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Abstract: This paper reviews methods that aim at simulating nuclear quantum effects (NQEs) using
generalized thermal baths. Generalized (or quantum) baths simulate statistical quantum features, and
in particular zero-point energy effects, through non-Markovian stochastic dynamics. They make use
of generalized Langevin Equations (GLEs), in which the quantum Bose–Einstein energy distribution
is enforced by tuning the random and friction forces, while the system degrees of freedom remain
classical. Although these baths have been formally justified only for harmonic oscillators, they
perform well for several systems, while keeping the cost of the simulations comparable to the classical
ones. We review the formal properties and main characteristics of classical and quantum GLEs, in
relation with the fluctuation–dissipation theorems. Then, we describe the quantum thermostat and
quantum thermal bath, the two generalized baths currently most used, providing several examples
of applications for condensed matter systems, including the calculation of vibrational spectra. The
most important drawback of these methods, zero-point energy leakage, is discussed in detail with
the help of model systems, and a recently proposed scheme to monitor and mitigate or eliminate
it—the adaptive quantum thermal bath—is summarised. This approach considerably extends the
domain of application of generalized baths, leading, for instance, to the successful simulation of
liquid water, where a subtle interplay of NQEs is at play. The paper concludes by overviewing further
development opportunities and open challenges of generalized baths.

Keywords: generalized Langevin equation; nuclear quantum effects; quasi-classical simulations;
fluctuation–dissipation theorem

1. Introduction

This paper reviews methods that use generalized thermal baths, that we shall indicate
generically as quantum baths. Other expressions, such as generalized or quasiclassical
baths, are used in the literature to designate a family of methods revolving around various
flavors of dynamics aiming at mimicking quantum properties via generalized Langevin
equations. We adopt here the generic expression quantum bath, which is clear enough to
specify the field without entering into the technical details separating these schemes to
approximate nuclear quantum effects (NQEs) and, in particular, atomic zero-point energy
(ZPE).

It is well-recognised that NQEs cannot be neglected for systems at low temperatures
or at high pressure, where they can have, for example, a strong influence on phase tran-
sitions [1–3]. Nuclear quantum effects, however, also often come into play at ambient
conditions, typically when the thermal energy of chemical bonds in molecules is compa-
rable or smaller than the associated vibrational ZPE or when characteristic interatomic
distances in the system are comparable to the de Broglie wavelength of the nuclei. These
conditions are met, in particular, in systems containing light atoms and most notably hydro-
gen [4,5], which is a ubiquitous constituent of inorganic compounds and a basic element
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in biological systems. Thus, nuclear quantum effects influence, for example, the stability
of crystal polymorphs of pharmaceutical interest, the spectroscopy of ice and water, or
enzymatic reactions in living organisms [6–9]. NQEs are also required to reveal the effect
of isotopic substitutions on equilibrium properties, as a classical description of the nuclei
predicts identical statistical properties for all isotopes. The exact simulation of these effects
is, however, a challenging problem due to the large (sometimes unachievable) compu-
tational cost of available methods. Time-independent statistical properties of quantum
nuclei at thermal equilibrium can be obtained using the so-called classical isomorphism of
path integrals (see Section 6), in which a quantum particle is represented as a collection of
beads interacting via an effective classical-like potential. While this approach guarantees
theoretical convergence to the exact quantum result in the limit of an infinite number
of beads, it necessitates in practice to simulate a number of degrees of freedom that can
become prohibitive, in particular when first-principles methods are used for the interatomic
interactions. The situation is even more problematic for time-dependent properties for
which exact simulation methods scale exponentially with the number of degrees of freedom.
Different approaches have been proposed, such as in [10,11], each with their own strengths
and weaknesses; but, in spite of several interesting results, no clear, practical and general
reference method has emerged.

In the following, we focus on the family of approximate methods for simulating
quantum nuclear effects that rely on the use of quantum baths. Although these methods
can substantially differ from one another in their practical implementation, they all aim at
introducing quantum statistical properties into classical trajectory-based dynamics. This is
achieved via a stochastic evolution that takes the form of a generalized Langevin Equation
(GLE), in which the quantum Bose–Einstein energy distribution is enforced instead of
equipartition, by means of an appropriate tuning of the random and friction forces. The
main advantage of these approaches is that the number of degrees of freedom in the system
and the deterministic part of the propagation remain classical, thus enabling them to mimic
quantum properties at a numerical cost directly comparable to that of standard Langevin
dynamics. Contrary to standard Langevin, however, quantum baths exhibit a complex
non-Markovian dynamics whose formal properties are not obvious. In particular, while
these methods deliver remarkable performances in a growing number of applications, they
cannot be formally justified except for harmonic systems. This intriguing scenario motivates
our approach for this review. In Section 2, we start by stating some fundamental results
in the statistical mechanics of classical and quantum systems, the fluctuation–dissipation
theorems (FDT). We then introduce the standard and generalized Langevin equations and
set the stage for the following developments. This is done, in particular, by recalling how the
GLE can be derived starting from the physical picture of a generic system (not necessarily
harmonic) bilinearly coupled to an environment modelled as a set of harmonic oscillators.
We shall consider both classical and quantum versions of this system-bath model and
describe how the quantum version can be used, via an appropriate quasiclassical limit,
to motivate the quantum bath algorithms on which we focus in this review. While more
general models for the bath are possible (including, in particular, anharmonicity) these are
not particularly relevant for this work and will therefore not be discussed, nor included
in examples. Section 3 focuses on using the quantum FDT to build GLEs that combine
classical deterministic evolution with quantum stochastic behaviour to mimic NQEs. In
particular, we introduce two approaches, the Quantum Thermal Bath [12] (QTB) and
the Quantum Thermostat [13,14] (QT) that have recently attracted considerable interest.
Section 4 aims at understanding more in depth the capabilities of the quantum thermal
bath via the detailed analysis of simple low-dimensional systems that enable a comparison
with exact quantum results. In particular, the most important pathology of this type of
methods, namely the ZPE leakage, is illustrated on an elementary example. Although
this section focuses on the QTB, which is formally simpler and has fewer parameters than
the QT, the general observations apply to both frameworks. In Section 5, we review
the capabilities of quantum bath methods by summarizing some significant applications
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to realistic models of condensed matter systems. Remarkably, these techniques prove
useful not only in the simulation of static equilibrium properties of quantum nuclei, but
also in the calculation of vibrational spectra [15], including subtle anharmonic features
that elude other trajectory-based approximations to quantum dynamics [16]. In Section 6,
we complete the overview of important applications of thermal baths by showing how
they can be used to improve the convergence of calculations based on the path integral
formalism. We then introduce in Section 7 a recent development that, by exploiting the
quantum fluctuation–dissipation theorem, enables to monitor and efficiently compensate
ZPE leakage. This approach, known as the adaptive quantum thermal bath [17] (adQTB)
extends considerably the domain of application of the QTB, leading, for example, to the
successful simulation of liquid water [18]. The review ends with a discussion of remaining
limitations, open questions and possible future developments of quantum baths as effective
and accurate tools for the simulation of condensed phase systems.

We conclude this Introduction by noting that GLEs have a long and rich history, with
applications in a very broad range of domains that we do not account for here. The literature
on quantum baths is also rapidly increasing. While we have tried to provide appropriate
references throughout the text, we have chosen to present the material focusing on results
and derivations that seemed more directly related to the methods at the core of this work,
intended as a relatively self-contained introduction to a still-developing set of exciting new
algorithms for growing classes of quantum problems in physics and chemistry.

2. The Langevin Equation as a Thermal Bath

Originally introduced as a description of the Brownian motion, the Langevin equation
is widely used in molecular dynamics simulations as a practical way to implement the
canonical ensemble sampling. Starting from the microcanonical ensemble for a closed
system, the canonical distribution is obtained by considering a small portion of the system
that can exchange energy with its environment, which is referred to as the bath. In order to
avoid the explicit representation of the bath degrees of freedom, the Langevin equation
describes the bath via the combination of a random force and a friction mechanism (see
Figure 1), that both act on the system degrees of freedom.

−m  xγ
.

system
R(t)

BATH

Figure 1. The Langevin Equations (4) and (5) as a thermal bath in classical molecular dynamics
simulations: the random force R(t) (magenta arrows) pumps energy from the bath into the system,
while the friction force −mγẋ (blue arrows) extracts energy from the system. The balance between the
two produces the correct thermal equilibrium. These forces can be modified to generate generalized
baths with different given properties.

Since any stable physical system at equilibrium fulfills the fluctuation–dissipation
theorem (FDT), we start by recalling this pivotal result in statistical mechanics, which
will be used all along this review. We then introduce the Langevin equation and its non-
Markovian generalization and recall how they can be derived from an explicit harmonic
model for the bath. We end this section by reviewing some instances of the generalized
Langevin approach in the literature, pointing out more specifically some developments
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that are relevant in the perspective of the implementation of quantum bath methods to
approximate NQEs, as presented in Section 3.

2.1. Linear Response and Fluctuation–Dissipation Theorems

Linear response theory provides useful relations characterizing dynamical properties
under external perturbations via averages over the equilibrium probability of the system,
e.g., thermal probability density. We first introduce the complex admittance or susceptibility
χ(ω) that characterizes the linear response of a system subject to a perturbative force
F(t) = Re[F0 eiωt] along a given direction x. At first order in the perturbation, the change
in the velocity along x induced by the perturbation (here and in the remainder of the
section, we use one-dimensional notations; the generalization to higher dimension is
straightforward) reads:

∆v(t) = Re[F0 χ(ω) eiωt]

This relation can be considered as a definition for χ(ω). For a classical system at
thermal equilibrium at temperature T, it can be shown that the following fluctuation–
dissipation theorem (FDT) holds [19,20]:

Cvv(ω) = 2kBT Re[χ(ω)] (1)

The FDT as derived by Kubo in [19] is actually more general than Equation (1) and
can be used to relate the cross-correlation spectrum CAB(ω) of two arbitrary observables A
and B to the corresponding linear response function. In our case, Equation (1) relates the
real part of the susceptibility (that is dissipative) to the equilibrium velocity autocorrelation
spectrum (that characterizes fluctuations):

Cvv(ω) =
∫ ∞

−∞
dt 〈v(0)v(t)〉 e−iωt (2)

The FDT characterizes the frequency distribution of energy at equilibrium, in its
classical Formulation (1), it expresses the equipartition of energy in the system. However, a
slightly different FDT can be derived for quantum systems [19,21]:

Cs
vv(ω) = 2θ(ω, T) Re[χ(ω)] with θ(ω, T) =

h̄ω

2
coth

(

h̄ω

2kBT

)

(3)

Here the classical thermal energy kBT has been replaced by the quantum Bose–Einstein
distribution θ(ω, T), and the autocorrelation spectrum that is used is now the Fourier
transform of the symmetrized correlation function:

Cs
vv(ω) =

∫ ∞

−∞
dt Tr

[

1
2

ρeq

{

v(0)v(t) + v(t)v(0)
}

]

e−iωt

with ρeq the equilibrium density operator. v(t) now designates the time-dependent velocity
operator in the Heisenberg picture. The definition of the linear susceptibility is also
modified in the quantum case and is related to the change induced by the perturbative
force on the density operator ρ. The fluctuation–dissipation theorem plays a key role in
the generalized Langevin equations used to sample the classical canonical ensemble, as we
will develop in the following sections. More recently, the quantum version of this theorem
has also been employed to design the trajectory-based approximations for the simulation
of NQEs at the core of this review.

2.2. The Langevin Equation in Classical Molecular Dynamics Simulations

In its basic form, the Langevin equation of motion writes:

mẍ = −dV

dx
− mγẋ + R(t) (4)
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where R(t) is a random force with zero mean (usually taken from a Gaussian distribution)
and characterized by a white noise correlation function:

〈R(t)R(t + τ)〉 = 2γmkBTδ(τ) (5)

The random and friction forces model the effect of a thermal bath (see Figure 1)
and ensure the canonical statistics, including the energy equipartition theorem and the
fluctuation–dissipation theorem as stated in Section 2.1. The constant γ is the strength of
the coupling of the thermal bath with the simulated system. Its inverse 1/γ provides an
indication of the relaxation time of the system, that is, the time it takes for the random force
and the dissipation to equilibrate.

Used as a thermostat in molecular dynamics simulations, the Langevin Equation (4)
provides, for any γ, an exact sampling of the canonical Boltzmann distribution. More
precisely, it can be proved that the probability distribution converges exponentially to the
invariant one starting from a wide range of different initial conditions [22], thus avoiding
temperature oscillations or other spurious effects that other thermostats, such as Nosé-
Hoover, can generate. Dynamical properties, on the other hand, are affected by the coupling
with the bath and depend on the value of γ. In particular, the damping term generally
broadens the peaks corresponding to modes in the vibrational spectra over a typical
width γ.

