of the system. In particular, the orientation

of the g-tensor is not fixed by a crystal or lithographic axes. This can be demonstrated

by showing that the g-tensor orientation can be electrically tuned.

4.3.5 Heavy-hole light-hole mixing

In the previous section we discussed the effects of orbital confinement on the quantum dot

g-factor. Intuitively this effect can be understood in terms of how the orbital confinement

influences the coupling between the orbital states of a quantum dot. In this section we

introduce the effects of heavy-hole light-hole mixing on the quantum dot g-factor.

Studies of SiGe quantum dots have enhanced the understanding of how heavy-hole light-

hole mixing contributes to the hole g-factor modulation. Ares et al. [132] investigated

the electric modulation of the hole g-factor in SiGe quantum dots in order to characterise

the suitability of SiGe quantum dots for g-TMR spin manipulation [125]. Figure 4.6(a)

shows a schematic of the device, which is a self assembled SiGe quantum dot with

a metal top gate that can be used to control the vertical confinement. Ares et al.

results in Figure 4.6(b) show that the hole g-factor can be modulated over a range

from 2.5 to 0.5. This giant electric tunability demonstrates the SiGe hole quantum

dots are a promising candidate for g-TMR based spin qubits with predictions of Rabi

frequencies up to 100MHz [125]. However, despite the range of literature studying the

g-factor modulation with and many mechanisms proposed1, Ares et al. found that the

experimentally observed giant g-factor modulation required a new, and so-far overlooked

mechanism for theoretical predictions to match the experimental results.

The results of Ares et al. [132] g-factor modulation can be explained by analyzing the

effect of the heavy-hole light hole mixing in the 2D Luttinger model. The mixing between

the heavy and light hole states can be tuned by varying the strength of the vertical electric

field. The insets in Figure 4.6(b) show schematically how the vertical confinement tunes

relative displacement of the heavy-hole (red) and light-hole(blue) distributions, and thus

influences the mixing. This effect had not been fully studied due to the limited number
1These mechanisms for g-factor modulation include material composition effects [61, 131], variations

in the spin-orbit coupling strength [144] and orbital confinement [127, 145].
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a) b)

Figure 4.6: g-factor modulation in SiGe quantum dots: (a) Schematic of the self assembled SiGe
quantum dot studied by Ares et al. [132]. (b) Experimental results (blue squares) and the theoretical
predictions (red solid line) for the Heavy-Hole Light-hole induced g-factor modulation in SiGe quantum
dots. The y-axis is the g-factor measured for a magnetic field oriented perpendicular to the sample
interface and the x-axis is the magnitude of the electric field applied perpendicular to the sample
interface (due to the top (VTG) and back gate (VBG in a). Insets indicate the Heavy Hole (red) and
Light Hole (blue) wavefunctions at different vertical electric fields. Reproduced from [132].

of investigations into the hole g-factor modulation in quantum dots. The solid line in

Figure 4.6(b) shows the theoretical predictions of the g-factor when the heavy-hole light-

hole correction is included, showing that the model fits well to the data1. The heavy-hole

light hole mixing can be controlled by the confinement strength of the quantum dot2. In

this sense, intuitively the heavy-hole light-hole mixing can be thought of as a confinement

effect specific for hole quantum dots.

Conclusion of g-tensor modulation mechanisms

In the preceding sections we have presented a review of the main physical mechanisms

related to g-tensor modulation and anisotropy. In each case we have included a brief

discussion of how each mechanism is expected to relate to holes in silicon MOS quantum

dots.
1The dashed line shows an improved fit to the data. The model for the dashed line in Figure includes

the heavy hole light hole mixing correction, then adds an addition field gradient across the sample due
to the source and drain electrodes.

2Since the difference in effective mass leads to a splitting of the HH and LH energy states when
asymmetric confinement is introduced. See section 1.5.1.
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4.3.6 All-electric spin manipulation

The ability to electrically control the Landé g-factor is particularly useful for spin based

applications. Spin qubits are one of the main applications that motivates the ongoing

research into quantum dot spin states. All-electric spin manipulation is highly desirable,

and can help improve the scalability and operation speed of spin qubits (see section

1.4). In section 4.3.7 we cover the novel spin manipulation technique known as g-Tensor

Modulation Resonance (g-TMR), which allows electric spin manipulation as a direct

consequence of g-factor modulation. In section 4.3.8 we discuss a second mechanism

that allows electric spin manipulation known as Electric Dipole Spin Resonance (EDSR).

We conclude this section by discussing the complications that can occur when both the

g-TMR and EDSR mechanisms are present.

4.3.7 g-Tensor Modulation Resonance

We begin by describing the basic formalism of magnetically driven Electron Spin Res-

onance (ESR). We then follow the argument of Kato et al. [62] to describe g-Tensor

Modulation Resonance (g-TMR) in the same frame as ESR.

The general Hamiltonian used to describe spin dynamics is

H = ~S · ~Ω, (4.6)

where ~S is the spin angular momentum operator, ~Ω is the spin-precession vector,

~Ω =
µB
~

(
~g · ~B

)
, (4.7)

µB is the Bohr magneton, ~g is the Landé g-tensor, and ~B is the magnetic field vector.

If the applied magnetic field has a static and oscillating component it can be given by
~B(t) = ~B0 + ~B1sin(ωt + φ). In this case the Hamiltonian can be broken into the time
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independent and time dependent components, such that

H =
(µB

~

)
~S · ~g · ~B0 +

(µB
~

)
~S · ~g · ~B1sin(ωt+ φ) (4.8)

H = ~S · ~Ω0 + ~S · ~Ω1(t) (4.9)

where ~Ω0 defines the spin eigenstates, ~Ω1(t) defines the time dependent modulation to

the spin projection and ω gives the frequency of the modulation. The primary effect of
~Ω1(t) is to produce spin resonance1 when ω = |~Ω0|.

Traditionally, in Electron Spin Resonance (ESR) experiments the time dependent term
~Ω1(t) is introduced by the oscillating magnetic field. However, if the g-tensor is elec-

trically controllable (~g(V0)), it is possible to introduce an ~Ω1(t) term by periodically

modulating the g-tensor. If we take the case of V (t) = V0 +V1sin(ωt+φ)) then the time

dependent g-tensor is given by

~g(t) = ~g(V0) +
d~g(V0)

dV
V1sin(ωt+ φ)). (4.10)

In this case the Hamiltonian for the spin dynamics becomes,

H =
(µB

~

)
~S · ~g(V0) · ~B0 +

(µB
~

)
~S · d~g(V0)

dV
· ~B0(V1sin(ωt+ φ)) (4.11)

H = ~S · ~Ω0(V0) + ~S · ~Ω1(t) (4.12)

In the case of Equation 4.12 spin resonance can be driven by electric g-tensor modulation,

known as g-Tensor Modulation Resonance (g-TMR) [62]. As a final note we highlight

that the time independent term, ~Ω0(V0), has a dependence on the static voltage. Hence

it is possible to characterise the expected g-TMR effects, since d~g(V0)
dV

can be extracted

from the voltage dependence of the Zeeman energy.

1Specifically it is the component of ~Ω1 which is perpendicular to ~Ω0 that can give rise to spin
resonance. The component of ~Ω1 which is parallel to ~Ω0 modulates the Larmor spin precession frequency.
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4.3.8 Electric-Dipole Spin Resonance (EDSR)

In the previous section we have discussed the mechanism by which an electrically tunable

g-tensor (~g(V0)) allows for electric spin manipulation. In this section we introduce a

second mechanism for electric spin manipulation. This second mechanism is based purely

on spin-orbit coupling, and is known as Electric-Dipole Spin Resonance (EDSR). Finally,

we will discuss the relationship between these two mechanisms (g-TMR and EDSR).

We begin by providing a simple example to demonstrate how spin-orbit coupling can be

used to enable Electric-Dipole Spin Resonance (EDSR) [146]. The aim is to present a

Hamiltonian describing EDSR, which is analogous to the ESR and g-TMR Hamiltonian

(Equations 4.9 and 4.12 respectively). We can consider a simple spin-orbit Hamiltonian1

HSO = αkxσy. (4.13)

Including the spin-orbit coupling in the spin dynamics gives the Hamiltonian

H = ~S · ~Ω0 + αkxσy. (4.14)

We now consider a voltage source V (t) = V0 + V1sin(ωt+ φ), which produces an electric

field that periodically displaces the electron (or hole) along the x-axis such that

x(t) = x0 + (x1)sin(ωt+ φ) (4.15)

= x0 + (γV1)sin(ωt+ φ), (4.16)

where x1 defines the amplitude of the oscillations along the x-axis. For small V1 we have

approximated x1 = γV1, where γ = dx
dV . In the presence of V (t), kx(t) is given by

kx(t) =

(
mωγV1

~

)
cos(ωt+ φ). (4.17)

1This is a simplified version of the Rashba spin-orbit coupling Hamiltonian HR = α(~σ×~k) · Ê where
α is a spin-orbit parameter, and Ê is a unit vector oriented along the electric field gradient [51, 146].
We can then simplify further by considering v̂ = ẑ and that the motion is only along the x-axis, giving
Equation 4.13.
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Combining Equation 4.14 with Equation 4.17 gives the Hamiltonian

H = ~S · ~Ω0 + σyΩ1(t) (4.18)

where,

Ω1(t) =

(
αmωγV1

~

)
cos(ωt+ φ) (4.19)

The form of Equation 4.18 is analogous to the ESR Hamiltonian (Equation 4.9) and the

g-TMR Hamiltonian (Equation 4.12). EDSR relies on an A.C electric field oscillating the

wavefunction back and forth in the presence of an external static magnetic field (~S · ~Ω0).

Given these conditions, the displacement oscillations induce coherent spin rotations due

to the spin-orbit coupling [60, 85, 146]. The time dependent term (Ω1(t)) is determined

by the strength of the intrinsic spin-orbit coupling (α), the displacement amplitude of the

electron (x1 = γV1), and the frequency (ω). It is important to note that the expected

magnitude of the EDSR effects cannot be extracted by observing the Zeeman energy

dependence on the applied voltage1.

Experiments with both g-TMR and EDSR

Both the g-TMR and EDSR effects arise due to spin orbit coupling, and are driven by

electric fields. In this section we compare the two effects, and discuss the consequence

when both are simultaneously influencing the spin dynamics. Electric spin manipula-

tion via g-TMR is mediated by electric modulation of the g-tensor, and was originally

observed by Kato et al. [62] in 2D GaAs/AlGaAs heterostructures [61]. Electric spin

manipulation via EDSR is mediated by the motion of the wavefunction through the

spin-orbit effective magnetic field, and was originally observed in III-V semiconductor

quantum dots [59, 143]. However, in semiconductor quantum dots with strong spin-orbit

coupling, electric modulation of the g-tensor is typically possible due to confinement ef-

fects (see section 4.3.4). For this reason g-TMR and EDSR can both simultaneously

contribute to the electrically driven spin resonance. The key distinction is that g-TMR

can be calculated by observing the voltage dependence of the g-tensor using basic Zeeman

energy measurements, while EDSR cannot [21]. For this reason purely spin-orbit medi-
1Unlike the g-TMR, which can be calculated from Zeeman energy dependence.
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ated spin resonance has become known as Iso-Zeeman Electric Dipole Spin Resonance

(IZ-EDSR) [21, 60], to make the distinction clear.

A key study that demonstrates the coexistence of g-TMR and EDSR has been performed

by Crippa et al. [21] using holes in silicon nanowires (see Figure 4.5(a)). Crippa et al. have

performed detailed characterisation of the hole g-tensor1. Based on the measured g-factor

modulation Crippa et al. were able to make a prediction for the spatial dependence of

the pure g-TMR spin manipulation frequency (Rabi frequency). Figure 4.7(a) shows the

calculated Rabi frequency as a function of magnetic field orientation. Figure 4.7(b) shows

the experimentally observed Rabi frequency as a function of magnetic field orientation.

Interestingly Crippa et al. found that the experimental Rabi frequency was much larger

than that calculated from the pure g-TMR model, and the dependence on the magnetic

field orientation was significantly different to the prediction.

a) b) c)

Figure 4.7: g-TMR and EDSR of holes in silicon nanowires: (a) Shows the calculated Rabi
frequency of g-TMR as a function of magnetic field orientation (see inset in bottom left for axes). This
has been calculated by observing the g-tensor anisotropy using measurements of the Zeeman energy.
(b) Shows the experimentally observed Rabi frequency. Here the experimental Rabi frequency shows a
different spatial profile and has a significantly larger magnitude than what is calculated by pure g-TMR.
(c) Crippa et al. have extracted the Iso-Zeeman contribution to the Rabi frequency by comparing the
difference between the calculated g-TMR map in (a) and the experimentally observed map in (b).

The discrepancy between the calculated and observed Rabi frequency shows that an ad-

ditional mechanism for electrically driven spin resonance must be present to explain the

anomalously high Rabi frequency. This additional mechanism was considered by Crippa

et al. [21] to be the Iso-Zeeman spin manipulation effect, which results from the spin-orbit

coupling2. The Iso-Zeeman effect can only be observed in time domain measurements
1The g-tensor measurements of Crippa et al. have been previously discussed in section 4.3.4.
2The Iso-Zeeman effect is the pure spin-orbit mediated Electric Dipole Spin Resonance (EDSR)
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of the Rabi frequency, however the complication is that time domain measurements will

have a combination of contributions from the Iso-Zeeman and g-TMR effects. By con-

sidering the difference between the experimental spatial Rabi frequency (which contains

both the g-TMR and Iso-Zeeman contributions) and the pure g-TMR spatial Rabi fre-

quency (calculated based on g-factor anisotropy measurements), Crippa et al. were able

to determine both the magnitude and spatial dependence Iso-Zeeman spin manipulation

frequency. Figure 4.7(c) shows the spatial dependence of the Rabi frequency for pure

IZ-EDSR. Thus by including detailed g-factor anisotropy measurements Crippa et al.

were able to deduce the physical properties of a spin mechanism that was not otherwise

observable1.

