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ABSTRACT

By using direct N-body simulations with the special hardwares such as GRAPE
and GPU, I present the studies of the dynamical evolution of the stellar systems
in special cases and the related astrophysical phenomena: rotation of the globular
clusters and gravitational wave sources in the galactic nuclei.

In order to understand the effects of the initial rotation on the evolution of the
tidally limited clusters with mass spectrum, I have performed N-body simulations
of the clusters composed of two mass species with initial rotation and compared
the results with those of the Fokker-Planck (FP) simulations. I confirmed that the
cluster evolution is accelerated by not only the initial rotation but also the mass
spectrum. For the slowly rotating models, the time evolutions of mass, energy and
angular momentum show good agreements between N-body and FP simulations.
On the other hand, for the rapidly rotating models, there are significant differences
between these two approaches at the early stage of the evolutions because of the
development of bar instability in N-body simulations. The shape of the cluster for
N-body simulations becomes tri-axial or even prolate, which cannot be produced
by the two-dimensional FP simulations. The total angular momentum and the to-
tal mass of the cluster decrease rapidly while bar-like structure persists. After the
rotational energy becomes smaller than the critical value for the bar instability, the
shape of the cluster becomes nearly axisymmetric again, and follows the evolution-
ary track predicted by the FP equation. I have confirmed again that the energy
equipartition is not completely achieved when My /M (ms/m1)3/? > 0.16. By exam-
ining the angular momentum at each mass component, I found that the exchange of
angular momentum between different mass components occurs, similar to the energy
exchange leading to the equipartition.

The direct detection of gravitational waves (GWs) is now expected for the next-
generation GW detectors such as advanced LIGO and Virgo which are planned or
under construction. Stellar black hole (BH) binaries are one of the most promising
GW sources for GW detection by the ground-based detectors. To investigate the

formation and evolution of the BH-BH binaries in the dense stellar systems like



the galactic nuclei, I have carried out the direct N-body simulations. Nuclear star
clusters (NCs) located at the center of galaxies are known to have massive black holes
(MBHs) and to be bounded by a deep gravitational potential from other galactic
building blocks like the bulge. Such environment of NCs provides a good laboratory
for the BH-BH binary formation by the gravitational radiation (GR) capture due to
the high BH number density and velocity dispersion. I find that the overall formation
rates for BH-BH binaries per NC is ~ 10~ %yr~! for the Milky-Way-like galaxies and
weakly dependent on the mass of MBH as I' M%gf{. Because the merging time of
these binaries is negligible compared to the cluster life time, the binary formation
rates can be directly converted to the merger rates. The expected detection rates
for the next-generation GW detectors can be obtained by the cosmological volume
integration of the merger rates and MBH mass function up to the maximum horizon
distance. I estimate the detection rate 0.2-2yr~! for advanced LIGO/Virgo. However,
several factors such as the dynamical evolution of the cluster, the variance of the
number density of stars and the mass range of MBH give uncertainties by a factor
of ~100. By implementing the post-Newtonian approximation, I also investigated
the motion and the waveform of coalescing BH-BH binaries. For the typical BH-BH
binary in Milky-Way-like galaxies, the merging time is a few days and the merging
frequency is ~100Hz. The waveforms differ significantly from those of the usual
circular binaries since the gravitationally captured binaries are expected to have

large eccentricities until the final merge.

Keywords: numerical simulations; stellar dynamics; star clusters; rotation; grav-

itational wave

Student Number: 2006-20484
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Chapter 1

Introduction

In the universe, there are many kinds of the stellar systems bounded by gravity from
planetary systems to the large scale structures, and the study of their formation and
evolution is one of the most important issues in astrophysics. Stellar dynamics, the
study of the evolution of the stellar systems, can be simply summarized as follows
(Binney & Tremaine 2008) what is the fate of the stellar systems whose dynamics is
governed mostly by the Newtonian gravity. The notion of relaxation plays the most
fundamental role in stellar dynamics. If a star with peculiar velocity comes into a
stellar system in equilibrium, the star loses its initial character by the gravitational
interactions with field stars and finally melts into the system. The time needed for
such process is called the relaxation time t,qax. For a particle coming into a self
gravitating system with the number of particles N, the change of velocity of the

particle per crossing is given by

Av? N SInA

v2 N’

(1.1)

where A is the Coulomb logarithm which is roughly ~ IV for self gravitating systems.

Thus, for the particle to change the velocity as much as the order of itself, it takes

0.1N
trelax ~ mtcros& (1'2)

where t¢os5 i the crossing time expressed simply ~ R/v. R and v are typical size of

the system and speed of particles, respectively. For the stellar systems like galaxies,
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the relaxation time is much larger than their lifetimes. Thus, for these collisionless
systems, the relaxation process is not important. Instead, particles move under the
influence of the smoothed gravitational potential from all particles. On the other
hand, stellar systems like star clusters and galactic nuclei with shorter relaxation
time than their lifetimes are affected by the relaxation. The evolution of these colli-

sional systems can be characterized by the relaxation time without N-dependence.

As an aspect of the relaxation, the energy equipartition is also one of the im-
portant processes in the stellar dynamics. Two-body encounters tend to make the
kinetic energies of stars with different masses similar (Spitzer 1969), and thus, high
mass stars become slower than low mass stars and sink to the center (e.g., Giersz
& Heggie 1996). This is known to the mass segregation. However, the equipartition
does not happen when the number of high mass stars is larger than a certain crite-
rion. In that case, the core is mainly occupied by high mass stars due to the mass
segregation, and velocity dispersion of high mass stars is determined by their self
gravity rather than the interaction with low mass stars. This, so-called equipartition

instability, is first suggested by Spitzer (1969).

Due to the two-body interactions, the velocity dispersion of the stellar systems
tends to become the Maxwell distribution. Therefore, stars in the high-velocity tail of
this distribution can become higher velocity than the escape velocity of the systems
so that escape from the system (Ambartsumian 1934; Spitzer 1940). For the simple
isolated systems, the evaporation time is ~ 10% half-mass relaxation times. However,
the evaporation for realistic clusters is accelerated by the tidal field (e.g., Lee &
Ostriker 1987), mass spectrum (e.g., Lee & Goodman 1995) and the rotation of
cluster (e.g., Einsel & Spurzem 1999).

When a stellar system is supported by its own gravity, this self-gravitating system
satisfies the virial theorem (i.e., 2K + W = 0, where K and W are the kinetic and
potential energy, respectively). In this case, from the thermodynamical point of
view, the stellar system has the negative heat capacity. An isolated self-gravitating
stellar system is composed of hot dense core and cold rarefied envelope, and heat
is transferred from the core to the envelope. The core becomes hotter (i.e., denser)

due to the negative heat capacity. Finally, the core density becomes infinity, which is
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called gravothermal catastrophe (Lynden-Bell & Wood 1968). It usually takes ~ 10

half-mass relaxation times for an isolated equal-mass system.

Nevertheless, in reality, the core density doesn’t go to the infinity. If the core
becomes dense enough, binaries can be formed when three stars get together by
chance. These binaries are usually hard binaries. In stellar systems, binaries can be
characterized by the dimensionless hardness x, which is defined as a ratio of or-
bital kinetic energy in the binary to the average kinetic energy of individual satrs.
Classical studies (Heggie 1975; Hut 1983; Hut & Bahcall 1983) show that hard bi-
naries (i.e., z > 1) become harder while soft binaries (i.e., + < 1) become softer
via binary-single encounters. The hard binaries formed in the dense core play a role
as a heat source by converting their internal energy to the kinetic energies of them-
selves and opponents, and thus the core stops to collapse and expands (Lee 1987).
These binaries become harder and faster during encounters and eventually escape
from the system when they get faster than the escape velocity of the system. Thus,
the system repeats collapsing and expanding through binary formation and escape,

which is called gravothermal oscillation (Meylan & Heggie 1997).

The stellar dynamics is basically gravitational N-body problems. The best way
for N-body problems is to trace the trajectories of all individual stars. However, it is
very difficult to deal with realistic stellar systems such as globular clusters (N ~ 109)
or galactic nuclei (N ~ 10%) due to the limited resources for calculation. Instead,
Cohn (1979) utilized a statistical approach by solving the Fokker-Planck equation
that describes the time evolution of the distribution function (i.e., phase-space den-
sity) of stars. The computational cost for solving the Fokker-Planck equation is
independent on the number of stars so one can probe the evolution of large N sys-
tems. So far, the Fokker-Planck approach has been used in a number of studies for
detailed astrophysical applications: gravitational core collapse (Cohn 1980), stellar
mass function (Spurzem & Takahashi 1995; Takahashi & Lee 2000), binary forma-
tion and merger (Lee 1987; Lee & Goodman 1995), tidal truncation (Takahashi et
al. 1997; Takahashi & Portegies Zwart 1998), rotation of star clusters (Einsel &
Spurzem 1999; Kim et al. 2002, 2004).
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In the mean time, the effort for the direct integration of N-body problems is
pioneered by Aarseth (1963). At that time, it was only possible to calculate ~100
particles due to the lack of computational facilities. Since then, in addition to the
computing power, many algorithmic improvements for direct N-body simulations
also have been d (Aarseth 1999): individual time step (Aarseth 1963), two-body reg-
ularization (Kustaanheimo & Stiefel 1965), chain regularization (Mikkola & Aarseth
1990), algorithmic regularization (Mikkola & Merritt 2006), neighbor scheme (Ah-
mad & Cohen 1973) and Hermite integrator (Makino 1991). As the historical product
of all these efforts, NBODY series is one of the widely-used direct N-body codes in
the stellar dynamics. NBODY6, the most popular version of NBODY code, now has
an advantage of dealing with realistic systems with various astrophysical processes
(e.g., binaries or supermassive black holes) which cannot be precisely treated by the

Fokker-Planck approaches.

The increase of computational speed for direct integrations is also achieved in
hardwares. In direct N-body simulations, the calculation of mutual gravity forces
spends most of time with order O(N?). Thus, it is important to carry out force
calculations efficiently in order to reduce computational time. Because the ability
for a single central processing unit (CPU) is growing but limited, parallel computing
has been utilized to achieve high computational power. The basic concept of parallel
computing is SIMD (Single Instruction, Multiple Data), which means the process of
same operation for large data set. The first SIMD application was the vector proces-
sor by using many ALUs (Arithmetic and Logic Units) controlled by a master CPU.
Modern CPUs have also adopted vector processing technology with MMX and SSE
(Streaming SIMD Extension) instructions, and most of present supercomputers are
composed of numerous CPUs connected by the network. Also there have been efforts
for the acceleration of the computational speeds by developing special hardwares.
GRAvity PipE (GRAPE, Makino 1991; Makino et al. 1997) is a special-purpose ma-
chine for gravitational force calculations. As shown in Fig. 1.1, there are 4 processor
chips in GRAPE processor module, including 48 hard-wired pipelines (6 pipelines
x 8 virtual pipelines) per chip, so it is possible to calculate the gravitational force

for tens of particles simultaneously. Recently, graphics processing unit (GPU) has
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Figure 1.1 Structure of GRAPE-6A (Fukushige et al. 2005).

been massively parallelized in order to process extremely high resolution images, and
used for wide fields of computational sciences with programming languages such as
CUDA (Compute Unified Device Architecture) or OpenCL. While CPUs have a few
processors with high performance, recent high end GPUs have thousands of stream
processors, that enable us to perform massive parallel simulations (Fig. 1.2).

NBODY series has adapted to these hardwares. Basically, the force calculation
with Hermite scheme by using these hardwares is accomplished in the following
sequences (Aarseth 2010):

1. Set the next time for integration and determine active particles.

2. Predict all particles’ positions and velocities.

3. Send data of all particles (mass, position and velocity) from host to device.

4. Estimate forces and first derivatives of active particles on device and send the
results to host.

5. Obtain higher order derivatives of force.

6. Correct the positions and velocities of active particles.

7. Repeat steps from 1.
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Figure 1.2 Schematic diagrams of CPU and GPU.

The host and device are connected by the network cable for CPU clusters or by PCI
(Peripheral Component Interconnect) for GRAPEs and GPUs. The maximum num-
ber of parallel force calculations depends on the device characteristics: the number
of processors (CPU clusters), the number of pipelines (fixed to 48, GRAPE) and the
number of threads (GPU). There are several versions of NBODY codes with different
hardware configurations. NBODY6++ has been developed by Spurzem (1999) for par-
allel supercomputers by using MPI (Message Passing Interface). NBODY4 (Aarseth
2010) and NBODY6-GPU (Nitadori & Aarseth 2012) also have been developed for
GRAPE machines and for GPUs. The parallelization of N-body force calculations is
achieved in two ways: i-parallelism (i.e., force calculation for the multiple i-particles
which feel the gravitational force) and jparallelism (i.e., force calculation for the
multiple j-particles which serve the gravitational field). In NBODY4 code, all force
calculations are performed up to 48 particles on the GRAPE board with i-parallelism
via multiple pipelines without the neighbor scheme. On the other hand, in NBODYG,
the force calculations separate the regular forces from distant particles whose gravi-
tational potential changes slowly and the irreqular forces from neighboring particles.
In NBODY6-GPU, the regular forces are calculated on GPU devices by using multi-
ple threads with both #parallelism and jpararellelism while the irregular forces are
calculated on CPU with jparallelism by using multiple cores in CPUs with AVX
(Advanced Vector Extensions) or SSE (Nitadori & Aarseth 2012). Nowadays, a hy-
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brid NBODY code for parallel supercomputers with many GPUs is being developed

by Rainer Spurzem.

In reality, stellar systems do not evolve as simply as the idealized models. The
main goal of this thesis is to investigate the dynamical evolution of the stellar systems
in specific situations by using direct N-body simulations with high performance
hardwares (e.g., GRAPE and GPU). Here, I consider two different astronomical

applications as follows;

Dynamical evolution of rotating star clusters with two-component models

The effects of the initial rotation on the dynamical evolution of star clusters received
substantial attention because the rotation is a natural consequence during the for-
mation process. The direct measurement of the rotation is difficult and is done only
for a couple of massive star clusters (e.g., w Centauri and 47 Tucanae, Meylan &
Mayor 1986) since it requires long integration with large aperture telescope. Rather
indirect evidence for the rotation comes from the shape of globular clusters. Al-
though most globular clusters show high degree of circular symmetry, one can infer
that many clusters still have some degrees of rotation from ellipticity measured for

a number of star clusters (e.g., White & Shawl 1987).

Since Goodman (1983) studied rotating star clusters using Fokker-Planck equa-
tions, many authors have revealed the dynamical evolution of rotating star clusters
focusing on gravitational collapse (Einsel & Spurzem 1999), binary heating (Kim
et al. 2002) and the effect of mass spectrum (Kim et al. 2004). More recently, Kim
et al. (2008) compared two different approaches, Fokker-Planck and N-body simu-
lations, and confirmed the validity of Fokker-Planck methods. However, they only
consider equal mass cases and relatively slow initial rotations which ensure axisym-
metric shape of clusters. Thus, I perform N-body simulations with mass spectrum
and wider range of the initial rotation in order to know the effect of the rotation

and mass spectrum and to confirm the validity of Fokker-Planck approaches.
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Black hole binaries in galactic nuclei and gravitational wave sources

It is well-known that most of galaxies host massive black holes at the center. From
the recent observational studies (Carollo et al. 1997; Boker et al. 2002; Coté et
al. 2006), it is also revealed that many galaxies contain compact and massive star
clusters called nuclear star clusters in their nuclei (e.g., p ~ 106M©pc_3 for Milky
Way; Schodel et al. 2007). Because nuclear star clusters have shorter relaxation time
scales than a Hubble time, they are expected to be dynamically relaxed. A number of
studies (Baumgardt et al. 2004b; Hopman & Alexander 2006; O’Leary et al. 2009;
Preto & Amaro-Seoane 2010) suggested that there is a strong mass segregation
among stellar components with different individual masses.

These nuclear star clusters can provide good environments for the formation of
compact binaries composed of compact stars such as neutron stars or black holes:
high stellar density, velocity dispersion and number fraction of compact stars. Such
binaries could become important sources of gravitational waves. So far, a detailed
study for gravitational wave sources in galactic nuclei has been done by O’Leary et
al. (2009) by using a Fokker-Planck simulations. Here, for the second part of thesis,
N-body simulations for nuclear star clusters are performed in order to investigate
the dynamical evolution of nuclear star clusters and the aspects of gravitational wave

sources in galactic nuclei.