2.3. Generalized Langevin Equation (GLE)

The standard (Markovian) Langevin Equation (4) can be generalized in the following
manner:

mẍ = −dV

dx
−

∫ t

−∞
ds K(t − s) ẋ(s) + R(t) (6)

This equation is non-Markovian since the friction force does not only depend on the
velocity ẋ at time t, but is rather expressed as an integral over past values of ẋ through
the memory kernel K(τ), which determines the actual dependence. In order to enforce the
canonical ensemble statistics and the equipartition of energy, the random force should then
be related to K(τ) by the following relation:

〈R(t)R(t + τ)〉 = kBT K(τ) (7)

which reduces to (5) in the Markovian limit K(τ) = 2mγδ(τ). As the bath is supposed
to be at equilibrium, the time correlation function 〈R(t)R(t + τ)〉 does not depend on the
arbitrary time origin t. Defining the Fourier transformed quantities (here, we modify the
memory kernel, which is in principle defined for non-negative times, by symmetrization as
K(−τ) = K(τ)):

K̃(ω) =
∫ ∞

−∞
dτ K(τ) e−iωτ

CRR(ω) =
∫ ∞

−∞
dτ 〈R(t)R(t + τ)〉 e−iωτ ,

yields the following relation:
CRR(ω) = kBT K̃(ω). (8)

Equation (8)—or its time-domain version, (7)—follows from the equilibrium between
the system and the thermal bath, and it is generally referred to as a fluctuation–dissipation
theorem (FDT), similarly to Equation (1). The latter, however, is a general result of linear
response theory that involves only intrinsic observables of the system (its velocity auto-
correlation and its linear response function) whereas Equations (7) and (8), characterize
the system–bath interactions via the friction and random forces in the particular context of
the generalized Langevin dynamics. As pointed out by Kubo, Toda and Hatsishume [20],
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Equation (1) can be regarded as more fundamental, and following these authors, we will
refer to it as the first-kind FDT, while Equations (7) and (8) (that can be derived from it as a
corollary when the potential V(x) is harmonic) will be designated as second-kind FDT.

2.4. Coupling to a Harmonic Bath

The generalized Langevin equation (6) appears in a variety of contexts. In particular,
a slightly different form of GLE can be derived under very general assumptions using
projection operator techniques [20,23], an approach that has recently lead to interesting
developments [24,25]. However, the damping and random forces obtained in this formalism
are generally not explicit. In this section, we focus on an alternative, more practical and
explicit approach: we derive the GLE from the description of a system bilinearly coupled to
a bath of independent harmonic oscillators. In passing, we note that, in principle, the bath
can be constructed in different ways, for instance by including non-harmonic oscillators.
However, the bath of harmonic oscillators is at the same time easy-to-treat analytically
and can describe all features that are relevant for the physical system. The extended
Hamiltonian for the bath and the physical system, which can be harmonic or not, (the latter
case being the most physically relevant one) is then:

H =
p2

2m
+ V(x) + ∑

j

[

p2
j

2mj
+

1
2

mjω
2
j (qj − x)2

]

(9)

where x and p are the system coordinate and momentum, while qj, pj are an ensemble of
harmonic oscillators that constitute the thermal bath. The coupling to the system arises
from the fact that the equilibrium position of the bath oscillators is taken at qj − x and
therefore changes in time with the variations of x. It is then easily shown that the equation
of motion for the system coordinate can be recast into a GLE of the form of (6), where the
memory kernel K(τ) is defined as:

K(τ) = ∑j mjω
2
j cos(ωjτ),

or equivalently, K̃(ω) = π ∑j mjω
2
j

[

δ(ω − ωj) + δ(ω + ωj)
] (10)

The damping force is therefore generally non-Markovian with a kernel that depends
on the spectral density of the bath oscillators. In particular, in the limit of an infinite
number of bath oscillators with a spectral density proportional to 1/ω2, K̃(ω) becomes
constant and the Markovian limit is recovered. The random force R(t) is related to the
initial configuration of the bath at an initial time t0:

R(t) = −K(t − t0)x(t0) + ∑
j

[

mjω
2
j qj(t0) cos[ωj(t − t0)] + ωj pj(t0) sin[ωj(t − t0)]

]

(11)

If t0 is in a distant past, the first term vanishes. Moreover, if the bath oscillators are
assumed to be initially (i.e., at t0) in thermal equilibrium, the random force autocorrelation
function can be shown to obey the second-kind FDT of Equations (7) and (8).

Interestingly, if the system–bath Hamiltonian (9) is treated quantum-mechanically, a
GLE formally identical to Equation (6) can be derived for the time-dependent operator x in
the Heisenberg picture. The expression of the memory kernel K(τ) and the random force
R(t) are the same as in the classical case (only R(t) is now an operator), but the second-kind
FDT becomes (compare to (8)):

Cs
RR(ω) =

∫ ∞

−∞
dt

1
2
〈

R(t)R(t + τ) + R(t + τ)R(t)
〉

e−iωτ = θ(ω, T)K̃(ω) (12)

where, similarly to what was reported for the first-kind FDT (3), the symmetrised correlation
function is used and the classical average thermal energy kBT is replaced by its quantum
counterpart θ(ω, T).
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In the developments above, we followed mostly the work and formalism of Ford and
coworkers in [26,27]. In their studies, the authors point out that the quite simple harmonic
bath model is more general than it appears. First, they show that, for the GLE (6) to be
physically meaningful, the memory kernel K̃(ω) should be positive for all frequencies.
(Ford and coauthors actually consider more generally the Laplace transform:

µ(z) =
∫ ∞

0
dt e−izτK(τ),

that is related to the Fourier transform of the (symmetrized) memory kernel by
K̃(ω) = 2Re[µ(ω + i0+)]. They show that µ(z) is analytical in the upper half-plane (z
is a complex variable), and belongs to the class of the so-called positive real functions
that possess several specific mathematical properties that the authors then use in their
argumentation on the generality of the harmonic bath model [27]). Now, according to
Equation (10), with an appropriate choice of the frequencies ωj (potentially in infinite
number), the harmonic bath can be tailored to produce any arbitrary positive memory
kernel K̃(ω). Therefore, it can be regarded as a very generic prototype for the GLE (6) and
the authors proceed by pointing out the relation between the harmonic bath of Equation (9)
and some of the pre-existing models. Interestingly, in a former work [28], Cortes et al.
had shown that the simple and general second-kind FDT in (12) might not be valid when
considering forms of the system-bath coupling more complex than the bilinear interaction.
In that case, and for a quantum mechanical treatment (in the classical case the FDT remains
of a simple form), the relation between the dissipation and the fluctuations depends on the
details of the actual system–bath coupling. In particular, Cortes et al. derive an expression
for the FDT in the case of a quadratic interaction.

2.5. Quasiclassical Limit of Harmonic Bath

The Hamiltonian (9) or closely related harmonic bath models are common starting
points to derive GLE also when looking at quasiclassical approximations for quantum dy-
namical properties. In general, these developments start from a fully quantum dynamical
description of a generic system coupled to the harmonic bath and then approximate the
dynamics in some flavor of the classical limit. The specific form of the results depends
both on the procedure enforced to impose the classical limit (e.g., high temperature, for-
mal limit for h̄ → 0, stationary phase approximation of the propagator. . . ), and on the
adopted representation of quantum mechanics. For example, starting from the Wigner
representation of quantum averages, nuclear quantum effects can be approximated using
generalized Langevin equations where the friction and random forces are kept Markovian
but become position-dependent [29,30]. Furthermore, one can take the classical limit for all
degrees of freedom (semiclassical methods) or exploit knowledge of the exact solution of
the harmonic part of the problem to derive a mixed quantum–classical scheme in which
the bath is described quantum mechanically, while the dynamics of the system, including
the coupling to the harmonic bath, is treated classically (quasiclassical or mixed quantum–
classical limit). Mixed quantum–classical limits, however, are delicate. For instance, Bader
and Berne [31] considered the—apparently simple—case of a harmonic system linearly
coupled to a harmonic bath to investigate the problem of vibrational energy relaxation.
They recovered the well-known result that, for this kind of system, quantum and classical
dynamics lead to the same time-evolution for averages and showed that the quantum
relaxation time can be evaluated from a purely classical calculation. However, they also
proved that—when a mixed quantum–classical dynamics is imposed on the system—the
result for the relaxation time is incorrect and different depending on whether the bath is
treated quantum mechanically and the system classically or vice-versa.

A careful analysis of the mixed quantum–classical limit that nicely sets the stage for
the methods presented in the next chapter was performed by Schmid [32]. Schmid focused
on the time evolution of the density matrix of a generic quantum system linearly coupled to
a bath of quantum harmonic oscillators (as in (9)) as written in the path integral formulation
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of quantum mechanics (see also Section 6). In the coordinate representation, the density
matrix determines the probability to find the system at a given position at time t = 0 and at
another assigned position at time t. Within the path integral formalism, the density matrix
can be computed as a functional integral over the set of all possible paths connecting the
initial and final positions of the system and bath in the assigned time t. The harmonic
nature of the bath enables an explicit expression for the marginal density matrix of the
system to be obtained by integrating over the paths of the bath. This still leaves an integral
over the system’s paths to perform. When the coupling with the bath is sufficiently strong,
quantum coherence effects are strongly suppressed. The integral can then be approximated
to argue that the relevant paths for the system become stochastic trajectories of the form:

mẍ = −dV

dx
− mγẋ + R(t) (13)

where R(t) is a Gaussian stochastic process such that, in Fourier space,

CRR(ω) = 2mγθ(ω, T) (14)

The result above is obtained by introducing a non-trivial (and somewhat heuristic)
probabilistic interpretation of the path integral representation of the density matrix and
enforcing a quasiclassical approximation based on a truncation of an expansion of the
potential that is not always easy to justify. Although Equations (13) and (14) seem formally
identical to the quantum generalized Langevin Equations (6) and (12) in the particular
case of a Markovian friction kernel K(τ) = 2mγδ(τ), a fundamental difference has been
introduced with the quasiclassical approximation: whereas in Equation (6), x referred to the
quantum position operator (time-dependent in the Heisenberg picture), in Equation (13), x
is now the position of a classical-like system, following a stochastic trajectory. This result
thus combines a fully classical evolution of the system (given by the deterministic force
−dV/dx) with a colored thermostat that injects quantum properties, and in particular zero
point energy, in the dynamics. This early approach bears remarkable similarities with the
two more recent methods detailed in the next section.

3. Enforcing Quantum Statistics via Generalized Bath

In this section, we focus on two approaches, the Quantum Thermal Bath (QTB) and
the Quantum Thermostat (QT) that were developed independently in 2009 by two different
groups. Though these methods differ in their practical implementation, they both prescribe
a form of GLE that combines a classical evolution for the system and the coupling to a
quantum bath designed to induce relevant quantum properties (e.g., zero-point energy) in
the otherwise classical evolution of the system.

3.1. The Quantum Thermal Bath

The quantum thermal bath was proposed by Dammak and coworkers [12] to ap-
proximate NQEs in general molecular dynamics simulations via a generalized Langevin
equation. They use a Markovian friction kernel and a colored random force R(t) with an
autocorrelation spectrum which is tailored according to the energy distribution θ(ω, T) of
the quantum harmonic oscillator. The equations of the resulting dynamics are identical to
those derived from the quasiclassical approximation by Schmid [32]. For one-dimensional
systems, Equations (13) and (14) hold; their generalization to multiple atomic degrees of
freedom is straightforward. However, contrary to Schmid, who aimed at modelling the
dynamics of a system coupled to an actual physical bath, in the QTB, the Langevin equation
is simply used as a thermostat in order to enforce the quantum statistical distribution of
energy (including zero-point energy effects). The expression of the random force autocorre-
lation, Equation (14), is universal, i.e., system-independent, so that the method does not
require a priori knowledge of the system or of its detailed spectral density. Heuristically,
this form of GLE tends to thermalize the vibration modes of the system with the average
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energy distribution of quantum harmonic oscillators in equilibrium at temperature T, hence
the lexical origin of the quantum thermal bath.

