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ABSTRACT

By using direct N -body simulations with the special hardwares such as GRAPE

and GPU, I present the studies of the dynamical evolution of the stellar systems

in special cases and the related astrophysical phenomena: rotation of the globular

clusters and gravitational wave sources in the galactic nuclei.

In order to understand the effects of the initial rotation on the evolution of the

tidally limited clusters with mass spectrum, I have performed N -body simulations

of the clusters composed of two mass species with initial rotation and compared

the results with those of the Fokker-Planck (FP) simulations. I confirmed that the

cluster evolution is accelerated by not only the initial rotation but also the mass

spectrum. For the slowly rotating models, the time evolutions of mass, energy and

angular momentum show good agreements between N-body and FP simulations.

On the other hand, for the rapidly rotating models, there are significant differences

between these two approaches at the early stage of the evolutions because of the

development of bar instability in N -body simulations. The shape of the cluster for

N -body simulations becomes tri-axial or even prolate, which cannot be produced

by the two-dimensional FP simulations. The total angular momentum and the to-

tal mass of the cluster decrease rapidly while bar-like structure persists. After the

rotational energy becomes smaller than the critical value for the bar instability, the

shape of the cluster becomes nearly axisymmetric again, and follows the evolution-

ary track predicted by the FP equation. I have confirmed again that the energy

equipartition is not completely achieved when M2/M1(m2/m1)
3/2 > 0.16. By exam-

ining the angular momentum at each mass component, I found that the exchange of

angular momentum between different mass components occurs, similar to the energy

exchange leading to the equipartition.

The direct detection of gravitational waves (GWs) is now expected for the next-

generation GW detectors such as advanced LIGO and Virgo which are planned or

under construction. Stellar black hole (BH) binaries are one of the most promising

GW sources for GW detection by the ground-based detectors. To investigate the

formation and evolution of the BH-BH binaries in the dense stellar systems like
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the galactic nuclei, I have carried out the direct N -body simulations. Nuclear star

clusters (NCs) located at the center of galaxies are known to have massive black holes

(MBHs) and to be bounded by a deep gravitational potential from other galactic

building blocks like the bulge. Such environment of NCs provides a good laboratory

for the BH-BH binary formation by the gravitational radiation (GR) capture due to

the high BH number density and velocity dispersion. I find that the overall formation

rates for BH-BH binaries per NC is ∼ 10−10yr−1 for the Milky-Way-like galaxies and

weakly dependent on the mass of MBH as Γ ∝ M
3/28
MBH. Because the merging time of

these binaries is negligible compared to the cluster life time, the binary formation

rates can be directly converted to the merger rates. The expected detection rates

for the next-generation GW detectors can be obtained by the cosmological volume

integration of the merger rates and MBH mass function up to the maximum horizon

distance. I estimate the detection rate 0.2-2yr−1 for advanced LIGO/Virgo. However,

several factors such as the dynamical evolution of the cluster, the variance of the

number density of stars and the mass range of MBH give uncertainties by a factor

of ∼100. By implementing the post-Newtonian approximation, I also investigated

the motion and the waveform of coalescing BH-BH binaries. For the typical BH-BH

binary in Milky-Way-like galaxies, the merging time is a few days and the merging

frequency is ∼100Hz. The waveforms differ significantly from those of the usual

circular binaries since the gravitationally captured binaries are expected to have

large eccentricities until the final merge.

Keywords: numerical simulations; stellar dynamics; star clusters; rotation; grav-

itational wave

Student Number: 2006-20484
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Chapter 1

Introduction

In the universe, there are many kinds of the stellar systems bounded by gravity from

planetary systems to the large scale structures, and the study of their formation and

evolution is one of the most important issues in astrophysics. Stellar dynamics, the

study of the evolution of the stellar systems, can be simply summarized as follows

(Binney & Tremaine 2008) what is the fate of the stellar systems whose dynamics is

governed mostly by the Newtonian gravity. The notion of relaxation plays the most

fundamental role in stellar dynamics. If a star with peculiar velocity comes into a

stellar system in equilibrium, the star loses its initial character by the gravitational

interactions with field stars and finally melts into the system. The time needed for

such process is called the relaxation time trelax. For a particle coming into a self

gravitating system with the number of particles N , the change of velocity of the

particle per crossing is given by

∆v2

v2
≈ 8 lnΛ

N
, (1.1)

where Λ is the Coulomb logarithm which is roughly ≈ N for self gravitating systems.

Thus, for the particle to change the velocity as much as the order of itself, it takes

trelax ≈ 0.1N

lnN
tcross, (1.2)

where tcross is the crossing time expressed simply ∼ R/v. R and v are typical size of

the system and speed of particles, respectively. For the stellar systems like galaxies,

1



2 Introduction

the relaxation time is much larger than their lifetimes. Thus, for these collisionless

systems, the relaxation process is not important. Instead, particles move under the

influence of the smoothed gravitational potential from all particles. On the other

hand, stellar systems like star clusters and galactic nuclei with shorter relaxation

time than their lifetimes are affected by the relaxation. The evolution of these colli-

sional systems can be characterized by the relaxation time without N -dependence.

As an aspect of the relaxation, the energy equipartition is also one of the im-

portant processes in the stellar dynamics. Two-body encounters tend to make the

kinetic energies of stars with different masses similar (Spitzer 1969), and thus, high

mass stars become slower than low mass stars and sink to the center (e.g., Giersz

& Heggie 1996). This is known to the mass segregation. However, the equipartition

does not happen when the number of high mass stars is larger than a certain crite-

rion. In that case, the core is mainly occupied by high mass stars due to the mass

segregation, and velocity dispersion of high mass stars is determined by their self

gravity rather than the interaction with low mass stars. This, so-called equipartition

instability, is first suggested by Spitzer (1969).

Due to the two-body interactions, the velocity dispersion of the stellar systems

tends to become the Maxwell distribution. Therefore, stars in the high-velocity tail of

this distribution can become higher velocity than the escape velocity of the systems

so that escape from the system (Ambartsumian 1934; Spitzer 1940). For the simple

isolated systems, the evaporation time is ∼ 102 half-mass relaxation times. However,

the evaporation for realistic clusters is accelerated by the tidal field (e.g., Lee &

Ostriker 1987), mass spectrum (e.g., Lee & Goodman 1995) and the rotation of

cluster (e.g., Einsel & Spurzem 1999).

When a stellar system is supported by its own gravity, this self-gravitating system

satisfies the virial theorem (i.e., 2K +W = 0, where K and W are the kinetic and

potential energy, respectively). In this case, from the thermodynamical point of

view, the stellar system has the negative heat capacity. An isolated self-gravitating

stellar system is composed of hot dense core and cold rarefied envelope, and heat

is transferred from the core to the envelope. The core becomes hotter (i.e., denser)

due to the negative heat capacity. Finally, the core density becomes infinity, which is
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called gravothermal catastrophe (Lynden-Bell & Wood 1968). It usually takes ∼ 10

half-mass relaxation times for an isolated equal-mass system.

Nevertheless, in reality, the core density doesn’t go to the infinity. If the core

becomes dense enough, binaries can be formed when three stars get together by

chance. These binaries are usually hard binaries. In stellar systems, binaries can be

characterized by the dimensionless hardness x, which is defined as a ratio of or-

bital kinetic energy in the binary to the average kinetic energy of individual satrs.

Classical studies (Heggie 1975; Hut 1983; Hut & Bahcall 1983) show that hard bi-

naries (i.e., x ≫ 1) become harder while soft binaries (i.e., x ≪ 1) become softer

via binary-single encounters. The hard binaries formed in the dense core play a role

as a heat source by converting their internal energy to the kinetic energies of them-

selves and opponents, and thus the core stops to collapse and expands (Lee 1987).

These binaries become harder and faster during encounters and eventually escape

from the system when they get faster than the escape velocity of the system. Thus,

the system repeats collapsing and expanding through binary formation and escape,

which is called gravothermal oscillation (Meylan & Heggie 1997).

The stellar dynamics is basically gravitational N -body problems. The best way

for N -body problems is to trace the trajectories of all individual stars. However, it is

very difficult to deal with realistic stellar systems such as globular clusters (N ∼ 106)

or galactic nuclei (N ∼ 108) due to the limited resources for calculation. Instead,

Cohn (1979) utilized a statistical approach by solving the Fokker-Planck equation

that describes the time evolution of the distribution function (i.e., phase-space den-

sity) of stars. The computational cost for solving the Fokker-Planck equation is

independent on the number of stars so one can probe the evolution of large N sys-

tems. So far, the Fokker-Planck approach has been used in a number of studies for

detailed astrophysical applications: gravitational core collapse (Cohn 1980), stellar

mass function (Spurzem & Takahashi 1995; Takahashi & Lee 2000), binary forma-

tion and merger (Lee 1987; Lee & Goodman 1995), tidal truncation (Takahashi et

al. 1997; Takahashi & Portegies Zwart 1998), rotation of star clusters (Einsel &

Spurzem 1999; Kim et al. 2002, 2004).



4 Introduction

In the mean time, the effort for the direct integration of N -body problems is

pioneered by Aarseth (1963). At that time, it was only possible to calculate ∼100

particles due to the lack of computational facilities. Since then, in addition to the

computing power, many algorithmic improvements for direct N -body simulations

also have been d (Aarseth 1999): individual time step (Aarseth 1963), two-body reg-

ularization (Kustaanheimo & Stiefel 1965), chain regularization (Mikkola & Aarseth

1990), algorithmic regularization (Mikkola & Merritt 2006), neighbor scheme (Ah-

mad & Cohen 1973) and Hermite integrator (Makino 1991). As the historical product

of all these efforts, nbody series is one of the widely-used direct N -body codes in

the stellar dynamics. nbody6, the most popular version of nbody code, now has

an advantage of dealing with realistic systems with various astrophysical processes

(e.g., binaries or supermassive black holes) which cannot be precisely treated by the

Fokker-Planck approaches.

The increase of computational speed for direct integrations is also achieved in

hardwares. In direct N -body simulations, the calculation of mutual gravity forces

spends most of time with order O(N2). Thus, it is important to carry out force

calculations efficiently in order to reduce computational time. Because the ability

for a single central processing unit (CPU) is growing but limited, parallel computing

has been utilized to achieve high computational power. The basic concept of parallel

computing is SIMD (Single Instruction, Multiple Data), which means the process of

same operation for large data set. The first SIMD application was the vector proces-

sor by using many ALUs (Arithmetic and Logic Units) controlled by a master CPU.

Modern CPUs have also adopted vector processing technology with MMX and SSE

(Streaming SIMD Extension) instructions, and most of present supercomputers are

composed of numerous CPUs connected by the network. Also there have been efforts

for the acceleration of the computational speeds by developing special hardwares.

GRAvity PipE (GRAPE, Makino 1991; Makino et al. 1997) is a special-purpose ma-

chine for gravitational force calculations. As shown in Fig. 1.1, there are 4 processor

chips in GRAPE processor module, including 48 hard-wired pipelines (6 pipelines

× 8 virtual pipelines) per chip, so it is possible to calculate the gravitational force

for tens of particles simultaneously. Recently, graphics processing unit (GPU) has
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Figure 1.1 Structure of GRAPE-6A (Fukushige et al. 2005).

been massively parallelized in order to process extremely high resolution images, and

used for wide fields of computational sciences with programming languages such as

CUDA (Compute Unified Device Architecture) or OpenCL. While CPUs have a few

processors with high performance, recent high end GPUs have thousands of stream

processors, that enable us to perform massive parallel simulations (Fig. 1.2).

nbody series has adapted to these hardwares. Basically, the force calculation

with Hermite scheme by using these hardwares is accomplished in the following

sequences (Aarseth 2010):

1. Set the next time for integration and determine active particles.

2. Predict all particles’ positions and velocities.

3. Send data of all particles (mass, position and velocity) from host to device.

4. Estimate forces and first derivatives of active particles on device and send the

results to host.

5. Obtain higher order derivatives of force.

6. Correct the positions and velocities of active particles.

7. Repeat steps from 1.
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Figure 1.2 Schematic diagrams of CPU and GPU.

The host and device are connected by the network cable for CPU clusters or by PCI

(Peripheral Component Interconnect) for GRAPEs and GPUs. The maximum num-

ber of parallel force calculations depends on the device characteristics: the number

of processors (CPU clusters), the number of pipelines (fixed to 48, GRAPE) and the

number of threads (GPU). There are several versions of nbody codes with different

hardware configurations. nbody6++ has been developed by Spurzem (1999) for par-

allel supercomputers by using MPI (Message Passing Interface). nbody4 (Aarseth

2010) and nbody6-gpu (Nitadori & Aarseth 2012) also have been developed for

GRAPE machines and for GPUs. The parallelization of N -body force calculations is

achieved in two ways: i-parallelism (i.e., force calculation for the multiple i-particles

which feel the gravitational force) and j-parallelism (i.e., force calculation for the

multiple j-particles which serve the gravitational field). In nbody4 code, all force

calculations are performed up to 48 particles on the GRAPE board with i-parallelism

via multiple pipelines without the neighbor scheme. On the other hand, in nbody6,

the force calculations separate the regular forces from distant particles whose gravi-

tational potential changes slowly and the irregular forces from neighboring particles.

In nbody6-gpu, the regular forces are calculated on GPU devices by using multi-

ple threads with both i-parallelism and j-pararellelism while the irregular forces are

calculated on CPU with j-parallelism by using multiple cores in CPUs with AVX

(Advanced Vector Extensions) or SSE (Nitadori & Aarseth 2012). Nowadays, a hy-
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brid nbody code for parallel supercomputers with many GPUs is being developed

by Rainer Spurzem.

In reality, stellar systems do not evolve as simply as the idealized models. The

main goal of this thesis is to investigate the dynamical evolution of the stellar systems

in specific situations by using direct N -body simulations with high performance

hardwares (e.g., GRAPE and GPU). Here, I consider two different astronomical

applications as follows;

Dynamical evolution of rotating star clusters with two-component models

The effects of the initial rotation on the dynamical evolution of star clusters received

substantial attention because the rotation is a natural consequence during the for-

mation process. The direct measurement of the rotation is difficult and is done only

for a couple of massive star clusters (e.g., ω Centauri and 47 Tucanae, Meylan &

Mayor 1986) since it requires long integration with large aperture telescope. Rather

indirect evidence for the rotation comes from the shape of globular clusters. Al-

though most globular clusters show high degree of circular symmetry, one can infer

that many clusters still have some degrees of rotation from ellipticity measured for

a number of star clusters (e.g., White & Shawl 1987).

Since Goodman (1983) studied rotating star clusters using Fokker-Planck equa-

tions, many authors have revealed the dynamical evolution of rotating star clusters

focusing on gravitational collapse (Einsel & Spurzem 1999), binary heating (Kim

et al. 2002) and the effect of mass spectrum (Kim et al. 2004). More recently, Kim

et al. (2008) compared two different approaches, Fokker-Planck and N -body simu-

lations, and confirmed the validity of Fokker-Planck methods. However, they only

consider equal mass cases and relatively slow initial rotations which ensure axisym-

metric shape of clusters. Thus, I perform N -body simulations with mass spectrum

and wider range of the initial rotation in order to know the effect of the rotation

and mass spectrum and to confirm the validity of Fokker-Planck approaches.
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Black hole binaries in galactic nuclei and gravitational wave sources

It is well-known that most of galaxies host massive black holes at the center. From

the recent observational studies (Carollo et al. 1997; Böker et al. 2002; Côté et

al. 2006), it is also revealed that many galaxies contain compact and massive star

clusters called nuclear star clusters in their nuclei (e.g., ρ̄ ∼ 106M⊙pc−3 for Milky

Way; Schödel et al. 2007). Because nuclear star clusters have shorter relaxation time

scales than a Hubble time, they are expected to be dynamically relaxed. A number of

studies (Baumgardt et al. 2004b; Hopman & Alexander 2006; O’Leary et al. 2009;

Preto & Amaro-Seoane 2010) suggested that there is a strong mass segregation

among stellar components with different individual masses.

These nuclear star clusters can provide good environments for the formation of

compact binaries composed of compact stars such as neutron stars or black holes:

high stellar density, velocity dispersion and number fraction of compact stars. Such

binaries could become important sources of gravitational waves. So far, a detailed

study for gravitational wave sources in galactic nuclei has been done by O’Leary et

al. (2009) by using a Fokker-Planck simulations. Here, for the second part of thesis,

N -body simulations for nuclear star clusters are performed in order to investigate

the dynamical evolution of nuclear star clusters and the aspects of gravitational wave

sources in galactic nuclei.

This thesis consists of four chapters. In Chapter 2, the dynamical evolution of

rotating star clusters with 2-component masses is presented. I also discuss the effect

of the rotation and the mass spectrum on the dynamical evolution and compare the

results of different approaches. In Chapter 3, I describe the models for nuclear star

clusters located at the center of galaxies and estimate the merger rates for black hole

binaries and detection rates for the next-generation gravitational wave detectors.

The statistics of black hole binaries and sample waveforms are also presented in this

chapter. Finally, I summarize the thesis in Chapter 4.



Chapter 2

Dynamical Evolution of

Rotating Star Clusters with

Two-component Models 1

2.1 Introduction

The effects of initial rotation on the dynamical evolution of star clusters received

substantial attention because the rotation is a natural consequence during the for-

mation process. The current population of star clusters may not show significant

amount of rotation, but it does not mean that the initial conditions inhibit the pres-

ence of rotation. The direct measurement of the rotation is difficult since it requires

long integration with large aperture telescope. Rather indirect evidence for the ro-

tation comes from the shape of globular clusters. Although most globular clusters

show high degree of circular symmetry, the ellipticity has been measured for large

number of star clusters (e.g., White & Shawl 1987; Chen & Chen 2010). If the el-

lipticity is due to the rotational flattening, many clusters still have some degrees

of rotation. Even though the amount of rotation in current population of globular

clusters is rather small, initial clusters could have been rotating much more rapidly

since the rotation phases out as the clusters evolve dynamically.

