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Abstract

We study the relationship between gauge theories in two and four dimensions with

N = 2 supersymmetry. This includes the duality between their moduli spaces, compari-

son of Bogomolny-Prassad-Somerfield (BPS) spectra, study of instanton configurations,

and other aspects. On they way we use various methods of integrability, conformal filed

theories and string theory to achieve our goals.

We start with describing physics of two dimensional N = 2 sigma models, geometry

of their target spaces, their BPS spectra, and how they can de derived from four di-

mensional theories via BPS vortex construction. Two different approaches – gauge and

geometric, as tools to study 2d theories, are compared in the light of perturbative as

well as nonperturbative aspects of the theories in question.

Then we discuss four dimensional supersymmetric gauge theories in presence of an

Omega background – a special deformation used in localization of path integrals of

supersymmetric theories. Instead of performing the localization we treat the Omega

background physically and study BPS solitons for such theories, albeit the latter al-

ready possess less supersymmetry. Theories with N = 2 SUSY in Omega background

are conjectured (and proven in special cases) to be dual to nonsupersymmetric confor-

mal field theories in two dimensions by Alday, Gaiotto and Tachikawa (AGT duality).

Employing the machinery of the 4d/2d duality combined with powerful methods of in-

tegrability we provide a proof of the AGT relation (in the limit where the 2d model in

question exists).

In the end we regard heterotic N = (0, 1) and N = (0, 2) sigma models in two

dimensions. With fewer supersymmetry one has less control on the nonperturbative

dynamics of the theory, however, we get some nice physical understanding of these

models at strong coupling by means of the large number of colors approximation.
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2.3 Vacua of the HT model for N = 5, Ñ = 3 in the Cm̃ domain. . . . . . . 26
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Chapter 1

Introduction

Supersymmetric gauge theories provide us with a vast and very mysterious framework

in which very powerful physical accomplishments can be made. Since the discovery

of supersymmetry in the early 70-th [1, 2, 3, 4], many theoretical physicists focused

their efforts on investigating the new quantum field theories with and without gravity

in order to uncover the mystery of the “superworld”. Throughout the years theorists’

attention was migrating from more formal aspects of supersymmetry (SUSY) involving

intricate and not less mysterious branches of mathematics to more phenomenologically

oriented studies and back. Nowadays SUSY community consists of several thousands

of researchers worldwide who are continuously attacking new problems of a constantly

growing complexity. In the current manuscript we shall only discuss problems of the

first kind as that is where the author’s current scientific interests are.

Let us mention, however, that the status of supersymmetry as a branch of theoretical

physics may soon completely change its form after new data on SUSY search will start

coming from the Large Hadron Collider (LHC) in CERN. Astonishingly the Higgs boson

discovery at mH ∼ 126 GeV has happened [5, 6] while the author was preparing the

current thesis. Experimentalists in Geneva have done (and keep doing) an extraordinary

job, and steadily we will know the answers to many questions about how real the

supersymmetry is in the nearest future. As of the present day (Summer 2012) the

perspectives of finding SUSY at LHC are not very optimistic (see e.g. [7]). In the worst

case scenario, when the SUSY will be found not to be present, at least in the form we

use to think about it, phenomenological studies in this direction will be virtually over

1
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and only abstract and formal aspects of supersymmetry will remain on the frontline of

physics.

Thus, in the accord with the current work, supersymmetry is to be treated as a

powerful tool in the study of gauge theories at strong coupling. Access to strongly

coupled dynamics becomes possible in some sectors of the Hilbert space of the theory

which are protected by supersymmetry. Such states are usually called Bogomolny-

Prassad-Somerfield (BPS) states [8, 9]. Although BPS sectors of gauge theories with

extended supersymmetry are elaborated on to a much better extent than non-BPS

sectors, it is the study of the latter which is important for a complete understanding of

the theory. However, in SUSY theories with gravity (supergravity or SUGRA) already

investigation of BPS objects is nowadays the cutting edge in the field due to much more

complicated structure of the space of BPS states. The progress in supergravity is thus

much more faint than in field theories.

Remarkably in the past decades supersymmetry proved to be a source of unexpected

inspiration to various branches of mathematics. For example, the Seiberg-Witten so-

lution of low energy effective theories in four dimensions with extended SUSY [10, 11]

boosted the development of modular forms on the math side, and further development

of the ideas of Seiberg and Witten into string theory unveiled even more sophisticated

and complex mathematical structures like mock modular forms, etc. The moduli space

of BPS states of a gauge theory was found to have a nontrivial structure of domains,

separated from each other by walls, each of which possess different BPS spectra. Transi-

tion phenomena occur on these walls. Having known the spectrum in one of the domains

of the moduli space one may be interested in extending it to other domains. It is made

possible thanks to Kontsevich-Soibelman (KS) wall crossing formulae (WCF) which ap-

peared in mathematical literature [12]. Right after that WCF were elaborated in the

series of seminal papers by Gaiotto, Moore and Neitzke [13, 14, 15, 16, 17] in connection

with various aspects of nonperturbative physics and string theory.

Another example of the interplay between SUSY gauge theories and math can be

found in the celebrated N = 4 Super Yang-Mills theory [18] which was extensively

studied from various angles. Most notably, the N = 4 theory is related to the Langlands

duality [19, 20]. Yet another and very recent study of superconformal quiver gauge

theories by employing the Novikov-Shifman-Vainshtein-Zakharov (NSVZ) β-function
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[21], contributed to development in understanding of brane tilings [22, 23, 24].

Computations in supersymmetric gauge theories can be greatly simplified by using

the power of the path integral localization [25, 26, 27]. Theories with N = 2 SUSY enjoy

the fact that their Lagrangians, up to topological terms, can be written as anticommu-

tators involving a nilpotent supercharge (BRST exact). Then one mentions that BRST

exact terms have zero vacuum expectation values. Under a certain deformation of the

Lagrangian, which does not change physical observables in the theory, one observes that

the path integral localizes on the space of the solutions of the self-dual equation, or in

the instanton configuration. The space of such solutions of the self-duality equation

is finite dimensional which enables us to compute partition functions of N = 2 gauge

theories [28].