Plots of θ(ω, T) and its temperature derivative, which enters the definition of key
quantities such as the heat capacity, are provided in Figure 2 for three typical frequencies ω.
One can easily check that:

θ(ω, T) =
h̄ω

2
coth

(

h̄ω

2kBT

)

=
h̄ω

2

[

2kBT

h̄ω
+

h̄ω

6kBT
− o

(

h̄ω

2kBT

)3
]

for
h̄ω

2kBT
≪ 1 (15)

Therefore in the classical high-temperature limit, i.e., when kBT ≫ h̄ω for all relevant
frequencies, θ(ω, T) approaches its classical value kBT, and substituting in Equation (14)
shows that the QTB reduces to a classical Langevin thermostat. However, the typical
temperature where the classical limit is reached can be rather high (see Figure 2). Even
more delicate are quantities such as the heat capacity, i.e., the temperature derivative of the
average energy that for a harmonic oscillator is given by dθ(ω, T)/dT which shows a very
slow convergence to the classical value.
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Figure 2. θ(ω, T) (left panel) and its temperature derivative dθ(ω, T)/dT (right panel) for three
representative frequencies ν = ω/2π. ν1 = 4 THz is typical of acoustic modes in crystals; ν2 = 20 THz
is in the range of optical modes in crystals formed by light mass elements, as well as of OH and CH
bending modes; ν3 = 100 THz could correspond to C-H and O-H stretching modes. For the latter
frequency, one can see that the classical behavior is never reached for T ≤ 1000 K.

Apart from a slight dependence on the friction parameter γ that is further analyzed in
Section 4.1, the probability distributions obtained in QTB simulations are exact for harmonic
systems, by construction of the method. For more general cases, it can provide a good
approximation to zero-point energy effects in realistic systems, under some conditions that
are further developed in Sections 4, 5 and 7.

3.2. The Quantum Thermostat

Independently from the work by Dammak and coworkers, Ceriotti, Bussi and Par-
rinello also proposed to approximate NQEs via a non-Markovian GLE. In two papers in
2009 [13,14], they introduced a general framework to implement and propagate GLEs of
the form of (6) using auxiliary variables. The authors aim at thermalizing different degrees
of freedom with distinct characteristic frequencies at different effective temperatures. This
tool can be used for different purposes: in particular, the authors exploit it to build a
quantum thermostat (QT) and thermalize vibrational modes with an effective temperature
that includes a zero-point motion contribution [14], similarly to the QTB. They also propose
to apply this method in the context of Car-Parrinello molecular dynamics [33], where the
ionic degrees of freedom should evolve at a given (physical) temperature while the faster
electronic degrees of freedom should oscillate around the ground state that corresponds
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to the instantaneous ionic configuration, at much smaller temperatures [13]. The authors
successfully applied the colored bath thermostat on a model polarizable system and verified
that the fast degrees of freedom (i.e., the motion of the centers of mass of the shells with
respect to their nuclei) are correctly thermalized. More generally, they showed that the col-
ored bath thermostat can be adapted to specific cases once the density of vibrational states
is known and that it allows a faster thermalization than the Nosé–Hoover chains [13,22].

Starting from the Orstein–Uhlenbeck theory of stochastic processes, Ceriotti and
coworkers show how a non-Markovian GLE can be implemented via a Markovian Langevin
dynamics for an extended set of variables of which two are the physical position and
momentum (for a one-dimensional physical system) and N are additional auxiliary mo-
menta [34]. In this way, the colored thermostat GLE can be efficiently applied by integrating
the Markovian dynamics in the (N + 2)-dimensional space via usual molecular dynamics
techniques. This dynamics is governed by the following equations:





ẋ
ṗ
ṡ



 = −




0 −1/m 0

V′(x) app aT
p

0 āp A









x
p
s



 +





0 0 0

0 bpp bT
p

0 b̄p B









0
rp

r



 (16)

where s and ṡ are the N-component vectors of the auxiliary momenta and their time
derivatives, A and B are (N × N) matrices of adjustable parameters that characterize
respectively the friction and the random force memory kernels, together with the N-
component parameter vectors ap, āp and bp, b̄p. V′(x) is the spatial derivative of the
potential energy and the (N + 1)-component vector (rp, r) contains normalized white noise
variables: 〈ri(t)rj(t

′)〉 = δijδ(t − t′). The dynamics in the extended (x, p, s)-space is
therefore Markovian and it can be solved analytically for a harmonic potential
V(x) = mω2x2/2. In more general non-linear cases, a numerical algorithm based on
the symmetric Trotter decomposition of the Liouvillian can be used, where the linear drift
and the random force terms in ( ṗ, ṡ) are integrated exactly according to the theory of
Ornstein–Uhlenbeck processes, whereas the evolution of x and the non-linear part of ṗ are
integrated via a velocity Verlet scheme [34].

As described in detail in appendix in [34], by integrating away the auxiliary momenta
s, Equation (16) reduces to a GLE in the form of (6) for the physical degree of freedom x,
with a memory kernel:

K(τ) = 2appδ(τ)− ap
Te−|τ|Aāp

In Appendix B, we illustrate the method by examining two simple cases for N = 1 and
N = 2, which correspond to an exponentially decaying memory kernel and to a damped
oscillatory kernel, respectively, and we explicitly write the associated A and B matrices.
Generally, the kernels that can build via the extended variable formalism include (although
not exclusively) functions of the form K(τ) = Re

[

cke−αk |τ|+iωkt
]

with arbitrary parameters
ck, αk and ωk. Appendix A of ref. [34] provides a detailed mathematical formalism.

The classical FDT (8) is enforced when

BpBT
p = mkBT(Ap + AT

p ), (17)

where Bp is the (N + 1)× (N + 1) matrix that comprises bpp, bp, b̄p and B (and similarly
for Ap). However, the noise matrix Bp can also be chosen not to fulfill the classical FDT, so
that the GLE can be arbitrarily tuned in order to thermalize the different frequencies of the
system with well-chosen effective temperatures.

While in [13], the focus was on the thermalization of classical degrees of freedom at
different temperatures, in the following paper [14] the same authors applied the colored
baths strategy in order to include quantum corrections to the classical dynamics of ions
in systems that are weakly anharmonic, such as diamond and ordinary ice Ih. In order to
design this quantum thermostat (QT), they considered the particular case of the harmonic
oscillator V(x) = 1

2 mω2x2 for which the stochastic equations of motion (16) can be solved
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analytically and the exact kinetic and potential energies of the physical system explicitly
computed. The parameters of the GLE are then tuned in order for the average position and
momentum distributions to be as close as possible to that of a quantum harmonic oscillator
that is Gaussian, as in the classical case, but with a width that is a function of the oscillation
period ω:

1
m
〈p2〉 = mω2 〈x2〉 =

h̄ω

2
coth

(

h̄ω

2kBT

)

= θ(ω, T) (18)

By properly adjusting K(τ) and the noise correlation function, one can tune the average
fluctuations in position and in momentum so as to reproduce the quantum–mechanical
behavior in Equation (18) over a wide range of vibrational frequencies. In practice, this
is done via a fitting procedure of the Ap and Bp matrices that have been introduced in
Equation (16). This method is general and versatile and offers a wide choice for the friction
and random force kernels; nonetheless, it requires a fine tuning of the characteristic matrices,
which might depend on the system under consideration. The QT method has been made
available in the open-source i-PI suite [35], which has enabled its wider use [36–38].

4. Critical Analysis of Quantum Baths: Model Systems

In Sections 3.1 and 3.2, the generalized baths (QTB and QT) are introduced as tools
to impose the quantum statistics to a system that generally follows classical laws of mo-
tion. However, the question of the trustworthiness of quantum baths methods should be
addressed. In this section, we provide a systematic analysis of the performances of the QTB
on 1D and 2D model systems for which exact solutions are available analytically or can
be obtained for comparison from a direct numerical resolution of Schrödinger’s equation
(another example with a 1D double well is given in Appendix C). Although we focus here
on the QTB formalism, similar results could be obtained with the quantum thermostat
of [14].

4.1. Harmonic Systems

A pedagogical introduction to the QTB has been given by Barrat and Rodney, with
several useful remarks, in particular, concerning the application of the QTB to a harmonic
system, V(x) = 1

2 mω2
0x2 [39]. In that case, as the force is linear with position, an explicit

expression can be obtained for the Fourier transform of the position and the velocity and
hence for their respective correlation spectra:

Cxx(ω) =
2γ θ(ω, T)/m

(ω2 − ω2
0)

2 + ω2γ2
and Cvv(ω) =

2γ ω2θ(ω, T)/m

(ω2 − ω2
0)

2 + ω2γ2
(19)

These spectra correspond to Lorentzian peaks centered at ω0, and with a width γ.
They are good approximations to the quantum symmetrized correlation spectra Cs

xx(ω)
and Cs

vv(ω) apart from a spectral broadening with respect to the Dirac δ—function expected
for the 1D quantum system, which is only recovered in the γ → 0 limit. The integrals of
these two spectra provide, respectively, the average potential and kinetic energies as:

〈Epot〉 =
∫

dω

2π

γ ω2
0

(ω2 − ω2
0)

2 + ω2γ2
θ(ω, T) (20)

〈Ekin〉 =
∫

dω

2π

γ ω2

(ω2 − ω2
0)

2 + ω2γ2
θ(ω, T) (21)

As the zero-point energy term in θ(ω, T) is linear for large ω, the integral in (21) di-
verges logarithmically. Barrat and Rodney therefore suggested the introduction of a cutoff
frequency ωmax in the random force spectrum, that should be larger than the highest fre-
quency of the physical system. (Note that a finite integration time step δt implicitly imposes
a maximal frequency δt−1/2. However, the use of a noise power spectrum without an
explicit high-frequency cutoff ωmax poses various numerical problems). In Appendix A, the
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practical noise generation as well as the choice of the algorithms to integrate the Langevin
equation is briefly discussed. With this precaution, in the limit of small values of γ, the
Lorentzian factors in Equations (20) and (21) tend to Dirac δ—functions and both the kinetic
and the potential energy equal θ(ω0, T)/2 as expected for the quantum harmonic oscillator
(for nonzero γ, the average energies are slightly different from θ(ω0, T)/2, although this
difference can be corrected using spectral deconvolution techniques [18,40]). The position
and the momentum probability distributions obtained in QTB simulations of the harmonic
oscillator are Gaussian, with widths fixed by Equations (20) and (21), therefore the method
provides exact estimates (at least in the γ → 0 limit) for the quantum average of any static
observable depending only on position or momentum, including zero-point energy effects.
As mentioned above, it also yields a good approximation to some dynamical properties
such as position and velocity autocorrelation spectra. This distinction is important in the
context of nuclear quantum effects simulations as path-integral techniques can provide ex-
act references for static properties (though at an elevated computational cost, see Section 6),
but only approximate methods are available to simulate the quantum dynamical properties
of complex systems with large numbers of atoms.

The paragraphs below examine the effect of anharmonicity on the accuracy of QTB
simulations. However, even at the harmonic level, a remark should be made about static
observables with a joint position and momentum dependence such as the total energy fluc-
tuations:

∆E2 = 〈E2〉 − 〈E〉2 = 〈(Ekin + Epot)
2〉 − 〈Ekin + Epot〉2 =

[

h̄ω0
2

sinh
(

h̄ω0
2kBT

)−1
]2

= kBT2 dθ(ω0, T)

dT
(22)

for the quantum harmonic oscillator at temperature T. In contrast, in QTB simulations,
the energy fluctuations are equal to θ(ω0, T)2, as the method is equivalent in the harmonic
case to a classical Langevin dynamics at the effective temperature θ(ω0, T)/kB (at least in
the small γ limit). Indeed, even though the QTB describes correctly the fluctuations of
the kinetic and potential energies separately, it cannot capture the intrinsically quantum
correlation between the two observables, which leads to a systematic overestimation of
∆E2, in particular at low temperatures h̄ω0

2kBT ≪ 1. As a consequence, in QTB simulations,
quantities such as the heat capacity should be evaluated by differentiation of the average
energy with respect to temperature, as they cannot be directly related to energy fluctuations
as it is usual in classical MD. The overestimation of the energy fluctuations may also have
indirect consequences on the estimation of some dynamical observables in more complex
systems (in particular barrier crossing rates).

4.2. Morse Potential in One Dimension

The anharmonic Morse potential (Figure 3) can be written as:

V(x) = V0 e−
x−x0

d

(

e−
x−x0

d − 2
)

(23)

where V0 is the depth of the well, x0 the position of the minimum and d the ‘width’ of the
well which in practice controls the anharmonicity thereof.
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Figure 3. A ‘mildly’ anharmonic Morse potential (magenta, left-hand scale), with the position
distributions (right-hand scale) for a classical simulation (yellow), a quantum solution through
Schrödinger’s equation (green) and the Quantum Thermal Bath (light blue).