4.3.9 Conclusion of literature review

Variations of the observed Landé g-factor from the vacuum value are due to spin-orbit

coupling. Detailed characterisation of the g-tensor has the potential to provide a deep

understanding of the underlying spin-orbit physics of a semiconductor device. We have

covered four mechanisms that primarily influence the g-tensor in semiconductor quan-

tum dot devices. These are material composition, crystal orientation, orbital confinement

and Heavy-Hole Light-Hole mixing. Understanding the typical influence of each of these

effects (in terms of magnitude and spatial dependence) provides the foundation for in-

terpreting results of g-tensor studies. When the spin physics are well characterised it

is possible to develop new spin-based applications. One of the most relevant of these

applications is all-electric spin manipulation. In this review we have covered the main

concepts related to electric spin manipulation, and discussed how these are related to

the g-tensor.

described in [60, 85] and has been described above.
1Based on these results Crippa et al. can predict the spatial dependence of the Rabi frequency,

allowing optimal choice of magnetic orientation for fast spin qubit operation. In addition this can be
used to characterise the spin-orbit magnitude and orientation.
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4.4 Presentation of results in Chapter 4 and Appendix

A

In Chapter 4 we present the key results from the experimental and theoretical study of

the hole g-factor anisotropy. In order to clearly present these results, details regarding

the characterisation of the device under study are presented in Appendix A. These

characterisation measurements include confirmation of the absolute charge occupation

(section A.3.1), and characterisation of the higher energy orbital shell structure (section

A.4.1). Where relevant, the reader is referred to corresponding characterisation sections

throughout the text.

4.5 Credits for sample fabrication

All measurements presented within Chapter 4 are performed on a device fabricated by

M. Veldhorst and F.E. Hudson in June 2015. The device studied in Chapter 4 has the

same design as the device studied in Chapter 2 and Chapter 3, however it was fabricated

on a different processing run. This is important since it emphasises that the results

obtained when studying a single device in Chapter 2 and 3 are reproducible using a

different device, fabricated during a separate processing run.

During the processing run, 12 devices were fabricated and stored in a nitrogen rich envi-

ronment. In addition, the devices were further protected from degradation by spinning

a thin layer of PMMA onto the surface. Testing of devices for chapter 4 began three

years after fabrication, in June 2018. Four individual devices have been tested at 4K,

three of these worked perfectly and were characterised as described in chapter 1. Fol-

lowing the characterisation, the best device was selected and studied. All testing and

characterisation was performed by S.D. Liles (thesis author).
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4.6 Device under study

In Figure 4.8(a) we show a false colour SEM image of a device identical to the device

studied in this Chapter. A schematic of the vertical profile of the active region of the

device is shown in Figure 4.8(b). The device can be operated as a single hole quantum

dot, with G2 acting as the plunger gate. Confinement of the dot in the y-axis is controlled

by the voltage applied to the C-gate (VC), while confinement in the x-axis is controlled by

the voltages applied to G1 (VG1) and G4 (VG4). Since VG1 also controls the tunnel rate

to the reservoir, we use VG4 to control the x-axis confinement profile. Absolute charge

occupation of the dot can be obtained since the device employs a charge sensor adjacent

to the quantum dot. The charge sensor is operated using standard low frequency dual

lock-in techniques, with dynamic feedback employed to improve signal-to-noise [40] (see

section A.2.1 for full details).

A stability diagram of the quantum dot device is presented in Figure 4.8(c). Starting

from the top of the measurement data-set, at VG4 = -0.6V, we observe a series of Coulomb

peaks consistent with single quantum dot charge transitions. Beyond the region labeled

N=0 we observe no further charge transitions, allowing us to confirm the absolute hole

occupation. The total number of holes occupying the dot, N, can then be determined by

counting the number of observed charge transitions, as shown in the black text in Figure

4.8(c). For further measurements providing confirmation of the ability to reach the last

hole see section A.3.1.

As VG4 is made more negative we observe a distinct change in the nature of the charge

stability diagram. Around VG4 = -1.2V we observe the single dot charge transitions

break into a honeycomb pattern consistent with a double dot charge stability diagram.

We highlight the double dot honeycomb structure with red dashed lines in the lower

right corner of Figure 4.8(c). This honeycomb pattern indicates that VG4 has been

made sufficiently negative to accumulate a second quantum dot under G4. The absolute

occupation of the double quantum dot system is represented by the text (N,M), where

N is the number of holes occupying the dot controlled by G2, and M is the number of

holes occupying the dot controlled by G4.
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Figure 4.8: Operation of the single hole quantum dot: (a) A false color SEM image of a device
identical to the device under study, with crystal orientations labeled (z=[0,0,1]). The adjacent charge
sensor is labeled, and the white scale bar is 500nm. (b) Schematic (not to scale) of the vertical profile
of the single quantum dot. (c) Charge stability diagram showing control of the device from a single to
double quantum dot regime Here the x-axis is the voltage applied to the plunger gate G2 (VG2), the
y-axis is the voltage applied to the gate G4 (VG4), and the color scale is the charge sensor signal. Inset i)
shows a schematic of the device, with blue (VG4 = -0.7V) and red (VG4 = -0.9V) ellipses schematically
indicating that VG4 can control the size and shape of the quantum dot. Insets ii) to iv) schematically
show the effect of VG4 on the energy profile. The horizontal dashed line indicates the fixed chemical
potential of the reservoir. See section A.3.2 for more details regarding the charge stability diagram
features. (d) Measurements of the first addition energy as a function of in-plane magnetic field. The
addition energy is extracted by converting the N=1 and N=2 charge transition spacing from ∆VG2 into
energy using the lever arm. The lever arm has been confirmed to be independent of VG4 (see section
A.2.2 for further details regarding the lever arm calculation). For each VG4 we observe a different
g-factor (slope) and charging energy (intercept).

These results suggest that the confinement profile of the quantum dot is highly tunable.

Based on the device geometry we would expect that VG4 primarily influences the con-

finement in the x-axis. This is shown schematically in inset (i) of Figure 4.8(c), where
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the blue dashed ellipse indicates the single dot tightly confined at VG4 = -0.7V, while the

red dashed ellipse indicates a physically larger1 dot due to the weaker x-axis confinement

when VG4 = -0.9V. Insets (ii)-(iv) present a schematic illustration of the energy profile

of the quantum dot at various VG4. As VG4 is made more negative the minimum of

the G2-controlled dot falls further below the reservoir chemical potential (dashed black

line), the dot increases in size then finally forms into a double dot structure. The system

forms into a double dot rather than a larger single dot since VG3 is tuned such that G3

is partially depleting.

We now investigate how the addition energy and effective g-factor are influenced by the

nature of the quantum dot confinement. The Nth addition energy, Eadd(N), is the energy

required to add the (N+1)th charge to a dot containing N holes, and is analogous to the

addition energy in atomic physics. Eadd(1) can be extracted by measuring the spacing

between the first two charge transitions. The g-factor can then be obtained from the

slope dEadd(1)/dB = gµB, and the Coulomb charging energy can be extracted from the

B=0 intercept of Eadd(1). We measure the first addition energy, Eadd(1), of the dot

as a function of an in-plane magnetic field oriented along the y-axis, By. The results

are shown in Figure 4.8(d) for four different dot confinement profiles. The different dot

confinement profiles are achieved by changing VG4, where the different colors correspond

to the VG4 indicated by the colored arrows in Figure 4.8(c).

There are two key results obtained from the measurements of Eadd(1) presented in Figure

4.8(d). The first key result is the change in the B=0 intercept of the four measurements.

We attribute this to a change in the physical size of the dot. As VG4 becomes more neg-

ative the dot becomes larger, reducing the Coulomb repulsion between the two confined

holes. This causes the B=0 addition energy to decrease as VG4 is made more negative.

The addition energy changes by ∼ 5% suggesting the area of the dot also changes by ∼

5% (see section A.2.5 for more details). The second key result is the difference in the

slopes of the four measurements. A difference in slope (dEadd/dBy) corresponds to a

difference in the effective g-factor. The values of the addition energy and g-factors are

presented in Table 4.1.
1This increase in physical size is confirmed by addition energy measurements discussed in the next

paragraph.
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VG4 (V) Eadd (1) (meV) g∗y
-0.60 19.2 ±0.1 2.3 ±0.1
-0.70 18.5 ±0.1 2.6 ±0.1
-0.80 18.4 ±0.1 2.1 ±0.2
-0.91 18.0 ±0.1 1.2 ±0.1

Table 4.1: Addition energy and g-factor from Figure 4.8(d): The addition energy is extracted
from the intercept of the respective linear fit in Figure 4.8(d), and the g-factor is extracted from the
slope.

These results demonstrate strong electric tunability of the hole g-factor, allowing a dou-

bling of g∗y over a small range of VG4. In conclusion, the results of Figure 4.8 and Table

4.1 show strong evidence of fine control of the confinement profile of the quantum dot.

Further, we have presented preliminary evidence for an electrically tunable effective hole

g-factor.

In our analysis we have assumed the main effect of VG4 is to change the electrostatic

confinement profile of the quantum dot. This is an intuitive assumption, which is con-

sistent with the trends observed in the addition energy in Table 4.1. The confinement

profile of the quantum dot defines the orbital shell structure. In section A.4.1 we present

an investigation of orbital shell structure for VG4 = -0.9V and VG4 = -0.7V. We show

that the orbital spectrum is distinctly different for the two different VG4 voltages. This

provides further support for the assumption that VG4 significantly impacts the quantum

dot confinement.

4.7 Experimental measurement of the g-tensor

This section presents the first experimental study of the hole g-tensor for a silicon MOS

quantum dot containing just one hole. We compare the hole g-tensor for two different

confinement profiles. These results are then used to discuss the electrical tunability

of the hole g-factor anisotropy and show that the anisotropy is strongly related to the

confinement profile of the quantum dot.

The hole g-factor is extracted by measuring the change in addition energy as a function of
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magnetic field. We use a superconducting vector magnetic system capable of producing

an arily oriented magnetic field. The anisotropy of the single hole g-factor is characterised

by rotating a 1T magnetic field around the sample x-z, y-z and x-y axes [141, 142]. The

g-factor is extracted in increments of π/12 giving a total of 144 measurements of the

hole g-factor for each confinement profile.

Figure 4.9 shows the results of the g-factor anisotropy measurement. In each data set the

y-axis is the effective g-factor measured for the specific magnetic orientation shown on

the x-axis. The first column shows the results when VG4 = -0.9V (in red, Figures 4.9(a)-

(c)), while the second column shows the results when VG4 = -0.7V (in blue, Figures

4.9(a)-(c)). The three rows are the results for the x-y, x-z and y-z rotations of the

magnetic field orientation respectively. The orientation of the magnetic field rotation is

indicated by the orange axes in the insets of Figure 4.9(a), (b), and (c). In all cases we

observe π periodic behavior in the hole g-factor anisotropy, consistent with the g-factor

anisotropy arising due to the quadrapole moment of the confinement.

We use the results of the rotations presented in Figure 4.9 to extract the magnitude

and orientation of the principal axes of the g-tensor. A 3D anisotropic g-factor can be

described by three mutually orthogonal g-vectors, which define the principal axes[57,

141]. Therefore, the hole g-tensor can be described by a diagonal 3x3 matrix with

components g∗1, g∗2 and g∗3. Here g∗1, g∗2 and g∗3 are the effective g-factors measured when

the magnetic field is oriented along the respective principal axes. Since the experimental

frame of reference (x,y,z) does not necessarily align with the principal magnetic axes, we

fit the measured g-factor anisotropy to a rotated diagonal matrix in order to determine

(g∗1, g∗2, g∗3) and the orientation of the principal magnetic axes [57]. The experimental

g-factor anisotropy is fit to the equation,

g∗exp = Ry(φ)Rz(θ)


g∗1 0 0

0 g∗2 0

0 0 g∗3

R−1y (φ)R−1z (θ) (4.20)

where g∗1, g∗2 and g∗3 define the principal g-factors, Ry,z are corresponding rotation ma-
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Figure 4.9: Electrical control of the g-factor anisotropy: Panels (a-f) show the experimentally
measured g-factor as a function of magnetic field orientation. Panels (a-c) (red) show the measurements
for VG4 = -0.9V, and panels (d-f) (blue) show the measurements for VG4 = -0.7V. Solid black lines are
the results of a best fit of all data for a specific VG4 to Equation 4.20. Insets for each row indicate the
plane of rotation. In each inset the axes of rotation are highlighted in orange. θ is the in-plane angle,
with θ = 0 corresponding to Bx. φ is the out-of-plane angle with φ=90 corresponding to Bz. The inset
includes a sample schematic where the red region represents the orientation of the C-gate, the orange
rectangle indicates G4, and the purple ellipse indicates the quantum dot.

trices1, θ defines the in-plane orientation of the principal magnetic axes, while φ defines

the out-of-plane orientation of the principal magnetic axes the with respect to sample

(x,y,z) axes. The angles are defined such that if θ=0 and φ=0 then the orientation of g∗1,

g∗2 and g∗3 would align with the sample (x,y,z) axes respectively.
1See section A.2.3 for definitions of these matrices.
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4. Electric control of the single hole g-tensor

We fit all 144 data points of the measured g-factor anisotropy to Equation 4.20 to extract

the the principal g-factors and their orientation. For VG4 = -0.9V we find the diagonal

g-tensor and orientations to be,

g∗0.9 =


1.6± 0.2 0 0

0 2.1± 0.2 0

0 0 3.9± 0.2

 (4.21)

θ0.9 = (8± 4)o

φ0.9 = (−43± 5)o

The components of the diagonal g-tensor are (g∗1, g
∗
2, g
∗
3) in the reference frame of the

principal magnetic axes.

Similarly for G4 = -0.7V we find the diagonal g-tensor and orientations to be,

g∗0.7 =


0.4± 0.4 0 0

0 1.2± 0.3 0

0 0 1.7± 0.2

 (4.22)

θ0.7 = (−5± 6)o

φ0.7 = (−70± 5)o

The solid black lines in Figure 4.9(a)-(f) is the best fit of the measured g-factors to

Equation 4.20. The best fit lines reproduce the experimental data well for both VG4

profiles. This shows that the hole g-factor anisotropy is well characterised by the 3D

anisotropic g-tensor in Equation 4.20.

We begin the analysis of these results by first considering the orientation of the principal

magnetic axes (g-axes). We find that both θ0.7 and θ0.9 are within experimental uncer-

tainty of θ=01. This indicates that the principal axis g∗2 is aligned with the y-axis of

the sample for both VG4 = -0.9V and VG4 = -0.7V (see Figure 4.8(a-b) for lithography

axes and crystal orientation). Confinement in the y-axis is provided by the C-gate, while
1Experimental misalignment of the sample with respect to the x and y magnetic axes is ± 5 degrees.