1Hong, J., Kim, E., Lee, H. M., & Spurzem, R. 2013, MNRAS, 430, 2960

9
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The effects of rotation on the dynamical evolution have been studied by a num-

ber of authors. Goodman (1983) has extended the Fokker-Planck (FP) equation for

rotating systems, but his study was limited to slowly rotating systems by imposing

the spherical symmetry for the shape of the clusters. The thermodynamical anal-

yses have been pioneered by Hachisu (1979, 1982) and found that there exists an

instability similar to gravothermal catastrophe and they named this phenomenon

as ‘gravo-gyro catastrophe’. Theses earlier studies provided the basis of the possible

acceleration of dynamical evolution due to the initial rotation.

More careful studies for the rotating systems have been carried out by Kim et

al. (2002, 2004, 2008) using 2-Dimensional FP code developed by Einsel & Spurzem

(1999). These papers investigated both isolated and tidally limited clusters, and

single and multi-component clusters. The general result emerged from these studies

is that the rotating clusters undergo faster evolution than non-rotating ones for

single component models. The acceleration is also expected in multi-mass models as

well, but the degree of acceleration could be significantly reduced since the energy

exchange between different mass components is another accelerating process and

these two processes compete each other.

The suitability of the FP approach to the study of dynamical evolution of star

clusters has been a matter of debate because the absence of the accurate knowledge

on the third integral for rotating systems prohibits us to include all the possible

integrals in constructing the FP equation. Comparison with N -body calculation

should provide a clue to the validity of the current version of the FP approach (e.g.,

Giersz & Heggie 1994a,b; Giersz& Spurzem 1994). Such a comparison for rotating

systems was done by Ernst et al. (2007) and Kim et al. (2008) for single component

models and showed that the FP results are generally consistent with the N -body

calculations.

We extend the comparison to the two-component models as an interim step to

the full multi-mass models. Two-component models have the ingredients for the

multi-mass models, but have smaller model parameters. The important difference

between single and multi-mass models is the existence of energy exchange among dif-

ferent mass components. In rotating models, there is also a possibility of exchange of
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the specific angular momentum through the dynamical process. It is much easier to

investigate such processes in N -body. Another motivation for carrying out N -body

simulations and comparing with FP results is to address the validity of the axisym-

metric assumption which is inevitable for the FP approaches. If the cluster rotates

rather rapidly, the bar-like structure can form even with the initial assumption of

the axisymmetric shape. The evolution of the elongated cluster could be different

from the perfectly axisymmetric one.

This paper is organized as follows: In §2.2, we describe the models and their

parameters in detail. The effect of the initial rotation on the cluster shape will be

presented in §2.3. In §2.4, we will compare N -body and FP results in various angles.

We will discuss the effects of mass spectra on the dynamical evolution of star clusters

in §2.5.

2.2 Method and models

Most of FP results for rotating stellar system with initial mass spectrum are based

on the 2D FP solver, mFOPAX (Kim et al. 2004) which is the revised version of

FOPAX (Einsel & Spurzem 1999; Kim et al. 2002) suitable for the rotating stellar

system with initial mass spectrum. For the complete description of mFOPAX readers

are referred §§2 and 3 of Kim et al. (2004).

The nbody code which we used for this study is one of series of direct N -body

programs developed by S. Aarseth since 1960s. Each version of the nbody codes has

been added some epochal schemes such as the Ahmad-Cohen neighbor scheme, the

Kustaaheimo-Stiefel or chain regularization scheme (Aarseth 1999). More recently,

the nbody4 and the nbody6 codes can perform more precise calculations thanks

to the 4th-order Hermite integrator (Aarseth 1999). Specially, the nbody4 code is

designed for running on the GRAPE, which is a special-purpose machine for only

direct N -body simulations by calculating gravity or coulomb interaction with high

parallelization. We used the GRAPE6-BLX64 boards for the N -body calculations

reported in this paper.

To prepare the initial models for the present N -body runs we have assigned the
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positions and the velocities of the stars from the predefined density, potential and

distribution function of initial models. These initial models also used in FP runs

are obtained following Lupton & Gunn (1987) and also applied in previous studies

(Einsel & Spurzem 1999; Kim et al. 2002, 2004, 2008). Globular clusters or open

clusters which are typical stellar systems considered in the present study are tidally

limited by their host galaxy. To investigate the time evolution of rotating stellar

system under the influence of the tidal effect of the host galaxy and to compare

the dynamical evolution of rotational stellar system using two different numerical

methods (FP and N -body), we assume that the stellar systems are orbiting around

the center of the Galaxy with circular orbit, which is already applied in previous

FP runs (Kim et al. 2002, 2004). In order to directly compare N -body results with

FP methods, we remove the stars whose total energy exceeding the tidal energy

due to the host galaxy instantaneously (i.e., energy cut-off, Takahashi et al. 1997;

Baumgardt 2001; Kim 2003; Ernst et al. 2007; Kim et al. 2008). According to the

N -body computation, it takes at least a crossing time to escape from the clusters

for stars with total energy larger than the tidal energy. Therefore, instantaneous

removal of stars with energy greater than tidal energy is somewhat unrealistic. The

problem becomes more serious for small-N systems since the fraction of stars to be

unbounded at a given time is higher than large-N systems (Takahashi & Portegies

Zwart 1998; Fukushige & Heggie 2000). However, since the main goal of the present

study is to investigate the difference between N -body and FP methods for rotating

stellar systems, we need to apply the same criteria with the FP approach. The tidal

boundary (or tidal energy) is adjusted during evolution as described in the previous

studies (Kim et al. 2002, 2004, 2008).

Table 2.1 shows the initial parameters used for the N -body simulations. For

comparison, we also performed FP simulations of M2A models. There are several

parameters that determine the cluster evolutions such as the concentration parame-

ter W0, the initial rotation ω0 (Einsel & Spurzem 1999; Kim et al. 2002; Ernst et al.

2007), the mass spectrum (Kim et al. 2004; Khalisi et al. 2007) and tidal boundary

(Baumgardt 2001; Kim 2003; Ernst et al. 2007). We fixed W0 = 6, but varied ω0 and

mass spectrum to investigate the effect of the initial rotation and the mass spectrum
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Table 2.1 Initial parameters for all models.

Model W0 ω0
rtid
rc

Trot
|W | N*runs m2

m1

M1
M2

N2 S Λ

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

0.0 18.0 0.000 20,000*3

0.3 14.5 0.035 20,000*3

M2A† 6 0.6 9.9 0.101 20,000*3 2 5 1818 0.566 1.056

0.9 7.1 0.156 20,000*3

1.2 5.4 0.196 20,000*3

1.5 4.4 0.222 20,000*3

0.0 18.0 0.000 20,000*1

M2B 6 0.6 9.9 0.101 20,000*1 5 5 769 2.236 9.518

1.2 5.4 0.196 20,000*1

0.0 18.0 0.000 20,000*1

M2C 6 0.6 9.9 0.101 20,000*1 10 5 392 6.325 50.24

1.2 5.4 0.196 20,000*1

0.0 18.0 0.000 20,000*1

M2D 6 0.6 9.9 0.101 20,000*1 20 5 198 17.89 256.2

1.2 5.4 0.196 20,000*1

0.0 18.0 0.000 20,000*1

M2Ae 6 0.6 9.9 0.101 20,000*1 2 20 488 0.141 0.264

1.2 5.4 0.196 20,000*1

†Fokker-Planck simulations are performed for comparison.

Note. - (1): Model indexes indicating the mass spectrum. (2): Concentration parameter.

(3): Dimensionless initial rotation parameter. (4): Tidal radius normalized by core radius.

(5): Ratio of rotational kinetic energy to the potential energy. (6): Number of particles

and number of simulations with different initial random seeds. (7): Individual mass ratio.

(8): Total mass ratio. (9): Number of high mass stars. (10)-(11): Equipartition instability

parameters from Spitzer (1969) and Watters et al. (2000)
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on the cluster evolution. The initial rotation ω0 are varied from 0.0 to 1.5. For the

mass spectrum, we varied the individual mass ratio m2/m1 from 2 to 20 while the

total mass ratio M1/M2 is fixed to 5 or 20. One of the most important processes of

the stellar system with multiple mass components is the energy equipartition. The

energy equipartition is a tendency for different mass components to have similar ki-

netic energies. However, in some cases, the equipartition is not completely achieved,

which is called as the equipartition instability (Spitzer 1969). To determine whether

the equipartition happens to be achieved or not in two-component mass systems,

Spitzer (1969) derived an analytic equipartition stability parameter,

S =
M2

M1

(
m2

m1

)3/2

. (2.1)

He suggested that the energy equipartition between low and high mass stars takes

place when S < Scrit = 0.16. After Spitzer’s study, many authors have studied the

energy equipartition process of two-component systems by theoretical approaches

(e.g., Lightman & Fall 1978) and by several numerical methods such as Monte-Carlo

approaches to solve the FP equation (Spitzer & Hart 1971), the direct integration of

FP equation (Kim et al. 1998) and N -body simulations (Portegies Zwart & McMil-

lan 2000). Watters et al. (2000) performed Monte-Carlo simulations with various

two-component mass spectra and introduced an empirical equipartition stability

parameter

Λ =
M2

M1

(
m2

m1

)2.4

(2.2)

and found that the critical value for energy equipartition is Λcrit = 0.32. Most of our

models have S > Scrit and Λ > Λcrit. The ratio of the rotational kinetic energy to

the potential energy is known to be a measure of the ‘temperature’ of the rotating

system with higher value being called cold system. If this parameter is greater than

0.14, the system is known to become dynamically unstable against the formation of

the bar-like structure (Ostriker & Peebles 1973). Thus, models with ω0 greater than

0.9 are expected to evolve to elongated shape. We designate these models as rapidly

rotating models and the other models with ω0 ≤ 0.6 as slowly rotating models in

this study.
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2.3 Slowly and rapidly rotating clusters

To investigate the effect of the initial rotation on the evolution of clusters, we focus

on M2A models which have various amounts of the initial rotation. In Fig. 2.1, we

show the time evolution of the ratio of the rotational kinetic energy to the potential

energy, Trot/|W |. The dashed and solid lines represent FP and N -body results,

respectively. The initial half-mass relaxation time is measured as follows suggested

by Spitzer & Hart (1971),

τrh,0 = 0.138
N1/2r

3/2
h,0

G1/2m1/2 lnΛ
, (2.3)

where N, rh,0, G,m and lnΛ are total number of stars, initial half-mass radius, grav-

itational constant, mean mass of stars and Coulomb logarithm, respectively. It is

well known that a system with rigid-body rotation suffers a secular instability when

Trot/|W | is larger than 0.14 (Ostriker & Peebles 1973). Later, from numerical simula-

tions, Sellwood (1981) confirmed that the criterion is valid for more realistic rotation

curves. Our models with initial value of Trot/|W | < 0.14 are shown in the upper panel

and those with Trot/|W | > 0.14 are shown in the lower panel. The results of N -body

and FP show similar behaviors for the models with initial Trot/|W | < 0.14. However,

for the models with initial Trot/|W | > 0.14, the initial evolution depends on differ-

ent numerical approaches. The N -body simulation represents more rapid decrease

of Trot/|W | with time than the FP simulation in the early phase. For the rapidly

rotating models one can observe the construction of bar-like structure and the total

rotational energy decreases very quickly. Therefore, the FP approach seems to be

not appropriate in describing the evolution of rotating models with initial value of

Trot/|W | > 0.14.

In order to investigate the evolution of the cluster shape, we calculate axis ratios

of clusters by using the method suggested by Dubinski & Carlberg (1991). They

defined a tensor,

Mij = Σ
xjxj
q2

(2.4)

with an ellipsoidal radius,

q =

(
x2 +

y2

(b/a)2
+

z2

(c/a)2

)1/2

, (2.5)



16 Rotating Star Clusters

Figure 2.1 The ratio of rotational kinetic energy to potential energy. Solid and dashed

lines represent N -body and FP results, respectively. Upper panel shows the ratios

for slowly rotating models and lower for those of the rapidly rotating models. The

dotted lines denote a criterion of bar instability (Ostriker & Peebles 1973). For

rapidly rotating models the N -body and FP results show the significant difference

due to the bar instability.
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Figure 2.2 Initial axis ratio of clusters with different initial rotations. Cross and

plus symbols show intermediate (b/a) and minor (c/a) axis ratios, respectively. We

estimate axis ratios with stars in half-mass ellipsoidal radius. The clusters show more

oblate shapes as the initial rotation increases.
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where a, b and c are axis lengths with a ≥ b ≥ c. The axis ratios are derived from

the tensor through

b

a
=

(
Myy

Mxx

)1/2

and
c

a
=

(
Mzz

Mxx

)1/2

, (2.6)

where Mxx,Myy and Mzz are the principal components of the tensor. In order to

compute the tensor Mij , we need to know the axis ratios. Therefore, for the simul-

taneous determination of the tensor and axis ratios, we need to perform an iterative

calculation. We, first, assume certain set of axis ratios (e.g., b/a = 1 and c/a = 1)

and compute Mij , which gives another set of axis ratios. Obviously, the resulting

axis ratios will be different from the assumed values, and therefore, can be used as

an input for improved estimation of Mij . We carry out the iteration until the relative

difference of axis ratios becomes less than certain criterion (we include a value of

10−4 for this study). Fig. 2.2 shows the axis ratios as a function of initial rotation for

M2A models. We calculate axis ratios with stars in the ellipsoidal radius including

half-mass of the cluster. The shape of rotating cluster is oblate initially due to the

initial rotation (i.e., b/a = 1 and c/a < 1). The minor axis ratio c/a decreases when

the initial rotation increases from 0.3 to 1.5.

In Fig. 2.3, we show the evolution of the axis ratios, b/a and c/a for M2A

models with different initial rotations. The left panels are the result of slowly rotating

models and right panels are for the rapidly rotating models. The minor axis ratios

c/a increases with time for slowly rotating models because the cluster loses angular

momentum. For the rapidly rotating models, the intermediate axis ratio decreases

at the beginning, because of the development of the bar instability. Due to this

instability, cluster shapes become tri-axial or even prolate in a dynamical time scale

which is much shorter than the relaxation time. The intermediate axis ratio also

decreases during this phase. The decrease of both axis ratios is more rapid when

the initial rotation becomes larger. When the ratio Trot/|W | becomes smaller than

0.14 by the loss of the rotational energy as shown in Fig. 2.1, the bar instability

disappears and the cluster becomes axisymmetric.

Density contour maps on xy plane of clusters with different initial rotation pa-

rameters are shown in Fig. 2.4. The top and bottom panels show the initial shapes
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Figure 2.3 Time evolution of intermediate b/a (black) and minor c/a (grey) axis ra-

tios for M2A models. In the early stage for rapidly rotating models, the intermediate

axis ratios decrease rapidly due to the bar instability. The shapes of clusters tend to

become spherical after a few τrh,0 due to the significant loss of angular momentum.
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Figure 2.4 Projected density contour maps of M2A models with initial rotation

ω0 = 0.0, 0.6, 0.9, 1.2 and 1.5 on xy plane. The top panels (a-e) show initial models

and bottom panels (k-o) show density structures at the time of the core collapse.

The middle panels of ω0 = 0.9, 1.2, 1.5 (h-j) are density structures at the time of

maximum elongation.
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and the shapes at the core collapse, respectively. In the bottom panels, the size of

contours show that the remaining mass of cluster at the core collapse becomes smaller

as the initial rotation increases. Density structures for models with ω0 = 0.9, 1.2 and

1.5 in middle panels represent shapes at the time of maximum elongation. One can

clearly observe bar-like structures of rapidly rotating models. Shapes become to be

those of the axisymmertic systems at the time of core collapse as shown in Fig 2.3

(i.e., b/a = 1 and c/a < 1).

2.4 Comparison between N-body and FP results

2.4.1 Mass and energy

In this section, we compare the evolution of N -body and FP simulations for M2A

models with three different point of views: overall evolution (mass and energy),

central evolution (central density and velocity dispersion) and rotational evolution.

Fig. 2.5(a) shows the evolutions of total mass. For the slowly rotating models, the

time evolutions of total cluster mass for N -body simulations agree well with those

of FP results. However, there exist significant differences between FP and N -body

results for the rapidly rotating models. For an instance, N -body calculations show

significantly higher mass loss rate than FP results for rapidly rotating models with

ω0 = 1.2 and 1.5, especially in the very early times. The significant amount of mass

loss at the very early stage also induces the large amount of angular momentum

loss. After this stage, clusters have smaller number of stars with slower rotation and

therefore evolve slowly compared to FP results. The time evolutions of total mass

of each component are shown in Fig. 2.5(b). Because the number of low mass stars

is much larger than that of high mass stars, the evolution of total mass is similar to

that of low mass stars.

The total energy of the tidally limited stellar system decreases monotonically

with time due to the escaping stars carrying energies. Fig. 2.6(a) shows the time

evolution of the normalized total energies. The results of N -body and FP simulations

agree well for slowly rotating models. While the total energy decreases slowly in

pre-collapse stage, after core collapse the total energy decreases more rapidly due
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Figure 2.5 Evolution of mass for M2A models: (a) Evolution of total mass. Dashed

lines represent FP results, and solid lines show N -body results. The total mass de-

creases due to escaping stars through the tidal energy threshold. For rapidly rotating

models, there are steep mass losses at the early stages because of the bar instability.