4.2.1. A ‘Mildly’ Anharmonic Example

Simulations were carried out with the following parameters: V0 = 3.0 eV, x0 = 1.0 Å,
d = 0.4 Å, T = 300 K, γ = 0.1 THz and cutoff frequency fmax = 500 THz. The mass of the
particle is that of a proton. These parameters yield a harmonic frequency of 3185 cm−1, of
the same order of magnitude as that of OH stretching modes in various systems. The zero-
point energy over V0 ratio is 0.065, so this example can be considered as mildly anharmonic,
given that, at this low temperature, only the ground state is significantly populated.

The quantum analysis and the QTB both yield a mean postition 〈x〉 = 1.02 Å, while
the classical simulation yields 1.00 Å. The quantum total energy (actually the zero-point
energy at this temperature) turns out to be 194 meV while the QTB gives 197 meV (for
the small friction coefficient γ used in this case, the kinetic energy overestimation effect
mentioned in Section 4.1 is minor and the dependence on the frequency cutoff is negligible)
and the classical only 26 meV which, of course, does not take into account the large ZPE.
The quantum distribution is shown in green in Figure 3 while the classical distribution
(yellow) in much sharper. The distribution generated by the QTB (blue) is adequately
broadened, however, its shape is slightly modified: the maximum is at the the classical
position, while its tail reaches out further.

Figure 4 shows the corresponding spectra. The QTB spectrum is broadened and
red-shifted with respect to the classical one as the anharmonic part of the potential is
explored further, but red-shift of the actual quantum transition (between the ground state
and first excited states) is even larger; therefore, the QTB captures the correct trend while
slightly underestimating the quantum effect. The inset shows the overtone resonance at
approximately twice the main peak frequency. Similar shifts are observed between the
classical, QTB and exact quantum results as for the main resonance. The detailed pertur-
bation analysis performed in [16] shows that an analogy can be drawn between the QTB
and linearized semiclassical initial value representation (LSC-IVR) methods, that combine
quantum phase space sampling with classical molecular dynamics for the evaluation of
time correlation functions [41,42]. Indeed, in QTB simulations, the short-term dynamics is
essentially classical, whereas the coupling with the bath introduces quantum statistics in
the phase space sampling. It can be shown that the overtone intensity is underestimated
by approximately a factor of two due to the absence of position–momentum correlation in
the QTB phase space sampling [43,44]. This error on the overtone intensity can be detected
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(and potentially corrected) using the first-kind fluctuation–dissipation theorem criterion
defined in Section 7, and it remains limited compared to that of path integral methods
(see Section 6), which yield a much lower overtone intensity, similar to that of classical
simulations [16].
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Figure 4. Cvv(ω) spectra for the ‘mildly’ anharmonic Morse potential, for the classical MD simulation
(magenta), the QTB (blue) and the first quantum transition between the ground state and first excited
state (green). The inset shows show the overtones (the classical spectrum is multiplied by a factor
of 10).

4.2.2. A ‘Strongly’ Anharmonic Example

Now the following parameters are used: V0 = 1.7 eV, x0 = 1.0 Å, d = 0.2 Å and
T = 300 K. This yields a harmonic frequency at 3185 cm−1 and ground state energy over
depth ratio of 0.75, that is significantly more anharmonic. Another qualitative criterion for
anharmonicity can be found in how the exact quantum distribution obtained from solving
Schrödinger’s equation extends beyond the potential inflexion point: beyond this point,
the restoring force decreases instead of increasing, and therefore contributes strongly to
anharmonic behavior. In this example, the exact distribution (green line in Figure 5) does
significantly extend beyond that point (x ≈ 1.14 Å), while in the previous (Figure 3) it does
not.

Figure 5 shows the results. The features already noticed for the mildly anharmonic
case are enhanced: the maximum still remains at the classical position, while the tail
extends even further towards larger distances, requiring the introduction of xmax = 2.6 Å
to prevent the particle from escaping the well: in this strongly anharmonic situation, the
calculated QTB mean position therefore will depend on how xmax is chosen and ends
up being unreliable (〈x〉QTB = 1.27 Å, versus the exact 1.04 Å). The total energy is also
over-estimated (exact quantum: 184.4 meV, QTB: 250.4 meV, classical: 26.3 meV), mainly
because the increased probability at large distances x leads to an over-estimation of the
average potential energy. The spectra show qualitatively the same features as above, but
are much broader as expected from the increased anharmonicity.
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Figure 5. Probability distributions (top) and Cvv(ω) spectra (bottom) for the strongly anharmonic
Morse potential, for the classical MD simulation (magenta), the QTB (blue) and the first quantum
transition between the ground state and first excited state (green). The inset shows show the overtones.
Note that the classical spectrum is multiplied by a factor of 10.

In these simple 1D examples, the QTB can be considered to a certain extent as a
classical dynamics simulation at a higher effective temperature: Teff ≃ 1800 K in the above
example. Indeed, Figure 6 shows that the classical distribution, obtained at T = Teff, is quite
similar to that of the QTB at T = 300 K. This should not mean that it suffices to estimate
the effective temperature and carry out a classical simulation to describe NQEs correctly!
In realistic systems with many degrees of freedom, each vibration mode is characterized by
a different frequency and therefore a different effective temperature, so that performing
classical simulations at an averaged Teff would yield erroneous results [45]. The main
advantage of the QTB and QT approaches is that the effective temperature imposed to
each mode naturally corresponds to their frequency by construction of the generalized
bath (including approximate anharmonic shifts, as shown above), without requiring prior
knowledge on the system nor harmonic frequency calculations.
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Figure 6. Comparison of the particle position distributions for a classical Langevin simulation at the
QTB effective temperature Teff = 1800 K with the corresponding QTB distribution at T = 300 K and
the exact quantum distribution at the same temperature.

4.3. Several Degrees of Freedom and Zero-Point Energy Leakage

While in one-dimensional systems, the Quantum Thermal Bath introduces a significant
correction to the classical Langevin simulations by taking into account the quantum zero-
point energy, the issue of energy transfer between modes due to anharmonicity is irrelevant
for lack of several modes to transfer between. However, most simulations deal with systems
that involve a large number of degrees of freedom and such transfers are quite likely to
occur. The unwanted consequence thereof is Zero-Point Energy Leakage (ZPEL), first
illustrated with a simple two-dimensional model and then described from a more general
viewpoint: a diagnosis and a cure are presented in Section 7.

4.3.1. A 2D Model for an O–H Vibration

We extend the above analysis to the following 2D model:

V(x, y) = V0 e−
r(x,y)−r0

d

(

e−
r(x,y)−r0

d − 2
)

+
1
2

kθ(x, y)2 (24)

r(x, y) and θ(x, y) represent the polar coordinates associated with the Cartesian coordi-
nate (x, y). This model represents an O–H bond in the direction x (associated to the
‘mildly’ anharmonic Morse potential of Section 4.2 for the stretching vibration) which
allows bending vibrations (with a harmonic potential for the angle θ with force constant
k = 9.48 eV.rad−2). The mass for both degrees of freedom is set to that of a proton. Figure 7
shows the quantum, classical and QTB probability distributions at 300 K. As for the 1D
models, the QTB captures very well the strong broadening caused by zero-point energy
effects, although the details of the shape of the QTB distribution display slight discrepancies
with respect to the quantum reference.
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Figure 7. Quantum probability distribution (solid black), classical distribution (dotted blue) and QTB
probability distribution (red), at T = 300 K for the 2D O–H potential. Contour levels are 1.0 Å−2,
5.0 Å−2, 9.0 Å−2, 13.0 Å−2, 17.0 Å−2.

4.3.2. Zero-Point Energy Leakage

Table 1 shows different energy contributions calculated exactly, with the QTB and with
classical MD. We easily notice that the QTB provides a massive energy correction to the
classical MD and that the total energy is in good agreement with the exact one. The total
kinetic energy in QTB is slightly overestimated due to spectral broadening effects for finite
γ coefficients (as presented in Section 3.1). The most notable energy errors are found in the
stretching and bending contributions to the potential energy: the former is underestimated
while the latter is overestimated. This discrepancy is typical of the zero-point energy
leakage (ZPEL). Note that the impact of the ZPEL is reduced when the coupling coefficient
γ is increased.

Table 1. Average energies for the 2D model of O–H bond at 300 K (energy values in meV). Quantum
results are obtained from a PIMD simulation with 96 beads.

〈Ekin〉 〈Estretch〉 〈Ebend〉 〈Etot〉

Classical 26 13 13 52
QTB (γ = 1 THz) 143 87 64 294

QTB (γ = 10 THz) 146 90 60 296
QTB (γ = 20 THz) 149 93 56 298

Quantum 143 99 49 291

Zero-point energy leakage is a well-known issue, initially described in the context of
LSC-IVR simulations, in which the system is first prepared with the appropriate quantum
energy distribution, after which short classical simulations are carried out to assess the
dynamics. As the dynamics are indeed classical, the equipartition theorem will take over
and eventually destroy the quantum distribution [46–48]. This is clearly connected with
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anharmonicity that allows vibrational modes to exchange energy, resulting, in practice, in
a flow of energy from high-frequency modes to low-frequency modes. As the effective
temperature can be very high, the outcome might be dramatic, as the melting down of the
system in solid-state simulations. In the case of LSC-IVR simulations, the problem can be
addressed by carrying out short enough classical dynamics, so that the leakage does not
significantly alter the energy distribution and thus the dynamical results.

It is not so with the quantum baths methods [34,49] as the quantum energy distribution
is generated on the fly through the colored Langevin thermostat. The result is therefore a
compromise between how much energy is being pumped into the system by the colored
noise and how fast this energy is flowing to low frequency vibrational modes finally to
be dissipated by the friction forces. A systematic endeavour [50] to measure ZPEL in
QTB simulations as a function of anharmonicity and the coupling coefficient γ in simple
model systems such as non-linearly coupled harmonic oscillators showed that ZPEL indeed
increases with anharmonicity and that increasing the coupling coefficient γ significantly
reduces the effects of ZPEL. Similar observations were made regarding the QT in the early
papers on this method [14,34] and strongly coupled generalized baths were designed in
order to mitigate the effect of ZPEL, an approach comparable to the increase of the coupling
coefficient γ of the QTB. However, the spectral broadening induced by large coupling
coefficients can hinder the use of quantum baths for the computation of vibration spectra.
Even more importantly, large system–bath couplings do not completely suppress ZPEL,
which can remain significant in strongly anharmonic systems such as liquid water where
it has massive consequences, as examined in Section 7.3. Some authors also proposed to
modify the colored noise memory kernel in the QTB method in order to compensate for
the ZPEL and restore the correct energy distribution between the different modes [49,51].
However, without an appropriate criterion to detect and quantify the ZPEL in general cases,
these attempts remained somewhat ad hoc and could not be generalized. Such a criterion
was finally derived in [17], and is the basis for the adaptive QTB method presented in
Section 7.

5. Applications of Quantum Baths to Realistic Systems

Quantum baths have been used to introduce the quantum statistics in the simulation
of several systems, and yield valuable results. In the following, we discuss some selected
applications of these methods to simulate the properties of condensed matter systems, by
splitting the discussion between structural properties and time-dependent observables.
These examples illustrate the usefulness of quantum bath approaches and highlight their
most serious pathology, i.e., zero-point energy leakage, which motivates the detailed
analysis of ZPEL and the recent work to mitigate its effects presented in Section 7. The
studies reviewed in this section include both QTB and QT simulations, though fewer in
number for the latter method. We note that the GLE framework developed in the context of
the QT also found a wide application in its extension to path integral molecular dynamics
(briefly presented in Section 6).

5.1. Structural and Thermodynamic Properties

An important quantity for crystals is the Debye temperature ΘD, below which the
specific heat and other thermodynamic properties diverge from their classical behavior [52].
In particular, crystals with ΘD > 300 K can show significant nuclear quantum effects at
room temperature.