Given the experimental misalignment and the standard deviation in the fitting, we find that θ = 0 is
within both experimental uncertainty ranges of both VG4 = -0.9V and VG4 = -0.7V.
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4.7. Experimental measurement of the g-tensor

the only parameter that is changed between the two measurements is VG4. Further, the

C-gate is both the largest and the closest gate to the Si/SiO2 interface. It is therefore

consistent that the y-axis confinement is strongly determined by the orientation of the

C-gate, and therefore it is unchanged between the two VG4 measurements. We can con-

firm that the hole g-tensor orientation is not defined by the crystal orientation since φ

is tunable with electric fields.

The main difference in the g-factor anisotropy between VG4=-0.9V and VG4=-0.7V can

therefore be understood in terms of the out-of-plane angle φ. Given that θ=0, φ defines

the orientation of the g∗1 and g∗3 principal axes in the x-z plane. In Figure 4.10 we plot the

experimental g-factor measured for the rotation around the x-z plane1. The dashed black

lines indicate the orientation of the principal ~g∗1 and ~g∗3 axes based on the experimentally

determined φ. For VG4 = -0.9V we find the ~g∗3 axis is rotated by φ = −43 ± 2 degrees

from the z-axis [0,0,0], while for VG4 = -0.7V we find the ~g∗3 axis is rotated by φ = −70±3

degrees from the z-axis [0,0,1].

The g∗3 axis is expected to be aligned with the direction of strongest confinement2. For

a disk-like quantum dot this would give the largest effective g-factor oriented in the

direction perpendicular to the Si/SiO2 interface. In the case of VG4 = -0.9 we find ~g∗3
is oriented at 43 degrees to the interface. This suggests that as the dot reaches the

last hole, confinement in the x, y and z axes becomes comparable, so that the axis of

strongest confinement is defined primarily by the electric fields of the applied gates,

rather than the interface. This is consistent with observations in self assembled and

nanowire quantum dots [21, 141, 142, 144], where electric fields have stronger effects on

the g-tensor alignment than the respective crystallographic or lithographic confinement.

When VG4 is set to -0.7V we find the ~g∗3 tilts ever further away from the Si/SiO2 interface.

This is consistent with the assumptions made above regarding the case when VG4 = -

0.9V. Since we suggest that the dot is already tightly confined when VG4 = -0.9V, then

by making VG4 more positive (-0.7V) the confinement in the plane of the 2D hole gas can
1Since the g∗2 axis is aligned with the y-axis of the sample, an x-z magnetic field rotation passes

through the principal g∗1 and g∗3 axes.
2Based on the theoretical model in section 4.7. Note that we have taken convention to define

g3 > g2 > g1.
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Figure 4.10: Electrical control of the orientation of the principal g-axes: Polar plots of the x-z
magnetic field rotation measurements for (a) VG4 = -0.9V (red) and (b) VG4 = -0.7V (blue). The radial
axis is the g-factor and the angular position is the angle φ in the x-z plane (θ = 0) of the measured data
point. Solid lines are the results of a best fit of respective VG4 data to Equation 4.20. Dashed black
lines indicate the orientation of the principal g∗1 and g∗3 axes as extracted in the best fit. Below each
figure an inset shows a sample schematic, and a rotated quantum dot with principal g∗1 and g∗3 axes
indicated by dashed lines. Data is reproduced from Figure 4.9(c) and (f). Note that the radial scale of
(a) is double the scale of (b).

become tighter still, resulting in the axis g∗3 tilting even further into the 2D hole gas plane.

Finally we note that we have presented quantitative evidence (see Figure 4.8(d)) that the

physical size of the quantum dot decreases as VG4 is made more positive. This leads to a

somewhat surprising conclusion; these preliminary results suggest that the hole quantum

dot confinement can be tuned to be 3 dimensional, rather than 2 dimensional (disk-like)

as one might have expected for a MOS device. Since the confinement shape is linked to

the energy scales and spin interactions in quantum dots, this result is valuable for those

interested in hole spin based technology. At this point however, the results regarding the

confinement dimensions are preliminary, and future work involving electrostatic modeling

would be valuable in order to confirm the expected confinement dimensions.

Finally, we discuss the magnitudes of the g-factors. The maximum g-factor observed was

3.9±0.2 and the minimum g-factor was 0.4±0.4. This demonstrates that with control
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4.7. Experimental measurement of the g-tensor

of both the magnetic field orientation and the electric field1, it is possible to achieve a

wide range of effective hole g-factors. For the case of stronger electric confinement (VG4

= -0.7V) we observe that the range g-factors is ∆g = 1.7± 0.2, while for weaker electric

confinement (VG4 = -0.9V) range g-factors is ∆g = 3.3± 0.2. This effect of confinement

strength on ∆g is consistent with previous hole quantum dot devices, where the weaker

confinement reduces the Heavy-Hole Light-Hole mixing and gives rise to larger g-tensor

anisotropy [73, 122].
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Figure 4.11: ∆g∗ in x-z plane: (a) The graph shows the value of ∆g∗ (black) for magnetic fields
oriented around the x-z plane. ∆g∗ is calculated by taking the difference between the g-factor at VG4 =
-0.7V (dashed blue) and VG4 = -0.9V (broken red), which are reproduced from Figure 4.10 for reference.
The vertical lines show the position of the maximum value (~g∗3) of the respective data sets. The right axis
shows the respective ∆g/∆VG4. All data sets are the best fit values. (b) Shows the sample schematic
and indicates the respective lithographic/crystal axes with respect to the angle φ. The red ellipse is a
schematic of the quantum dot for VG4 = -0.9V. (c) Shows a schematic of the quantum dot for VG4 =
-0.7V. (b-c) reproduced from Figure 4.10.

In most applications, the aim is to set a fixed magnetic field, and electrically modulate

the g-factor (for example in g-TMR experiments [62]). In Figure 4.11(a) we show the

calculated ∆g∗ as a function of magnetic field orientation in the x-z plane. For a fixed

magnetic field orientation the largest ∆g observed is 2.6 for ∆VG4=0.2 (corresponding

to δg/δVG4 = 13). The largest value of δg occurs for magnetic field oriented at φ =

110o. This is not surprising since this occurs near the orientation of the largest g-factor

(~g∗3, vertical red line) for VG4 = -0.9V. As VG4 is changed the orientation of ~g∗3 rotates

to larger φ, producing the largest ∆g/∆VG4. Finally, we note that ∆g/∆VG4 is useful
1In this case over a relatively small range of ∆VG4 = 0.2V.
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to characterise since the g-TMR Rabi frequency is proportional to dg/dV (see section

4.3.7)1.

In this section we have studied the full 3D g-factor anisotropy of a single hole confined

in a silicon MOS quantum dot. Experimental results show that the g-factor is strongly

anisotropic and can be characterised by three principal g-factors, g∗1, g∗2, and g∗3 oriented

along mutually perpendicular directions. The g-factor anisotropy is compared for two

distinct values of VG4. This demonstrates that the magnitude of the principal g-factors

can be strongly modulated by electric fields, with the g-factor changing over a range

from 0-4 using as the magnetic field orientation is varied. Further, we find that the

orientation of the principal g-factors can be rotated by electric fields. The rotation of

the principal magnetic axes is qualitatively consistent with a rotation of the electrically

defined quantum dot confinement profile.

4.8 Theoretical model for hole g-factor anisotropy

The experimental results presented in section 4.7 show strong electric control of the

magnitude and orientation of the hole g-tensor. Analysis of these results suggests that

the electric g-factor modulation is linked to the electric control of the quantum dot

confinement profile. In this section we introduce a simple theoretical model of the g-

factor anisotropy for a single hole quantum dot. The model considers the case where the

confinement is an anisotropic 3D harmonic oscillator and includes full crystal anisotropy.

The only free parameters included in the model are the orientation, and strength of the

3D confinement. Due to the clear and simple parameter choices, this model has great

explanatory power.

The model corroborates our conclusion that the g-factor anisotropy is directly linked

to the confinement profile. Using the model we demonstrate that the orientation of

the principal magnetic axes are defined by the orientation of the confinement. In addi-

tion, we show that the magnitude of the principal g-factors can be varied based on the
1As a rough estimate for a driving voltage of 2mV and magnetic field of 1T at φ = 110o, the g-TMR

spin manipulation frequency for this device is predicted to be around 30MHz. See Equation 4.12.
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strength of the confinement. We conclude this section by discussing the quantitative dis-

crepancies between the model and the experiment. These discrepancies motivate future

work, which would be the development of a numeric model that includes full electrostatic

considerations.

4.8.1 Details of the theoretical model

In this section we provide details of the theoretical model used explain electric modu-

lation of the hole g-factor in silicon MOS quantum dots. This model was developed in

collaboration with D. S. Miserev1 and O. P. Sushkov2. This model is general to any hole

system provided appropriate Luttinger parameters are included. It can therefore be used

to model holes in Ge or GaAs hole based quantum dots.

k·p theory can successfully provide theoretical models of semiconductor band structure

including non-parabolically, spin-splitting, and electric and magnetic field induced ef-

fects. These models are also computationally expensive, with the extended Kane Hamil-

tonian producing a 14x14 matrix. Often it is convenient to consider smaller k·p models

that only include certain (adjacent) bands. The Luttinger Hamiltonian is the simplest

k·p model for describing the four-fold degenerate topmost valence band [51, 66].

In order to model the g-factor of a single hole quantum dot in silicon we start from the

3D Luttinger Hamiltonian3,

HL = (Kinetic) + (Spin-orbit) + (Crystal Symmetry) + (Zeeman)

HL = (γ1 +
5

2
γ2)
π2

2m

−γ2
m

(π2
xJ

2
x + π2

yJ
2
y + π2

zJ
2
z )

− γ3
2m

({πx, πy}{Jx, Jy}+ {πx, πz}{Jx, Jz}+ {πy, πz}{Jy, Jz})

−2κµBB · J (4.23)
1Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland.
2School of Physics, University of New South Wales, Sydney NSW 2052, Australia.
3See background section 1.5.2 for details on the structure of the Luttinger Hamiltonian. The version

of the Luttinger Hamiltonian in Equation 4.23 has been expanded to highlight the γ2 and γ3 terms.
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where γi and κ are Luttinger parameters1, π = p - eA is the long momentum, A is the

vector-potential, axes x, y and z are oriented along the crystal axes [1,0,0], [0,1,0] and

[0,0,1] respectively, m is the bare electron mass, J = (Jx, Jy, Jz) is the 4x4 hole spin 3/2

matrix, µB is the Bohr magneton, B is the magnetic field and brackets {A,B} = AB +

BA denote the anti-commutator.

We model the quantum dot confinement by introducing an arbitrarily oriented 3D har-

monic potential, V(X’,Y’,Z’ ), with principal axes of the harmonic oscillator defined by

X’, Y’ and Z ′. The harmonic oscillator potential in its own reference axes is given by,

V (X ′, Y ′, Z ′) =
m

2
(ω2

X′X
′2 + ω2

Y ′Y
′2 + ωZ′Z

′2) (4.24)

where ωX′ , ωY ′ and ωZ′ define the harmonic oscillator confinement along the X ′, Y ′ and

Z ′ principal axes. The principal axes of the harmonic oscillator X ′, Y ′ and Z ′ can be

arbitrarily oriented with respect to the crystal axes2. One can transform between these

axes and the crystal axes using the appropriate rotation matrices (See Equation A.5 in

section A.2.3 for full details).

The model of Equations 4.23 and 4.24 takes into account the full crystal symmetry

and orientation, bulk Zeeman contributions, orbital effects (through π = p − eA),

and Heavy-hole Light-hole effects (since it is a 4-band model). Further, the chosen

V(X ′, Y ′, Z ′) allows us to model the effects of an arbitrarily oriented 3D harmonic con-

finement. The quantum dot confinement is defined by the three principal axes, with

harmonic confinement(ωX′ , ωY ′ , ωZ′). Experimentally this confinement is electrically

controlled using the voltage applied to the metallic gates. The model initially has six

free parameters. These free parameters are the three confinement parameters (ωX′ , ωY ′ ,

ωZ′), and three angles (Ψ,Θ,Φ) used to define the orientation of the 3D harmonic oscil-
1Luttinger parameters for silicon are γ1 = 4.29, γ2 = 0.34, γ3 = 1.45 and κ =-0.42 [51].
2We have now introduced three different co-ordinate systems. To clarify:

· Lower case italic (x,y,z ) are directed along the primary crystal axes [1,0,0], [0,1,0] and [0,0,1] respec-
tively. These are not mentioned again, and are only used in the model.
· It is more convenient to discuss a co-ordinate system that is aligned with the device lithography. Lower
case non-italic (x,y,z) are aligned with [1,1,0], [1,1̄,0] and [0,0,1] respectively as shown in the SEM of
Figure 4.8.
· Finally, as a mathematical convenience we refer to the co-ordinates oriented along the principal axes
of a 3D harmonic oscillator. The harmonic oscillator axes are referred to as capitalised italic and prime
(X ′, Y ′, Z ′)
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lator (See section A.2.3 for more details regarding Θ,Φ, and Ψ).

4.8.2 Investigations into the 3D Luttinger g-tensor properties

In section 4.3.1 of the literature review we introduced the main mechanisms that can

influence the g-tensor in semiconductor quantum dots. The experimental results in

sector 4.7 have suggested that it is the orbital confinement that has the main effect on

the g-tensor. This conclusion is supported by the observation that the g-tensor can be

electrically tuned, and electrically oriented.

In this section we present the results of a theoretical study of the hole g-tensor properties

in silicon. We study the 3D Luttinger model with an anisotropic harmonic confinement

described in Equations 4.23 and 4.24. For this study we have numerically simulated the

g-factor anisotropy for certain combinations of parameters (ωX′ , ωY ′ , ωZ′) and (Ψ,Θ,Φ).

In each case the relevant parameters are clearly indicated in the Figure insets or Table

columns.

The main results of this section are concisely summarized in section 4.8.3.