Many four dimensional gauge theories with N = 2 supersymmetry can be viewed as

twisted compactifications of superconformal six dimensional N = (0, 2) theory [29, 30]

on a genus-g Riemann surface Σg,n with n punctures [31]. The result is archived by

wrapping an M5 brane around that Riemann surface1 . One may also study fivebranes

with M2 brane defects or surface operators [32] which preserve (2, 2) supersymmetry.

Location of the defect on the Riemann surface gives a mapping between the space of

parameters of the surface operator and the parameter space of gauge couplings of some

2d twisted superpotential. It brings us to the notion of the 2d theory. Equivalently

surface operators can be obtained from BPS strings (vortices) [33, 34, 35] by sending

their tension to infinity. Notably the latter construction does not require any higher

dimensional brane engineering.

It turns out that N = 2 theories in two and four dimensions share many properties,

e.g. BPS spectra of the two sets of theories are in agreement with each other provided

that certain constraints on the 4d side are imposed, instanton moduli spaces of 4d

gauge theories have nice geometrical properties which can be understood by studying

two dimensional exactly solvable models. Relationships of these forms are sometimes

referred to as 4d/2d dualities, however, in each case one has to specify more details on

what exactly is described. The 4d/2d correspondence for various N = 2 theories is the

core part of the current work. We shall address both string (M) theory as well as pure

field theoretical constructions in connection with the N = 2 physics and two and four

1 Sometimes these theories are called class S theories, where S stands for ’six’.
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dimensions.2 Needless to say that two dimensional theories are easier to study than

their 4d counterparts.

The current thesis is organized as follows

• In Chapter 2 we discuss N = 2 supersymmetry in two dimensions. We study the

relationship between gauged linear sigma models (GLσM)s and nonlinear sigma

models (NLσM)s both from the string theory point of view as well as by looking at

an explicit BPS vortex construction. Quantum dynamics of several sigma models

is investigated in some detail. First we solve the model in the leading order when

the number of colors is large (large-N approximation). Then our attention is

shifted to the type IIA formalism and the way the above mentioned sigma models

can be extracted from there. One finds that in the ’t Hooft limit of infinite N both

approaches are totally equivalent, however, at finite N the calculations agree only

in the BPS sector. Beyond the BPS sector a mismatch is found which calls for

further explanation. Finally, we study perturbation theory of these models from

various standpoints. The material presented in this Chapter can be partly found

in [36].

• In Chapter 3, which is heavily based on [37], we study supersymmetric theories

in Omega background and BPS solitons in such theories. Later we shall take

advantage of powerful methods of integrability in order to related these theories

with some nonsupersymmetric conformal field theories in two dimensions (AGT

correspondence). We reconsider string and domain wall central charges in N = 2

supersymmetric gauge theories in four dimensions in presence of the Omega back-

ground in the Nekrasov-Shatashvili (NS) limit. Existence of these charges entails

presence of the corresponding topological defects in the theory – vortices and do-

main walls. In spirit of the 4d/2d duality we discuss the worldsheet low energy

effective theory living on the BPS vortex in N = 2 Supersymmetric Quantum

Chromodynamics (SQCD). We discuss some aspects of the brane realization of

the dualities between various quantum integrable models. A chain of such duali-

ties enables us to check the AGT correspondence in the NS limit.

2 Counting of supercharges has to be carried out carefully. Indeed, N = 2 in four dimensions means
8 supercharges, however, in 2d it’s four supercharges. We shall also consider theories with twice less
supersymmetry both in 4d and 2d.
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• Chapter 4 describes physics of heterotic (chiral) sigma models. First we build a

family of heterotic deformations of the O(N) sigma model. These deformations

break (1, 1) supersymmetry down to (0, 1) symmetry. We solve this model at large

N . We also find an alternative superfield formulation of the heterotic CPN sigma

models which was discussed in the literature before. Then we study a heterotic

two-dimensional N = (0, 2) gauged non-linear sigma model (GLσM) whose target

space is a tautological fiber bundle over a projective space. We consider GLσM

with N positively and Ñ = NF − N negatively charged fields. This model is

believed to give a description of the low-energy physics of a non-Abelian semi-

local vortex in a four-dimensional N = 2 supersymmetric U(N) gauge theory

with NF > N matter hypermultiplets. The supersymmetry in the latter theory is

broken down to N = 1 by a mass term for the adjoint fields. We solve the model

in the large-N approximation and explore a two-dimensional subset of the mass

parameter space for which a discrete Z
N−Ñ symmetry is preserved. Supersymme-

try is generically broken, but it is preserved for special values of the masses where

a new branch opens up and the model becomes super-conformal.

The author has published [38, 39] with his collaborators and Chapter 4 is based

on these two papers.

• Chapter 5 concludes this manuscript and lists possible direction for the future

research. It is more focused on the outlook as each of the above Chapters has its

own conclusions.

Note that the current text is not intended to serve as an introduction to supersym-

metry. The reader is welcome to use various sources which can be found in abundance

in the literature today. Rather we shall only review the necessary parts of the material

which will be used for the calculations in the bulk of the thesis.