This thesis consists of four chapters. In Chapter 2, the dynamical evolution of
rotating star clusters with 2-component masses is presented. I also discuss the effect
of the rotation and the mass spectrum on the dynamical evolution and compare the
results of different approaches. In Chapter 3, I describe the models for nuclear star
clusters located at the center of galaxies and estimate the merger rates for black hole
binaries and detection rates for the next-generation gravitational wave detectors.
The statistics of black hole binaries and sample waveforms are also presented in this

chapter. Finally, I summarize the thesis in Chapter 4.



Chapter 2

Dynamical Evolution of
Rotating Star Clusters with

Two-component Models !

2.1 Introduction

The effects of initial rotation on the dynamical evolution of star clusters received
substantial attention because the rotation is a natural consequence during the for-
mation process. The current population of star clusters may not show significant
amount of rotation, but it does not mean that the initial conditions inhibit the pres-
ence of rotation. The direct measurement of the rotation is difficult since it requires
long integration with large aperture telescope. Rather indirect evidence for the ro-
tation comes from the shape of globular clusters. Although most globular clusters
show high degree of circular symmetry, the ellipticity has been measured for large
number of star clusters (e.g., White & Shawl 1987; Chen & Chen 2010). If the el-
lipticity is due to the rotational flattening, many clusters still have some degrees
of rotation. Even though the amount of rotation in current population of globular
clusters is rather small, initial clusters could have been rotating much more rapidly

since the rotation phases out as the clusters evolve dynamically.

'Hong, J., Kim, E., Lee, H. M., & Spurzem, R. 2013, MNRAS, 430, 2960



10 Rotating Star Clusters

The effects of rotation on the dynamical evolution have been studied by a num-
ber of authors. Goodman (1983) has extended the Fokker-Planck (FP) equation for
rotating systems, but his study was limited to slowly rotating systems by imposing
the spherical symmetry for the shape of the clusters. The thermodynamical anal-
yses have been pioneered by Hachisu (1979, 1982) and found that there exists an
instability similar to gravothermal catastrophe and they named this phenomenon
as ‘gravo-gyro catastrophe’. Theses earlier studies provided the basis of the possible

acceleration of dynamical evolution due to the initial rotation.

More careful studies for the rotating systems have been carried out by Kim et
al. (2002, 2004, 2008) using 2-Dimensional FP code developed by Einsel & Spurzem
(1999). These papers investigated both isolated and tidally limited clusters, and
single and multi-component clusters. The general result emerged from these studies
is that the rotating clusters undergo faster evolution than non-rotating ones for
single component models. The acceleration is also expected in multi-mass models as
well, but the degree of acceleration could be significantly reduced since the energy
exchange between different mass components is another accelerating process and

these two processes compete each other.

The suitability of the FP approach to the study of dynamical evolution of star
clusters has been a matter of debate because the absence of the accurate knowledge
on the third integral for rotating systems prohibits us to include all the possible
integrals in constructing the FP equation. Comparison with N-body calculation
should provide a clue to the validity of the current version of the FP approach (e.g.,
Giersz & Heggie 1994a.b; Giersz& Spurzem 1994). Such a comparison for rotating
systems was done by Ernst et al. (2007) and Kim et al. (2008) for single component
models and showed that the FP results are generally consistent with the N-body

calculations.

We extend the comparison to the two-component models as an interim step to
the full multi-mass models. Two-component models have the ingredients for the
multi-mass models, but have smaller model parameters. The important difference
between single and multi-mass models is the existence of energy exchange among dif-

ferent mass components. In rotating models, there is also a possibility of exchange of
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the specific angular momentum through the dynamical process. It is much easier to
investigate such processes in N-body. Another motivation for carrying out N-body
simulations and comparing with FP results is to address the validity of the axisym-
metric assumption which is inevitable for the FP approaches. If the cluster rotates
rather rapidly, the bar-like structure can form even with the initial assumption of
the axisymmetric shape. The evolution of the elongated cluster could be different
from the perfectly axisymmetric one.

This paper is organized as follows: In §2.2, we describe the models and their
parameters in detail. The effect of the initial rotation on the cluster shape will be
presented in §2.3. In §2.4, we will compare N-body and FP results in various angles.
We will discuss the effects of mass spectra on the dynamical evolution of star clusters
in §2.5.

2.2 Method and models

Most of FP results for rotating stellar system with initial mass spectrum are based
on the 2D FP solver, mFOPAX (Kim et al. 2004) which is the revised version of
FOPAX (Einsel & Spurzem 1999; Kim et al. 2002) suitable for the rotating stellar
system with initial mass spectrum. For the complete description of mFOPAX readers
are referred §§2 and 3 of Kim et al. (2004).

The NBODY code which we used for this study is one of series of direct N-body
programs developed by S. Aarseth since 1960s. Each version of the NBODY codes has
been added some epochal schemes such as the Ahmad-Cohen neighbor scheme, the
Kustaaheimo-Stiefel or chain regularization scheme (Aarseth 1999). More recently,
the NBODY4 and the NBODY6 codes can perform more precise calculations thanks
to the 4th-order Hermite integrator (Aarseth 1999). Specially, the NBODY4 code is
designed for running on the GRAPE, which is a special-purpose machine for only
direct N-body simulations by calculating gravity or coulomb interaction with high
parallelization. We used the GRAPE6-BLX64 boards for the N-body calculations
reported in this paper.

To prepare the initial models for the present N-body runs we have assigned the
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positions and the velocities of the stars from the predefined density, potential and
distribution function of initial models. These initial models also used in FP runs
are obtained following Lupton & Gunn (1987) and also applied in previous studies
(Einsel & Spurzem 1999; Kim et al. 2002, 2004, 2008). Globular clusters or open
clusters which are typical stellar systems considered in the present study are tidally
limited by their host galaxy. To investigate the time evolution of rotating stellar
system under the influence of the tidal effect of the host galaxy and to compare
the dynamical evolution of rotational stellar system using two different numerical
methods (FP and N-body), we assume that the stellar systems are orbiting around
the center of the Galaxy with circular orbit, which is already applied in previous
FP runs (Kim et al. 2002, 2004). In order to directly compare N-body results with
FP methods, we remove the stars whose total energy exceeding the tidal energy
due to the host galaxy instantaneously (i.e., energy cut-off, Takahashi et al. 1997;
Baumgardt 2001; Kim 2003; Ernst et al. 2007; Kim et al. 2008). According to the
N-body computation, it takes at least a crossing time to escape from the clusters
for stars with total energy larger than the tidal energy. Therefore, instantaneous
removal of stars with energy greater than tidal energy is somewhat unrealistic. The
problem becomes more serious for small-/NV systems since the fraction of stars to be
unbounded at a given time is higher than large-N systems (Takahashi & Portegies
Zwart 1998; Fukushige & Heggie 2000). However, since the main goal of the present
study is to investigate the difference between N-body and FP methods for rotating
stellar systems, we need to apply the same criteria with the FP approach. The tidal
boundary (or tidal energy) is adjusted during evolution as described in the previous
studies (Kim et al. 2002, 2004, 2008).

Table 2.1 shows the initial parameters used for the N-body simulations. For
comparison, we also performed FP simulations of M2A models. There are several
parameters that determine the cluster evolutions such as the concentration parame-
ter Wy, the initial rotation wy (Einsel & Spurzem 1999; Kim et al. 2002; Ernst et al.
2007), the mass spectrum (Kim et al. 2004; Khalisi et al. 2007) and tidal boundary
(Baumgardt 2001; Kim 2003; Ernst et al. 2007). We fixed Wy = 6, but varied wy and

mass spectrum to investigate the effect of the initial rotation and the mass spectrum
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Table 2.1 Initial parameters for all models.

Model Wy wo T;icd |TIWOt| N*runs % % Ny S A
Hm @6 W G ©® @ O ) O
0.0 18.0 0.000 20,000*3
0.3 14.5 0.035 20,000*3
M2Af 6 06 9.9 0.101 20,0003 2 5 1818 0.566 1.056
09 7.1 0.156 20,000*3
1.2 5.4 0.196 20,000*3

1.5 4.4 0.222 20,000%3

0.0 18.0 0.000 20,000*1
M2B 6 0.6 9.9 0.101 20,0001 5 5 769 2.236 9.518
1.2 54 0.196 20,000*%1

0.0 18.0 0.000 20,000*1
M2C 6 06 9.9 0.101 20,0001 10 5 392 6.325 50.24
1.2 54 0.196 20,000*1

0.0 18.0 0.000 20,000*1
M2D 6 0.6 9.9 0.101 20,0001 20 5 198 17.89 256.2
1.2 54 0.196 20,000%1

0.0 18.0 0.000 20,000*1
M2Ae 6 0.6 99 0.101 20,0001 2 20 488 0.141 0.264
1.2 54 0.196 20,000*1

TFokker-Planck simulations are performed for comparison.

Note. - (1): Model indexes indicating the mass spectrum. (2): Concentration parameter.
(3): Dimensionless initial rotation parameter. (4): Tidal radius normalized by core radius.
(5): Ratio of rotational kinetic energy to the potential energy. (6): Number of particles
and number of simulations with different initial random seeds. (7): Individual mass ratio.
(8): Total mass ratio. (9): Number of high mass stars. (10)-(11): Equipartition instability
parameters from Spitzer (1969) and Watters et al. (2000)
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on the cluster evolution. The initial rotation wy are varied from 0.0 to 1.5. For the
mass spectrum, we varied the individual mass ratio mg/m; from 2 to 20 while the
total mass ratio M7 /M is fixed to 5 or 20. One of the most important processes of
the stellar system with multiple mass components is the energy equipartition. The
energy equipartition is a tendency for different mass components to have similar ki-
netic energies. However, in some cases, the equipartition is not completely achieved,
which is called as the equipartition instability (Spitzer 1969). To determine whether
the equipartition happens to be achieved or not in two-component mass systems,

Spitzer (1969) derived an analytic equipartition stability parameter,

My (my 3/2

He suggested that the energy equipartition between low and high mass stars takes
place when S < Sqi¢ = 0.16. After Spitzer’s study, many authors have studied the
energy equipartition process of two-component systems by theoretical approaches
(e.g., Lightman & Fall 1978) and by several numerical methods such as Monte-Carlo
approaches to solve the FP equation (Spitzer & Hart 1971), the direct integration of
FP equation (Kim et al. 1998) and N-body simulations (Portegies Zwart & McMil-
lan 2000). Watters et al. (2000) performed Monte-Carlo simulations with various

two-component mass spectra and introduced an empirical equipartition stability

]\42 Mo 2.4
A=—"2(—= 2.2
(=) (22)

parameter

and found that the critical value for energy equipartition is Aqyy = 0.32. Most of our
models have S > St and A > Agye. The ratio of the rotational kinetic energy to
the potential energy is known to be a measure of the ‘temperature’ of the rotating
system with higher value being called cold system. If this parameter is greater than
0.14, the system is known to become dynamically unstable against the formation of
the bar-like structure (Ostriker & Peebles 1973). Thus, models with wg greater than
0.9 are expected to evolve to elongated shape. We designate these models as rapidly
rotating models and the other models with wy < 0.6 as slowly rotating models in

this study.
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2.3 Slowly and rapidly rotating clusters

To investigate the effect of the initial rotation on the evolution of clusters, we focus
on M2A models which have various amounts of the initial rotation. In Fig. 2.1, we
show the time evolution of the ratio of the rotational kinetic energy to the potential
energy, Tyot/|W|. The dashed and solid lines represent FP and N-body results,
respectively. The initial half-mass relaxation time is measured as follows suggested
by Spitzer & Hart (1971),
W

GY2mY/2In A’
where N, 1y, 09, G,m and In A are total number of stars, initial half-mass radius, grav-

Trh,0 = 0.138 (2.3)

itational constant, mean mass of stars and Coulomb logarithm, respectively. It is
well known that a system with rigid-body rotation suffers a secular instability when
Trot/|W] is larger than 0.14 (Ostriker & Peebles 1973). Later, from numerical simula-
tions, Sellwood (1981) confirmed that the criterion is valid for more realistic rotation
curves. Our models with initial value of T}o /|WW| < 0.14 are shown in the upper panel
and those with Tyo/|[W]| > 0.14 are shown in the lower panel. The results of N-body
and FP show similar behaviors for the models with initial 750t /|| < 0.14. However,
for the models with initial Tyo/|WV| > 0.14, the initial evolution depends on differ-
ent numerical approaches. The N-body simulation represents more rapid decrease
of Tiot/|W| with time than the FP simulation in the early phase. For the rapidly
rotating models one can observe the construction of bar-like structure and the total
rotational energy decreases very quickly. Therefore, the FP approach seems to be
not appropriate in describing the evolution of rotating models with initial value of
Trot/|W| > 0.14.

In order to investigate the evolution of the cluster shape, we calculate axis ratios
of clusters by using the method suggested by Dubinski & Carlberg (1991). They

defined a tensor,
LT

M=%
] q2

(2.4)

with an ellipsoidal radius,

2 22 1/2
q:<az2+(y)2+ )2> , (2.5)
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Figure 2.1 The ratio of rotational kinetic energy to potential energy. Solid and dashed
lines represent N-body and FP results, respectively. Upper panel shows the ratios
for slowly rotating models and lower for those of the rapidly rotating models. The
dotted lines denote a criterion of bar instability (Ostriker & Peebles 1973). For
rapidly rotating models the N-body and FP results show the significant difference
due to the bar instability.
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Figure 2.2 Initial axis ratio of clusters with different initial rotations. Cross and
plus symbols show intermediate (b/a) and minor (c¢/a) axis ratios, respectively. We
estimate axis ratios with stars in half-mass ellipsoidal radius. The clusters show more

oblate shapes as the initial rotation increases.
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where a,b and ¢ are axis lengths with @ > b > ¢. The axis ratios are derived from

1/2 1/2
b (M) g (M) (2.6)
a M. a M, ’

where M., M,, and M., are the principal components of the tensor. In order to

the tensor through

compute the tensor M;;, we need to know the axis ratios. Therefore, for the simul-
taneous determination of the tensor and axis ratios, we need to perform an iterative
calculation. We, first, assume certain set of axis ratios (e.g., b/a = 1 and ¢/a = 1)
and compute M;;, which gives another set of axis ratios. Obviously, the resulting
axis ratios will be different from the assumed values, and therefore, can be used as
an input for improved estimation of M;;. We carry out the iteration until the relative
difference of axis ratios becomes less than certain criterion (we include a value of
10~* for this study). Fig. 2.2 shows the axis ratios as a function of initial rotation for
M2A models. We calculate axis ratios with stars in the ellipsoidal radius including
half-mass of the cluster. The shape of rotating cluster is oblate initially due to the
initial rotation (i.e., b/a = 1 and ¢/a < 1). The minor axis ratio ¢/a decreases when
the initial rotation increases from 0.3 to 1.5.

In Fig. 2.3, we show the evolution of the axis ratios, b/a and c/a for M2A
models with different initial rotations. The left panels are the result of slowly rotating
models and right panels are for the rapidly rotating models. The minor axis ratios
¢/a increases with time for slowly rotating models because the cluster loses angular
momentum. For the rapidly rotating models, the intermediate axis ratio decreases
at the beginning, because of the development of the bar instability. Due to this
instability, cluster shapes become tri-axial or even prolate in a dynamical time scale
which is much shorter than the relaxation time. The intermediate axis ratio also
decreases during this phase. The decrease of both axis ratios is more rapid when
the initial rotation becomes larger. When the ratio Tyo/|WW| becomes smaller than
0.14 by the loss of the rotational energy as shown in Fig. 2.1, the bar instability
disappears and the cluster becomes axisymmetric.

Density contour maps on zy plane of clusters with different initial rotation pa-

rameters are shown in Fig. 2.4. The top and bottom panels show the initial shapes
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Figure 2.3 Time evolution of intermediate b/a (black) and minor ¢/a (grey) axis ra-
tios for M2A models. In the early stage for rapidly rotating models, the intermediate
axis ratios decrease rapidly due to the bar instability. The shapes of clusters tend to

become spherical after a few 7,3, 9 due to the significant loss of angular momentum.
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Figure 2.4 Projected density contour maps of M2A models with initial rotation
wo = 0.0,0.6,0.9,1.2 and 1.5 on zy plane. The top panels (a-e) show initial models
and bottom panels (k-o) show density structures at the time of the core collapse.
The middle panels of wy = 0.9,1.2,1.5 (h-j) are density structures at the time of

maximum elongation.
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and the shapes at the core collapse, respectively. In the bottom panels, the size of
contours show that the remaining mass of cluster at the core collapse becomes smaller
as the initial rotation increases. Density structures for models with wg = 0.9,1.2 and
1.5 in middle panels represent shapes at the time of maximum elongation. One can
clearly observe bar-like structures of rapidly rotating models. Shapes become to be
those of the axisymmertic systems at the time of core collapse as shown in Fig 2.3

(i.e,, b/a =1 and c¢/a < 1).