1 - Orbital Contributions

The theoretical model of Equations 4.23 and 4.24 predicts that orbital corrections play

a significant role in determining the magnitude of the g-factor. In Figure 4.12 we have

present the calculated g-factor as a function of magnetic field orientation (φ). The

broken black line shows the calculated g-factor anisotropy when orbital contributions

have been ignored1. This gives the g-factor anisotropy resulting purely from the spin

effects. The solid red line shows the g-factor anisotropy when orbital contributions have

been included. We show that when orbital corrections are ignored the calculated g-factor

decreases by a factor of approximately two. This shows that both the pure spin and the

orbital contributions are comparable in magnitude, and we cannot ignore either.

This result is particularly important when considering that the maximum g-factor ob-

served experimentally was 4. If we only consider pure spin contribution the maximum
1The orbital corrections are included in the Hamiltonian through the long momentum π = p − eA

in Equation 4.23. Orbital corrections are removed from the model by setting π = p.
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Figure 4.12: Effects of orbital contributions on the hole g-tensor: The graph shows the calculated
effective g-factor as a function of magnetic field orientation (φ). Inset (i) shows a schematic of the sample
orientation with respect to the crystal axes x and z. The upper axis of the graph indicates the orientation
of the field with respect to the crystal axes for a given φ. Inset (ii) shows a schematic of the quantum dot
shape for the confinement defined by (ωX′ , ω

′
Y , ω

′
Z) = (1,3,10). The principal axes of the confinement

(X ′, Y ′, Z ′) are aligned with the sample axes (x,y,z). The broken black line shows the calculated g-factor
when orbital contributions are ignored (π = p), and the solid red line shows the calculated g-factor
when orbital contributions are included (π = p− eA) in the model.

g-factor possible is the bulk value of |6κ| = 2.52. Therefore this shows that orbital cor-

rections must be included to obtain the experimentally observed g-factor magnitudes.

It is also important to note that the phase (angle φ of the maxima and minima) of the

g-factor anisotropy is the same for both the pure spin and orbital contributions. This is

important since it means the pure spin and orbital terms add together in phase, rather

than competing in some random way, which would complicate the analysis1. For the

following simulations we always include the orbital contributions.

2 - Confinement Orientation

The theoretical model of Equations 4.23 and 4.24 predicts that the orientation of the

g-tensor is defined by the orientation of the confinement. In Figure 4.13 we show the

calculated g-factor anisotropy for two different confinement orientations. The broken

black line is the g-factor for the confinement profile indicated in inset (i), where the

(X ′, Y ′, Z ′) axes of the harmonic confinement have been chosen to align with the (x,y,z)

axes of the device lithography. The extrema of the g-factor correspond to the orientation
1We have confirmed this is the case for all orientations of the confinement.
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of the principal axes of the confinement. We have identified the g-factor maxima as g∗Z′(i)

with a solid black circle and the minima as g∗X′(i) with an open black circle in Figure

4.131.

The dashed red line in Figure 4.13 shows the g-factor anisotropy calculated for confine-

ment profile shown in inset (ii). Figure 4.13 demonstrates that if the confinement profile

is rotated the g-tensor principle axes are similarly rotated. Finally, we note that the

two curves (red and black) have different amplitudes. This is due to the small effect

of the crystal orientation with respect to the confinement axes. The effects of crystal

orientation are discussed in part 4 of this section.
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Figure 4.13: Effects of confinement orientation on the hole g-tensor: The graph shows the
calculated g-factor as a function of magnetic field orientation, for a rotation around the x-z plane. The
inset in the graph indicates the relative sample and crystal axes. The broken black line shows the g-
factor anisotropy calculated for the confinement indicated in inset (i). For inset (i) the principal axes of
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calculated for the confinement indicated in inset (ii). For inset (ii) the principal axes of confinement
have been rotated by Φ = 45o in the x-z plane. The extrema of the g-factors occur along the principal
axes of confinement in all cases. For both confinement profiles (i) and (ii) the values of (ωX′ , ω

′
Y , ω

′
Z)

are (1,3,10).

The alignment of the principal g-factors with the principal confinement axes is clearly

demonstrated by comparing the calculated g-factor anisotropy for two different confine-

ment orientations. In We demonstrate that the dashed red line has maxima labeled
1We have not shown rotations into the y-axis since the behavior is qualitatively similar. An extrema

occurs in the g-factor anisotropy along the Y ′ principal axis and the g-factor at the Y ′ extrema can be
labeled g∗Y ′ .
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g∗Z′(ii) occurring along the rotated Z ′ axes, and minima labeled g∗X′(ii) occurring along

the rotated X ′ axes.

3 - Confinement anisotropy

We now discus the predicted relationship between the g-tensor anisotropy (g1, g2, g3) and

the confinement anisotropy (ωX′ , ωY ′ , ωZ′). First we highlight that the theoretical model

with harmonic oscillator confinement is scale invariant. This scale invariance occurs since

we are considering only the quadratic Hamiltonian and the linear response in magnetic

field. Due to the scale invariance only the ratio of the frequencies effects the g-factor.

In Figure 4.14 we show the calculated g-factor anisotropy for different confinement pro-

files. The black dashed line in Figure 4.14 is for (ωX′ , ωY ′ , ωZ′) = (0.1,0.3,1), while the

solid red line is for (ωX′ , ωY ′ , ωZ′) = (1,3,10). In each of these cases the ratios of ωX′/ωY ′

and ωZ′/ωY ′ is the same and the model therefore predicts identical g-factors. The broken

blue and green lines show the calculated g-factors for two different confinement profiles.

Figure 4.14 serves two main points; (1) to highlight the scale invariance and (2) to

generally show that (ωX′ , ωY ′ , ωZ′) have a large impact on the g-tensor.
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Figure 4.14: Effects of orbital confinement on the hole g-tensor: The graph shows the g-factor
anisotropy for four distinct confinement profiles. Inset (i) shows the relative orientation of the sample
and crystal. Inset (ii) schematically indicates the quantum dot shape for the three confinement profiles
(respective colour to the graph caption). In each case the principal axes of confinement (X ′, Y ′, Z ′) are
aligned with the sample axes (x,y,z), and therefore the principle g-factors are aligned with (x,y,z).

We now consider a more systematic approach to demonstrate the effects of the confine-
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4.8. Theoretical model for hole g-factor anisotropy

ment profile (ωX′ , ωY ′ , ωZ′). Due to the scale invariance only the ratio of the frequencies

effects the g-factor. This allows us to consider the effect of confinement with respect to

two parameters, ωX′/ωY ′ and ωZ′/ωY ′ . Conveniently these two parameters simply define

the anisotropy of the confinement profile. In Table 4.2(a) we show the calculated prin-

cipal g-factors for a range of specific confinement profiles. We consider three intuitive

cases: (1) the symmetric 2D disk-like case, where there is strong confinement along one

axis and isotropic confinement in the other two axes; (2) the asymmetric 2D disk-like

case, where there is strong confinement in one axis, and anisotropic confinement in the

other two axes; and (3) the 1D needle-like case, where there is strong confinement in

two axes, and weak confinement along the remaining axis. The specific (ωX , ωY ′ , ωZ′)

that represents each of these cases is shown in brackets in Table 4.2, with bold text to

highlight the distinct difference between the similar confinement situations.

The results presented in Table 4.2(a) demonstrate the predicted trends of the g-factor

anisotropy based on the confinement anisotropy. For the 2D circular disk-like case the

model predicts the largest g-factor is oriented along the axis of strongest confinement

(indicated by bold text). In the case of the elliptic disk-like confinement the largest g-

factor is still oriented along the direction of strongest confinement, and the second largest

g-factor is oriented along the axis of second strongest confinement (indicated with the

bold text). Finally, for needle-like confinement we find that the smallest g-factor is

oriented along the axis of weakest confinement (see the non-bold text). Analysis of

Table 4.2(a) allows insight into how the confinement anisotropy and g-factor anisotropy

are linked. The model demonstrates an intuitive trend between the magnitudes of the

g-factors and the confinement anisotropy. This general trend is highlighted by the bold

text in Table 4.2(a).

4 - Crystal Anisotropy

The orientation of the confinement profile with respect to the crystal symmetry plays a

role in determining the magnitude of the g-factors (g∗X′ , g∗Y ′ , gZ′). A simple example of

this can be observed in the extrema points of Figure 4.13. The confinement profile in

Figure 4.13 (i) and (ii) have identical confinement parameters with ωX′ = 1, ωY ′ = 3 and

ωZ′ = 10. However, the principal axes have been rotated by π/4 around Y ′ for profile
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Situation ωX′ ωY ′ ωZ′ gX′ gY ′ gZ′

(a) - Confinement aligned with x, y, z axes.

Circular disk 1 1 5 0.22 0.22 4.8
Circular disk 1 5 1 0.55 3.3 0.97
Circular disk 5 1 1 3.3 0.55 0.97

Elliptic disk 1 3 5 1.3 2.6 2.7
Elliptic disk 3 1 5 2.6 1.3 2.7

1D needle 10 10 1 3.3 3.3 1.1
1D needle 10 1 10 3.0 1.1 2.1
1D needle 1 10 10 1.1 3.0 2.1

(b) - Arbitrary confinement orientation.

Circular disk 1 1 5 0.4 0.2 3.4
Circular disk 1 5 1 0.8 3.3 0.8
Circular disk 5 1 1 3.4 0.1 0.3

Elliptic disk 1 3 5 1.9 2.2 3.1
Elliptic disk 3 1 5 1.4 0.7 3.3

1D needle 10 10 1 2.3 2.1 1.8
1D needle 10 1 10 2.5 1.1 2.5
1D needle 1 10 10 1.9 2.3 2.5

Table 4.2: g-Tensor anisotropy for different confinement profiles: (a) Shows the calculated g-
tensor anisotropy for several intuitive confinement profiles. In (a) the g-factors are calculated when the
confinement is aligned with the (x,y,z) sample axes. This is a special orientation since x = [110], y =
[11̄0], and z = [001], which gives rise to the symmetry in the magnitude of the principal g-factors along
the x and y axes. Bold text is included to indicate the trends within the similar confinement profiles.
(b) Shows the calculated g-tensor anisotropy for the same confinement anisotropy as (a), except now
the confinement is arbitrarily aligned with respect to the crystal axes. For this specific case we took the
confinement (Ψ,Θ,Φ) = (0, 45o,−430), which corresponds to the experimental alignment when VG4 =
-0.9V. However, the choice of angle is arbitrary for the purposes of this table. The main result is that
the general trend of the principal g-factors remains the same as in (a) (shown in bold), however the
values of each g-factor are changed due to the new alignment with respect to the crystal.

(ii). We note that rotating the confinement axes does not simply result in a phase shift

of the calculated g-factor anisotropy. This can be seen by comparing g∗Z′ and g∗X′ for two

confinement orientations of (i) and (ii). For the two rotated confinement orientations

g∗Z′(i) 6= g∗Z′(ii) and g∗X′(i) 6= g∗X′(ii). This demonstrates that the calculated g-factors are
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influenced by the silicon cubic crystal anisotropy.

In Table 4.2(a) we have considered the g-tensor anisotropy for various confinement

profiles. However, in each case of Table 4.2(a) the confinement is oriented such that

X ′ = [110], Y ′ = [11̄0] and Z ′ = [001], which is a special orientation1. If we consider the

g-tensor values for the circular disk-like case, we see that the magnitude of the largest

g-factor is different (ωX′ , ωY ′ , ωZ′) = (1,1,5) and (1,5,1). This is due to the effects of the

crystal orientation. In addition, we can notice that the values of gX′ and gY ′ are swapped

between (1,5,1) and (5,1,1). This is due to the degeneracy of the [110] and [11̄0] crystal

orientations for bulk silicon.

In Table 4.2(b) we show the g-factor anisotropy for the circular and elliptic disk-like case.

However the confinement is now arbitrarily orientated with respect to the crystal axes

(see caption). We emphasise that the symmetry between the g-tensor components that

was present in Table 4.2(a) is lost now that the confinement is not aligned with a special

crystal axes. In addition, for the arbitrary confinement orientation the value of g∗Z′ is

dependent on the values of ωX′ and ωz′ . Despite these effects, the general trend of the

g-factor magnitudes remains the same, as indicated by the bold text. The conclusion is

that the confinement profile (ωX′/ωY ′ , ωZ′/ωY ′) defines the g-tensor anisotropy profile,

and the crystal orientation influences the magnitudes of the relative g-factors.

4.8.3 Properties of the theoretical g-tensor

Based on the studies in section 4.8.2 we have four major conclusions regarding the

calculated g-tensor for holes in silicon quantum dots:

(1) - Orbital contributions are significant and must be included in the model to obtain

g-factors consistent with the experiment.

(2) - The orientation of the g-tensor is defined by the orientation of the confinement,

defined as (Ψ,Θ,Φ).

(3) - The g-tensor anisotropy (gX′ , gY ′ , gZ′) is defined by the confinement anisotropy (ωX′ ,

ωY ′ , ωZ′). In addition, the confinement profile is scale invariant and can be described by
1Since the crystal axes [110] and [11̄0] are degenerate in the 3D Luttinger model.
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two parameters ωX′/ωY ′ , and ωZ′/ωY ′ .

(4) - The g-tensor anisotropy (gX′ , gY ′ , gZ′) is moderately influenced by the orientation

of the confinement with respect to the silicon crystal axes.

Here we briefly summarize the consequences of these four conclusions. The most signifi-

cant consequence is the ability to reduce the number of free parameters in the model down

to just two free parameters. The theoretical model initially contains six free parameters,

which are (Ψ,Θ,Φ) and (ωX′ , ωY ′ , ωZ′). The parameters (Ψ,Θ,Φ) define the orientation

of the anisotropic harmonic oscillator with respect to the crystal axes1. However, the

orientation of the harmonic oscillator can be determined based on the orientation of the

experimentally observed g-tensor. Therefore, in the case of our experiments we can fix

the three angles2 as (Ψ,Θ,Φ) = (0, 45o, φ(VG4)), where φ(VG4) is the VG4 dependent φ

defined in Equation 4.22 and 4.21. Further, since the 3D Luttinger model is scale invari-

ant we can reduce the three remaining free parameters (ωX′ , ωY ′ , ωZ′), down to just two

(ωX′/ωY ′) and (ωZ′/ωY ′). Reducing the model to just two free parameters is valuable

for fitting the model to the experimental results. In addition, we note that the two free

parameters define the relative confinement anisotropy.