5.1.1. MgO

Dammak and coworkers [12] showed that the QTB reproduces the experimental trends
of the lattice parameter and the heat capacity of the MgO crystal as a function of temperature.
While recovering the classical limit for temperatures close to or above the Debye temperature
(ΘD ≃ 940 K in MgO), the specific heat follows the expected quantum behavior at low
temperatures (CV → 0 as T → 0), in excellent agreement with experimental data.
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5.1.2. Diamond

Diamond has a particularly high Debye temperature ΘD ≃ 2000 K. Ceriotti and
coworkers [14] applied the quantum thermostat (QT) to model diamond crystals, where
interatomic interactions were described with a semi-empirical potential, and compared
their results to existing path integral (PI) simulations. The internal energy Eint(T) and
lattice parameter a(T) as provided by the QT follow the PI trends with temperature down
to T ∼ 0.06ΘD. Below this temperature, the quantum thermostat failed to counterbalance
the strong phonon–phonon coupling, which results in zero-point energy leakage from high
to low frequencies and a too-short phonon lifetime. Therefore, Eint(T) and a(T) sensitively
diverge from the PI behavior at low temperatures.

Isotope Effects: LiH vs. LiD

Simulations that rely on classical statistical mechanics cannot account for isotope effects
straightforwardly, because statistical averages are independent of the nuclear mass. A
marked isotope effect takes place in LiH/LiD crystals; the Debye temperatures, as obtained
by fitting the thermal conductivity of LiH and LiD crystals, are 851 K and 638 K, respectively
(see [53] and references therein). One of the first QTB simulations in conjunction with
the first-principle description of interatomic forces via the density functional theory [53]
explained why the lattice parameter of LiH is significantly larger than that of LiD from
very low temperatures up to 600 K, as experimentally observed. The volume expansion
coefficient is also different in this T range between the two isotopes. The elastic properties of
LiH and LiD with increasing pressure are markedly distinct, which reflects in two different
equations of state for the two isotopes as measured by X-ray diffraction experiments in
the 0–94 GPa pressure range [54]. Remarkably, the quasi-harmonic approximation fails
in reproducing the isotope shift in pressure ∆P, which is defined as the difference in
pressure between LiH and LiD at fixed volume (see Figure 8). The QTB simulations follow
the experimental trend in ∆P, while the quasi-harmonic approximation deviates from it,
especially when P increases. This has been interpreted as a consequence of the importance
of anharmonic contributions to the thermal properties of those crystals.
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parameter at T = 0 K. Left—experimental; right—QTB simulations.
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5.1.3. Energetic and Structural Properties of Atomic and Molecular Clusters

Hernández-Roja and coworkers applied the QTB to study rare-gas clusters, modelled
via Lennard–Jones interatomic potentials [49]. They found that the method generally re-
produces energetic properties relatively well, reinforcing earlier results on cationic neon
clusters [55]. However, close to the liquid-like to solid-like (l-s) transition, the QTB per-
formed unevenly against PI-based simulations: the l-s transition in Ar clusters is shifted to
low temperatures and the Ne clusters show liquid-like behavior at all temperatures, even
when PI simulations would predict a solid-like behavior. As pointed out by the authors,
this failure is due to ZPEL. They also encountered similar difficulties in the simulation of
water octamers with the QTB, where the strong leakage of zero-point energy stemming
from high-frequency intra-molecular modes completely distorts the cluster structure and
causes spurious melting, even down to low temperatures [49].

5.1.4. Proton Momentum Distribution

In the original quantum thermostat paper, the authors applied the newly introduced
method to compute the proton momentum distribution of ordinary ice Ih [14]. NQEs
strongly broaden this distribution with respect classical simulations and shift its maximum
to larger momentum values. The QT was able to capture these effects and yielded close
agreement with experimental measurements. In a later study, the same method was applied
to lithium imide Li2NH, using density functional theory to model atomic interactions, and
the results were compared to inelastic neutron scattering measurements [56]. In this system,
the N-H bond is strongly anharmonic, as evidenced by the divergence between molecular
dynamics and quasi-harmonic results for the radial distribution of the N-H groups. Still,
the QT method captures NQEs efficiently in this context and allows the recovery of a fine
agreement with the experimental proton momentum distribution.

5.2. Structural Properties: Hydrogen Bonds

Hydrogen bond symmetrization under pressure provides a stringent test on the
capability of quantum baths to reproduce nuclear quantum effects at extreme conditions
that are relevant for planetary physics.

5.2.1. High-Pressure VII-X Transition in Ice

In the crystal phase VII of ice under high pressure, hydrogen atoms are connected to
their nearest neighbour oxygen via a covalent bond and to their next-nearest neighbour via
a hydrogen bond: O−H · · · O. As pressure increases, the oxygen atoms become closer and
the proton tends to delocalize over two equivalent positions (resonating O−H· · ·O and
O· · · H−O configurations) [57]. Beyond a critical pressure Pc, the asymmetry vanishes:
there is no more a (longer) hydrogen bond and a (shorter) ionic–covalent bond; the proton
forms two equivalent bonds to the neighboring O atoms. This proton-centered phase
(ice X) is cubic with Pn3̄m symmetry (space group 224). The order parameter x for this
transition can be taken as the difference of the proton distances from the two neighboring
O atoms [57]. By first-principle constrained minimization at fixed x and excluding all
nuclear quantum effects, an expression can be obtained fitting the proton effective potential
energy [1]:

V(x; P) = ax4 + b(P − P0)x2 +
b2(P − P0)

2

4a
for P ≤ P0 (25)

with a = 7.2 eV/Å4, b = 0.04 eV/(GPa Å2), and P0 = 100 GPa. Under increasing pressure
P, the O-O distance shrinks; the potential wells come closer and the barrier lowers (see
Figure 9). In the classical framework, the proton centering occurs when the barrier dis-
appears, so the critical pressure is Pc = P0; in the quantum framework, the proton is
delocalized, so that proton centering occurs at much lower pressure, when the zero-point
energy equals the barrier height so that Pc ≃ 70 GPa < P0. Experimentally, the VII to X
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phase transition in ice at room temperature under pressure takes place at approximately
65 GPa, while classical simulations, that do not take NQEs into account, mostly predict a
transition pressure between 90 and 100 GPa. In QTB simulations at different pressures [1],
the onset of hydrogen-bond symmetrization occurs at P ≃ 65–70 GPa, in agreement with
previous results obtained via a path-integral based method [57].
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Figure 9. The proton effective potential energy V(x; P) in Equation (25) for ice under increasing
pressure P. The variable x is the difference between the distances from H to its two O neighbors:
x = d(O(1) − H)− d(O(2) − H). At P = 40 GPa, the proton forms a short covalent bond and a long
hydrogen bond (left panel); at P = 70 GPa, V(x; P) is a double well, with a barrier height of the
same order as the proton zero-point energy (center panel); at P = 100 GPa, according to the classical
picture, V(x; P) shows a single minimum at x = 0 and the two O–H bonds are equivalent (right

panel).

5.2.2. AlOOH

Under increasing pressure, the δ phase of AlOOH crystal undergoes a phase transition
from a P21nm structure with asymmetric and disordered O−H· · ·O bonds to a stiffer Pnnm
phase with symmetric hydrogen bonds, which should be stable within the pressure and
temperature ranges typical for the Earth’s mantle. In QTB simulations at pressures as
low as 10 GPa, the mean proton position equals the midpoint of the O-O distance [58],
while only at much larger pressures (around 30 GPa) does the Pnnm phase with symmetric
hydrogen bonds become stable according to the classical viewpoint [59]. However, the
proton centering occurs when the effective potential that is seen by the proton is still
asymmetric. The lack of the full inversion symmetry impacts the proton distribution,
which is skewed as provided by the QTB even beyond the critical pressure [58]. At the
transition the O-H stretching modes soften considerably and fade out around 10 GPa in
the P21nm structure, when thermal and nuclear quantum effects are taken into account in
the simulations. Later X-ray diffraction experiments [60] also confirm the transition from a
hydrogen-off-centered to a hydrogen-centered phase above 10 GPa.

Overall, the QTB provides a satisfying description of hydrogen bonds under increasing
pressure, either where a center of inversion exists (as in ice X) or does not (as in δ-AlOOH).

5.3. Dynamical Properties

Although initially devised to introduce the Bose–Einstein statistics for the evaluation
of equilibrium properties, the quantum baths have been also used to evaluate dynami-
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cal properties. The following results show that the performances of quantum baths are
rather system- and property-dependent, although in most cases the introduction of NQEs
via the quantum baths improves the description of vibrational properties, even in very
anharmonic systems. Although the coupling with the bath tends to distort vibrational
spectra, particularly in the context of the QT method, this effects can be efficiently corrected
a posteriori using spectral deconvolution techniques [18,40]. Moreover, quantum baths
have been employed to study intrinsically nonequilibrium properties, such as thermal
conductivity in crystals (see Section 5.3.3).

5.3.1. Phonon Spectra in Pure and Salty Ices under Pressure

As observed in Section 4, QTB simulations provide direct access to vibrational spectra,
accounting consistently (though approximately) for anharmonic and quantum effects.
This property has been exploited in different studies to confront QTB results with other,
more established simulation methods [15,18], or with experimental data. In particular,
the phonon spectrum of ice was extracted from QTB simulations at various pressures,
computed from the Fourier transform of the velocity–velocity autocorrelation function [1].

These QTB results are shown in Figure 10, and compared with the infra-red absorption
and Raman scattering data. The QTB reproduces the experimental data well in the whole
pressure range, including the softening of the O-H stretching mode close to the VII-X
transition. This softening is an essential feature of the transition that can be related to
the response of the system: in the classical picture, the squared frequency of the soft
phonon mode is proportional to the inverse susceptibility χ−1 and, in the simple one-
dimensional double-well model, χ is maximum at the transition pressure Pc. This relates
the O-H stretching mode softening with the enhanced fluctuations of the dipole moment
that typically occurs at the transition. Interestingly, the O-H stretching mode softening
occurs at larger pressures when a small quantity (∼1%) of LiCl or NaCl salt is incorporated
into the ice crystal, an effect that is well captured by the QTB [61].
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Figure 10. (Left panel): ice spectra obtained through the Fourier transform of the velocity-velocity
autocorrelation function from QTB simulations at several pressures [1]. (Right panel): the peaks
extracted from the QTB ice spectra (lines) are compared to the experimental infrared and Raman
scattering data (triangles and circles).

Contrary to previous beliefs, this effect is not due to steric hindrance, but to the a-
symmetrization of the OHO triplet because of the long-range dipolar field generated by
the dissociated Li+ Cl− or Na+ Cl− salts. Accordingly, the critical pressure for the VII-X
transition in salty ice under pressure is upshifted and much closer to its classical value than
in pure ice. This counterintuitive phenomenon (salty ice is “more classical” than pure ice)
shows the subtleties of nuclear quantum effects in hydrogen-bonded systems.

5.3.2. Highly-Excited Molecules

Calvo and coworkers [62] studied the response of naphtalene to a strong laser pulse
at varying frequencies by using classical molecular dynamics or accounting for nuclear
quantum effects via path-integral molecular dynamics or the QTB. First, they observed
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that the spectrum of the transferred energy from the laser to the molecule is much distinct
in the classical and the quantum frames; the path-integral and the quantum bath spectra
both yield absorption at lower frequencies than the classical molecular dynamics. From
the trajectories, and using a pre-computed rate constant, they predicted the emission of a
hydrogen atom. Moreover, for the dissociation probability spectrum, QTB and path-integral
yield consistent descriptions, which both differ from the harmonic picture.

5.3.3. From Equilibrium to Nonequilibrium

In this section, we first introduce the approach adopted by Dhar and Roy [63] to
compute the thermal conductivity within a fully quantum formalism in the case of a
one-dimensional harmonic chain of atoms. We then shortly describe how this method
was generalized to anharmonic models by Wang [64], by introducing a quasiclassical
approximation in which the thermal conductivity is evaluated through molecular dynamics
simulations with a quantum heat bath (QHB). This approach has enabled the study of two
realistic systems [65] and it presents striking formal similarities with the QTB (and QT)
methods. We conclude this section by briefly reviewing a few studies that exploit the QTB
formalism to evaluate similar nonequilibrium properties.

