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Sommario

In questa tesi vengono investigate le proprietà quantistiche di settori unidimensio-

nali nella teoria ABJ(M), i.e. difetti rappresentati dalla linea topologica (libera) e

dalla linea di Wilson 1/2-BPS. Nel primo caso, costruiamo il settore topologico di

ABJ(M) operando il twist tra il gruppo conforme sulla linea e un sottogruppo di

R-simmetria. Calcoliamo le funzioni di correlazione dell’operatore superprimario

in questo settore, portando i conti in teoria delle perturbazioni a due loop per la

funzione a due punti, comparandoli con le predizioni ottenute da un modello di

matrici con deformazioni massive e la sua relazione congetturata con la carica cen-

trale della teoria. Nel secondo caso, anche avendo la stessa algebra di simmetria

della linea libera, le interazioni del loop di Wilson 1/2-BPS implicano la ricombi-

nazione dei supermultipletti. Questo ci forza a studiare più approfonditamente la

struttura generale del loop, partendo dalla sua forma in termini di supermatrici.

Generalizziamo le supercariche rappresentandole sullo spazio delle supermatrici,

costruiamo il supermultipletto dell’operatore di dislocamento e calcoliamo la fun-

zione di Bremsstrahlung partendo dalle funzioni di correlazione di operatori inseriti

nel loop. Infine, calcoliamo la dimensione anomala per gli operatori superprimari

del nuovo multipletto lungo.





Abstract

In this thesis we investigate the quantum properties of one-dimensional sectors in

the ABJ(M) theory, namely the topological (free) line and the 1/2-BPS Wilson Line

defects. In the first case, we build the topological sector twisting the conformal

line with a subgroup of the R-symmetry. We compute the correlation functions of

the superprimary operator in this sector, pushing the perturbation theory up to

two-loops for the two-point function, matching localization predictions from a mass

deformed Matrix Model and its conjectured relation with the central charge of the

theory. In the second case, despite having the same symmetry algebra of the free

line, the 1/2-BPS Wilson Loop interactions lead to supermultiplet recombination.

This force us to investigate more the general structure of the loop, starting from

its supermatrix form. We generalize the supercharges representating them on the

supermatrix space, we build the dispalcement supermultiplet and we compute the

Bremsstrahlung function by correlation function of operator insertions. We then

compute the anomalous dimension of the new long multiplet superprimary.
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Introduction

The aesthetic appeal of symmetry has been a guide, sometimes a
tyrannic one, for philosophers of nature since the dawn of science.

Di Francesco, Mathieu, Senechal [1]

For a theoretical physicist, beautiful means exact. From the very first days, physi-

cists have been striving to find exact results. In this puzzle, symmetries are a

useful tool to reduce the complexity in a description of a system. They constrain

the problems, reaching simplifications and in particular cases allowing exact re-

sults. The prototypical example is a three-dimensional isotropic system, whose

physical observables are reduced to be functions of only one variable. Further-

more, in quantum mechanics, symmetries are realized as invariance of the action

under group transformation. This requirement dictates the shape of the action

allowed by symmetries.

Quantum Field Theories (QFT) are built to be invariant under the space-time

symmetry represented by the Poincaré group R1,3
o SO(1, 3). In particular, in the

Standard Model (SM) of particle physics, three of the four fundamental forces arise

as connections on a principal bundle, whose fibers are preserved by the action of the

Lie group U(1)⇥SU(2)⇥SU(3) (respectively, electromagnetism, weak and strong

interactions). Some "accidental symmetries", e.g. the baryon number conservation

are present.

Nevertheless, within the SM the best only viable technique is perturbation the-

ory in the weakly coupled regime. The number of perturbative (Feynman) diagrams

grows factorially with the loop order and in the present days, with some advanced

amplitudology, computations can be pushed up to five loops. Moreover, pertur-

bative results are blind to some additional effects, called indeed non-perturbative

effects. Besides, perturbative results are written in terms of asymptotic series and

people are studying techniques to resurge non-perturbative aspects from asymp-

totic series, and vice versa [2].

Supersymmetry (SUSY) was introduced to overcome these difficulties. Devel-

oped as a SM extension, it introduces a supersymmetric partner for every particle.

xix
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The spectrum of the theory is then an equal number of bosons and fermions,

organized in supermultiplets. This symmetry between particles often leads to di-

vergence cancellation in quantum corrections. In certain cases, we have enough

symmetries to implement the supersymmetric localization, which permits us to re-

duce the Path Integral to a finite-dimensional integral. In particular, localization

produces exact results. Phenomenologically, it represents an interesting way to

solve longstanding issues such as the hierarchy problem or the origin of dark mat-

ter. However, we have no direct proof that supersymmetry is realized in Nature

yet, at least at the energy scales we are able to explore (but it will be very awkward

if we do not find anything until the Plank scale).

From the renormalization point of view, we see that QFTs at their fixed point

display conformal symmetry. Conformal transformations are those that leave the

metric invariant up to an overall coefficient, called scale factor. Remarkably, the

Poincaré group coincides with the conformal group isometries. Therefore, we can

consider the conformal group as an extension of Poincaré symmetry. Conformal

Field Theories (CFT) are so constrained that in principle we can compute all the

data just by consistency conditions coming from the symmetries. This approach

is called Conformal Bootstrap and, in the most general case, it is hopeless to solve

analytically unless the spectrum of the theory is finite. An interesting question is

then whether the theory admits or not subsectors closed under Operator Product

Expansion (OPE) leading to a solvable truncation of the Bootstrap equation. In

[3], the authors argue that a subsector like this can be realized by the topological

one, with the additional simplification of not having coordinates dependence.

An astonishing feature of conformal symmetry is its perfect compatibility with

supersymmetry. At the price of doubling the SUSY generators, we obtain a closed

superalgebra, that we called superconformal algebra. Theories constrained by this

algebra are called SuperConformal Field Theories (SCFT). The amount of symme-

try present here is often enough to allow exact results. Moreover, we can directly

see this effect in perturbation theory, since the symmetries prevent correlation

functions to receive divergent quantum corrections.

Moreover, the conformal group in d-dimensions is the same symmetry group

of the Anti-De Sitter space in d + 1-dimensions. A conjecture about the duality

between conformal gauge theories in d-dimension and string theories on Anti-De

Sitter space in d+1-dimension has been formulated [4]; the duality implies that

strongly coupled gauge theories are dual to weakly coupled string theories and vice

versa. It is known as holographic duality or AdS/CFT correspondence. Although

the correspondence passes too many non-trivial tests, a direct proof is still missing.

To cite the most relevant examples, we know that N = 4 Super Yang-Mills in four

dimensions is dual to type IIB string theory on AdS5⇥S5; ABJ(M), that is a N = 6
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Chern–Simons (C–S) matter theory in three dimensions, is dual to an M-theory on

AdS4 ⇥ S7/Zk, k being the C–S level.

A central role in the AdS/CFT correspondence is played by the Wilson Loop,

known to be dual to the fundamental string in the gravity theory. Wilson Loops are

the most general objects that can be defined in a gauge theory. Its importance was

understood within the Quantum ChromoDynamics (QCD) context since its VEV

measures the interaction between a quark-antiquark pair and it has been used as

the order parameter between the confined and free phases of QCD. In particular,

we are interested in Wilson Loops in ABJ(M) because of its dual description inside

the M-theory. Thus, the study of Wilson Loops in ABJ(M) can give us invaluable

insights on still mysterious objects inside M-theory.

Aside from the correspondence, Wilson Loops and operators insertions on them

define defect Conformal Field theories. Wilson Loops in SCFT are conformal

defects, adding more structures to the theory in which they are defined.

In this thesis we focus on the gauge part of the holographic duality, working in

the context of ABJ(M) theory. We construct the one-dimensional topological sec-

tor and compute quantum correction to the two-point function of its superprimary

operator at two loops. The reason to find and study the topological sector is, as we

already stressed above, that the topological sector can realize a solvable truncation

of the bootstrap equation and it can provide quantum information useful for the

application of other techniques, either exact or perturbative. We then consider

a mass deformed Matrix Model (MM), conjectured to capture integrated correla-

tion functions of the same operators integrated on the line. The weak coupling

expansion of the mass deformed MM coincides with the perturbative result. As a

by-product, since our superprimary is related to the stress-energy tensor by Ward

identities, we can compute the central charge of ABJ(M) at two loops.

Subsequently, we turn our attention to the 1/2-BPS Wilson Loop. We consider

the contour to be an infinite straight line or a circle. The principal reason is to

generalize the topological sector on the defect CFT living on the Wilson Line.

The supermatrix structure imposed by the fermionic loop is still not completely

understood and precludes a direct generalization of the twisting procedure used

in the free case. We then deeper investigate the supermatrix structure, finding

that even the supercharges have to be represented as supermatrices. We study the

vacuum expectation value in the line and circle configurations: already at one loop

they are not equivalent, in contrast with conformal symmetry. Line and circle are

conformal equivalents (related by the inversion) and we expected that correlation

functions can be mapped between each other. This phenomenon can be related to

the presence of a conformal anomaly, or simply because in the infinite straight line
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we are cutting-off IR divergences, breaking gauge invariance. We investigate the

last option, considering a cut-offed version of the Wilson Circle.

We then derive the expression for the displacement operator, both from de-

formations of the loop and the supermultiplet construction. In particular, the

coefficient of the two-point function of the superprimary of the displacement su-

permultiplet is the Bremsstrahlung function. We show that the Bremsstrahlung is

protected at one loop and the two-loop correction is not completed yet; still, we

show the involved Feynman diagrams. Lastly, we show the two-point function of

another superprimary (believed to be protected by supersymmetry) is divergent at

one-loop and we compute its anomalous dimension. The anomalous dimension is

the signature of multiplet recombination. Furthermore, we investigate the recom-

bination phenomenon by a group theory analysis, trying to understand how the

Wilson Loop affects the system compared to the free case.

General features of the fermionic Wilson Loop are still obscure, in particular its

supermatrix structure. We try making some progress in this direction. Moreover,

we provide the first computation of the Bremsstrahlung function from operators

insertion in the defect CFT.

Outline

The thesis is organized as follows. Part I is devoted to introducing the corner-

stones of our work. In Chapter 1, we review the construction of conformal and

superconformal field theories. We pay attention to the bootstrap program since

its analytic solution is the ultimate goal of most of the present works. In Chapter

2, we introduce conformal defects and we see that an analog bootstrap equation

arises. We then introduce the Wilson Loop showing that it provides a nice exam-

ple of defect Conformal Field Theory. This is why we decided to include it in the

defects chapter even if it would probably deserve an entire dedicated book.

The original work is presented in part II. In Chapter 3, based on paper [5],

we build the one-dimensional topological sector of ABJ(M) and loop computations

are presented. In Chapter 4, we investigate the dCFT properties of the fermionic

loop in ABJ(M). Remarkably, we will find unexpected results, different from what

happens in four dimensions. The article about this last topic will be submitted

soon [6].

In the Appendix, technical tools used throughout the thesis can be found.







I

Background





1

(Super)Conformal Field

Theories

If one is working from the point of view of getting beauty
into one’s equation, [...] one is on a sure line of progress.

P. A. M. Dirac [7]

In the last fifty years, Conformal Field Theory has found an enormous range of ap-

plications in all areas of theoretical physics, from statistical physics to condensed

matter to string theory, being an inspiration for pure mathematicians as well.

There are many examples in which the conformal symmetry appears: for instance,

in the phase transitions in statistical ensembles, at the fixed point of the renor-

malization group flow (where the Poincaré symmetry is enhanced to conformal

symmetry as a consequence of the vanishing beta function) or at high energies in

QCD.

Perhaps the most striking property of CFTs, consequence of the power of the

conformal symmetry, is the Bootstrap Equation, formulated in [8, 9]. It is obtained

by consistency conditions and in principle allows us to compute every data of the

theory without the need of local action. With the bootstrap approach, even non-

Lagrangian theories can be studied. But the conformal bootstrap approach is as

beautiful as hopeless unless the number of fields in the theory is finite. Nonetheless,

new progress on this direction were made by the pioneering works [10, 11, 12] that

found numerical application in [13]. It has been exploited successfully in statistical

problems, computing critical exponent for the 3D Ising Model [14, 15]. In this

sense, the actual computing power gives us the possibility to consider a very large

amount of constraints but, still being in a finite number, only the extraction very

precise bound on the spectrum of the CFTs is possible.

3



4 1. (Super)Conformal Field Theories

The conformal algebra can be nicely extended including supersymmetry, yield-

ing SuperConformal Field theories (SCFT). There are examples for which the pres-

ence of supersymmetry protects the conformal symmetry even at the quantum level.

This is the case of N = 4 Super Yang-Mills in four dimensions [16].

Last but not definitely not least, CFTs are known to be dual to gravity theories

in one more dimension, through the holographic correspondence [4]. The conjecture

relates strongly coupled field theory in flat space to weakly coupled string theory on

Anti de Sitter space, by means of the partition function. Although a rigorous proof

of the correspondence is still missing, it has passed a huge number of non-trivial

tests.

The cornerstone of the gauge/gravity duality is that the space-time symme-

try group of AdS in d + 1-dimensions coincides with the conformal group in d-

dimensions. Therefore, exploiting this property, we can consistently apply confor-

mal techniques to study the S-matrix of QFT defined on AdS, even in presence of

mass deformation, for every value of the coupling [17]. Bootstrapping the S-matrix

allows us to compute the 1-loop determinant of the theories. This machinery has

been applied for the O(N) and Gross-Neveu model and can be applied for gravity

[18].

In this chapter we introduce the conformal symmetry in dimension d 6= 2,

which is finite-dimensional, building its representations on fields. We will define

the Operator Product Expansion and derive the bootstrap equation. We present

how to combine the conformal algebra with supersymmetry and we then introduce

the ABJ(M) theory, which is the main character of this thesis.

1.1 Conformal Field Theory

1.1.1 Conformal Symmetry

Let gµ⌫ be the metric of a d-dimensional spacetime. A Conformal Transformation

(CT) is a diffeomorphism x ! x0(x) such that

g0µ⌫(x
0) = Ω

2(x)gµ⌫(x) (1.1)

Isometries form a subgroup of CT corresponding to Ω2 = 1. Furthermore, if we

consider gµ⌫ = ⌘µ⌫ , then the isometry group coincides with Poincaré group. Di-

latations correspond constant Ω2. This class of transformation are called conformal

since they leave the angles between curves unchanged. The finite transformations

are:

• Poincaré group:

8
<
:
translation : x0µ = xµ + aµ

Lorentz : x0µ = Mµ
⌫ x

⌫
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• Dilatations: x0µ = ↵xµ

• Special Conformal Transformations: x0µ =
xµ � bµx2

1� 2(b · x) + x2b2
.

Another type of CT, discrete and not connected to the identity, is the inversion I

I : xµ ! x0µ =
xµ

x2
, I2 = 1

However, it’s easy to show that inversion after a SCT is

I(x0µ) =
x0µ

x02 =
xµ

x2
� bµ.

In other words

SCT = I � translation � I. (1.2)

The infinitesimal forms of the generators are

Pµ = �i@µ translation

D = �ixµ@µ dilatation

Lµ⌫ = i(xµ@⌫ � x⌫@µ) Lorenz

Kµ = �i(2xµx
⌫@⌫ � x2@µ) special conformal

(1.3)

that give us a representation of the conformal algebra, satisfying the following

commutation relations

[D,Pµ] = iPµ, [D,Kµ] = �iKµ

[Kµ, P⌫ ] = 2i(⌘µ⌫D � Lµ⌫), [Lµ⌫ , P⇢] = �i(⌘µ⇢P⌫ � ⌘⌫⇢Pµ)

[Lµ⌫ , K⇢] = �i(⌘µ⇢K⌫ � ⌘⌫⇢Kµ), [D,Lµ⌫ ] = 0

[Pµ, P⌫ ] = 0, [Kµ, K⌫ ] = 0, [D,D] = 0,

[Lµ⌫ , L⇢�] = i(⌘µ⇢L⌫� � ⌘µ�L⌫⇢ + ⌘⌫�Lµ⇢ � ⌘⌫⇢Lµ�).

(1.4)

If we define
Jµ,⌫ = Lµ⌫ , J�1,0 = D

J0,µ =
1

2
(Pµ +Kµ) J�1,µ =

1

2
(Pµ �Kµ)

(1.5)

with the property Ja,b = �Jb,a, and this J would obey the SO(2, d) commutation

relations in a d-dimensional Minkoswki spacetime. From this we see that the

conformal algebra has dimension

(d+ 1) (d+ 2)

2
.

We note from (1.4) that the generators Lµ⌫ and Pµ form a closed subgroup (Poincaré

subgroup); the set {Lµ⌫ , Pµ, D} form a closed subgroup too.



6 1. (Super)Conformal Field Theories

Conformal Invariance and the Stress-Energy Tensor

In QFT, translation invariance implies the conservation of the stress-energy tensor

T µ⌫ ; it can be made symmetric if we have also rotation invariance. Under an

infinitesimal transformation of the coordinates, the action change as

�S = �1

2

Z
ddx T µ⌫ (@µ"⌫ + @⌫"µ) .

The definition (1.1) for infinitesimal transformation in flat spacetime requires

@µ"⌫ + @⌫"µ = f(x)⌘µ⌫ ,

then

�S = �1

2

Z
ddxf(x)T µ⌫⌘µ⌫ = �1

2

Z
ddxf(x)T µ

µ

and imposing �S = 0 we have (paying attention to the form of f(x))

T µ
µ = 0

so a traceless stress-energy tensor implies conformal invariance, but the converse

is not always true1

1.1.2 Representations on fields

From now on, we use the terms "field" and "operator" interchangeably. In partic-

ular, the term "field" make contact with ordinary QFT, while "operator" is more

general and does not imply an underlying Lagrangian description.

In CFT, the spectrum of a field is given by the eigenvalue ∆ of the dilatation

operator, called scaling dimension. The commutator of D with Lµ⌫ says that spin

l and scaling dimension ∆ are good quantum numbers that we can use to label our

states in the Hilbert space.

From the commutation relations with D in (1.4), we can think of Pµ and Kµ

as ladder operators for the scaling dimension. Indeed, if we consider an operator

O∆, then we have

D (PµO∆) = [D,Pµ]O∆ + i∆PµO∆ = i(∆+ 1)PµO∆

and we conclude that PµO∆ is again an eigenvector of the dilatation generator but

with eigenvalue ∆+ 1. Similarly, for K we have

D (KµO∆) = [D,Kµ]O∆ + i∆KµO∆ = i (∆� 1)KµO∆.

1In two dimensions, under certain assumptions, the converse is also true [19].
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Then it will exist a ∆̃ such that

KµO∆̃
= 0 (1.6)

Such kind of operators are called primary operators; those constructed applying

n-times Pµ on a primary are called descendant operators.

In a CFT, fields are homogeneous functions, with homogeneity degree given by

their scaling dimension ∆; this means that, under a scale transformation, we have

Φ(�x) = ��∆
Φ(x). (1.7)

where Φ is a generic field. If we consider the general conformal transformation

x ! x0 such that (1.1) holds, than the field changes as

Φ
0(x0) = Ω

�∆R[Mµ⌫ ]Φ(x) (1.8)

where R is the irreducible representation of the orthogonal group in which the field

Φ is defined. For scalars, (1.8) reduces to (1.7).

We want to find the matrix representations of the conformal algebra generators.

We start considering the subgroup of the isotropy of the origin (the transformations

that leave the origin invariant), spanned by the generators D,Kµ, Lµ⌫ . Let Φa(x) be

a field (we consider a multicomponent field, but the scalar case is straightforward).

Then we define the action of the generators in the origin, translating the results

for general x. We define

[D,Φa(0)] = i∆Φa(0) (1.9)

[Lµ⌫ ,Φa(0)] = i (Sµ⌫)ab Φb(0). (1.10)

where Sµ⌫ is the spin matrix constructed by the gamma matrices. For primary

fields, eq, (1.6) is translated in

[Kµ,Φa(0)] = 0, (1.11)

so Φa is a primary field if it is annihilated by Kµ at the origin.

In order to generalize these results at generic x, we compute all the commutators

using the following relation

Φa(x) = e�iP ·x
Φa(0)e

iP ·x

using (1.4) and (1.9)-(1.11). The action of the conformal algebra on a field in a

generic point is then given by

[Pµ,Φa(x)] = i@µΦa(x) (1.12)
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[D,Φa(x)] = i (∆+ xµ@µ)Φa(x) (1.13)

[Lµ⌫ ,Φa(x)] = i (Sµ⌫)ab Φb(x)� i (xµ@⌫ � x⌫@µ)Φa(x) (1.14)

and

[Kµ,Φa(x)] = 2ixµ∆Φa(x) + 2ix⇢ (S⇢µ)ab Φb(x) + i
�
2µx

⌫@⌫Φa(x)� x2@µµΦa(x)
�
.

(1.15)

1.1.3 Radial Quantization and OPE

If we write the metric of Rd in spherical coordinates

ds2 = dr2 + r2dΩd�1 = r2

dr2

r2
+ Ωd�1

�
(1.16)

whre r is the radius of the sphere Sd�1 whose metric on it is Ωd�1. The dilatation

map in this coordinates is D = r@r and maps concentric circles into each other.

Then the radius in the r.h.s. of (1.16) can be view as a rescaling parameter. Thus

CFTs on Rd are equivalent to CFTs on R ⇥ Sd�1. In particular, defining t = log r,

the dilatation change as

D = r@r ! D = @t (1.17)

In this sense, the generator D has an energetic interpretation, like to the Hamil-

tonian in quantum mechanics, and justify why the scaling dimensions have such a

central role in the study of CFTs.

Radial Quantization and State-Operator Correspondence

In ordinary QFT, we foliate the spacetime in surfaces of equal time (time slices),

and in every time slice lives a Hilbert space. These Hilbert spaces are connected

by the time evolution operator U = eiH∆t. We can create "in" states | ini on a

certain time slice by insertions of operators before that time slice

| ini = On · · · O1 |0i ;

the "out" states h out| are created by operator insertion after that time slice

h out| = h0| O1 · · · On.

The correlator between these states is the bracket

h out| ini = h out|U | ini .

In CFT, we foliate spacetimes using concentric spheres of different radii. The

"in" state | ini on the surface of a sphere is created inserting operators inside this
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sphere, and "out" state h out| is created inserting operators outside the sphere.