(b) Time evolution of the mass components m1 (red) and m2 (blue). Total mass of

m1 decreases faster than that of m2.
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Figure 2.6 Upper panel shows the evolution of the total energy as a function of time.

The diamond symbols represent the moment of the core collapse for N -body results.

Total energies decrease with time due to escaping stars. After the core collapse,

energies decrease more rapidly because of core bounce due to the binary heating.

In lower panel, there are the evolutions of the specific energies for m1 and m2. The

specific energy of m2 increases quickly during the just prior of the core collapse

because high mass stars move to the central region having deep potential due to the

mass segregation.
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to the core expansion. For the rapidly rotating models, however FP and N -body

results show significant difference because of the large amount of energy loss during

the early stages for N -body models. Fig. 2.6(b) represents the time evolution of

normalized specific energy (i.e., energy per unit mass) for each mass component.

In overall, the specific energies of m1 continue to decrease. On the other hand, the

specific energy of m2 increases slowly till the core collapse as a result of equipartition

and mass segregation. However, the specific energies of m2 decrease after the core

collapse due to the mass loss through the tidal boundary because the process of mass

segregation stops at the core collapse (i.e. the mean mass of a star in the central

region increases until the core collapse and remains as a constant value after the

core collapse; see §2.5.3). Note that the mean energies for both low mass and high

mass stars immediately decrease for the model of ω0 = 1.2 and 1.5. Again, this is

caused by the bar instability in the early phase of the evolution.

2.4.2 Central density, velocity dispersion and core collapse

Fig. 2.7 shows time evolution of the central density, ρc and the central velocity

dispersion, σc obtained by using stars inside the core radius. The dashed and solid

lines represent FP and N -body results, respectively, and different contrasts represent

models with different initial rotation. We confirm that the rotation accelerates both

the core collapse and cluster disruption (e.g., Kim et al. 2008). In addition, FP and

N -body results agree well for slowly rotating models. However, as the initial rotation

increases the difference between FP and N -body results becomes large due to the bar

instability. Table 2.2 lists the core collapse times and the disruption times of M2A

models. For example, the model with ω0 = 1.5 reaches the core collapse at 2.1τrh,0

and 3.7τrh,0 for FP and N -body calculations, respectively. As the initial rotation

ω0 increases, the cluster spends more time of its whole life in the pre-core collapse

phase (i.e., tcc/tdis increases). For N -body simulations, the ratio of the core collapse

time to the disruption time tcc/tdis of the model with ω0 = 1.5 is ∼3/4 while that

of the model with ω0 = 0 is ∼1/3. We observe that the core collapse and disruption

times of N -body results are significantly longer than those of FP results for rapidly

rotating models because these models are redefined as small and slowly rotating
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Figure 2.7 Evolution of central density ρc and velocity dispersion σc for M2A models.

Dashed lines represent the FP results and the solid lines for the N -body results.

Different contrasts mean models with different initial rotations. ρc and σc of rapidly

rotating models show significant differences between two approaches.
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systems after the bar instability. Although there are significant differences between

N -body and FP time scales, the total mass at the time of core collapse (designated

as Mcc) of N -body and FP results show a good agreement. The presence of the mass

spectrum also accelerates the evolution of cluster (Kim et al. 2004). We found that

the core collapse times of M2A models are 20−40% smaller than those of single mass

systems considered by Kim et al. (2008). On the other hand, the disruption times

are only 10% smaller. We also look into the evolution of clusters with various mass

spectra. Table 2.3 shows the collapse and disruption time scales for other N -body

models. As m2/m1 increases, the evolution of clusters is accelerated. From M2A to

M2D models, the core collapse time decreases when m2/m1 increases, but is less

affected by the initial rotation. The disruption time, however, depends on both the

mass spectrum and the initial rotation.

Fig. 2.8 shows the evolution of the central velocity dispersion (σc) of each mass

component as a function of ρc. σc of m1 and m2 are divided into two parts and

increase gradually until the core collapse. The total σc approaches that of m2 be-

cause the fraction of high mass stars in the core increases with time and the core is

finally filled with high mass starts due to the mass segregation. We can clearly see

the equipartition as two distinct branches of σc versus ρc. As a result of equipar-

tition, σc of m1 becomes about
√
2-times greater than that of m2 because we use

individual mass ratio of m2/m1 = 2. Once the establishment of energy equipartition,

the evolutions of σc of m1 and m2 are represented by simple power-law. During the

post-core collapse stage, however, FP and N -body results show some differences.

N -body results are more dispersive than FP results, unlike the early evolution. This

is because there is the large fluctuation of ρc as shown in Fig. 2.7, which is from the

lack of stars within the core radius after core collapse. On the other hand, rapidly

rotating models that lead to the bar instability have different evolutionary behav-

iors between FP and N -body for the very early phase. Because the bar instability

delays the relaxation processes, the mass segregation in N -body takes place later

compared to FP models. The gap between σc of m1 and m2 for N -body results is

slightly smaller than that of FP results. This means that the bar instability also

affects the equipartition process (see §2.5.2 and Table 2.4 for more details).
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Table 2.2 Global evolution of M2A models for nbody4 and mFOPAX results.

Simul. ω0 tcc/τrh,0 tdis/τrh,0 tcc/tdis Mcc

(1) (2) (3) (4) (5) (6)

0.0 7.1 22.0 0.32 0.80

0.3 6.7 15.9 0.42 0.70

mFOPAX 0.6 5.3 9.2 0.58 0.52

0.9 3.8 5.7 0.67 0.36

1.2 2.7 3.7 0.73 0.23

1.5 2.1 2.5 0.84 0.14

0.0 6.8 21.2 0.32 0.80

0.3 6.2 16.3 0.38 0.72

nbody4 0.6 5.7 10.4 0.55 0.54

0.9 4.8 7.1 0.68 0.35

1.2 3.6 5.2 0.69 0.23

1.5 2.8 3.7 0.76 0.15

Note. - (1): Simulation methods. (2): Initial rotation parameter. (3): Core collapse

time divided by the half-mass relaxation time. (4): Disruption time divided by the

half-mass relaxation time. (5): Ratio of core collapse time to disruption time. (6):

Remaining mass fraction at the moment of core collapse.
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Table 2.3 Global evolution of other nbody4 models.

Model ω0 tcc/τrh,0 tdis/τrh,0 tcc/tdis Mcc

(1) (2) (3) (4) (5) (6)

0.0 1.61 10.18 0.16 0.94

M2B 0.6 1.64 5.01 0.33 0.79

1.2 1.38 2.16 0.64 0.34

0.0 0.59 5.92 0.10 0.97

M2C 0.6 0.62 2.79 0.22 0.89

1.2 0.70 1.36 0.51 0.44

0.0 0.42 3.59 0.12 0.96

M2D 0.6 0.34 1.65 0.21 0.91

1.2 0.36 0.72 0.5 0.55

0.0 9.37 27.56 0.34 0.73

M2Ae 0.6 6.72 12.86 0.52 0.49

1.2 4.05 5.89 0.69 0.22

Note. - (1): Simulation models. (2)-(6): Same as the Table 2.2
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Figure 2.8 Central velocity dispersion σc for m1 (red), m2 (blue) and all stars (black)

as a function of central density ρc. Dots show N -body results, and dashed lines mean

FP results. Initially, σc for both mass components are the same. They evolve into

the different ways due to the equipartition. σc for low mass becomes about
√
2-times

larger than that for high mass because of equipartition.
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Figure 2.9 Lagrangian radii including 1, 5, 10, 20, 50, 75 per cent of initial cluster

mass for M2A models. For rapidly rotating models, the results of N -body and FP

shows significant differences while those for slowly rotating models are similar.
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In Fig. 2.9, we show the time evolution of the Lagrangian radii for M2A models.

We estimate Lagrangian radii containing 1, 5, 10, 20, 50 and 75 per cent of initial

cluster mass. The dashed lines and the solid lines represent the FP and N -body

results, respectively. Although our models are flattened due to the initial rotation

and become triaxial by the bar instability, we use the spherical radius to estimate

these Lagrangian radii for the simplicity of comparison between N -body and FP

simulations. We found that, for the slowly rotating models, the results of FP and

N -body show an excellent agreement except for the final stages when there are only

small number of stars in the clusters. However, for the rapidly rotating models, the

results of FP and N -body are significantly different. Again, the bar instability and

induced mass loss are the main reason for these differences.

2.4.3 Rotational properties

To understand the effects of initial rotations on the cluster dynamics, we investigate

the evolution of angular momentum. Because we assume that stars escape through

the tidal energy threshold, clusters lose their angular momentum continuously. Also,

we expect exchange of angular momentum between different mass components, sim-

ilar to energy exchange. After encounters, stars that lose their energy spiral into the

central parts while stars that gain the energy move outward. Also, loss of angular

momentum makes the orbits of stars be eccentric but gaining angular momentum

does the orbits be less eccentric. Fig. 2.10 shows the time evolution of specific angular

momentum which is defined as

Lspec =

∑
imiri × vi∑

imi
(2.7)

where ri, vi are relative positions and velocities of stars to the center of mass,

respectively, and we integrate all stars in the cluster to compare N -body and FP

results. Lz,spec is z-direction component of Lspec. Solid lines are the results of N -

body and dashed lines represent the results of FP. Red and blue colors show low and

high mass stars, respectively. For slowly rotating models, the results of N -body and

FP are similar. The specific angular momenta decrease monotonically. Due to the

mass segregation, high mass stars that encounter with many low mass stars migrate
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to the inner part where rotational velocity is smaller than that of the outer part of

the cluster (see rotation curves in Fig. 2.12a and Fig. 2.15a). This is also related to

the angular momentum exchange between different mass components (see §2.5.4 for

more details). Thus, the specific angular momentum of m2 becomes smaller than

that of m1 during the evolution. The difference of angular momentum between two

mass components is most prominent at the core collapse, where the core collapse

time is marked as diamond symbols in Fig. 2.10. For the models with ω0 = 1.2 and

1.5, the angular momentum decreases rapidly during the early stage. In addition,

there is no clear split of the specific angular momentum of low and high mass stars

due to the rapid evolution induced by the bar instability. Interestingly, the model

with ω0 = 0.9 shows the transitional evolution. While the model still has a triaxial

shape (T < 1.5τrh,0, see Fig. 2.3), the evolution is similar to that of the models with

ω0 = 1.2 and 1.5. However, after the shape becomes the axisymmetric again, the

evolution is similar to that of the models with ω0 = 0.3 and 0.6.

Slow rotation (ω0 = 0.6)

To investigate the evolution of rotational properties of our cluster models, we focus

on rotational velocities, Vϕ of two models in detail. As a representative of slowly

rotating models, we chose a rotating model with ω0 = 0.6 of M2A. Fig. 2.11 shows

the distribution of Vϕ at four different epochs T = 0, 3, 5.7 and 8τrh,0. The core

collapse time is T = 5.7τrh,0. We combined results of three runs with N =20,000.

At T = 0, the distribution is asymmetric to the positive direction due to the initial

rotation. The dispersion of Vϕ is large at the center and becomes smaller along

the cylindrical radius, R ≡ (x2 + y2)1/2. As the cluster loses its mass and angular

momentum, the size of cluster and the degree of asymmetry in Vϕ decrease with

time. Finally, the distribution of Vϕ becomes symmetric compared to the initial

distribution. The rotation curves of both mass components are shown in Fig. 2.12(a).

The rotation curves of m1 and m2 are identical at T = 0 because we assume that

the distribution of positions and velocities for both mass components are the same

initially. At T = 3τrh,0, the rotation velocity of m1 becomes smaller at all radii

because low mass stars with large angular momenta escape from the system. On the
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Figure 2.10 Time evolution of the specific angular momentum Lz,spec. Solid lines are

the results of FP and dashed lines are the results of N -body. Red and blue colors

mean low mass and high mass stars, respectively. Diamond symbols represent the

moment of the core collapse. For slowly rotating models (left panels), Lz,spec of m1

and m2 are divided. However, Lz,spec of m1 and m2 decrease quickly compared to

the results of FP for rapidly rotating models (right panels).
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Figure 2.11 Distribution of the rotational velocities of stars as a function of cylin-

drical radius. The cluster’s size and degree of the anisotropy decrease with time.
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Figure 2.12 Upper panel shows rotation curves at time T = 0, 3, 5.7 (core collapse)

and 8τrh,0. Solid, dotted and dashed lines mean the rotation curves of all stars, high

mass stars and low mass stars, respectively. At time T = 0, rotation curves are similar

between low and high mass components. However, after few τrh,0, the rotation curve

of m1 drops while that of m2 remains. The curve of z-direction angular momentum

is shown in lower panel. Angular momenta also decrease with time.
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Figure 2.13 Time evolution of z-direction specific angular momentum Lz,spec (upper),

Lz,spec of inner half-mass (middle) and Lz,spec of outer half-mass (lower). Though the

angular momentum curve of high mass components is larger than low mass compo-

nents at all radii, Lz,spec of high mass components in whole cluster becomes smaller

than low mass components after few τrh,0. This is because most of high mass compo-

nents are located in central region which rotates slowly due to the mass segregation.

The evolution of the inner region shows similar behavior with that of whole cluster.

On the other hand, for the outer region, Lz,spec of high mass components is higher

than that of low mass components always.
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other hand, the rotation curve of m2 remains as that of the initial curve for longer

time. At T = Tcc, the rotation velocity of m2 also decreases but is still higher than

that of m1. The cluster rotates very slowly at T = 8τrh,0. At this time, the rotation

curves of m1 and m2 are flattened compared to other epochs. It is interesting to

note that the peak position remains at a constant value measured in the units of

half-mass radius while the peak rotation velocity decreases.

Fig. 2.12(b) shows the radial profiles of mean angular momentum for m1 and m2.

The angular momentum curves of m1 and m2 are identical at T = 0 and Lz of m1

decreases more rapidly compared to that of m2. Initially, the curve is a power-law

with index of 1.5 within rh (e.g., the power law index is 2 for a rigid body rotation.).

The power law index becomes smaller and goes to one at T = 8τrh,0 because the

rotation curve becomes flatter. In Fig. 2.13, we show evolutions of specific angular

momentum Lz,spec in different radial ranges: in the whole cluster, within half-mass

radius and outside of half-mass radius. Lz,spec decreases with time due to the escaping

stars with angular momenta. In the entire cluster, Lz,spec of m1 and m2 decrease

together until T = 2τrh,0. Although Lz of m2 is larger than that of m1 at the all radii

as shown in Fig. 2.12(b), Lz,spec of m2 becomes smaller than that of m1 because high

mass component tends to be more concentrated in the central region than low mass

stars due to mass segregation (see §2.5.3 for more details). Within the half-mass

radius, Lz,spec of m1 decreases continuously while that of m2 remains at a constant

value until T ≈ 0.5τrh,0 because the rotation curve of high mass stars remains as

the initial curve for a while as shown in Fig. 2.12(a) and Fig. 2.12(b). After a few

τrh,0, the evolution of inner region follows that of entire cluster due to the mass

segregation. For the outer region, Lz,spec of m2 is higher than that of m1 throughout

the whole evolutionary phase. Even for the mass segregation, the mean mass of outer

region (see Fig 2.19) does not change significantly. It means that the mass fraction

of the outer region is less affected than that of inner region. Thus, the mean rotation

of m2 is still faster than the rotation of m1 beyond half-mass radius. Finally, the

cluster loses most of its mass and angular momentum at the end of evolution.
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Figure 2.14 Distribution of the rotational velocities of stars as a function of cylin-

drical radius for the model with ω0 = 1.5. Initially, most of stars have positive

rotational velocities. However, the asymmetry rapidly decreases within a τrh,0.



Rotating Star Clusters 39

Fast rotation (ω0 = 1.5)

We also investigate the evolution of rotational properties for the model with ω0 = 1.5.

As we mentioned earlier, this model is unstable against bar instability and the shape

of cluster quickly becomes a prolate with the largest elongation at T ∼ 0.1τrh,0. In

Fig. 2.14, we show the distribution of tangential velocities Vϕ of stars at T = 0, 0.1, 1

and 2.8τrh,0 (core collapse). Initially, the distribution is more skewed toward the

positive direction than the model with ω0 = 0.6 as shown in Fig. 2.11. Only less than

10% of stars have negative value at T = 0. The distribution becomes symmetric and

also the size of cluster becomes smaller as similar to the model with ω0 = 0.6. At core

collapse, only about 10% of stars remain in the cluster and the cluster rotate slowly.

Fig. 2.15(a) shows the rotation curve at T = 0, 0.1, 1 and 2.8τrh,0. The rotation

curves of m1 and m2 decrease together, indicating that the bar instability (i.e., large

mass, energy and angular momentum loss) disturbs the relaxation processes. The

peak of rotational velocity decreases rapidly with time. However, the peak position

at T = 0.1τrh,0 is slightly larger than the other epochs due to the effect of bar from

the instability. At core collapse, the rotation curve is nearly flat but still remains,

though the cluster lose most of the mass and the angular momentum. The mean

angular momentum along the radius is shown in Fig. 2.15(b). Similar to the result

of model with ω0 = 0.6, it shows a power-law distribution. Initially, the power law

index is ∼2 within rh like a rigid body rotation but it becomes close to 1 at core

collapse.