2.4 Comparison between N-body and FP results

2.4.1 Mass and energy

In this section, we compare the evolution of N-body and FP simulations for M2A
models with three different point of views: overall evolution (mass and energy),
central evolution (central density and velocity dispersion) and rotational evolution.
Fig. 2.5(a) shows the evolutions of total mass. For the slowly rotating models, the
time evolutions of total cluster mass for N-body simulations agree well with those
of FP results. However, there exist significant differences between FP and N-body
results for the rapidly rotating models. For an instance, N-body calculations show
significantly higher mass loss rate than FP results for rapidly rotating models with
wo = 1.2 and 1.5, especially in the very early times. The significant amount of mass
loss at the very early stage also induces the large amount of angular momentum
loss. After this stage, clusters have smaller number of stars with slower rotation and
therefore evolve slowly compared to FP results. The time evolutions of total mass
of each component are shown in Fig. 2.5(b). Because the number of low mass stars
is much larger than that of high mass stars, the evolution of total mass is similar to
that of low mass stars.

The total energy of the tidally limited stellar system decreases monotonically
with time due to the escaping stars carrying energies. Fig. 2.6(a) shows the time
evolution of the normalized total energies. The results of N-body and FP simulations
agree well for slowly rotating models. While the total energy decreases slowly in

pre-collapse stage, after core collapse the total energy decreases more rapidly due
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Figure 2.5 Evolution of mass for M2A models: (a) Evolution of total mass. Dashed
lines represent FP results, and solid lines show N-body results. The total mass de-
creases due to escaping stars through the tidal energy threshold. For rapidly rotating
models, there are steep mass losses at the early stages because of the bar instability.
(b) Time evolution of the mass components m; (red) and ma (blue). Total mass of

m decreases faster than that of ms.
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Figure 2.6 Upper panel shows the evolution of the total energy as a function of time.
The diamond symbols represent the moment of the core collapse for N-body results.
Total energies decrease with time due to escaping stars. After the core collapse,
energies decrease more rapidly because of core bounce due to the binary heating.
In lower panel, there are the evolutions of the specific energies for m; and ms. The
specific energy of mg increases quickly during the just prior of the core collapse
because high mass stars move to the central region having deep potential due to the

mass segregation.
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to the core expansion. For the rapidly rotating models, however FP and N-body
results show significant difference because of the large amount of energy loss during
the early stages for N-body models. Fig. 2.6(b) represents the time evolution of
normalized specific energy (i.e., energy per unit mass) for each mass component.
In overall, the specific energies of my continue to decrease. On the other hand, the
specific energy of ms increases slowly till the core collapse as a result of equipartition
and mass segregation. However, the specific energies of mo decrease after the core
collapse due to the mass loss through the tidal boundary because the process of mass
segregation stops at the core collapse (i.e. the mean mass of a star in the central
region increases until the core collapse and remains as a constant value after the
core collapse; see §2.5.3). Note that the mean energies for both low mass and high
mass stars immediately decrease for the model of wyg = 1.2 and 1.5. Again, this is

caused by the bar instability in the early phase of the evolution.

2.4.2 Central density, velocity dispersion and core collapse

Fig. 2.7 shows time evolution of the central density, p. and the central velocity
dispersion, o. obtained by using stars inside the core radius. The dashed and solid
lines represent FP and N-body results, respectively, and different contrasts represent
models with different initial rotation. We confirm that the rotation accelerates both
the core collapse and cluster disruption (e.g., Kim et al. 2008). In addition, FP and
N-body results agree well for slowly rotating models. However, as the initial rotation
increases the difference between FP and N-body results becomes large due to the bar
instability. Table 2.2 lists the core collapse times and the disruption times of M2A
models. For example, the model with wg = 1.5 reaches the core collapse at 2.17, o
and 3.77, 0 for FP and N-body calculations, respectively. As the initial rotation
wop increases, the cluster spends more time of its whole life in the pre-core collapse
phase (i.e., tec/tgis increases). For N-body simulations, the ratio of the core collapse
time to the disruption time t¢./tgis of the model with wp = 1.5 is ~3/4 while that
of the model with wp = 0 is ~1/3. We observe that the core collapse and disruption
times of N-body results are significantly longer than those of FP results for rapidly

rotating models because these models are redefined as small and slowly rotating
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Figure 2.7 Evolution of central density p. and velocity dispersion o, for M2A models.
Dashed lines represent the FP results and the solid lines for the N-body results.
Different contrasts mean models with different initial rotations. p. and o. of rapidly

rotating models show significant differences between two approaches.
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systems after the bar instability. Although there are significant differences between
N-body and FP time scales, the total mass at the time of core collapse (designated
as M) of N-body and FP results show a good agreement. The presence of the mass
spectrum also accelerates the evolution of cluster (Kim et al. 2004). We found that
the core collapse times of M2A models are 20—40% smaller than those of single mass
systems considered by Kim et al. (2008). On the other hand, the disruption times
are only 10% smaller. We also look into the evolution of clusters with various mass
spectra. Table 2.3 shows the collapse and disruption time scales for other N-body
models. As mg/m; increases, the evolution of clusters is accelerated. From M2A to
M2D models, the core collapse time decreases when mgy/m; increases, but is less
affected by the initial rotation. The disruption time, however, depends on both the

mass spectrum and the initial rotation.

Fig. 2.8 shows the evolution of the central velocity dispersion (o) of each mass
component as a function of p.. g. of m; and mg are divided into two parts and
increase gradually until the core collapse. The total o. approaches that of mo be-
cause the fraction of high mass stars in the core increases with time and the core is
finally filled with high mass starts due to the mass segregation. We can clearly see
the equipartition as two distinct branches of o, versus p.. As a result of equipar-
tition, o, of m; becomes about v/2-times greater than that of mo because we use
individual mass ratio of ma/m; = 2. Once the establishment of energy equipartition,
the evolutions of o. of m; and my are represented by simple power-law. During the
post-core collapse stage, however, FP and N-body results show some differences.
N-body results are more dispersive than FP results, unlike the early evolution. This
is because there is the large fluctuation of p. as shown in Fig. 2.7, which is from the
lack of stars within the core radius after core collapse. On the other hand, rapidly
rotating models that lead to the bar instability have different evolutionary behav-
iors between FP and N-body for the very early phase. Because the bar instability
delays the relaxation processes, the mass segregation in N-body takes place later
compared to FP models. The gap between o, of m; and meo for N-body results is
slightly smaller than that of FP results. This means that the bar instability also
affects the equipartition process (see §2.5.2 and Table 2.4 for more details).
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Table 2.2 Global evolution of M2A models for NBODY4 and mFOPAX results.

Simul.  wo  tee/Trho  ftdis/Teho  tec/tais  Mee
(1) (2) (3) (4) (5) (6)
0.0 7.1 22.0 0.32 0.80

0.3 6.7 15.9 0.42 0.70

mFOPAX 0.6 5.3 9.2 0.58 0.52
0.9 3.8 5.7 0.67 0.36

1.2 2.7 3.7 0.73 0.23

1.5 2.1 2.5 0.84 0.14

0.0 6.8 21.2 0.32 0.80

0.3 6.2 16.3 0.38 0.72

NBODY4 0.6 5.7 10.4 0.55 0.54
0.9 4.8 7.1 0.68 0.35

1.2 3.6 5.2 0.69 0.23

1.5 2.8 3.7 0.76 0.15

27

Note. - (1): Simulation methods. (2): Initial rotation parameter. (3): Core collapse

time divided by the half-mass relaxation time. (4): Disruption time divided by the

half-mass relaxation time. (5): Ratio of core collapse time to disruption time. (6):

Remaining mass fraction at the moment of core collapse.
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Table 2.3 Global evolution of other NBODY4 models.
Model  wo  tee/Teho  tdis/Trho  tec/tdis Mee

» @ 6 4) ®) (6
0.0 161 10.18  0.16  0.94

M2B 0.6 1.64 5.01 0.33  0.79
1.2 1.38 2.16 0.64 0.34
0.0 0.59 5.92 0.10  0.97
M2C 0.6 0.62 2.79 0.22  0.89
1.2 0.70 1.36 0.51 0.44
0.0 0.42 3.59 0.12  0.96
M2D 0.6 0.34 1.65 0.21 091
1.2 0.36 0.72 0.5 0.55

0.0 9.37 27.56 034 0.73
M2Ae 0.6 6.72 12.86 0.52  0.49
1.2 4.05 5.89 0.69 0.22

Note. - (1): Simulation models. (2)-(6): Same as the Table 2.2
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as a function of central density p.. Dots show N-body results, and dashed lines mean
FP results. Initially, o, for both mass components are the same. They evolve into
the different ways due to the equipartition. o, for low mass becomes about v/2-times
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Figure 2.9 Lagrangian radii including 1, 5, 10, 20, 50, 75 per cent of initial cluster
mass for M2A models. For rapidly rotating models, the results of N-body and FP

shows significant differences while those for slowly rotating models are similar.
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In Fig. 2.9, we show the time evolution of the Lagrangian radii for M2A models.
We estimate Lagrangian radii containing 1, 5, 10, 20, 50 and 75 per cent of initial
cluster mass. The dashed lines and the solid lines represent the FP and N-body
results, respectively. Although our models are flattened due to the initial rotation
and become triaxial by the bar instability, we use the spherical radius to estimate
these Lagrangian radii for the simplicity of comparison between N-body and FP
simulations. We found that, for the slowly rotating models, the results of FP and
N-body show an excellent agreement except for the final stages when there are only
small number of stars in the clusters. However, for the rapidly rotating models, the
results of FP and N-body are significantly different. Again, the bar instability and

induced mass loss are the main reason for these differences.

2.4.3 Rotational properties

To understand the effects of initial rotations on the cluster dynamics, we investigate
the evolution of angular momentum. Because we assume that stars escape through
the tidal energy threshold, clusters lose their angular momentum continuously. Also,
we expect exchange of angular momentum between different mass components, sim-
ilar to energy exchange. After encounters, stars that lose their energy spiral into the
central parts while stars that gain the energy move outward. Also, loss of angular
momentum makes the orbits of stars be eccentric but gaining angular momentum
does the orbits be less eccentric. Fig. 2.10 shows the time evolution of specific angular
momentum which is defined as

Zi m;r; X V;

Lspec = Z mi (27)

where r;, v; are relative positions and velocities of stars to the center of mass,
respectively, and we integrate all stars in the cluster to compare N-body and FP
results. L, gpec is z-direction component of Lgpec. Solid lines are the results of V-
body and dashed lines represent the results of FP. Red and blue colors show low and
high mass stars, respectively. For slowly rotating models, the results of N-body and
FP are similar. The specific angular momenta decrease monotonically. Due to the

mass segregation, high mass stars that encounter with many low mass stars migrate
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to the inner part where rotational velocity is smaller than that of the outer part of
the cluster (see rotation curves in Fig. 2.12a and Fig. 2.15a). This is also related to
the angular momentum exchange between different mass components (see §2.5.4 for
more details). Thus, the specific angular momentum of msy becomes smaller than
that of m; during the evolution. The difference of angular momentum between two
mass components is most prominent at the core collapse, where the core collapse
time is marked as diamond symbols in Fig. 2.10. For the models with wy = 1.2 and
1.5, the angular momentum decreases rapidly during the early stage. In addition,
there is no clear split of the specific angular momentum of low and high mass stars
due to the rapid evolution induced by the bar instability. Interestingly, the model
with wy = 0.9 shows the transitional evolution. While the model still has a triaxial
shape (T < 1.57y0, see Fig. 2.3), the evolution is similar to that of the models with
wp = 1.2 and 1.5. However, after the shape becomes the axisymmetric again, the

evolution is similar to that of the models with wy = 0.3 and 0.6.

Slow rotation (wy = 0.6)

To investigate the evolution of rotational properties of our cluster models, we focus
on rotational velocities, V of two models in detail. As a representative of slowly
rotating models, we chose a rotating model with wy = 0.6 of M2A. Fig. 2.11 shows
the distribution of V, at four different epochs T' = 0,3,5.7 and 87y, . The core
collapse time is T' = 5.771, 0. We combined results of three runs with N =20,000.
At T = 0, the distribution is asymmetric to the positive direction due to the initial
rotation. The dispersion of Vj is large at the center and becomes smaller along
the cylindrical radius, R = (22 + y2)1/ 2. As the cluster loses its mass and angular
momentum, the size of cluster and the degree of asymmetry in V decrease with
time. Finally, the distribution of V4 becomes symmetric compared to the initial
distribution. The rotation curves of both mass components are shown in Fig. 2.12(a).
The rotation curves of m; and mo are identical at 7' = 0 because we assume that
the distribution of positions and velocities for both mass components are the same
initially. At T' = 37,0, the rotation velocity of m; becomes smaller at all radii

because low mass stars with large angular momenta escape from the system. On the
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Figure 2.10 Time evolution of the specific angular momentum L g,ec. Solid lines are

the results of FP and dashed lines are the results of N-body. Red and blue colors

mean low mass and high mass stars, respectively. Diamond symbols represent the

moment of the core collapse. For slowly rotating models (left panels), L, spec of m1

and mo are divided. However, L, ¢pec of m1 and mg decrease quickly compared to

the results of FP for rapidly rotating models (right panels).

A 2] &



34 Rotating Star Clusters

0 | > 3 0 | > 3
R(=x"+y%) R(=x"+y°)

Figure 2.11 Distribution of the rotational velocities of stars as a function of cylin-

drical radius. The cluster’s size and degree of the anisotropy decrease with time.
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Figure 2.12 Upper panel shows rotation curves at time 7" = 0,3,5.7 (core collapse)
and 87y, 0. Solid, dotted and dashed lines mean the rotation curves of all stars, high
mass stars and low mass stars, respectively. At time T' = 0, rotation curves are similar
between low and high mass components. However, after few 7, ¢, the rotation curve
of my drops while that of mo remains. The curve of z-direction angular momentum

is shown in lower panel. Angular momenta also decrease with time.
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Figure 2.13 Time evolution of z-direction specific angular momentum L gpec (upper),
L, spec of inner half-mass (middle) and L gpec of outer half-mass (lower). Though the
angular momentum curve of high mass components is larger than low mass compo-
nents at all radii, L, spec of high mass components in whole cluster becomes smaller
than low mass components after few 7,3, g. This is because most of high mass compo-
nents are located in central region which rotates slowly due to the mass segregation.
The evolution of the inner region shows similar behavior with that of whole cluster.
On the other hand, for the outer region, L. spec of high mass components is higher

than that of low mass components always.
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other hand, the rotation curve of ms remains as that of the initial curve for longer
time. At T = T¢., the rotation velocity of mo also decreases but is still higher than
that of my. The cluster rotates very slowly at 7" = 87y, o. At this time, the rotation
curves of m; and meo are flattened compared to other epochs. It is interesting to
note that the peak position remains at a constant value measured in the units of

half-mass radius while the peak rotation velocity decreases.