Chapter 2

Two-Dimensional Sigma Models

with N = 2 Supersymmetry

2.1 Introduction

Some time ago it has been observed [33, 40] that the BPS spectrum of the twisted

mass-deformed two-dimensional N = (2, 2) CPN−1 sigma model coincides with that of

the four-dimensional N = 2 SU(N) supersymmetric quantum chromodynamics (SQCD)

with N massive flavors (in a certain vacuum). This correspondence holds upon iden-

tification of the holomorphic parameters of the two theories, e.g. the masses and the

strong coupling scales. Similarities between sigma models in two dimensions and gauge

theories in four dimensions have been discussed for a long time, since the discovery of

asymptotic freedom and instantons in the O(3) sigma model [41, 42]. The observation

[33, 40] showed that these similarities go beyond the qualitative level in some super-

symmetric theories. The deep reasons for this coincidence were revealed thanks to the

discovery of the non-Abelian vortices in the color-flavor locked phase of supersymmetric

QCD [35, 43, 44, 34, 45, 46, 47, 48]. The two-dimensional CPN−1 sigma model is noth-

ing other than the low-energy description of the non-Abelian string. Excitations of the

non-Abelian string correspond to states of the bulk SQCD which are confined on the

strings. In particular, BPS kinks of the CPN−1 model are confined monopoles from the

bulk perspective [34]. This observation provides more evidence that the kink spectrum

exactly coincides with the monopole spectrum.

6
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The above results were naturally generalized to SU(N) supersymmetric QCD with

N + Ñ flavors (i.e. the number of flavors is larger than that of colors). In this case

one deals with the so-called semilocal [49, 50, 51, 52, 53] non-Abelian strings. Hanany

and Tong suggested a world-sheet model for such strings [35] (the HT model 1 ) from

type-IIA brane considerations. The Hanany–Tong model can be easily formulated as

the strong coupling limit of a U(1) gauge theory with N positively charged fields and

Ñ negatively charged fields under this U(1).

While the Hanany–Tong model is exactly the theory considered by Dorey and col-

laborators, it is not the genuine effective theory on the semilocal string world sheet. The

program of the field-theoretic honest-to-god derivation started with [54, 55, 56]. Very

recently a breakthrough was achieved in [57] with the derivation of the “exact” effective

theory on semilocal strings valid in the limit logL→∞, where L is an infrared cut-off

assumed to be very large.

This exact nonlinear sigma model, to which we will refer to as the zn model, was

proven to have a different target-space metric than the HT model (albeit the same

topology).

Our task is to explore dynamics of the zn model per se and in comparison with the

HT model. It is crucial to explicitly demonstrate that the zn model has the same BPS

spectrum as four-dimensional SQCD, as it was noted previously [33, 40] with regards

to the HT model. We show that this is indeed the case. Moreover in the ’t Hooft limit

of infinite N the solutions of both models are identical. However, at finite N the zn

and HT models are different in the non-BPS sectors. In particular, they have distinct

perturbation theories. We analyze perturbation theory in the zn model and explain in

which sense one can use here the notion of a single β function.

We prove that the β functions of the zn model coincide with that of the HT model

at one loop. Thanks to supersymmetry, this is enough to show the correspondence of

the exact twisted Veneziano-Yankielowicz-type superpotentials which encode the BPS

mass formula in terms of the central charges of each state. We conclude that the two

models agree in the BPS sectors.

This section is organized as follows. First, in Sec. 2.2 we introduce and compare

1 The target space of the nonlinear sigma model obtained this way is now noncompact. In mathe-

matics it is mostly known as an O(−1)Ñ fibration over CPN−1.
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two-dimensional sigma models which have recently been discussed in the literature in

the context of semilocal strings in SQCD: the zn model [57] and the Hanany-Tong

[44, 35] model. In Sec. 2.5 we study the large-N solution, which we use in Sec. 2.5.4 to

determine the spectrum of the theory. We present an exact twisted superpotential which

encodes the BPS spectrum at finite N in Sec. 2.4. Finally, in Sec. 2.6 we study vacuum

manifolds and perturbation theories of these models in the geometric formulation. We

summarize and conclude in Sec. 2.7.

2.2 World-Sheet Theory on Non-Abelian Semi-Local Vor-

tices

Non-Abelian semilocal vortex strings (strings for short) are known to be supported by

N = 2 SQCD with Nf = N + Ñ massless flavors and the U(N) gauge group [44, 35]

provided one introduces a non-vanishing Fayet-Iliopoulos term ξ. Actually, the correct

topological object to examine in connection with the semilocal strings is the second

homotopy group of the vacuum manifold, which in the present case, is a Grassmannian

manifold (defined as follows):

π2(Mvac) = π2

(
GrN,Ñ

)
≡ π2

(
SU(N + Ñ)

SU(N)× SU(Ñ)×U(1)

)
= Z . (2.2.1)

The homotopy group above is the one lying behind the description of lumps in the

associated nonlinear sigma-model, which arises as the low-energy limit of the N =

2 SQCD. This is the main reason why semilocal strings are similar to lumps [51, 55, 56].

Similarly to lumps, the semilocal strings have power-law behaviors at large distances,

and possess new size moduli determining their characteristic thickness. Nevertheless,

they still retain their nature of strings (flux tubes), which is manifest when we send the

size moduli to zero. In this limit we recover just the ANO string, with its exponential

behavior [49]. The stringy nature is also justified by the existence of the following

non-trivial homotopy group:

π1(U(1)× SU(N)/ZN ) = Z . (2.2.2)

The moduli space of a single semilocal string is a non-compact space of complex

dimension N + Ñ [44, 54, 56]. One can interpret N − 1 zero modes as parameterizing
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orientational degrees of freedom of the non-Abelian string,2 while further Ñ modes

parameterize the size(s) of the semilocal string. Finally, one last parameter is due to

translational modes; it is related to the position of the string center on the perpendicular

plane. Dynamically the latter moduli is decoupled from the rest. The corresponding

dynamics is sterile. In the remainder of the Chapter it will be not mentioned. Then by

the moduli space we will understand the (N + Ñ − 1)-dimensional manifold.

A crucial property of semilocal strings is that, in deriving the world-sheet theory,

one encounters an infrared divergence of the type

log
L

|ρ| , (2.2.3)

regularized by an infrared (IR) cutoff L. Here ρ is the typical size of a semilocal vortex.