The Hilbert spaces living on the surface of each leaf are connected with the dilation

operator U = eiD∆⌧ , with ⌧ = log(r), and we choose |∆i, eigenvectors of D, as basis

for our Hilbert spaces; in addition, we choose them as irreducible representation of

SO(D) with spin l

D |∆i = i∆ |∆i , Lµ⌫ |l,∆ia = i(Sµ⌫)
b

a |l,∆ib .

The vacuum |0i corresponds to no insertions.

Operator Product Expansion

From radial quantization, we can construct states by operator insertions. The

eigenstates of D correspond to insertions of operators at the origin

|∆i = Φ1(0) · · ·Φn(0) |0i .

With this definition, |∆i is automatically a primary. Starting from it, we can con-

struct all the descendants by acting with P . In general, |∆i can be either a primary

or a descendant (like Pµ |∆� 1i) or a linear combination of these. However, both

primaries and descendants are eigenvectors of D and thus they form a complete

set.

States in CFT also satisfy associativity. The product of two operators

O(x)O(0) |0i

can be written as a linear combination of operators at the origin. From the state-

operator correspondence, we have in general

| i = �1(x)�2(0) |0i

and this state can be expanded on the basis of D eigenvectors

| i =
X

∆

c∆(x) |∆i

and |∆i itself is a linear combination of primaries and descendants. Thus, we have

�1(x)�2(0) |0i =
X

� primaries

C∆(x, @)Φ∆(0) |0i (1.18)

where the sum is only over the primaries and the descendants are obtain with the

action of

C(x, @) = c1 + cµ2@µ + c3x
µx⌫@µ@⌫ + . . .

Equation (1.18) is called Operator Product Expansion (OPE) and it is a convergent

series. The form of c1 is fixed by dilatation invariance up to an overall factor

c1 ⇠
�∆

|x|k
k = ∆1 +∆2 �∆O (1.19)

The factors �∆ are called OPE coefficients.
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1.1.4 Correlation functions

At the classical level, conformal symmetry forbids the presence of mass terms in

the Lagrangian (if there is any). Generally speaking, the commutator between

dilatation and translation in (1.4) leaves us with only two mutually exclusive pos-

sibilities: either we have all masses vanishing or we have a continuous spectrum.

For this reason, the particle interpretation of QFT is no longer viable and the

observables in a CFT are the correlation functions.

In particular, conformal symmetry is strong enough to completely fix the two-

and three-point functions, while the four-point correlator is the first not completely

fixed function.

Let’s consider scalar fields �n(x), with associated scaling dimension ∆n, and

we start from the Vacuum Expectation Value h�(x)i. Translation set it to be a

constant, but the only dilation invariant constant is zero, therefore

h�(x)i = 0 (1.20)

The two-point function h�1(x1)�2(x2)i is constrained by translation and dilata-

tion to be only a homogeneous function of the distance |x1 � x2| = |x12|. Spe-

cial conformal symmetry set the correlation function to be non-vanishing only if

∆1 = ∆2 = ∆, therefore

h�1(x1)�2(x2)i =
C

|x12|2∆
(1.21)

where C is a normalization constant and can be dependent on the coupling.

For the same reasons, the three-point function is set to be

h�1(x1)�2(x2)�3(x3)i =
c123

|x12|∆1+∆2�∆3 |x13|∆1+∆3�∆2 |x23|∆2+∆3�∆1
(1.22)

where c123 are physical coefficients called conformal data. A CFT is completely

determined once the conformal data are given and they are precisely the coefficients

�∆ appearing in the OPE expansion.

The four-point correlation function is not fixed by conformal symmetry, because

with four point we can construct two independent conformal invariants

u = zz̄ =
x2
12x

2
34

x2
13x

2
24

, v = (1� z)(1� z̄) =
x2
14x

2
23

x2
13x

2
24

, (1.23)

called the cross ratios. Then, 4-pt correlation function takes the form

h�1(x1)�2(x2)�3(x3)�4(x4)i =
G(u, v)Q4
1=i<j x

�ij
ij

(1.24)

and scale invariance gives the constraint
X

i 6=j

�ij = ∆i.
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1.1.5 Bootstrap

Exploiting the OPE is possible to reduce higher-point correlation function to the

fixed two- and three-point functions: for instance, let’s take the four-point function

of four scalar fields with scaling dimensions ∆i

h�1(x1)�(x2)�(x3)�(x4)i (1.25)

From (1.18), it is convinient to extract a coefficient from the function C∆(x, @) as

�1(x)�2(0) ⇠
X

∆

c∆C̃∆(x, @)Φ∆(0) (1.26)

and the coefficients �∆ are called OPE coefficients. Inside (1.25), we expand the

pair 12 and 34 using OPE

�(x1)�(x2) ⇠
X

∆

c∆C∆(y, @y)�∆(y)
��
y=

x1+x2
2

(1.27)

�(x3)�(x4) ⇠
X

∆̃

c
∆̃
C

∆̃
(z, @z)�∆̃

(z)
��
z=

x3+x4
2

(1.28)

that we can rewrite as

h�1(x1)�(x2)�(x3)�(x4)i =
X

∆

c2
∆
[C∆(y, @y)C∆(z, @z) h�∆(y)�∆(z)i] (1.29)

since the 2-point function forces the exchanged operator to have the same scaling

dimension. It’s worth noting that the expression inside the square brackets is

completely fixed by conformal invariance; they are called conformal partial waves,

Therefore, eq. (1.29) is called conformal partial waves expansion. This expression

can be easily generalized including exchanged spinnig operators. It’s convenient

to rewrite the expression in square brackets as a function of the conformal ratios,

such as

h�1(x1)�(x2)�(x3)�(x4)i =
X

∆,`

c2
∆,`

G∆,`(u, v)

x
1
2
(∆1+∆2)

12 x
1
2
(∆2+∆3)

34

(1.30)

where ` is the spin of the exchanged operator. The functions G∆,` are called

conformal blocks and they can be computed exactly [10, 11, 12]. They can have

different forms depending on the space-time dimension, but in general they are

hypergeometric functions.

Large N expansion and anomalous dimension

The expansion in conformal blocks is very handy when it comes to compute per-

turbative quantities as the anomalous dimension, especially when the theory is
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non-Lagrangian and no Path-Integral description is available. Let’s take, for in-

stance, the four-point correlation function of four identical scalar operators

h�(x1)�(x2)�(x3)�(x4)i =
G(u, v)

x
2∆�

12 x
2∆�

34

(1.31)

and we assume to know the explicit form of G. We also know its expansion in

conformal blocks, taking out explicitly a power of u

G(u, v) =
X

∆,`

c2
∆,`u

∆�`
2 g∆,`(u, v) (1.32)

and in this case the sum over the spin is only on even value of `. If we have

an additional parameter, as N in gauge theory, we can think to make a large N

expansion of both side of (1.32) using

G(u, v) = G(0)(u, v) +
1

N
G(1)(u, v) (1.33)

c2
∆,` = a∆,` = a

(0)
∆,` +

1

N
a
(1)
∆.` (1.34)

∆ = ∆
(0) +

1

N
�
(1)
∆,` (1.35)

g
∆(0)+ 1

N
�,`(u, v) = g∆(0),`(u, v) +G(u, v) (1.36)

such that

G(0)(u, v) +
1

N
G(1)(u, v) =

X

∆,`

✓
a
(0)
∆,` +

1

N
a
(1)
∆.`

◆
u

∆
(0)+ 1

N
�(1)�`

2 g
∆(0)+ 1

N
�(1),`(u, v)

(1.37)

Collecting the N�1 terms in the r.h.s.

G(0)+
1

N
G(1) =

X

∆,`

a(0)u
∆
(0)�`
2 g∆(0),`+

1

N

X

∆,`

✓
a(1) +

a(0)�

2
log(u)

◆
u

∆
(0)�`
2 g∆(0),`+G

(1.38)

From here we see that is very easy to extract the anomalous dimension just looking

at the coefficient of the log(u).

Bootstrap equation

We can use OPE to reduce the four point function choosing different pairs of

operators, like 14 and 23. But since the fields are inside a correlation function, the

choice of the contracting pairs should not affect the final result. This property is

know as the crossing symmetry and it is graphically represented in fig. 1.1. The

corresponding equation is
G(u, v)

x2∆
12 x

2∆
34

=
G(v, u)

x2∆
14 x

2∆
23

(1.39)
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O O

�1

�2

�4

�3

�4�1

�3�2

=

Figure 1.1: Crossing symmetry

Writing the functions G in terms of the OPE expansion we arrive at the bootstrap

equation
X

∆,`

�2
∆,`

✓
v∆�G∆,`(u, v)� u∆�G∆,`(v, u)

u∆� � v∆�

◆
= 1 (1.40)

Equation (1.40) relates OPE coefficients �∆,` among themselves; we can write a

coefficient in terms of all the others (and they are infinite). In principle, these

equations are enough to compute every �∆,` of the theory. Practically, solve them

analytically is computationally very hard. But there are numerical approaches that

can give bounds on the spectrum of a given CFT [13].

One way to make progress on the analytic solution of (1.40) is trying to reduce

the problem to a subsector of the theory that is closed under OPE. This reduction

will shrink the number of constraints thus leading to a solvable truncation of the

bootstrap equation. Generally, adding more symmetry help to spot subsectors with

this property, see e.g. supersymmetry. If having more symmetries is not viable, we

can think of breaking (some) of them by considering defects inside the theory. The

latter option will add more structure to the theory, giving different constraints.

1.2 Supersymmetry

Supersymmetry was first introduced [20] as an extension of the Poincaré algebra

to escape the no-go theorem [21], stating that the only possible symmetries of a

QFT with unitary S-matrix are the Poincaré group and internal symmetries. Su-

persymmetry is then realized as a graded algebra formed by bosonic and fermionic

generators, which respect super-commutation rules.

In supersymmetric theories we have the same amount of bosonic and fermionic

degrees of freedom, giving strong constraints on the theory. One of the conse-

quences of this peculiarity is the divergences cancellation in quantum corrections

(non-renormalization theorems [22]). SUSY provides a nice example of unification

at large scales, showing that Standard Model couplings converge to one value [23].
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Usually, the high amount of symmetries then constrains the theory enough to allow

for exact results. For more details on this huge topics, see e.g. [24, 25].

SUSY is realized introducing fermionic generators QI
↵ and Q̄↵̇, J , called su-

percharges, whose anti-commutators close on translations. More explicitly, they

extend the Poincaré algebra in the following way

⇥
Mµ⌫ , Q

I
↵

⇤
= i(�µ⌫)

�
↵ QI

� (1.41)
h
Mµ⌫ , Q̄

�̇, J
i
= i(�̄µ⌫)

↵̇

�̇
Q̄�̇, J (1.42)

n
QI

↵, Q̄
J
�̇

o
= 2�µ

↵�̇
Pµ�

IJ (1.43)
�
QI

↵, Q
J
�

 
= "↵�Z

IJ (1.44)
n
Q̄I

↵̇, Q̄
J
�̇

o
= "↵̇�̇

�
ZIJ

�⇤
(1.45)

where ZIJ = �ZJI is the central extension of the algebra. The relations (1.41) and

(1.42) show that the fermionic generators are spinors that transform , respectively,

in the
�
1
2
, 0
�

and
�
0, 1

2

�
representations of the Lorentz group.

Focus on eq. (1.43): it is valid for rigid SUSY, namely the supercharges are

independent of the coordinates. For local SUSY, it will be modified in the r.h.s.

introducing a local parameter. In this case, the relation will describe a theory

invariant under coordinate diffeomorphism; then, gauging supersymmetry will au-

tomatically give a supersymmetric theory of gravity.

The supercharges have an additional internal symmetry, called R-symmetry,

that rotates the supercharges among them. Usually the R-symmetry group is

identified as SO (N ) or SU (N ), depending on the reality conditions of the theory.

Usually, we refer to N as the number of the supersymmetries we are considering.

Supermultiplets

The irreducible representations of the SUSY algebra are called supermultiplets.

Since the supercharges Q↵ and Q̄� are spinors, they can lower or rise the spin

by half unit and we can think of them as creation/annihilation operators on the

Hilbert space. Choosing a state annihilated by all the Qs (Clifford vacuum, with

helicity �0), the action of the Q̄s will create a state with increased helicity by half.

Depending on how many supersymmetries we consider (N ), we can have multiple

actions of Q̄J on the Clifford vacuum. In particular, for anti-symmetry, the number

of intermediate states after p action of Q̄J is the binomial

 
N

p

!
with p = 0, . . . ,N

and the total number of states in a given irreducible representation is

NX

p=0

 
N

p

!
= 2N =

�
2N�1

�
bosons

+
�
2N�1

�
fermions

(1.46)
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The final state will have helicity �0 +
N
2
. Then, the fields content of theory with a

different number of SUSY are organized in different supermultiplets:

• N = 1: here we have 4 type of multiplets that are the matter multplet,

whose degrees of freedom are
�
0, 1

2

�
, the gauge multiplet

�
1
2
, 1
�
, the spin 3/2-

multiplet
�
1, 3

2

�
and the graviton multiplet

�
3
2
, 2
�
, together with the respective

CPT conjugates.

• N = 2: hypermultiplet
�
�1

2
, 0, 0, 1

2

�
, vector multiplet

�
0, 1

2
, 1
2
, 1
�
, spin 3/2-

multiplet
�
1
2
, 1, 1, 3

2

�
and the graviton multiplet

�
1, 3

2
, 3
2
, 2
�
.

N = 4 Super Yang-Mills

Probably the most famous example of theory with extended supersymmetry is

N = 4 SYM theory in four dimensions. The amount of symmetry, in this case,

allows only for one vector multiplet

V =
�
Aµ,�

I
↵,�

J
�

(1.47)

consisting in a gauge field, four Weyl spinors and six real scalars all living in the

adjoint representation of the gauge group.

The action can be obtained by dimensional reduction from N = 1 SYM in 10

dimensions and it is classically conformal. At the quantum level, the theory is

UV finite and the beta function vanishes for every value of the coupling [16]. This

result holds up to three loops [26]. From light-cone gauge arguments, it was argued

that the vanishing beta function holds at all loop orders [27, 28]. Hence, conformal

symmetry survives at the quantum level too.

Defining new classes of operators

Adding new fermionic generators gives us the possibility to define new classes of

operators, closed under OPE. It’s the case for the chiral ring, defined as the set

of operators annihilated by a certain number of supercharges, usually chosen as

half of the total supercharges i.e. [Q,O] = 0, provided that the operator O is

not Q-exact. This is a nice example of an OPE-closed subset that can reduce

the bootstrap equation, but correlation functions of chiral operators are trivially

vanishing, due to their independence on the position of the operators. Still, there

are hopes left to exploit properties of this subclass, as we will see in section 3.1.

1.3 SCFT

We saw that we can realize an extension of the Poincaré algebra introducing spino-

rial generators. We also saw that the Poincaré group is the isometry subgroup
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of the conformal symmetry. The question is, then, whether we can or not make

a supersymmetric extension of the conformal group. The answer turns out to be

positive. In fact, introducing the so-called conformal supercharges SI
↵ and S̄J

↵̇ and

requiring they close on special conformal transformation

�
S, S̄

 
⇠ K (1.48)

we notice that the new algebra closed in what we call the superconformal algebra.

The complete classification of superconformal algebras was given in [29].

Since the main subject of this thesis are three-dimensional superconformal the-

ories, and in particular ABJ(M), here we report, as an example, the full supercon-

formal algebra for d = 3 in Euclidean signature2.

[Mµ⌫ ,M⇢�] = ��µM ⌫⇢ � ��⌫Mµ⇢ + �⇢⌫Mµ� � �⇢µM ⌫� [P µ, K⌫ ] = 2(�µ⌫D +Mµ⌫)

[P µ,M ⌫⇢] = �µ⌫P ⇢ � �µ⇢P ⌫ [Kµ,M⌫⇢] = �µ⌫K⇢ � �µ⇢K⌫

[D,P µ] = P µ [D,Kµ] = �Kµ

(1.49)

The fermionic generators QIJ
↵ , SIJ

↵ satisfy the following anti-commutation rules

{QIJ
↵ , QKL,�} = "IJKL(�µ)↵

�Pµ {SIJ
↵ , S�KL} = "IJKL(�µ)↵

�Kµ

{QIJ
↵ , S�KL} = "IJKL

✓
1

2
(�µ⌫)↵

�Mµ⌫ + ��↵D

◆
+ ��↵"

KLMN(�JMR I
N � �IMR J

N )

(1.50)

and similarly for Q̄↵IJ = 1
2
"IJKLQ

KL
↵ and S̄↵IJ = 1

2
"IJKLS

KL
↵ . The mixed commu-

tator are

[Kµ, QIJ
↵ ] = (�µ)↵

�SIJ
� [P µ, SIJ

↵ ] = (�µ)↵
�QIJ

�

[Mµ⌫ , QIJ
↵ ] = �1

2
(�µ⌫)↵

�QIJ
� [Mµ⌫ , SIJ

↵ ] = �1

2
(�µ⌫)↵

�SIJ
�

[D,QIJ
↵ ] =

1

2
QIJ

↵ [D,S↵IJ ] = �1

2
S↵IJ

[R J
I , QKL

↵ ] = �KI QJL
↵ + �LI Q

KJ
↵ � 1

2
�JI Q

KL
↵ [R J

I , S↵KL] = �KI S↵JL + �LI S
↵KJ � 1

2
�JI S

↵KL

(1.51)

From the commutation relations with the dilation generator, we can think of Q

and S as ladder operators, increasing or decreasing operators scaling dimension

by 1/2. Thus, there will be a class of operators whose scaling dimension can’t

be lowered by the superconformal charges: those operators are then annihilated

by the superconformal charges. They are called superprimary operators and from

(1.48) we can easily see they are primary operators as well.

2Here we keep the R-symmetry group generic.
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I
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Figure 1.2: ABJ(M) quiver diagram

1.3.1 N = 6 Super Chern-Simons Matter Theory (ABJ(M))

Three-dimensional field theories are interesting to study since they represent planar

systems in condensed matter. In particular, the C–S action is used in describing

the topological order in the fractional quantum Hall effect (for a nice review see

[30] and reference therein). Moreover, three-dimensional SCFT play a pivotal role

because they represent a nice framework to study strongly coupled planar systems

in the holographic theory. Indeed, the Super C–S action describes the world-

volume of eleven-dimensional M2-branes at low energies inside the M-theory [31].

Afterwards, a theory with N = 8 supersymmetry was built in [32] and conjectured

to represent a specific M2-brane theory for particular values of the C–S level.

In a recent paper [33], the authors discovered a three-dimensional theory with

as gauge group a double Chern-Simons U(N) ⇥ U(N), whose supersymmetry is

N = 6, known in the literature as ABJM. Short after they generalized it for the

different rank case U(N1) ⇥ U(N2) [34]. In the case k = 1, 2 the supersymmetry

is enhanced to N = 8. We will denote the theory ABJ(M), meaning that all the

results we are presenting are both valid in ABJ and ABJM.

For k > 2, the global symmetry of ABJ(M) is represented by the Euclidean

group Osp(6|4), whose algebra satisfies the commutation relations in (1.49), (1.50)

and (1.51) with the R-symmetry algebra being so(6) ' su(4). Its generators are

traceless and they satisfy

[JI
J , JK

L] = �LI JK
J � �JKJI

L (1.52)

Furthermore, the bosonic generators satisfy the following conjugation rules

(P µ)† = Kµ (Kµ)† = P µ D† = D (Mµ⌫)† = �Mµ⌫ (JK
L)† = JL

K

(1.53)

while the fermionic ones

(QIJ
↵ )† =

1

2
"IJKL SKL↵ = S̄↵

IJ (SIJ
↵ )† =

1

2
"IJKL QKL↵ = Q̄↵

IJ (1.54)

and the action of the su(4) R-symmetry generators on operators with R-symmetry
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indexes OI (ŌI) in the (anti-)fundamental representation reads

[JI
J ,OK ] =

1

4
�JI OK � �JKOI [JI

J , ŌK ] = �KI ŌJ � 1

4
�JI Ō

K (1.55)

The details on the osp(6|4) supermultiplets can be found in [35].

Since we have a two gauge groups, the theory can be represented in a quiver

diagram, see fig. 1.2. We have two gauge fields, denoted as (A) j
i and (Â) ĵ

î
, in the

adjoint representation of the respective group (i and î being the gauge indices).

The matter fields are the complex scalars (CI)
ĵ
i , (C̄I) j

î
and the fermions (ΨI)

j

î
,

(Ψ̄I) ĵ
i . They live in the (anti-)bifundamental representation of the gauge groups,

meaning they transform as (N1, N̄2) for bifundamental and as (N2, N̄1) for the

anti-bifundamental. The index I = 1, . . . , 4 is the R-symmetry index of SU(4).

Operatively, you can think of matter fields as rectangular matrices and to construct

gauge-invariant observables one has to take the product to form a square-matrix

of one of the two gauge fields, i.e. construct an object transforming in one of the

adjoint representations, and then take the trace on the gauge indices.

One nice property of ABJ(M) is that we can write an explicit action

SABJM = Sgauge + Sghost + Smatter + Sint (1.56)

where the pieces are

SCS = �ik
4⇡

R
d3x"µ⌫⇢

h
Tr
�
Aµ@⌫A⇢ +

2i
3
AµA⌫A⇢

�
� Tr

⇣
Âµ@⌫Â⇢ +

2i
3
ÂµÂ⌫Â⇢

⌘i

(1.57)

Sgf =
k

4⇡

Z
d3xTr


1

⇠
(@µA

µ)2 + @µc̄D
µc� 1

⇠

⇣
@µÂ

µ
⌘2

� @µ¯̂cD
µĉ

�
(1.58)

Smat =

Z
d3xTr

⇥
DµCID

µC̄I + i ̄I�µDµ I

⇤
+ Sint (1.59)

and the covariant derivative act in the following way on the fields

DµCI = @µCI + iAµCI � iCIÂµ, DµC̄
I = @µC̄

I + iÂµC̄
I � iC̄IAµ

Dµ ̄
I = @µ ̄

I + iAµ ̄
I � i ̄IÂµ, Dµ I = @µ I + iÂµ I � i IAµ

(1.60)

The interaction part Sint is composed of a Yukawa-like potential of the type

C2 2 and a sextic scalar interactions potential

S6�pt =
4⇡

3k2

Z
d3xTr

⇥
CIC̄

ICJC̄
JCKC̄

K + CKC̄
ICIC̄

JCJC̄
K+

+ 4CIC̄
JCKC̄

ICJC̄
K �6CIC̄

JCJC̄
ICKC̄

K
⇤

(1.61)

S4�pt =
2⇡i

k

Z
d3xTr

⇥
CI ̄J 

JC̄I � CIC̄
I J  ̄J � 2CJ  ̄I 

JC̄I + 2CIC̄
J I ̄J+

+"IJKL 
IC̄J KC̄L � "IJKL ̄ICJ  ̄KCL

⇤
(1.62)
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where "1234 = "1234 = 1 and for the group generators we use the following relations

Tr(TATB) = �AB , [TA, TB] = ifAB
C TC (1.63)

The fields have dimensions [A] = [Â] = [Ψ] = 1, while [C] = [C̄] = 1
2
, thus the

coupling is dimensionless, making the theory classicaly conformal. The action is

invariant under the supersymmetry transformation listed in (B.1).