4.8.4 Comparison of experimental results and the theoretical

model

In the final section of this theoretical study, we compare the observed g-tensor anisotropy

with the theoretically calculated g-tensor anisotropy. We have shown that it is possible

to extract the confinement orientation based on the experimental g-tensor orientation3.

The aim of this section is to determine if it is possible to extract the quantitative quantum

dot confinement anisotropy (ωX′/ωY ′ , ωZ′/ωY ′) from the experimental g-tensor data.

In Figure 4.15 we show the theoretical predictions for the principal g-factors (g∗X′ , g∗Y ′ , g∗Z′)
1See section 4.8 for the full details.
2We can set Θ = 45o because the y-axis of the sample is aligned with the [1,1̄,0] crystal axes. However

in general Θ = θ(VG4) + 45o, where θ(VG4) is the VG4 dependent in-plane angle. We have found that
θ(VG4) = 0 for both VG4=-0.7V and -0.9V, hence we set Θ = 45o. Note that Θ= 0 corresponds to the
crystal [100] axes, while θ = 0 corresponds to the sample y-axis [11̄0].

3See section 4.8.2 for full details.
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as a function of the two free parameters (ωX′/ωY ′) and (ωZ′/ωY ′). Figure 4.15(a)-(c)

shows the predictions for the confinement orientation when VG4=-0.7V where (Ψ,Θ,Φ) =

(0, 45o, -70), and Figure 4.15(d)-(f) shows the predictions for the confinement orientation

when VG4=-0.9V where (Ψ,Θ,Φ) = (0, 45o, -43). The contour lines in each panel indicate

regions of the theoretical model that correspond to the experimentally observed principal

g-factors (see caption of Figure 4.15 for experimental values and uncertainty).

We begin by discussing the general trends that can be observed in Figure 4.15. Figure

4.15 provides a visual demonstration of how the confinement anisotropy (ωX′/ωY ′ and

ωZ′/ωY ′) influences the magnitude of the g-factors (g∗X′ , g∗Y ′ , g∗Z′). We highlight three

general results based on these simulations. (1) The model predicts that the hole g-

factor in a silicon quantum dot can take any value between 0 and 4. This is consistent

with the experimental results where we find the g-factor can be tuned over a range of 0 to

4. (2) The model predicts that the relative magnitudes of the g-factors are particularly

sensitive to the confinement anisotropy1. When one confinement axis is much stronger

than the others, the g-factor is largest along the axis of strongest confinement. This is

clear by considering the red regions of the color scale with respect to the axis ωX′/ωY ′

and ωZ′/ωY ′ . (3) In the regions where the confinement is comparable along two or more

axes, the g-factors are extremely sensitive to small changes in the confinement profile.

This can be observed in the regions around the contour lines, where the color scale

changes rapidly.

Finally, we discuss the ability to quantitatively predict the confinement anisotropy

(ωX , ωY ′ , ωZ′) using the experimental g-factors. Contour lines are included in Figure 4.15

to indicate the regions in the ωX′/ωY ′ and ωZ′/ωY ′ parameter space where the calculated

g-factors are similar to the respective observed g-factor. In order to quantitatively fit the

model to the experiment, it is required to find a unique ωX′/ωY ′ and ωZ′/ωY ′ that can

reproduce the experimental results. Black rectangles in Figure 4.15 indicate the regions

in the parameter space that best reproduce the experimental results2. These regions are

defined in the caption of Figure 4.15. A white circle is included in Figure 4.15 to indicate
1This is discussed in more detail in section 4.8.2.
2The black rectangles indicate the regions where at least two of the three experimental g-factors can

simultaneously obtain for a single value of (ωX′/ωY ′ , ωZ′/ωY ′ ).
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Figure 4.15: Fitting g-factor anisotropy to the Luttinger harmonic oscillator model: (a-c)
Shows the calculated values of the principal g-factors g∗X′ (a), g

∗
Y ′ (b), g

∗
Z′ (c) for VG4 = -0.7V. (d-

f) Shows the calculated values of the principal g-factors for VG4 = -0.9V. Contour lines indicate the
regions of each figure where the theoretical value is close to the experimental value. Black rectangles
indicate the region where a reasonable fit to at least 2 experimental g-factors can be obtained. For
VG4 = -0.7V the black rectangle is defined by the region (ωZ′/ωY ′ , ωX′/ωY ′) = ([0.85-1.35], [0.55-
0.75]). For VG4 = -0.9V the black rectangle is defined by the region (ωZ′/ωY ′ , ωX′/ωY ′) = ([1.15-1.75],
[0.35-0.50]). A white circle is placed at the best fit within the black rectangle, see Table 4.3(a). The
experimental values of (g∗X′ , g

∗
Y ′ , g

∗
Z′) for VG4 = -0.9V are (1.6, 2.1, 3.9)±(0.2, 0.2, 0.2) and for VG4 =

-0.7V are (0.4, 1.2, 1.7)±(0.4,0.2,0.2)).
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the unique best fit of the parameters for each VG4 respectively.

(a) - Compare experiment and theory
Situation ωX′/ωY ′ ωZ′/ωY ′ gX′ gY ′ gZ′

Experiment - VG4 = −0.9V NA NA 1.6± 0.2 2.1± 0.2 3.9± 0.2
Model Fit - VG4 = −0.9V
(1.4, 4.0, 4.6) 0.35 1.15 1.8 2.0 2.8

Experiment - VG4 = −0.7V NA NA 0.4± 0.4 1.2± 0.3 1.7± 0.2
Model Fit - VG4 = −0.7V
(3.0, 4.0, 4.6) 0.75 1.15 1.0 1.2 3.3

Table 4.3: Table summarizing main results of Figure 4.15: (a) Compares the experimental
principal g-factors with the best fit regions from the theoretical model. The column ωX′/ωY ′ and
ωZ′/ωY ′ indicates the location of the white circle in Figure 4.15. This is the location of the best fit of
the calculated g-tensor to the experimental data. The values for g∗X′ , g

∗
Y ′ , and g

∗
Z′ are the values at the

white circle in Figure 4.15.

In Table 4.3(a) we have indicated the best fit of the model to the experimental g-factor

anisotropy. The values of (gX′ , gY ′ , gZ′) presented in Table 4.3(a) are the principal g-

factors at the position indicated by the white circles in Figure 4.15. Based on best fit we

find the confinement1 for VG4 = -0.9V is (ωX′ , ωY ′ , ωZ′) = (1.4, 4.0, 4.6), while for VG4

= -0.7V the confinement is (ωX′ , ωY ′ , ωZ′) = (3.0, 4.0, 4.6).

The best-fit confinement profile is consistent with what was deduced from the experi-

mental trends. First we note that in both cases the confinement is not disk -like, but

rather has similar confinement in all dimensions. Further, the only difference between

the best-fit confinement profiles is the value of the ωX′ confinement. These results are

consistent with the predictions from the experimental results and the analysis of orien-

tation dependence. The difference between the confinement profile for VG4 = -0.9V and

VG4 = -0.7V is a enhancement of the x-axis confinement (ωX′), and a rotation around

of φ by -25o.

There is consistency between the theoretical and experimental results. Thanks to this

consistency, the theoretical model provides reliable insight into the expected effects that

various mechanisms (such as crystal orientation, confinement strength, and confinement
1Here were present the confinement anisotropy with respect to the values (ωX′ , ωY ′ , ωZ′). Since the

confinement is spatially invariant (section 4.8.2) only the ratio of these values are relevant (ωX′/ωY ′

and ωZ′/ωY ′). However, for the purpose of discussion we find it more intuitive to present representative
values of (ωX′ , ωY ′ , ωZ′).
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orientation) have on the g-tensor. We now briefly discuss the potential directions for

future modeling and theoretical research. Firstly, we note that the uncertainty in the

parameters ωX′/ωY ′ and ωZ′/ωY ′ is quite large (given by the black rectangles in Figure

4.15). This is a consequence of the fact that the confinement is comparable in all three

dimensions. We find that the g-factor varies quite widely within the best fit regions,

and therefore the calculated g-factors are extremely sensitive to fine changes in the

confinement profile1. Therefore, care should be taken to select a realistic confinement

profile2. This could be achieved by undertaking 3D electrostatic modeling of the device,

to determine a realistic shape of the quantum dot for the given gate lithography and

applied voltages.

The most significant discrepancy between the calculated and experimental g-tensor is in

the value of g∗Z′ . We note that for both VG4 = -0.9V and VG4 = -0.7V the calculated

value of g∗Z′ is well outside the uncertainty range of the experimental data. We have

seen that additional effects, such as crystal orientation can lead to a change in the g-

factor magnitudes. Hence, this discrepancy suggests that additional mechanisms may be

required in order for the model to quantitatively reproduce the experimental g-tensor.

One particular mechanism that is interesting for future study is the effect of strain.

Strain has not been included in the Luttinger model that we have studied. It is known

that strain can introduce shifts in the wavefunction and g-tensor of electrons in silicon

quantum dots [147–151]. In silicon MOS quantum dots strain can be introduced due

to intrinsic stress caused by different thermal properties of the gate and the substrate

material3. It would be interesting to include strain into the 3D Luttinger model, in-order

to determine the magnitude of the effect of strain on the g-tensor.

In the experimental results of section 4.7 we showed that the g-tensor orientation and

magnitude could be manipulated with electric fields, and we hypothesized this was due
1This is clear when considering the regions in Figure 4.15 close to ωX′/ωY ′ = ωZ′/ωY ′ = 1. In these

regions the g-factor changes rapidly since the confinement is finely balanced
2The 3D anisotropic harmonic confinement was selected for this study, since it is intuitive and

reasonable as a first assumption. It is possible to easily tune the parameters (ωX′ , ωY ′ , ωZ′ ,Ψ,Θ,Φ)
and systematically observe the effects.

3In this case the gate is Al and the substrate is Si. Al has a linear thermal expansion coefficient α
= 23.1×10−6 K−1 while for Si α = 2.56×10−6 K−1. This is an order of magnitude difference, so large
strain is possible [147].
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to the confinement profile rotating and becoming comparable in all three dimensions. In

section 4.8.1 we introduced a 3D Luttinger model with a set of intuitive parameters for

investigation. In this final section we have shown that the model confirms the hypothesis

of the experimental results. By systematically studying the free parameters of the model

we have learned that the g-tensor orientation is defined by the confinement orientation.

Similarly we determine that the confinement anisotropy and crystal orientations play a

role in determining the g-factor magnitudes. Interestingly the model and experiment

suggest that the confinement is comparable in all three dimensions, which is surprising

for MOS-based quantum dots. Finally, we have concluded this section by indicating

directions for future modeling and theoretical research.

4.9 Conclusion and outlook of Chapter Four

Studies of the Landé g-factor allow insight into the spin-properties of a system. In

addition, the ability to modulate the g-factor leads to potential applications, particularly

for spin-qubits. This chapter focuses on characterising the hole g-tensor modulation in

silicon MOS quantum dots. To this end, we have study one single hole confined by a

quantum dot device in a known orbital state.

The main result of this Chapter is the full 3D characterisation of the anisotropic hole

g-tensor. These experimental results show that the hole g-tensor can be strongly tuned

using electric fields. The experimental and theoretical results suggest that the quantum

dot confinement is best described as 3 dimensional, rather than 2 dimensional (disk -like)

as may have be expected for MOS quantum dots. This is a key result since it is common

to model MOS quantum dots in the 2D limit. The 3D confinement will give distinctly

different spin and orbital physics, particularly since the 3D confinement will effect the

Heavy-Hole Light hole mixing.

The effective hole g-factor can be tuned from 3.9±0.2 to 0.4±0.4 over the range of

voltages and magnetic orientations. These results show that hole spins in silicon MOS

quantum dots have high potential for use in spin-based electronics. The magnitude of

the electric g-factor modulation (∆g/∆V ) is found to be comparable to spin systems
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that have been successfully used as fast all-electric spin-qubits [21, 132]. Future work

would be to study all-electric spin manipulation of holes in a known orbital state. It

would be particularly interesting to compare experimental Rabi frequencies with the

Rabi frequency calculated from g-factor modulation calculations, similarly to Crippa

et al. [21]. In addition, it would be interesting use spin manipulation techniques to

investigate the time-domain spin properties (T∗2 and fRabi) of holes in distinctly different

orbital shells [152].

In this chapter we have studied the g-tensor properties calculated by a 3D Luttinger

model. The model includes the orbital confinement and crystal anisotropy. We have

modeled the quantum dot confinement with an idealized 3D anisotropic harmonic oscil-

lator, which provides 6 intuitive free parameters for investigation. We use this model

to investigate the leading mechanisms that influence the hole g-tensor. We have shown

that the confinement orientation and anisotropy is the primary factor that determines

the g-tensor orientation and anisotropy of a hole quantum dot in silicon. This is con-

sistent with other quantum dot systems where the spin-orbit coupling is strong [5, 21,

141, 142]. Further, these conclusions are consistent with the experimentally observed

hole g-tensor properties presented in section 4.7. In addition, we have used the model to

show that the crystal anisotropy has an influence on the magnitude of the hole g-factor.

Finally, we comment on the prospects for future work on the theoretical model. We

show that the g-tensor is extremely sensitive to small changes in (ωX′ , ωY ′ , ωZ′) when

the confinement strength is comparable in all 3 dimensions. Since the device under study

has comparable confinement in all three dimensions, we find it is difficult to determine

an exact best fit to (ωX′ , ωY ′ , ωZ′). In general, this is to be expected since we include

an intuitive but simplified confinement profile. For future work we propose including a

more realistic confinement profile based on an electrostatic model of the MOS device.

Electrostatic modeling has proven valuable in uncovering underlying spin physics of

electrons in silicon quantum dots [153]. We expect that by including a more realistic

confinement profile for the three dimensional confinement it can be possible to achieve a

full quantitative fit to the experimental g-factor. With a full electrostatic model the g-

factor anisotropy can be used to determine the spatial profile of the hole wavefunction. In
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addition, we suggest future work should include the effects of strain in the model. It will

be interesting to predict the extent that strain can perturb the hole wavefunction, and

modify the g-tensor. This would provide valuable information regarding the fundamental

physics of hole states, and also for determining the suitability of hole spins for spin qubit

applications.
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Chapter 5

Conclusions

The feeling is not so much that this is an ending

but rather, this is just another starting point.