Fig. 2.12(b) shows the radial profiles of mean angular momentum for m; and ms.
The angular momentum curves of m; and mo are identical at T'= 0 and L, of my
decreases more rapidly compared to that of mo. Initially, the curve is a power-law
with index of 1.5 within 7y, (e.g., the power law index is 2 for a rigid body rotation.).
The power law index becomes smaller and goes to one at T' = 871, 9 because the
rotation curve becomes flatter. In Fig. 2.13, we show evolutions of specific angular
momentum L, gpec in different radial ranges: in the whole cluster, within half-mass
radius and outside of half-mass radius. L. spec decreases with time due to the escaping
stars with angular momenta. In the entire cluster, L, spec of m1 and mgo decrease
together until 7' = 27,3, 9. Although L, of my is larger than that of m, at the all radii
as shown in Fig. 2.12(b), L. spec of ma becomes smaller than that of m; because high
mass component tends to be more concentrated in the central region than low mass
stars due to mass segregation (see §2.5.3 for more details). Within the half-mass
radius, L, spec Of m; decreases continuously while that of mg remains at a constant
value until 7' ~ 0.57y,0 because the rotation curve of high mass stars remains as
the initial curve for a while as shown in Fig. 2.12(a) and Fig. 2.12(b). After a few
Trh,0, the evolution of inner region follows that of entire cluster due to the mass
segregation. For the outer region, L, spec of mo is higher than that of m; throughout
the whole evolutionary phase. Even for the mass segregation, the mean mass of outer
region (see Fig 2.19) does not change significantly. It means that the mass fraction
of the outer region is less affected than that of inner region. Thus, the mean rotation
of my is still faster than the rotation of m; beyond half-mass radius. Finally, the

cluster loses most of its mass and angular momentum at the end of evolution.
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Figure 2.14 Distribution of the rotational velocities of stars as a function of cylin-
drical radius for the model with wg = 1.5. Initially, most of stars have positive

rotational velocities. However, the asymmetry rapidly decreases within a 7y, .
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Fast rotation (wp = 1.5)

We also investigate the evolution of rotational properties for the model with wg = 1.5.
As we mentioned earlier, this model is unstable against bar instability and the shape
of cluster quickly becomes a prolate with the largest elongation at 7" ~ 0.17, 9. In
Fig. 2.14, we show the distribution of tangential velocities Vy of stars at T' = 0,0.1, 1
and 2.87y,0 (core collapse). Initially, the distribution is more skewed toward the
positive direction than the model with wg = 0.6 as shown in Fig. 2.11. Only less than
10% of stars have negative value at T = 0. The distribution becomes symmetric and
also the size of cluster becomes smaller as similar to the model with wg = 0.6. At core
collapse, only about 10% of stars remain in the cluster and the cluster rotate slowly.
Fig. 2.15(a) shows the rotation curve at 7" = 0,0.1,1 and 2.87y0. The rotation
curves of my and my decrease together, indicating that the bar instability (i.e., large
mass, energy and angular momentum loss) disturbs the relaxation processes. The
peak of rotational velocity decreases rapidly with time. However, the peak position
at T'= 0.1y, o is slightly larger than the other epochs due to the effect of bar from
the instability. At core collapse, the rotation curve is nearly flat but still remains,
though the cluster lose most of the mass and the angular momentum. The mean
angular momentum along the radius is shown in Fig. 2.15(b). Similar to the result
of model with wg = 0.6, it shows a power-law distribution. Initially, the power law
index is ~2 within 7, like a rigid body rotation but it becomes close to 1 at core

collapse.

2.5 Discussion

2.5.1 Mass evaporation

To investigate the evolution of mass in detail, we first define the dimensionless mass

evaporation rate such as
Tvh dM

e = M dt (2.8)

where 73, and M are the half-mass relaxation time and total mass of a cluster at time

T, respectively. Fig. 2.16 shows the behavior of £ of N-body and FP simulations
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Figure 2.15 Rotation curves at time 7" = 0,0.1,1 and 2.8 (core collapse) 7y, with
wo = 1.5 (upper). Lines have same meaning to those of Fig. 2.12. At time 7" = 0,
rotation curves are similar between low and high mass components. Unlike rotation
curves of in Fig 2.12, those of low and high mass components are not divided much.

Curves of z-direction angular momentum are shown in lower panel.
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Figure 2.16 Dimensionless mass evaporation rate. X-axis means the evolutionary
phase (i.e.; pre- or post-core collapse). For wy = 0.0 and 0.6, the result of N-body
and FP are well agreed. On the other hand, for wy = 1.2, there is a spike meaning

large mass loss induced by the bar instability in N-body result.
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for M2A models with wg =0.0, 0.6 and 1.2. We divide the evolution into pre- and
post-core collapse phases to investigate the evolution of & more clearly. The mass
evaporation rates are known to be constant for self-similar case (e.g., Hénon 1961; Lee
& Ostriker 1987). However, the rate changes with time because our models are not
self-similar. In early phase, & increases with the initial rotation. For slowly rotating
models, we see a very good agreement between N-body and FP results in pre-core
collapse phase. On the other hand, for model with wg = 1.2, there is a significant
difference between results of N-body and FP. The N-body results show a spike at
the early time while FP results decrease monotonically. This spike is related to the
rapid mass loss induced by the bar instability. After the spike, & of N-body suddenly
decreases below & of FP result. It is interesting that & .., the mass evaporation rate
at the core collapse, of N-body and FP show similar results even though there is a
big difference before core collapse. After core collapse, & of N-body and FP increase
toward a peak value and decrease afterward. The large differences of £ between IN-
body and FP results at the end of the evolution is due to small number of remaining
stars and thus do not have statistical significance. Kim et al. (2002) carried out FP
simulations for rotating clusters with single mass system. They also calculated &
with different initial rotation wg =0.0, 0.3 and 0.6. We notice that the evolutionary
shapes are similar between single mass and the 2-component mass systems. However,
& for 2-component mass systems show about 30% enhancement compared to & for
single mass systems in pre-core collapse phase. This enhancement could have been
induced by the energy exchange process in multi-component models, as noticed by
Lee & Goodman (1995). They calculated & with various initial mass functions and
found that & increases when the cut-off mass ratio (i.e., mys/m; if the mass ranges
from m; to my) increases. To confirm the relationship between the mass evaporation
rate and the mass ratio, we compute the maximum evaporation rate after the core
collapse & post for N-body results with various mass spectra. Fig. 2.17 shows & post
as a function of the individual mass ratio mg/m;. As shown in Fig. 2.16, the peak
& in post-core collapse phase are very similar with different initial rotations, so we
average the results of each mass spectrum for different initial rotations. &e post of

M2A-D models increases with increasing my/m; and follows a simple power-law.
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Figure 2.17 Maximum mass evaporation rate & post after core collapse as a function
of the individual mass ratio. Error bars show standard deviations of data of & post

for different mass spectra.
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For M2Ae model, & post is slightly smaller than that of M2A model because the
fraction of high mass stars for M2Ae model is small.
2.5.2 Energy equipartition

As presented in §2.4.2, high and low mass stars in the core approach to the ‘thermal’
equilibrium state by the two body relaxation. To investigate the energy equipartition

in detail, we adopt the equipartition parameter

(2.9)

éeq -

myo,?
like previous studies (Watters et al. 2000; Khalisi et al. 2007). We calculated &qq for
stars inside the core radius. Fig. 2.18 shows the evolution of £, for models M2Ae and
M2D without initial rotation for examples. Dotted lines represent the core collapse
time. For the M2Ae model, &4 approaches to unity and becomes less than unity at
some moments. However, for the M2D model, {q never approaches to unity. The
data is very noisy after the core collapse because only a few low mass stars remain
in the core. To determine the minimum value &eq min, we find the best polynomial
fitting function by varying the order from 5 to 15.

Table 2.4 lists {eq,min of all models. Only M2Ae models with wg = 0.0 and 1.2 have
lower &eqmin than 1.05 which is the value used in Khalisi et al. (2007) for the energy
equipartition. On the other hand, {cq min increases when the equipartition instability
parameters S or A become larger. {eq min for slowly rotating models (i.e., wy < 0.6)
are similar to each other. There are, however, significant differences of {cq,min between
slowly rotating models and rapidly rotating models. For M2A models with wg > 0.9,
eq,min increases gradually with initial rotation. This is another phenomenon of the

bar instability obstructing the relaxation process.

2.5.3 Mass segregation

A simple method measuring the degree of the mass segregation is suggested by
Giersz & Heggie (1996). They calculated the mean mass in a space between different
Lagrangian radii (i.e., Lagrangian shells) to see the change of mass distribution in

un-equal mass systems. More recently, Khalisi et al. (2007) carried out N-body
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Figure 2.18 Examples for the evolution of the equipartition parameter . Dashed
lines mean the minimum values £eqmin, and dotted lines show the core collapse time.

The determination of &eq min is mentioned in text.
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Figure 2.19 Mean mass in mass shells between different Lagrangian radii with differ-

ent initial rotations. Mean masses of inner shells increase with time before the core

collapse while mean masses of outer shells decrease. This shows the process of the

mass segregation. After the core collapse, mean masses of other shells also increase

with somewhat time gaps but this is not from the mass segregation but because low

mass stars escape more frequently than high mass stars.
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Table 2.4 {eqmin of all models.

Model S A w0 Eoqmin Model S A w0 Eoqmin
M2A  0.566 1.056 0.0 1.105 M2C 6.325 50.24 0.0 3.017
- - 0.3 1.091 - - 0.6 2923
- - 0.6 1.107 - - 1.2 3.314
- - 0.9 1.123 M2D 17.89 256.2 0.0 5.141
- - 1.2 1.158 - - 0.6 5224
- - 1.5 1.201 - - 1.2 6.672
M2B  2.236 9.518 0.0 1.664 M2Ae 0.141 0.264 0.0 1.047
- - 0.6 1.630 - - 0.6 1.071
- - 1.2 1.860 - - 1.2 1.000

“Minimum equipartition parameter from the best polynomial fitting function.

simulations with different mass spectra and found that the mass segregation occurs
inward direction (i.e., the mean mass of each shell is decoupled stepwise from outside,
see models A and B in Fig. 6 of Khalisi et al. (2007)). Fig. 2.19 shows the evolution
of mean mass in different Lagrangian shells as a function of time. In pre-core collapse
phase, due to the mass segregation, the mean mass of the innermost shell increases
while mean masses decrease in outer shells. Note that the maximum mean mass of
the innermost shell does not depend on the initial rotation and also the innermost
shell is nearly fully-occupied by high mass stars (i.e., (m) ~ mo = 1.833) at the time
of core collapse. The mean mass of the innermost shell stays at a constant value after
the core collapse. According to Giersz & Heggie (1996), after the core collapse, mean
masses of inner shells with r < rogy slightly decrease because high mass stars are
removed by binary formation and the mass distribution finally reaches a steady state
in Lagrangian coordinate although the system expands with time. Our simulations,
however, show significant differences from the previous studies (Giersz & Heggie
1996; Khalisi et al. 2007) in post-core collapse phase. In Fig. 2.19, mean masses

of inner shells continue to increase even after the core collapse. This is because our
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models are tidally-limited. Low mass stars escape from the cluster more rapidly than
high mass stars as shown in Fig. 2.5. As most of low mass stars escape, mean masses

of outer shells increase at the end of evolution.

2.5.4 Angular momentum exchange

Because our N-body model includes two different mass components, we are able to
investigate the angular momentum exchange between different mass components.
This has not been studied carefully yet and is an important subject to understand
the evolution of rotating star clusters. However, it is not easy to analyze the angular
momentum transfer with the tidal boundary because total angular momentum of
cluster decreases continuously by escaping stars. To distinguish the loss of angular
momentum of a cluster between escaping and exchange, we register the positions
and velocities of each escaping stars at the moment of escape. Fig. 2.20 shows the
time evolution of the total angular momentum for a model with wg = 0.6. Thin lines
mean the total angular momentum of stars within the cluster and thick lines mean
those of stars including escapers. From the thick solid line, we observe that the total
angular momentum including escapers is conserved as expected. Interestingly, the
angular momentum of me including escapers decreases while that of m increases.
Therefore, we conclude that there is a transfer of angular momentum from mo to
my.

If the exchange of angular momentum is due to the two-body relaxation, we can

define the angular momentum exchange rate as follows

B 7—rh(t) sz,m2—>m1 (210)

LZ,?TLQ —m1 dt

gexc

where L. ,—m, is the amount of remaining angular momentum expected to be
transferred from msg to mq. If the angular momentum transfer rate is a constant,

the above equation can be integrated to give,
LZ,m2—>m1 = LZ,m2—>m1 (0)€_£eXCtnorm (2-11)

when we use a new time unit normalized by half-mass relaxation time tyorm =

[ 7in(t)1dt. This rate can be a good parameter to measure the efficiency of the
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Figure 2.20 Evolution of the angular momentum for the model with wy = 0.6. When
we consider the angular momentum of escapers, the total angular momentum is con-
served (thick solid line). The total angular momentum of m; slightly increases (thick
dotted line), while that of mo decreases (thick dashed line). This shows the existence
of the angular momentum exchange from msy to mi. The words ‘esc’ and ‘exc’ mean

the degree of the angular momentum loss by escape and exchange, respectively.
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Figure 2.21 Detailed evolution of the angular momentum of ms including those of
escapers (i.e., thick dashed line in Fig. 2.20) as a function of tyorm. tnorm 1S a time
unit normalized by half-mass relaxation time (see the text). Open circles represent
the N-body results. At the end of evolution, one can distinguish the amount of
angular momentum loss by exchange and escape. The solid line shows the equation
(2.11) with &exe in Table 2.5. Note that the line is shifted as much as the amount of

angular momentum loss by escape.
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angular momentum transfer between different mass components. The angular mo-
mentum of clusters goes to 0 when clusters are disrupted. So we divide the loss
of angular momentum of ms into two contributions: through escaping and through
transferring to m;. We also estimate the fractional angular momentum loss by two
different processes. In Fig. 2.21, the detailed evolution of the angular momentum of
me including those of escapers is represented by open circles. At the end of evolu-
tion, whole amount of angular momentum of me disappears by escape or exchange.
The solid line which is from equation (2.11) with suitable value of ey and shifted
as much as the amount of angular momentum loss by escape agrees well with the V-
body result. Table 2.5 shows the initial total angular momentum of me, the fraction
of angular momentum loss by escaping and exchanging and the angular momentum
exchange rate. Although the angular momentum exchange rate increases with the
initial rotation, the fraction of angular momentum loss by exchange decreases. For
the model with wy = 1.5, the fraction is less than 10%. Rapidly rotating models have
larger angular momentum exchange rate than slowly rotating models, but their life-
times are very short compared to slowly rotating models. Therefore, these rapidly
rotating models do not have enough time to exchange angular momentum from mso

to mi.
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Table 2.5 Angular momentum loss by escape and exchange for M2A models.

Rotating Star Clusters

wo Lzo(ma) escape (%) exchange (%) Eexc
e 3) G
0.3  0.0283 57.8 42.2 0.17
0.6  0.0448 66.2 33.8 0.19
0.9 0.0555 70.4 29.6 0.23
1.2 0.0571 88.1 11.9 0.34
1.5 0.0635 91.3 8.7 0.71

Note. - (1): Initial rotation parameter. (2): Total angular momentum of high mass

stars. (3): Fraction of angular momentum loss by escaping. (4): Fraction of angular

momentum loss by transferring to low mass stars. (5): Angular momentum exchange

rate.
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Chapter 3

Black Hole Binaries in (Galactic
Nuclei and Gravitational Wave

Sources

3.1 Introduction

According to general theory of relativity, the gravity can be expressed as a curva-
ture of space-time. The gravitational wave (GW) is the propagation of ripples of
this curvature with speed of light. GW doesn’t interact with ordinary matter, so
the detection of GW will be a good way to explore the vicinity of neutron stars
(NS), black holes (BH), supernovae and active galactic nuclei that are too difficult
to observed with electromagnetic (EM) waves. Since Einstein (1916) predicted the
existence of gravitational radiation (GR), search for GW has been done by many
groups. However, there are only indirect evidences so far for the existence of GWs.
From 30 years observations, Weisberg & Taylor (2005) found that the binary pulsar
PSR 1913+16, discovered by Hulse & Taylor (1974), exhibited the decrease of the
orbital period and the amount of decrease exactly coincides with the prediction of
general relativity.

In order to detect GWs directly, it is necessary to measure the distortion of

space-time as GWs pass through. The first practical instruments, so-called bar de-

53



54 Black Hole Binaries in Galactic Nuclei

tectors, were constructed by Weber (1960), in order to measure the vibration of the
metal bar due to the GWs. However, it became clear that the bar detectors are not
sensitive enough to detect astrophysical signals. More sensitive detectors based on
laser interferometry have been constructed subsequently (e.g., LIGO, Virgo, GEO
600 and TAMA 300). If GW passes through the interferometer, the wave can be de-
tected by measuring the variation of the relative arm lengths as a function of time.
The strain amplitudes of astronomical GWs are typically very small, h < 10722, The
sensitivity of ground-based GW detectors depends on the length of baselines and
is limited by various noises: shot, seismic, thermal noises. For the initial LIGO and
Virgo, the theoretical sensitivity is comparable to h ~ 10722 at frequency around
f ~ 100 Hz. It is expected that the sensitivity will be enhanced by a factor of 10 for
second generation GW detectors such as advanced LIGO and Virgo.