However, there are evidences [34] for which ABJ exist as unitary superconformal

theory only when

|N1 �N2|  |k| (1.64)

We will see a similar issue when computing the anomalous dimension of operator

insertions inside the 1/2-BPS Wilson Loop.

The presence of the action allows us to perform perturbative computations,

by means of Feynman diagrams related to Feynman rules (listed in the appendix

A.2), matching the predictions with those obtained by exact techniques. As we

will see, this is the way we get through in the topological sector. Most of the time,

exact results are difficult to obtain, especially when dealing with new systems.

Perturbation theory is then a very effective tool to probe these new configurations

and get insights on them, as we will see for operator insertions inside the fermionic

Wilson Loop.

Gravity Dual

In the special case of ABJM for k = 1, 2, the conjectured dual description is a

low-energy theory on N M2-branes at a C4/Zk singularity. ABJ can be obtained

by considering a system of N1�N2 M2-branes sitting on as C4/Zk singularity while

N2 branes are free to move.

For k > 2 instead, ABJ(M) holographic dual is a M-theory on AdS4 ⇥ S7/Zk.

The sphere S7 can be viewed as a S1-fibration over CP3,i.e. S7/Zk ' CP3⇥S1/Zk

and the radius of the one-sphere behaves as RS1 ⇠ (Nk�5)
1
6 . Thus, in the large

N limit with N � k5, namely when the radius of the one-sphere is large, the

theory is strongly coupled and the eleven-dimensional description is still valid; in

the opposite limit N ⌧ k5, the one-sphere shrinks and the effective description is

in terms of a ten-dimensional type IIA string theory in AdS4 ⇥ CP3.

Parity-like Symmetry

It is known that the C–S term breaks parity. Nevertheless, ABJM is invariant

under a parity-like transformation, realized by the reflection together the exchange

k ! �k. Having the same rank of the group, the quiver is then invariant. ABJ

is also invariant under a modified parity-like transformation. Some features of
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this transformation for ABJ have been studied in previous works in the context of

integrability [36, 37]. Parity-like (PL) transformation is a symmetry for ABJ(M)

if we simultaneously make the exchanges N1 $ N2 and k ! �k. In this case the

quiver diagram will change as in fig. 1.3. We conclude that to pass from a parity to

another, one has to be careful to exchange the barred fields with the unbarred ones.

Fig. 1.4 shows that after renaming the fields, what we obtain is just a reflection of

the initial quiver fig. 1.2. These swaps are realized on fields demanding that

(Aµ)
PL = �Âµ(x) (CI)

PL = C̄I(x) (1.65)

and viceversa. For the fermions, the transformations are defined up to a phase

�
Ψ̄↵

�PL
= !̄Ψ↵ (Ψ↵)PL = !Ψ̄↵ (1.66)

where !̄, ! are constrained by the requirement !̄! = 1. We will see how consis-

tency on the parity-like transformation on the fermionic loop will fix these con-

stants.

CI , Ψ̄
I

C̄J ,ΨJ

N2, �k N1, k ÂA

Figure 1.3: ABJ(M) quiver diagram after parity

In particular, these transformations will change the sign in the quiver-derivatives

(1.60). The Dirac term in the kinetic part of the action is invariant because in three

dimensions, there are two inequivalent choice of gamma matrices that are related

by parity �
�1, �2, �3

 P$
�
�1, �2,��3

 
(1.67)

so the product �µDµ is parity-invariant.

C̄I ,Ψ
I

CJ , Ψ̄J

N2, �k N1, k AÂ

Figure 1.4: ABJ(M) quiver diagram after parity and exchanges
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Conformal Defects and Wilson

Loops

The beauty of a theory lies in its defects.

A. Söderberg

We have seen how powerful conformal symmetry is in constraining physical observ-

ables and providing consisteny relations for them. However, real world situation

are far from being perfectly conformal. Finite size effects or the presence of bound-

aries (e.g. domain walls separating differently ordered regions) and impurities are

everyday configurations whose contributions are not negligible. In QFT, we can

describe these objects by considering the presence of a defect inside an ambient

theory (bulk). The most famous example is the Kondo problem, describing mag-

netic impurities in metals; results related to it led to important progress in the

study the renormalization group beyond the critical endpoints and in integrability

[38]. They are mostly used to describe probes and to measure the response of the

theory to the presence of the probe, e.g. fluctuations of the vacuum.

In QFT, defects are usually realized as extendend operators beside the action

S ! S +

Z
ddxO(x) (2.1)

The bulk symmetry breaking enrich the structure of correlation functions, making

them more intricate. For instance, near the defect, bulk operators can have a

non-vanishing one-point function.

Line defects represent an important class since they find applications from con-

densed matter to high energy physics1. In particular, the study of one-dimensional

1For recent studies, see [39, 40, 41, 42, 43, 44] and reference therein.

21
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defects in three dimensions plays a central role because it describes impurities in

planar systems. Moreover, a stationary impurity on a surface is represented as a

line defect along the time direction in a 2+1 manifold. Thus, we consider conformal

one-dimensional defects, on which the line conformal symmetry is preserved.

In this Chapter, we present the general approach to defects, introducing an

important operator arising near them, the displacement operator and arguing its

relation with the Bremsstrahlung function. We then turn our attention to Wilson

Loops, that represent a important realization of defects in gauge theories.

2.1 Generalities on defects

The systematic approach to defect is presented in [45]. Consider a d-dimensional

euclidean ambient space and inside it a defect of dimension p. Moreover, the defect

co-dimension is defined as q = d�p. Let’s denote with G(d) the ambient space-time

symmetry group; the defect breaks it as

G(d) ! G(p)⇥ SO(q) (2.2)

namely, we are left with the same reduced space.time symmetry group on the

defect times rotations around it. Therefore, we can split the coordinates as the

ones parallel xk and perpendicular x? to the defects.

We are interested in conformal defect: we have then G(d) = SO(1, d+ 1) that

is broken down to

SO(1, d+ 1) ! SO(1, p+ 1)⇥ SO(q) (2.3)

The field content of the theory in presence of a defect splits in two main classes:

bulk and defect operators, respectively denoted by OB and OD. Bulk operators are

those living in the ambient space, while defect operators live only on the defect. In

the bulk as well as in the defect, operators have consistent OPE. Defect operators

can carry two types of spin, which are the representations of the two groups in

(2.3).

We saw in the previous chapter that in CFT the observables are correlation

functions. Let’s see how they get modified in the presence of a defect.

The defect itself will possess a vacuum expectation value, i.e. hDi, measuring

the response of the theory at the presence of the defect. Let’s consider insertions

of m operators Oi in the bulk and n operators OD,jon the defect. Their correlation

function is defined as

hhO1 · · · OmOD,1 · · · OD,niiD =
hO1 · · · Om (OD,1 · · · OD,nD)i

hDi (2.4)
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where the part (OD,1 · · · OD,nD) means that every defect insertion is connected by

the defect, i.e.

�
OD,1(xk,1) · · · OD,n(xk,n)D

�
=

=D�1,xk,1
OD,1(xk,1)Dxk,1,xk,2

OD,2(xk,2) · · ·Dxk,n�1,xk,n
OD,n(xk,n)Dxk,n,+1

(2.5)

with the compact notation Dxk,1,xk,2
meaning the defect joining the point xk,1 and

xk,2. The set of defect correlation functions of operators on the defect are usually

referred as defect Conformal Field Theory (dCFT).

2.2 Correlation functions in the presence of defects

Since on the defect the theory is still conformal, the correlation functions between

defect operators are just as we saw in the previous chapter, just restricted on the

parallel coordinates. The only aspect to pay attention to is how to choose the

normalization of the two-point function, depending on whether there is another

global symmetry or not. The same for bulk operators very far from the defect, in

this case, there’s no splitting as in (2.3) and the theory looks perfectly conformal.

The new kind of interactions come from the correlation between bulk and defect

operators, ore when considering bulk operators near the defect.

Following [46], on the defect we have a complete basis of defect operator. When

the bulk operator is approaching the defect, the can expand it on the defect basis

O(xk, x?) =
X

∆̂

bOBOD

|x?|∆O�∆̂
OD,∆̂(xk) (2.6)

and the sum starts from ∆̂ = 0, namely the identity operator. This expansion is

called Boundary Operator Expansion (BOE).

The first effect of the BOE is that one-point function of bulk operator are no

more vanishing near the defect, i.e. they acquire a non-trivial VEV since

hO(xk, x?)i =
X

∆̂

bOBOD

|x?|∆O�∆̂
hOD,∆̂(xk)i (2.7)

the only term contributing is the first coming from the identity (the term corre-

sponding to ∆̂ = 0), so

hOi = bO1

|x?|∆O

(2.8)

and can only be function of the distance from the defect. Eq. (2.8) is the manifes-

tation of the broken translation near the defect. It is manifestly divergent as the

bulk-operator get closer and closer to the defect.
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OB
=

�1

�2

�1

�2

OD

Figure 2.1: Crossing symmetry near the defect.

The BOE controls also the 2-point function between a bulk operator and a

defect one

hO(xk,1, x?)OD,n(xk,2)i =
X

∆̂m

bOBOD,m

|x?|∆O�∆̂m

hOD,m(xk,1)OD,n(xk,2)i (2.9)

and from the defect two-point function we obtain

hO(xk,1, x?)OD,n(xk,2)i =
bOOD

|x?|∆�∆̂n |xk,12|2∆n

(2.10)

2.2.1 Two-point function of bulk operators near the defect

Near the defect, the two-point function of two bulk operators is no more completely

fixed by conformal invariance. Indeed, we can expand the operators using BOE

hO1O2i =
X

∆̂1, ∆̂2

bO1OD,m
bO2OD,n

|x?,1|∆1�∆̂m |x?,2|∆2�∆̂n

hOD,mOD,ni (2.11)

and exploiting the two-point function we have

hO1O2i =
X

∆̂

bO1OD,n
bO2OD,n

|xk,12|
�2∆̂n

|x?,1|∆1�∆̂n |x?,2|∆2�∆̂n

(2.12)

As for the OPE coefficient, the BOE coefficients depend on coordinates and deriva-

tives (i.e. contain descendants contributions), and in general we can denote it as a

function f12(⇠, cos�) of two defect cross-ratios

⇠ =
x2
k,12

|x?,1| |x?,2|
cos� =

⇠

⇠ + 1
(2.13)

The function f12 is constrained by a crossig symmetry similar to the one leading to

the bootstrap equation and it’s depicted in fig. 2.1, where its l.h.s. is the graphical

representation of the expansion (2.11). The r.h.s. means to take the bulk OPE

and then expanding using BOE. We can phrase the crossing symmetry as

defect OPE �BOE = BOE � bulk OPE (2.14)
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So take the bulk OPE, as (1.18)

hO1O2i =
X

∆

C∆(x, @) hO∆i =
X

∆

C∆(x, @)bO∆1̂

|x?|∆
(2.15)

Equating (2.12) and (2.15) we obtain the defect bootstrap equation, giving con-

straints in both OPE and BOE coefficient [47]. Of course, on the defect there will

be a conformal bootstrap equation relating the defect OPE coefficients.

Displacement operator

The presence of the defect will break the translational invariance. As usual, the

breaking of symmetry gives rise to new operators. In this case, the breaking of the

translation is encoded in the non-conservation of the stress-energy tensor

@µT
µi = �p(x� xD)D

i (2.16)

where the index i represents coordinates transverse to the defect. The object D

is called Displacement operator and it measures the response of the defect under

small deformation of its shape. The delta function means that the stress-energy

conservation is broken on the defect.

2.3 Wilson Loops

Wilson Loops were introduced [48] in the context of QCD trying to explain the

confinement of quarks at low energies. Due to the nature of the strong interaction,

we can not see single quarks at low energies. It is possible at high energies, thanks

to the asymptotic freedom, where perturbation theory is viable. Moreover, Wilson

Loops are considered as the order parameter between the confined and free phases.

They are the most general gauge-invariant observables and they can be defined in

any gauge theory.

The Wilson Loop represents the phase factor picked up by a charge moving in

an external potential. It is realized as the holonomy of the gauge connection

WC =
1

dimR

TrRPexp

✓
i�

I

C

dxµAµ(x)

◆
(2.17)

where R is the representation of the gauge group and � the coupling of the theory.

The Pexp is the Path-ordered exponential, whose series expansion is

1 + i�

Z
d⌧ ẋµAµ � �2

Z
d⌧1

Z ⌧1

d⌧2ẋ
µ
1 ẋ

⌫
2Aµ(x1)A⌫(x2) + . . . (2.18)

provided that ⌧1 > ⌧2. It’s well know how to use the Wilson Loop to describe quark-

antiquark potential [49, 50]. Moreover, Wilson Loops, together with correlation

functions of operators inserted in them, provide a natural example of dCFT.
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2.3.1 Supersymmetric Wilson Loops

Wilson Loops can be defined in supersymmetric gauge theories as well. The super-

symmetry condition requires a modified version of the gauge connection, including

the presence of other fields to make the object SUSY-invariant. Here, as an exam-

ple, we follow the construction of the Maldacena-Wilson Loop in N = 4 SYM [51].

It is defined as

WC =
1

dimR

TrR P exp

I

C

d⌧
�
iẋµAµ + |ẋ| ✓I�

I
��

(2.19)

where ⌧ is the parameter of the curve xµ(⌧) and ✓I , I = 1, . . . , 6 is a unit vector on

the 5-sphere, specifying which scalars enter in the new connection. The amount of

supersymmetry preserved by the loop (2.19) depends on the shape of the contour

[52]:

• for the most general contour lying in R4, the Wilson Loop preserves 1/16 of

the supercharges (1/6-BPS);

• if it lies in a three-dimensional subspace, e.g. a R3 time slice at x0 = 0, the

amount of supercharges preserved are doubled, i.e. 1/8 of the total number

(1/8-BPS);

• if the contour lies on a plane, then the supersymmetry is enhanced to 1/4

supercharges preserved (1/4-BPS);

• the highest number of supercharged preserved is for line contour, thus 1/2-

BPS.

In [53, 54] they studied Wilson Loop on S3, called DGRT-loop. Their construction

is similar to the one in flat space, but the expectation values are usually more

involved functions of the couplings and the preserved supersymmetries are usually

combinations of Poincaré and conformal supercharges.

2.4 Wilson Loops In ABJ(M)

In this section, we present the main character of this thesis, the 1/2-BPS Wilson

Loop inside ABJ(M). The gauge structure of ABJ(M) gives rise to a variety of

loops: the straightforward generalization of (2.19) in this case turns out to be less

supersymmetric than its counterpart. To find a maximal supersymmetric object,

the gauge quiver has to be augmented to a supergroup, forcing the superconnection

to be a supermatrix including fermions, whilst relaxing the supersymmetry condi-

tion to a supergauge transformation. In what follows, we will restrict ourselves to

the maximum supersymmetric case, the infinite straight line (or the circle).
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2.4.1 1/6-BPS "Bosonic" Loops

Since in ABJ(M) we have two different gauge groups, the simplest thing to do is

to generalize the Maldacena-Wilson Loop (2.19) for each gauge field. In ABJ(M),

scalar fields live in the bifundamental representation of the gauge group. But the

product of two scalars fields live in the adjoint representation of one of the two

gauge groups, depending on the product order, namely

CIC̄
J ! adjoint of U(N1)k (2.20)

C̄ICJ ! adjoint of U(N2)�k (2.21)

such that we can from two types of loops

WC =
1

dimR

TrR P exp

Z

C

d⌧

✓
iẋµAµ +

2⇡|ẋ|

k
M I

J CIC̄
J

◆�
(2.22)

and

cWC =
1

dimR

TrR P exp

Z

C

d⌧

✓
iẋµÂµ +

2⇡|ẋ|

k
cM J

I C̄IC
J

◆�
(2.23)

and requiring them to be supersymmetric fixes the shape of the scalar coupling

matrices [55]

M I
J = cM J

I = diag(�1, 1,�1, 1) (2.24)

while highlighting that these operators preserve only 1/6 of the supercharges.

In the dual theory, the most supersymmetric object is a classical string pre-

serving half of the supercharges. Therefore, there should be an analog object in

the gauge theory.

2.4.2 1/2-BPS "Fermionic" Loops

In order to find the loop that preserves half of the supercharges, we have to add

fermions, from this the name fermionic loop. The only way to fit the gauge struc-

ture and the requirement of scaling dimension to be one is to pack everything in a

superconnection written in a supermatrix form [56]:

L =

0
@Aµẋ

µ � 2⇡i
k
|ẋ|M I

JCIC̄
J i

q
2⇡
k
|ẋ| ⌘Ψ̄

�i
q

2⇡
k
|ẋ|Ψ⌘̄ Âµẋ

µ � 2⇡i
k
|ẋ|M J

I C̄JCI

1
A (2.25)

where the fermionic couplings ⌘, ⌘̄ are even spinors. The susy condition has to be

relaxed to a weaker form2

�SUSYL = D⌧G = @⌧G+ i [L, G} (2.26)

2Imposing δSUSY L = 0 will lead us to the bosonic loops, i.e. η = η̄ = 0.
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where D is the covariant derivative on the loop:

D = @ + i [L, ·} (2.27)

and [·, ·} is the supercommutator as defined in (D.5). The 1/2-BPS Wilson Loop

then is defined as

WC = sTrP exp

✓
�i

I

C

ds L

◆
(2.28)

Note that when dealing with supergroups, the supertrace is the one invariant under

similitude transformation. The minus sign in front of the integral is dictated by

gauge covariance. However, for closed loops, there are boundary conditions to take

care of. In the circle case, we have anti-periodic boundary conditions, making the

loop gauge-invariant only when taking its trace. On the other hand, for infinite

straight circuits, i.e. the infinite line, we can choose the fields to vanish at the

infinity, giving us the freedom to choose either the trace or the supertrace, and

the result will still be gauge invariant. In the following, since line and circle are

conformally equivalent, we will choose the trace.

SUSY condition (2.26) fixes the form of the scalar coupling matrix to be [57]

M J
I = `

0
BBB@

�1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1
CCCA (2.29)

where ` can be ±1, and gives constraints to the fermionic couplings

��↵ =
1

2i
(⌘� ⌘̄↵ � ⌘↵⌘̄

�) (ẋ · �)↵
� =

`

2i
|ẋ|(⌘� ⌘̄↵ + ⌘↵⌘̄

�) (2.30)

The choice of the free parameter ` seems to be related to the parity-like symmetry

of ABJ(M).

Moreover, the fermionic loop share with the bosonic ones all the conserved

supercharges. Thus, the difference between the two types of loops can be related

to an action of a linear combination of the common supercharges on an object V

such that [56]

W1/2 �
⇣
W1/6 +cW1/6

⌘
= Q V (2.31)

Thus, Q-exact terms do not contribute to correlation functions. Then, the expec-

tation value of the loops are equal

hW1/2i = hW1/6i+ hcW1/6i (2.32)

2.4.3 More general contours

We saw for the Maldacena-Wilson loop that the choice of the contour is crucial in

determining the number of supersymmetry preserved by the loop. Here we want

to present some other configurations that have been studied.
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Latitude

Latitude Wilson Loops in ABJ(M) are the cousins of DGRT-loop in four dimen-

sions. They are defined on the sphere S2, characterized by non-constant couplings,

depending on an internal angle that specifies the latitude on the sphere [57]. For

the special value of ↵ = 0, namely the great circle or equator of the sphere, we

recover the usual Wilson Loop defined on the circle. For ↵ 6= 0, these new loops

preserve a reduced number of supercharges, usually half of the amount preserved

on the respective great circle, so that we have the bosonic latitude to be 1/12-BPS,

whilst the fermionic one is 1/4-BPS. A cohomological relation between fermionic

and bosonic loops as (3.26) holds for the latitudes as well [58].

Latitude Wilson Loops has been studied intensively in three dimension [59, 60],

four dimensions [61, 62] and even for more complicated geometry, like the squashed

sphere[63, 64].

Cusp

Another interesting contour configuration is the cusp. It is realized as two infi-

nite lines connecting in the origin, forming an angle between them. The cusp has

two more parameters, namely the angle ' between the two lines and the inter-

nal angle ✓ specifying the difference between the couplings on the different lines.

This configuration globally breaks all the supersymmetries, while preserving half

of them on the separate lines. The small angles limit has to reproduce the infinite

straight line. In the next section we see why the cusp Wilson Loop is related to

the Bremstrahlung function.