5.1 Summary of results

In this section we briefly summarize the principal findings of this thesis. There were

three major aims which we set-out to address in this thesis:

(1) - Determine if it is possible to isolate a single hole in a silicon MOS quantum dot.

(2) - Characterise the orbital shell structure of holes in a silicon MOS quantum dot.

(3) - Study the spin physics of a single hole in a silicon MOS quantum dot.

In Chapter 2 we present measurements of a planar p-type silicon MOS quantum dot de-

vice with an adjacent charge sensor. We confirm the device is capable of operating down

to the last hole in both the single quantum dot and double quantum dot configurations.

This ability to isolate a single hole in a silicon quantum dot is significant for two reasons.

The first is that this allows spectroscopy measurements of silicon based holes in a known

and reproducible orbital state. The second is that the most successful spin qubit devices

have been operated in the regime of the last few charges [17, 19, 30, 55, 154].

In Chapter 3 we present spectroscopic measurements of a planar p-type silicon MOS

quantum dot device in a known and reproducible charge configuration. We extract the
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confinement energy and the orbital energy levels using excited state and magnetic spec-

troscopy measurements. We find that the quantum dot shell structure is consistent with

the Fock-Darwin spectrum expected for 2D artificial atoms, with hole spin filling obeying

Hunds rules. Interestingly, we find that the hole-hole Coulomb interaction is quite large,

and can significantly influence the orbital shell structure, even in a dot containing just

two holes. This provides motivation for using singly occupied hole quantum dots for spin

qubit applications.

In Chapter 4 we characterise the anisotropic Landé g-tensor of a single hole in a known

orbital state. We demonstrate strong modulation of the g-tensor by using electric fields

to control the confinement anisotropy and orientation. This shows that hole spins are

strongly influenced by the orbital confinement due to strong spin-orbit coupling. Since we

find that the g-tensor is linked to the confinement, our results suggest that the quantum

dot confinement can be tuned to be three dimensional. This is a surprising result since it

has been typical to consider MOS based quantum dots as 2D disk-like structures [30]. We

support the experimental findings by studying a 3D Luttinger model with an intuitive

confinement profile. Finally, we discus the potential for future theoretical work since the

effects of strain have not yet been included in the model.

5.2 Outlook

In the final section we present an outlook on future research that is motivated by the

results presented in this thesis. Where appropriate we comment on what would be

involved, what has already began and the feasibility.

Improved charge sensing for hole quantum dots

In this thesis we presented measurements of a hole quantum dot with an adjacent p-type

charge sensor. Typically in experiments using p-type charge sensors we must employ

integration times of 100-300ms. This has prevented access to single shot measurements1,

which are standard for n-type charge sensors [6, 30]. Single shot measurements would
1Single shot measurements require acquisition times shorter than the tunneling time of an electron.

Using averaging we demonstrated tunnel times on the order of several mili-seconds (see section 2.7.2).
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allow access to time domain measurements of the hole spin properties. The challenge is

primarily due to the reduced mobility of the holes in silicon, which limits the maximum

transconductance of the p-type charge sensor.

As an outlook for future work, a potential solution is to use ambipolar devices. Devices

that include a p-type quantum dot, and an adjacent n-type charge sensor could allow

the advantages of highly sensitive and successful single electron transistor charge sensing

for studies of a hole quantum dot. This would not necessarily require any changes in

the device lithography. Rather, the only design charge would be to invert the polar-

ity of the charge sensor ohmic contacts, so that they are both n-type. Prospects for

ambipolar devices are the promising, and there have already been preliminary work by

other research groups [114] towards this goal. We have began tests of ambipolar devices

in collaboration with F.E. Hudson and I.K. Jin. In Figure 5.1 we show a schematic of

a potential ambipolar device design, which allows a n-type charge sensor adjacent to a

p-type quantum dot.

Investigation of T1 and T∗2 in the single hole regime

A major motivation for future work is to characterise the hole spin relaxation (T1) and

decoherence time (T∗2) in the single hole regime. Previous research by Maurand et al.

[20] has found T∗2=60ns for holes in silicon nanowire quantum dots. These results are a

stunning breakthrough for p-type CMOS technology. However, the measurements were

performed in the few hole regime, so the orbital state was not known. It has been

shown that the specific configuration of the orbital levels can cause T∗2 to vary over

several orders of magnitude [75]. Further, in this thesis we have shown that spin-orbit

interaction and hole-hole interactions can complicate the orbital structure when several

holes occupy a quantum dot. It would therefore be valuable to use the devices in this

thesis to characterise T1 and T∗2 in a known and reproducible charge and orbital state.

We now briefly discuss the feasibility of performing T1 and T∗2 characterisation. Mea-

surements of spin coherence and relaxation typically require the application of MHz to

GHz electrical signals. The hardware and software required to implement these high

frequency measurements was not available in my research group at the beginning of this

postgraduate program. During this PhD program I have worked with R. Li, F. Mar-
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T1	 T2	P1	 ID	 P3	
C1	

C2	

Hole	
Dot1	

Hole	
Dot2	

Hole	
Reservoir	1	

ST	 SLB	 SRB	

Ohmic1	
(p-type)	

Ohmic2	
(p-type)	
	

Ohmic3	
(n-type)	
	

Ohmic4	
(n-type)	
	

Electron	
Sensor	
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Figure 5.1: Schematic of ambipolar device design: The top region is a p-type (purple) double
quantum dot with two tunnel barriers (T1 and T2), two confinement gates (C1 and C2), two plunger
gates (P1 and P2), and inter-dot coupling control (ID). This design allows transport of holes through
the double quantum dot from Ohmic 1 to Ohmic 2. In addition if T2 is made fully depleting and the
Reservoir 2 is depleted, then the device acts as a single lead quantum dot. The bottom region (blue) is
the n-type charge sensor, where a single electron quantum dot can be formed between the barrier gates.
The sensor is offset with respect to the hole double dot to allow different capacitive coupling between
Dot 1 and Dot 2 with the sensor.

tins and I. Vorreiter to install and characterise high frequency measurement hardware1.

In addition, I have worked with I. Thorvaldson to develop the software environment

required for these measurements.

A significant technical achievement resulting from this PhD program has been the suc-

cessful implementation of a high frequency measurement ensemble in our groups labo-

ratory. To demonstrate operation we have implemented high frequency pulse sequences

to characterise tunnel rates up to 100MHz. In Figure 5.2(a) we present a characteri-

sation of the hole tunnel period, measured at different points (2,0) to (1,1) region of

the double dot charge stability. These tunnel rates are determined by observing the

averaged response of the charge sensor to microsecond duration pulses on the quantum

dot gates. We observe the tunnel time onto the G2 dot is much faster than the G4

dot, consistent with the respective distances between the each dot and the reservoir as
1This includes cryogenic high frequency coax on the dilution refrigerators, reflectrometry circuits,

and acquisition of arbitrary waveform generators IQ capable microwave sources.
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Figure 5.2: Characterising fast hole tunnel rates: (a) Shows a charge stability diagram of the
device studied in chapter 4. The device is tuned to the last hole regime. Grey diagonal stripes are the
non-interacting accidental background quantum dot transitions (Discussed in Appendix A.3.2). The
clear double dot charge transition can be observed in black. Measurement of the hole tunneling times
have been performed at different location in the stability diagram. The measured tunnel times are
shown in text, with the colour indicating the relative rate (red for slow, green for fast). (b) Shows a
schematic of the device, and provides an explanation for the trend in the tunnel rates. The time to load
the G4 dot, horizontal transition in (a) is much longer since the G4 dot is further from the reservoir.

shown schematically in Figure 5.2(b). Finally, the high frequency experimental set-up

has been used by other members of our research group to achieve EDSR of holes in a

different quantum dot device1. Since the EDSR measurements and fast pulse sequences

are typical techniques used to extract T∗2 and T1, this demonstrates that characterising

T1 and T∗2 is a realistic prospect for future work.

Investigation of hole spins in higher momentum orbital states

In this thesis we have performed a detailed study of the g-tensor of holes in the lowest

energy orbital state. Holes that occupy higher energy orbitals (such as p or d orbital) will

have larger angular momentum. This may give rise to exotic non-trivial spin-orbit phe-

nomenon [152]. The devices presented in this thesis are suitable for studies of the higher

orbital states, since it is possible to determine the exact charge and orbital state. Partic-

ularly it can be interesting to characterise the Landé g-factor and other spin properties

(such as T1 and T∗2) for the higher orbital states. Interpretation and understanding of the

higher orbital hole spin physics could be further theoretically investigated by extending

the 3D Luttinger model developed in section 4.8.
1Unpublished research of M. Rendell.
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Thank you for your time and consideration,

Scott Liles.
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"Here was the secret of happiness,

about which philosophers had disputed for so many ages,

at once discovered; happiness might now be bought for

a penny, and carried in the waistcoat-pocket; portable

ecstasies might be had corked up in a pint-bottle; and

peace of mind could be sent down by the mail"

Thomas De Quincey.
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Appendix A

Supporting experimental results for

Chapter 4

"I spent the day running full diagnostics on every system in the Hab. It was tedious,

but my survival depends on these machines, so it had to be done. I can’t just assume an

explosion did no long term damage"

The Martian, Andy Weir.

A.1 Appendix Introduction

In this Appendix we present results and analysis that supports the conclusions drawn

in Chapter 4. These supporting results are presented in the Appendix so that the main

conclusions of Chapter 4 can be clearly and concisely developed.

In section A.2 we present supporting details related to the device and the analysis. These

details are relevant since the device studied in Chapter 4 is a different device to the one

studied in Chapters 2 and 3. A key result of this section is the demonstration that the

lever arm is independent of VG4, which is important for the analysis of addition energies.

In addition, we present details of the fitting algorithms used in Chapter 4.

A fundamental aspect of the results presented in Chapter 4 is that the g-tensor has

been characterised for a single hole in a known orbital state. In section A.3 we present
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results demonstrating that the last charge has been reached. In addition, we have found

that a background structure can be observed in the single hole charge stability diagrams

presented in Chapter 4. In section A.3.2 we demonstrate that this structure results from

the presence of a secondary accidental quantum dot. We confirm that this accidental

quantum dot does not interact with the primary quantum dot, and discuss the likely

origin of the accidental quantum dots. This analysis provides details relevant for future

device design, which can aim to eliminate the source of accidental quantum dots.

One of the main assumptions of Chapter 4 is that VG4 controls the quantum dot confine-

ment profile. In section A.4.1 we show that the orbital shell structure is dependent on

VG4. Since the orbital structure is determined by the quantum dot confinement profile,

this section demonstrates that VG4 does control the quantum dot confinement profile.

Finally, in section A.5 we present the full data set taken during this experiment. This

data set is presented in two figures, and much of the data presented has not yet been

fully analyzed. This provides insight into the data-set of experimental results that is

available for future work, either by our research team, or by interested collaborators.

A.2 Experimental details

A.2.1 Experimental set-up and methods

All measurements in Chapter 4 were undertaken using a BlueFors XLD250 dilution re-

frigerator with a base temperature around 100mK. The system has a vector magnet

capable of producing 5T along one axis, and 1T along the other two axes. The charge

sensor is operated in the same way as described in section 2.6.3 of Chapter 2. During

standard measurements of the charge sensor we add a 1mV DC voltage to a 50µV AC

voltage at 77Hz and apply these signals to the source ohmic contact of the charge sen-

sor. Pulse bias sensing [38] of the quantum dot charge state is achieved by applying a

symmetric square pulse of amplitude 4mV at 177Hz to G2. The output signal of the

charge sensor drain ohmic-contact is filtered at 3kHz and amplified by a Basel current

pre-amplifier (Basel SP 0983).
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We simultaneously record three measurements, the AC sensor conductance, the DC sen-

sor conductance, and the charge sensor signal (transconductance). The AC charge sensor

conductance is measured with a lock-in at 77Hz, and is monitored so that a feedback

mechanism can keep the sensor at optimal sensitivity [40]. The DC charge sensor con-

ductance is monitored in order to perform tunnel rate independent measurements of

the quantum dot charge state (see section A.3.1). Finally, the charge sensor signal is a

measurement of the charge sensor transconductance and is measured by observing the

modulation of the DC current due to the square pulse applied to G2. This is measured

with a second lock-in operating at the frequency of the square pulse (177Hz). The charge

sensor signal is sensitive to the changes in the hole occupation of the quantum dot. See

Chapter 2 section 2.6.3 for further details of this charge sensing method.

A.2.2 Lever arm calibration

In Chapter 4 we compare the addition energies and g-factors measured for different VG4.

These measurements rely on using a known lever arm (α) to convert ∆VG2 into ∆E. We

assume that VG4 has the potential to shift the confinement profile of the quantum dot1.

Shifting the confinement profile could result in a change in the lever arm, which would

complicate the comparison of addition energies and g-factors measured at different VG4.

In this section we show that the lever arm is independent of VG4.

The lever arm is extracted by observing the thermal broadening of a charge transition

peak. Thermal broadening is produced by heating the mixing chamber stage of the

BlueFors XLD250 dilution refrigerator. In Figure A.1(a) we show a charge transition

peak measured when the mixing chamber temperature (TMC) was 28mK (blue) and

793mK (red). The charge transition peak shape is given by the derivative of the Fermi-

Dirac distribution,

Isignal =
αe

kBT

Ae
αe(VG2−V0)

kBT

1 + e
αe(V−V0)
kBT

(A.1)

where α is the lever arm, e is the electron charge, kB is the Boltzmann constant, V0 is the
1This assumption is confirmed in section A.4.1.
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G2 voltage at the peak center1, VG2 is the voltage applied to G2, A gives the amplitude

of the peak, and T is the temperature of the system given by T =
√
T 2
MC + T 2

H . Here the

temperature, T, is defined by the mixing chamber temperature (TMC), and the hole-bath

temperature (TH).
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Figure A.1: Lever Arm Calculation: (a) The first Coulomb blockade charge transition for VG4 =
-0.7V measured at two different temperatures of the BlueFors XLD250 mixing chamber temperature
TMC . The peak is broadened due to the change in temperature. Solid lines are the fit of Equation
A.2 to the data points, and dashed lines connect the measured points. (b) The fitting parameter c of
Equation A.2 is plotted as a function of the TMC . This is repeated for two different VG4 and shows c is
independent of VG4. Solid lines are the fit to Equation A.3 allowing the extraction of the lever arm α.
The dashed line shows asymptote of the fits, which intercepts TMC = 0. Error bars come from standard
deviation in fitting to charge transitions and variations in the temperature over the measurement

We extract the lever arm by fitting the Coulomb peaks to a simplified form of Equation

A.1,

Isignal =
Ae

(VG2−b)
c

c(1 + e
(VG2−b)

c )
(A.2)

c =
kB
αe
T

c =
kB
αe

√
T 2
MC + T 2

H (A.3)

In Figure A.1(b) we show the value of the fitting parameter c as a function of mixing

chamber temperature. Comparing the red and black data in Figure A.1(b) we show that
1Where the Fermi energy of the dot matches the Fermi energy of the reservoir.
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the lever arm is independent of VG4. Solid lines in Figure A.1(b) show the fitting of each

data set to Equation A.3. We extract the lever arm to be α0.9 = (0.167 ± 0.007)eV/V

and α0.7 = (0.166± 0.007)eV/V for VG4 = −0.9V and VG4 = −0.7V respectively. These

values are comparable to the previous lever arm of 0.174eV/V in Chapter 3 section 3.3,

which is reasonable since the devices have identical lithography.