2.5 Discussion

2.5.1 Mass evaporation

To investigate the evolution of mass in detail, we first define the dimensionless mass

evaporation rate such as

ξe ≡ −τrh
M

dM

dt
(2.8)

where τrh andM are the half-mass relaxation time and total mass of a cluster at time

T , respectively. Fig. 2.16 shows the behavior of ξe of N -body and FP simulations
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Figure 2.15 Rotation curves at time T = 0, 0.1, 1 and 2.8 (core collapse) τrh,0 with

ω0 = 1.5 (upper). Lines have same meaning to those of Fig. 2.12. At time T = 0,

rotation curves are similar between low and high mass components. Unlike rotation

curves of in Fig 2.12, those of low and high mass components are not divided much.

Curves of z-direction angular momentum are shown in lower panel.
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Figure 2.16 Dimensionless mass evaporation rate. X-axis means the evolutionary

phase (i.e.; pre- or post-core collapse). For ω0 = 0.0 and 0.6, the result of N -body

and FP are well agreed. On the other hand, for ω0 = 1.2, there is a spike meaning

large mass loss induced by the bar instability in N -body result.
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for M2A models with ω0 =0.0, 0.6 and 1.2. We divide the evolution into pre- and

post-core collapse phases to investigate the evolution of ξe more clearly. The mass

evaporation rates are known to be constant for self-similar case (e.g., Hénon 1961; Lee

& Ostriker 1987). However, the rate changes with time because our models are not

self-similar. In early phase, ξe increases with the initial rotation. For slowly rotating

models, we see a very good agreement between N -body and FP results in pre-core

collapse phase. On the other hand, for model with ω0 = 1.2, there is a significant

difference between results of N -body and FP. The N -body results show a spike at

the early time while FP results decrease monotonically. This spike is related to the

rapid mass loss induced by the bar instability. After the spike, ξe of N -body suddenly

decreases below ξe of FP result. It is interesting that ξe,cc, the mass evaporation rate

at the core collapse, of N -body and FP show similar results even though there is a

big difference before core collapse. After core collapse, ξe of N -body and FP increase

toward a peak value and decrease afterward. The large differences of ξe between N -

body and FP results at the end of the evolution is due to small number of remaining

stars and thus do not have statistical significance. Kim et al. (2002) carried out FP

simulations for rotating clusters with single mass system. They also calculated ξe

with different initial rotation ω0 =0.0, 0.3 and 0.6. We notice that the evolutionary

shapes are similar between single mass and the 2-component mass systems. However,

ξe for 2-component mass systems show about 30% enhancement compared to ξe for

single mass systems in pre-core collapse phase. This enhancement could have been

induced by the energy exchange process in multi-component models, as noticed by

Lee & Goodman (1995). They calculated ξe with various initial mass functions and

found that ξe increases when the cut-off mass ratio (i.e., mf/mi if the mass ranges

from mi to mf ) increases. To confirm the relationship between the mass evaporation

rate and the mass ratio, we compute the maximum evaporation rate after the core

collapse ξe,post for N -body results with various mass spectra. Fig. 2.17 shows ξe,post

as a function of the individual mass ratio m2/m1. As shown in Fig. 2.16, the peak

ξe in post-core collapse phase are very similar with different initial rotations, so we

average the results of each mass spectrum for different initial rotations. ξe,post of

M2A-D models increases with increasing m2/m1 and follows a simple power-law.
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Figure 2.17 Maximum mass evaporation rate ξe,post after core collapse as a function

of the individual mass ratio. Error bars show standard deviations of data of ξe,post

for different mass spectra.
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For M2Ae model, ξe,post is slightly smaller than that of M2A model because the

fraction of high mass stars for M2Ae model is small.

2.5.2 Energy equipartition

As presented in §2.4.2, high and low mass stars in the core approach to the ‘thermal’

equilibrium state by the two body relaxation. To investigate the energy equipartition

in detail, we adopt the equipartition parameter

ξeq =
m2σ

2
2

m1σ 2
1

(2.9)

like previous studies (Watters et al. 2000; Khalisi et al. 2007). We calculated ξeq for

stars inside the core radius. Fig. 2.18 shows the evolution of ξeq for models M2Ae and

M2D without initial rotation for examples. Dotted lines represent the core collapse

time. For the M2Ae model, ξeq approaches to unity and becomes less than unity at

some moments. However, for the M2D model, ξeq never approaches to unity. The

data is very noisy after the core collapse because only a few low mass stars remain

in the core. To determine the minimum value ξeq,min, we find the best polynomial

fitting function by varying the order from 5 to 15.

Table 2.4 lists ξeq,min of all models. Only M2Ae models with ω0 = 0.0 and 1.2 have

lower ξeq,min than 1.05 which is the value used in Khalisi et al. (2007) for the energy

equipartition. On the other hand, ξeq,min increases when the equipartition instability

parameters S or Λ become larger. ξeq,min for slowly rotating models (i.e., ω0 ≤ 0.6)

are similar to each other. There are, however, significant differences of ξeq,min between

slowly rotating models and rapidly rotating models. For M2A models with ω0 ≥ 0.9,

ξeq,min increases gradually with initial rotation. This is another phenomenon of the

bar instability obstructing the relaxation process.

2.5.3 Mass segregation

A simple method measuring the degree of the mass segregation is suggested by

Giersz & Heggie (1996). They calculated the mean mass in a space between different

Lagrangian radii (i.e., Lagrangian shells) to see the change of mass distribution in

un-equal mass systems. More recently, Khalisi et al. (2007) carried out N -body
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Figure 2.18 Examples for the evolution of the equipartition parameter ξeq. Dashed

lines mean the minimum values ξeq,min, and dotted lines show the core collapse time.

The determination of ξeq,min is mentioned in text.
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Figure 2.19 Mean mass in mass shells between different Lagrangian radii with differ-

ent initial rotations. Mean masses of inner shells increase with time before the core

collapse while mean masses of outer shells decrease. This shows the process of the

mass segregation. After the core collapse, mean masses of other shells also increase

with somewhat time gaps but this is not from the mass segregation but because low

mass stars escape more frequently than high mass stars.
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Table 2.4 ξeq,min of all models.

Model S Λ ω0 ξaeq,min Model S Λ ω0 ξaeq,min

M2A 0.566 1.056 0.0 1.105 M2C 6.325 50.24 0.0 3.017

- - 0.3 1.091 - - 0.6 2.923

- - 0.6 1.107 - - 1.2 3.314

- - 0.9 1.123 M2D 17.89 256.2 0.0 5.141

- - 1.2 1.158 - - 0.6 5.224

- - 1.5 1.201 - - 1.2 6.672

M2B 2.236 9.518 0.0 1.664 M2Ae 0.141 0.264 0.0 1.047

- - 0.6 1.630 - - 0.6 1.071

- - 1.2 1.860 - - 1.2 1.000

aMinimum equipartition parameter from the best polynomial fitting function.

simulations with different mass spectra and found that the mass segregation occurs

inward direction (i.e., the mean mass of each shell is decoupled stepwise from outside,

see models A and B in Fig. 6 of Khalisi et al. (2007)). Fig. 2.19 shows the evolution

of mean mass in different Lagrangian shells as a function of time. In pre-core collapse

phase, due to the mass segregation, the mean mass of the innermost shell increases

while mean masses decrease in outer shells. Note that the maximum mean mass of

the innermost shell does not depend on the initial rotation and also the innermost

shell is nearly fully-occupied by high mass stars (i.e., ⟨m⟩ ≈ m2 = 1.833) at the time

of core collapse. The mean mass of the innermost shell stays at a constant value after

the core collapse. According to Giersz & Heggie (1996), after the core collapse, mean

masses of inner shells with r < r20% slightly decrease because high mass stars are

removed by binary formation and the mass distribution finally reaches a steady state

in Lagrangian coordinate although the system expands with time. Our simulations,

however, show significant differences from the previous studies (Giersz & Heggie

1996; Khalisi et al. 2007) in post-core collapse phase. In Fig. 2.19, mean masses

of inner shells continue to increase even after the core collapse. This is because our
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models are tidally-limited. Low mass stars escape from the cluster more rapidly than

high mass stars as shown in Fig. 2.5. As most of low mass stars escape, mean masses

of outer shells increase at the end of evolution.

2.5.4 Angular momentum exchange

Because our N -body model includes two different mass components, we are able to

investigate the angular momentum exchange between different mass components.

This has not been studied carefully yet and is an important subject to understand

the evolution of rotating star clusters. However, it is not easy to analyze the angular

momentum transfer with the tidal boundary because total angular momentum of

cluster decreases continuously by escaping stars. To distinguish the loss of angular

momentum of a cluster between escaping and exchange, we register the positions

and velocities of each escaping stars at the moment of escape. Fig. 2.20 shows the

time evolution of the total angular momentum for a model with ω0 = 0.6. Thin lines

mean the total angular momentum of stars within the cluster and thick lines mean

those of stars including escapers. From the thick solid line, we observe that the total

angular momentum including escapers is conserved as expected. Interestingly, the

angular momentum of m2 including escapers decreases while that of m1 increases.

Therefore, we conclude that there is a transfer of angular momentum from m2 to

m1.

If the exchange of angular momentum is due to the two-body relaxation, we can

define the angular momentum exchange rate as follows

ξexc ≡ − τrh(t)

Lz,m2→m1

dLz,m2→m1

dt
, (2.10)

where Lz,m2→m1 is the amount of remaining angular momentum expected to be

transferred from m2 to m1. If the angular momentum transfer rate is a constant,

the above equation can be integrated to give,

Lz,m2→m1 = Lz,m2→m1(0)e
−ξexctnorm (2.11)

when we use a new time unit normalized by half-mass relaxation time tnorm =∫
τrh(t)

−1dt. This rate can be a good parameter to measure the efficiency of the
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Figure 2.20 Evolution of the angular momentum for the model with ω0 = 0.6. When

we consider the angular momentum of escapers, the total angular momentum is con-

served (thick solid line). The total angular momentum of m1 slightly increases (thick

dotted line), while that of m2 decreases (thick dashed line). This shows the existence

of the angular momentum exchange from m2 to m1. The words ‘esc’ and ‘exc’ mean

the degree of the angular momentum loss by escape and exchange, respectively.
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Figure 2.21 Detailed evolution of the angular momentum of m2 including those of

escapers (i.e., thick dashed line in Fig. 2.20) as a function of tnorm. tnorm is a time

unit normalized by half-mass relaxation time (see the text). Open circles represent

the N -body results. At the end of evolution, one can distinguish the amount of

angular momentum loss by exchange and escape. The solid line shows the equation

(2.11) with ξexc in Table 2.5. Note that the line is shifted as much as the amount of

angular momentum loss by escape.
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angular momentum transfer between different mass components. The angular mo-

mentum of clusters goes to 0 when clusters are disrupted. So we divide the loss

of angular momentum of m2 into two contributions: through escaping and through

transferring to m1. We also estimate the fractional angular momentum loss by two

different processes. In Fig. 2.21, the detailed evolution of the angular momentum of

m2 including those of escapers is represented by open circles. At the end of evolu-

tion, whole amount of angular momentum of m2 disappears by escape or exchange.

The solid line which is from equation (2.11) with suitable value of ξexc and shifted

as much as the amount of angular momentum loss by escape agrees well with the N -

body result. Table 2.5 shows the initial total angular momentum of m2, the fraction

of angular momentum loss by escaping and exchanging and the angular momentum

exchange rate. Although the angular momentum exchange rate increases with the

initial rotation, the fraction of angular momentum loss by exchange decreases. For

the model with ω0 = 1.5, the fraction is less than 10%. Rapidly rotating models have

larger angular momentum exchange rate than slowly rotating models, but their life-

times are very short compared to slowly rotating models. Therefore, these rapidly

rotating models do not have enough time to exchange angular momentum from m2

to m1.
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Table 2.5 Angular momentum loss by escape and exchange for M2A models.

ω0 Lz,0(m2) escape (%) exchange (%) ξexc

(1) (2) (3) (4) (5)

0.3 0.0283 57.8 42.2 0.17

0.6 0.0448 66.2 33.8 0.19

0.9 0.0555 70.4 29.6 0.23

1.2 0.0571 88.1 11.9 0.34

1.5 0.0635 91.3 8.7 0.71

Note. - (1): Initial rotation parameter. (2): Total angular momentum of high mass

stars. (3): Fraction of angular momentum loss by escaping. (4): Fraction of angular

momentum loss by transferring to low mass stars. (5): Angular momentum exchange

rate.



Chapter 3

Black Hole Binaries in Galactic

Nuclei and Gravitational Wave

Sources

3.1 Introduction

According to general theory of relativity, the gravity can be expressed as a curva-

ture of space-time. The gravitational wave (GW) is the propagation of ripples of

this curvature with speed of light. GW doesn’t interact with ordinary matter, so

the detection of GW will be a good way to explore the vicinity of neutron stars

(NS), black holes (BH), supernovae and active galactic nuclei that are too difficult

to observed with electromagnetic (EM) waves. Since Einstein (1916) predicted the

existence of gravitational radiation (GR), search for GW has been done by many

groups. However, there are only indirect evidences so far for the existence of GWs.

From 30 years observations, Weisberg & Taylor (2005) found that the binary pulsar

PSR 1913+16, discovered by Hulse & Taylor (1974), exhibited the decrease of the

orbital period and the amount of decrease exactly coincides with the prediction of

general relativity.

In order to detect GWs directly, it is necessary to measure the distortion of

space-time as GWs pass through. The first practical instruments, so-called bar de-

53
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tectors, were constructed by Weber (1960), in order to measure the vibration of the

metal bar due to the GWs. However, it became clear that the bar detectors are not

sensitive enough to detect astrophysical signals. More sensitive detectors based on

laser interferometry have been constructed subsequently (e.g., LIGO, Virgo, GEO

600 and TAMA 300). If GW passes through the interferometer, the wave can be de-

tected by measuring the variation of the relative arm lengths as a function of time.

The strain amplitudes of astronomical GWs are typically very small, h ≲ 10−22. The

sensitivity of ground-based GW detectors depends on the length of baselines and

is limited by various noises: shot, seismic, thermal noises. For the initial LIGO and

Virgo, the theoretical sensitivity is comparable to h ∼ 10−22 at frequency around

f ∼ 100 Hz. It is expected that the sensitivity will be enhanced by a factor of 10 for

second generation GW detectors such as advanced LIGO and Virgo.

There are several astronomical GW sources in the universe: core-collapse super-

novae (e.g., Mueller & Janka 1997; Yakunin et al. 2010), spinning neutron stars

(e.g., Andersson et al. 2011), compact binary coalescences (e.g., Kalogera et al.

2004), supermassive black holes (SMBH) (e.g., binary SMBH merger, Berentzen et

al. 2009) (extreme mass ratio inspirals, EMRI, Hopman & Alexander 2006; Merritt

et al. 2011) and cosmological density fluctuations (e.g., Ananda et al. 2007). Among

those, the compact binary coalescence (CBC) involving NS and stellar mass BH is

the primary targets for the first GW detection. Only seven NS-NS binary pulsars,

however, have been discovered in our Galaxy including PSR 1913+16, and a half

of them will merge within a Hubble time (O’Shaughnessy et al. 2005). These NS-

NS binaries are known to be evolved from primordial binaries. Compact binaries

can also be formed dynamically in stellar systems: dynamical three-body processes

and dissipative two-body processes by tidal effect (Lee & Ostriker 1986) and GW

emission (hereafter GR capture, Hansen 1972; Quinlan & Shapiro 1987).

Stellar systems such as globular clusters (GC) and nuclear star clusters (NC) at

the galactic nuclei provide good environments for the formation of compact binaries

through the massive star formation and stellar encounters. In GCs, when the core

is dense enough, compact binaries can be formed by three-body encounters. These

binaries become more compact through close encounters with other stars and is
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eventually kicked out from GCs when their orbital separations become very small.

Some of the ejected binaries merge within a Hubble time in galactic field (Downing

et al. 2011; Bae et al. 2013). On the other hand, binary formation by three-body

processes is suppressed by the existence of massive BH (MBH) in galactic nuclei

(Baumgardt et al. 2004a). Instead, coalescences of primordial compact binaries can

be driven by the orbit coupling with central MBH, as known as the Kozai effect

(Kozai 1962), and occur within Hubble time (Antonini & Perets 2012). Compact

binaries, especially BH-BH binaries, also can be formed by GR capture in NCs due

to the high stellar density and velocity dispersion at the vicinity of MBH (O’Leary

et al. 2009). These captured compact binaries usually have large eccentricities with

small pericenter distance, and thus, they will merge within a few orbits, while keeping

the high eccentricity until the moment of merger.

Numerous authors made estimates of the detection rates of GWs from CBCs with

present- and planned- GW detectors using various methods: population synthesis

models for primordial binaries (Kalogera et al. 2004; Belczynski et al. 2007), Monte-

Carlo simulations for GCs (Downing et al. 2011) and Fokker-Planck simulations for

NCs (O’Leary et al. 2009), and estimated that few tens of events will be detected

by new generation GW detectors (see, Abadie et al. 2010). However, most of these

studies are based on simplified models and assumptions on the evolution of the

stellar systems and the binaries. Realistic models are difficult because of lack of

observational data, as well as difficulties in accurately modeling of the systems with

the large number of stars. Direct N -body approach is difficult for realistic systems,

and therefore, statistical approaches such as Fokker-Planck models and Monte-Carlo

simulations have been used, so far. However, statistical methods are restricted to

certain simplified configurations. In this study, we focus on the binary formation of

BHs by GR capture in NCs by using directN -body simulations. Although, we cannot

use realistic number of stars, we try to deduce important information regarding the

binary formation and evolution based on scaled-down and simplified version of N -

body simulations.