There are several astronomical GW sources in the universe: core-collapse super-
novae (e.g., Mueller & Janka 1997; Yakunin et al. 2010), spinning neutron stars
(e.g., Andersson et al. 2011), compact binary coalescences (e.g., Kalogera et al.
2004), supermassive black holes (SMBH) (e.g., binary SMBH merger, Berentzen et
al. 2009) (extreme mass ratio inspirals, EMRI, Hopman & Alexander 2006; Merritt
et al. 2011) and cosmological density fluctuations (e.g., Ananda et al. 2007). Among
those, the compact binary coalescence (CBC) involving NS and stellar mass BH is
the primary targets for the first GW detection. Only seven NS-NS binary pulsars,
however, have been discovered in our Galaxy including PSR 1913416, and a half
of them will merge within a Hubble time (O’Shaughnessy et al. 2005). These NS-
NS binaries are known to be evolved from primordial binaries. Compact binaries
can also be formed dynamically in stellar systems: dynamical three-body processes
and dissipative two-body processes by tidal effect (Lee & Ostriker 1986) and GW
emission (hereafter GR capture, Hansen 1972; Quinlan & Shapiro 1987).

Stellar systems such as globular clusters (GC) and nuclear star clusters (NC) at
the galactic nuclei provide good environments for the formation of compact binaries
through the massive star formation and stellar encounters. In GCs, when the core
is dense enough, compact binaries can be formed by three-body encounters. These

binaries become more compact through close encounters with other stars and is
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eventually kicked out from GCs when their orbital separations become very small.
Some of the ejected binaries merge within a Hubble time in galactic field (Downing
et al. 2011; Bae et al. 2013). On the other hand, binary formation by three-body
processes is suppressed by the existence of massive BH (MBH) in galactic nuclei
(Baumgardt et al. 2004a). Instead, coalescences of primordial compact binaries can
be driven by the orbit coupling with central MBH, as known as the Kozai effect
(Kozai 1962), and occur within Hubble time (Antonini & Perets 2012). Compact
binaries, especially BH-BH binaries, also can be formed by GR capture in NCs due
to the high stellar density and velocity dispersion at the vicinity of MBH (O’Leary
et al. 2009). These captured compact binaries usually have large eccentricities with
small pericenter distance, and thus, they will merge within a few orbits, while keeping

the high eccentricity until the moment of merger.

Numerous authors made estimates of the detection rates of GWs from CBCs with
present- and planned- GW detectors using various methods: population synthesis
models for primordial binaries (Kalogera et al. 2004; Belczynski et al. 2007), Monte-
Carlo simulations for GCs (Downing et al. 2011) and Fokker-Planck simulations for
NCs (O’Leary et al. 2009), and estimated that few tens of events will be detected
by new generation GW detectors (see, Abadie et al. 2010). However, most of these
studies are based on simplified models and assumptions on the evolution of the
stellar systems and the binaries. Realistic models are difficult because of lack of
observational data, as well as difficulties in accurately modeling of the systems with
the large number of stars. Direct N-body approach is difficult for realistic systems,
and therefore, statistical approaches such as Fokker-Planck models and Monte-Carlo
simulations have been used, so far. However, statistical methods are restricted to
certain simplified configurations. In this study, we focus on the binary formation of
BHs by GR capture in NCs by using direct N-body simulations. Although, we cannot
use realistic number of stars, we try to deduce important information regarding the
binary formation and evolution based on scaled-down and simplified version of N-

body simulations.

This chapter is organized as follows. In §§3.2 and 3.3, we introduce the numerical

method and the model for star clusters in galactic nuclei with a central MBH. The
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dynamical evolution of our model is presented in §3.4. In §3.5, we describe binary
formation in NCs and estimate the merger rate per galaxy. In §3.6, the expected
detection rate for new generation GW detectors is estimated. To give the interpre-
tation for binary coalescences and their waveforms, we implement post-Newtonian
approximations on the two-body motions. An example waveform of a binary BH

coalescence in Milky-Way-like galaxies is provided in §3.6.2.

3.2 Generation of initial models

NCs are very dense star clusters located at the nuclei of galaxies, regardless of the
type (e.g., Carollo et al. 1997; Boker et al. 2002; Coté et al. 2006). Their typical
mass is 106_7M@ (Walcher et al. 2005), the size of NCs is comparable to that of
galactic GCs (Boker et al. 2004; Coté et al. 2006), thus the density of NCs is much
higher than GCs. It is also well known that most of galaxies host MBHs at the
center (e.g., Kormendy & Richstone 1995; Ferrarese & Ford 2005). The coexistence
and correlation of MBHs and NCs at the central region of galaxies have been studied
by Graham & Spitler (2009).

Observational (e.g., Schodel et al. 2009) and theoretical (e.g., Bahcall & Wolf
1976) studies for star clusters with the central MBH showed that the density and
velocity dispersion diverge at the vicinity of the MBH. The modeling of stellar
systems with a central black hole has been done by numerous authors (Young 1980;
Goodman & Binney 1984; Quinlan et al. 1995; Sigurdsson et al. 1995). In order to
generate N-body realizations for NCs with MBH, we adopt ‘adiabatic growth’ of
the MBH as suggested by the previous studies. The MBH is assumed to grow with
time following Sigurdsson et al. (1995)

Mysa [3(t/tmer)? — 2(t/tmer)?], ¢ < tvBH

(3.1)
My, t > tvmBH

Mysu(t) = {
where Mypg and typu are the final mass of MBH and the black hole growth time

scale, respectively. During the growth of the MBH, the stellar system is adjusted
against the potential of the MBH. The MBH is fully grown after typp, and the
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gravitational potential of the MBH is assumed to follow that of the Plummer model

G MyiBu

PMBH = — —F————,
\/ 2 + B

where eypy is the softening parameter for avoiding unexpected effect at the sin-

(3.2)

gularity. Holley-Bockelmann et al. (2002) noted that ¢ypp should be larger than
the half-mass dynamical time to ensure the adiabatic growth of the MBH. While
they used the Hernquist model as the initial density distribution, we used Plummer
model with half-mass dynamical time Zgyy /2 ~ 2.46 for standard N-body scaling
(ie., G= My =—4E =1).

According to recent observations (e.g., Schodel et al. 2009) of the center of the
Milky Way (i.e., the vicinity of Sgr A*), the velocity dispersion of stars at about 1
parsec scale is nearly flat. This implies that the NC is almost in the isothermal state.
However, it is not possible for the isolated stellar systems to become fully isothermal.
Yoon et al. (2011) have investigated a self-gravitating stellar systems embedded in

an external potential well. They considered a Plummer external potential,

GM,,
A/ afﬂ + 72

where M}, and ap) are the mass and scale length of the Plummer potential, respec-

Ppl = — (3.3)

tively. When the external potential well is deep enough, the velocity dispersion of
the embedded stellar system becomes isothermal and there is a quasi-equilibrium
solution of a potential-density pair for the isothermal stellar system.

In the case of NCs, the surrounding bulge can provide such a potential well.
The bulge is one of galactic building blocks, extending over few kpc scales. NC
and bulge are independent components of galaxies with different surface brightness
profiles (e.g., Balcells et al. 2003). In the Milky way, the effective radius (i.e., half-
light radius) of the bulge is about 0.1 kpc, and the mass is estimated to be roughly
1010MO. According to a dynamical model of Galactic bulge suggested by Kent
(1992), the kinematics of the bulge is affected by the MBH, Sgr A, at inner parsec
scale, and the velocity dispersion is nearly flat from 1 to 10 parsec and increases

gradually at the large radii due to the effect of galactic rotation. Although bulges
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are thought to be oblate spheroids or triaxial, we consider the bulge as a sphere in
this study for the simplicity. This may not cause a serious effects on the dynamics
of the nuclear cluster we are considering since the role of the bulge in our model is

to confine the nuclear cluster within a few parsec.

3.3 Computational methods

In this study, we used the GPU accelerated version of NBODY6 (Nitadori & Aarseth
2012). NBODY6 code is one of the several versions of direct N-body code which has
been developed by S. J. Aarseth for many years. This code includes many efficient
and accurate algorithms such as the Hermite integrator, the individual and block
time steps, the Ahmad-Cohen neighbor scheme, the Kustaaheimo-Stiefel (KS) and
chain regularization scheme (Aarseth 1999). Recently, by using numerous stream
processors of GPU devices, calculations of gravitational interactions among stars
have been significantly accelerated through massive parallelism. All the calculations
in NBODY6 code use dimensionless time, length and mass units. From given unit of
length 7 in parsec and mean stellar mass M in M@, the physical unit of velocity

and time can be expressed as (Aarseth 2010)

N /2 _3 \ 1/2
velocity : 6.557 x 10—2<P> km/s,  time : 14.94<]\7;M> Myr, (3.4)
where N is total number of stars.

As we mentioned above, the external potential is composed of two parts,

Gext = OMBH + Ppls (3.5)

where ¢ypy is the Keplerian potential due to the central MBH. Since the Plummer
external potential has already been implemented in NBODY6 code, we added the
potential of MBH in the code in a similar manner with the Plummer potential. Table
3.1 shows model parameters of our simulations. Although galactic nuclei contain
~ 10% stars in a cubic parsec, it is hard to treat such a large number of particles for
NBODY6 code with a single GPU machine. We, therefore, used different number of

particles from 10,000 to 100,000 in order to build a scaling relation. We aslo made



Black Hole Binaries in Galactic Nuclei 59

several simulations with different random seeds in order to reduce the statistical
errors. The masses of MBH are chosen to be 0.1 and 0.2 in our units of 1 for the entire
mass of cluster stars M, (but excluding the mass of the Plummer potential). Because
these masses are relatively larger than those of Holley-Bockelmann et al. (2002), we
also used longer black hole growth time scale ¢y = 50. The softening parameter of
the MBH is fixed to 10™%, which is much smaller than the radius of influence of the
MBH (c.f., rint = Mypn /02 ~ 0.1 for My = 0.1). We assumed that all stars have
same masses (i.e., m = 1/N) of stellar mass BHs with the mass of 10M . Thus, the
total mass of the cluster in physical unit becomes Mot = N-10M . It is well known
that there is a correlation between the mass of MBHs and the kinematics of bulges.
Recently, McConnell & Ma (2013) updated the Myea — Mpulge relation and found
that the mass of MBH is roughly 0.2% of the bulge mass for 107 < Mypu/Mg <
100, For the external potential of a bulge, we fixed the mass and scale length of the
Plummer potential to 100 and 5, respectively, which corresponds to Mysa/Mpulge =
0.001 and 0.002 for our models. Under this potential well, the embedded stellar
system is expected to become isothermal in a few half-mass relaxation time (Yoon
et al. 2011). The Model 0 without the external Plummer potential well is also carried

out for comparison.

3.4 Dynamical evolution of star clusters

3.4.1 Cluster expansion

In order to investigate the effect of the MBH and the surrounding bulge, the dynam-
ical evolution of the star cluster is presented in this section. Here, we focus on the
Model 4 with N = 100, 000 and Mypn/M. = 0.2. Fig. 3.1 shows the time evolution
of Lagrangian radii including 1, 5, 10, 20, 50 and 75 % of total cluster mass. Before
T = typn = 50, all Lagrangian radii decrease with growing mass of the central
MBH to adjust the strong potential of the MBH. After T' = ¢\, Lagrangian radii
increase gradually as reported in previous studies (e.g., Baumgardt et al. 2004a),
because of the strong gravitational field of the MBH. The basic mechanism of the

expansion is similar to that of post core collapse expansion of star clusters. However,
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Table 3.1 Initial parameters for all models.

Model ~ Ng N Mysu/Ma  Mysu/ms  tvBa  evMBH Mpl  ap

® @ 3) (4) G 6 @O ©
0 100,000 1 0.2 10,000 50 1074 - -
1 10,000 10 0.2 2,000
2 20,000 5 0.2 4,000
3 50,000 2 0.2 10,000
4 100,000 1 0.2 20,000 50 107* 100 5
5 20,000 5 0.1 2,000
6 50,000 2 0.1 5,000
7 100,000 1 0.1 10,000

Note. - (1): Number of stars in the nuclear star cluster. (2): Number of simulations
with different initial random seeds. (3): MBH mass compared to the total mass of
cluster. (4) Mass ratio of MBH to the stellar mass. (5): MBH growth time scale. (6):
Softening parameter of MBH potential. (7): Mass of external Plummer potential.

(8): Scale length of external Plummer potential.
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Figure 3.1 Time evolution of Lagrangian radii for the star cluster with a growing
central MBH and an external Plummer potential well. By the growth of MBH, the
Lagrangian radii decrease with time until 7' = tyjpg = 50. After full growth of the

MBH, the cluster expands due to the heating from the MBH and stars in the cusp.
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Figure 3.2 Time evolution of energies for stellar particle only. To be virialized against
the external potential, the kinetic energy becomes much larger than the isolated
systems. The kinetic energy decreases with time because of the cluster expansion

while the total energy is nearly conserved.
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there is no gravothermal oscillation because of the steady heating by MBH (Heggie
& Hut 2003; Baumgardt et al. 2004a). With the MBH, kinetic energy can be gen-
erated by stars in the cusp (Shapiro 1977). The MBH and the innermost star can
behave like hard binaries in the core of star clusters. Encountering other single stars
in the cusp, they tend to be bounded stronger and convert their internal energy to
the kinetic energies of stars in the cusp. The kinetic energies are transferred to the
whole cluster via relaxation.

While the kinetic, potential and total energies of an isolated self gravitating
system are 1/4, -1/2 and -1/4 in NBODY units, respectively, the system embedded
in a potential well has lager kinetic energy than the isolated system through the
virialization (Yoon et al. 2011). Also, when the kinetic energy is even lager than
the magnitude of the potential energy (i.e., the total energy becomes positive.), the
system will not reach the core collapse. Fig. 3.2 shows the time evolution of the
energies. Our models are designed to have positive total energy. Initially, the kinetic
energy, potential energy of self-gravity and total energy are 0.7, -0.45 and 0.25,
respectively. However, as the black hole grows, the potential energy decreases because
the cluster becomes more centrally concentrated as shown in Fig. 3.1 while the kinetic
energy increases in response. At T' = typp, the energies become -0.5 (potential), 0.9
(kinetic) and 0.4 (total), respectively. The potential energy increases after T' = typy
due to the cluster expansion although we designed a quasi-equilibrium model by

using the external Plummer potential.

3.4.2 Radial profiles

In Fig. 3.3, we show the density profile of the the star cluster of the Model 4 for ¢ = 0
and 1000TxBopy- We see in Figs. 3.1 and 3.2 that the cluster is not in equilibrium
but expanding. However, as reported in Baumgardt et al. (2004a), the equilibrium
profile is expected to be established from inner to outer regions after a few local half-
mass relaxation times (c.f., 7, 0 ~ 16007xBopy for Model 4). The radius of influence
Tint 18 marked as the downward arrow. The slope of density cusp at r < ri,s is not
exactly -1.75, the Bahcall-Wolf cusp for equal-mass systems, but about -1.6. There

is an upturn of the density near » = 5. This radius is the scale length of the external
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Figure 3.3 Density profiles at T' = 0 and T" = 10007 nBopy - Grey line shows the initial
condition. Because of the existence of MBH, the stellar cusp, so-called Bahcall-Wolf
cusp, is formed inside the radius of influence. Our cusp has 716 which is less steep

than the theoretical expectation.



Black Hole Binaries in Galactic Nuclei 65

10.0 T T T TrTT T T T TrTT \\\\\\‘ L
————— T = 1000 Typopy

Initial

radius of influence

0.1 Ll \\L Ll

0.001 0.010 0.100 1.000 10.000
r

Figure 3.4 Velocity dispersion profiles at two epochs: T' = 0 and 1000. The existence
of MBH makes stars within radius of influence follow the Keplerian profile. For the
outer parts, the velocity dispersion is flatter than the initial condition due to the

external potential well.
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Plummer potential, so stars have piled up at this radius against the external force
from the potential.