2.5 The Bremsstrahlung function

Wilson Loops usually describe the motion of heavy charged particles in an external

fields. It is very well known that an accelerated charge emits radiation, and the

process takes the name of Bremsstrahlung. The emitted radiation is controlled by

the Bremmstrahlung function, and it is the main physical observable in the context

of conformal gauge theories. It can be defined in the following way [65]

∆E = 2⇡B

Z
dt (v̇)2 (2.33)

for a slow moving heavy quark. In particular, for N = 4 SYM the Bremmstrahlung

can be computed exactly, combining perturbative and non-perturbative methods

[65]. The Bremsstrahlung function usually appears in the following situations:
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• it is the coefficient of the small angle limit of the cusp anomalous dimension

Γcusp(g,�, ✓) = �B(g)
�
�2 � ✓2

�
(2.34)

where � is the angle between the two lines forming the cusp and ✓ is the

internal couplings angle [66, 67, 68, 69];

• it can be computed as the derivative of the logarithm of the latitude WL vev

w.r.t. the latitude parameter ⌫, at ⌫ = 1 [60, 58]

B1/2(�) =
1

4⇡2
@⌫ log hWF (⌫)i

����
⌫=0

(2.35)

• it is the coefficient of the two-point correlation function of the Displacement

operator in the dCFT living on the Wilson Loop [70, 71, 72]

hD(x1)D(x2)i ⇠
B1/2(�)

x4
12

(2.36)

since there are evidences that this quantity is related to the one point-function

of the bulk stress-energy tensor [45]. Indeed, the displacement operator mea-

sure the response of the Wilson Loop under deformation of the contour, that

has to be under emitted energy.

On the last point, since the displacement operator presence is due to a broken

symmetry, we expect it is a protected operator. Thus, its correlation functions

should be free from divergences, thus allowing us to compute the Bremmstrahlung

function and its correction by perturbation theory. In the last chapter of this thesis

we will check the finiteness at 1-loop for the fermionic Wilson Loop.

The Bremsstrahlung function is known exactly in four dimensions for N = 2

theories [73] and for N = 4 SYM [65]. In ABJ(M), although we have many results

both at weak at strong coupling, an exact derivation is still missing. Recently,

in [74], it has been conjectured an exact form for the interpolating function of

ABJ(M), governing the behavior of the Bremsstrahlung function as well.
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The topological sector

You can recognize truth by its beauty and simplicity.

R. P. Feynman

Combining supersymmetric localization [75, 76] with bootstrap techniques has

made analytic computations in SCFTs possible, as shown for example in [77, 78,

79, 80, 81, 82, 83]. In these advances, a pivotal role has been played by topological

sectors, consisting of a completely solvable set of correlation functions in a given

SCFT. Their existence allows the extraction of useful information regarding the

quantum theory, like OPE coefficients, numerical bounds on the spectrum exploit-

ing bootstrap techniques, coefficients of Witten diagrams in the AdS duals, or the

computation of exact quantities interpolating between strong and weak couplings

regimes. A prototypical example of the topological sector appears in N = 4 SYM

in four dimensions [54, 84, 85]. In three dimensions, general properties of the su-

perconformal algebra suggest that SCFTs with N � 4 always contain a topological

sector [78, 86].

In this light, the topological sector can represent a solvable truncation of the

bootstrap equation [3]. In particular, the topological sector has played a notable

role in performing a precision study of maximally supersymmetric (N = 8) SCFTs

through conformal bootstrap, allowing to compute exactly some OPE data and

constraining regions in the parameter space [78, 82, 83]. At the same time, it has

been instrumental in fixing contributions to the scattering amplitudes of super-

gravitons in M-theory in eleven dimensions [87].

In ABJ(M), the Chern-Simons term prevents us to build a one-dimensional ac-

tion for the topological sector: we found that twisting conformal symmetry with

R-symmetry will produce a cohomological relation satisfied by topological opera-

tors. The shape of the symmetries allows us to twist only a one-dimensional sector

35
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of the theory.

In this chapter we describe in detail the twisting procedure to build the topo-

logical sector, finding the selections rules on the Dynkin labels, and identifying the

supermultiplets involved. We provide a field realization of the superprimary op-

erator, generalizing it to higher-dimensional operators. We compute the quantum

correction to the two-point function, by means of Feynman diagrams regulated

by dimensional reduction scheme. We then present the evaluation of the inte-

grated two-point function and the central charge cT at weak coupling from the

mass-deformed matrix-model, comparing the results to the one obtained by per-

turbation theory.

3.1 Twist

In general, a twist is an identification of two isomorphic groups. The idea is to

define a sub-sector of operators under this new symmetry group (made out from

a combination of the original groups) for which correlation functions are easier to

study. We start with an example and then generalize it to our case.

3.1.1 Chiral ring twist

We know that in CFT, and in SCFT too, a central role is played by correlation

function. In particular, theories are fully determined once we specify the conformal

data, encoded in the coefficient of the 2- and 3-pt functions. Although giving the

complete set of conformal data is a somehow hard task, being the set of correlators

infinite, it legit to try to restrict the problem to sub-sectors of the theory, finding

classes of operators that transform in a particular way under the symmetries of

the theory.

In SCFT, we can exploit supersymmetry to find a class of operators called chiral

ring : it is formed by operators annihilated by a certain number of supercharges

[Q↵,O] = 0 (3.1)

Operators in the chiral ring have position-independent correlation functions. More-

over, they are identically vanishing, due to the fact that the superconformal algebra

forces the R-symmetry charge to be proportional to the scaling dimension. Since

the scaling dimension is always positive for unitary theories, the total R-symmetry

charge will not be zero, forcing the correlation functions to vanish identically.

But this is not a trivial sectors as at first sight. Troubles come from not having

a singlet under the R-symmetry [78]. Then the key idea is to find a combination

of translation plus R-symmetry rotations that are exact under a new supercharge
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Q, Q2 = 0. The new supercharge will define a class of operators at the origin, and

the new supertranslation will keep this class unaffected. In particular, we will find,

together with the exact generators P̂ , some Q-closed generators P̃ , such that

Ô(x̃, x̂) = eix̃iP̃
i+ix̂j P̂

j

Ô(0)e�ix̃iP̃
i�ix̂j P̂

j

(3.2)

is in the same class of Ô, provided that
h
Q, Ô(0)

i
= 0. Correlation functions then

hÔ1(x̃1, x̂1) · · · Ôn(x̃,x̂n)i = f (x̃1, . . . , x̃n) (3.3)

will be function only of the Q-closed coordinates; in this sense can be viewed as a

lower dimensional theory.

This procedure seems a bit abstract now, but it will be clear in all details when

applied to the ABJM case.

3.1.2 Twisting the line in ABJ(M)

We want to restrict to the line along the third dimension, parametrized by xµ =

0, 0, s, s 2 (�1,1) being its proper time. The conformal group on the line is

su(1, 1), with generators

P = iP3 K = iK3 D (3.4)

satisfying the following algebra

[D,P ] = P [D,K] = �K [P,K] = �2D (3.5)

The set of the fermionic supercharges generating the z-line are

Q12
1 , Q13

1 , Q14
1 , Q23

2 , Q24
2 , Q34

2 (3.6)

together with the superconformal charges

S12
1 , S13

1 , S14
1 , S23

2 , S24
2 , S34

2 (3.7)

It’s useful to notice that these supercharges can be reorganized in a SU(3) invariant

form as
Qk�1 = Q1k

1 Q̄k�1 =
i
2
"klmQ

lm
2

Sk�1 = iS1k
1 S̄k�1 =

1
2
"klmS

lm
2

k, l, m = 2, 3, 4 (3.8)

and renaming the SU(3) index as a = k � 1 such that a runs from 1 to 3. In the

appendix B.2 we list all the commutation relations defining this one-dimensional

superconformal algebra. The number of the supercharges to generate the line it’s

half of the total ABJM supercharges, thus the line is 1/2-BPS.
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It becomes natural then to split the R-symmetry in a su(3) subalgebra generated

by

R b
a =

0
BBB@

J 2
2 + 1

3
J 1
1 J 3

2 J 4
2

J 2
3 J 3

3 + 1
3
J 1
1 J 4

3

J 2
4 J 3

4 �J 3
3 � J 2

2 � 2
3
J 1
1

1
CCCA (3.9)

satisfying the algebraic relation

[Ra
b, Rc

d] = �daRc
b � �bcRa

d (3.10)

There is still a residual u(1) generator M left, defined as

M ⌘ 3iM12 � 2J1
1 (3.11)

The superconformal algebra preserved by this line is a su(1, 1|3)� u(1)b inside

the original osp(6|4) of ABJ(M). We have already seen the commutation relations

for osp(6|4) in Section 1.3.1. The conventions for the su(1, 1|3) superalgebra are

listed in Appendix B.2. In the latter, we also specify our choice for the embedding

of the preserved superalgebra inside osp(6|4). From the shape of the preserved

subalgebra, it is convenient to reorganize the scalars CI , C̄
I and the fermions  I ,  ̄

I ,

I = 1, 2, 3, 4 in irreducible representations of SU(3); we split them as

CI = (Z, Ya) C̄I = (Z̄, Ȳ a)  I = ( ,�a)  ̄I = ( ̄, �̄a) a = 1, 2, 3

(3.12)

where Ya(Ȳ
a),�a(�̄

a) belong to the 3(3̄) of SU(3), while Z, Z̄, ,  ̄ are SU(3)-

singlets. Gauge fields split according to the new spacetime symmetry as

Aµ =(A ⌘ A1 � iA2, Ā ⌘ A1 + iA2, A3)

Âµ =(Â ⌘ Â1 � iÂ2,
ˆ̄A ⌘ Â1 + iÂ2, Â3)

(3.13)

together with the corresponding covariant derivatives (see their definition in (1.60))

Dµ = (D ⌘ D1 � iD2, D̄ ⌘ D1 + iD2, D3) (3.14)

The R-symmetry group is still bigger than the conformal line group. In order

to perform the twist, we need the groups to be isomorphic. We can choose a

su(1, 1) ' su(2) inside su(3)

su(1, 1) '
⇢
R+ = iR 1

3 , R� = iR 3
1 , R0 =

1

2

�
R 1

1 �R 3
3

��
(3.15)

satisfying the algebra

[R0,R±] = ±R± [R+,R�] = �2R0 (3.16)
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coming along with a u(1) generator 1
2
(R 1

1 +R 3
3 ) that commutes with every gen-

erators in (3.15).

The twisting is defined as the diagonal sum of the generators of the two subal-

gebras

bsu(1, 1) =
n
L̂+ = P +R+, L̂� = K +R�, L̂0 = D +R0

o
(3.17)

and it is easy to see that they respect the algebra

h
L̂0, L̂±

i
= ±L̂±

h
L̂+, L̂�

i
= �2L̂0 (3.18)

Under this new group, the supercharges Q3, S1 together with their hermitian

conjugates become scalars, i.e.

h
L̂0, Q

3
i
= 0 =

h
L̂0, S

1
i

(3.19)

We can use them to define two new nihilpotent supercharges

Q1 = Q3 + iS1 Q2 = S̄3 + iQ̄1 Q2
1 = Q2

2 = 0 (3.20)

such that the generators (3.17) are Q-exact in both supercharges

L̂+ =
�
Q1, Q̄3

 
= �i

�
Q2, Q

1
 

L̂� =
�
Q2, S̄1

 
= �i

�
Q1, S

3
 

L̂0 =
1

2

n
Q1,Q

†
1

o
=

1

2

n
Q2,Q

†
2

o (3.21)

The central extension of the superalgebra spanned by
n
L̂±, L̂0,Q1,2

o
is given by

Z =
1

4
{Q1,Q2} =

1

3
M � 1

2

�
R 1

1 +R 3
3

�
(3.22)

where M is the super-rotational generator defined in (3.11).

We can use these two new supercharge to define a new class of operators,

those annihilated by one of them, or a combination. We will denote with Q the

supercharge used for the cohomology. The new class of operators is defined as

[Q,O(s)} = 0 provided that O(s) 6= [Q,O0(s)} (3.23)

where s is the coordinate along the third direction. Since the twisted translation

operator L̂+ is Q-exact, we can focus on operators placed in the origin. Indeed,

the translation

O(s) = eisL̂+O(0)e�isL̂+ (3.24)

will not change the cohomology class.
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Let’s see the operator content of this class. The condition (3.23) gives two

strong constraint on the quantum numbers. In the appendix B.2.1, we describe

the choice of quantum numbers; just to recap, in our case it is convenient to choose

labels as |∆,m, j1, j2i, where ∆ is the dilatation eigenvalue, m the eigenvalue of

M and j1,2 are the su(3) Dynkin labels.

Since L̂0 and Z commute, condition (3.23) only allows the eigenvalues to be

zero. Written in term of our labels, the two conditions read

ˆ̀
0 = ∆� j1 + j2

2
= 0 z =

1

3

✓
m� j2 � j1

2

◆
= 0 (3.25)

then operators in our cohomology have quantum numbers related by

∆ =
j1 + j2

2
m =

j2 � j1
2

(3.26)

The long multiplet A∆

m;j1,j2
satisfies (3.26) only at the unitary threshold. There-

fore, the superconformal primaries of the A multiplets at the threshold certainly

belong to the cohomology of Q. However, at the threshold, the long multiplet

recombines into short multiplets according to the decomposition (B.24). Looking

closer, the topological operators are actually the highest weight operators of the

short multiplets B
1
6
, 1
6

j2�j1
2

;j1,j2
in (B.24)1.

For the short multiplet case, the shortening condition (B.30) together with

(3.26) are always satisfied by the superprimaries of B
1
6
,0

j2�j1
2

;j1,j2
and B

0, 1
6

j2�j1
2

;j1,j2
, for

generic values of j1 and j2.

Field realization

The conditions (3.26) give us a straightforward method to build the operators in

the cohomology starting from the ABJM fields. The lowest dimensional local,

gauge invariant operator is build as a product of two scalar field. If we take, in the

origin, the couple Y1 and Ȳ 3, our selection rules are matched. Define

O(0) = Tr
⇥
Y1(0)Ȳ

3(0)
⇤

(3.27)

mathcing (3.26) with eigenvalues [1, 0, 1, 1]. Using (3.24) to translate it to a general

point s on the line, we can rewrite the result in a compact form, by introducing

position dependent R-symmetry polarization vectors

O(s) = Tr
⇥
Ya(s)Ȳ

b(s)
⇤
ūa(s)vb(s), ūa = (1, 0, s) , vb = (�s, 0, 1) (3.28)

1No other topological operator arises from the descendants of B multiplets in decomposition

(B.24). More details can be found in [78, 35].
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Higher dimensional operators and OPE

In general, we can build an operator inside the cohomology with dimension ∆ = n

just taking the product ofn couple of Y, Ȳ :

On(0) = Tr
⇥
Y1(0)Ȳ

3(0) . . . Y1(0)Ȳ
3(0)

⇤
(3.29)

and using (3.24), expanding the exponential at the right order, we will get the same

as (3.28) with n ūs and vs. Moreover, multi-trace operators build from traces of

the form (3.29) will still lie in the same cohomology class.

We can generalize this procedure in two cases: single-trace Õ and a multi-trace
bO

ÕJ(s) = Tr
h�
ūa(s)vb(s)Ya(s)Ȳ

b(s)
�Ji bOJ(s) =

�
Tr
⇥
ūa(s)vb(s)Ya(s)Ȳ

b(s)
⇤�J

(3.30)

In Õ we take the trace after the product oj J couples of Y Ȳ , while bO is the product

of J different traces. It is easy to check they are still topological operators. When

J = 1, they both reduce to (3.28), so we consider only J > 1. It is very instructive

to take a look the following three-point function

hO(s1)O(s2)ÕJ(s3)i (3.31)

For J = 1, it reduce to a three-point function of three topological operator, and we

know it vanishes. For J = 2, it doesn’t vanish, and for J > 2 it vanishes again. The

same happens for the multi-trace operator. In general, if we consider the arbitrary

three-point function

hÕJ1(s1)ÕJ2(s2)ÕJ3(s3)i J3 > J1, J2 (3.32)

we can see that can only be non vanishing if2 J1 + J2 = J3. Indeed, if we expand

Õ∆1Õ∆2 with OPE

Õ∆1Õ∆2 ⇠
X

k

1

sk

⇣
Õ∆ + bO∆

⌘
(3.33)

we see that the only operators that can enter in the OPE for topological operators

are those with k = 0 and for the constraint (1.19) we have

∆ = ∆1 +∆2 (3.34)

This is an example of truncation of the OPE series since only two operators enter

in the expansion of OO. It would be interesting to understand how this truncation

affects the bootstrap equation.

2 A similar condition has been found using general superspace arguments [35]
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3.2 Correlation functions and quantum corrections

So far we have defined a new class of operators exploiting the twisting procedure.

To further investigate the properties of this class, we have to study the correla-

tion functions between operators in the class. In this section, we will do it using

perturbation theory. We will then compare the results with the ones obtained via

localization.

The perturbative computation are done expanding the Euclidean path integral

in powers of the coupling constant k�1

hO1(s1) · · · On(sn)i =
Z

[DΦ]O1(s1) · · · On(sn) e
�SABJ(M) (3.35)

where SABJ(M) is the action of ABJ(M), whose explicit expression is given in 1.56,

and then performing all possible fields contractions, using Feyman rules listed in

appendix A.2.

From the tree level we see already it is topological. Using Feynman rule (A.16)

we have

hūavb Tr
⇥
YaȲ

b
⇤
Tr
⇥
Y1Ȳ

3
⇤
i(0) = �N1N2

(4⇡)2
(3.36)

The space-time dependence cancellation comes from the fact that the contrac-

tion of the polarization vectors is identical to the world-line dependence at the

propagator denominator.

The three-point function is always vanishing, while the four-point function

hO(z)O(t)O(s)O(0)i(0) = 2
N1N2

(4⇡)4
(3.37)

In computing the one-loop correction, the only non-a-priori vanishing diagrams

are those in figure (3.1). Those contribution will eventually all be proportional to

the integral Z
d3xd3y

"µ⌫⇢ x
µy⌫ (x� y)⇢

|s� x||s� y|(x� y)3x3y3
(3.38)

that vanishes since the tensor contraction

"µ⌫⇢ x
µy⌫(x� y)⇢ = 0 (3.39)

So the one-loop correction is always vanishing for 2-, 3- and 4-point correlation

functions of the topological operators.

The first non-vanishing correction comes at two loops. We have performed

these computations only for the two-point function and the diagrams involved are

drawn in fig. 3.2. The corresponding integrals are evaluated in momentum space,

using the DRED scheme [88, 89] in d = 3 � 2", introducing a mass scale µ to

correct the coupling constant.
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(a) (b) (c) (d)

Figure 3.1: Topologies of one-loop diagrams contributing to the correlators.

The integral can be evaluated both using uniqueness method [90] or exploiting

master integrals [91]3. Here we list the results obtained with the second approach,

while in [5] we have presented the first method. The results for each diagram are

(3.2(a)) =
N1N2

128⇡2

|µs|8"

k2


N2

1 + 4N1N2 +N2
2 � 6

"
+ (3�)

�
N2

1 + 4N1N2 +N2
2 � 6

�

� log
�
256⇡3

� �
N2

1 + 4N1N2 +N2
2

�
+ ⇡2N2

1 � 6N2
1 + ⇡2(4N1N2)

� (88N1)N2 � 6N2
2 + ⇡2N2

2 � 6⇡2 + 100 + 48 log(2) + 18 log(⇡) +O
�
"1
�⇤

(3.40)

(3.2(b)) =
N1N2|µs|

8"

k2

(⇡2 � 12) (N1N2 � 1)

16⇡2
+O

�
"1
�

(3.41)

(3.2(c)) = �N1N2|µs|
8"

k2

N2
1 � (4N1)N2 +N2

2 + 2

128⇡2"
(3.42)

�
�
3� � 2 + log

�
1

256⇡3

��
(N2

1 � (4N1)N2 +N2
2 + 2)

128⇡2
+O

�
"1
�

(3.43)

(3.2(e)) =
N1N2|µs|

8"

k2

(5⇡2 � 48) (N1N2 � 1)

96⇡2
+O

�
"1
�

(3.44)

(3.2(f)) = �N1N2|µs|
8"

k2

N1N2 � 1

16⇡2"
�
�
3� � 2 + log

�
1

256⇡3

��
(N1N2 � 1)

16⇡2
+O

�
"1
�

(3.45)

(3.2(g)) =
N1N2|µs|

8"

k2

(⇡2 � 12) (N2
1 � (4N1)N2 +N2

2 + 2)

128⇡2
+O

�
"1
�

(3.46)

(3.2(j)) = �N1N2|µs|
8"

k2

(⇡2 � 12) (N1N2 � 1)

48⇡2
+O

�
"1
�

(3.47)

(3.2(k)) = �N1N2|µs|
8"

k2

(⇡2 � 12) (N2
1 +N2

2 � 2)

192⇡2
+O

�
"1
�

(3.48)

(3.2(l)) =
N1N2|µs|

8"

k2

1

64
(N1 �N2)

2 +O
�
"1
�

(3.49)

Summing all the partial contributions the divergences nicely cancel out and with

end up with a finite correction

hO(s)O(0)i(2) = �N1N2

96 k2

�
N2

1 +N2
2 � 2

�
+O

�
"1
�

(3.50)

3The master integrals method presented in [91] are for large N computations in ABJM. We have

modified the expressions and found the final result coincides with the uniqueness computations.
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2

(a)

1

(b) (c)

(d) (e) (f) (g)

(h) (i) (j)

(k) (l)

Figure 3.2: Two-loop diagrams for the two-point function. In (a) the white circle

is the two-loop correction to the scalar propagator, while in (b) the circle is the

one-loop correction to the gauge field propagator. Diagrams (h), (i), (j) and (k)

sum up to provide the vertex correction.

Since all the divergences cancel out, we can safely take the limit " ! 0 without

worrying to possible scale dependent logarithm that could spoil the topologicity:

they will always be produced at order " and they are negligible in the limit we are

interested in. The full 2-pt function read

hO(s)O(0)i = �N1N2

(4⇡)2

✓
1� ⇡2

6k2

�
N2

1 +N2
2 � 2

�◆
+ o(k�3) (3.51)

showing that the topological nature of the operators is preserved even at quantum

level.
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3.2.1 Central charge of ABJ(M) at weak coupling

Deforming the original SCFT by mass parameters ma and localizing it on S3 leads

to a deformed MM which can be computed exactly in the large N limit []. On

the other hand, this is equivalent to add to the one-dimensional Gaussian model

mass terms for the fundamental (bosonic and fermionic) fields J a, of the form

�4⇡r2ma
R ⇡

�⇡
d⌧ J a(⌧) [92]. Therefore, taking derivatives of the MM on S3 respect

to the mass parameters ma provides integrated correlation functions of topolog-

ically twisted operators living on the great circle. Precisely, the crucial identity

reads [82, 93]
D R ⇡

�⇡
d⌧1 . . .