This chapter is organized as follows. In §§3.2 and 3.3, we introduce the numerical

method and the model for star clusters in galactic nuclei with a central MBH. The
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dynamical evolution of our model is presented in §3.4. In §3.5, we describe binary

formation in NCs and estimate the merger rate per galaxy. In §3.6, the expected

detection rate for new generation GW detectors is estimated. To give the interpre-

tation for binary coalescences and their waveforms, we implement post-Newtonian

approximations on the two-body motions. An example waveform of a binary BH

coalescence in Milky-Way-like galaxies is provided in §3.6.2.

3.2 Generation of initial models

NCs are very dense star clusters located at the nuclei of galaxies, regardless of the

type (e.g., Carollo et al. 1997; Böker et al. 2002; Côté et al. 2006). Their typical

mass is 106−7M⊙ (Walcher et al. 2005), the size of NCs is comparable to that of

galactic GCs (Böker et al. 2004; Côté et al. 2006), thus the density of NCs is much

higher than GCs. It is also well known that most of galaxies host MBHs at the

center (e.g., Kormendy & Richstone 1995; Ferrarese & Ford 2005). The coexistence

and correlation of MBHs and NCs at the central region of galaxies have been studied

by Graham & Spitler (2009).

Observational (e.g., Schödel et al. 2009) and theoretical (e.g., Bahcall & Wolf

1976) studies for star clusters with the central MBH showed that the density and

velocity dispersion diverge at the vicinity of the MBH. The modeling of stellar

systems with a central black hole has been done by numerous authors (Young 1980;

Goodman & Binney 1984; Quinlan et al. 1995; Sigurdsson et al. 1995). In order to

generate N -body realizations for NCs with MBH, we adopt ‘adiabatic growth’ of

the MBH as suggested by the previous studies. The MBH is assumed to grow with

time following Sigurdsson et al. (1995)

MMBH(t) =

{
MMBH

[
3(t/tMBH)

2 − 2(t/tMBH)
3
]
, t ≤ tMBH

MMBH, t > tMBH

(3.1)

where MMBH and tMBH are the final mass of MBH and the black hole growth time

scale, respectively. During the growth of the MBH, the stellar system is adjusted

against the potential of the MBH. The MBH is fully grown after tMBH, and the
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gravitational potential of the MBH is assumed to follow that of the Plummer model

ϕMBH = − GMMBH√
r2 + ε2MBH

, (3.2)

where εMBH is the softening parameter for avoiding unexpected effect at the sin-

gularity. Holley-Bockelmann et al. (2002) noted that tMBH should be larger than

the half-mass dynamical time to ensure the adiabatic growth of the MBH. While

they used the Hernquist model as the initial density distribution, we used Plummer

model with half-mass dynamical time tdyn,1/2 ∼ 2.46 for standard N -body scaling

(i.e., G = Mcl = −4E = 1).

According to recent observations (e.g., Schödel et al. 2009) of the center of the

Milky Way (i.e., the vicinity of Sgr A∗), the velocity dispersion of stars at about 1

parsec scale is nearly flat. This implies that the NC is almost in the isothermal state.

However, it is not possible for the isolated stellar systems to become fully isothermal.

Yoon et al. (2011) have investigated a self-gravitating stellar systems embedded in

an external potential well. They considered a Plummer external potential,

ϕpl = −
GMpl√
a2pl + r2

, (3.3)

where Mpl and apl are the mass and scale length of the Plummer potential, respec-

tively. When the external potential well is deep enough, the velocity dispersion of

the embedded stellar system becomes isothermal and there is a quasi-equilibrium

solution of a potential-density pair for the isothermal stellar system.

In the case of NCs, the surrounding bulge can provide such a potential well.

The bulge is one of galactic building blocks, extending over few kpc scales. NC

and bulge are independent components of galaxies with different surface brightness

profiles (e.g., Balcells et al. 2003). In the Milky way, the effective radius (i.e., half-

light radius) of the bulge is about 0.1 kpc, and the mass is estimated to be roughly

1010M⊙. According to a dynamical model of Galactic bulge suggested by Kent

(1992), the kinematics of the bulge is affected by the MBH, Sgr A∗, at inner parsec

scale, and the velocity dispersion is nearly flat from 1 to 10 parsec and increases

gradually at the large radii due to the effect of galactic rotation. Although bulges
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are thought to be oblate spheroids or triaxial, we consider the bulge as a sphere in

this study for the simplicity. This may not cause a serious effects on the dynamics

of the nuclear cluster we are considering since the role of the bulge in our model is

to confine the nuclear cluster within a few parsec.

3.3 Computational methods

In this study, we used the GPU accelerated version of nbody6 (Nitadori & Aarseth

2012). nbody6 code is one of the several versions of direct N -body code which has

been developed by S. J. Aarseth for many years. This code includes many efficient

and accurate algorithms such as the Hermite integrator, the individual and block

time steps, the Ahmad-Cohen neighbor scheme, the Kustaaheimo-Stiefel (KS) and

chain regularization scheme (Aarseth 1999). Recently, by using numerous stream

processors of GPU devices, calculations of gravitational interactions among stars

have been significantly accelerated through massive parallelism. All the calculations

in nbody6 code use dimensionless time, length and mass units. From given unit of

length r̄ in parsec and mean stellar mass M̄ in M⊙, the physical unit of velocity

and time can be expressed as (Aarseth 2010)

velocity : 6.557× 10−2

(
NM̄

r̄

)1/2

km/s, time : 14.94

(
r̄3

NM̄

)1/2

Myr, (3.4)

where N is total number of stars.

As we mentioned above, the external potential is composed of two parts,

ϕext = ϕMBH + ϕpl, (3.5)

where ϕMBH is the Keplerian potential due to the central MBH. Since the Plummer

external potential has already been implemented in nbody6 code, we added the

potential of MBH in the code in a similar manner with the Plummer potential. Table

3.1 shows model parameters of our simulations. Although galactic nuclei contain

∼ 106 stars in a cubic parsec, it is hard to treat such a large number of particles for

nbody6 code with a single GPU machine. We, therefore, used different number of

particles from 10,000 to 100,000 in order to build a scaling relation. We aslo made
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several simulations with different random seeds in order to reduce the statistical

errors. The masses of MBH are chosen to be 0.1 and 0.2 in our units of 1 for the entire

mass of cluster starsMcl (but excluding the mass of the Plummer potential). Because

these masses are relatively larger than those of Holley-Bockelmann et al. (2002), we

also used longer black hole growth time scale tMBH = 50. The softening parameter of

the MBH is fixed to 10−4, which is much smaller than the radius of influence of the

MBH (c.f., rinf ≡ MMBH/σ
2
∗ ∼ 0.1 for MMBH = 0.1). We assumed that all stars have

same masses (i.e., m = 1/N) of stellar mass BHs with the mass of 10M⊙. Thus, the

total mass of the cluster in physical unit becomes Mtot = N ·10M⊙. It is well known

that there is a correlation between the mass of MBHs and the kinematics of bulges.

Recently, McConnell & Ma (2013) updated the MMBH −Mbulge relation and found

that the mass of MBH is roughly 0.2% of the bulge mass for 107 < MMBH/M⊙ <

1010. For the external potential of a bulge, we fixed the mass and scale length of the

Plummer potential to 100 and 5, respectively, which corresponds to MMBH/Mbulge =

0.001 and 0.002 for our models. Under this potential well, the embedded stellar

system is expected to become isothermal in a few half-mass relaxation time (Yoon

et al. 2011). The Model 0 without the external Plummer potential well is also carried

out for comparison.

3.4 Dynamical evolution of star clusters

3.4.1 Cluster expansion

In order to investigate the effect of the MBH and the surrounding bulge, the dynam-

ical evolution of the star cluster is presented in this section. Here, we focus on the

Model 4 with N = 100, 000 and MMBH/Mcl = 0.2. Fig. 3.1 shows the time evolution

of Lagrangian radii including 1, 5, 10, 20, 50 and 75 % of total cluster mass. Before

T = tMBH = 50, all Lagrangian radii decrease with growing mass of the central

MBH to adjust the strong potential of the MBH. After T = tMBH, Lagrangian radii

increase gradually as reported in previous studies (e.g., Baumgardt et al. 2004a),

because of the strong gravitational field of the MBH. The basic mechanism of the

expansion is similar to that of post core collapse expansion of star clusters. However,
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Table 3.1 Initial parameters for all models.

Model Ncl Nrun MMBH/Mcl MMBH/m∗ tMBH εMBH Mpl apl

(1) (2) (3) (4) (5) (6) (7) (8)

0 100,000 1 0.2 10,000 50 10−4 - -

1 10,000 10 0.2 2,000

2 20,000 5 0.2 4,000

3 50,000 2 0.2 10,000

4 100,000 1 0.2 20,000 50 10−4 100 5

5 20,000 5 0.1 2,000

6 50,000 2 0.1 5,000

7 100,000 1 0.1 10,000

Note. - (1): Number of stars in the nuclear star cluster. (2): Number of simulations

with different initial random seeds. (3): MBH mass compared to the total mass of

cluster. (4) Mass ratio of MBH to the stellar mass. (5): MBH growth time scale. (6):

Softening parameter of MBH potential. (7): Mass of external Plummer potential.

(8): Scale length of external Plummer potential.
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Figure 3.1 Time evolution of Lagrangian radii for the star cluster with a growing

central MBH and an external Plummer potential well. By the growth of MBH, the

Lagrangian radii decrease with time until T = tMBH = 50. After full growth of the

MBH, the cluster expands due to the heating from the MBH and stars in the cusp.
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Figure 3.2 Time evolution of energies for stellar particle only. To be virialized against

the external potential, the kinetic energy becomes much larger than the isolated

systems. The kinetic energy decreases with time because of the cluster expansion

while the total energy is nearly conserved.
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there is no gravothermal oscillation because of the steady heating by MBH (Heggie

& Hut 2003; Baumgardt et al. 2004a). With the MBH, kinetic energy can be gen-

erated by stars in the cusp (Shapiro 1977). The MBH and the innermost star can

behave like hard binaries in the core of star clusters. Encountering other single stars

in the cusp, they tend to be bounded stronger and convert their internal energy to

the kinetic energies of stars in the cusp. The kinetic energies are transferred to the

whole cluster via relaxation.

While the kinetic, potential and total energies of an isolated self gravitating

system are 1/4, -1/2 and -1/4 in nbody units, respectively, the system embedded

in a potential well has lager kinetic energy than the isolated system through the

virialization (Yoon et al. 2011). Also, when the kinetic energy is even lager than

the magnitude of the potential energy (i.e., the total energy becomes positive.), the

system will not reach the core collapse. Fig. 3.2 shows the time evolution of the

energies. Our models are designed to have positive total energy. Initially, the kinetic

energy, potential energy of self-gravity and total energy are 0.7, -0.45 and 0.25,

respectively. However, as the black hole grows, the potential energy decreases because

the cluster becomes more centrally concentrated as shown in Fig. 3.1 while the kinetic

energy increases in response. At T = tMBH, the energies become -0.5 (potential), 0.9

(kinetic) and 0.4 (total), respectively. The potential energy increases after T = tMBH

due to the cluster expansion although we designed a quasi-equilibrium model by

using the external Plummer potential.

3.4.2 Radial profiles

In Fig. 3.3, we show the density profile of the the star cluster of the Model 4 for t = 0

and 1000TNBODY. We see in Figs. 3.1 and 3.2 that the cluster is not in equilibrium

but expanding. However, as reported in Baumgardt et al. (2004a), the equilibrium

profile is expected to be established from inner to outer regions after a few local half-

mass relaxation times (c.f., τrh,0 ∼ 1600TNBODY for Model 4). The radius of influence

rinf is marked as the downward arrow. The slope of density cusp at r < rinf is not

exactly -1.75, the Bahcall-Wolf cusp for equal-mass systems, but about -1.6. There

is an upturn of the density near r = 5. This radius is the scale length of the external
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Figure 3.3 Density profiles at T = 0 and T = 1000TNBODY. Grey line shows the initial

condition. Because of the existence of MBH, the stellar cusp, so-called Bahcall-Wolf

cusp, is formed inside the radius of influence. Our cusp has r−1.6 which is less steep

than the theoretical expectation.
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Figure 3.4 Velocity dispersion profiles at two epochs: T = 0 and 1000. The existence

of MBH makes stars within radius of influence follow the Keplerian profile. For the

outer parts, the velocity dispersion is flatter than the initial condition due to the

external potential well.
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Plummer potential, so stars have piled up at this radius against the external force

from the potential.

The radial profile of velocity dispersion is presented in Fig. 3.4. The black line

shows the profile at T = 1000, and the grey line is the initial one. For the outer part in

Fig. 3.4, the velocity dispersion is not completely flat unlike the observations. When

a star is ejected from the vicinity of the MBH, the star has very large kinetic energy

and transfers its kinetic energy to other stars through the interactions. Nevertheless,

the velocity dispersion is flatter than the initial dispersion. There is a bump of

velocity dispersion at r ∼ 5, the scale length of the external Plummer potential.

This is because the ejected stars from the center are decelerated against the external

potential. When the MBH exists, stars inside rinf are strongly affected by the MBH,

and their velocity dispersion follows the Keplerian profile (i.e., σ(r) ∼ r−0.5). One

can see the slope of the velocity dispersion profile at r < rinf . However, the slope is a

little shallower than the expectation as similar to the density profile in Fig. 3.3. The

most plausible explanation for this effect is the wandering of the MBH. A MBH in a

stellar system can move randomly, like a Brownian motion, by the interaction with

stars which are bounded and un-bounded to the potential of the MBH. In addition,

the MBH and the innermost star can play a role as binaries in the core-collapsed star

cluster. They kick a star interacting with them with high kinetic energy, and this

causes the recoil motion of the MBH. Lin & Tremaine (1980) investigated the motion

of the MBH in the stellar system such as a globular cluster. They concluded that

the interaction with unbound stars is the most important effect causing the motion

of the MBH. Bahcall & Wolf (1976) estimated the uncertainty of the position of the

MBH by the wandering of the MBH as

rwand ≈ 0.92rc
√

m∗/MMBH, (3.6)

where rc is the core radius. It is difficult to define the wandering radius in our sim-

ulations because there is not a well-defined core. Nevertheless, from the simulations

with different number of stars, we confirmed the number dependence of the wander-

ing radius. Fig 3.5 shows the wandering radius estimated by the radial distance of

the MBH fixed at the origin to the center of mass of the stellar particles. The solid

lines are the wandering radius in the simulations for the simulations with different
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Figure 3.5 Separation between the MBH and the center of mass of stars as a function

of time for simulations with different N . Contrasts show different numbers of stars.

With less number of stars, the MBH wanders more. Dashed lines represent the

expected wondering radius based on the equation (3.6) when normalized by the

average value of N=100,000.
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Figure 3.6 Time evolution of the slope of stellar cusp within the radius of influence.

Different contrasts show different numbers of stars. At the end of MBH growth, the

slope is much less than 1.75, Bahcall-Wolf cusp. For larger number of stars, however,

the slope increases with time gradually while those for models with smaller number

of stars do not get close to the Bahcall-Wolf cusp.
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number of stars ranging from 20,000 (top) to 100,000 (bottom) with the MBH mass

of 0.2. As the number of stars becomes larger, the wandering radius becomes smaller.

The dashed lines are the values obtained with the equation (3.6), normalized by the

mean wandering radius of the model with N = 100, 000. Thus the wondering radius

follows the scaling relation of the equation (3.6) with N very well. The time evolu-

tion of the slope of the central stellar cusp γ is shown in Fig. 3.6. Different contrasts

mean different number of stars. During the growth of the MBH, the slope increases

with time. When the growth of the MBH is completed, the slope is still not same

as the Bahcall-Wolf cusp. For larger N , the slope increases with time slowly while

those for models with smaller number of stars do not get close to the Bahcall-Wolf

cusp. This may be related to the wandering of the MBH and will affect the merger

rate of stellar mass BHs near the MBH which is going to be discussed in the next

sections.

3.4.3 Velocity anisotropy

It is well known that the radial anisotropy in the velocity dispersion increases at the

outer part of isolated stellar systems as a result of two-body relaxation (Giersz &

Heggie 1996; Spitzer 1987). The anisotropy parameter can be defined by (Binney &

Tremaine 2008)

β ≡ 1− σ2
t

2σ2
r

, (3.7)

where σt and σt are the tangential and radial velocity dispersions, respectively. This

anisotropy parameter becomes −∞ for purely circular orbits and +1 for purely radial

orbits. Also, in a tidal field, the radial anisotropy decreases during post core-collapse

expansion due to the loss of radial orbits (Takahashi et al. 1997). However, in the case

of stellar systems with a growing central massive object, the tangential anisotropy is

developed (i.e., β < 0, Young 1980; Goodman & Binney 1984; Quinlan et al. 1995;

Sigurdsson et al. 1995; Holley-Bockelmann et al. 2002). Quinlan et al. (1995) have

revealed that the aspect of anisotropy is affected by the initial models. For models

with a core such as isothermal sphere and isochrone model, the velocity distribution

becomes isotropic in the limit r → 0 (Young 1980; Quinlan et al. 1995). On the

other hand, for ‘two-power’ models for galaxies like Dehnen’s models (Dehnen 1993),
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the velocity distribution is still tangentially biased at r → 0 (Quinlan et al. 1995;

Sigurdsson et al. 1995; Holley-Bockelmann et al. 2002). The tangential anisotropy

becomes the largest at r ≈ rinf , and the velocity distribution becomes isotropic at

r ≫ rinf again (see Figs. 2-5 of Quinlan et al. 1995).