We briefly recall the connection between equilibrium properties and time-dependent
propagators via atomic Green’s functions, which is the subject of a vast amount of lit-
erature [66]. Here, we follow the formalism adopted by Dhar and Roy for a harmonic
system [63]. They considered a one-dimensional harmonic chain of N particles of mass
M, with displacement uj (j = 1, . . . , N) with respect to their equilibrium position. The
chain is linearly coupled at its left (L) and right (R) sides with two semi-infinite harmonic
lattices that act as heat reservoirs at two different temperatures TL and TR. Substituting
the formal solution of the quantum propagation for these reservoirs, one can eliminate the
bath degrees of freedom and obtain the quantum Langevin equation for the displacement
vector: uC = (u1, . . . , uN):

üC = − KuC −
∫ t

t0

ds Σ+(t, s) uC(s) + ξL(t) + ξR(t) (26)

where K is the N × N coupling matrix describing the harmonic forces within the chain,
and Σ+ = Σ+

L + Σ+
R is the self-energy matrix due to the combined interaction with the left

and right reservoirs. Since the baths are assumed to be harmonic, Σ+(t, s) can be expressed
analytically in the frequency domain. The noise vectors ξL(t) and ξR(t) can then be related
to the self-energies by assuming that the reservoirs are at thermal equilibrium and therefore
obey Bose–Einstein statistics, which yields the following fluctuation–dissipation relation
for the symmetrized correlation function in the frequency domain:

1
2
〈ξ̃(ω)ξ̃T(ω′) + ξ̃(ω′)ξ̃T(ω)〉 = δ(ω + ω′)

h̄Γ(ω)

2π
coth

(

h̄ω

2kBT

)

(27)

where Γ(ω) = Im[Σ+(ω)] and ξ̃(ω) refer either to the left or the right lead, with the
appropriate temperature T = TL, TR. Here the bath self-energy provides the connection
between the equilibrium correlation function of the bath and the time propagator of the
system that is needed to evaluate transport and nonequilibrium properties. The quantum
Langevin Equation (26) is formally very similar to the GLE (6), that was also derived under
the assumption of bilinear coupling with an harmonic bath and extended by Dhar and Roy
to a nonequilibrium case with two baths at different temperatures.

The atomistic Green’s function for the chain can then be expressed as:

G±(ω) =
[

−Mω2 + K + Σ±
L (ω) + Σ±

R (ω)
]−1

(28)

In this expression, the harmonic frequencies of the isolated chain are renormalized by
the self-energies of the interaction with the right and left bath leads. Provided Σ±

L (ω) and
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Σ±
R (ω) are known (the advanced and retarded self-energies Σ± are related to the interaction

at the interfaces between the system sites and the bath sites; therefore, the self-energies
depend on the bath mode distribution and on their geometry—for a thorough account
of the atomistic Green’s function method, see, for instance [67]), an expression is then
derived for the thermal conductivity, by relating the energy flux though the chain and
the temperature difference TL − TR between the two reservoirs. In this fully quantum
treatment, which is made possible by the fact that the system is harmonic, the thermal
conductivity tends to zero at low temperatures, contrary to the classical description of
heat transport.

5.3.4. Thermal Conductivity of Insulating Crystals

Wang aimed at simulating heat transport in realistic nanostructures from the ballistic
regime at low temperatures to the diffusive regime at high T, via molecular dynamics [64].
He noted that the kinetic theory for phonons provides the thermal conductivity as κ = 1

3 cvl,
where c is the heat capacity, v the sound velocity and l the mean free path. Therefore,
classical molecular dynamics cannot provide a reliable estimation of heat transport in
the low-temperature regime as c goes to a non-zero constant for T → 0 in the classical
framework, which clearly contradicts the experimental facts.

Wang then followed the Dhar and Roy’s approach [63], that he extended to anhar-
monic systems. In order to make the problem tractable in that case, Wang introduces a
quasiclassical approximation similar to that of Schmid [32], and ended up with a gen-
eralized Langevin equation. It is formally identical to (26), apart from the fact that the
harmonic force term −KuC is replaced by a general nonlinear force F(uC). However, the
interpretation of this equation is completely modified in the quasiclassical approximation
as, instead of quantum position operators, the vector uC(t) now describes the classical-like
stochastic trajectories of the atoms that can be obtained by integrating the GLE using molec-
ular dynamics techniques. Wang named such a method quantum molecular dynamics, but in
the context of the present review, we refer to this approach as quantum heat bath (QHB):
he showed that the QHB allows the recovery of the exact quantum thermal conductivity
in the case of harmonic chains, and provides consistent results for both the high- and
low-temperature regimes for anharmonic one-dimensional chains [64].

Later on, Wang and coworkers [65] applied the QHB to analyze thermal transport
in a two-dimensional realistic model of graphene nanoribbon. They show that the QHB
results are more consistent than other schemes that use a posteriori quantum corrections to
otherwise classical dynamics. For instance, some authors run classical MD simulations at a
“quantum-equivalent classical temperature” TMD =

∫

dωD(ω)θ(ω, T)/kB, where D(ω)is
the phonon density of states [68]. Such a posteriori correction schemes are nevertheless
not fully consistent, even for the one-dimensional harmonic chain, as they differ from the
exact result by a numerical factor [65]. Interestingly, Wang and coworkers also provide a
diagrammatic perturbative expansion of the QHB results for weakly anharmonic systems
and analyze their discrepancies with respect to a fully quantum-mechanical nonequilibrium
Green functions approach. From this analysis, they argue that QHB is exact in leading
order in the anharmonic perturbation for the phonon lifetime.

The thermal conductivity of solid argon, modelled via Lennard–Jones interatomic
potentials, was also investigated using nonequilibrium QTB molecular dynamics by Bedoya-
Martinez et al. [51]. In these calculations, the simulation cell is divided into slabs, two of
which are thermalized at different temperatures. The ratio between the imposed temper-
ature gradient and the resulting heat flux then yields the thermal conductivity. As was
observed for other materials [12,69], the QTB greatly improves the estimation of the heat
capacity with respect to classical simulations. Nonetheless, these authors observed that,
at low temperatures (where NQEs are expected to be most relevant), the experimental
trends for the thermal conductivity were much better predicted when a classical Langevin
equation was used as a thermostat than with the QTB. This result, which contrasts the
outcomes by Wang and coworkers [64,65], was related by Bedoya-Martinez et al. to the
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underestimation of the phonon lifetimes. After the analysis of the simulations, they at-
tributed the too-short phonon lifetime to the presence of a strong ZPE leakage, which tends
to equalize the effective temperature for all phonon modes irrespective of their frequency,
and partly to a more fundamental limitation of the QTB method, that would be intrinsically
unable to capture this quantity accurately (see also our analysis in Section 4).

5.3.5. Shock Compression

Qi and Reed [69] proposed atomistic simulations of shock-compressed materials that
incorporates quantum nuclear effects on the fly. The authors combined the MultiScale
Shock Technique to reproduce the kinetics of liquid CH4, described through semiempirical
interatomic potentials, with the QTB as a bath. The heat capacity as well as the temperature
and pressure versus density curves are significantly improved by the introduction of NQEs
in comparison with experimental data.

6. Path Integrals and Colored Bath

Quantum baths are also used to reduce the numerical cost of the reference method
to include NQEs in simulations of realistic systems: path-integral molecular dynamics
(PIMD). It can be shown, at least for time-independent properties, that PIMD systematically
converges to the exact quantum result irrespective of the form of the interaction potential.
This convergence can, however, come at a considerable numerical cost that sometimes
hinders ambitious applications. The successful use of generalized baths to facilitate the con-
vergence of this approach is therefore an additional motivation for their interest, regardless
of the theoretical limitations discussed in previous sections. In this chapter, a very brief
introduction to PIMD is provided, followed by a description of two approaches based on
generalised baths that effectively improve the efficiency of path integral calculations.

6.1. Path Integral Molecular Dynamics

PIMD implements numerically a discrete version of Richard Feynman’s path-integral
formalism applied in imaginary time to the thermal density matrix. In practice, there is
a correspondence between the quantum equilibrium distribution and that of a classical
equivalent system in which each particle is replaced by a set of P replicas or “beads”,
subject to the following potential:

VP(x1, . . . , xP) =
mP

2h̄2β2

P

∑
ℓ=1

(xℓ − xℓ+1)
2 +

1
P

P

∑
ℓ=1

V(xℓ) (29)

The first term in the right-hand side is the bead–bead interaction that arises from the
kinetic energy operator, while the second term V is the physical potential to which the
original particle is submitted, e.g., interactions with other particles [70]. Standard molec-
ular dynamics methods can then be used to obtain trajectories and sample a probability
distribution of the classical equivalent system, which effectively includes NQEs. The main
advantage of this method is that it converges towards the exact quantum distribution
as the number of beads P is increased to infinity. Its computational cost is, however, an
important drawback, especially at low temperature where the number of beads needed
to reach convergence becomes very large. This issue can be mitigated by combining path
integrals with quantum baths (see Sections 6.2 and 6.3 below). Another more fundamental
limitation concerns dynamical observables such as vibrational spectra: PIMD is based
on an imaginary-time path integral mapping of the quantum equilibrium density to that
of the classical equivalent system described by Equation (29), but this mapping does not
capture the quantum dynamics (even in the large P limit). PIMD is nontheless at the
basis of different approximations to the quantum dynamics among which, in particular,
centroid MD and ring-polymer MD as well as other more computationally demanding
methods [10,16,30].
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6.2. Combining Path Integrals with Langevin Equation

In 2011, Ceriotti and coauthors proposed to use generalized Langevin thermostats in
the context of PIMD simulations [71] (this combination was first denoted PI+GLE). In a
standard PIMD simulation, the equivalent potential VP of (29) is sampled using molecular
dynamics with a classical thermostat (e.g., a white noise Langevin thermostat) and the
sampled distribution tends to the exact quantum one for large P. In PI+GLE, on the
contrary, the equivalent system is attached to a GLE thermostat designed in such a way
that, for a harmonic oscillator, the sampled distribution equals the quantum one for any
number of beads P. For a single bead, this strategy reduces to the quantum thermostat
approach described in Section 3.2, while for large P, it tends to the standard PIMD. By
construction, the method is exact for harmonic systems, and, for general anharmonic
systems, the number of beads required to converge is significantly reduced with respect
to standard PIMD. For example, for liquid water at ambient temperature, 6 beads yield
similar accuracy as 32 in standard PIMD [71]. A further refinement of the method was then
introduced under the name PIGLET [72], in which the GLE thermostat is applied in the
ring-polymer normal mode basis in order to speed up the convergence of the quantum
kinetic energy estimator. The PIGLET approach considerably reduces the computational
burden of PIMD while retaining the systematic convergence with increasing number of
beads. This approach enables accurate simulations at ultra-low temperatures feasible [73].
Although path-integral generalized Langevin equation methods have been limited to the
study of static properties, Kapil and coworkers recently introduced a post-processing
scheme that estimates the dynamical perturbation introduced by the generalized bath and
recover time-correlation functions [74]. The PIGLET availability in the i-PI simulation
platform [35] has enabled the wide use of this appealing compromise [75–77].

6.3. The Quantum Thermal Bath and Path-Integral Molecular Dynamics

Following the work by Ceriotti et al., Brieuc and coauthors proposed to combine PIMD
with the QTB Formalism [78]. In this approach, denoted PIQTB, the path-integral equivalent
system of Equation (29) is thermalized via a Langevin equation with a Markovian friction
and a colored random force (as in the QTB). As for the PIGLET method, PIQTB tends to
standard white noise Langevin PIMD for large number of beads while it reduces to QTB in
the single-bead case. For intermediate numbers of beads, the memory kernel of the random
force is chosen in such a way as to enforce a modified second kind FDT, in order to ensure
sampling of the exact quantum distribution when applied to harmonic oscillators. For
anharmonic systems, PIQTB offers similar convergence speed-up as PIGLET down to very
low temperatures [79]. In particular, combined with other recent developments, PIQTB
has enabled accurate simulations of chemical systems in superfluid helium nanodroplet
down to ultra-low temperatures on the order of 1 K, whereas the computational cost of
converging such calculations using standard PIMD techniques would be prohibitive [80].

7. Overcoming the Leakage via the Adaptive Quantum Thermal Bath (adQTB)

Although quantum baths are very attractive for their simplicity and efficiency, the
ZPEL is a major limitation, which needs to be cured. In this section we show how the
first-kind quantum FDT can be used as a quantitative diagnostic tool for the ZPEL and to
design an adaptive method in which it is systematically compensated for.

7.1. Quantitative Assessment of the ZPEL

As mentioned in Sections 4.3 and 5, ZPEL and its consequences were observed in
several studies with either the QTB or the QT methods. The ZPEL can be mitigated by
increasing the damping coefficient γ, or equivalently in the QT formalism, by designing
more strongly coupled GLE thermostats [34]. However, strong system–bath couplings
also affect the accuracy of the GLE methods (even for harmonic systems, the QTB and
the QT are only rigorously exact in the weak coupling limit), and distort the vibrational
spectra. Furthermore, even for large γ values, the ZPEL is not completely suppressed and
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it can still have non-negligible effects. Therefore, a first step to design an effective cure
is to provide a reliable diagnostic tool. Such a diagnosis is derived from the first kind
fluctuation–dissipation theorem (see Section 2.1) that, in the context of the QTB, can be
written as:

2θ(ω, T) Re[χ(ω)] = Cvv(ω) (30)

where θ(ω, T) is the quantum energy distribution, χ(ω) is the complex admittance or
susceptibility that characterizes the response of the system to a perturbation, and Cvv(ω) is
the Fourier transform of the velocity–velocity correlation function. By using the quantum
first-kind FDT (Equation (3)), the symmetrized autocorrelation spectrum Cs

vv(ω) (replaced
here by Cvv(ω)), can be evaluated from the Fourier transform of the QTB trajectories as it
would be in a classical framework, consistently with the quasiclassical approximation at
the root of the method.