The radial profile of velocity dispersion is presented in Fig. 3.4. The black line
shows the profile at T' = 1000, and the grey line is the initial one. For the outer part in
Fig. 3.4, the velocity dispersion is not completely flat unlike the observations. When
a star is ejected from the vicinity of the MBH, the star has very large kinetic energy
and transfers its kinetic energy to other stars through the interactions. Nevertheless,
the velocity dispersion is flatter than the initial dispersion. There is a bump of
velocity dispersion at r ~ 5, the scale length of the external Plummer potential.
This is because the ejected stars from the center are decelerated against the external
potential. When the MBH exists, stars inside rj,¢ are strongly affected by the MBH,
and their velocity dispersion follows the Keplerian profile (i.e., o(r) ~ r=%-5). One
can see the slope of the velocity dispersion profile at » < ri,s. However, the slope is a
little shallower than the expectation as similar to the density profile in Fig. 3.3. The
most plausible explanation for this effect is the wandering of the MBH. A MBH in a
stellar system can move randomly, like a Brownian motion, by the interaction with
stars which are bounded and un-bounded to the potential of the MBH. In addition,
the MBH and the innermost star can play a role as binaries in the core-collapsed star
cluster. They kick a star interacting with them with high kinetic energy, and this
causes the recoil motion of the MBH. Lin & Tremaine (1980) investigated the motion
of the MBH in the stellar system such as a globular cluster. They concluded that
the interaction with unbound stars is the most important effect causing the motion
of the MBH. Bahcall & Wolf (1976) estimated the uncertainty of the position of the
MBH by the wandering of the MBH as

Twand ~ 0.927"C\/ m*/MMBH, (3.6)

where 7. is the core radius. It is difficult to define the wandering radius in our sim-
ulations because there is not a well-defined core. Nevertheless, from the simulations
with different number of stars, we confirmed the number dependence of the wander-
ing radius. Fig 3.5 shows the wandering radius estimated by the radial distance of
the MBH fixed at the origin to the center of mass of the stellar particles. The solid

lines are the wandering radius in the simulations for the simulations with different
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Figure 3.5 Separation between the MBH and the center of mass of stars as a function
of time for simulations with different N. Contrasts show different numbers of stars.
With less number of stars, the MBH wanders more. Dashed lines represent the
expected wondering radius based on the equation (3.6) when normalized by the
average value of N=100,000.
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Figure 3.6 Time evolution of the slope of stellar cusp within the radius of influence.

Different contrasts show different numbers of stars. At the end of MBH growth, the

slope is much less than 1.75, Bahcall-Wolf cusp. For larger number of stars, however,

the slope increases with time gradually while those for models with smaller number

of stars do not get close to the Bahcall-Wolf cusp.
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number of stars ranging from 20,000 (top) to 100,000 (bottom) with the MBH mass
of 0.2. As the number of stars becomes larger, the wandering radius becomes smaller.
The dashed lines are the values obtained with the equation (3.6), normalized by the
mean wandering radius of the model with NV = 100,000. Thus the wondering radius
follows the scaling relation of the equation (3.6) with N very well. The time evolu-
tion of the slope of the central stellar cusp v is shown in Fig. 3.6. Different contrasts
mean different number of stars. During the growth of the MBH, the slope increases
with time. When the growth of the MBH is completed, the slope is still not same
as the Bahcall-Wolf cusp. For larger IV, the slope increases with time slowly while
those for models with smaller number of stars do not get close to the Bahcall-Wolf
cusp. This may be related to the wandering of the MBH and will affect the merger
rate of stellar mass BHs near the MBH which is going to be discussed in the next

sections.

3.4.3 Velocity anisotropy

It is well known that the radial anisotropy in the velocity dispersion increases at the
outer part of isolated stellar systems as a result of two-body relaxation (Giersz &
Heggie 1996; Spitzer 1987). The anisotropy parameter can be defined by (Binney &

Tremaine 2008)

2
Oy

=1-— ng’ (3.7)
where o, and oy are the tangential and radial velocity dispersions, respectively. This
anisotropy parameter becomes —oo for purely circular orbits and +1 for purely radial
orbits. Also, in a tidal field, the radial anisotropy decreases during post core-collapse
expansion due to the loss of radial orbits (Takahashi et al. 1997). However, in the case
of stellar systems with a growing central massive object, the tangential anisotropy is
developed (i.e., 5 < 0, Young 1980; Goodman & Binney 1984; Quinlan et al. 1995;
Sigurdsson et al. 1995; Holley-Bockelmann et al. 2002). Quinlan et al. (1995) have
revealed that the aspect of anisotropy is affected by the initial models. For models
with a core such as isothermal sphere and isochrone model, the velocity distribution
becomes isotropic in the limit » — 0 (Young 1980; Quinlan et al. 1995). On the

other hand, for ‘two-power’ models for galaxies like Dehnen’s models (Dehnen 1993),
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the velocity distribution is still tangentially biased at » — 0 (Quinlan et al. 1995;
Sigurdsson et al. 1995; Holley-Bockelmann et al. 2002). The tangential anisotropy
becomes the largest at r = ri,¢, and the velocity distribution becomes isotropic at
r > ripr again (see Figs. 2-5 of Quinlan et al. 1995).

The radial and tangential velocity dispersions and the velocity anisotropy pa-
rameter after the growth of MBH are shown in Fig. 3.7 for the Model 0 without
the external Plummer potential and Fig 3.8 for the Model 4 with the potential,
respectively. For the Model 0, the velocity dispersions decrease rapidly with radius
unlike those of the model with the potential well. Although we use the Plummer
model as the initial model, the anisotropy parameter is likely to be similar to that
of the isochrone model as shown in Quinlan et al. (1995). However, the maximum
anisotropy is located at the larger radius than r;,s. On the other hand, for the Model
4, the radial velocity dispersion is enhanced due to the radial acceleration from the
external potential as mentioned in the previous section. Therefore, the anisotropy
parameter becomes almost 1 at r & ap,). For the inner region, the velocity dispersion

is tangentially biased as the same as isolated models.

3.5 Black hole binaries

3.5.1 Close encounters and GR capture

In order to estimate the merger and detection rates of BH-BH binary coalescences, we
need to know binary formation rates as well as the orbital parameter distribution just
after the capture. There are several binary formation mechanisms known: primordial,
dynamical three-body process, dissipative two-body processes. Antonini & Perets
(2012) have discussed how primordial BH-BH binaries can evolve to GW sources
in galactic nuclei by the secular Kozai effect and estimated the merger fraction. In
addition, previous studies (e.g., Baumgardt et al. 2004a) noted that binary formation
by three-body process is suppressed by the strong gravitational field at the vicinity
of MBH. There are two of dissipative processes for two-body encounters, tidal force
and GR. The tidal interaction is not our interest because this process is only valid

for objects with finite sizes such as main-sequence (MS) or giant stars.
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Figure 3.7 Profiles of Radial and tangential velocity dispersion (upper) and the
anisotropy parameter (lower) for Model 0 without the external Plummer potential.
The velocity distribution is tangentially biased, and the profile is similar to that of
the isochrone model in Quinlan et al. (1995) except for the position of maximum

anisotropy.
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Figure 3.8 Profiles of Radial and tangential velocity dispersion (upper) and the
anisotropy parameter (lower) for Model 4 with the external Plummer potential.
For the inner region, the velocity distribution is similar to that of isolated models.
However, the tangential anisotropy is driven by the external potential well at the

outer region.
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The energy loss and changes of orbits by GW for binary systems were first stud-
ied by Peters & Mathews (1963) based on the post-Newtonian (PN) approximation.
Later, Hansen (1972) extended the study of Peters & Mathews (1963) to the hy-
perbolic encounters. With given masses mq,ms, a semi-major axis a (defined as
a = Gmimgy/2Ey where Ej is the initial orbital energy) and an eccentricity e, the
energy and orbital angular momentum losses by GR are given by

2 G2 m2m3(my + mg)l/2

AE = 15 B 42— 1)1

1
X [(w — 00)(96 4 292¢* + 37et) + Sesin (602 + 457e2)] . (3.8)

AL, = —ii% [(w —00)(8 + 7e?) + esin (13 + 62):| . (3.9
where GG, c and 6 are gravitational constant, speed of light and the incidence angle
at infinity defined as §p = cos~!(1/e), respectively. Two encountering but unbound
stars, therefore, become a binary if the energy loss by GR is larger than the orbital
energy Ey. From equations (3.8) and (3.9), one can obtain the semi-major axis and

the eccentricity of the captured binary as

Gmimy (m1+ma)(L.o+ AL,)
ro o _mume =1 ’ 1
“ 2(Ep + AE) and e \/ Gm3m3d/ ’ (8.10)

where the subscript 0 indicates the initial value.

Many previous studies have discussed the GR captures of compact stars in dense
stellar systems (e.g., Quinlan & Shapiro 1987, 1989; O’Leary et al. 2009). The start-
ing point is the cross section for GR capture. Quinlan & Shapiro (1987) deduced
the capture cross section under the parabolic approximation. This approximation is
valid because trajectories of the stars near the pericenter, where most of the GWs
are radiated, are almost identical to parabolic with the same pericenter distance.

The equation (3.8) is rewritten with parabolic approximation as

AE = 851 G2 m¥m3(my + mo)'/? 311
TV A 7 : (3.11)
Tp

where 7}, is the pericenter distance. Again, the GR capture will happen when the en-

ergy loss is lager than the orbital energy. By the requirement of |AE| > mymaov2, /2(m1+



74 Black Hole Binaries in Galactic Nuclei

ms), Quinlan & Shapiro (1989) obtained the maximum pericenter distance for GR

capture:

0/012/7
7/2 3/2
T'p,max = [857T\/§G m1m2(m1 * m2) ] (3.12)

12 vZ

where v is the relative velocity at infinity. Therefore, the capture cross section is

given as
9 2G(m1 + mg) 67127711777/277_5/7
Yeap = My max |1 + ———5— 7—18/7 (3.13)
Tp,maxVso c10/7y 28

where 7 is the symmetric mass ratio defined as n = myms/(mi + m2)2. We assumed
that gravitational focusing is dominant compared to the geometrical cross section
for the last equality in the above equation.

Here, we are going to introduce a statistical interpretation of GR captures to
understand the situations and predict the BH-BH binary coalescences in realistic
regime. We can assume that the motions of stars follow the one-dimensional nor-
mal distribution with a given velocity dispersion o. From the equation (3.13), the
distribution of the pericenter distance of encountering stars also becomes uniform
(ie., dS = d(mb?) ~ 2w G(m1 +m2)vy? - drp) if the gravitational focusing dominates.
Therefore, for unbound close encounters that lead to the formation of binaries by
GR, 7p/7p max follows uniform distribution in the range [0, 1]. Under the parabolic
approximation, the semi-major axis and the eccentricity can be rewritten with o

and 7, /rp max from the equations (3.11) and (3.12) as

—2
GM M o

170 2/7 10/7 10/7

_ ) g "p —5,2/7 o

=1 — ~ 1+1.57x10 — 3.15
) +< 3 > (C) (Tnmax) e (751““/8) 1)

where M is the sum of masses, and we set vins = v/20. By assuming rp, /7p max = 1/2,

typical pericenter distance for GR capture of encountering two 10M ) BHs is 2514km
in Milky-Way-like galaxies (i.e., 0 = 7bkm/s). Because the pericenter distance is

nearly the same before and after capture, the semi-major axis and eccentricity of
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the binary formed by GR capture are given by

77/2 —1 M —2
, Tp o
- ~1|  ~0.153AU 3.16
“=a Krp,maj ] (20M®> <75km/s> ’ (3.16)

10/7
el Y e a1 — —42/7 a
¢ =1-"(e—1)~1-162x10"" (75km/s> . (3.17)

For an example of the velocity dispersion of o ~ 400 km/s, the eccentricity of a
typical binary formed by GR capture is 1 — ¢/ ~ 1073, which can show us the
validity of the parabolic approximation again. From the distribution of semi-major
axis and eccentricity, we can determine the distribution of merging time for such

binaries. The merging time is given by (Peters 1964)

—1
5 Pab(l— e2)7/? { 73, 37 4}

=2 1+ = 2L
mer 64 G3m1m2 (m1 + mg) + @+ €0

1
24 96 (3:18)

where ag and ey are the initial semi-major axis and eccentricity, respectively. Since
the orbits of binaries in our consideration are nearly parabolic, the merging time has
a strong dependence on the velocity dispersion as Tier ~ aé(l — 60)7/ 2 ~ 073, Note
that this merging time is not corrected for other PN terms (see §3.6.2 and Appendix
A for other PN corrections). In Fig. 3.9, there are the distribution of semi-major axis,
eccentricity and merging time of BH-BH binaries from equations (3.16), (3.17) and
(3.18). As mentioned, we assume that the velocity of star follows one-dimensional
normal distribution with o= 75 km/s (i.e., the velocity dispersion for the Milky
Way) and the pericenter distance Tp / Tp,max follows uniform distribution. The peak
position of each distribution is equivalent to the typical value in equations (3.16)
and (3.17). For merging time, the mode is ~ 10° second. Although the distribution

is quite wide, almost all binaries will merge within a Myr.

3.5.2 Event rates

We collect the parameters of all close encounter events in our simulations in order
to investigate the GR capture and the compact binary coalescences. In the NBODY6

code, the regularization algorithm helps the calculation of very close orbits with high
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Figure 3.9 Distribution of semi-major axis (left panel), eccentricity (middle panel)
and merging time (right panel) for 10Mn BH-BH binaries in the Milky-Way-like

galaxies (i.e., 0 = 75 km/s).
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precision. If the separation or the time step of stars becomes smaller than certain
criteria, the stars are separated from the main loop, and their motions are calculated
with time smoothing. We turn on the KS regularization, the two-body regularization
scheme, and extract the semi-major axis and the eccentricity of close encounters at
the pericenter passage to avoid the effect of perturbation by nearby stars. Fig 3.10
shows the distribution of semi-major axis and the eccentricity of close hyperbolic
encounters for the Model 4 after T' > tygg. Each filled dot represents each encounter
and the dashed line shows the limit of KS regularization (i.e., rper ~ 10~%), so orbits
lying above this line are not considered in our investigation. In order to determine
whether a certain encounter results in a binary, we therefore need to convert our
dimensionless results to physical quantities according to the equation (3.4). In Fig.
3.10, there are some orbits with rainbow colors. These colored orbits will become
binaries when the overall velocity dispersion of stellar system is larger than that
velocity (e.g., the orbit colored red at the left-end will become a binary when the
velocity dispersion is ~400 km/s.). By counting the number of capture events, we
estimate the binary formation rates in our simulations.

For a single BH passing through stars with a speed v, the time scale for GR
capture is

teap = (Ecapnv)fl, (3.19)

where n is the number density of background stars. The binary formation rate be-
tween stars with different mass m; and mg in the shell with the range [r, r + dr]

can be expressed as
dlcap

dr

where (Zcapv) is the velocity averaged value. Thus, assuming v, = v/2v in equation

= drr?ng (r)na(r) (Zeapv), (3.20)

(3.13) and replacing v by o(r), the velocity dispersion, we have

dlcap 87G2m1m217_5/7

dr cl0/7

2y (F)ng(r)o (r) 1T, (3.21)

For the case of systems composed identical stars, m = m; = meg, this equation

becomes . 5/7
dl ., G 1/4)~ _
Teap gy (1/4) r2n?(r)o(r) "7, (3.22)

1
dr 2 c10/7
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Figure 3.10 Distribution of semi-major axis and eccentricity of GR captured bina-
ries for the Model 4. Different colors mean the velocity dispersion at the radius of
influence in physical units as indicated by the color bar. These encountering stars

become binaries by GR capture.
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Figure 3.11 Radial distribution of GR binary capture rates. The noisy line is from
the equation (3.22). This equation agrees well with events in the simulation except
for the the inner region. From the theory, the slope of distribution inside the radius
of influence is expected to be 2/7. However, it is ~ 1/2 because of discrepancy of

profiles as shown in Figs. 3.3 and 3.4.
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where the half is to avoid double counting and n = 1/4 for m; = mq. Fig. 3.11
shows the radial distribution of cumulative capture events dN¢ap,/d log r during At =
10007nBoDY - Histogram is from N-body simulations of Model 4, and the noisy line
is from the equation (3.22) (i.e., dNcap/dlogr = rdlcap/dr - At) with the density
and the velocity dispersion profiles from Figs. 3.3 and 3.4, respectively. In order
to get large sample size, we set the unit of velocity to the half of the speed of
light (0.5¢). Although this velocity is unrealistically high, it is possible to guess
what happens in realistic situations because there is no relativistic effect on the
simulations. The simulation results and the formula show good agreement at the
radius larger than ri,s. However, at » < ri,s, there is some discrepancy between
them: the binary formation rate obtained with simulation is smaller than that with
the equation (3.22). One possible reason is the time variation of density structure
within the radius of influence as shown in Fig. 3.6. From the theoretical model of
star distribution within the radius of influence (e.g., p(r) ~ r~7/* and o (r) ~ r~1/2),

we obtain the slope of dNc,p/dlogr as

dNeap o 27,
dlogr

(3.23)

However, the slopes inside ri,¢ in Fig. 3.11 are ~ % rather than % because the density
cusp is not the same as the Bahcall-Wolf cusp (see Fig. 3.6). Incidentally, more than
80 per cent of events occur outside rin¢, and the peak of dNeap/dlogr is located at
rhalf- Lhe small discrepancy of analytical estimation at small radii thus does not
affect the estimation of the total capture rates.