The radial and tangential velocity dispersions and the velocity anisotropy pa-

rameter after the growth of MBH are shown in Fig. 3.7 for the Model 0 without

the external Plummer potential and Fig 3.8 for the Model 4 with the potential,

respectively. For the Model 0, the velocity dispersions decrease rapidly with radius

unlike those of the model with the potential well. Although we use the Plummer

model as the initial model, the anisotropy parameter is likely to be similar to that

of the isochrone model as shown in Quinlan et al. (1995). However, the maximum

anisotropy is located at the larger radius than rinf . On the other hand, for the Model

4, the radial velocity dispersion is enhanced due to the radial acceleration from the

external potential as mentioned in the previous section. Therefore, the anisotropy

parameter becomes almost 1 at r ≈ apl. For the inner region, the velocity dispersion

is tangentially biased as the same as isolated models.

3.5 Black hole binaries

3.5.1 Close encounters and GR capture

In order to estimate the merger and detection rates of BH-BH binary coalescences, we

need to know binary formation rates as well as the orbital parameter distribution just

after the capture. There are several binary formation mechanisms known: primordial,

dynamical three-body process, dissipative two-body processes. Antonini & Perets

(2012) have discussed how primordial BH-BH binaries can evolve to GW sources

in galactic nuclei by the secular Kozai effect and estimated the merger fraction. In

addition, previous studies (e.g., Baumgardt et al. 2004a) noted that binary formation

by three-body process is suppressed by the strong gravitational field at the vicinity

of MBH. There are two of dissipative processes for two-body encounters, tidal force

and GR. The tidal interaction is not our interest because this process is only valid

for objects with finite sizes such as main-sequence (MS) or giant stars.
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Figure 3.7 Profiles of Radial and tangential velocity dispersion (upper) and the

anisotropy parameter (lower) for Model 0 without the external Plummer potential.

The velocity distribution is tangentially biased, and the profile is similar to that of

the isochrone model in Quinlan et al. (1995) except for the position of maximum

anisotropy.
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Figure 3.8 Profiles of Radial and tangential velocity dispersion (upper) and the

anisotropy parameter (lower) for Model 4 with the external Plummer potential.

For the inner region, the velocity distribution is similar to that of isolated models.

However, the tangential anisotropy is driven by the external potential well at the

outer region.
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The energy loss and changes of orbits by GW for binary systems were first stud-

ied by Peters & Mathews (1963) based on the post-Newtonian (PN) approximation.

Later, Hansen (1972) extended the study of Peters & Mathews (1963) to the hy-

perbolic encounters. With given masses m1,m2, a semi-major axis a (defined as

a = Gm1m2/2E0 where E0 is the initial orbital energy) and an eccentricity e, the

energy and orbital angular momentum losses by GR are given by

∆E = − 2

15

G7/2

c5
m2

1m
2
2(m1 +m2)

1/2

a7/2(e2 − 1)7/2

×
[
(π − θ0)(96 + 292e2 + 37e4) +

1

3
e sin θ0(602 + 457e2)

]
, (3.8)

∆Lz = −8

5

G3

c5
m2

1m
2
2

a2(e2 − 1)2

[
(π − θ0)(8 + 7e2) + e sin θ0(13 + e2)

]
, (3.9)

where G, c and θ0 are gravitational constant, speed of light and the incidence angle

at infinity defined as θ0 = cos−1(1/e), respectively. Two encountering but unbound

stars, therefore, become a binary if the energy loss by GR is larger than the orbital

energy E0. From equations (3.8) and (3.9), one can obtain the semi-major axis and

the eccentricity of the captured binary as

a′ = − Gm1m2

2(E0 +∆E)
and e′ =

√
1− (m1 +m2)(Lz,0 +∆Lz)

Gm2
1m

2
2a

′ , (3.10)

where the subscript 0 indicates the initial value.

Many previous studies have discussed the GR captures of compact stars in dense

stellar systems (e.g., Quinlan & Shapiro 1987, 1989; O’Leary et al. 2009). The start-

ing point is the cross section for GR capture. Quinlan & Shapiro (1987) deduced

the capture cross section under the parabolic approximation. This approximation is

valid because trajectories of the stars near the pericenter, where most of the GWs

are radiated, are almost identical to parabolic with the same pericenter distance.

The equation (3.8) is rewritten with parabolic approximation as

∆E = − 85π

12
√
2

G7/2

c5
m2

1m
2
2(m1 +m2)

1/2

r
7/2
p

, (3.11)

where rp is the pericenter distance. Again, the GR capture will happen when the en-

ergy loss is lager than the orbital energy. By the requirement of |∆E| > m1m2v
2
∞/2(m1+



74 Black Hole Binaries in Galactic Nuclei

m2), Quinlan & Shapiro (1989) obtained the maximum pericenter distance for GR

capture:

rp,max =

[
85π

√
2

12

G7/2

c5
m1m2(m1 +m2)

3/2

v2∞

]2/7
(3.12)

where v∞ is the relative velocity at infinity. Therefore, the capture cross section is

given as

Σcap = πr2p,max

[
1 +

2G(m1 +m2)

rp,maxv2∞

]
≃ 17

G2m1m2η
−5/7

c10/7v
18/7
∞

(3.13)

where η is the symmetric mass ratio defined as η ≡ m1m2/(m1+m2)
2. We assumed

that gravitational focusing is dominant compared to the geometrical cross section

for the last equality in the above equation.

Here, we are going to introduce a statistical interpretation of GR captures to

understand the situations and predict the BH-BH binary coalescences in realistic

regime. We can assume that the motions of stars follow the one-dimensional nor-

mal distribution with a given velocity dispersion σ. From the equation (3.13), the

distribution of the pericenter distance of encountering stars also becomes uniform

(i.e., dS = d(πb2) ≃ 2πG(m1+m2)v
−2
∞ ·drp) if the gravitational focusing dominates.

Therefore, for unbound close encounters that lead to the formation of binaries by

GR, rp/rp,max follows uniform distribution in the range [0, 1]. Under the parabolic

approximation, the semi-major axis and the eccentricity can be rewritten with σ

and rp/rp,max from the equations (3.11) and (3.12) as

a =
GM

2σ2
≈ 1.58AU

(
M

20M⊙
)(

σ

75km/s

)−2

(3.14)

e = 1+

(
170πη

3

)2/7(
σ

c

)10/7(
rp

rp,max

)
≈ 1+1.57×10−5η2/7

(
σ

75km/s

)10/7

(3.15)

where M is the sum of masses, and we set vinf =
√
2σ. By assuming rp/rp,max = 1/2,

typical pericenter distance for GR capture of encountering two 10M⊙ BHs is 2514km

in Milky-Way-like galaxies (i.e., σ = 75km/s). Because the pericenter distance is

nearly the same before and after capture, the semi-major axis and eccentricity of
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the binary formed by GR capture are given by

a′ = a

[(
rp

rp,max

)−7/2

− 1

]−1

≈ 0.153AU

(
M

20M⊙
)(

σ

75km/s

)−2

, (3.16)

e′ = 1− a

a′
(e− 1) ≈ 1− 1.62× 10−4η2/7

(
σ

75km/s

)10/7

. (3.17)

For an example of the velocity dispersion of σ ∼ 400 km/s, the eccentricity of a

typical binary formed by GR capture is 1 − e′ ∼ 10−3, which can show us the

validity of the parabolic approximation again. From the distribution of semi-major

axis and eccentricity, we can determine the distribution of merging time for such

binaries. The merging time is given by (Peters 1964)

Tmer =
5

64

c5a40(1− e20)
7/2

G3m1m2(m1 +m2)

{
1 +

73

24
e20 +

37

96
e40

}−1

, (3.18)

where a0 and e0 are the initial semi-major axis and eccentricity, respectively. Since

the orbits of binaries in our consideration are nearly parabolic, the merging time has

a strong dependence on the velocity dispersion as Tmer ≈ a40(1− e0)
7/2 ≈ σ−3. Note

that this merging time is not corrected for other PN terms (see §3.6.2 and Appendix

A for other PN corrections). In Fig. 3.9, there are the distribution of semi-major axis,

eccentricity and merging time of BH-BH binaries from equations (3.16), (3.17) and

(3.18). As mentioned, we assume that the velocity of star follows one-dimensional

normal distribution with σ= 75 km/s (i.e., the velocity dispersion for the Milky

Way) and the pericenter distance rp/rp,max follows uniform distribution. The peak

position of each distribution is equivalent to the typical value in equations (3.16)

and (3.17). For merging time, the mode is ∼ 106 second. Although the distribution

is quite wide, almost all binaries will merge within a Myr.

3.5.2 Event rates

We collect the parameters of all close encounter events in our simulations in order

to investigate the GR capture and the compact binary coalescences. In the nbody6

code, the regularization algorithm helps the calculation of very close orbits with high
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Figure 3.9 Distribution of semi-major axis (left panel), eccentricity (middle panel)

and merging time (right panel) for 10M⊙ BH-BH binaries in the Milky-Way-like

galaxies (i.e., σ = 75 km/s).
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precision. If the separation or the time step of stars becomes smaller than certain

criteria, the stars are separated from the main loop, and their motions are calculated

with time smoothing. We turn on the KS regularization, the two-body regularization

scheme, and extract the semi-major axis and the eccentricity of close encounters at

the pericenter passage to avoid the effect of perturbation by nearby stars. Fig 3.10

shows the distribution of semi-major axis and the eccentricity of close hyperbolic

encounters for the Model 4 after T > tMBH. Each filled dot represents each encounter

and the dashed line shows the limit of KS regularization (i.e., rperi ∼ 10−4), so orbits

lying above this line are not considered in our investigation. In order to determine

whether a certain encounter results in a binary, we therefore need to convert our

dimensionless results to physical quantities according to the equation (3.4). In Fig.

3.10, there are some orbits with rainbow colors. These colored orbits will become

binaries when the overall velocity dispersion of stellar system is larger than that

velocity (e.g., the orbit colored red at the left-end will become a binary when the

velocity dispersion is ∼400 km/s.). By counting the number of capture events, we

estimate the binary formation rates in our simulations.

For a single BH passing through stars with a speed v, the time scale for GR

capture is

tcap ≡ (Σcapnv)
−1, (3.19)

where n is the number density of background stars. The binary formation rate be-

tween stars with different mass m1 and m2 in the shell with the range [r, r + dr]

can be expressed as
dΓcap

dr
= 4πr2n1(r)n2(r)⟨Σcapv⟩, (3.20)

where ⟨Σcapv⟩ is the velocity averaged value. Thus, assuming v∞ =
√
2v in equation

(3.13) and replacing v by σ(r), the velocity dispersion, we have

dΓcap

dr
≃ 87

G2m1m2η
−5/7

c10/7
r2n1(r)n2(r)σ(r)

−11/7. (3.21)

For the case of systems composed identical stars, m = m1 = m2, this equation

becomes
dΓcap

dr
≃ 1

2
87

G2m2(1/4)−5/7

c10/7
r2n2(r)σ(r)−11/7, (3.22)
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Figure 3.10 Distribution of semi-major axis and eccentricity of GR captured bina-

ries for the Model 4. Different colors mean the velocity dispersion at the radius of

influence in physical units as indicated by the color bar. These encountering stars

become binaries by GR capture.
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Figure 3.11 Radial distribution of GR binary capture rates. The noisy line is from

the equation (3.22). This equation agrees well with events in the simulation except

for the the inner region. From the theory, the slope of distribution inside the radius

of influence is expected to be 2/7. However, it is ∼ 1/2 because of discrepancy of

profiles as shown in Figs. 3.3 and 3.4.
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where the half is to avoid double counting and η = 1/4 for m1 = m2. Fig. 3.11

shows the radial distribution of cumulative capture events dNcap/d log r during ∆t =

1000TNBODY. Histogram is from N -body simulations of Model 4, and the noisy line

is from the equation (3.22) (i.e., dNcap/d log r = rdΓcap/dr · ∆t) with the density

and the velocity dispersion profiles from Figs. 3.3 and 3.4, respectively. In order

to get large sample size, we set the unit of velocity to the half of the speed of

light (0.5c). Although this velocity is unrealistically high, it is possible to guess

what happens in realistic situations because there is no relativistic effect on the

simulations. The simulation results and the formula show good agreement at the

radius larger than rinf . However, at r < rinf , there is some discrepancy between

them: the binary formation rate obtained with simulation is smaller than that with

the equation (3.22). One possible reason is the time variation of density structure

within the radius of influence as shown in Fig. 3.6. From the theoretical model of

star distribution within the radius of influence (e.g., ρ(r) ∼ r−7/4 and σ(r) ∼ r−1/2),

we obtain the slope of dNcap/d log r as

dNcap

d log r
∝ r2/7. (3.23)

However, the slopes inside rinf in Fig. 3.11 are ∼ 1
2 rather than 2

7 because the density

cusp is not the same as the Bahcall-Wolf cusp (see Fig. 3.6). Incidentally, more than

80 per cent of events occur outside rinf , and the peak of dNcap/d log r is located at

rhalf . The small discrepancy of analytical estimation at small radii thus does not

affect the estimation of the total capture rates.

In order to obtain the overall merger rate for NC, we need to integrate the

equation (3.22) over the volume. We can assume that the merger rate is equivalent

to the capture rate because the merging time of BH-BH binary in our simulations

is negligible compared to the cluster time scales as discussed before. It is difficult to

estimate the merger rate because n(r) and σ(r) are not simple function of r. Instead,

we can infer that the merger rate will be related to these variables:

Γmer ≈ m2 ·N · ñ · σ−11/7
∗

≈ M−1 · σ31/7
∗ , (3.24)
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where ñ, σ∗ and M are mean number density, the velocity dispersion of the system

and total mass of the cluster, respectively. We see that the event rate is inversely pro-

portional to the total mass of the cluster with rather steep dependence on the velocity

dispersion of the cluster. To convert our results to physical units, it is necessary

to determine the representing value of velocity dispersion of N -body simulations.

We estimate the density-weighted velocity dispersion as similar to the observational

estimation of velocity dispersion of bulge as (McConnell & Ma 2013)

σ2
∗ ≡

∫ rhalf
rinf

4πσ2(r)ρ(r)r2dr∫ rhalf
rinf

4πρ(r)r2dr
, (3.25)

where rhalf is half-mass radius. Note that the effective radius of bulge that is the

upper limit of the integration for the systemic velocity dispersion in observations is

much larger than the half-mass radius of NCs. According to recent observation for

the calibration of velocity dispersion of nearby galaxies (Kang et al. 2013), however,

the velocity dispersion does not change much with the aperture size. Thus, the

velocity dispersion of NCs is enough to represent the velocity dispersion of bulges.

Figs. 3.12 and 3.13 show the merger rates as a function of the velocity dispersion

in the physical unit. The mass ratio of MBH to the cluster is fixed at 0.2 for Fig.

3.12 (σ∗ ∼ 0.79) and 0.1 for Fig. 3.13 (σ∗ ∼ 0.75), respectively. Different symbols

represent the different number of stars and dashed lines are from the time averaged

result of numerical integration of the equation (3.24). Because of the limitations in

the number of particles and the integration time, we only consider the unrealistic

range of the velocity dispersion (1,000km/s < σ∗ < 20,000km/s). Nevertheless, be-

cause the results show very good scaling relation with the velocity dispersion and

the total mass of the cluster, it is possible to extrapolate our results to realistic

parameters for NC. As a result, the merger rate can be expressed by an equation

with the mass of MBH and the velocity dispersion:

Γmer ≈ 2.06×10−4Myr−1

(
MMBH

3.5× 106M⊙
)−1(

σ∗
75km/s

)31/7

, for MMBH = 0.2Mtot,

(3.26)
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Figure 3.12 Merger rates as a function of velocity dispersion for models 2-4. The

MBH mass is 20% of the total mass of the cluster. Filled symbols are from the

number counts in simulations with different number of stars. Dashed lines show

the equation (3.24) with the proportional constants obtained from the simulations.

There are good correlations between merger rates and velocity dispersion.
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Figure 3.13 Merger rates as a function of velocity dispersion for models 5-7. The

MBH mass is 10% of the total mass of the cluster.
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Γmer ≈ 8.58×10−5Myr−1

(
MMBH

3.5× 106M⊙
)−1(

σ∗
75km/s

)31/7

, for MMBH = 0.1Mtot.

(3.27)

Thus, the merger rate is about 2.06×10−10yr−1 for Milky-Way-like galaxies if we

assume that the total mass of embedded star cluster is 5 times heavier than the

MBH.

The time evolution of the merger rate for a Milky-Way-like galaxy is represented

in Fig. 3.14, which is estimated from the Model 2 with N = 20, 000 in order to

see the long-term evolution. The time is scaled by the initial relaxation time at the

radius of influence τri,0 (Spitzer 1987) after growth of the MBH

τri,0 ≡
⟨v2⟩3/2

15.4G2m̄ρ̄inf lnΛ
, (3.28)

where m̄ and ρ̄inf are the mean mass (for equal-mass, m̄ = M/N) and the mean

density inside the radius of influence, respectively. The noisy line is the merger rate

from the numerical integration of the equation (3.22). For comparison, we plot the

histogram showing the number of events counted in the simulation. They are selected

with σ∗ = 104 km/s for sufficient samples and rescaled to σ∗ = 75 km/s range. The

horizontal dashed line is the time-averaged merger rate in equation (3.26). Due

to the expansion of the cluster, the merger rate decreases with time. These two

estimates show good agreement, and therefore it is possible to surmise the merger

rates from given density and velocity structures of stellar systems. The conversion

of these merger rates to the detection rates for GW detectors will be presented in

next section.