As introduced in Section 2.1, the first-kind FDT is a very general relation that holds for
a quantum system at thermal equilibrium and indicates that the vibration power density is
distributed according to the quantum energy distribution θ(ω, T). The first-kind FDT is
more fundamental than the second-kind FDT as used in the original formulation of the QTB,
which relates the strength of the friction and random forces in the generalized Langevin
equation. Indeed, the QTB would thermalize the vibrational modes with the appropriate
average energy if they were non interacting, but in general anharmonic systems, the modes
are coupled. This generates an energy flow from high to low frequencies, even though the
system-bath coupling obeys the second-kind FDT. This flow creates an energy unbalance
that can be detected through the violation of the first-kind FDT (30).

To exploit this relation, it was shown that, in a Langevin dynamics, the linear suscepti-
bility can be estimated from the velocity–random-force correlation [17]:

Re[χ(ω)] =
Re[CvR(ω)]

CRR(ω)
=

Re[CvR(ω)]

2mγθ(ω, T)
(31)

The first-kind FDT can then be rewritten as (here we use one-dimensional notations;
generally, the FDT should be satisfied for each degree of freedom and for each frequency
independently):

Re[CvR(ω)] = mγCvv(ω) (32)

where CvR(ω) is the Fourier transform of the velocity–random-force correlation function.
All terms in Equation (32) are now easily computed during a simulation run, and deviations
from it are a clear indication that ZPEL occurs. Indeed, the ratio between the two sides of
the equation can be used to define an effective frequency-dependent temperature Teff(ω),
that, if the first kind FDT holds, should follow the quantum distribution of energy:

Teff(ω) =
Re[CvR(ω)]

mγCvv(ω)
k−1

B θ(ω, T) = k−1
B θ(ω, T) iff FDT holds (33)

The effect of ZPEL on this effective temperature is represented in Figure 11 in the
case of liquid water. Even with a relatively large value of γ, the effective temperature
deviates from the first kind FDT reference (shown as a black line), which is a clear evidence
of ZPEL. In particular, at low frequencies, the effective temperature is overestimated by
more than 50 K for hydrogen atoms (around 30 K for oxygen). This is a consequence of the
leakage of the large zero-point energy, which is significant in the high-frequency bending
and stretching molecular modes towards low frequencies, and it can lead to massive errors
as it strongly distorts the water’s molecular structure (see also Figure 12).
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Figure 11. Effective temperature Teff versus frequency as defined by Equation (33) in liquid water at
300 K described with the q-TIP4P/F model and simulated with the QTB method using γ = 20 ps−1.
The blue dashed line corresponds to oxygen (it is average over all O atoms and over all three
directions x, y and z), the dotted orange line to hydrogen, and the black continuous line is the
reference k−1

B θ(ω, T) that corresponds to the first-kind FDT. The simulations were performed using
Tinker-HP software [81] and parameters similar to that in Ref. [18]. The inset represents a zoom on
the low-frequency region and the vibrational power spectrum mCvv(ω) is shown as a dashed-dotted
grey line.
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Figure 12. Radial distribution functions (RDF) in liquid water at 300 K described with the q-TIP4P/F
model and simulated with different molecular dynamics methods (left, oxygen–oxygen; middle,
oxygen–hydrogen). The friction coefficient used for QTB and adQTB methods is γ = 20 ps−1, the
adapted random force coefficients γr(ω) are plotted on the right panel for oxygen (dashed blue) and
hydrogen (dotted orange) atoms. The simulations were performed using Tinker-HP software [81]
and parameters similar to that in Ref. [18].

7.2. A Cure through Strict Enforcement of the First Kind FDT

To design a cure for ZPEL, an adaptive procedure was proposed in order to compensate
the energy unbalance measured via the first-kind FDT [17]. To that end, the second-kind
FDT is broken and two different frequency-dependent coupling coefficients are introduced:
γr(ω), that replaces γ in the random force power spectrum, Equation (14), and γ f (ω) that
characterizes the memory kernel of the friction force that is rendered non-Markovian (it
is related to the memory kernel in Equation (6), by K̃(ω) = 2mRe[γ f (ω)]). The first-kind
FDT is then written as [17]:

Re[CvR(ω)] = mγr(ω)Cvv(ω) (34)
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In the adaptive QTB (adQTB) method, the frequency-dependent coefficients γr and
γ f are adjusted on the fly during the simulation through a relaxation process that nullifies
the difference between the two sides of Equation (34). This means that the random and the
friction forces adapt by modifying the energy balance for each frequency to compensate for
ZPEL and enforce the proper quantum energy distribution. In practice, only one of the two
coefficients γ f or γr has to be adapted. Both possibilities were tested in [17] and provide
similar accuracy in compensating the ZPEL, although the variant where γr is adapted while
γ f is kept fixed is much simpler to apply, as it does not require the implementation of a
non-Markovian friction force.

The adaptive procedure was successfully checked on several model systems and on
Ne13 clusters where it was able to stop the spurious melting of the solid clusters that ZPEL
causes in QTB simulations [17,49]. Plots of γr(ω) on Figure 13 clearly show how the bath
adapts, reducing the energy input from the bath at low frequencies, while increasing it at
high frequencies.
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Figure 13. Panel (a) Adapted γr(ω) for the Ne13 clusters of [17] at 4 K (blue) and 18.3 K (orange).
Panel (b) Radial pair distribution function g(r) for the QTB (dotted red) and adQTB (dash-dotted
blue) compared to classical (dashed grey) and PIMD (solid black) at 4 K (results converged using
32 beads). The friction coefficient was set to γ = 2 ps−1 in all simulations.

7.3. Application to Hydrogen-Bonded Systems: Liquid Water

In a very recent study, liquid water was simulated using adQTB [18] in its adaptive
random force version (i.e., adapting γr(ω) while keeping the friction Markovian with a
constant coefficient γ). Different observables such as average energies and radial distri-
butions were compared to PIMD simulations and shown to closely follow this reference
technique (see Figure 12). Constant-pressure simulations were also performed to evaluate
the density and the vaporization enthalpy as a function of temperature, in good agreement
with the path integral calculations, at a computational cost comparable with that of classical
simulations.

Water is a particularly challenging problem for the (ad)QTB method. Indeed, it
was shown in the literature that in hydrogen-bonded systems, two opposite NQEs are
in competition. On the one side, the stretching zero-point motion tends to strengthen
hydrogen bonding, while on the other, the bending zero-point energy weakens it [82,83].
In liquid water, these two effects almost cancel each other, so that overall NQEs remain
limited. Capturing this subtle balance is therefore essential to reproduce the properties of
water accurately. In the standard QTB method, the molecular structure of water is strongly
washed out by the ZPEL, as illustrated in Figure 12, but the adaptive procedure restores
the correct distribution of energy, including zero-point contributions, and hence recovers
radial distribution functions very close to the PIMD ones.
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Interestingly, this study also confirms the potential interest of the adQTB for the inclu-
sion of NQEs in the estimation of vibrational spectra: the infrared absorption spectrum of
water was computed and compared to thermostated ring-polymer molecular dynamics
(TRPMD), one of the most common approximations derived from the path-integral formal-
ism for the calculation of time-dependent properties. The adQTB provides comparable
accuracy to TRPMD, and it even captures better the high-frequency part of the infrared
spectrum, where overtone and combination bands appear, whose amplitude the TRPMD
method is unable to reproduce [16,84,85].

8. Quantumness from Baths: State of the Art and Open Issues

Quantum baths rely on a kind of blend of classical and quantum features: the system
degrees of freedom follow a classical dynamics in which quantum effects are introduced via
a generalized Langevin equation. Langevin dynamics turns out to be remarkably versatile
and enables various choices for the bath characteristics and the strength of the coupling to
the system. In quantum baths methods, it is used to reproduce zero-point energy (ZPE)
effects by thermalizing the modes of the system at a well-chosen frequency-dependent
effective temperature. These approaches are particularly suited for the simulation of the
statistical properties of systems that are at the borderline between the classical and the
quantum worlds. This is typically the case of light nuclei in molecules and condensed
matter, such as H, He, or Li, or even heavier nuclei at low temperatures. In these cases,
ZPEs can dramatically change the energetic landscape of the system, especially for highly
anharmonic systems and shallow potential energy profiles; at low temperatures (much
smaller than the ZPE) some fluctuations can be frozen, which impacts the computed
response functions, such as the heat capacity; when energy barriers are present between
several distinct configurations, the quantum description can greatly differ from the classical
one, whenever the extension of the nuclear wavefunction is comparable to the width of the
energy barrier. Isotope effects are another important example of NQEs, as purely classical
averages are mass-independent. Therefore, the variation under isotope substitution of the
thermodynamical properties (geometric isotope effect) or the reaction rates (kinetic isotope
effect) are often clear experimental markers of the importance of quantum mechanics.
In addition, within the realm of condensed matter physics, simulations involve a large
number of degrees of freedom subject to non trivial potentials that are often expensive
to calculate. When NQEs cannot be neglected—in many cases even at room temperature
and pressure—methods to account for them must therefore be adapted to these specific
constraints. Quantum baths attempt to use a classical formalism in which the energy
distribution is altered to follow the Bose–Einstein distribution via a stochastic process
included into a generalized Langevin equation. Apart from some technical subtleties that
come along with the use of the generalized Langevin formalism, these methods do not
involve increasing the computational load substantially, which make them highly desirable
for the simulation of condensed matter systems, with thousands of atoms and more, that
could be unfeasible otherwise.

The idea of enforcing the correct quantum energy distribution in realistic molecular
dynamics simulations through a generalized Langevin equation is rather recent. As for
many other approaches [86], this quantum–classical blend is clearly an approximation,
which must be assessed.

An important shortcoming of these approaches, which is common also to some other
mixed quantum–classical methods, is the zero-point energy leakage, that is, the trend to
transfer a significant part of the excess ZPE from high to low frequencies. In this respect, the
use of a generalized fluctuation–dissipation theorem (FDT) to monitor and regulate energy
fluxes between the bath and the distinct degrees of freedom of the system has provided an
elegant and easily implementable solution to this problem. The last-generation adaptive
QTBs enforce the first-kind FDT to every frequency separately rather than the second-kind
FDT, as used in previous quantum baths methods, and, by keeping the ZPE leakage below
a certain threshold via an effective built-in feedback mechanism, is affirming as a quite
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safe mixed quantum–classical approximate scheme to appreciate NQEs in many systems.
Moreover, this solution to the ZPE leakage made it possible to distinguish the intrinsic
inaccuracies of the QTB method from those that are induced by the leakage, thus opening
the way to other possible improvements of quantum baths. We note that, although the
adaptive procedure has so far only been explored in the context of the QTB, in principle it
could be extended to the QT formalism as well.

We stress that, at variance with their classical counterpart, the equilibrium distributions
obtained from quantum baths cannot be derived analytically apart from a few cases, such
as the harmonic oscillators. We illustrated through a few examples the performances
of quantum baths (focusing more particularly on the QTB) both on equilibrium, time-
independent, averages, and time-dependent correlation functions. Quite a wide experience
has thus been gained on various systems, differing by the kind of interatomic bonding
and the thermodynamic conditions. Rather generally, the QTB yields the maxima of the
particle distributions at the minima of the potential energy surface, as do the classical ones.
This is a minor shortcoming for mildly anharmonic cases, but might be a serious limitation
when dealing with strongly anharmonic systems, characterized by double wells or when
shallow potential energy surfaces are combined with large ZPE contributions; in such
cases, a comparison with exact probability distributions as obtained via path-integral-based
simulations could be helpful. However, in many realistic problems, and even close to
phase transitions (for which the potential typically presents double well features), quantum
baths much improve the classical description, capturing the correct trends and yielding
quantitatively reliable results for a number of observables.