The above logarithmic divergence is due to long-range tails of the semilocal string which

fall off as powers of the distance from the string axis (in the perpendicular plane) rather

than exponentially. In the non-Abelian semilocal strings both the size and orientational

moduli become logarithmically non-normalizable [54]. A convenient and natural IR

regularization, which maintains the BPS nature of the solution3 can be provided by

a mass difference ∆m 6= 0 of the (s)quark masses; then L ∼ 1/|∆m|, so that (2.2.3)

becomes

log
1

|ρ||∆m| . (2.2.4)

2.2.1 The zn model

These large logarithms account for basically all difficulties in the previous treatments

of the semilocal strings. Such divergent terms were calculated e.g. in Refs. [54, 56].

The situation was dramatically reversed in [57]. In this work the problem became an

advantage: all logarithmic terms were obtained from the bulk-theory description of the

semilocal string. Then, one can derive an exact world-sheet theory for the semilocal

strings in the limit of (2.2.3) or (2.2.4) tending to ∞. The resulting model, which was

2 The moduli space of a non-Abelian semilocal string contains indeed a subspace which corresponds
to CPN−1 the orientational moduli space of a traditional non-Abelian string.

3 Alternatively, L can represent a finite length of the string, or a finite volume of the transverse
space.
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called the zn model, is N = (2, 2) supersymmetric theory with the following action4

Szn =

∫
d2x

{
1

4e2
F 2
kl +

1

e2
|∂kσ|2 +

e2

2

(
|ni|2 − r

)2

+ |∂k(zjni)|2 + |∇kni|2 + |mi − m̃j |2 |zj |2|ni|2 + |σ +mi|2 |ni|2
}
,

i = 1, ..., N , j = 1, ..., Ñ , ∇k = ∂k − iAk . (2.2.5)

Here ni and zj are the orientational and size moduli fields, respectively, e2 and r are

the gauge coupling and the two-dimensional Fayet-Iliopoulos. In deriving the effective

action above from the four-dimensional bulk theory one finds the crucial relationship

between four and two dimensional couplings [44, 34]:

r =
4π

g2
4D

. (2.2.6)

Finally, mi and m̃j are twisted masses.5 It is assumed that at the very end we take the

limit e→∞. In this limit the gauge field Ak and its superpartners become nondynam-

ical, auxiliary [58, 59] and can be integrated out

Ak = − i

2r
(n̄i∂kni − ni∂kn̄i), σ = −1

r

∑

i

mi |ni|2. (2.2.7)

Moreover, in this limit the term
(
|ni|2 − r

)2
in Eq. (2.2.5) implies the constraint6

N∑

i

|ni|2 = r . (2.2.8)

The fact that the number of degrees of freedom following from (2.2.5) is correct, namely,

N + Ñ − 1, can be seen once we take into account the D-term condition (2.2.8) and,

in addition, gauge away a U(1) phase. The global symmetry of the world–sheet theory

(2.2.5) is the same as in that of the bulk theory,

SU(N)× SU(Ñ)×U(1) , (2.2.9)

which is broken down to U(1)N+Ñ−1 by the (s)quark mass differences.

4 Here we write down only the bosonic part of the action; we will include fermions in Sec. 2.5.
5 These twisted masses are equal to the four-dimensional complex masses present in the bulk theory.
6 We stress that this constraint is different from that in the Hanany–Tong model, see below.



11

2.2.2 The HT model

As was already mentioned, non-Abelian semilocal strings were previously studied within

a string theory approach based on D-branes by Hanany and Tong (see [60, 35] for the

IIB setup and [35] for the IIA setup). In the IIA picture a flux tube is represented

by a D2-brane stretched between an NS5 and D4 branes. The effective theory on the

world-sheet of the D2-brane, is then given by the strong-coupling limit (e → ∞) of a

two-dimensional U(1) gauge theory with N positive and Ñ negatively charged matter

superfields. In components it reads

SHT =

∫
d2x

{
1

4e2
F 2
kl +

1

e2
|∂kσ|2 +

e2

2

(
|nwi |2 − |zwj |2 − r

)2

+ |∇knwi |2 + |∇̃kzwj |2 + |σ +mi|2 |nwi |2 + |σ + m̃j |2
∣∣zwj
∣∣2
}
,

i = 1, ..., N, j = 1, ..., Ñ ,

∇k = ∂k − iAk , ∇̃k = ∂k + iAk . (2.2.10)

With respect to the U(1) gauge field Ak the fields nwi and zwi have charges +1 and −1,

respectively. We endow these fields with a superscript “w” (weighted) to distinguish

them from the ni and zj fields which appear in the zn model, see (2.2.5). If only charge

+1 fields were present, in the limit e → ∞ we would get a conventional twisted-mass

deformed CPN−1 model. The Hanany-Tong model can be obtained by the dimensional

reduction (from 4D to 2D) of the supersymmetric quantum electrodynamics with N

charge 1 and Ñ charge −1 chiral superfields.