R ⇡

�⇡
d⌧n J

a1(⌧1) . . .J
an(⌧n)

E
= 1

(4⇡r2)n
1
Z

@n

@ma1 ...@man
Z[S3,ma]

���
ma=0

(3.52)

where Z[S3,ma] is the partition function of the deformed theory on S3 and r is the

radius of the sphere. Since the topological correlators are position independent, the

integrals on the l.h.s. can be trivially performed leading to a constant factor (2⇡)n

times the correlator. Therefore, (3.52) provides an exact prescription for computing

correlators in the one-dimensional topological sector in terms of the derivatives of

the deformed MM of the three-dimensional theory. Read in the opposite direction,

it allows to reconstruct the exact partition function of the three-dimensional theory

on the sphere once we have solved the one-dimensional topological theory, i.e. we

know exactly all its correlators.

On the other hand, as proved in [94], cT can be independently computed from

the mass deformed Matrix Model on S3 as4

cT = �64

⇡2

d2

dm2
logZ[S3,m]

���
m=0

(3.53)

Therefore, the consistency of the two independent results for cT – the one obtained

from the topological correlator and the one from (3.53) – represents an alternative

way to prove the validity of (3.52), at least for n = 2. For the N = 8 theories this

has been discussed in details in [82].

In [93], the above ABJ(M) mass deformed matrix model has been used to fix

some coefficient in Witten Diagrams computations of four-point functions at strong

coupling. Derivatives with respect to the two massive deformation parameters give

integrated correlation functions of operators sitting in the stress-energy supermul-

tiplet, whose explicit form is

O J
I (x) = Tr

⇥
CI(x)C̄

J(x)
⇤
� 1

4
� J
I Tr

⇥
CK(x)C̄

K(x)
⇤

(3.54)

4We recall that an alternative prescription, which holds for any N � 2 SCFT, amounts

to placing the theory on the squashed sphere S3

b
, where b is the squashing parameter. It then

follows that the central charge is given by the second derivative of the free energy in the squashed

background w.r.t. to b [95].
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Exploiting Ward Identities, we can relate the two-point function of (3.54) with the

one of the stress-energy tensor, obtaining

hO J
I O L

K i = cT
16

✓
� L
I � J

K � 1

4
� J
I � L

K

◆
1

16⇡2x2
12

(3.55)

where cT is the central cherge of the theory.

If we write the topological operator (3.28) in SU(4) formalism, we have

O(s) = Tr
⇥
CI(0, 0, s)C̄

J(0, 0, s)
⇤ ¯U I(0, 0, s)VJ(0, 0, s) (3.56)

where

Ū I = (0, 1, 0, s) VJ = (0,�s, 0, 1) (3.57)

we can relate the central charge to the two-point function of the topological op-

erator, just by projecting (3.55) on the line (0, 0, s) and multiplying it by the

polarization vectors Ū I(s)VJ(s)Ū
K(0)VL(0), such that

cT = �64(2⇡)2 hO(s)O(0)i (3.58)

Inserting our result (3.51), we can easily obtain the correction to the ABJ(M)

central charge

cT = 16N1N2

✓
1� ⇡2

6k2

�
N2

1 +N2
2 � 2

�
+ o(k�3)

◆
(3.59)

The above formula is valid for finite values of the gauge group ranks. Note that it

is invariant under the ABJ parity-like symmetry. At tree-level, it reproduces the

central charge correct value for a free theory of 4(N1N2) chiral multiplets. In the

specific case of ABJM with N1 = N2 = 2, the result matches with the two-loop

approximation found in [77].

Since the topological operators O(⌧) are related to (3.54) and localized on the

great circle S1 ⇢ S3, exploiting (3.55) we can compute cT from their two-point

function hO(⌧)O(0)i integrated on S1. On the other hand, equation (3.53) is valid

also for the ABJ(M) theory in the form

cT = � 64

⇡2

@2

@m2
±

logZ[S3,m±]

����
m±=0

(3.60)

and provides an alternative way to compute the central charge. Now, if the two

results – the one from the topological correlator and the one from the derivatives

of the three-dimensional partition function – match, we can conclude that (3.52)

is valid also in the ABJ(M) case.
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In the next section we will check the validity of the following identity5

⌧Z ⇡

�⇡

d⌧1O(⌧1)

Z ⇡

�⇡

d⌧2O(⌧2)

�
=

1

⇡2

@2

@m2
±

logZ[S3,m±]

����
m±=0

(3.61)

by matching the weak coupling expansion of the derivatives of the mass deformed

ABJ(M) Matrix Model on the r.h.s. against a genuine two-loop calculation of the

two-point correlator hO(⌧1)O(⌧2)i.

3.3 Result from the mass deformed Matrix Model

Consider the mass-deformed Matrix Model of the ABJ(M) theory [96]

Z =
1

(N !)2

Z
d� dµ

ei⇡k
P

i(�2
i�µ2

i )
Q

i<j 16 sinh
2 [⇡ (�i � �j)] sinh

2 [⇡ (µi � µj)]Q
i,j 4 cosh

⇥
⇡(�i � µj) +

⇡m+

2

⇤
cosh

⇥
⇡(�i � µj) +

⇡m�

2

⇤

(3.62)

We can choose to take the derivatives either with respect to m+ or m� (we will

end with the same result) and then set them to zero

@2

@m2
�
logZ[S3,m±]

����
m±=0

=
Z 00

Z
�
✓
Z 0

Z

◆2

(3.63)

where Z is the undeformed MM, whereas its derivatives are given by

Z 0 = � 1

(N !)2

Z
d� dµ ei⇡k

P
i(�2

i�µ2
i ) Z1�loop(�i, µj)

X

i,j

tanh ⇡(�i � µj) (3.64)

Z 00 =
1

(N !)2

Z
d� dµ ei⇡k

P
i(�2

i�µ2
i ) Z1�loop(�i, µj) (3.65)

⇥ ⇡2

4

0
@
 X

i,j

tanh(⇡(�i � µj))

!2

�
X

i,j

1

cosh2(⇡ (�i � µj))

1
A

with

Z1�loop(�i, µj) =

Q
i<j 16 sinh

2 [⇡ (�i � �j)] sinh
2 [⇡ (µi � µj)]Q

i,j 4 cosh(⇡ (�i � µj)) cosh(⇡ (�i � µj))
(3.66)

The integrand in (3.64) is odd in the exchange �$ µ then its integral must vanish.

To compute the Z 00 contribution, we first make the change of variables

xi = ⇡
p
k�i , yj = ⇡

p
kµj , gs =

1p
k

(3.67)

5For notational convenience, in the rest of the paper we choose the radius of the sphere to be

r = 1/2. Identity (3.61) is then consistent with (3.52) of the N = 4 theory specialised to n = 2.
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to get

Z =

Z
dX dY e

i
⇡

P
i(x2

i�y2i )f(x, y) (3.68)

and

Z 00 =
R
dX dY e

i
⇡

P
i(x2

i�y2i )f(x, y) ⇡2

4

✓⇣P
i,j tanh(gs(xi � yj))

⌘2
�
P

i,j cosh
�2(gs (xi � yj))

◆

(3.69)

where dX, dY are the Haar measures and

f(x, y) =
Y

i<j

sinh2(gs(xi � xj))

g2s(xi � xj)2
sinh2(gs(yi � yj))

g2s(yi � yj)2
1Q

i,j cosh
2(gs(xi � yj))

(3.70)

where we have used the notation gs = k� 1
2 . It is convenient to normalize Z 00 and

Z with the free partition function Z0

Z 00 ! Z 00

Z0

= Z 00 Z ! Z

Z0

= Z Z0 ⌘
Z

dXdY e
i
⇡

P
i(x2

i�y2i ) (3.71)

Expanding the integrands in (3.68) and (3.69) up to g4s ⇠ 1
k2

, i.e. at two loops, and

evaluating the normalized gaussian matrix integrals, we obtain

Z 00 = �⇡
2

4
N1N2

h
1 + g2s

i⇡

6
(N2 �N1)

�
1� (N2 �N1)

2
�

� g4s
⇡2

72

⇣
� 24 + 16N2

2 � 12N1(N2 �N1) +N4
2 + 6N2

2N
2
1

+ 2N2N
3
1 �N4

1 + (N2 �N1)
6
⌘
+O(g6s)

i

1

Z
= 1� g2s

i⇡

6
(N2 �N1)

�
1� (N2 �N1)

2
�

� g4s
⇡2

72

⇣
� 2(N2

2 �N2
1 ) + 8N2N1 � 5N4

2 + 2N2N1(N2 �N1)(8N2 � 7N1)

� 3N4
1 + (N2 �N1)

6
⌘
+O(g6s)

(3.72)

Putting them back in (3.63), the final result reads

1

⇡2

@2

@m2
�
logZ[S3,m±]

����
m±=0

=
1

⇡2

Z 00

Z
=

=� N1N2

4

✓
1� ⇡2

6k2
(N2

1 +N2
2 � 2) +O

✓
1

k3

◆◆

(3.73)

It is then easy to see that this expression coincides with the perturbative result

3.51 at every loop level. We have thus checked identity (3.61) at perturbative level.

The central charge in (3.59) indeed satisfies the identity

cT = �64

⇡2

@2

@m2
�
logZ[S3,m±]

����
m±=0

(3.74)

matching the general finding of [94].
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Dynamics on the ABJ(M)

Fermionic Wilson Line

What is research but a blind date with knowledge?

Will Harvey

We saw in a previous chapter that Wilson Loops are operators that can be defined

in any gauge theories, and they have a pivotal role in studying it. Let’s see how

we can define them in the context of ABJ(M) theories. In this case, we will see we

have differences compared to N = 4 SYM in four dimensions.

Outline: dynamics and geometry of the fermionic Wilson Loop

The topological line can be seen as a trivial defect inside full ABJ(M) theory. One

should expect to be able to reproduce the same sector even in the presence of

interacting defects. Apparently, this is not the case for the 1/2-BPS Wilson Loop.

Indeed, if one try to define the dCFT on the Wilson Loop by means of operator

insertions, i.e.

hhO1O2iiW =
hWO1WO2Wi

hWi (4.1)

then we have more operators to insert w.r.t. the free theory. For example, in-

sertions of single scalars are allowed while for the free theory are excluded by

gauge invariance. From this point of view, it seems natural to take pieces of the

topological opertor and to generalize them in a supermatrix form suitable for WL

insertions:

ūaY a ! ūa

 
0 Ya

0 0

!
vbȲ

b ! vb

 
0 0

Ȳ b 0

!
(4.2)

49
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Remark: we have to be careful in define the previous correspondence, because Y, Ȳ

are bosons, while Y, Ȳ represent fermions.

Naively, if we try to compute the two-point function hūaYavbȲ
biW , we find the

tree-level to be topological, while the one-loop correction diverges. This divergence

doesn’t occur when computing the correction to the Bremsstrahlung function: this

effect is driven by the scalar coupling matrix M J
I = diag (�1, 1, 1, 1) inside L.

The change of sign in the SU(3) part spoils supersymmetry cancellations in the

perturbative corrections. This is the supermultiplet recombination signature and,

from the divergence, it is possible to extract its anomalous dimension. We want

to remark here that the recombination is a purely dynamical phenomenon, in

the sense that it’s activated by the interactions with the WL. But the presence

of the anomalous dimension signal that operators Y, Ȳ are no more protected;

nevertheless, they are still classically annihilated by at least one supercharge. It’s

an open problem to find a mechanism that shows this remaining supercharge is

broken at the quantum level.

All these problems leave us with a fundamental question: are we missing some-

thing deep (i.e. geometric properties) in the understanding of the fermionic loop?

The supermatrix form is still not well understood as well as how the supercharge

act on the WL. Luckily, from the superalgebra, we have some clues to proceed.

We found Supercharges have a nice supermatrix representation that acts nicely on

the component fields. Moreover, on the WL they gain an additional component,

taking care of the WL SUSY condition (called "covariant" component). We tested

them reproducing the Displacement supermultiplet and (for self-consistency) we

compared it with what we have obtained from contour deformation.

The covariant supercharges also take into account how the short supermultiplet

in the free case becomes long in the interacting case. Again, this is not the full story,

since we miss half of the new components that should be visible. In addition, from

group theory arguments we know we should obtain an operator with particular

quantum numbers, but that can not be built from the ABJ(M) fields.

Another open problem is the one related to the conformal anomaly, visible

already at one-loop in perturbation theory. It is related to the choice of the WL

contour. The circle takes no correction while for the line we have a divergence,

related to a cutoff not compatible with gauge invariance. For this reason, all

the perturbative computations are performed on the circle, and we postpone the

discussion of the conformal anomaly to future works.

What we learned from this work is that the dCFT living on interacting defects is

not only determined by the residual superconformal algebra; the dynamics coming

from interactions with the WL deeply change what we expect from geometry.
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4.1 Parity-like symmetry

When we presented the fermionic loop in section 2.4.2, we found the scalar coupling

matrix to be constrained up to a sign. We inferred that this freedom is fixed

requiring invariance under the parity-like symmetry, that in this case will change

`! �`.
We parametrize the loop as follows: since the parity does not change sign in

the proper time, i.e. under parity s ! s, we explicitly implement the sign change

in the third coordinate with the parameter `

xµ(s) = (0, 0, `s) ! ẋµ(s) = (0, 0, `) ) (Aµẋ
µ)PL = Âµẋ

µ (4.3)

where we denote with the upper-case PL the change under ABJ(M) parity-like

transformation. Making explicit the factor ` in the scalar coupling, i.e. M ! `M ,

we have ✓
�2⇡i`

k
|ẋ|M I

J CIC̄
J

◆PL

= �2⇡i`

k
|ẋ|M J

I C̄ICJ (4.4)

since the change of ` is compensated by the change of k. If we restore the invariant

combination `k�1 inside the dqare root in the fermionic coefficient, then those parts

change as  
�i

r
2⇡`

k
|ẋ|Ψ⌘̄

!PL

= i

r
2⇡`

k
|ẋ|! (⌘̄)PL

Ψ̄

 
i

r
2⇡`

k
|ẋ|⌘Ψ̄

!PL

= �i

r
2⇡`

k
|ẋ|!̄Ψ (⌘)PL

(4.5)

since ⌘, ⌘̄ (and so their parity-transformed partners) are even spinors. If we pack

everything in the superconnection, we get

LPL =

0
@Âµẋ

µ � 2⇡i`
k

|ẋ|M J
I C̄ICJ �i

q
2⇡`
k
|ẋ|!̄Ψ (⌘)PL

i
q

2⇡`
k
|ẋ|! (⌘̄)PL

Ψ̄ Aµẋ
µ � 2⇡i`

k
|ẋ|M I

J CIC̄
J

1
A (4.6)

but this is a supermatrix of U(N2|N1). To restore the original structure, the

superconnection has to transform as

L ! L0 = PLPLP�1 P =

 
0 1

1 0

!
(4.7)

Imposing L0 = L, we found the transformation for the fermion couplings to be

(⌘̄)PL = !�1⌘ (⌘)PL = !̄�1⌘̄ (4.8)

but they are not sufficient to fix the coefficients !, !̄. For this aim, we consider

two operators, coming from the variation of L w.r.t. the two R-symmetry broken
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generators J a
1 and J 1

a . They are

Oa := i�Ja
1
L = �2

r
⇡`

k

0
@2
q

⇡`
k
ZȲ a �̄a

1

0 2
q

⇡`
k
Ȳ aZ

1
A (4.9)

Ōa := i�J 1
a
L = �2

r
⇡`

k

0
@�2

q
⇡`
k
YaZ̄ 0

i�1
a �2

q
⇡`
k
Z̄Ya

1
A (4.10)

We focus, for the moment, only on Oa, and we compute the parity-like associated

operator using, for the fermion, the rule (4.5)

(Oa)PT = �2

r
⇡`

k

0
@2
q

⇡`
k
YaZ̄ 0

!̄�1
a 2

q
⇡`
k
Z̄Ya

1
A (4.11)

and this is similar to Ōa only if !̄ = i, implying ! = �i. We obtain

(Oa)
PL = �Ōa (4.12)

and we will find a reason for the extra minus sign when we build the covariant

supercharges. Conditions (4.8) become

(⌘̄)PL = i⌘ (⌘)PL = �i⌘̄ (4.13)

as well as the fermions fields general rule

�
Ψ̄↵

�PL
= iΨ↵ (Ψ↵)PL = �iΨ̄↵ (4.14)

Eventually, the parity-like invariant superconnection takes the following form

L =

0
@Aµẋ

µ � 2⇡i`
k

|ẋ|M I
JCIC̄

J i
q

2⇡`
k
|ẋ| ⌘Ψ̄

�i
q

2⇡`
k
|ẋ|Ψ⌘̄ Âµẋ

µ � 2⇡i`
k

|ẋ|M J
I C̄JCI

1
A (4.15)

We found then the correct form for a parametrization and parity-like invariant

superconnection. We will see how the parameter ` enters the perturbation theory

and discuss the importance of its presence.

4.2 1-loop corrected VEV

Although we have a conformal transformation that maps the line into the circle,

when considering Wilson Loops they are not equivalent. A similar effect happens

in N = 4 SYM [97], where the two-loop corrections are different but finite. In par-

ticular, the non-compact shape of the infinite line forces us to put a regularization

that breaks gauge invariance. This effect is manifest when computing the one-loop

correction to the Wilson Line VEV. In this section we perform the computations

setting ` = 1 and using the rescaled ABJ(M) action (A.5) and (A.8).
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Circle

The VEV for the fermionic circle was already computed in [98]. The Wilson Loop

in this case is

W = TrP exp

✓
�i

Z ⇡

�⇡

d⌧L

◆
(4.16)

At tree level, the VEV is the trace of the identity of the supergroup U(N1|N2)

hWi(0) = N1 +N2 (4.17)

To compute the one-loop correction, we have to look at the series expansion of the

Pexp:

P exp

✓
�i

Z ⇡

�⇡

d⌧L

◆
= 1 � i

Z ⇡

�⇡

d⌧L�
Z ⇡

�⇡

d⌧1

Z ⌧1

�⇡

d⌧2L1L2 + . . . (4.18)

From the term with only one L we can’t have contributions. From the other one

L1L2 =

 
1
k
A1,µẋ

µ
1A2,⌫ ẋ

⌫
2 +

2⇡
k
(⌘ ̄)1(⌘̄ )2 · · ·

· · · 1
k
Â1,µẋ

µ
1 Â2,⌫ ẋ

⌫
2 +

2⇡
k
( ⌘̄)1(⌘ ̄)2

!
+ o (k�2)

(4.19)

where we left "· · ·" in the anti-diagonal since it won’t matter after taking the trace:

Tr[L1L2] =
1

k

⇣
A1,µẋ

µ
1A2,⌫ ẋ

⌫
2 + Â1,µẋ

µ
1 Â2,⌫ ẋ

⌫
2

⌘
+

2⇡

k

�
(⌘ ̄)1(⌘̄ )2 + ( ⌘̄)1(⌘ ̄)2

�

(4.20)

and the trace on gauge indices in the R.H.S. is implied. The corresponding dia-

grams are shown if figure 4.1.

(a) (b) (c)

Figure 4.1: Diagrams appearing in the one-loop correction of the Wilson Circle

VEV.

Diagrams (4.1(a)) and (4.1(b)) vanish due to parity. The one involving fermions

includes the two contributions inside the second brackets of (4.20). Using propa-

gators (A.27) we have

�4⇡
k

R ⇡

�⇡
d⌧1
R ⌧1

�⇡
d⌧2 Tr

⇥
( ⌘̄)1(⌘ ̄)2

⇤
=

22"N1N2Γ( 3
2
�")

k⇡
1
2�"

R ⇡

�⇡
d⌧1
R ⌧1

�⇡
d⌧2
�
sin ⌧1�⌧2

2

�2"�2

(4.21)

and this vanishes, so

hWi(1) = 0 (4.22)
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Line

The infinite straight line case is almost the same of the circular one, although we

have the integration extremes changed in ±1. The tree level is the same as (4.17),

since the contour identity is independent of the contour. The term with only one

superconnection will not contribute for the same arguments of above. At second

order we have the same structure as in (4.19) and the corresponding diagrams are

shown in figure (4.2)

(a) (b) (c)

Figure 4.2: Diagrams from the second order expansion of the Wilson Loop.

Diagrams (4.2(a)) and (4.2(b)) vanish since

hA3(x1)A3(x2)i = hÂ3(x1)Â3(x2)i = 0 (4.23)

For the third diagram we have to solve the following integral

Z +1

�1
dt1

Z t1

�1
dt2(t1 � t2)

2"�2 (4.24)

but it will lead to a divergent result. We regularize it putting a cut-off L on the

length of the line

Z L

�L

dt1

Z t1

�L

dt2(t1 � t2)
2"�2 = � (2L)2"

4"
�
1
2
� "
� (4.25)

We notice that removing the cut-off, i.e. taking the limit L ! 1, will lead again

to a divergent result. This is the main difference with respect to the circle, maybe

the sign of a conformal anomaly is acting at the quantum level.

4.2.1 The cut-offed circle

The first thing to do when trying to get rid of IR divergences is re-doing the same

computations on the circle instead of the line. Since there’s a conformal mapping

between the two and the circle is compact1, the IR problem should disappear. In-

deed, performing the same computation on the circle, it’s easy to see that the only

divergences are the UV ones, symmetric in N1 and N2 and there’s perfect cancel-

lation between bosonic and fermionic contributions. Wonderful but the objection

1The one-loop correction of hW i vanishes on the circle.
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is that the circle defined on [�⇡, ⇡] is equivalent to the infinite line. Than the

equivalent of the cut-offed line is the cut-offed circle [�⇡ + ⌘, ⇡ � ⌘]:

hO1O2iW = hW⇡,⇡�⌘ [W⇡�⌘,�O1W�,0O2W0,�⇡+⌘]| {z }
line [�L,L]

W�⇡+⌘,�⇡i (4.26)

It’s convenient to compute corrections on the circle since, for the fermionic part,

the outside contributions can be computed exactly (while on the line they will lead

to divergences). The first order expansion is not sensible to this cutoff, in fact even

on the line the integrals can be exactly solved. The main point of this procedure

is highlighting the phenomenon that occurs in the second-order expansion of the

Wilson loop: in the case of the line, the pieces leading to the infinite line are

divergent, on the circle they are exact. The result on the circle can then be mapped

on the line, giving a procedure to compute integrals that appear to be divergent

at first sight.