3.6 Discussion

3.6.1 GW detection rates

To determine the detection rate of GWs from BH-BH binary coalescences for GW

detectors, it is necessary to calculate how many events occur per unit volume in the

universe and horizon distance of GW detectors. In the previous section, we estimated

the merger rates in NC as a function of the mass of MBH and the velocity dispersion.
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Figure 3.14 Time evolution of merger rate from Model 2 as a function of time at

the radius of influence. The merger rate is scaled for a Milky-Way-like galaxy. Noisy

line and histogram are from the integration of equation (3.22) and the number of

events counted in the simulations, respectively. Due to the cluster expansion, the

merger rate decreases with time. The dashed horizontal line represents the merger

rate from equation (3.26).
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It is well known that there is a good correlation between the mass of MBH and the

velocity dispersion of surrounding stars (e.g., Tremaine et al. 2002)

MMBH ≈ 1.3× 108M⊙(σ∗/200kms−1)4 (3.29)

in a range of the mass of MBH [106M⊙, 109M⊙]. Later, Barth et al. (2005) con-

firmed that the relation is also valid for MBHs down to 105M⊙. The merger rate

for a NC, therefore, has a weak dependence on the mass of central MBH Γ ∼ M
3/28
MBH

(O’Leary et al. 2009), and the merger rates of (3.26) and (3.27) become

Γmer ≈ 3.33× 10−4Myr−1

(
MMBH

3.5× 106M⊙
)3/28

, for MMBH = 0.2Mtot, (3.30)

Γmer ≈ 1.39× 10−4Myr−1

(
MMBH

3.5× 106M⊙
)3/28

, for MMBH = 0.1Mtot. (3.31)

However, there are several factors that give rise to uncertainties in merger rates.

From the equation (3.21), we can infer that the merger rate is proportional to the

total mass of different mass components M1 and M2. As we mentioned before, how-

ever, we assumed that all stars are 10M⊙ BHs. There exist other stellar objects such

as MS stars, white dwarfs (WDs), NSs and BHs in real stellar systems. Hopman &

Alexander (2006) have studied the effect of mass segregation of stars around a MBH

and concluded that the number fraction of different stellar objects evolves from the

initial state (i.e., NMS : NWD : NNS : NBH = 1 : 0.1 : 0.01 : 10−3, for continuously

star-forming populations; Alexander 2005) to NMS : NWD : NNS : NBH = 1 : 0.09 :

0.012 : 0.06 within 0.1 parsec for Milky-Way-like galaxies. If we set the mass of MS

stars (0.7M⊙), WDs (0.6M⊙) and NSs (1.4M⊙), the mass fraction of BHs MBH is

about 44 per cent of the total mass. When we simply assume that the merger rate of

BHs in galactic nuclei can be expressed by the equations (3.26) and (3.27) with mul-

tiplication of M2
BH, the merger rate in equation (3.26) is reduced to 3.95×10−11yr−1,

which is at least about 5 times smaller than the estimation of O’Leary et al. (2009).

Of course, it is more complicated to correct for the mass function rather than our

consideration because the mass fraction of BHs varies with the radius. Furthermore,

the mass fraction in our consideration is adequate for innermost region although
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the capture events happen most frequently around the half-mass radii as shown in

Fig. 3.11. The mass fraction of BHs around the half-mass radius might be smaller

than that from Hopman & Alexander (2006), and thus, our results could be an

overestimation.

The dynamical evolution of NCs also affects the merger rates. The merger rate

varies at most by a factor of 3 from T = 0 to T = 200τri,0 as shown in Fig. 3.14.

Merritt et al. (2007) have estimated the relaxation times τri,0 for ACS Virgo samples

of galaxies observed by Côté et al. (2004), and found the relation between the relax-

ation time and the central velocity dispersion. According to the relation, τri,0 is less

than a Hubble time with smaller velocity dispersion than 100 km/s, corresponding to

MMBH ∼ 1.6×107M⊙. Therefore, the merger rates for NCs with smaller MBHs can

be affected by the dynamical evolution. In addition, the relaxation time of galactic

nuclei implies that most of NCs with larger MBHs do not contribute to the merger

rates as much as those with smaller MBHs because the number fraction of BHs in

relaxed nuclei is several tens of times lager than that of initial conditions due to the

mass segregation (Hopman & Alexander 2006), and the merger rate weakly depends

on the mass of central MBH (O’Leary et al. 2009). O’Leary et al. (2009) also noted

that the variance of the number density of galactic nuclei can affect the merger rate.

They have estimated the variance of the number density from the results of Merritt

et al. (2007) and found that the merger rate is enlarged as much with the rescale

factor ξ ∼ 10− 100.

In order to calculate the merger rate per unit cosmological volume, we convolve

the merger rate per NC with the number density of MBHs in the universe (for more

details, see §3.3.5 of O’Leary et al. 2009). Aller & Richstone (2002) determined the

number density of MBHs from the luminosity function of galaxies as

dnMBH

dMMBH
= c•

(
MMBH

M•

)−α

e−MMBH/M• (3.32)

with the best fitting parameters of (c•,M•, α) = (3.2 × 10−11M−1⊙ Mpc−3, 1.3 ×
108M⊙, 1.25). The merger rate per volume, therefore, is obtained by integrating

the rate over the SMBH mass distribution

Rmer =

∫ Mu

Ml

Γmer(MMBH)
dnMBH

dMMBH
dMMBH, (3.33)
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where Mu and Ml are the upper and lower limits for integration, and Γm,gal is the

merger rate per galaxy as a function of the mass of MBH. The upper limit can be

fixed toMMBH ∼ 107M⊙ by the time scale requirement as discussed above. However,

we still do not have the exact lower limit of the MBH mass, which is currently about

105M⊙ from the observation of Barth et al. (2005). With the uncertainty of the

lower limit of the MBH mass from 103M⊙ to 105M⊙, the equation (3.33) gives us

the merger rate density

Rmer ≈ (2− 5)Γmer,MWξ30Mpc−3, (3.34)

where Γmer,MW is the merger rate for a Milky-Way-like galaxy, and ξ30 is the rescale

factor for the variance of the number density of stars normalized by 30 (i.e., 1/3 ≲
ξ30 ≲ 3; O’Leary et al. 2009).

Now, we can estimate the detection rate of BH-BH binary coalescences by next

generation GW detectors. By assuming that the merger events occur uniformly in

the universe, the detection rate only depends on the size of cosmological volume

which we can cover and can be expressed by (O’Leary et al. 2006; Belczynski et al.

2007; Downing et al. 2011; Bae et al. 2013)

Rdet = Rmer

∫
4πr(z)2

1 + z

dr

dz
dz, (3.35)

where z is the cosmological redshift, and the factor of (1 + z)−1 represents the

cosmological time dilation. For existing GW detectors, the effect of redshift can

be negligible because their coverage is not too far (i.e., the horizon distance Dh

are 33 Mpc for NS-NS binaries and 161 Mpc for BH-BH binaries corresponding to

z ∼ 0.01 and 0.04 in standard ΛCDM cosmology, respectively; Abadie et al. 2010).

However, for next generation GW detectors, the effect of redshift becomes important,

especially for BH-BH binaries. The maximum horizon distance Dh can be obtained

from signal-to-noise ratio (SNR) of GW signals (for more details, see §4.2 of O’Leary

et al. 2009). Because the redshift affects both the mass of source and the frequency,

SNR should be estimated from the waveforms carefully. Only few studies (Baker et

al. 2007; O’Leary et al. 2009; Reisswig et al. 2009) have estimated Dh for BH-BH

binaries for given SNR.
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Table 3.2 Detection rates of BH-BH binaries for advanced LIGO.

Models MMBH/Mcl Γmer,MW Ma
BH Dh Rb

det,l Rc
det,re Rd

det,h

(Myr−1) (Mpc) (yr−1) (yr−1) (yr−1)

986e 0.06 0.44 2.99

1-4 0.2 3.33× 10−4 0.44 ∼1100f 0.09 0.64 4.32

∼1900g 0.27 2.00 13.5

986e 0.02 0.19 1.25

5-7 0.1 1.39× 10−4 0.44 ∼1100f 0.04 0.27 1.80

∼1900g 0.11 0.83 5.62

aMean mass fraction of BHs from Hopman & Alexander (2006).
b,c,dLow, realistic and high detection rates depending on uncertainties discussed in text.
eDh with SNR 8 form Abadie et al. (2010) divided by 2.26, the correction factor for sky

location and orientation of sources. The effect of redshift is not included.
fDh with SNR 10 form Fig. 16 in Baker et al. (2007).
gDh with SNR 8 form Fig. 3 in Reisswig et al. (2009).
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Table 3.2 shows the detection rates expected for advanced LIGO. Because we

mainly considered the equal-mass models for only BHs, the detection rates are cor-

rected by the factor ofM2
BH. We estimated detection rates by usingDh from different

studies (Baker et al. 2007; Reisswig et al. 2009; Abadie et al. 2010). All Dhs are cor-

rected for the orientation of sources. Note that Dh from Abadie et al. (2010) does

not include the cosmological effect of the redshift. Dh from Reisswig et al. (2009) is

for spinning BHs but independent of the spin of BHs for 10M⊙ BHs. We list three

detection rates Rdet,l, Rdet,re and Rdet,h considering uncertainties discussed above.

Reasonably, the detection rates are ranged from 0.2-2 yr−1 depending on the maxi-

mum horizon distance. These estimates are significantly lower than those of O’Leary

et al. (2009) (5-2000 yr−1).

Our estimations have some limitations; (1) We ignore the initial mass function.

This mass function may affect not only the evolution of systems by the relaxation

between mass components but also the merger rates for BHs with different masses.

(2) We need to consider various range of MMBH/Mcl (e.g., Graham & Spitler 2009,

suggested that there is a rough relation between the mass of MBH and NC.) (3) The

exact calculation for SNR is necessary in order to obtain more reasonable detection

rates. These limitations would be considered in future works.

3.6.2 Black hole binary coalescence and waveform

Solving Einstein field equation exactly is very difficult and has only been done nu-

merically. Fortunately, during inspiral phase of compact binary coalescences, the

Einstein equation can be simplified with the PN expansion. When a compact binary

is formed, the orbit decays with time due to the GR. The orbit-averaged change of

the semi-major axis and the eccentricity by GR is first derived by Peters (1964) as⟨
da

dt

⟩
= −64

5

G3m1m2(m1 +m2)

c5a3(1− e2)7/2

(
1 +

73

24
e2 +

37

96
e4
)

(3.36)

⟨
de

dt

⟩
= −304

15
e
G3m1m2(m1 +m2)

c5a4(1− e2)5/2

(
1 +

121

304
e2
)
, (3.37)

in the 2.5 PN order (∼ 1/c5, the first order GR term). However, the orbital evolution

is also affected by other PN order terms such as 1PN (relativistic precession), 1.5
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PN (spin-orbit coupling), 2PN (spin-spin coupling, high order relativistic precession)

and higher orders. With full consideration of PN terms up to 2.5 order, Berentzen

et al. (2009) noted that the decay of the binary orbit is much faster than that with

2.5PN only. Although the effect of the spin is quite important for the motions and

waveforms of BH-BH binary coalescences, we only consider non-spinning BHs and

take 1, 2 and 2.5PN order terms in this study.

The equation of motion with PN correction up to 2.5PN order can be simply

written in the center of mass frame as (Blanchet & Iyer 2003; Mora & Will 2004)

a = an + apn = −Gm

r3
r+

Gm

r2
(A

r

r
+Bv) (3.38)

where A,B are PN coefficients depending on their masses, the relative position

r and relative velocity v (see Appendix A, for more details). Many authors have

incorporated the PN corrected force in direct N -body simulations with different PN

orders (Lee 1993; Aarseth 2007; Berentzen et al. 2009; Brem et al. 2013). Similarly,

we implemented the PN equation of motion to the KS regularization process in

nbody6 code. In the KS regularization process, a two-body motion is sometimes

perturbed by other neighboring stars, and these perturbation should be corrected.

Thus, we can consider the PN force as a perturbing force in the code by adding

the PN force and its time derivative. We designed that the binary will merge when

the separation is smaller than four Schwarzschild radii 4RSch ≡ 4 · 2G(m1 +m2)/c
2

because the PN approximation is not valid in this regime any more.

For instance, Fig. 3.15 shows the time evolution of semi-major axis and eccen-

tricity for a 10M⊙ BH-BH binary with PN approximation. The initial semi major

axis and eccentricity are 10−4 AU and 0.9, respectively. The solid line represents

the time integration of Peters formula, equations (3.36) and (3.37). There is a good

agreement between the results of simulation with only 2.5 PN term (open circle) and

integration of Peters formula. On the other hand, the merging time of simulation

with all PN terms (filled circle) is significantly smaller than that of Peters formula

as reported in Berentzen et al. (2009). In case of this binary, it takes less then a half

hour for merging (i.e., r12 ≤ 4RSch).

In our simulations, most of pairs of close encounters have not been perturbed by

other nearby stars. Thus, it is possible to separate the two-body motion with PN
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Figure 3.15 Time evolution of semi-major axis and eccentricity of a coalescing bi-

nary. Solid line is from the integration of Peters formula. Open and filled circles

are the results of simulations with 2.5 PN correction only and full PN correction,

respectively. The simulation with 2.5 PN correction only agrees well with Peters for-

mula while that with full PN correction significantly festinates compared to Peters

formula.
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correction from the main loop of simulations. We, here, use a toy1 code only for

a KS two-body motion written by S. J. Aarseth for convenience of exploration of

the evolution of merging binaries. The PN implementation mentioned earlier is also

adopted in the toy code. For given semi-major axis and eccentricity, we simulate

the orbital evolution of binaries. Fig. 3.16 shows the merging time of typical BH-BH

binaries in equations (3.16) and (3.17) with different velocity dispersion of systems.

The merging time is estimated by two-body simulations with all PN corrections. A

star symbol is showing the result of a galactic nucleus in Milky-Way-like galaxy. In

all cases, the merging times are less than a year. Binaries formed by GR capture,

therefore, will merge immediately.

The GW waveforms of coalescing binaries have already been studied by many

authors (e.g., Lincoln & Will 1990; Kidder 1995). As the perturbation of flat-space

metric, hij in can be expressed by (for more details, see equations 3.21 and 3.22 in

Kidder 1995)

hij =
2µ

D

[
Qij+P 0.5Qij+P (Qij+Qij

SO)+P 1.5(Qij+Qij
SO)+P 2Qij

SS+ · · ·
]
TT

, (3.39)

where µ is the reduced mass, D is the distance from the source to the detector,

Qij is the time derivative of quadrupole moment tensor, Pn is the PN corrections

with order of n, and SO, SS and TT denote spin-orbit coupling, spin-spin coupling

and transverse-traceless gauge, respectively. Here G = c = 1 is used. Since we are

interested in the aspects of GW rather than the exact waveforms, we take the leading

order of hij

hij ≈ 4µ

D

[
vivj − m

r
ninj

]
, (3.40)

with

Qij = 2

[
vivj − m

r
ninj

]
, (3.41)

where vi and ni are the relative velocity and the normal vector of the relative po-

sition, respectively. It is well known that GWs have two polarization + and × and

waveforms are the linear combination of these two polarizations. If we assume that

1http://www.ast.cam.ac.uk/∼sverre/web/pages/nbody.htm
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Figure 3.16 Merging time of typical 10M⊙ (see §3.5.1 for details) BH-BH binaries

with different velocity dispersion of embedded star clusters. The merging times are

obtained from two-body simulations with all PN corrections. The range of velocity

dispersion is 50 to 400 km/s, which is correspond to the range of the mass of SMBH

from 5×105M⊙ to 2×109M⊙ according to the MMBH−σ∗ relation from Tremaine

et al. (2002). Star symbol represents the binary mering time in the Milky-Way-like

galaxies. In all cases, the merging times are smaller than a year.
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the orbital plane lies on the xy plane initially in the source coordinate, and the angle

between the direction to the detector N̂ and the angular momentum Ĵ is Θ, the

polarizations h+ and h× are given by (Kidder 1995)

h+ =
1

2

(
cos2Θhxx − hyy + sin2Θhzz − sin 2Θhxz

)
, (3.42)

h× = cosΘhxy − sinΘhyz. (3.43)

Now we provide a waveform of a typical 10M⊙ BH-BH binary coalescence in a

Milky-Way-like galaxy for an example. The semi-major axis and eccentricity after

GR capture are 0.153 AU and 0.99989 from the equations (3.16) and (3.17), respec-

tively. In Fig. 3.17, the relative motion of BHs on xy plane is shown. Due to the 1PN

and 2PN terms, the position of perihelion is shifted counterclockwise. In addition,

by emitting GWs, the orbit shrinks more and more with time. Fig. 3.18 shows the

waveforms for this BH-BH binary coalescence. For simplicity, we assume that the

axis of angular momentum is aligned with the direction to the detector (i.e., face-on

view, Θ = 0). In Fig. 3.18(a), the waveform of + polarization during whole evolution

is presented. The merging time is about 8 days. Interestingly, the waveform is burst-

like at the beginning, and it takes more than 2 days for the first burst after capture.

The detailed waveforms h+ and h× at this moment are shown in 3.18(c) and (d).

These waveforms are similar to those of eccentric orbits in Abramovici et al. (1992).