2.3 β function

Let us calculate the one-loop renormalization of the coupling constant r in the zn model

(2.2.5). To this end we can limit ourselves to the massless case mi = m̃j = 0. Then the

action (2.2.5) can be rewritten as

Szn =

∫
d2x

{∣∣∂k(zjni)
∣∣2 +

∣∣∇kni
∣∣2 + iD

(
|ni|2 − r0

)}
, (2.3.1)
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where r0 is a bare coupling constant and the limit e→∞ is taken. Integration over the

auxiliary field D ensures the condition (2.2.8), while the gauge field is given by

Ak = − i

2|n|2 (n̄i∂kn
i − ni∂kn̄i). (2.3.2)

Next, we rearrange the kinetic term by decomposing

∂k(z
jni) = zj∇kni + ni∇̃kzj . (2.3.3)

As a result, the action (2.3.1) takes the form

Szn =

∫
d2x

{ ∣∣∇kn′ i
∣∣2 +

∣∣∣∇̃kz′ j
∣∣∣
2

+ iD′
(∣∣n′ i

∣∣2 −
∣∣z′ j

∣∣2 − r0

)

+
1

|n′|2
(
z′∇kz̄′

) (
n̄′∇kn′

)
+

1

|n′|2
(
z̄′∇̃kz′

)(
n′∇̃kn̄′

)

− 1

2|n′|2
(
∂k|n′|2

) (
∂k|z′|2

)
− 1

4|n′|2
(
∂k|z′|2

)2
}
, (2.3.4)

where we introduced new variables

n′i =
√

1 + |z|2 ni, z′j =
√
r0 z

j , D′ =
1

1 + |z|2 D , (2.3.5)

and the indices i, j are contracted in the brackets, e.g. (z′∇kz̄′) ≡
(
z′ j∇kz̄′j

)
. In passing

from (2.3.1) to (2.3.4) we used the constraint |n|2 = r0. Solving the equations of motion

for the gauge potential Ak in (2.3.4) we find that it is still given by Eq. (2.3.2), as it

should, of course.

A disadvantage of formulation (2.3.4) in terms of n′ and z′ is rather obvious: change

of variables (2.3.5) is not holomorphic and, therefore, the metric of the target manifold

in (2.3.4) does not explicitly look as a metric of a Kähler manifold. Certainly, we know

that the model (2.2.5) is N = (2, 2) supersymmetric and has a Kähler target-space

metric in terms of the original fields n, z.

The action (2.3.4) reveals a similarity between the zn model and the HT model

(2.2.10). In particular, the first line in (2.3.4) is identical to the massless limit of the

HT model (2.2.10) at e→∞. Moreover, all terms in the second and third lines in (2.3.4)

do not contribute at one-loop. Therefore, we conclude that the one-loop renormalization

of the coupling constant r is identical in the zn and HT models.
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More explicitly, to calculate the one-loop renormalization of r we represent the fields

n′ and z′ in (2.3.4) as sums of classical background fields plus quantum fluctuations,

n′ i = ni0 + δni, z′j = zj0 + δzj . (2.3.6)

The renormalization of r can be calculated as that of the linear in D′ term in (2.3.4).

Let us write the third term in the first line in (2.3.4) as

iD′
(
|ni0|2 − |zj0|2 + |δni|2 − |δzj |2 − r0

)
. (2.3.7)

It contributes to the one-loop renormalized coupling r

rren = r0 − 〈 |δni|2 〉+ 〈 |δzj |2 〉 , (2.3.8)

where 〈...〉 stands for vacuum averaging.

Calculating the one-loop tadpole contributions here using canonical propagators of

n′ and z′ fields defined by the first line in (2.3.4) we get

rren(µ) = r0 − (N − Ñ)

∫
d2k

(2π)2

1

k2
= r0 −

N − Ñ
2π

log
M

µ
, (2.3.9)

where M is the ultraviolet cutoff, while µ is the infrared normalization point. The terms

proportional to N and Ñ arise due to loops of n′ and z′ fields, respectively. Introducing

the dynamical scale of the theory Λ,

Λ ≡M exp

(
− 2π r0

N − Ñ

)
, (2.3.10)

we rewrite (2.3.9) as

rren(µ) =
N − Ñ

2π
log

µ

Λ
. (2.3.11)

The zn model is asymptotically free at N > Ñ (which is assumed throughout the

Chapter). The one-loop renormalization of its coupling constant is identical to that of

the HT model calculated in [59].

The coupling constant r can be complexified by adding a θ term in the theory. The

target space in the model at hand is Kählerian but non-Einstein.7 Therefore, r does not

completely specifies the one-loop renormalization group (RG) flow of this theory. We

7 For an Einstein manifold, the Ricci tensor is proportional to the metric tensor.
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will discuss this question in more detail later. Here let us make a statement using the

HT model as an example (a similar statement can be formulated for the zn model too).

Let us keep the coupling constant e large but finite. Then we have two large parameters

of mass dimension one: the ultraviolet cutoff M and e. The normalization point µ is

supposed to be � M . If µ � e, then the effective action must be holomorphic in the

complexified coupling r, implying that higher loops cannot contribute to the β function

in this domain. The one-loop renormalization (2.3.11) is actually exact both, in the zn

and HT models for such values of µ. The holomorphicity is lost, generally speaking,

when we evolve µ below e, due to emergence of additional structures in the effective

Lagrangian, see Sec. 2.6. In this domain the RG flow ceases to be one-loop. However,

in the large-N and Nf limit, in the leading order, the one-loop nature is preserved.

2.4 Exact Effective Twisted Superpotentials

The one-loop calculation performed in the previous section can be enhanced by super-

symmetry to give exact results, as shown in Refs. [61, 40] in both the regimes e � µ

and e � µ. To see this, first we recall that the renormalized Fayet-Iliopoulos in two-

dimensional N = (2, 2) must be written in terms of a complex twisted superpotential

W̃ of Veneziano–Yankilowicz type [62, 61], as dictated by supersymmetry:

reff = −W̃ ′eff(σ) . (2.4.1)

Using the result of the previous section we can write down the following effective twisted

superpotential for the zn model in the case of the vanishing masses.

W̃eff = −N − Ñ
2π

σ
(

log
σ

Λ
− 1
)
. (2.4.2)

The one-loop expression above is exact, thanks to holomorphicity, in the regime e� µ.