In order to obtain the overall merger rate for NC, we need to integrate the
equation (3.22) over the volume. We can assume that the merger rate is equivalent
to the capture rate because the merging time of BH-BH binary in our simulations
is negligible compared to the cluster time scales as discussed before. It is difficult to
estimate the merger rate because n(r) and o(r) are not simple function of r. Instead,

we can infer that the merger rate will be related to these variables:

~ —11/7
Ther = m?-N-7-o, /

~ Mo (3.24)
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where n, 0, and M are mean number density, the velocity dispersion of the system
and total mass of the cluster, respectively. We see that the event rate is inversely pro-
portional to the total mass of the cluster with rather steep dependence on the velocity
dispersion of the cluster. To convert our results to physical units, it is necessary
to determine the representing value of velocity dispersion of N-body simulations.
We estimate the density-weighted velocity dispersion as similar to the observational
estimation of velocity dispersion of bulge as (McConnell & Ma 2013)

[l A o? (1) p(r)r2dr

Tinf

frti?” drp(r)ridr

g

2 (3.25)

where 7. is half-mass radius. Note that the effective radius of bulge that is the
upper limit of the integration for the systemic velocity dispersion in observations is
much larger than the half-mass radius of NCs. According to recent observation for
the calibration of velocity dispersion of nearby galaxies (Kang et al. 2013), however,
the velocity dispersion does not change much with the aperture size. Thus, the

velocity dispersion of NCs is enough to represent the velocity dispersion of bulges.

Figs. 3.12 and 3.13 show the merger rates as a function of the velocity dispersion
in the physical unit. The mass ratio of MBH to the cluster is fixed at 0.2 for Fig.
3.12 (04 ~ 0.79) and 0.1 for Fig. 3.13 (o, ~ 0.75), respectively. Different symbols
represent the different number of stars and dashed lines are from the time averaged
result of numerical integration of the equation (3.24). Because of the limitations in
the number of particles and the integration time, we only consider the unrealistic
range of the velocity dispersion (1,000km/s < o, < 20,000km/s). Nevertheless, be-
cause the results show very good scaling relation with the velocity dispersion and
the total mass of the cluster, it is possible to extrapolate our results to realistic
parameters for NC. As a result, the merger rate can be expressed by an equation

with the mass of MBH and the velocity dispersion:

-1 31/7
_ _ Mysnu O«
Cher & 2.06 x 10~ *Myr—* for M, = 0.2MV,

‘ . v (3.5 x 106M@> (75km/s> or s fot:

(3.26)
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Figure 3.12 Merger rates as a function of velocity dispersion for models 2-4. The
MBH mass is 20% of the total mass of the cluster. Filled symbols are from the
number counts in simulations with different number of stars. Dashed lines show
the equation (3.24) with the proportional constants obtained from the simulations.

There are good correlations between merger rates and velocity dispersion.
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Figure 3.13 Merger rates as a function of velocity dispersion for models 5-7.

MBH mass is 10% of the total mass of the cluster.
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—1 31/7
_ _ Myiu O«
TCher & 8. 10" 5Myr ! for M, = 0.1 Mot.

308 > 107y <3.5><106M@> (75km/s> o for Masn = 0-LMror

(3.27)
Thus, the merger rate is about 2.06x10~yr~! for Milky-Way-like galaxies if we
assume that the total mass of embedded star cluster is 5 times heavier than the
MBH.

The time evolution of the merger rate for a Milky-Way-like galaxy is represented
in Fig. 3.14, which is estimated from the Model 2 with N = 20,000 in order to
see the long-term evolution. The time is scaled by the initial relaxation time at the
radius of influence 79 (Spitzer 1987) after growth of the MBH
e
T 15.4G?mpins In A’

Tri,0 (328)

where m and piy¢ are the mean mass (for equal-mass, m = M/N) and the mean
density inside the radius of influence, respectively. The noisy line is the merger rate
from the numerical integration of the equation (3.22). For comparison, we plot the
histogram showing the number of events counted in the simulation. They are selected
with o, = 10* km/s for sufficient samples and rescaled to o, = 75 km/s range. The
horizontal dashed line is the time-averaged merger rate in equation (3.26). Due
to the expansion of the cluster, the merger rate decreases with time. These two
estimates show good agreement, and therefore it is possible to surmise the merger
rates from given density and velocity structures of stellar systems. The conversion
of these merger rates to the detection rates for GW detectors will be presented in

next section.

3.6 Discussion

3.6.1 GW detection rates

To determine the detection rate of GWs from BH-BH binary coalescences for GW
detectors, it is necessary to calculate how many events occur per unit volume in the
universe and horizon distance of GW detectors. In the previous section, we estimated

the merger rates in NC as a function of the mass of MBH and the velocity dispersion.
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Figure 3.14 Time evolution of merger rate from Model 2 as a function of time at
the radius of influence. The merger rate is scaled for a Milky-Way-like galaxy. Noisy
line and histogram are from the integration of equation (3.22) and the number of
events counted in the simulations, respectively. Due to the cluster expansion, the
merger rate decreases with time. The dashed horizontal line represents the merger

rate from equation (3.26).
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It is well known that there is a good correlation between the mass of MBH and the

velocity dispersion of surrounding stars (e.g., Tremaine et al. 2002)
Mypn ~ 1.3 x 10Mg (0, /200kms ™ 1)* (3.29)

in a range of the mass of MBH [106M©, 109MO]. Later, Barth et al. (2005) con-
firmed that the relation is also valid for MBHs down to 105M®. The merger rate
for a NC, therefore, has a weak dependence on the mass of central MBH I" ~ M&/B%H

(O’Leary et al. 2009), and the merger rates of (3.26) and (3.27) become

3/28
_ _ M
Cier ~ 3.33 x 10 Myr* <3.5><1\1/[(])36HM©> ,  for Mysn = 0.2Met,  (3.30)
M 3/28
- 4 -1 MBH —
Ther = 1.39 x 10 *Myr <35><106]\J©) ,  for My = 0.1Mio.  (3.31)

However, there are several factors that give rise to uncertainties in merger rates.
From the equation (3.21), we can infer that the merger rate is proportional to the
total mass of different mass components M; and Ms. As we mentioned before, how-
ever, we assumed that all stars are 10M o BHs. There exist other stellar objects such
as MS stars, white dwarfs (WDs), NSs and BHs in real stellar systems. Hopman &
Alexander (2006) have studied the effect of mass segregation of stars around a MBH
and concluded that the number fraction of different stellar objects evolves from the
initial state (i.e., Nys : Nwp : Nns : Npg = 1:0.1: 0.01 : 1073, for continuously
star-forming populations; Alexander 2005) to Nys : Nwp : Nns : Npg = 1: 0.09 :
0.012 : 0.06 within 0.1 parsec for Milky-Way-like galaxies. If we set the mass of MS
stars (0.7Mc)), WDs (0.6 M) and NSs (1.4M,), the mass fraction of BHs Mpy is
about 44 per cent of the total mass. When we simply assume that the merger rate of
BHs in galactic nuclei can be expressed by the equations (3.26) and (3.27) with mul-
tiplication of M%H, the merger rate in equation (3.26) is reduced to 3.95x 10~ Hyr=1,
which is at least about 5 times smaller than the estimation of O’Leary et al. (2009).
Of course, it is more complicated to correct for the mass function rather than our
consideration because the mass fraction of BHs varies with the radius. Furthermore,

the mass fraction in our consideration is adequate for innermost region although
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the capture events happen most frequently around the half-mass radii as shown in
Fig. 3.11. The mass fraction of BHs around the half-mass radius might be smaller
than that from Hopman & Alexander (2006), and thus, our results could be an
overestimation.

The dynamical evolution of NCs also affects the merger rates. The merger rate
varies at most by a factor of 3 from 7" = 0 to T' = 20070 as shown in Fig. 3.14.
Merritt et al. (2007) have estimated the relaxation times 74 for ACS Virgo samples
of galaxies observed by Coté et al. (2004), and found the relation between the relax-
ation time and the central velocity dispersion. According to the relation, 7 is less
than a Hubble time with smaller velocity dispersion than 100 km/s, corresponding to
Mypu ~ 1.6 X 107M®. Therefore, the merger rates for NCs with smaller MBHs can
be affected by the dynamical evolution. In addition, the relaxation time of galactic
nuclei implies that most of NCs with larger MBHs do not contribute to the merger
rates as much as those with smaller MBHs because the number fraction of BHs in
relaxed nuclei is several tens of times lager than that of initial conditions due to the
mass segregation (Hopman & Alexander 2006), and the merger rate weakly depends
on the mass of central MBH (O’Leary et al. 2009). O’Leary et al. (2009) also noted
that the variance of the number density of galactic nuclei can affect the merger rate.
They have estimated the variance of the number density from the results of Merritt
et al. (2007) and found that the merger rate is enlarged as much with the rescale
factor & ~ 10 — 100.

In order to calculate the merger rate per unit cosmological volume, we convolve
the merger rate per NC with the number density of MBHs in the universe (for more
details, see §3.3.5 of O’Leary et al. 2009). Aller & Richstone (2002) determined the

number density of MBHs from the luminosity function of galaxies as

dnyBH —c. Myisr e~ Mrisu/M. (3.32)
dMysu M,

with the best fitting parameters of (co, Mo, ) = (3.2 X 10_11M(51Mpc_3,1.3 X
108]%@7 1.25). The merger rate per volume, therefore, is obtained by integrating
the rate over the SMBH mass distribution

M,

u dn

Rmer —/ I‘mer(]\4MBH)d]w—MBH dMMBH7 (333)
M, MBH
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where M, and M are the upper and lower limits for integration, and I'y, ga1 is the
merger rate per galaxy as a function of the mass of MBH. The upper limit can be
fixed to Myy ~ 107M® by the time scale requirement as discussed above. However,
we still do not have the exact lower limit of the MBH mass, which is currently about
105MO from the observation of Barth et al. (2005). With the uncertainty of the
lower limit of the MBH mass from 1O3M® to 105M®, the equation (3.33) gives us

the merger rate density
Rmer ~ (2 - 5)Fmer,MW€30MpC73u (334)

where I'yer Mw is the merger rate for a Milky-Way-like galaxy, and 39 is the rescale
factor for the variance of the number density of stars normalized by 30 (i.e., 1/3 <
&30 < 3; O’Leary et al. 2009).

Now, we can estimate the detection rate of BH-BH binary coalescences by next
generation GW detectors. By assuming that the merger events occur uniformly in
the universe, the detection rate only depends on the size of cosmological volume
which we can cover and can be expressed by (O’Leary et al. 2006; Belczynski et al.
2007; Downing et al. 2011; Bae et al. 2013)
47y (2)? dr ;

1+2z dz

Rdet = Rumer (335)

where z is the cosmological redshift, and the factor of (1 4+ z)~! represents the
cosmological time dilation. For existing GW detectors, the effect of redshift can
be negligible because their coverage is not too far (i.e., the horizon distance Dy
are 33 Mpc for NS-NS binaries and 161 Mpc for BH-BH binaries corresponding to
z ~ 0.01 and 0.04 in standard ACDM cosmology, respectively; Abadie et al. 2010).
However, for next generation GW detectors, the effect of redshift becomes important,
especially for BH-BH binaries. The maximum horizon distance Dj, can be obtained
from signal-to-noise ratio (SNR) of GW signals (for more details, see §4.2 of O’Leary
et al. 2009). Because the redshift affects both the mass of source and the frequency,
SNR should be estimated from the waveforms carefully. Only few studies (Baker et
al. 2007; O’Leary et al. 2009; Reisswig et al. 2009) have estimated Dy for BH-BH

binaries for given SNR.
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Table 3.2 Detection rates of BH-BH binaries for advanced LIGO.

89

Models MMBH/MCI Fmer,MW MaBH Dh

b c d
Rdet,l Rdet,re Rdet,h

(Myr™) (Mpe) — (yr™")  (yr7h)  (yr7h)

986¢ 0.06 0.44 2.99

1-4 0.2 3.33x107* 044 ~11007 0.09 0.64 4.32
~19009  0.27 2.00 13.5

986¢ 0.02 0.19 1.25

5-7 0.1 1.39 x 107*  0.44 ~1100f 0.04 0.27 1.80
~19009 0.11 0.83 5.62

“Mean mass fraction of BHs from Hopman & Alexander (2006).

b.¢.d] ow, realistic and high detection rates depending on uncertainties discussed in text.
€Dy, with SNR 8 form Abadie et al. (2010) divided by 2.26, the correction factor for sky

location and orientation of sources. The effect of redshift is not included.

f Dy, with SNR. 10 form Fig. 16 in Baker et al. (2007).
9Dy, with SNR 8 form Fig. 3 in Reisswig et al. (2009).
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Table 3.2 shows the detection rates expected for advanced LIGO. Because we
mainly considered the equal-mass models for only BHs, the detection rates are cor-
rected by the factor of M%H. We estimated detection rates by using Dy, from different
studies (Baker et al. 2007; Reisswig et al. 2009; Abadie et al. 2010). All Dys are cor-
rected for the orientation of sources. Note that Dy, from Abadie et al. (2010) does
not include the cosmological effect of the redshift. Dy, from Reisswig et al. (2009) is
for spinning BHs but independent of the spin of BHs for 10M BHs. We list three
detection rates Ret,1, Rdet,re and Rget,n considering uncertainties discussed above.
Reasonably, the detection rates are ranged from 0.2-2 yr~! depending on the maxi-
mum horizon distance. These estimates are significantly lower than those of O’Leary
et al. (2009) (5-2000 yr—1).

Our estimations have some limitations; (1) We ignore the initial mass function.
This mass function may affect not only the evolution of systems by the relaxation
between mass components but also the merger rates for BHs with different masses.
(2) We need to consider various range of Mypn/M (e.g., Graham & Spitler 2009,
suggested that there is a rough relation between the mass of MBH and NC.) (3) The
exact calculation for SNR is necessary in order to obtain more reasonable detection

rates. These limitations would be considered in future works.

3.6.2 Black hole binary coalescence and waveform

Solving Einstein field equation exactly is very difficult and has only been done nu-
merically. Fortunately, during inspiral phase of compact binary coalescences, the
Finstein equation can be simplified with the PN expansion. When a compact binary
is formed, the orbit decays with time due to the GR. The orbit-averaged change of
the semi-major axis and the eccentricity by GR is first derived by Peters (1964) as

da 64 G3myma(my + ma) 73 5 37,
aN_ 2 14+ 22y 28 :
< dt > 5  cPad(1—e2)7/2 < + 24° + 96" (3-36)
de 304 G3mima(my + ma) 121 ,
ey 14+ = .
<dt> 15 Bal(l— )2 ( T304 ) (3:37)

in the 2.5 PN order (~ 1/c°, the first order GR term). However, the orbital evolution

is also affected by other PN order terms such as 1PN (relativistic precession), 1.5
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PN (spin-orbit coupling), 2PN (spin-spin coupling, high order relativistic precession)
and higher orders. With full consideration of PN terms up to 2.5 order, Berentzen
et al. (2009) noted that the decay of the binary orbit is much faster than that with
2.5PN only. Although the effect of the spin is quite important for the motions and
waveforms of BH-BH binary coalescences, we only consider non-spinning BHs and
take 1, 2 and 2.5PN order terms in this study.

The equation of motion with PN correction up to 2.5PN order can be simply
written in the center of mass frame as (Blanchet & Iyer 2003; Mora & Will 2004)

Gm Gm, r

where A, B are PN coefficients depending on their masses, the relative position
r and relative velocity v (see Appendix A, for more details). Many authors have
incorporated the PN corrected force in direct N-body simulations with different PN
orders (Lee 1993; Aarseth 2007; Berentzen et al. 2009; Brem et al. 2013). Similarly,
we implemented the PN equation of motion to the KS regularization process in
NBODY6 code. In the KS regularization process, a two-body motion is sometimes
perturbed by other neighboring stars, and these perturbation should be corrected.
Thus, we can consider the PN force as a perturbing force in the code by adding
the PN force and its time derivative. We designed that the binary will merge when
the separation is smaller than four Schwarzschild radii 4Rgq, = 4 - 2G(m1 + ma)/c?
because the PN approximation is not valid in this regime any more.

For instance, Fig. 3.15 shows the time evolution of semi-major axis and eccen-
tricity for a 10M BH-BH binary with PN approximation. The initial semi major
axis and eccentricity are 107* AU and 0.9, respectively. The solid line represents
the time integration of Peters formula, equations (3.36) and (3.37). There is a good
agreement between the results of simulation with only 2.5 PN term (open circle) and
integration of Peters formula. On the other hand, the merging time of simulation
with all PN terms (filled circle) is significantly smaller than that of Peters formula
as reported in Berentzen et al. (2009). In case of this binary, it takes less then a half
hour for merging (i.e., 712 < 4Rscp).