Let’s now evaluate the second order expansion terms: let’s start from the pieces

inside the square brackets
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� sin2" (⇡ � ⌘) + sin2"
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⇡ � ⌘ + �

2

◆

(4.31)

There are more integrals coming from the external parts
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Z �

�⇡

⇡ + ⌘d⌧1

Z ⌧1

�⇡

d⌧2@⌧2@⌧1 sin
2"

✓
⌧1 � ⌧2

2

◆
= � sin2"

⇣⌘
2

⌘
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and other five exchanges
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Z ⇡
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Z ⇡�⌘

�

d⌧1

Z �⇡+⌘

�⇡

d⌧2@⌧2@⌧1 sin
2"

✓
⌧1 � ⌧2

2

◆
=sin2" (⇡ � ⌘)� sin2"

✓
⇡ � ⌘ + �

2

◆

� sin2"
⇣
⇡ � ⌘

2

⌘
+ sin2"

✓
⇡ + �

2

◆

(4.37)Z 0

�⇡+⌘

d⌧1

Z �⇡+⌘

�⇡

d⌧2@⌧2@⌧1 sin
2"

✓
⌧1 � ⌧2

2

◆
= sin2"

✓
⇡ � ⌘

2

◆
�1+sin2"

⇣⌘
2

⌘
(4.38)

and from these is very easy to spot the map

(2L)2" ! sin2"(⇡ � ⌘) (L� s)2" ! sin2"

✓
⇡ � ⌘ � �

2

◆
(4.39)

(L+ s)2" ! sin2"

✓
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◆
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(4.40)

Summing the extra-contribution we get

sin2" (⇡ � ⌘) + sin2"

✓
⇡ � ⌘ � �

2

◆
� sin2"

✓
⇡ � ⌘ + �

2

◆
(4.41)

In the line language is translated in

(2L)2" + (L� s)2" � (L+ s)2" (4.42)

The infinities we encounter in the line VEV seem to be an effect of the cut-off

breaking gauge invariance. In particular, the finite size line is not a closed path,

as the straight line closes at infinity.

An unanswered question remains whether the conformal anomaly is in action

at the quantum level. Proving this point is quite involved and needs further inves-

tigations.

Two parameters family of Wilson Loops

So far we have dealt with supersymmetric Wilson Loops. In principle, we can con-

sider non supersymmetric Wilson Loops. These operators are not protected and

can trigger a RG flow in the 1d defect CFT. In YM, this flow can be described by the

running of a parameter interpolating between the Wilson and Wilson-Maldacena

Loop [99, 41, 42]. The one-parameter family can be viewed as a marginal defor-

mation of the dCFT1.
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As we saw, in ABJ(M) we have to kinds of BPS loops: thus, we need two param-

eters to consider a complete interpolating object. In this sense, a two-parameter

WL family can be obtained considering two parameters �, ⇠ 2 [0, 1] such that

L�,⇠ =

0
@Aµẋ

µ � 2⇡i`
k

|ẋ| ⇠M I
� JCIC̄

J i
q

2⇡`
k
|ẋ|�⇠⌘Ψ̄

�i
q

2⇡`
k
|ẋ|�⇠Ψ⌘̄ Âµẋ

µ � 2⇡i`
k

|ẋ| ⇠M� J
I C̄JCI

1
A (4.43)

where the matrix M is modified as

(M�)
I
J =

0
BBB@

�1 0 0 0

0 1 0 0

0 0 2�� 1 0

0 0 0 1

1
CCCA (4.44)

For � = 0 we recover the coupling (2.24) for the bosonic loop and the fermions

decouple. For � = 1 the scalar coupling matches (2.29) for the fermionic loop. For

� 6= 0, we still have freedom from the ⇠ parameter: the limit ⇠ = 0 correspond to

the non-SUSY case. In the special case � = ⇠ = 1 we obtain the 1/2-BPS Wilson

Loop. If we set ⇠ = 1, we obtain a one-parameter family interpolating between

the 1/6-BPS and the 1/2-BPS loop. The dual description of this object has been

investigated in [100].

4.3 Deformations of the loop

We saw that the presence of a defect breaks translation invariance in its perpendicu-

lar directions, yielding the non-conservation of the stress-energy tensor, encoded in

the displacement operator D. When the defect is a Wilson Loop, the displacement

operator measures the response of the loop under contour deformations. Therefore,

the displacement is the operator that falls from the Pexp when considering small

deformations of the loop. The computation is inspired by the analog one in [101],

carried out in four dimensions. We present the computation setting again ` = 1

and using the equations of motion from the rescaled action, but these choices will

not affect the final results.

General contour

Rewrite the superconnection as

L =

0
@ 1 = Aµẋ

µ � 2⇡i
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|ẋ|M I

JCIC̄
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k
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1
A (4.45)



58 4. Dynamics on the ABJ(M) Fermionic Wilson Line

and expand the Path-exponential

P exp

✓
�i

Z
ds L

◆
= 1 � i

Z
ds L�

Z
ds1

Z s1

0

ds2L1L2 + . . . (4.46)

where we used the shorthand notation L1 ⌘ L(s1). Under the deformation x !
x+ �x we have, up to order �x2,

1 ! A0 + A1 �
2⇡i

k
S (4.47)

2 ! C0 � i

r
2⇡

k
C̄ (4.48)

3 ! B0 + i

r
2⇡

k
B̄ (4.49)

4 ! Â0 + Â1 �
2⇡i

k
S̄ (4.50)

where
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k
|ẋ|M I

J C̄JCI , Â1 =
Âµp
k

˙�x
µ
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Ŝ = M I
J

 
|ẋ| C̄J�x�@�CI + |ẋ| �x�@�C̄

JCI +
˙�x · ẋ

|ẋ|
C̄JCI

!
(4.56)

A0, Â0,B0,C0 ⇠ o(�x0), while A1, Â1, B̄, C̄, S, Ŝ ⇠ o(�x).

Integrate by parts the first term in A1:
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so

A1 = �ẋ�@�
Aµp
k
�xµ + �x�@�

Aµp
k
ẋµ =

1p
k
(@µA⌫ � @⌫Aµ) �x

µẋ⌫ (4.58)

The same happens for Â1. The second order term is

Ls1
D · Ls2

D =

 
1 3

2 4

!
(4.59)
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where

1 = As1
0 As2

1 + As1
1 As2

0 + . . . (4.60)

2 = Cs1
0 As2

1 + Âs1
1 Cs2

0 + . . . (4.61)

3 = As1
1 Bs2

0 +Bs1
0 Âs2

1 + . . . (4.62)

4 = Âs1
0 Âs2

1 + Âs1
1 Âs2

0 + . . . (4.63)

Where we wrote only the terms of order o (�x1) that can contribute to the first

order expansion term. The ". . ." refers to terms involving more than one integral.

Let’s focus now on (4.60), the same will apply for the other 3 equations. The only

two terms that are relevant for our purpose are As1
0 As2

1 and As1
1 As2

0
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I
J CI,2C̄

J
2

= �
Z

ds1�x
µ
1

d

ds1

✓
A1,µ

Z s1
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together with the terms restoring the non-abelian part of the field strength
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⌫
2 = �

Z
dsAµA⌫�x
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and so (restoring the constants in front of the terms)
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� Âµp

k
Ψ⌘̄

!
(4.70)
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Inserting these expression in the Path-exponential expansion, we can rewrite it as

�W = TrP

Z
ds (�iD) exp

✓
�i

Z
L

◆
(4.72)
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where

D = ��xµ (ẋ⌫Fµ⌫ + i |ẋ| DµO)� i
ẋ · ˙�x

|ẋ|
O (4.73)

and the supermatrix form of the field strength is
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We can write the super-covariant derivative as

DµO = @µO+ i [Aµ,O] (4.75)

since
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then our operator O in (4.73) is
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Wilson Line

All the computations so far are done for general contour. Now we want to specialize

on the line case, along the third direction as xµ(s) = (0, 0, s). We have to consider

the following deformation �xµ = ("1(s), "2(s), 0). The operator (4.77) becomes

Oline =
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and the displacement operator takes the following expression

Dline = �"k (Fk3 + iDkOline) k = 1, 2. (4.79)

Expanding in the supermatrix form
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where in the last equality we used the EOM (A.9). Same thing for the other

component
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(4.81)

It’s convenient to write the displacement in the complex components. Since

D = D1 � iD2 (4.82)

we choose the deformation parameters to be "k = (i, 1), such that

D = � (F23 + iF13) +DOline (4.83)

with
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and summing the two pieces
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From the previous expression we can separate two pieces

D = DE + D̃ (4.87)

where, after using (A.11) for the left-bottom block,
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is the exact part of the Displacement operator, and we get an extra piece
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and due to (A.15) we see that it combines in the complete covariant derivative on

the Wilson Loop (2.27)

D̃ = �2i

r
⇡

k
D3

 
0 0

 2 0

!
(4.90)

This shows D̃ can be neglected.

4.3.1 Covariant supercharges in supermatrix formalism

The supermatrix form of the Wilson Loop forces us to write every object interacting

with the Wilson Loop in terms of supermatrices. Considering the supercharges,

we know how they act on the ABJ(M) fields of the theory. We want to generalize

their action on supermatrices.

The supermatrix representation of supercharges follows from (D.11)

Qa =

 
Qa 0

0 �Qa
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Q̄a =
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0 �Q̄a

!
(4.91)

since they are parity odd. It’s easy to see that they respect the commutation

rules; for instance, let X be an even supermatrix, then Q will act on X with the

commutator

[Q,X] =
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and for an odd supermatrix Y as
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The action on each entries is the correct one with respect to the nature of the field

on which the supercharge is acting.

We want to compute the action of the supercharges on the Wilson Line super-

connection L. It’s convenient to split it into three parts L = LA + LB + LFand

when the contour is the line takes the following expression
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All the components are even supermatrices. Applying rule (4.92) on each piece we

obtain
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BȲ
a
⌘⌘

0

1
A (4.97)

that gives

[Qa,L] =

0
@ �4⇡i`

k
 ̄1Ȳ

a 0

2
q

⇡`
k

⇣
iD3Ȳ

a + 2⇡i
k

⇣
Ȳ a`B � ˆ̀

BȲ
a
⌘⌘

4⇡i`
k
Ȳ a ̄1

1
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This result is compatible with a supergauge transformation, as

[Q,L] = i@3G
a + [Ga,L] (4.99)

where Ga is a supergauge odd supermatrix of the form

Ga = 2

r
⇡`

k

 
0 0

Ȳ a 0

!
(4.100)

The same holds for the variation w.r.t. Q̄a, and after defining the other supergauge

matrix

Ḡa = �2

r
⇡`

k

 
0 Ya

0 0

!
(4.101)

we can write ⇥
Q̄a,L

⇤
= i@3Ḡa +

⇥
Ḡa,L

⇤
(4.102)

The two new matrices are related by

Ḡa = �P (Ga)PL
P�1 (4.103)

and vice versa. By looking at the transformation rules (4.99) and (4.102), it’s easy

to define the covariant supercharges

Qa
cov(·) ⌘ [Qa

cov, (·)} = [Qa �Ga, (·)} (4.104)

Q̄cov,a(·) ⌘
⇥
Q̄cov,a, (·)

 
=
⇥
Q̄a � Ḡa, (·)

 
(4.105)

where (·) means applyed to an operator · with parity | · |. Multiplying by the susy

transformation parameters we recover the standard covariant susy transformation

∆cov(·) =

"
✓aQ

a +

 
0 0

✓aȲ
a 0

!
, (·)

#
(4.106)

∆̄cov(·) =

"
✓̄aQ̄a +

 
0 ✓̄aYa

0 0

!
, (·)

#
(4.107)
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The covariant supercharges defined in (4.104) and (4.105) must transform under

parity-like respectively as Ga and Ḡa, i.e.

Q̄a = �P (Qa)PL
P�1 (4.108)

and vice versa. From (4.108) we can read the transformation rules for the original

supercharges

(Qa)PL = Q̄a

�
Q̄a

�PL
= Qa (4.109)

4.4 Displacement supermultiplet

The displacement operator has quantum numbers [2, 3, 0, 0]. We can reach these

numbers by a chain of three supercharges action on a superprimary operator with

quantum numbers
⇥
1
2
, 3
2
, 0, 0

⇤
. The operator we can build with these quantum

numbers is

Z = �

 
0 Z

0 0

!
(4.110)

where � is a constant we will fix. The displacement is obtained as

D =
1

3!
"abcQ

a
covQ

b
covQ

c
covZ (4.111)

In order to fix the constant �, we have to compare the action of Qa
covZ with the

operator coming from the variation of the WL w.r.t. the generator Ja
1

2. Let’s start

from the last one:

Oa := i�Ja
1
L = �2

r
⇡`

k

0
@2
q

⇡`
k
ZȲ a �̄a

1

0 2
q

⇡`
k
Ȳ aZ

1
A (4.112)

The former is

Qa
covZ = ��

0
@2
q

⇡`
k
ZȲ a �̄a

1

0 2
q

⇡`
k
Ȳ aZ

1
A (4.113)

Choose � = 2
q

⇡`
k

then

Z = 2

r
⇡`

k

 
0 Z

0 0

!
and Qa

covZ = Oa (4.114)

Acting again with Qa
cov on this new operator

Qa
covO

b = "abcLc (4.115)

2The generator J acts on L as a supermatrix, following (D.11) with even parity.
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with

Lc = �2

r
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1Ȳ
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�"crsȲ s�̄r

1 � �2
cZ
�

1
A

(4.116)

Last step

D =
1

3!
"abc"

bcdQa
covLd =

1

3
Qa
covLa (4.117)

and we get

D = i

0
@

4⇡`
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�
ZDZ̄ �DYgȲ

g + i�̄g
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�
2
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(4.118)

The results is compatible with DE of (4.88) (` = 1). The term D̃ does not appear,

sign that the covariantized supercharges are blind to exact-terms.

To conclude the section, we just make an observation. When fixing the coeffi-

cient of the fermions transformation under parity-like symmetry, for consistency we

required (4.12) to be satisfied, precisely with the strange minus sign. Indeed, the

minus sign is perfectly consistent and we can see it by looking at (4.114). Under

parity-like we have

(Oa)PL = ({Qa
cov,Z})

PL =
n
(Qa

cov)
PL , (Z)PL

o
= �

�
Q̄cov
a , Z̄

 
= �Ōa (4.119)

4.5 Bremsstrahlung function

We have seen that, for BPS Wilson Loops, we can compute the Bremsstrahlung

function considering several different configurations. In this section we want to

compute perturbatively the Bremsstrahlung function by insertions of superprimary

operators in the Displacement supermultiplet.

The Bremsstrahlung function is the coefficient of the displacement correlator.

Computing it with quantum correction in a perturbation theory framework is a

quite hard task, so, taking advantage of the fact that correlators of operators

in the same supermultiplet are proportional to the same coefficient, we switch in

computing the correlator of the superprimaries in the displacement supermultiplet.

In [70], they argue that the two point function hZZ̄i should be proportional to

the Bremsstrahlung function in the following way

hZ�Z̄0i =
CΦ

|�|
, CΦ = 2B1/2 (4.120)
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We also have a proposal for it (up to 5 loops) from matrix model computation on

the latitude Wilson Loop [60], that is

B1/2 =
N1N2

4k (N1 +N2)
� ⇡2N1N2 (N1N2 � 3)

24k3 (N1 +N2)
+ o(k�5)

=
N1N2

4k (N1 +N2)

✓
1� ⇡2

6k2
(N1N2 � 3) + o(k�5)

◆ (4.121)

(we don’t need the five loops correction now). In the ABJM case the Bremsstrahlung

function has the following form [68, 102]

B1/2 =
N

8k
� ⇡2N (N2 � 3)

48k3
+o
�
k�5
�
=

N

8k

✓
1� ⇡2

6k2

�
N2 � 3

�◆
+o
�
k�5
�

(4.122)

4.5.1 Two-pt function hZZ̄i
We will use the definition of the operators as in (4.114) and the rescaled action,

but this time we not fix the value of `. Instead, we define a new, parity-invariant

coupling

 =
`

k
(4.123)

Tree Level

The tree-level contribution is straightforward

hhZ�Z̄0ii(0)W =


2

N1N2

N1 +N2

1

2 sin �
2

(4.124)

and it’s easy to see that is in accordance with (4.120) and the first term of (4.121).

One Loop

The 1-loop bosonic interactions are obtained by expanding the Path-Exponential

at first order; in total we get three contribution. Let’s start from the first one

� i

Z 0

�⇡

d⌧ Tr[Z�Z̄0L⌧ ]

= �2⇡i
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p
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(4.125)

where A = 1p
k
Aµẋ

µ � 2⇡i ˙|x|M I
JCIC̄

J and Â = 1p
k
Âµẋ

µ � 2⇡i ˙|x|M I
J C̄

JCI . The

previous integral becomes
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a
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⇥
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⇤ (4.126)
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(a) (b) (c)

Figure 4.3: Three bosonic interaction first order.

Do the contractions
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In the same way we get the other two contributions
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Using the results of the appendix C.1 we get the final bosonic contribution
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The series expansion in " is

2
N1N2

2 sin
�
�
2

�

1

2"
+

✓
2 log

⇣
sin
⇣�
2

⌘⌘
� � + log(⇡)� 2 (0)

✓
1

2

◆◆
+O

�
"1
��

(4.131)

� being the Euler-Mascheroni constant.

To get the fermionic interaction, expand at second order the Wilson Lines,

obtaining four contributions

� 2⇡22
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(a) (b) (c)

(d)

Figure 4.4: Three bosonic interaction first order.
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where we have factorize the constant in front
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Summing up, the fermions contribution is

� (2⇡)2 N1N2

 
Γ
�
1
2
� "
�

4⇡
3
2
�"

!2 �
2 sin

�
�
2

��4"�1

"
(4.137)

Expansion around " reads
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and summing (4.131) and (4.138) the one loop correction vanishes, in agreement

with (4.121). Notice that even the contributions of the finite part perfectly cancel.

In particular, the constant terms vanish due to the special value of the digamma

function

 (0)

✓
1

2

◆
= �� � 2 log(2) (4.139)
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Two Loops

As happened for the topological operators, the first non-vanishing correction should

appear at order k�2. The computation of the diagrams is a work in progress and

will appear soon [6]. Here we present the diagrams and comment on the various

topology we find.

Correction to the Tree Level The first contribution at order k�2 comes from

the two-loop correction of the tree-level and it is already computed in (C.17).

2

Figure 4.5: Two-loops correction to the tree-level.

First order In the first-order expansion, taking some vertices from the action, we

have three non-vanishing diagrams, see figure 4.6. It is worth noticing that similar

diagrams appear in the two-loop expansion of the topological operators. Moreover,

they are the analogue of diagrams 3.2(j), 3.2(k) and 3.2(b). In particular, all those

diagrams are finite and give similar coefficients proportional to (⇡2 � 12).

(a) (b)

1

(c)

Figure 4.6: Diagrams at order k�2 from the first order expansion.

Second order In the second order expansion in principle we have seven type of

diagrams (see figure 4.7), all with a new topology with respect to the topological

case, except for the diagram 4.7(b), similar to 3.2(g), that even in this case gives

a finite contribution. For the others, we expect they diverge.
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1

(a) (b) (c)

(d) (e) (f)

1

(g) (h) (i)

Figure 4.7: Diagrams appearing in the second order expansion at o (k�2).

Third and fourth order In these cases we have a limited number of possibilities

since the level k�2 is almost or completely saturated by the various connection

coming from the path-order exponential expansion. We expect all these diagrams

to give divergent contributions.

4.6 Operators associated to the U(1)B symmetry

We saw in the previous chapter that the the algebra preserved by the line in-

side osp(6|4) is su(1, 1|3) � u(1)B. The su(1, 1|3) maximal bosonic subalgebra is

su(1, 1) � su(3) � u(1). If we turn on the Wilson Line, the su(1, 1|3) algebra is

still preserved, while the u(1)B apparently do not3. Nevertheless, it is worth to

study the operator related to this apparent breaking. To obtain this operator, we

consider the superconnection variation under the generator of the u(1)B symmetry

B = M12 + 2iJ 1
1 (4.140)

3The variation of L under u(1)b can be reabsorbed by a global gauge transformation on the

fermions [103]
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(a) (b) (c)

Figure 4.8: Diagrams appearing at k�2 from the third order expansion.

(a) (b)

Figure 4.9: Diagrams appearing at k�2 in the fourth order expansion of the Wilson

Loop.

It acts on the scalar fields as

�J 1
1
Z = �3

4
Z

�J 1
1
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4
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1
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4
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1
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4
Ȳ a

) �J 1
1
CC̄ = 0 (4.141)

so �BCC̄ = 0. We have the same for the third component of the gauge field, i.e.

�BA3 = 0. For the fermions we have a contribution from the rotations and another

one from the R-symmetry:

�M12 =
i

2
 

�M12 ̄ = � i

2
 ̄

�J 1
1
 = �3

4
 

�J 1
1
 ̄ =

3

4
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(4.142)

such that

�b ̄
1
+ = i ̄1

+ �b 
+
1 = �i +

1 (4.143)

so

P := i�BL = i [B,L] = 2
p
⇡

 
0 �i ̄1

+

 +
1 0

!
(4.144)

where B is the supermatrix representation of B. If we define the following operators

Ya = 2
p
⇡

 
0 Ya

0 0

!
Ȳa = 2

p
⇡

 
0 0

Ȳ a 0

!
(4.145)
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and act with the supercharges

Qa
covYb = 2

p
⇡�ab

 
0  ̄1

0 0

!
� 4⇡

 
YbȲ

a 0

0 Ȳ aYb
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(4.146)

Q̄cov,aYb = �2i
p
⇡"abc

 
0 �̄c

2

0 0
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(4.147)

Qa
covȲ

b = 2
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⇡"abc
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c 0
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(4.148)

Q̄cov,aȲ
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p
⇡� b
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0 0

i 1 0

!
+ 4⇡

 
YaȲ

b 0

0 Ȳ bYa
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(4.149)

so the following holds

P = � i

3

�
Qa
covYa + Q̄cov,aȲ

a
�

(4.150)

In principle, for the same argument on the Displacement, we expect P to be a

protected operator since it comes from a broken symmetry. But (4.150) doesn’t

imply that the superprimaries Y, Ȳ are protected. As a check, we perform a one-

loop computation of the two-point function of these operators.