Nevertheless, there are two important observations which makes the potential above a

crucial tool for extracting exact results from the theory at all values of the coupling

e. First notice that the twisted superpotential above does not depend on the gauge

coupling e. This is due to the fact that only the couplings which can be promoted to

twisted chiral superfields can appear in W̃, and this is certainly not the case for e. The

bottom line of this observations is that the all the information which can be extracted
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from this potential are actually exact, and also valid in the nonlinear sigma model limit

when e→∞. The second observation is that the difference of the values of the twisted

superpotential W̃ between two vacua gives the central charges and thus the masses of

the BPS states of the theory8

MBPS = |Z| = ∆W̃ . (2.4.3)

Notice again that the mass formula written above is exact for all values of e. While

it represents a perturbative calculation at small e, it encodes full non-perturbative

corrections to the masses of all BPS states in the regime e→∞.

We wish to emphasize here that (2.4.2) is exact only if applied to the BPS sector

of the theory. Once we start looking at perturbations around the vacua given by mini-

mization of the twisted superpotential, formula (2.4.2), or its massive generalization, is

of no use. Still, when we treat the model in the large-N approximation, the effective

potential

V (σ) =
∣∣∣W̃ ′eff

∣∣∣
2
, (2.4.4)

give the correct spectrum of the theory. We will address both questions in the next

section.

Finally let us note that twisted masses can be introduced in the theory by gauging

each U(1) factor in the U(1)Nf group by its own gauge field with non-zero σ-component

(equal to associated mass) [59]. This leads to the following generalization of the effective

twisted superpotential (2.4.2) to the case of non-zero twisted masses:

W̃eff = − 1

2π

N∑

i=1

(σ +mi)

(
log

σ +mi

Λ
− 1

)
+

+
1

2π

Ñ∑

j=1

(σ + m̃j)

(
log

σ + m̃j

Λ
− 1

)
. (2.4.5)

Clearly this effective twisted superpotential identically coincides with the one for HT

model [59].

This fact together with the matching of the kink spectrum obtained at the classical

level in Ref. [57], leads us to claim the matching of the BPS spectra of the zn and HT

8 Differences between different vacua give the masses of the solitonic states such as kinks. Since W̃
is a multi-valued function, it makes sense to take differences between the values of W̃ taken between
the same vacua but on different Riemann sheets. This will give masses of the perturbative spectrum.
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at both semiclassical and quantum levels. As a consequence, the BPS spectrum of the

bulk theory coincides with the BPS spectrum of the true effective theory on semilocal

vortices, as expected.

2.5 Large-N Solution of the zn Model

In this section we will study the zn model at large N along the lines of Witten’s analysis

[58]. Namely, we will consider the limit N →∞, Ñ →∞, while the ratio of Ñ and N

is kept fixed. The representations (2.2.10) and (2.3.4) suggest that to the leading order

in N the solutions of zn and the HT models are the same. The reason for this is that

all terms in the second and third lines in (2.3.4) distinguishing the zn model from the

HT model give nonvanishing contributions only at a subleading order in N . Indeed,

they can show up in the potential for σ only at the two-loop order and are not reducible

to the n′ and z′ field tadpoles proportional to N or Ñ . Inspection of the SU(N) and

SU(Ñ) index flow readily reveals that these two- and higher-loop contributions are at

most O(N0) in the large N -limit.

Below we will calculate the effective action for the zn model with twisted masses in

the large-N limit. The action of the zn model (2.2.5) in the gauged formulation, with
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the fermion fields taken into account, is

Szn =

∫
d2x

{
1

4e2
F 2
kl +

1

2e2
|∂kσ|2 +

1

2e2
D2 +

1

e2
λ̄R i∂L λR +

1

e2
λ̄L i∂R λL

+
∣∣∂k(zjni)

∣∣2 +
∣∣∇kni

∣∣2 + |mi − m̃j |2 |zj |2|ni|2

+ |σ +mi|2
∣∣ni
∣∣2 + iD

(
|ni|2 − r0

)

+ ξ̄iR i∇L ξiR + ξ̄iL i∇R ξiL

+
[
i(σ +mi) ξ̄iRξ

i
L + i n̄i (λRξ

i
L − λLξiR) + H.c.

]

+ (z̄j ξ̄iL + n̄iχ̄jL) i∂R(zjξiL + niχjL) + (z̄j ξ̄iR + n̄iχ̄jR) i∂L(zjξiR + niχjR)

+
[
i(mi − m̃j)

(
|zj |2ξ̄iRξiL + |ni|2χ̄jRχjL + ξ̄iRχ

j
Lz̄jn

i + χ̄jRξ
i
Ln̄iz

j
)

+ H.c.
]

+ χ̄jRχ
j
Rξ̄iLξ

i
L + χ̄jLχ

j
Lξ̄iRξ

i
R + χ̄jLχ

j
Rξ̄iRξ

i
L + χ̄jRχ

j
Lξ̄iLξ

i
R

}
, (2.5.1)

where the fields Ak, σ, D and λL,R form the gauge supermultiplet, while ξi and χj are

fermion superpartners of ni and zj , respectively. Left and right derivatives are defined

as

∇L ≡ ∇0 − i∇3 , ∇R ≡ ∇0 + i∇3 . (2.5.2)

2.5.1 Effective potential at large N

Now we will integrate over the ni, zj and ξi, χj fields and then minimize the resulting

effective action with respect to the fields σ and D from the gauge multiplet. This will be

done in the saddle point approximation. The large-N limit ensures that the corrections

to the saddle point approximation (suppressed by 1/N) are negligible.

Technically, integrating out the ni, zj and ξi, χj fields in the saddle point boils down

to calculating a set of one-loop graphs with the ni and zj superfields propagating in

loops. As was mentioned, in this section we will obtain the effective potential of the

theory as a function of σ and D. Minimization of this potential determines the vacuum

structure of the theory. At this stage we can drop the gauge field Ak and its fermion

superpartners λL,R in (2.5.1) because they have no vacuum values. If desirable, one can
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restore the Ak dependence in the final result from gauge invariance, through replacing

partial derivatives by covariant.