In our simulations, most of pairs of close encounters have not been perturbed by

other nearby stars. Thus, it is possible to separate the two-body motion with PN
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Figure 3.15 Time evolution of semi-major axis and eccentricity of a coalescing bi-
nary. Solid line is from the integration of Peters formula. Open and filled circles
are the results of simulations with 2.5 PN correction only and full PN correction,
respectively. The simulation with 2.5 PN correction only agrees well with Peters for-
mula while that with full PN correction significantly festinates compared to Peters

formula.
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correction from the main loop of simulations. We, here, use a TOY! code only for
a KS two-body motion written by S. J. Aarseth for convenience of exploration of
the evolution of merging binaries. The PN implementation mentioned earlier is also
adopted in the TOY code. For given semi-major axis and eccentricity, we simulate
the orbital evolution of binaries. Fig. 3.16 shows the merging time of typical BH-BH
binaries in equations (3.16) and (3.17) with different velocity dispersion of systems.
The merging time is estimated by two-body simulations with all PN corrections. A
star symbol is showing the result of a galactic nucleus in Milky-Way-like galaxy. In
all cases, the merging times are less than a year. Binaries formed by GR capture,
therefore, will merge immediately.

The GW waveforms of coalescing binaries have already been studied by many
authors (e.g., Lincoln & Will 1990; Kidder 1995). As the perturbation of flat-space
metric, h¥ in can be expressed by (for more details, see equations 3.21 and 3.22 in
Kidder 1995)

W = 2B Q1 PQU 4 QU+ Q) + PMH(QU +Qi) + PQis 4+ |, (3:39)
D SO SO SS TT’ :

where p is the reduced mass, D is the distance from the source to the detector,

Q% is the time derivative of quadrupole moment tensor, P" is the PN corrections

with order of n, and SO, SS and TT denote spin-orbit coupling, spin-spin coupling

and transverse-traceless gauge, respectively. Here G = ¢ = 1 is used. Since we are

interested in the aspects of GW rather than the exact waveforms, we take the leading

order of h*

4l o
h" = EM [vzv] — Tnlnjl, (3.40)
with
QY =2 [vivj — mninj] ; (3.41)
r

where v* and n' are the relative velocity and the normal vector of the relative po-
sition, respectively. It is well known that GWs have two polarization + and x and

waveforms are the linear combination of these two polarizations. If we assume that

"http:/ /www.ast.cam.ac.uk/~sverre/web/pages/nbody.htm
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Figure 3.16 Merging time of typical 10M (see §3.5.1 for details) BH-BH binaries
with different velocity dispersion of embedded star clusters. The merging times are
obtained from two-body simulations with all PN corrections. The range of velocity
dispersion is 50 to 400 km/s, which is correspond to the range of the mass of SMBH
from 5 x 105M® to 2 x 109M@ according to the Mygg — 0« relation from Tremaine
et al. (2002). Star symbol represents the binary mering time in the Milky-Way-like

galaxies. In all cases, the merging times are smaller than a year.
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the orbital plane lies on the zy plane initially in the source coordinate, and the angle
between the direction to the detector N and the angular momentum J is ©, the

polarizations h4 and hy are given by (Kidder 1995)
1
hy = 3 (cos2 Oh®® — h¥Y 4 sin? Oh** — sin 2@hm>, (3.42)

x = cos Oh™ — sin OhY*. (3.43)

Now we provide a waveform of a typical 10Mc BH-BH binary coalescence in a
Milky-Way-like galaxy for an example. The semi-major axis and eccentricity after
GR capture are 0.153 AU and 0.99989 from the equations (3.16) and (3.17), respec-
tively. In Fig. 3.17, the relative motion of BHs on zy plane is shown. Due to the 1PN
and 2PN terms, the position of perihelion is shifted counterclockwise. In addition,
by emitting GWs, the orbit shrinks more and more with time. Fig. 3.18 shows the
waveforms for this BH-BH binary coalescence. For simplicity, we assume that the
axis of angular momentum is aligned with the direction to the detector (i.e., face-on
view, © = 0). In Fig. 3.18(a), the waveform of + polarization during whole evolution
is presented. The merging time is about 8 days. Interestingly, the waveform is burst-
like at the beginning, and it takes more than 2 days for the first burst after capture.
The detailed waveforms hy and hy at this moment are shown in 3.18(c) and (d).
These waveforms are similar to those of eccentric orbits in Abramovici et al. (1992).
Fig. 3.18(b), (e) and (f) show the waveform in the last minute, the detailed view
of hy and hy a half minute before merging, respectively. In this stage, the orbit is
much circularized compared to the beginning, and the orbital frequency is about 10
Hz. At the moment of coalescence, the orbital frequency becomes few hundreds Hz

which is the detectable frequency by ground-base GW detectors.
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Figure 3.17 Relative orbital motion of a BH-BH binary with the initial semi-major
axis 0.153 AU and eccentricity 0.99989, as a representative of typical BH-BH binaries
in Milky-Way-like galaxies. The orbits are very eccentric at the beginning. The
perihelion is shifted counterclockwise due to the 1PN and 2PN terms, and the orbit

shrinks with time due to the GW emission.



Black Hole Binaries in Galactic Nuclei 97

—
n
N
[SIN)
£
= -
+= =
- ~ —
= o
T x
. © q
1 —
| —
n
N
1 [SIN)
£
o
_ i ~
= = — —
S 2l E o
R=
<+ = & g N
— o) q
-
E wn —
B ©
R
—_
n
N
-
) s
Q
1 2 .
o
Z
—
o (@)
X
q
—
—
n
N
o v
E
o
S n = ©
K <l = 2 _
o o o
+ + +
q q q

Figure 3.18 Waveform of BH-BH binary coalescence for the same binary in Fig
3.17. (a) hy for whole stage. The merging time is ~8 days. The waveform is like
a burst, initially. (b) hy for last minute. The waveform is much sinusoidal at this
time. (c,d) hy and hy for the first burst as marked in (a). They are similar to those
of eccentric binaries in Abramovici et al. (1992). (e,f) A4 and hx at a half minute

before coalescence as marked in (b). At this time, the frequency is ~ 10 Hz.
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Chapter 4
Summary and Conclusion

This thesis focuses on understanding of the dynamical evolution of the stellar sys-
tems under specific conditions and assumptions. I have investigated two different
astrophysical applications by using Aarseth’s type direct N-body simulations and
with high performance hardwares such as GRAPE and GPU;

Dynamical evolution of rotating star clusters with two-component models

In Chapter 2, I have performed numerical simulations of rotating stellar system with
two mass components using NBODY4 and mFOPAX codes. By considering various
mass spectra, I confirmed that both the initial rotation and the mass spectrum
accelerate the evolution of the stellar system, as presented previous studies (Einsel
& Spurzem 1999; Kim et al. 2002, 2004, 2008). However, I found that the initial
rotation does not affect the evolution before the core collapse when the individual
mass ratio mo/m; is large enough. The mass evaporation rate is closely related to
the acceleration of the evolution and increases with mgy/m;.

According to the instability criteria from Ostriker & Peebles (1973), I classified
the models to slowly rotating models (i.e., Tyot/|W/| <0.14) and rapidly rotating
models (i.e., Tyot/|W| >0.14). By comparing the results of different approaches, N-
body and FP simulations, I confirmed that two approaches agree well with small
differences on the time scales for the slowly rotating models. On the other hand, for

rapidly rotating models, there are significant discrepancies between N-body and FP
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results. From the investigation of shape of systems, I revealed that the bar instability
happens at the beginning for rapidly rotating models in N-body simulations. This
bar instability induces unexpected phenomena like the rapid loss of mass, energy and
angular momentum. In addition, the bar instability hinders the two-body relaxation
process, so the dynamical evolution of rapidly rotating systems is delayed as com-
pared with FP results. I therefore concluded that the 2 dimensional FP approach is
not valid for rapidly rotating cases because 2 dimensional FP approaches are unable
to treat non-axisymmetric models.

As the result of two-body interactions, low and high mass stars exchange their
kinetic energies and happen to have similar kinetic energies. I confirmed that our
models agree well with the equipartition instability criteria (Spitzer 1969; Watters
et al. 2000) for slowly rotating models. When the mass ratio becomes larger, it is
hard to reach the complete equipartition state. Moreover, the equipartiton process
is more disturbed for rapidly rotating models which suffer the bar instability. I also
observed the exchange of angular momentum between low and high mass stars by
investigating escapers and defined the angular momentum exchange rate &exe. Eexc
increases when the initial rotation increases. However, the amount of transferred
angular momentum from high mass stars to low mass stars decrease because clusters
with rapid initial rotation survive rather shortly compared to those with low initial

rotation.

Black hole binaries in galactic nuclei and gravitational wave sources

In Chapter 3, I have generated N-body realizations for nuclear star clusters (NCs)
located at the center of galactic bulges and hosting a massive black hole (MBH).
In our simulations, the surrounding bulge is considered as the external potential
well which makes the velocity dispersion of the embedded star cluster isothermal
since a deep potential well behaves like a heat bath (Yoon et al. 2011). The MBH,
in the same manner, is also modelled as a point-mass potential but growing with
time to ensure the adiabatic adjustment of the stellar system. Consequently, our
N-body realizations have a stellar density cusp (p ~ r~17; Bahcall & Wolf 1976)

and Keplerian velocity dispersion within the radius of influence. In addition, the
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overall velocity structure is similar to observations of the star cluster at the center of
Milky Way (e.g., Schodel et al. 2009). Strictly speaking, however, these star clusters
are not in equilibrium but expand continuously since the MBH can generate kinetic
energies by the interaction with stars in the cusp. Moreover, due to the wandering of
the MBH, the slopes of density and velocity dispersion profiles are slightly shallower

than those of theoretical expectations.

This environment of NCs is a good laboratory for gravitational wave (GW)
sources. In order to investigate GW event rates in NCs, I have collected the orbital
information of close encounters (i.e., semi-major axis and eccentricity) in our N-
body simulations. While most of binaries are disrupted by the strong tidal field
from MBH, there can be many hyperbolic encounters of stellar mass black holes
(BHs) whose pericentric distances are sufficiently small to radiate GWs efficiently
due to the high density and velocity dispersion at the vicinity of the MBH and the
high number fraction of BHs due to the mass segregation (Hopman & Alexander
2006; O’Leary et al. 2009). When the energy loss by gravitational radiation (GR) is
greater than the orbital energy, two BHs make a binary and merge quickly because
of the small separation and large eccentricity after capture. Thus, the capture event
rate corresponds to the merger rate. The capture happens most frequently near the
half mass radius rather than within the radius of influence. Thus, our investigation
of GR capture event rates is still valid although our models can not precisely realize
the cluster inside of the radius of influence. By counting the number of GR capture
events, I have built scaling relations of merger rates for a NC as a function of the
mass of the MBH and the velocity dispersion of the star cluster. As the result, the
merger rate for a Milky-Way-like galaxy is ~ 1071%r~! proportional to the mass
ratio of MBH to the star cluster.

From the Mypn — 0. relation (e.g., Tremaine et al. 2002), the merger rate be-
comes a function of the mass of MBH only. By using realistic mass function of MBHs
(e.g., Aller & Richstone 2002), I have determined the merger rate density per unit
volume. Then, the detection rates can be expressed with the merger rate density
and the size of cosmological volume covered by GW detectors if I simply assume

the uniformness of merger events over cosmic time and volume. I have obtained the
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expected detection rates 0.2 —2yr~! for advanced LIGO depending on the maximum
horizon distances from different studies (Baker et al. 2007; O’Leary et al. 2009; Reis-
swig et al. 2009) and the mass ratio of MBH to the star cluster 0.1 and 0.2. This
estimate is remarkably smaller than that of O’Leary et al. (2009) who suggested the
detection rate of ~ 10 — 1000yr—! of BH-BH binary coalescences in galactic nuclei
for advanced LIGO. There are several factors giving uncertainties in our estimation:
the dynamical evolution of the cluster (by a factor of 2 ~ 3), the variance of number
density of stars (by a factor of ~10) and the mass range of MBH (by a factor of
2 ~ 3). However, this study still have some limitations; (1) It is necessary to consider
realistic mass function for BHs instead of assuming the mean mass fraction of BHs.
(2) There is a relation between the mass of MBHs and the NCs (Graham & Spitler
2009). However, I fixed the mass ratio of MBH to the star cluster to 0.1 and 0.2. (3)
In order to determine the maximum horizon distance for BH-BH binary mergers,
the precise signal-to-noise ratio calculation is needed.

I have investigated the statistics of coalescing BH-BH binaries and found that
the typical semi-major axis and eccentricity of these binaries are related to the
velocity dispersion of the system. I also have implemented the post-Newtonian (PN)
approximation on the two body motions up to 2.5 PN orders. With a given set of
semi-major axis and eccentricity, I calculated the two-body motion under the PN
approximation and the waveform of GW emission. The merging time is about a
few hours for a typical BH-BH binaries in a Milky-Way-like galaxy. I also found
that the orbital frequency becomes ~100 Hz at the moment of coalescence, which is

detectable by the ground-base GW detectors.
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Appendix A

Post Newtonian Equation of

Motion in Center of Mass Frame

Here, we present the post Newtonian (PN) equation of motion of binary system
in the center of mass frame up to 2.5 PN order by following Mora & Will (2004).
Because we assume non-spinning BHs, we do not consider spin terms in this paper.

For the beginning, we borrow notations from Mora & Will (2004) as

m = mi+ ma,

vV = V3 —Vj,

r = rp-—ry,

n = r/r

n = (mimg)/(m1+ms)?, (A1)

where mi; and meo are the mass of stars, ri,re, vy and vy are the 3-dimensional
positions and velocities, and 7 is the symmetric mass ratio. As mentioned in the
text, the PN acceleration can be considered as a perturbation and added to the

gravitational acceleration as

m

m
a=ap+apn = —2h + T—Q(An + Bv) (A.2)
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where A and B are the PN coefficients related to the relative position and velocity,

respectively, where

3
Al = 22405 — (L4 3)0? + S (A.-3)
3 m2 15 .
1 3
+5n(13 477)%}2 +(2+25m+ 2772)%7‘2 +5n(3 = dn)ui® (A4)
8 m.[1Tm
A5/2 = 577TT<3T + 3U2>7 (A.5)
and
B = 2(2—n)r (8.6)
1 9 M, 1 2. 3 -3
By = —g(+4ln+8r) i + 5n(15 +dn)o™r — on(3 +2) (A7)
8 m/{_m

where 7 is the first time derivative of radial distance defined as 7 = r - v/r. Then
the coefficients A and B are given by the summations of coefficients for different PN
order divided by the speed of light ¢, A;/c*. Note that the sign of B is opposite of
that in Blanchet & Iyer (2003).

Since the NBODY code uses 4th-order Hermite integrator, we have to have the

first time derivatives of accelerations as similar to the accelerations
A= ay + apn. (A.9)
The derivative of PN acceleration ap, can be expressed as
dpn = —2—57(An+ Bv) + —(An+ Bv + A(v/r —n7/r) + Ba), (A.10)
T T

where A and B are the time derivatives of the coefficients A and B, which are the

summations of

-":rx | 'I‘I:I' ]_-li
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A = —2(24—17)%1‘"—2(1+3n)v-a+3m'“7'“' (A.11)
2
. 1
Ay = ;’(12 +290) i — dn(3 — 4o’y -a — 3577(1 — 3n)i 3
T
1 2. 23
+op(13 — 4p) 2 <2v a— M) +(2+ 250 + 272) 2 (w . T)
2 T T r T
+3n(3 — 4n) (v - ar? + v%iF) (A.12)
- 8 m i\ (17Tm 8 m 17m
Asig = —n—|(i——)[=—= 2) 4+ 2 — 46V Al
5/2 577T(T T><3T+3v>+5nrr< 3r2r+va> (A.13)
and
B, = 22-n)F (A.14)
. 1 22
By = —(4+4117+8772)m<7'~'— r)
2 T T
1 9
+5n(15 4 ) (2v - ar + v?7) — 3B+ 2n)7# (A.15)
. 8 m. (. m 9 8 m m,
Bsjp = 5n73r<3r +v ) - 577r<—3r27“+2v-a> (A.16)
where 7 is the second time derivative of the radial distance given by
i=w?+r-a—7%)/r (A.17)
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