Fig. 3.18(b), (e) and (f) show the waveform in the last minute, the detailed view

of h+ and h× a half minute before merging, respectively. In this stage, the orbit is

much circularized compared to the beginning, and the orbital frequency is about 10

Hz. At the moment of coalescence, the orbital frequency becomes few hundreds Hz

which is the detectable frequency by ground-base GW detectors.
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Figure 3.17 Relative orbital motion of a BH-BH binary with the initial semi-major

axis 0.153 AU and eccentricity 0.99989, as a representative of typical BH-BH binaries

in Milky-Way-like galaxies. The orbits are very eccentric at the beginning. The

perihelion is shifted counterclockwise due to the 1PN and 2PN terms, and the orbit

shrinks with time due to the GW emission.
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Figure 3.18 Waveform of BH-BH binary coalescence for the same binary in Fig

3.17. (a) h+ for whole stage. The merging time is ∼8 days. The waveform is like

a burst, initially. (b) h+ for last minute. The waveform is much sinusoidal at this

time. (c,d) h+ and h× for the first burst as marked in (a). They are similar to those

of eccentric binaries in Abramovici et al. (1992). (e,f) h+ and h× at a half minute

before coalescence as marked in (b). At this time, the frequency is ∼ 10 Hz.
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Chapter 4

Summary and Conclusion

This thesis focuses on understanding of the dynamical evolution of the stellar sys-

tems under specific conditions and assumptions. I have investigated two different

astrophysical applications by using Aarseth’s type direct N -body simulations and

with high performance hardwares such as GRAPE and GPU;

Dynamical evolution of rotating star clusters with two-component models

In Chapter 2, I have performed numerical simulations of rotating stellar system with

two mass components using nbody4 and mFOPAX codes. By considering various

mass spectra, I confirmed that both the initial rotation and the mass spectrum

accelerate the evolution of the stellar system, as presented previous studies (Einsel

& Spurzem 1999; Kim et al. 2002, 2004, 2008). However, I found that the initial

rotation does not affect the evolution before the core collapse when the individual

mass ratio m2/m1 is large enough. The mass evaporation rate is closely related to

the acceleration of the evolution and increases with m2/m1.

According to the instability criteria from Ostriker & Peebles (1973), I classified

the models to slowly rotating models (i.e., Trot/|W | <0.14) and rapidly rotating

models (i.e., Trot/|W | >0.14). By comparing the results of different approaches, N -

body and FP simulations, I confirmed that two approaches agree well with small

differences on the time scales for the slowly rotating models. On the other hand, for

rapidly rotating models, there are significant discrepancies between N -body and FP
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results. From the investigation of shape of systems, I revealed that the bar instability

happens at the beginning for rapidly rotating models in N -body simulations. This

bar instability induces unexpected phenomena like the rapid loss of mass, energy and

angular momentum. In addition, the bar instability hinders the two-body relaxation

process, so the dynamical evolution of rapidly rotating systems is delayed as com-

pared with FP results. I therefore concluded that the 2 dimensional FP approach is

not valid for rapidly rotating cases because 2 dimensional FP approaches are unable

to treat non-axisymmetric models.

As the result of two-body interactions, low and high mass stars exchange their

kinetic energies and happen to have similar kinetic energies. I confirmed that our

models agree well with the equipartition instability criteria (Spitzer 1969; Watters

et al. 2000) for slowly rotating models. When the mass ratio becomes larger, it is

hard to reach the complete equipartition state. Moreover, the equipartiton process

is more disturbed for rapidly rotating models which suffer the bar instability. I also

observed the exchange of angular momentum between low and high mass stars by

investigating escapers and defined the angular momentum exchange rate ξexc. ξexc

increases when the initial rotation increases. However, the amount of transferred

angular momentum from high mass stars to low mass stars decrease because clusters

with rapid initial rotation survive rather shortly compared to those with low initial

rotation.

Black hole binaries in galactic nuclei and gravitational wave sources

In Chapter 3, I have generated N -body realizations for nuclear star clusters (NCs)

located at the center of galactic bulges and hosting a massive black hole (MBH).

In our simulations, the surrounding bulge is considered as the external potential

well which makes the velocity dispersion of the embedded star cluster isothermal

since a deep potential well behaves like a heat bath (Yoon et al. 2011). The MBH,

in the same manner, is also modelled as a point-mass potential but growing with

time to ensure the adiabatic adjustment of the stellar system. Consequently, our

N -body realizations have a stellar density cusp (ρ ∼ r−1.75; Bahcall & Wolf 1976)

and Keplerian velocity dispersion within the radius of influence. In addition, the
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overall velocity structure is similar to observations of the star cluster at the center of

Milky Way (e.g., Schödel et al. 2009). Strictly speaking, however, these star clusters

are not in equilibrium but expand continuously since the MBH can generate kinetic

energies by the interaction with stars in the cusp. Moreover, due to the wandering of

the MBH, the slopes of density and velocity dispersion profiles are slightly shallower

than those of theoretical expectations.

This environment of NCs is a good laboratory for gravitational wave (GW)

sources. In order to investigate GW event rates in NCs, I have collected the orbital

information of close encounters (i.e., semi-major axis and eccentricity) in our N -

body simulations. While most of binaries are disrupted by the strong tidal field

from MBH, there can be many hyperbolic encounters of stellar mass black holes

(BHs) whose pericentric distances are sufficiently small to radiate GWs efficiently

due to the high density and velocity dispersion at the vicinity of the MBH and the

high number fraction of BHs due to the mass segregation (Hopman & Alexander

2006; O’Leary et al. 2009). When the energy loss by gravitational radiation (GR) is

greater than the orbital energy, two BHs make a binary and merge quickly because

of the small separation and large eccentricity after capture. Thus, the capture event

rate corresponds to the merger rate. The capture happens most frequently near the

half mass radius rather than within the radius of influence. Thus, our investigation

of GR capture event rates is still valid although our models can not precisely realize

the cluster inside of the radius of influence. By counting the number of GR capture

events, I have built scaling relations of merger rates for a NC as a function of the

mass of the MBH and the velocity dispersion of the star cluster. As the result, the

merger rate for a Milky-Way-like galaxy is ∼ 10−10yr−1 proportional to the mass

ratio of MBH to the star cluster.

From the MMBH − σ∗ relation (e.g., Tremaine et al. 2002), the merger rate be-

comes a function of the mass of MBH only. By using realistic mass function of MBHs

(e.g., Aller & Richstone 2002), I have determined the merger rate density per unit

volume. Then, the detection rates can be expressed with the merger rate density

and the size of cosmological volume covered by GW detectors if I simply assume

the uniformness of merger events over cosmic time and volume. I have obtained the
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expected detection rates 0.2−2yr−1 for advanced LIGO depending on the maximum

horizon distances from different studies (Baker et al. 2007; O’Leary et al. 2009; Reis-

swig et al. 2009) and the mass ratio of MBH to the star cluster 0.1 and 0.2. This

estimate is remarkably smaller than that of O’Leary et al. (2009) who suggested the

detection rate of ∼ 10 − 1000yr−1 of BH-BH binary coalescences in galactic nuclei

for advanced LIGO. There are several factors giving uncertainties in our estimation:

the dynamical evolution of the cluster (by a factor of 2 ∼ 3), the variance of number

density of stars (by a factor of ∼10) and the mass range of MBH (by a factor of

2 ∼ 3). However, this study still have some limitations; (1) It is necessary to consider

realistic mass function for BHs instead of assuming the mean mass fraction of BHs.

(2) There is a relation between the mass of MBHs and the NCs (Graham & Spitler

2009). However, I fixed the mass ratio of MBH to the star cluster to 0.1 and 0.2. (3)

In order to determine the maximum horizon distance for BH-BH binary mergers,

the precise signal-to-noise ratio calculation is needed.

I have investigated the statistics of coalescing BH-BH binaries and found that

the typical semi-major axis and eccentricity of these binaries are related to the

velocity dispersion of the system. I also have implemented the post-Newtonian (PN)

approximation on the two body motions up to 2.5 PN orders. With a given set of

semi-major axis and eccentricity, I calculated the two-body motion under the PN

approximation and the waveform of GW emission. The merging time is about a

few hours for a typical BH-BH binaries in a Milky-Way-like galaxy. I also found

that the orbital frequency becomes ∼100 Hz at the moment of coalescence, which is

detectable by the ground-base GW detectors.
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Appendix A

Post Newtonian Equation of

Motion in Center of Mass Frame

Here, we present the post Newtonian (PN) equation of motion of binary system

in the center of mass frame up to 2.5 PN order by following Mora & Will (2004).

Because we assume non-spinning BHs, we do not consider spin terms in this paper.

For the beginning, we borrow notations from Mora & Will (2004) as

m = m1 +m2,

v = v2 − v1,

r = r2 − r1,

n = r/r,

η = (m1m2)/(m1 +m2)
2, (A.1)

where m1 and m2 are the mass of stars, r1, r2,v1 and v2 are the 3-dimensional

positions and velocities, and η is the symmetric mass ratio. As mentioned in the

text, the PN acceleration can be considered as a perturbation and added to the

gravitational acceleration as

a = an + apn = −m

r2
n+

m

r2
(An+Bv) (A.2)
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where A and B are the PN coefficients related to the relative position and velocity,

respectively, where

A1 = 2(2 + η)
m

r
− (1 + 3η)v2 +

3

2
ηṙ2 (A.3)

A2 = −3

4
(12 + 29η)

m2

r2
− η(3− 4η)v4 − 15

8
η(1− 3η)ṙ4

+
1

2
η(13− 4η)

m

r
v2 + (2 + 25η + 2η2)

m

r
ṙ2 +

3

2
η(3− 4η)v2ṙ2 (A.4)

A5/2 =
8

5
η
m

r
ṙ

(
17

3

m

r
+ 3v2

)
, (A.5)

and

B1 = 2(2− η)ṙ (A.6)

B2 = −1

2
(4 + 41η + 8η2)

m

r
ṙ +

1

2
η(15 + 4η)v2ṙ − 3

2
η(3 + 2η)ṙ3 (A.7)

B5/2 = −8

5
η
m

r

(
3
m

r
+ v2

)
, (A.8)

where ṙ is the first time derivative of radial distance defined as ṙ = r · v/r. Then
the coefficients A and B are given by the summations of coefficients for different PN

order divided by the speed of light c, Ai/c
2i. Note that the sign of B is opposite of

that in Blanchet & Iyer (2003).

Since the nbody code uses 4th-order Hermite integrator, we have to have the

first time derivatives of accelerations as similar to the accelerations

ȧ = ȧn + ȧpn. (A.9)

The derivative of PN acceleration ȧpn can be expressed as

ȧpn = −2
m

r3
ṙ(An+Bv) +

m

r2
(Ȧn+ Ḃv +A(v/r − nṙ/r) +Ba), (A.10)

where Ȧ and Ḃ are the time derivatives of the coefficients A and B, which are the

summations of
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Ȧ1 = −2(2 + η)
m

r2
ṙ − 2(1 + 3η)v · a+ 3ηṙr̈ (A.11)

Ȧ2 =
3

2
(12 + 29η)

m2

r3
ṙ − 4η(3− 4η)v2v · a− 15

2
η(1− 3η)ṙ3r̈

+
1

2
η(13− 4η)

m

r

(
2v · a− v2ṙ

r

)
+ (2 + 25η + 2η2)

m

r

(
2ṙr̈ − ṙ3

r

)
+3η(3− 4η)(v · aṙ2 + v2ṙr̈) (A.12)

Ȧ5/2 =
8

5
η
m

r

(
r̈ − ṙ2

r

)(
17

3

m

r
+ 3v2

)
+

8

5
η
m

r
ṙ

(
− 17

3

m

r2
ṙ + 6v · a

)
(A.13)

and

Ḃ1 = 2(2− η)r̈ (A.14)

Ḃ2 = −1

2
(4 + 41η + 8η2)

m

r

(
r̈ − ṙ2

r

)
+
1

2
η(15 + 4η)(2v · aṙ + v2r̈)− 9

2
η(3 + 2η)ṙ2r̈ (A.15)

Ḃ5/2 =
8

5
η
m

r2
ṙ

(
3
m

r
+ v2

)
− 8

5
η
m

r

(
− 3

m

r2
ṙ + 2v · a

)
(A.16)

where r̈ is the second time derivative of the radial distance given by

r̈ = (v2 + r · a− ṙ2)/r. (A.17)



114



요 약

이 연구는 항성계의 역학적인 진화를 살펴보기 위해 수행되었으며, 현재 계산

과학분야에서각광받는 GRAPE와 GPU등특수한하드웨어를이용한 N -체수치

실험 결과들을 보여준다. 본 논문은 두 개의 특수한 천체 물리학적 상황과 관련

된 현상에 대해 다루고 있는데, 회전하는 구상 성단과 은하 중심부에서의 중력파

원천으로서의 블랙홀 쌍성이다.

모은하에대해조석적으로제한되어있고초기질량함수를갖는성단의회전에

따른 역학적 진화를 연구하기 위해 각기 다른 초기 회전을 갖는 성단에 대한 N -체

수치 실험을 수행하고 이를 2차원 포커-플랑크 (Fokker-Planck) 계산 결과와 비교

하였다. 그 결과, 초기 질량 함수뿐만 아니라 초기 회전도 성단의 진화에 영향을

미침을 확인할 수 있었다. 무차원의 초기 회전 변수인 ω0가 0.6보다 작게 정의된

느리게 회전하는 모형의 경우에는 N -체 수치 실험에서의 질량, 에너지 그리고 각

운동량의시간변화등이포커-플랑크계산결과와잘일치함을볼수있었다.반면,

빠르게 회전하는 모형의 경우, 두 계산 방식의 초기 진화 양상이 확연한 차이를

보이는데 이것은 빠르게 회전하는 모형의 경우 N -체 수치 실험에서 바 (bar) 불

안정 현상이 생겨나기 때문이다. 이때 N -체 수치실험에서의 성단의 모양은 2차원

포커-플랑크 계산에서 다룰 수가 없는 삼축 구조를 갖기 때문에 두 계산 방식 간

차이가 발생하는 것이다. 성단의 질량, 에너지 그리고 각운동량 등의 물리량들은

바 불안정 상태 동안 빠르게 감소하며 바 불안정 상태가 해소된 이후에는 성단이

다시 축대칭을 이루게 되고 그 이후의 진화는 포커-플랑크 계산에서 예상하는 것과

비슷한 형태로 진행하게 된다. 기본적으로 두 개의 질량 성분을 갖고 있는 모형을

사용하였기 때문에, 두 개의 질량 성분 사이에서 발생하는 이완 작용에 대해서도

조사할수있었다.에너지등분배현상이특정조건하에서완전히이루어지지않는,

이른바 등분배 불안정 (Spitzer 1969) 현상과 각운동량이 무거운 별들에서 가벼운

별들로 전이 되는 각운동량 교환 현상 등을 확인할 수 있었다.

중력파의 직접적인 검출은 근 시일 내에 향상된 LIGO/Virgo에서 이루어질 것

이라고 예측되어지고 있으며 블랙홀 쌍성의 충돌은 중성자 별 쌍성과 더불어 가장

검출 가능성이 있는 중력파 원천 중의 하나로 알려져 있다. 이러한 블랙홀 쌍성이

은하 중심의 밀집한 항성계에서 생성되고 진화하는 과정에 대해 연구하기 위해 N -

체 수치 실험이 수행되었다. 핵 성단 (nuclear star clusters)은 은하 중심에 위치한
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매우 밀집된 별들의 집단으로 거대 질량 블랙홀을 포함하고 있다고 알려져 있으며

벌지 (bulge)와같은은하구성요소들에중력적으로묶여있다.핵성단에서는질량

분리로 인해 블랙홀의 개수 밀도가 높고 별들의 속도 분산이 크기 때문에 중력파

포획에의해블랙홀쌍성이형성될수있다.우리은하와비슷한은하들의전반적인

블랙홀 쌍성 생성률은 약 10−10yr−1 정도이며 이 생성률은 거대 질량 블랙홀의 질

량에 따라 약하게 변화한다. 중력파에 의한 포획으로 생성된 쌍성들은 상대적으로

매우 작은 충돌 시간을 갖기 때문에 쌍성의 생성률은 곧 충돌 확률이 된다. 이렇게

얻어진 은하 당 충돌 확률을 거대 질량 블랙홀의 질량 함수와 같이 적분하게 되면

단위 부피 당 충돌 확률을 알 수 있고, 이를 다시 중력파 검출기가 검출할 수 있는

최대 검출 범위까지 적분하면 중력파 검출기의 검출 확률을 구할 수 있다. N -체

수치 실험으로부터 예상되어지는 중력파 검출 빈도는 1년에 0.2-2개이지만, 성단

의 시간 진화, 별의 밀도의 차이, 거대 질량 블랙홀의 질량 범위 등 여러 요소들이

불확실성을 최대 100까지 증가 시킬 수 있다. 이와는 별개로, post-Newtonian 근사

를 사용하여 충돌하는 블랙홀 쌍성의 궤적과 이에 따라 발생하는 중력파의 파형을

조사해 보았다. 일반적으로 우리 은하 환경에서 중력파 포획으로 생성되는 블랙홀

쌍성의 경우 충돌에 수 일이 소요되며 충돌 시 궤도 주파수는 약 100Hz가 된다.

그리고 이러한 중력파의 파형은 일반적인 원 궤도 쌍성의 파형과 상당한 차이를 보

이는데 이는 중력파 포획에 의해 생성되는 쌍성은 충돌 직전까지 큰 궤도 이심률을

유지하기 때문이다.

주요어: 수치 계산, 항성 역학, 성단, 회전, 중력파

학 번: 2006-20484
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