Since the action (2.5.1) is not quadratic in ni, zj and ξi, χj fields we do the inte-

gration in two steps. First, we integrate over ni and ξi. It turns out that the resulting

effective action will be quadratic in zj and χj and at the next stage we will be able to

integrate out these fields too.

After rescaling the ni and ξi fields similar to that in (2.3.5), namely,

n′i =
√

1 + |z|2 ni, ξ′i =
√

1 + |z|2 ξi (2.5.3)

integration over the bosonic fields gives the determinant

N∏

i

[
det

(
−∂2

k +
iD

1 + |z|2 +M2
Bi

)]−1

, (2.5.4)

while the fermion integration gives

N∏

i

det
(
−∂2

k +M2
Fi

)
, (2.5.5)

where M2
B and M2

F are the following functions:

M2
Bi(σ, z

j , χj) =
1

1 + |z|2 {|σ +mi|2 + |mi − m̃j |2 |zj |2

+ |∂kzj |2 + χ̄jR i∂L χ
j
R + χ̄jL i∂R χ

j
L + i(mi − m̃j)χ̄jRχ

j
L

}
(2.5.6)

and

M2
Fi(σ, z

j , χj) =
1

(1 + |z|2)2
{|σ +mi|2 +

∣∣(mi − m̃j) |zj |2
∣∣2

+ (σ̄ + m̄i)(mi − m̃j) |zj |2 + (σ +mi)(m̄i − ¯̃mj) |zj |2

+ i
[
(σ +mi) + (mi − m̃j) |zj |2χ̄jRχjL + H.c.

]}
. (2.5.7)

Calculating the determinants (2.5.4) and (2.5.5) gives the effective action as a functional
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of the fields σ, D, zj and χj ,

Seff(σ,D, zj , χj) =

∫
d2x

{
1

4π

N∑

i=1

[(
M2
Bi +

iD

1 + |z|2
)

log
M2

M2
Bi + iD

1+|z|2

+
iD

1 + |z|2 +M2
Fi log

M2

M2
Fi

+M2
Bi −M2

Fi

]
− iDr0

}
,

(2.5.8)

where M is the ultraviolet cut-off scale.

Next, expand the action (2.5.8) in powers of the fields zj and χj . We see that certain

terms quadratic in these fields come with an infinitely large logarithmic Z-factors. This

is a crucial point. Say, we get kinetic terms of the type

{
|∂kzj |2 + χ̄jR i∂L χ

j
R + χ̄jL i∂R χ

j
L

}
log

M2

µ2
, (2.5.9)

where µ is some infrared scale determined by the value of σ and twisted masses. We

absorb this infinite Z-factor redefining the fields zj and χj as

z′j =

√
N

4π
log

M2

µ2
zj , χ′j =

√
N

4π
log

M2

µ2
χj . (2.5.10)

Now if we re-express the effective action (2.5.8) in terms of new variables, we see that

higher powers of the z′j and χ′j fields are suppressed by powers of the large logarithm

and can be dropped. As a result, the effective action (2.5.8) turns out to be quadratic

in the z′j and χ′j fields! Thus, we obtain

Seff(σ,D, zj , χj)

=

∫
d2x

{
1

4π

N∑

i=1

[
(|σ +mi|2 + iD

)
log

M2

|σ +mi|2 + iD
+ iD

− |σ +mi|2 log
M2

|σ +mi|2
]

+ |∂kz′j |2 + χ̄′jR i∂L χ
′j
R + χ̄′jL i∂R χ

′j
L

− iD(r0 + |z′j |2)

+ |σ + m̃j |2 |z′j |2 −
[
(σ + m̃j)χ̄

′
jRχ

′j
L + H.c.

]}
. (2.5.11)
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Note, that the sign of the interaction term of z′ with D (and χ′L,R with σ) shows

that the z′ multiplet has charge −1, as was expected. One can restore the gauge field

dependence in (2.5.11) through the substitution

∂k → ∇̃k. (2.5.12)

Simultaneously, we will recover terms proportional to
(
z̄j∂kz

j
)

and
(
χ̄jLχ

j
L

)
,
(
χ̄jRχ

j
R

)
.

The z′ and χ′L,R-dependent part of the action (2.5.11) is just the U(1) gauge theory of

the z′ multiplet with charge −1 plus the FI D-term r0.

Now, since the action (2.5.11) is quadratic in the fields from the z′ multiplet we can

integrate out z′ and χ′L,R. As a result, we arrive at the effective potential as a function

of the fields σ and D

Veff(σ,D) =
1

4π

N∑

i=1

[(
|σ +mi|2 + iD

)
log

M2

|σ +mi|2 + iD
+ iD

− |σ +mi|2 log
M2

|σ +mi|2
]

+
1

4π

Ñ∑

j=1

[(
|σ + m̃j |2 − iD

)
log

M2

|σ + m̃j |2 − iD

− iD − |σ + m̃j |2 log
M2

|σ + m̃j |2
]
− iDr0 . (2.5.13)

Using the β function of the theory we can trade the bare coupling r0 here for the

dynamical scale Λ, by writing

r0 =
N − Ñ

2π
log

M

Λ
. (2.5.14)

Substituting this in (2.5.13) we see that the dependence on the ultraviolet cut-off scale
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M cancels out, and we get

Veff(σ,D) =
1

4π

N∑

i=1

[
− (|σ +mi|2 + iD

)
log
|σ +mi|2 + iD

Λ2
+ iD

+ |σ +mi|2 log
|σ +mi|2

Λ2

]

+
1

4π

Ñ∑

j=1

[
− (|σ + m̃j |2 − iD

)
log
|σ + m̃j |2 − iD

Λ2

− iD + |σ + m̃j |2 log
|σ + m̃j |2

Λ2

]
. (2.5.15)

This can be viewed as a master formula.

Equation (2.5.15) presents exactly the effective potential which one would obtain

from the HT model (2.2.10) by integrating out the nwi and zwj fields at large N and

Ñ . As was expected, the large-N solutions of both models coincide.