4.6.1 Two-pt function hYȲi and anomalous dimension

As we did for the Bremsstrahlung, we compute the correlation function on the

circle. In this case, we have SU(3) indices, but the integrals will be the same. For

simplicity, again we insert Ȳ in ⌧ = 0 while Y in ⌧ = � > 0.

Tree Level

The tree level computation is again straightforward

hhYa(�)Ȳ
b(0)iiW =

hTr
⇥
Ya(�)Ȳ

b(0)
⇤
i

hWi = 
N1N2

N1 +N2

� b
a

2 sin �
2

(4.151)

1-loop bosonic

Here lies the main difference w.r.t. the Bremsstrahlung computation: the Y’s couple

with the SU(3) part of the term (ZZ̄ � YaȲ
a) in the superconnection, changing

the sign of the integrals. Indeed, e.g.

� i

Z 0

�⇡

d⌧ Tr
⇥
YaȲ

bL⌧

⇤
(4.152)

reduce to

� 8⇡22
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⇥
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bYcȲ
c
⇤

(4.153)



4.6. Operators associated to the U(1)B symmetry 73

and after the contractions reads

� 2� b
a (2⇡)2 N2

1N2

 
Γ
�
1
2
� "
�

4⇡
3
2
�"

!2 Z 0

�⇡

d⌧
�
4 sin ��⌧

2
sin �⌧

2

�1�2" (4.154)

The same happens for the other two contributions, and the result for the bosonic

part is
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(4.155)

1-loop fermionic

Since the fermions coming from the second order expansion do not interact with

the scalars, the fermionic contribution is the same as for the Bremsstrahlung

� 2� b
a (2⇡)2 N1N2

 
Γ
�
1
2
� "
�

4⇡
3
2
�"

!2 �
2 sin

�
�
2

��4"�1

"
(4.156)

Anomalous dimension

The divergences in this case don’t mutually cancel out. Indeed, if we sum the two

contributions we get
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If we take a closer look to the finite part of (4.157), and in particular at the term

with the logarithm of the sine, it’s easy to convince ourselves that it is compatible

with an expansion like
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Together with the tree-level, we have
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(4.159)

The anomalous dimension is easily recognized as

�(1) = 4 (N1 +N2) (4.160)
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The divergence appearing at one-loop is a clear sign, unexpected though, of the

recombination. We thought the operators Y, Ȳ to be protected, but the quantum

correction show it is only at the classical level. Moreover, the supersymmetry is

broken by the particular shape of the coupling matrix M J
I , keeping the SU(3)

singlet Z protected while removing protection from the triplet. In the following,

we try to explore the long supermultiplet generated from Y, Ȳ.

At this stage, one could also compute the anomalous dimension by taking the

derivative of the renormalizing constant [104]. A possible mismatch in the sign can

change the interpretation of what we think are bare or renormalized fields.

4.6.2 Multiplet recombination

The appearance of an anomalous dimension is a sign of the multiplet recombina-

tion phenomenon: due to the interactions, short multiplets recombine giving long

multiplets. In a general QFT, this phenomenon occurs when considering relevant

deformation of the theory using a conformal primary operator, triggering an RG-

flow. At the fixed point, the conformal operator deforming the theory becomes a

descendant of a field of the original theory [105].

We want to investigate the difference in the supermultiplets as long as we turn

on or off the coupling with the Wilson Line (the free theory case corresponds to

the limit k ! 1, or ! 0), using representation theory arguments.

For the free theory, we can express the supercharges as (4.91) even if there’s no

need to use the supermatrix description. Instead, when the Wilson Loop is turned

on, the charges get modified as (4.104) and (4.105).

Consider now the operator Ya, as defined in (4.145). From [103], we know this

is the highest weight state of a short multiplet. Indeed

QaQbYc = 0 (4.161)

Let’s focus on the first step

{Qa,Yb} =

 
0 [Qa, Yb]

0 0

!
=

 
0 �ab  ̄1

0 0

!
(4.162)

From the point of view of group theory, this anticommutator is 3̄⇥ 3 = 8+ 1, but

in (4.162) the adjoint part does not appear, only the singlet shows up. This means

that the 8 is a null state in the free theory, but when we turn on the WL we get

{Qa
cov,Yb} =

 
�2
p

⇡
k
YbȲ

a [Qa, Yb]

0 �2
p

⇡
k
Ȳ aYb

!
=

= �2

r
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k

 
YbȲ

a � 1
3
�abYcȲ

c 0

0 Ȳ aYb � 1
3
�ab Ȳ

cYc

!
+ �ab

 
�2

3

p
⇡
k
YcȲ

c  ̄1

0 �2
3

p
⇡
k
Ȳ cYc

!

(4.163)
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where we have separeted the traceless symmetric part from the singlet part. Notice

that the presence of the Wilson Line turn on the adjoint traceless part (that was

null in the free case) and change the shape of the singlet.

On the other hand, for the action of Q̄ on Y, there is no difference between free

and interacting cases

{Q̄cov
a ,Yb} =

 
0 [Q̄a, Yb]

0 0

!
=

 
0 �i"abc�̄

c
2

0 0

!
=
�
Q̄a,Yb

 
(4.164)

Again, using the group representation argument, this should be a 3⇥3 = 6+3̄, but

in this case the covariant part doesn’t produce the symmetric state. In particular,

this state should have quantum numbers [1,1,2,0] and can’t be built out of the ABJ

fields. The only consistent way to create an operator with those quantum numbers

works only in the U(2)⇥ U(2) case and is

(YA)
â
a (YB)

b̂
b "

ab "âb̂

and looks like a monopole operator.

It is easy to see that, in the interacting case, the non-linear piece in the covariant

supercharges prevents the supermultiplet to reach a null state: we obtained a long

supermultiplet. Moreover, operators sitting in the same long supermultiplet share

the same anomalous dimension of the superprimary since

QO∆+� ⇠ O0
∆+ 1

2
+�

(4.165)

Thus, it will be interesting to check (4.165) by direct perturbative computations.





Conclusions

The imagination of nature is far,
far greater than the imagination of man.

R. P. Feynman

In this thesis, we made progress in the analysis of one-dimensional sectors in

ABJ(M), both in the free theory and in the dCFT living on a 1/2-BPS Wilson

Line. In the free theory, we have identified the topological sector; since the presence

of the Chern–Simons term prevents us to write a one-dimensional path integral,

i.e. a quantum mechanics, we have applied the topological twist. The maximum

dimension of the twist allowed by the symmetries is one. We have found the ex-

plicit expression for the topological operator in terms of ABJ(M) fields and we

computed its 2-, 3- and 4-point functions at tree level, finding in particular that

the three-point function is always vanishing. We have seen that this feature agrees

with a general rule for higher-dimensional operators.

At one loop, we found that all quantum corrections vanish due to the geomet-

rical shape of the integrals, in agreement with parity-like transformations (odd

powers in the coupling constant will produce a sign change). For the 2-point func-

tion, we pushed the computation to two loops, computing the diagrams recurring

to known master integrals. The sum of all contributions is finite and parity-like

invariant. The prefactor ⇡2/6 looks like the Riemann Zeta function ⇣(2): it often

appears in QFT loops computation. If so, the four loops correction should have a

⇣(3) as a prefactor.

From the localization point of view, it has been argued that correlators of the

superprimary operators are captured by derivatives of a mass deformed Matrix

model with respect to the mass parameters [93] and after setting the mass param-

eters to zero. A relation between this matrix model and the central charge of the

theory has been conjectured. By direct computation, expanding the matrix model

at weak coupling, we matched our perturbative computation and proved the re-

lation for the central charge. As a by-product, we have computed the two-loops

77
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correction to the ABJ(M) central charge. The central charge is a function that

interpolates between the weak and strong coupling.

We have explored the possibility to have a non-trivial defect realizing the line:

the case we considered is a one-dimensional defect realized by Wilson Loop pre-

serving half of the supercharges. The gauge connection has to be specified in terms

of an augmented gauge supergroup U(N1|N2) and it is built with all the ABJ(M)

fields, including fermions (thus the name "fermionic loop"). Here is the main dif-

ference with the four dimensions: in the latter, we can couple only a scalar to the

gauge fields, while in ABJ(M) all the scalars enter with a coupling matrix M J
I .

This matrix turns out to be crucial when computing defect correlators.

The supermatrix structure has been obscure since the discovery of the fermionic

loop. In particular, all the quantities living on the loop have to be written in a

supermatrix form. The supercharges have a peculiar shape in this representation,

which allows recovering the correct commutation relations on the single fields.

Moreover, the supercharges preserved by the Wilson Line are slightly modified, in

order to respect the SUSY condition of the loop. We call these new set covariant

supercharges Qcov. In particular, we noticed that the addition of the new term

light-up some states that were hidden without the Wilson Line. This phenomenon

is the recombination of some supermultiplets, i.e. short supermultiplets become

long when the line is turned on. On the other hand, group theory arguments

predict the existence of other states, invisible to our multiplet analysis, since they

don’t have a realization in terms of fields. We think they are related to monopole

operators.

We have found that new superprimary operators are present, whose scaling

dimension is ∆ = 1
2

and they represent fermions. One of these, denoted with Z,

is the superprimary operator of the displacement supermultiplet. We have shown

that we can generate the whole multiplet by multiple actions of the covariant

supercharges on the superprimary Z. The Displacement operator obtained in this

way agrees with the expression resulting from the contour deformations (aka wavy

line).

Another issue of the fermionic loop is the difference in the one-loop correction

to the VEV between the line and the circle. The two contours are conformally

equivalent, so their VEV has to be the same. For the line, the fermionic diagram

needs an IR cut-off to not diverge; after computing the integral, the IR divergence

remains. This is in contrast with the zero one-loop correction of the circle, due

to the compactness of the contour. There are two possible reasons: either there

is a conformal anomaly acting at the quantum level, or the infinities of the line

are due to the IR cut-off that breaks gauge invariance. We have tried to explore

the second option, defining a cut-offed circle Wilson Loop, finding a parallel with
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the quantities resulting in the line computations. The compactness of the circle

allows computing the possible shape of the pieces we are cutting away on the line,

showing that possible divergencies mutually cancel out. Still, the option of the

conformal anomaly is not excluded a priori, and further investigations are needed.

Since the operator Z is the superprimary of the Displacement multiplet, the

coefficient of its two-point correlator is proportional to the Bremsstrahlung function

B1/2. We already know its value from the fermionic latitude in ABJM, and we

have only a conjecture on the general ABJ expression. In particular, the one-loop

is vanishing, as expected since in principle it is a protected quantity. We computed

perturbatively the 2-point correlation function hZZ̄iW : the tree level and the one-

loop correction match the previous results. Computing the two-loop contribution is

a work in progress. Some of the diagrams involved possess a very similar topology

of the topological two-loops diagrams and new ones arise.

The topological sector for the Wilson Line is still elusive. Indeed, the topo-

logical twist can be performed as the topological line case, as we have the same

superalgebra and in principle it will give us the same selection rules. However, the

presence of an interacting defect forces the multiplets to recombine. This effect is

manifest in various situations:

• no operators in the displacement multiplet satisfy the twist selection rules,

in contrast to what happen in four dimensions;

• superprimaries Y, Ȳ are protected in the free theory, but the correlator

hYȲiW is divergent at one loop. The cancellation that we have for the

Bremmsstrahlung function is now missing due to the change of sign in the

coupling matrix M J
I . The superprimaries Y now belong to a long multiplet

that is no more protected by supersymmetry. They acquire an anomalous

dimension, easily computed looking at the coefficient of the log in the finite

part. The anomalous dimension has to be the same through all the long

multiplet;

• The supermatrix analogue of the topological operator is no more a superpri-

mary operator, but can be obtained by the action of a supercharge on, for

instance, Y.

The presence of the one-loop divergence is surprising because we believed those

operators to be protected by SUSY. Indeed, they have to break all the charges at

the quantum level. We are looking for a SUSY breaking mechanism in this case.

Thus, in the search of the topological sector, we need to further investigate the

multiplets allowed on the Wilson Line and look if some the new multiplets match

the twist selection rules.
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Future directions

The essence of science is whenever you solve a problem, tons of new questions arise.

Therefore, even if we have clarified some aspects regarding one-dimensional sectors

in ABJ(M) and in particular for the fermionic Wilson Loop, there are still a lot of

obscure points to investigate. Indeed, it is not clear yet the operators entering the

new long supermultiplet: we stress that this is an effect due to only the interaction

of the loop, not visible from the one-dimensional superconformal algebra. In par-

ticular, operators in the same long multiplet share the same anomalous dimension

with the superprimary and we can use their �(1) to classify operators. For higher

scaling dimension operators the computation of �(1) by perturbation theory can

become cumbersome and it will require a non-perturbative approach. This can be

accomplished by studying three- and four-point correlation functions using boot-

strap techniques combined with localization and Mellin space analysis. For the

three-point function in ABJ(M), some progress has been made recently in [106].

On one hand, the difference in the VEV between line and circle remains an

open question and appears in more general situations, see e.g. [39]. On the other

hand, logarithmic divergences appearing in the VEV for straight contours can

be reabsorbed in a parameter defining a family of Wilson Loops interpolating

between non-SUSY and SUSY configuration [41]. A similar family can be defined

in ABJ(M) as well with two additional parameters: it would be interesting to study

its properties in relation to the renormalization group flow and compute its defect

entropy function, as in [39].

From a more general point of view, in ABJ(M) we have explicitly constructed

only two types of Wilson loops: the bosonic 1
6
-BPS and the fermionic one, related

by a cohomology transformation. We know that there should exist other classes

of loops [59], but the explicit description is still missing. One way to attack the

problem is trying to define a quantum mechanics, i.e. a path-integral depending on

one-dimensional degrees of freedom that gives the fermionic loop once the degrees

of freedom are integrated out. This description allows the study of even more

types of extended operators, like monopoles, and, if present, to directly find the

topological sector.

In addition, we know little about the interactions with the bulk. For a well-

defined interaction, the supermatrix structure imposed by the fermionic loop has

to be extended outside the defect compatibly with gauge-invariance. We can take

advantage of exact results in particular kinematic configurations [107, 108] in N =

4 SYM and try to generalize them to the ABJ(M) case.
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A

Conventions and Feynman

Rules

A.1 Notations and conventions

We work in euclidean space with coordinates xµ = (x1, x2, x3) and metric �µ⌫ .

Gamma matrices satisfying the usual Clifford algebra {�µ, �⌫} = 2�µ⌫1, are chosen

to be the Pauli matrices

(�µ) �
↵ ⌘ (�µ) �

↵ µ = 1, 2, 3 (A.1)

Standard relations which are useful for perturbative calculations are

�µ�⌫ = �µ⌫ + i"µ⌫⇢�⇢ (A.2)

�µ�⌫�⇢ = �µ⌫�⇢ � �µ⇢�⌫ + �⌫⇢�µ + i"µ⌫⇢ (A.3)

Moreover, we define �µ⌫ ⌘ 1
2
[�µ, �⌫ ]. Spinor indices are raised and lowered accord-

ing to the following rules

 ↵ = "↵� �,  ↵ = "↵� 
�

with "12 = �"12 = 1. Consequently, we define (�µ)↵� ⌘ "��(�
µ) �

↵ = (��3, iI, �1)

and (�µ)↵� ⌘ "↵�(�µ) �
� = (�3, iI,��1). They satisfy (�µ)↵� = (�µ)�↵ and (�µ)↵� =

(�µ)�↵.

A.1.1 ABJ(M) rescaled action

For the perturbative computations we find useful to consider a convenient rescaling

of the gauge fields and the corresponding ghosts as

A ! 1p
k
A, Â ! 1p

k
Â, c ! 1p

k
c, ĉ ! 1p

k
ĉ
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The covariant derivatives (1.60) change as

DµCI = @µCI +
ip
k
AµCI �

ip
k
CIÂµ, DµC̄

I = @µC̄
I +

ip
k
ÂµC̄

I � ip
k
C̄IAµ

Dµ ̄
I = @µ ̄

I +
ip
k
Aµ ̄

I � ip
k
 ̄IÂµ, Dµ I = @µ I +

ip
k
Âµ I �

ip
k
 IAµ

(A.4)

the Euclidean gauge-fixed action is then given by

SCS = � i
4⇡

R
d3x "µ⌫⇢

h
Tr
⇣
Aµ@⌫A⇢ +

2i
3
p
k
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⌘
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3
p
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ÂµÂ⌫Â⇢
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(A.5)

Sgf =
1
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Z
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
1
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µ)2 + @µc̄D
µc� 1
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� @µ¯̂cD
µĉ

�
(A.6)

Smat =

Z
d3x Tr

⇥
DµCID

µC̄I � i ̄I�µDµ I

⇤
= (A.7)

=
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 ̄I�µÂµ I �  ̄I�µ IAµ

⌘

+
ip
k

⇣
AµCI@

µC̄I � CIÂµ@
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(A.8)

while the interaction part remains unchanged.

A.1.2 Equations of motion

The EOMs for our choice of the Clifford Algebra are

"µ⌫⇢
✓
@⌫A⇢ +

ip
k
A⌫A⇢

◆
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k
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i (�µDµ)
�

↵
ΨA,� = �2⇡i

k

⇥
�C̄ICI"�↵Ψ

�
A � "↵�Ψ

�
ACIC̄

I + 2"↵�Ψ
�
LCAC̄

J

+2"�↵C̄
ICAΨ

�
I + 2"AIJKC̄

K
Ψ̄

J
↵C̄

K
⇤ (A.11)

For ↵ = 1 we have

D3 1 +D 2 = D 1 �D3 
2 = �2⇡

k

⇥
 2CIC̄

I � C̄ICI 
2 + 2C̄IZΨ2

I

�2Ψ2
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I + 2"abcȲ
a�̄b

1Ȳ
c
⇤ (A.12)

such that

D 1 = D3 
2 � 2⇡

k
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 2CIC̄

I � C̄ICI 
2 + 2C̄IZΨ2

I � 2Ψ2
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c
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(A.13)
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In the SU(3) formalism

�2i

r
⇡

k
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r
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The derivative D3 in the first line can be lifted to the supermatrix form, as defined

in (4.75). In particular, in the line case we have k� 1
2Aµ = LA such that

D3 
2 = D3

 
0 0

 2 0

!
= @3

 
0 0

 2 0

!
+ i

"
LA,

 
0 0

 2 0

!#
(A.15)

A.2 Feynman Rules

From the action we have the propagators for the fields

• scalars

h(CI)i
ĵ(x) (C̄J)k̂

l
(y)i(0) = �JI �

l
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1
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• fermions
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and one-loop correction
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j
k �

�
↵

✓
N1 �N2

k

◆
i
Γ2(1

2
� ")

8⇡2�2"

1

|x� y|2�4"

(A.18)

• gauge fields
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and one-loop corrections
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and it is straightforward to restrict them on a line.
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A.2.1 Propagators From Line to Circle

When computing quantum correction on a circle, e.g. in the Wilson Loop with

circular contour, it is convenient to express propagators as functions of the angular

variable.

The circle is a curve parametrized as xµ (⌧) = (0, cos ⌧, sin ⌧). Then it’s a

trigonometric exercise proving that

|x1 � x2| =

����2 sin
⌧1 � ⌧2

2

���� (A.23)

So the scalar propagator on the circle is straightforward
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The fermions coming from the line are always coupled with the spinors ⌘, ⌘̄. On

the circle, the conformal transformation give them the following form
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so the fermions coupled to the line are

Ψ⌘̄ = i
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Considering the correlator h(Ψ⌘̄)(⌘Ψ̄)i and expanding as (A.26), after some ma-

nipulations we get
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î
�

j
k

Γ(3
2
� ")

⇡
3
2
�"

�
2 sin ⌧1�⌧2

2

�
��2 sin ⌧1�⌧2

2

��3�2" (A.27)



B

Supersymmetry and

superalgebras

B.1 Supersymmetry transformations

B.1.1 In SU(4) notations

The ABJ(M) action in (1.56) is invariant under the following superconformal trans-

formations

�CK = �⇣̄IJ,↵ "IJKL  ̄
L
↵

�C̄K = 2⇣̄KL,↵  L,↵
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where the parameters of the transformations are expressed in terms of supersym-

metry and superconformal parameters as

⇣̄IJ↵ = Θ̄
IJ
↵ � xµ(�µ)

�
↵ "̄

IJ
� (B.2)

We recall that they satisfy ⇣̄IJ = �⇣̄JI , and are subject to the reality conditions

⇣̄IJ = (⇣IJ)
⇤ with ⇣IJ = 1

2
"IJKL⇣̄

KL.

89
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If we set "̄IJ = 0 in (B.1) we obtain N = 6 supersymmetry transformations.

Expressing them as

�Φ = [Θ̄IJQ̄IJ ,Φ] = [ΘIJQ
IJ ,Φ] (B.3)

for a generic field Φ, it is easy to realize that the QIJ supercharges (or equivalently

Q̄IJ) satisfy the osp(6|4) algebra (1.50) under the identification Pµ = i@µ.