Fitting gives the constant offset in temperature TH = 700±50mK. Previous measure-

ments of the hole and electron bath temperature on this BlueFors XLD250 system have

given results around 100mK. These previous tests we performed with no high frequency

coaxial lines connected. In this measurement two SMA coax lines were connected via

cold bias tees1. The bandwidth of the coax lines is around 10GHz, which could explain

the anomalously large TH for this measurement.

A.2.3 Rotating between co-ordinate systems

In Chapter 4 section 4.8 we introduce the principal confinement axes of the Harmonic

oscillator as X ′, Y ′ and Z ′. These coordinates are arbitrarily oriented with respect to

the crystal axes x = [1,0,0], y =[0,1,0] and z = [0,0,1]. One can transform between the

two co-ordinate systems by rotating the crystal axes (x,y,z ) around z by angle Φ, then

rotating around the new x-axis by angle Ψ, and finally rotating around the new y-axis

by angle Θ. Mathematically the transform from the crystal axes (x,y,z ) to the harmonic

oscillator axes (X, Y, Z) is achieved using the following equation,


X ′

Y ′

Z ′

 = Ry(−Φ) ·Rx(−Ψ) ·Rz(−Θ) ·


x

y

z

 (A.4)

1Bias-tee is on sample board connected to the BlueFors mixing chamber. Parameters are 330kΩ and
4.7nF.
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where Rx, Ry, and Rz are the rotation matrices defined as,

Rx(θ) =


1 0 0

0 cosθ −sinθ

0 sinθ cosθ

Ry =


cosθ 0 sinθ

0 1 0

−sinθ 0 cosθ

Rz =


cosθ −sinθ 0

sinθ cosθ 0

0 0 1

 (A.5)

A.2.4 Extracting the position of the Coulomb peaks

In this section we provide details for how the Coulomb peak center and amplitude is

extracted from large data sets. In Figure A.2(a) we show data for an example charge

transition. Here, the Coulomb peak maximum occurs at VG2 = -0.8096V. We can then

extract the addition energy by measuring the spacing between consecutive Coulomb

peaks. In Figure A.2(b) we show Eadd(1), measured for different in-plane magnetic

field magnitudes. The spacing between the first and second charge transitions has been

extracted by finding the maximum point of each Coulomb peak. We then extract the

g-factor from the slope dEadd/dB. In Figure A.2(b) the g-factor was found to be g∗ =

(2.72±0.24).
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Figure A.2: Fitting to Coulomb peaks and extracting g-factors: (a) An example of a Coulomb
peak measured with the charge sensor. Solid black line is a the result of fitting a second order polynomial
to 20 points centered at the maximum reading. (b) The first addition energy calculated by finding the
spacing between the maximum data point of the first and second Coulomb peaks. Solid black line is a
linear fit to the data, with the slope and intercept presented in the inset with standard deviation. (c)
Same as (b) except the addition energy is calculate by finding the spacing between the maximum points
of the parabolic fits. In all panels dots indicate measured data points and dashed lines connect all data
points.

For more accurate measurement of the Coulomb peak center and amplitude we fit a
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second order polynomial to a region of points around the peak maximum. An example

of this fitting is shown as the solid black line in Figure A.2(a), where 20 data points

around the peak maximum point were used for fitting. In this case the parabolic fit

gives the peak center as VG2 = -0.8098V , which is different to the peak maximum by

0.2mV. In Figure A.2(c) we show Eadd(1) extracted from the same data set as Figure

A.2(b), however the peak center is now found using a parabolic fit. When parabolic

fitting is used we extract the g-factor to be g∗ = (2.68±0.10). We find that the standard

deviation in the g-factor is reduced by half when using the parabolic fitting.

We have tested using different fitting functions and find that the standard deviation

is not changed whether we use a Gaussian, Lorentzian, or the derivative of the Fermi

Dirac distribution given in Equation A.1. Given this, we use a second order polynomial

to fit around the peak maximum for programming convenience. In summary, we have

demonstrated the method we use to extract coulomb peak amplitudes and centers, and

shown that this method allows for a reduction in the standard deviation of the g-factor

compared to simply finding the peak maximum.

A.2.5 Estimate of the dot size as a function of G4 voltage
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Figure A.3: Estimate of the dot size and orbital energy for different confinement potentials:
(a) Shows the addition energy, Eadd1 for four different VG4. These values are extracted from the
intercept of the linear fits in Figure 4.8(d). (b) The approximate radius of a 2D circular quantum dot
for the given charging energies, as in Equation A.6. (c) The single particle orbital energy of a dot given
the sizes calculated in (b).

In this section we provide rough estimates of how the dot size and orbital energies are

changed by VG4. In section 4.6 we showed that the first addition energy Eadd(1) varies as

VG4 is changed. This was used as evidence to suggest that VG4 is strongly influencing the
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confinement strength of the quantum dot. The energy required to add the second hole,

Eadd(1), can be related to the capacitance of the dot. We model the dot and plunger

gate (G2) as a circular parallel plate capacitor in order to estimate the dot radius using

the charging energy,

EC = Eadd =
C

e
=
εrε0πr

2

de
(A.6)

Taking the oxide thickness, d, to be 5.9nm and relative permitivity, εr, of silicon oxide to

be 3.9, we can calculate the dot radius, r, for the different charging energies. In Figure

A.3(a) we show the B=0 Eadd(1) extracted from the measurements in Figure 4.8(d).

Using Equation A.6 we estimate the corresponding dot radius, assuming the dot is a 2D

circular quantum dot. These estimates suggest the dot radius changes by approximately

3% over the range of VG4. We are also interested in an approximate calculation of the

orbital energy and the change in orbital energy. If we assume the dot is a 2D harmonic

potential we can estimate an orbital energy using the relation,

r =

√
4~
m∗ω

(A.7)

where ω describes the harmonic confinement strength (see Chapter 3 section 3.6). In

Figure A.3(c) we show the approximate orbital spacing for the estimated dot radius.

These estimates suggest that the orbital energy could be around 3meV, and changes

by around 5%. We acknowledge that 2D parallel plate and harmonic oscillator models

are not realistic models for this device, especially since the g-factor anisotropy results

in Chapter 4 section 4.7 suggest that VG4 rotates the dot confinement in the z-x plane,

and the confinement is comparable in all three spatial dimensions. However, the results

presented in Figure A.3(b)-(c) provide a general estimate of the dot size and orbital

spacing, which can be used rough guide when considering the physical properties of this

device.
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A.3 Confirmation of the charge occupation

A.3.1 Confirmation of the absolute hole occupation

In Chapter 4 all charge stability diagrams and Coulomb charge transitions are measured

using pulse bias charge sensing (see section A.2.1). This charge sensing technique is

sensitive to the tunnel rate between the quantum dot and the reservoir of holes. For

tunnel rates smaller than than the pulse frequency (177Hz in this experiment), visibility

of the charge transition is lost. This can be clearly seen in the Figure A.4(a), where at

VG2 = -0.6V the transitions lose visibility. This is due to the effect of G2, which acts

as both a plunger gate and a partial tunnel barrier. In this section we present charge

sensing measurements that are insensitive to the tunnel rate, allowing confirmation of

the absolute charge occupation of the device studied in Chapter 4.

Tunnel rate independent charge sensing is performed by monitoring the DC current

through the charge sensor. When monitoring the DC current the amplitude of the

square pulse is set to 0V and no sensor feedback is applied1. Figure A.4(b) shows the

DC sensor current monitored in the upper black dashed rectangle of A.4(a). The last

charge transition can be observed running parallel to the dashed white indicator line.

With these measurements we can observe many transitions in the region where VG2<-

0.9, however we observe no additional transitions when VG2>-0.82, confirming the device

has been depleted of all holes.

In Figure A.4(c) we present the DC charge sensor measurement of the region indicated

by the bottom right dashed rectangle in Figure A.4(a). In this region the tunneling rate

onto the dot has dropped such that charge transitions are no longer observable in pulse

bias charge sensing. However, this region can be identified as the expected location for

the (1,0) to (1,1) crossing, since the (0,1) to (1,0) inter-dot transition is visible as a

white diagonal line2. Since the DC sensor current is independent of the tunnel rate, all

charge transition of the double dot crossing, including the inter-dot transition are clearly
1Here the source-drain DC voltage was 1mV.
2Although the standard charge transitions cannot be resolve, the (1,0) to (0,1) inter-dot charge

transition can be seen in A.4(a) since the inter-dot tunnel rate is much larger than the dot-to-reservoir
tunnel rate.
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resolved in A.4(c). The measurement of Figure A.4(c) is consistent with the expected

double dot charge stability diagram, and provides clear evidence that we have reached

the last charge regime.
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Figure A.4: Confirming the absolute hole occupation: (a) For clarity we reproduce the charge
stability diagram of Figure 4.8(c) with a colour scale indicating the magnitude of the sensor signal. The
measurement is made using the pulse bias technique [38, 40], which is sensitive to tunnel rate, hence the
charge transitions are not visible beyond VG2>-0.6V. Red and blue dashed lines indicate the formation
of the double dot features, with red indicating the G4 coupled dot, and blue the G2 coupled dot. (b)
Measurement of the DC sensor current for the region indicated by the top dashed rectangle in (a). The
last charge transition runs parallel to the white dashed line (guide to eye). (c) Measurement of the DC
sensor current for the region indicated by the bottom dashed rectangle in (a). Although the visibility
of the charge transitions has been lost for this region in (a), a clear double dot charge stability digram
can be observed in (c) exactly where it is projected to occur based on extending the lines in (a). This
demonstrates the DC sensor current is working independent of the tunnel rate. In all cases VSD is 1mV.

A.3.2 Background structure in charge stability diagrams

The charge stability diagram of the device studied in this chapter shows a clear single

dot structure, that forms into a double dot honeycomb pattern as VG4 is made more

negative. However, in addition to the main charge transitions, we have observed a series

of background signals, which are consistent with an accidental quantum dot. In this

section we present measurements of the main quantum dot and the accidental quantum

dot charge transitions, and show that these two systems are independent and do not
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interact. We conclude by providing evidence that suggests these accidental quantum

dots form under the accumulating plunger gate away from the main region of the device.

The charge stability diagram of the device is shown in Figure A.5(a). Starting for VG4=-

0.7V we observe five strong charge transition signals running parallel to the dashed red

line. These are the charge transitions of the main single quantum dot. The main dot

forms into a double quantum dot around VG4=-1.2V, as indicated by the distinct avoided

crossing of the charge transitions. The white inter-dot signals connecting the avoided

crossings are the inter-dot tunneling signals.

In addition to the strong charge transitions of the primary dot, additional background

structure can be observed. Within the dashed blue rectangle in Figure A.5(a) the main

dot charge transition is highlighted in red, while a series of periodic additional signals

can be observed. These additional signals are reproducible and are consistent with an

additional accidental quantum dot structure. The charge transition of the accidental-

dot have a different amplitude and coupling to G2, suggesting that the primary and

accidental quantum dots are located in different positions within the device.

In Figure A.5(b) we show a zoom of a region where the main dot and accidental dot

charge transitions cross. The accidental dot charge transitions are outlined with blue

dashed lines, and the main quantum dot charge transitions are outlined with red dashed

lines. We note that as the accidental-dot transitions approach each other, they experi-

ence avoided crossings. This is consistent with the accidental-dot acting as a double (or

multiple) quantum dot. The avoided crossing of the blue transitions is due to the wave-

function overlap as two interacting states are brought to the same energy. In contrast,

we highlight that the accidental (blue) and main quantum dot (red) charge transitions

overlap and shown no evidence of interaction. Based on these investigations we are jus-

tified in ignoring the accidental quantum dot in our analysis of the main quantum dot

spin states.

The accidental quantum dot introduces a series of additional peaks in the charge sensor

signal. In Figure A.5(c) we show a line cut of the sensor signal when VG4=-0.9V. The

main charge transition peaks can be identified by their amplitude, and by their coupling

to VG4 in the stability diagram as in Figure A.5(a). When extracting the Coulomb peaks
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Figure A.5: Accidental background dot structure:(a) Charge stability diagram of the device high-
lighting the primary quantum dot transitions (parallel to red dashed line) and the accidental quantum
dot transitions (most clearly visible withing the blue dashed rectangle). (b) Shows an image of the
charge stability diagram where the accidental quantum dot charge transitions (blue) cross the primary
quantum dot charge transitions (red). The blue lines anti-cross since they are coupled, while the blue
and red lines simply cross, indicating there is no coupling between the primary and accidental quantum
dot systems. (c) The sensor signal for a sweep of the plunger gate, VG2 across multiple charge transi-
tions. The charge occupation of the primary quantum dot, N, is indicated with arrows and text. Inset
shows a region where the primary and background charge transitions are close together. Slight tuning
of VG4 at B=0T can ensure no transitions overlap or cross over the range of magnetic field sweeps. (d)
False colour SEM indicating the potential location of the accidental quantum dots in green ellipses. The
white scale bar is 500nm.

for g-factor analysis we take detailed measurements to ensure the accidental quantum

dot transitions do not interfere with the amplitude or shape of the main quantum dot

charge transition. This can be achieved by fine tuning VG4. The primary quantum

dot transitions are labeled with black arrows in Figure A.5(c) and the absolute hole

occupation of the main quantum dot is shown in text as N.