It turns out the quantum baths provide also encouraging results when dynamical
processes are under scrutiny. They combine approximate sampling of the quantum thermal
distribution with an essentially classical time propagation. The vibrational spectra, which
can be easily obtained and analyzed as in the purely classical dynamics, can provide a
relevant description of vibrational properties, including anharmonic properties, overtones
and resonances, although a built-in criterion for attaining the convergence with respect
to fully quantum simulations has not emerged yet. Many questions remain open in that
respect, and quantum transport phenomena represent an interesting challenge at the time
of writing.

Another recent use of quantum baths relies on their coupling to other methods. In
this respect, the combination of quantum baths with the path-integral formalism often
provides a good compromise: while path-integral-based methods converge towards exact
equilibrium states when the number of beads is increased, they are costly. When the
beads are thermalized or coupled to quantum baths, their number can be significantly
reduced. This enables the simulations of molecules and condensed matter systems at very
low temperatures, which are otherwise out of reach within pure path-integral molecular
dynamics, by keeping the number of beads relatively small.

To conclude, quantum baths have known an increasing number of applications for the
simulation of material properties since their conception. In this review, we analyzed the
difficulties in their use as well as their shortcomings; at the same time, we prospected new
solutions for making them more reliable and physically sound. We anticipate that other
improvements will be built, so as to make generalized (quantum) baths an increasingly
reliable simulation tool for nuclear quantum effects in material science.
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Appendix A. Colored Noise Generation

While in the QT formalism, by Ceriotti et al., the GLE arises from a Markovian
dynamics in an extended phas space, the Quantum Thermal Bath (QTB) explicitly relies on a
non-Markovian random force, and requires the numerical generation of a colored noise, that
is a time-correlated noise, to mimic the quantum frequency-dependent energy distribution.

(i) A priori noise generation

In the original paper [12] as in the former work by Wang [64], the noise is generated
in the frequency domain: the real and imaginary parts of the discrete Fourier transform
components of R̃(ω) are drawn as Gaussian random numbers with an amplitude corre-
sponding to Equation (14). Backward Fourier transform then provides the force in the
time domain R(t) that is stored in a large file before starting the actual simulation. During
the simulation, the numbers are then simply read as needed. This method is well suited
for ab initio molecular dynamics [1,53], where electronic calculations are computationally
expensive so that the number of atoms and the simulation length remain relatively small.
However, when simulating long trajectories with quickly evaluated analytical interatomic
forces fields, storage and access to very large random force fields can become problematic.
Furthermore, this a priori generation method for the colored random force is not suited to
adQTB simulations where the memory kernel is adapted on-the-fly during the molecular
dynamics in order to compensate for ZPE leakage.

(ii) On-the-fly noise generation

An alternative, on-the-fly noise-generation method was proposed [39], based on the
observation that the QTB colored noise can be obtained by filtering a white noise [87] with
the filter defined by:

H̃(ω) =
√

2mγθ(ω, T) (A1)

The random force R(t) can then be obtained on-the-fly in real time by convolution of
the deterministic function H(t) (the inverse Fourier transform of H̃(ω)) with a Gaussian
normalized white noise r(t) (with a spectral density C̃rr(ω) = 1). Discretization yields:

H̃k = H̃(k δω), k ∈ [−n, n − 1]

This, of course, introduces a cutoff frequency ωmax related to the discretization time
step: ωmax = nδω = π

δt . Since H(t) must be real,

H(ℓ δt) = Hℓ =
1

2n

n−1

∑
k=−n

H̃k cos
πkℓ

n
(A2)

and,

R(ℓ δt) = Rℓ =
n−1

∑
m=−n

Hmrℓ−m (A3)

where rm is a random number with Gaussian distribution, zero mean and variance
√

δt.
In practice, the time step used for the noise generation does not have to be equal to the
dynamical time step δt: Barrat and Rodney introduce the possibility to choose a larger time
step h = Mδt, by keeping the random force constant for M consecutive dynamical steps.
The convolution formula then becomes:

H(ℓh) = Hℓ =
1

2n

n−1

∑
k=−n

H̃k cos
πkℓ

n
and R(ℓh) = Rℓ =

n−1

∑
m=−n

Hmrℓ−m

This has two advantages: firstly it allows updating the random force every M time
steps only, and dividing the number of convolution points 2n by M while keeping the same
time interval T = 2nMδt for the convolution. This considerably reduces the computation
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load. Secondly, it naturally decreases the cutoff frequency to ωmax = π/h = π/Mδt, which
can be useful to avoid kinetic energy overestimation, as indicated in Section 4.1.

The increase of the random force step h modifies its effective correlation spectrum,
which should be taken into account by replacing filter (A1) with

H̃c(ω) =
H̃(ω)

C(ω)
, C(ω) =

sin(h ω/2)
h ω/2

(A4)

that is, correcting with the Fourier transform of the appropriate square function, since the
random force is kept constant on M consecutive timesteps.

(iii) Segmented noise generation

In the adQTB method, the spectra CvR(ω) and Cvv(ω) appearing in Equation (34) have
to be evaluated periodically during the course of the simulation, in order to adapt the bath
coefficients γr(ω) or γ f (ω). The adaptation also implies that the colored noise correlation
spectrum is modified periodically. Generating the noise a priori for the whole duration of
the simulation is thus not possible. It would in principle be possible to divide the trajectory
in segments of length Tseg = nδt and use the a priori method (i) to generate the colored
noise at the beginning of each segment for the duration Tseg only. However, this would
imply a rupture of the noise memory kernel, since the random force at the beginning of a
new segment would be entirely uncorrelated with the force at the end of the former one.
The associated error is small if Tseg is much longer than the random force typical correlation
time, but this might not be the case, particularly when using short segments to accelerate
the adaptation process. On the other hand, the on-the-fly method (ii) is compatible with the
adQTB—with a periodical adaptation of the filter H̃(ω)—but it requires the introduction of
a large random force time step h = Mδt in order to be computationally efficient.

A workaround can be found with the segmented noise generation, that combines ideas
from both previous methods in order to alleviate their respective drawbacks. This method
relies on the filtering Formula (A3), but the latter is applied at the beginning of each
segment only, in order to generate the random force for the whole duration Tseg, taking
advantage of the computational efficiency of Fast Fourier Transform (FFT) algorithms in
order to avoid the introduction of a larger step than δt. In practice, one initializes the
procedure by generating the normal white noise ri for 3n steps and store it in an array r(t).
The convolution with the filter is then performed in the frequency domain at the beginning
of each segment and the colored random force R(t) is finally obtained by backward FFT.
The whole procedure can be summed up in the expressions:

r(t) ↔ [r1, . . . , r3n] with ri ∼ N (0, δt)

R(t) ↔ FFT−1
[

fωmax (ω)
√

2mγr(ω)θ(ω, T)× FFT[r](ω)
]

(A5)

for t = iδt, i = n + 1, . . . , 2n

where fωmax (ω) is a function implementing an explicit cutoff at frequency ωmax (for instance
a Fermi function centered at a well-chosen ωmax < π/δt in order to avoid kinetic energy
overestimation, as indicated in Section 4.1). Note that R̃(ω) should retain Hermitian
symmetry in order for the resulting colored force in the time domain to be real. The
random force used for the coming segment is then given by the middle part of R(t) (from
index n + 1 to 2n), even though the white noise r(t) is considered also for the preceding
(i = 1, . . . , n) and for the ulterior (i = 2n + 1, . . . , 3n) ones, which avoids any rupture of the
memory kernel at the transition between segments. At the end of each simulation segment,
after the adaptation of the coupling parameters γr(ω) the white noise array is shifted by
n indices, a new white noise segment is generated for i = 2n + 1, . . . , 3n and the Fourier
space convolution procedure is repeated to provide the colored force R(t) for the coming
segment i = n + 1, . . . , 2n.
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Appendix B. Extended Variable Approach to the Generalized Langevin Equation: Two

Simple Cases

In this appendix, we illustrate the extended variable strategy of Ceriotti et al. for
practical implementation of the GLE with two simple examples where the number of
auxiliary momenta is N = 1 and N = 2, the matrix Ap and Bp are given explicitely as well
as the corresponding memory kernel.

In the N = 1 case, we consider following equations of motions for x, p (the physical
position and momentum, respectively) and the auxiliary momentum s:

ẋ = p/m

ṗ = −∇V(x) +
√

γτ−1
F s (A6)

ṡ = − τ−1
F s −

√

γτF
−1 p +

√

2mτ−1
F kBT R(t)

where m is the mass of the (physical) degrees of freedom and R a Gaussian white noise.
According to the general expression given in Section 3.2, the memory kernel is then a finite
time-range decaying exponential: K(τ) = (γτ−1

F ) e−|τ|/τF , τF is the self-correlation time and
γ the amplitude of the friction. Both are free parameters of the thermostat and the coupling
between the physical momentum p and the auxiliary momentum s increases with γ, while
the limit of white noise is recovered for τF → 0 (more precisely, for all relevant frequencies
ω ≪ τ−1

F ). If the coupling terms are dropped (the second term on the right-hand side of
the two last equations), the motion reduces to a markovian Brownian dynamics for s and a
Newtonian conservative dynamics for p, both decoupled. The equations of motion (A6)
obey to the classical FDT (17), and the equilibrium distribution for the extended system

can be shown to be P ∝ exp
(

− p2/2m+V(x)
kBT − s2

2mkBT

)

.
More versatile functional forms for the memory kernel can be obtained by increasing

the number of auxiliary momenta. In particular, for N = 2, the following choice of matrices:

Ap =











0
√

γτ−1
F /2

√

γτ−1
F /2

−
√

γτ−1
F /2 0 −Ω

−
√

γτ−1
F /2 Ω 2τ−

F 1











, Bp =







0 0 0
0 0 0
0 0 b






, with Ω =

√

ω2 + τ−2
F

yields the memory kernel K(τ) = γ
τF

e−|τ|/τF Re[eiωτ ]. The classical FDT is then simply

b2 = 4mkBTτ−1
F . The corresponding equations of motion for the extended system describe

the coupling between the physical coordinates (x, p) and a damped harmonic oscillator
of frequency Ω, subject to a (Markovian) Langevin thermostat with a friction coefficient
2τ−1

F . The coefficient γ controls the coupling between this harmonic oscillator and the
physical system. From this simple example, it is easy to understand how, by further in-
creasing the number N of auxiliary momenta, one can obtain the generic memory kernel
K(τ) = Re

[

cke−αk |τ|+iωkτ
]

that can be arbitrarily tuned via the coefficient ck, αk and ωk. Fur-
thermore, the classical FDT condition can be broken, for example by coupling the physical
system with damped harmonic oscillators thermalized at different effective temperatures.
In the QT method, the classical FDT is broken in such a way as to thermalize the harmonic
modes of the physical system with the quantum equilibrium energy θ(ω, T), instead of
enforcing the classical equipartition of energy.
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Appendix C. The QTB for a Double-Well Potential in One Dimension

As the handling of an energy barrier is crucial in many applications, we consider a
generic 1D double-well potential, written as a two-center Morse potential (Figure A1):

V(x) = V0

[

e− x − x0 + a/2
d

(

e− x − x0 + a/2
d

− 2
)

+ e−−x − x0 + a/2
d

(

e−−x − x0 + a/2
d

− 2
)

+ 1
]

(A7)
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Figure A1. Double–well potential. The potential V(x) in (A7) for several distances a.

In this example V0 = 3.0 eV, d = 0.2 Å while a is the distance between the two centers
located at −a/2 and +a/2 (typically describing an H atom interacting with two heavier
atoms in a hydrogen bond configuration). When a is increased, the wells become deeper
and more separate. In this case, anharmonicity cannot be considered as a perturbation, as it
is inherent to the barrier handling.

Figure A2 shows how the QTB corrects the classical probability distributions to include
quantum effects. At 300 K, the classical distribution remains strongly concentrated at the
bottom of the wells and at the simulation time-scale (20 ns), the classical particle hardly
crosses the energy barrier while the QTB-driven particle does. The QTB distribution
shape, however, shows sharper peaks than the fully quantum result. The QTB tends to
underestimates the probability in between the two peaks when the wells are close, while
the peak positions are shifted away from the midpoint, with respect to the exact quantum
solution. For large inter-well distances a = 2.5 Å and 2.6 Å, the features obtained in the
single-well problem (Section 4.2) can be recognized: the QTB distribution maxima remain
at the classical location, while tails in between extend further.
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Figure A2. Probability distributions that are obtained for V(x) (A7) at T = 300 K for several distances
a. Exact quantum distribution (magenta), classical distribution (green) and QTB distribution (blue).
The damping coefficient here is γ = 0.1 THz. Setting γ to 1 THz or 10 THz does not change the
resulting probability distributions significantly.
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