B.1.2 In SU(3) notations

The generic supersymmetry transformation defined in (B.3) can be specialized to

the su(1, 1|3) supercharges (Qa, Q̄a) defined in (B.11,B.13). For a generic field Φ̃

in a given representation of the su(3) R-symmetry algebra it reduces to

�Φ̃ =
h
✓aQ

a + ✓̄aQ̄a, Φ̃
i

(B.4)

under the parameter identification

✓1 = 2Θ1
1(a+1) a = 1, 2, 3 (B.5)

✓̄1 = �2iΘ2
34 ✓̄2 = �2iΘ2

42 ✓̄3 = �2iΘ2
23

From the variations in (B.1) we can easily read the supersymmetry transformations

of the ABJ(M) fundamental fields reorganized in su(3) R-symmetry representations

(see eqs. (3.12) and (3.13)). Comparing these transformations with the general

variation defined in (B.4) we obtain the action of the supercharges on the fields,

which takes the following form

• Scalar fields

QaZ = ��̄a
1 Q̄aZ = 0 QaZ̄ = 0 Q̄aZ̄ = i�1

a

QaYb = �ab  ̄1 Q̄aYb = �i"abc�̄
c
2 QaȲ b = �"abc�2

c Q̄aȲ
b = �i�ba 

1 (B.6)

• Fermions

Q̄a 
1 = 0 Qa 1 = �iD3Ȳ

a � 2⇡i

k

⇣
Ȳ alB � l̂BȲ

a
⌘

(B.7a)

Qa 2 = �iDȲ a Q̄a 
2 = �4⇡

k
"abcȲ

bZȲ c (B.7b)

Q̄a�
1
b = "abc D̄Ȳ c Qa�1

b = i�abD3Z̄ +
4⇡i

k

⇣
Z̄Λa

b � Λ̂
a
b Z̄
⌘

(B.7c)

Qa�2
b = i�ab DZ̄ Q̄a�

2
b = �"abcD3Ȳ

c � 2⇡

k
"acd

⇣
Ȳ c

Θ
d
b � Θ̂

d
b Ȳ

c
⌘

(B.7d)

Qa ̄1 = 0 Q̄a ̄1 = �D3Ya �
2⇡

k

⇣
Yal̂B � lBYa

⌘
(B.7e)

Q̄a ̄2 = �D̄Ya Qa ̄2 =
4⇡i

k
"abcYbZ̄Yc (B.7f)
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Qa�̄b
1 = �i"abc DYc Q̄a�̄

b
1 = �abD3Z +

4⇡

k

⇣
ZΛ̂a

b � Λ
a
bZ
⌘

(B.7g)

Q̄a�̄
b
2 = �ba D̄Z Qa�̄b

2 = i"abcD3Yc +
2⇡i

k
"acd

⇣
YcΘ̂

b
d �Θ

b
dYc

⌘
(B.7h)

• Gauge fields

QaA3 = �2⇡i

k

�
 ̄1Ȳ

a � �̄a
1Z̄ + "abcYb�

2
c

�
Q̄aA3 =

2⇡

k

�
Z�1

a � Ya 
1 � "abc�̄

b
2Ȳ

c
�

QaA = 0 Q̄aA = �4⇡

k

�
Ya 

2 � Z�2
a � "abc�̄

b
1Ȳ

c
�

QaĀ = �4⇡i

k

�
 ̄2Ȳ

a � �̄a
2Z̄ � "abcYb�

1
c

�
Q̄aĀ = 0

QaÂ3 = �2⇡i

k

�
Ȳ a ̄1 � Z̄�̄a

1 + "abc�2
cYb

�
Q̄aÂ3 =

2⇡

k

�
�1
aZ �  1Ya � "abcȲ

c�̄b
2

�

QaÂ = 0 Q̄aÂ =
4⇡

k

�
 2Ya � �2

aZ � "abcȲ
c�̄b

1

�

Qa ˆ̄A = �4⇡i

k

�
Ȳ a ̄2 � Z̄�̄a

2 � "abc�1
cYb

�
Q̄a

ˆ̄A = 0 (B.8a)

where we have defined the bilinear scalar fields
 
Λb

a 0

0 Λ̂b
a

!
=

 
YaȲ

b + 1
2
�balB 0

0 Ȳ bYa +
1
2
�bal̂B

!

 
Θb

a 0

0 Θ̂b
a

!
=

 
YaȲ

b � �ba(ZZ̄ + YcȲ
c) 0

0 Ȳ bYa � �ba(Z̄Z + Ȳ cYc)

!

 
`B 0

0 ˆ̀
B

!
=

 
ZZ̄ � YcȲ

c 0

0 Z̄Z � Ȳ cYc

!
(B.9)

B.2 su(1, 1|3) algebra

In Chapter 3, we presented the bosonic part of the su(1, 1|3) algebra. We now give

some details on the fermionic sector. We have seen we have 12 superconformal

charges

Q12
1 , Q13

1 , Q14
1 , Q23

2 , Q24
2 , Q34

2 and S12
1 , S13

1 , S14
1 , S23

2 , S24
2 , S34

2 (B.10)

and they can be reorganized in a SU(3) form

Qk�1 ⌘ Q1k
1 Q̄k�1 ⌘

i

2
"klm Qlm

2

Sk�1 ⌘ i S1k
1 S̄k�1 ⌘

1

2
"klm Slm

2 k, l,m = 2, 3, 4
(B.11)

and make the shift Qk�1 ! Qa, Q̄k�1 ! Q̄a with a = 1, 2, 3, and similarly for the

superconformal charges.
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This set of generators inherits the following hermicity conditions

(Qa)† = S̄a (Q̄a)
† = Sa

(Sa)† = Q̄a (S̄a)
† = Qa a = 1, 2, 3

(B.12)

and the following anti-commutation relations

{Qa, Q̄b} = �ab P {Sa, S̄b} = �ab K

{Qa, S̄b} = �ab

✓
D +

1

3
M

◆
�Rb

a {Q̄a, S
b} = �ba

✓
D � 1

3
M

◆
+Ra

b
(B.13)

together with the mixed commutation rules

[D,Qa] =
1

2
Qa [K,Qa] = Sa [Ra

b, Qc] = �caQ
b � 1

3
�baQ

c [M,Qa] =
1

2
Qa

[D, Q̄a] =
1

2
Q̄a [K, Q̄a] = S̄a [Ra

b, Q̄c] = ��bcQ̄a +
1

3
�baQ̄c [M, Q̄a] = �1

2
Q̄a

[D,Sa] = �1

2
Sa [P, Sa] = �Qa [Ra

b, Sc] = �caS
b � 1

3
�baS

c [M,Sa] =
1

2
Sa

[D, S̄a] = �1

2
S̄a [P, S̄a] = �Q̄a [Ra

b, S̄c] = ��bcS̄b +
1

3
�baS̄c [M, S̄a] = �1

2
S̄a

(B.14)

From eq. (1.55) and definitions (3.9) it follows that the action of the SU(3)

R-symmetry generators on fields in the (anti-)fundamental representation is

[Ra
b,Φc] =

1

3
�baΦc � �bcΦa [Ra

b, Φ̄c] = �caΦ̄
b � 1

3
�baΦ̄

c (B.15)

B.2.1 Irreducible representations

In this appendix, we shall briefly review the classification of the multiplet of

su(1, 1|3) presented in [72]. We shall classify the states in terms of the four Dynkin

labels [∆,m, j1, j2] associated to the bosonic subalgebra su(1, 1) � su(3) � u(1).

Here ∆ stands for the conformal weight, m for the u(1) charge and (j1, j2) are

the eigenvalues corresponding to the two su(3) Cartan generators J1 and J2. We

choose

J1 ⌘
R2

2 �R1
1

2
= �2R1

1 +R3
3

2

J2 ⌘
R3

3 �R2
2

2
=

R1
1 + 2R3

3

2

(B.16)

where we have exploited the traceless property Ra
a = 0 to remove the dependence

on R2
2. The commutations rules (3.10) implies that we can associate an sl(2)

subalgebra with each Cartan generator. In fact, the two sets of operators

{R2
1, R1

2, J1} ⌘ {E�
1 , E

+
1 , J1} , {R3

2, R2
3, J2} ⌘ {E�

2 , E
+
2 , J2} (B.17)



B.2. su(1, 1|3) algebra 93

satisfy the following algebraic relations

[E+
i , E

�
i ] = 2Ji [Ji, E

±
i ] = ±E±

i i = 1, 2 (B.18)

and define the raising and lowering operators used to construct the representation

of su(3). In the main text, we have chosen a different sl(2) to define the twisted al-

gebra. We have preferred to use the one generated by {R3
1, R1

3,�J1 � J2}, which

treats the two Dynkin labels (j1, j2) symmetrically. Moreover, the supercharges

with this choice of basis possess well-defined Dynkin labels, whose values are dis-

played in Table B.1. When localized on the line, the ABJ(M) fundamental fields

Generators [∆,m, j1, j2]

Q1 Q̄1

⇥
1
2
, 1
2
,�1, 0

⇤ ⇥
1
2
,�1

2
, 1, 0

⇤

Q2 Q̄2

⇥
1
2
, 1
2
, 1,�1

⇤ ⇥
1
2
,�1

2
,�1, 1

⇤

Q3 Q̄3

⇥
1
2
, 1
2
, 0, 1

⇤ ⇥
1
2
,�1

2
, 0,�1

⇤

S1 S̄1

⇥
�1

2
, 1
2
,�1, 0

⇤ ⇥
�1

2
,�1

2
, 1, 0

⇤

S2 S̄2

⇥
�1

2
, 1
2
, 1,�1

⇤ ⇥
�1

2
,�1

2
,�1, 1

⇤

S3 S̄3

⇥
�1

2
, 1
2
, 0, 1

⇤ ⇥
�1

2
,�1

2
, 0,�1

⇤

Table B.1: Table of Dynkin labels of fermionic generators. For a generic element

vµ transforming in a weight-µ representation, the Dynkin label corresponding to a

generator Hi of the Cartan subalgebra is defined as ji(vµ) ⌘ 2[Hi, vµ].

also have definite quantum numbers with respect to su(1, 1)� su(3)� u(1). Their

values are listed in Table B.2 for the scalar fields and in Table B.3 for the fermionic

ones.

Finally we do not consider directly the gauge fields, but their covariant deriva-

tives. Their Dynkin labels are given by

D [1, 3, 0, 0] D̄ [1,�3, 0, 0] D3 [1, 0, 0, 0] (B.19)

Therefore their action on an operator that is an eigenstate |∆,m, j1, j2i of the

Cartan generators simply shifts the the first two quantum numbers. Next we

summarize the relevant superconformal multiplets constructed in [72].

The A Multiplets

We start with the so-called long multiplets, denoted by A∆

m;j1,j2
. Their highest

weight of the representations, namely the super-conformal primary (SCP), is iden-
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Scalar fields [∆,m, j1, j2]

Z , Z̄
⇥
1
2
, 3
2
, 0, 0

⇤ ⇥
1
2
,�3

2
, 0, 0

⇤

Y1 , Ȳ 1
⇥
1
2
,�1

2
, 1, 0

⇤ ⇥
1
2
, 1
2
,�1, 0

⇤

Y2 , Ȳ 2
⇥
1
2
,�1

2
,�1, 1

⇤ ⇥
1
2
, 1
2
, 1,�1

⇤

Y3 , Ȳ 3
⇥
1
2
,�1

2
, 0,�1

⇤ ⇥
1
2
, 1
2
, 0, 1

⇤

Table B.2: Quantum number assignments to scalar matter fields of the ABJ(M)

theory defined in eq. (3.12).

Fermionic fields [∆,m, j1, j2]

( )1 , ( )2 [1, 3, 0, 0] [1, 0, 0, 0]

( ̄)1 , ( ̄)2 [1, 0, 0, 0] [1,�3, 0, 0]

(�1)1 , (�1)2 [1, 1, 1, 0] [1,�2, 1, 0]

(�̄1)1 , (�̄1)2 [1, 2,�1, 0] [1,�1,�1, 0]

(�2)1 , (�2)2 [1, 1,�1, 1] [1,�2,�1, 1]

(�̄2)1 , (�̄2)2 [1, 2, 1,�1] [1,�1, 1,�1]

(�3)1 , (�3)2 [1, 1, 0,�1] [1,�2, 0,�1]

(�̄3)1 , (�̄3)2 [1, 2, 0, 1] [1,�1, 0, 1]

Table B.3: Quantum number assignments to fermionic matter fields of the ABJ(M)

theory defined in eq. (3.12).

tified by requiring that

Sa |∆,m, j1, j2ihw = 0 S̄a |∆,m, j1, j2ihw = 0 E+
a |∆,m, j1, j2ihw = 0 (B.20)

Then the entire multiplet is bult by acting with the supercharges Qa and Q̄a. For

unitary representations, the Dynkin label of the highest weight are constrained by

the following inequalities

∆ �

8
<
:

1
3
(2j2 + j1 �m), m < j2�j1

2

1
3
(j2 + 2j1 +m), m � j2�j1

2

(B.21)
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At the threshold of the unitary region, these multiplets split into shorter ones

because of the recombination phenomenon. For m < j1�j2
2

the unitarity bound is

for ∆ = 1
3
(2j1 + j2 �m) and one can verify that

A
� 1

3
m+ 2

3
j1+

1
3
j2

m,j1,j2
= B

1
6
,0

m,j1,j2
� B

1
6
,0

m+ 1
2
,j1+1,j2

(B.22)

Equivalently, for m > j1�j2
2

one has

A
1
3
m+ 1

3
j1+

2
3
j2

m,j1,j2
= B

0, 1
6

m,j1,j2
� B

0, 1
6

m� 1
2
,j1,j2+1

(B.23)

For the particular case m = j1�j2
2

we have

A
j2+j1

2
j2�j1

2
;j1,j2

= B
1
6
, 1
6

j2�j1
2

;j1,j2
� B

1
6
, 1
6

j2�j1
2

+ 1
2
;j1,j2+1

� B
1
6
, 1
6

j2�j1
2

� 1
2
;j1+1,j2+1

� B
1
6
, 1
6

j2�j1
2

;j1+1,j2+1
.

(B.24)

Above the symbols B
1
N
, 1
M

m;j1,j2
stand for a type of short multiplets (see below). The

two superscripts denote respectively the fraction of Q and Q̄ charges with respect

to the total number of charges (Q + Q̄), which annihilates the super-conformal

primary.

The B Multiplets

Let us now have a closer look to short multiplets. They are obtained by imposing

that the highest weight is annihilated by some of the Q and Q̄ charges (shortening

condition). First we consider the case

Qa |∆,m, j1, j2ihw = 0 (B.25)

from which we get three possible short supermultiplets

a = 3 ∆ =
1

3
(j1 + 2j2 �m) B

1
6
,0

m;j1,j2
(B.26)

a = 3, 2 ∆ =
1

3
(j1 �m), j2 = 0 B

1
3
,0

m;j1,0
(B.27)

a = 3, 2, 1 ∆ = �1

3
m, j1 = j2 = 0 B

1
2
,0

m;0,0 (B.28)

according to the number of charges obeying the condition (B.26). Obviously we

can also consider the conjugate shortening condition

Q̄a |∆,m, j1, j2ihw = 0 (B.29)

which yields short multiplets conjugate to the ones considered above

a = 1 ∆ =
1

3
(j2 + 2j1 +m) B

0, 1
6

m;j1,j2
(B.30)



96 B. Supersymmetry and superalgebras

a = 1, 2 ∆ =
1

3
(j2 +m), j1 = 0 B

0, 1
3

m;0,j2
(B.31)

a = 1, 2, 3 ∆ =
1

3
m, j1 = j2 = 0 B

0, 1
2

m;0,0 (B.32)

Finally we may have mixed multiplets where the highest weight is annihilated both

by Qa and Q̄a. Those include

B
1
6
, 1
6

m,j1,j2
∆ =

j1 + j2
2

m =
j1 � j2

2
(B.33)

B
1
3
, 1
6

m,0,j2
∆ =

j2
2

m = �j2
2

j1 = 0 (B.34)

B
1
6
, 1
3

m,j1,0
∆ =

j1
2

m =
j1
2

j2 = 0 (B.35)



C

Integrals appearing in loop

computations

In this appendix, we collect some results of the integrals appearing in loop compu-

tations.

C.1 Computing the bosonic integrals

In the computations of operators insertions correlation functions on the circle we

stepped in computing an integral of this type:

Z �

0

d⌧
�
4 sin ⌧

2
sin ��⌧

2

�1�2" . (C.1)

Using the trigonometric sum-to-product rule

cos↵� cos � = �2 sin
↵ + �

2
sin

↵� �

2
(C.2)

we can rewrite the previous integral as

Z �

0

d⌧
�
2
�
cos
�
⌧ � �

2

�
� cos �

2

��1�2" =

Z �
2

��
2

d⌧
�
2
�
cos ⌧ � cos �

2

��1�2"

=22"
Z �

2

0

d⌧
�
cos ⌧ � cos �

2

�1�2"

(C.3)

Rewrite the cos using

cos↵ =
1� tan2 ↵

2

1 + tan2 ↵
2

(C.4)

so

(C.3) = 22"
Z �

2

0

d⌧

✓
1� tan2 ⌧

2

1 + tan2 ⌧
2

� 1� tan2 �
4

1 + tan2 �
4

◆2"�1

(C.5)
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and after the change of variable ⌧ = 2arctan z it changes as

22"
Z tan �

4

0

2
dz

1 + z2

✓
1� z2

1 + z2
� 1� tan2 �

4

1 + tan2 �
4

◆2"�1

(C.6)

This becomes

24"
�
1 + tan2 �

4

�2"�1

Z tan �
4

0

dz
�
1 + z2

��2"
⇣
tan2 �

4
� z2

⌘2"�1

(C.7)

Changing variable again using z = w tan �
4

we get

24"
�
tan2 �

4

�2"�1
tan �

4�
1 + tan2 �

4

�2"�1

Z 1

0

dw
⇣
1 + w2 tan2 �

4

⌘�2" �
1� w2

�2"�1
(C.8)

and this results in

24"�1
p
⇡
�
tan2 �

4

�2"�1
tan �

4�
1 + tan2 �

4

�2"�1

Γ (2")

Γ
�
1
2
+ 2"

� 2F1

✓
1

2
, 2";

1

2
+ 2";� tan2 �

4

◆
(C.9)

In computing the integral

Z ⇡

�⇡

d⌧
⇥
4 sin

�
��⌧
2

�
sin
�
⌧
2

�⇤1�2" (C.10)

we basically follow the same steps. First, use sum-to-product rule (C.2) to get

Z ⇡

�⇡

d⌧
�
2
�
cos
�
⌧ � �

2

�
� cos �

2

��1�2" =

Z ⇡

�⇡

d⌧
�
2
�
cos ⌧ � cos �

2

��1�2"

= 22"
Z ⇡

0

d⌧
�
cos ⌧ � cos �

2

�1�2"

(C.11)

the second equality follows from the fact that we are integrating over the whole

period. Using (C.4) and the change of variables ⌧ = 2 arctan(z) followed by w =

z tan
�
�
4

�
eventually we get

24"
�
tan
�
�
4

��4"�1

�
1 + tan2

�
�
4

��2"�1

Z +1

0

dw
⇣
1 + w2 tan2

⇣�
4

⌘⌘�2" �
1 + w2

�2"�1
(C.12)

that gives

24"�1
p
⇡
⇣
tan
�
�
4

�4"�1
⌘

�
1 + tan2

�
�
4

��2"�1

Γ(2")

Γ
�
1
2
+ 2"

�

2F1

✓
1

2
, 2";

1

2
+ 2";� tan2

⇣�
4

⌘◆

+(�1)1�2"
2F1

✓
1

2
, 2";

1

2
+ 2";� cot2

⇣�
4

⌘◆⇣
tan
⇣�
4

⌘⌘�4"
�

(C.13)
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C.2 Solve fermionic intergrals

In the second order expansion of the Wilson Loop perturbative computation we

encounter an integral coming from the fermionic propagator

I =

Z b

a

d⌧1

Z d

c
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✓
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✓
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Using the following identity
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then it becomes a direct integration. For an example, setting a = 0, b = �, c =

0, d = ⌧1 as in the integral (4.133)
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C.3 Two-loop integrals

In this section, we list the integrals corresponding to the two-loop diagrams in

figures 3.2(a)-3.2(l), dressed by their color factors.

Diagram 3.2(a) contains the two-loop correction to the scalar propagator. This

has been computed in [60] and reads

C(N1, N2) =
N1N2
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To compute the contributions of the other diagrams it is sufficient to rely on

Feynman rules listed in appendix A.2, together with the product of polarization

vectors. Explicitly, we find

(3.2(b)) = �s2
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� "
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We note that in the large N1, N2 approximation we obtain (3.2(f)) = �4(3.2(c)),

in agreement with the results in [91].
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(3.2(h)) = 0 (3.2(i)) = 0 (C.24)



C.3. Two-loop integrals 101
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D

Supermatrices

We have seen that the fermionic loop needs a representation in terms of a super-

connection on the superalgebra of the supergroup U(N1|N2). This appendix is

devoted to presenting all the properties of the supermatrices we will use in the

Wilson Loop computations.

D.1 Basics on supergroups

A supergroup G is a Z2-graded direct sum of two sets

G = GB �GF (D.1)

where the B in GB means "bosonic" and the F "fermionic"; indeed, we can label

the element in the two sets by their parity, i.e. b 2 GB is parity even and f 2 GF

is parity odd. The composition works as follow

b · b 2 GB b · f 2 GF f · f 2 GB (D.2)

Obviously, the neutral element e 2 GB.

The associated algebra g has the same direct sum structure

g = ge � go (D.3)

which we labeled the two parts as "even" and "odd". Also the algebra elements

can be parity even or odd, and we will denote it as |X| such that

|X| = 0 for X 2 ge |X| = 1 for X 2 go (D.4)

The usual commutator is then lifted to a supercommutator, defined as

[X, Y } = XY � (�1)|X||Y |Y X (D.5)

that reduce to the usual commutator if at least one element is even, while it becomes

the anticommutator when both elements are odd.
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D.2 Representation on supermatrices

Our interest is on the supergroup U(N1|N2). We can represent its algebra on the

space of supermatrices sgl(N1|N2) that can be decomposed as

sgl = sgle � sglo (D.6)

Supermatrices can be seen as composed by blocks, whose blocks posses a certain

parity under Z2, in the following way

X =

0
B@
even odd

odd even

1
CA ) |X| = 0 (D.7)

Y =

0
B@

odd even

even odd

1
CA ) |Y | = 1 (D.8)

The supermatrix product is the same as the ordinary matrix product. On the other

hand, the scalar multiplication is little trickier. On this space, even scalars have

parity. The actions of the scalars on the supermatrices follow these rules

↵ ·X =

0
B@

↵X1 ↵X2

(�1)|↵|↵X3 (�1)|↵|↵X4

1
CA (D.9)

when the scalar acts from the left, while

X · ↵ =

0
B@
X1↵ X2(�1)|↵|↵

X3↵ X4(�1)|↵|↵

1
CA (D.10)

We can obtain these rules just by noting that scalars can be written as supermatrix

too, depending on their parity

↵ !

0
B@
↵ 0

0 (�1)|↵|↵

1
CA (D.11)

and using the supermatrix product. This property is useful to define the super-

charge action on the supermatrices of the 1/2-BPS Wilson Loop in ABJ(M).
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