Finally we comment on the likely location of the accidental quantum dot. The device
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lithography has a depleting C-gate placed closest to the SiO2 interface, with plunger gates

placed on top of the C-gate. However, the C gate does no extend under the entire length

of the gates G1-G4 as shown in Figure A.5(d). Since VG2 is operating in accumulation

mode, it is possible accidental quantum dots can form under G2 in the regions indicated

as green ellipses in Figure A.5(d) due to the disorder introduced by the SiO2 interface. In

support of this hypothesis we note that the sensor signal in Figure A.5(c) shows a decay

and plateau as VG2 is made more negative. This can be explained by a accidental hole

states forming under G2, which can then screen the charge sensor signal (as described

in Chapter 2 section 2.6.3). Similar effects have been observed in n-type silicon MOS

devices, and the solution was to extend the C-gate in the negative y-direction all the

way out to the field oxide region in order to prevent accidental quantum dot states [155].

A.4 Control and Characterisation of the orbital struc-

ture

A primary conclusion of Chapter 4 is that the g-factor anisotropy is determined by

the symmetry and orientation of the quantum dot confinement profile. This conclusion

is supported by the observation that the g-factor anisotropy is strongly tuned by the

voltage applied to the local gates (specifically VG4). However, this conclusion rests on

the assumption that the quantum dot confinement can in fact be strongly electrically

tuned1. In this section we present experimental evidence showing that the confinement

profile can be strongly tuned by electric fields.

A.4.1 Control of the orbital energy spectrum

In this section we use magnetospectroscopy to study the orbital spectrum of the hole

quantum dot in Chapter 4. As holes are added to a quantum dot they fill into distinct

orbital shells, much like the shell structure of an atom [9]. This shell structure is sensitive
1Rather than the confinement being strongly defined by the SiO2 interface orientation or crystal

axes.
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to the symmetry of the quantum dot confinement [44, 49]. In this section we use ground

state magnetospectroscopy to observe the orbital shell structure when VG4 = -0.9V and

when VG4 = -0.7V. We observe a distinct change in the shell structure, providing evidence

that the dot confinement profile is different between the two VG4 configurations.

The orbital shell structure can be deduced by observing the spin filling sequence of holes

into the dot. We extract the relative spin orientation of the (N+1)th hole by observing

the slope of the Nth addition energy with respect to an applied magnetic field. The first

five addition energies have been measured for VG4 = -0.9V and for VG4 = -0.7V. The

key results are presented in Figure A.6 (see section A.5 for full set of addition energy

measurements).
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Figure A.6: Orbital shell structure for VG2 = -0.9V and -0.7V: (a-c) Measurements of the addi-
tion energy as a function of By for Eadd(4) (purple), Eadd(3) (green), and Eadd(1)(black) respectively.
(d) Orbital shell structure of the first 6 holes for VG4 = -0.9V. The orbital structure is constructed from
the slopes of the addition energy measurements (see section A.5 for full measurements). The respective
addition energies are the spacing between consecutive charge states, as indicated with colored vertical
arrows in (d). Since Eadd(1) (purple), Eadd(3) (green), and Eadd(4) (black) all increase with By we
obtain the displayed orbital spectrum. (e) Orbital shell structure for VG4 = -0.7V, with key addition
energy measurements shown in (f-h). We find Eadd(3) (green) slightly increases then decreases, while
Eadd(4) (purple) slightly decreases then increases with By. These observations support the orbital struc-
ture of (e) (see section A.5 for full measurements). We use an arbitrary energy scale in (d) and (e) since
supplementary excited state spectroscopy measurements were not possible to confirm absolute energy
scales. Excited state spectroscopy was not possible on this device due to the accidental quantum dot
signals complicating analysis of broad peaks (see section A.3.2).

In Figure A.6(a)-(c) we show the key addition energy measurements that allow us to

reconstruct the orbital structure of the dot when G4 = -0.9V. We note that in each case

of Figure A.6(a)-(c) the addition energy is increasing, and a positive slope is observed.
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Based on these results1 we can infer the quantum dot orbital structure, which we present

in Figure A.6(d). The key features we observe are that the first two holes fill a two-fold

degenerate spin pair. Holes 3, 4, 5, and 6 occupy a four-fold degenerate state at zero

magnetic field. We observe that these holes split into two spin-pairs with distinct and

different effective g-factors, which we label as px-like and py-like orbitals2.

In Figure A.6(f)-(h) we show the key addition energy measurements that allow us to

reconstruct the orbital structure of the dot when VG4 = -0.7V3. The orbital shell structure

is presented in Figure A.6(e). We find that the first two holes form a two-fold degenerate

Pauli spin-pair. For the higher energy orbitals, we find that the 3rd and 4th holes form

a spin-pair, while the 5th and 6th holes form another spin pair. This spin structure

is confirmed by the observation of a distinct change in slope in Figures A.6(f) and

A.6(g) around By = (2.3±0.5)T. The change in slope indicates a change in the spin

filling sequence caused by a Zeeman induced crossing of the orbital levels. Based on

the g-factor extracted from dEadd/dB we can use the Zeeman energy at the crossing to

estimate that the px-like and py-like orbital levels are separated by (0.5±0.2)meV4.

Here we directly compare the orbital structure for the two different VG4 values presented

in Figure A.6(d) and A.6(e). The orbital structure for VG4 = -0.9V is consistent with

the magic number shell filling expected for close to circular 2D quantum dots. In circular

quantum dots the 3rd and 4th holes fill with spin down into the degenerate px and py

orbitals, and the 5th and 6th fill with spin up. Based on the experimental evidence

presented in Figure A.6(a)-(e) we cannot confirm that the apparent four-fold degeneracy

of the 3rd to 6th holes is due to circular confinement and degeneracy of the px-like and
1See section A.5 for all measurements of Eadd. These results obtain a negative slope dEadd/dB for

Eadd(2), and a positive slope for Eadd(5).
2Justification and discussion regarding the label assigned to these orbital states is presented later in

this section.
3See section A.5 for all measurements of Eadd. These results obtain a negative slope dEadd/dB for

Eadd(2). The slope for Eadd(5) is not resolvable due to noise. In Figure A.6 we show the sixth holes
chemical potential as dotted to indicate that this is inferred spin filling. We can infer that the sixth
hole is not spin down base on the high field addition energy of Eadd(4).

4The change in slope for Eadd(4) occurs at By = (1.9±0.5)T. The change in slope for Eadd(3) occurs
at By = (2.7±0.4)T. Although the uncertainty ranges overlap, it seems that the change in slope occurs
at lower By for Eadd(4) than for E3

add. This may be due to a change in the dot shape as VG2 is made
more negative. For more negative VG2 the dot may become larger, thus reducing the orbital splitting,
which is consistent with what we observe.
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py-like orbitals1. However, we can clearly resolve that there are three distinct orbital

states based on the different g-factors. For convenience of discussion we label the lowest

energy orbital as the s-like orbital, the higher orbital with largest g-factor as px-like, and

the higher orbital with smaller g-factor as py-like.

When VG4 is set to -0.7V we observe a lifting of the four fold degeneracy of the two higher

orbitals. These two orbitals are again labeled px-like and py-like. As VG4 is made more

positive the confinement of the dot along the x-axis is expected to become stronger. This

stronger confinement can cause the dot to become more elliptical and lift the degeneracy

of the px-like and py-like orbitals2. Since confinement has become stronger in the sample

x-axis we find it consistent that the px-like orbital is at higher energy than the py-like

orbital.

In conclusion, this section presents the results of a study of the orbital shell structure

for the silicon MOS hole quantum dot. The motivation for this section is to provide

supporting evidence that VG4 strongly influences the confinement profile of the quantum

dot. This supporting evidence is important since in section 4.7 we related the difference

in the g-factor anisotropy at VG4=-0.7V and VG4=-0.9V to a change in the confinement

symmetry caused by VG4. We observe spin filling into three distinct orbital levels, each

with a unique g-factor3. The key results of Figure A.6(d)-(e) is that we demonstrate

electrical control over the degeneracy of the 2nd and 3rd orbital level (labeled px-like and

py-like). This provides strong evidence that the voltage applied to G4 has significant

control over the confinement profile of the quantum dot. Finally, we note that this is

the first demonstration of control of the orbital energy spectrum for hole quantum dot

with a known charge occupation.
1In particular we note that the distinct g-factors may suggest this four fold degeneracy is due to an

accidental degeneracy of two different orbitals. In Chapter 3 we found all four states of the degenerate
p-orbitals to have similar g-factors. However in Chapter 2 the dot confinement appeared to be 2D and
circular, while for Chapter 4 we have tuned the confinement to be three dimensional (see section 4.7).

2This argument remains consistent in the case that the orbitals are not p-like orbitals, but are rather
two distinct orbitals. In this case, as the confinement changes between VG4=-0.9V and VG4=-0.7V the
orbital with larger momentum will move to higher energy, thereby lifting the degeneracy reproducing
the orbital structure in Figure A.6(e).

3We note that the use of labels s-like and p-like are primarily for discussion purposes, and detailed
excited state spectroscopy(cite) or 3D tunnel rate spectroscopy(cite) would be required to confirm the
orbital symmetry. However, this distinct orbital symmetry is not the key result.
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A.5 Full experimental data-set

This section presents the full data set of addition energy measurements used to extract

the g-factor anisotropy and to deduce the orbital structure. The main purpose of in-

cluding this section is for completeness and transparency of the data analysis. Further,

this section provides preliminary insight into the rich physics of hole spin states in the

energy higher orbital states.

We show the full set of the first five addition energy measurements for VG4 = -0.7V

in Figure A.7, while Figure A.8 shows the results for VG4 = -0.9V. Each panel (a)-(e)

shows the measurements for Eadd(1) to Eadd(5) respectively. The Nth addition energy,

Eadd(N) is extracted by measuring the spacing between the Nth and (N+1)th Coulomb

peak. Each individual panel has four distinct x-axes, from left to right these respective

axes are the in-plane magnetic field Bx, the in-plane (x-y) angle for a 1T magnetic field

rotation θ, the out-of-plane angle for a 1T magnetic field rotation φ, and the in-plane

magnetic field By.

The measurements of Eadd(N) in each panel were performed in order of left to right. First

Eadd(N) was measured for Bx = 0T to 1T, following this and starting from ~B= (1,0,0),

a 1T magnetic field rotation of 2π is performed about x-y plane. Following this, starting

from ~B= (1,0,0), Eadd(N) is measured for a 1T magnetic field rotation of 2π about x-z

plane1. Finally the magnetic field was ramped to 0T and Eadd(N) was measured for By

= 0T to 5T. We have checked that the measurements are symmetric about B=0T and

show here only the positive B measurements for linear sweeps.

The results of a linear fit to each region with a distinct slope is shown in Figure A.7

and Figure A.8 as a solid black line (solid red for Eadd(5) in panel (e)). The text in the

corresponding figures panels shows the values of the E0 and the g-factor. The parameter

E0 is the B=0 intercept and the g-factor is extracted from the slope. In cases where

there is a distinct change in the slope we refer to the Low Field g-factor as gLF , and the

High Field g-factor as gHF .

These results are the full measurement data set and as such, some of this data has already
1For Eadd(1) a rotation was also performed about the y-z plane.
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been presented in the Thesis. The results of Eadd(1) in Figure A.7(a) and Figure A.8(a)

have been presented and discussed in detail in the analysis of the g-factor anisotropy in

Chapter 4 section 4.7. The slopes of Eadd(1) to Eadd(5) for both Bx and By in Figure A.7

and Figure A.8 have been used to determine the orbital shell filling structure (Eadd(1),

Eadd(3), and Eadd(4) for By are reproduced in Figure A.6 of section A.4.1).

Figure A.7 and Figure A.8 present a full data-set of the experimental results used to

extract the g-factor anisotropy and to determine the spin filling sequence of holes into

orbital shells. The experimental results of this chapter have primarily focused on the spin

physics of a single hole occupying the first orbital. The full set of rotation measurements

for higher orbitals remains open for future theoretical and experimental investigation.

In particular we highlight that in some cases such as in Figure A.8(d) we see very

large amplitude oscillations in the out-of-plane magnetic field rotation. Another inter-

esting feature is the measurement of Eadd(3) in Figure A.8(c) shows strong out-of-plane

oscillation and weak in-plane oscillation, while Eadd(5) in Figure A.8(e) shows strong

in-plane oscillation and weak out-of-plane oscillation. Understanding the distinct results

for higher hole orbitals will require further research and is a focus of future work.
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Figure A.7: Raw Addition energy Measurements for G4 = -0.7V: (a-e) Shows the full set of
measurements of the first five addition energies used in the analysis of the orbital shell structure of
section A.4.1. Each panel shows four distinct measurements of a respective addition energy. From left
to right these are the addition energy for steps in Bx, steps of the in-plane angle θ for |B| = 1T, steps of
the out-of plane angle φ for |B|=1T, and steps of By up to 5T. Insets for each measurement indicate the
relevant angles, and results of respective best fits (solid lines). In panel (a) for Eadd(1) two data sets are
shown for the third measurement. These two measurements are for x-z rotation of magnetic field (red,
θ=0) and a y-z rotation of magnetic field (black, θ=90). These results are presented for completeness
and reference for interested readers. In cases where the slope changes over the magnetic field sweep we
present the fit parameters for the low field region.
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A. Supporting experimental results for Chapter 4
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Figure A.8: Raw Addition energy Measurements for G4 = -0.9V: (a-e) Shows the full set of
measurements of the first five addition energies used in the analysis of the orbital shell structure of
section A.4.1. Each panel shows four distinct measurements of a respective addition energy. From left
to right these are the addition energy for steps in Bx, steps of the in-plane angle θ for |B| = 1T, steps of
the out-of plane angle φ for |B|=1T, and steps of By up to 5T. Insets for each measurement indicate the
relevant angles, and results of respective best fits (solid lines). In panel (a) for Eadd(1) two data sets are
shown for the third measurement. These two measurements are for x-z rotation of magnetic field (red,
θ=0) and a y-z rotation of magnetic field (black, θ=90). These results are presented for completeness
and reference for interested readers.
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