2.5.2 Switching on vacuum expectation values of n and/or z

Much in the same way as in the HT model, the strong coupling phase with the vanishing

vacuum expectation values (VEVs) of both n and z fields occurs in the zn model at

mi ∼ mj ∼ Λ (we will discuss the vacuum structure of the theory in the large-N

approximation in Sec. 2.5.3). At large/small masses the fields n/z develop VEVs and

the theory is in the n-Higgs/z-Higgs phase, respectively.

To take into account the possibility of the n and z fields developing VEVs in (2.5.1)

we integrate out all n and z fields but one, say, n1 and z1, cf. [63]. At the first stage

this boils down to adding to (2.5.11) the following term:

∫
d2x

(
|σ +m1|2 + iD

)
|n1|2. (2.5.16)

At the second stage (integrating out z′s) we keep intact the terms depending on z′1 in

(2.5.11). This procedure leads us to the following final effective potential, which now
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depends on the fields σ, D and n1, z′1

Veff(σ,D, n1, z′1)

=
1

4π

N∑

i=2

[
−
(∣∣∣σ +mi

∣∣∣
2

+ iD

)
log
|σ +mi|2 + iD

Λ2
+ iD

+ |σ +mi|2 log
|σ +mi|2

Λ2

]

+
1

4π

Ñ∑

j=2

[
−
(
|σ + m̃j |2 − iD

)
log
|σ + m̃j |2 − iD

Λ2

− iD + |σ + m̃j |2 log
|σ + m̃j |2

Λ2

]

+
(
|σ +m1|2 + iD

)
|n1|2 +

(
|σ + m̃1|2 − iD

)
|z′1|2. (2.5.17)

Varying the above expression with respect to the fields σ, D, n1 and z′1 we derive the

vacuum equations of the theory at large N , Ñ .

2.5.3 The vacuum structure

Here we will briefly review the vacuum structure of the the HT and zn models (for a

detailed analysis see [39]). Given the fact that Eq. (2.5.17) is the same in both models,

so are the solutions.

First we shall consider the case of vanishing expectation values 〈n1〉 and 〈z′1〉 in

Eq. (2.5.17), corresponding to the Coulomb branch of the theory. Then, due to relation

(2.4.4), the minima of the effective potential (2.5.17) can be more easily extracted by

determining the critical points of W̃eff (2.4.5). In this way we then derive the following

vacuum equation:9

N∏

i=1

(σ +mi) = ΛN−Ñ
Ñ∏

j=1

(σ + m̃j) . (2.5.18)

Now, as was explained in Section 4.1, we choose the twisted masses in such a way that

9 Note that this equation is valid for any N , not necessarily in the ’t Hooft limit.
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the ZN and ZÑ discrete symmetries are preserved, namely,10

mk = me2πi k
N , k = 0, . . . , N − 1 ,

m̃l = m̃ e
2πi l

Ñ , l = 0, . . . , Ñ − 1 . (2.5.19)

Then, Eq. (2.5.18) takes the following form:

σN +mN = ΛN−Ñ
[
σÑ + m̃Ñ

]
. (2.5.20)

The above equation obviously has N complex roots (assuming that Ñ < N) which can

be easily found numerically for any N and Ñ . Interestingly for large N the solutions

can be classified. For the future convenience we introduce a new parameter

α =
Ñ

N
, 0 < α < 1 . (2.5.21)

Then, depending on the relation between α, m, and m̃, there are two Coulomb branches,

which are referred to as Cm and Cm̃. The roots of Eq. (4.6.36) can be assigned to one

of the following three groups:

m-vacua: In the domain Cm, i.e.

m̃ < Λ
(m

Λ

)1/α
, m < Λ,

σm,l = Λ
(m

Λ

)1/α
e

2πi l
Ñ , l = 1, . . . , Ñ − 1 ; (2.5.22)

Λ-vacua: These vacua exist only in the Cm domain and are located on the circle of

radius Λ

σΛ,k = Λ e
2πi k

N−Ñ , k = 0, . . . , N − Ñ − 1 ; (2.5.23)

m̃-vacua: In the domain Cm̃, i.e.

m̃ > Λ
(m

Λ

)1/α
, m̃ > Λ

10 It is worth noting that a a generic choice of the twisted masses would completely break supersym-
metry at the quantum level.
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σm̃,j = Λ

(
m̃

Λ

)α
e2πi j

N j = 0, . . . , N − 1 . (2.5.24)

The above expressions are approximate to the leading order in 1/N . For small N

there will be corrections, see Figs. 2.1, 2.2, and 2.3. These figures depict the complex

σ plane; the actual vacua that solve Eq. (4.6.36) are located at the centers of the small

black nodes in these figures, while the dashed circles drawn for reference have radii given

by Eqs. (4.6.39), (2.5.23), and (2.5.24).

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Figure 2.1: Vacua of the HT model for N = 5, Ñ = 3 in the Cm domain. We can see two
(N − Ñ = 2) Λ-vacua near the circle of radius Λ and three (Ñ = 3) m-vacua near the circle or
radius m1/α in units of Λ.

Note also that in the regime

m̃

Λ
=
(m

Λ

)1/α
, (2.5.25)
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Figure 2.2: Vacua of the HT model for N = 15, Ñ = 3 in the Cm domain. For larger values of
N the formulae (4.6.39) and (2.5.23) are getting more precise. Small circle has radius m1/α in
units of Λ.

Eq. (4.6.36) degenerates into

σN = ΛN−ÑσÑ . (2.5.26)

This equation has two sets of solutions,

σN−Ñ = ΛN−Ñ , σ = 0 , (2.5.27)

where the former solution gives N − Ñ massive vacua and the latter applies to the

conformal regime.

There are two Higgs branches corresponding to 〈n1〉 6= 0 and 〈z′1〉 6= 0 in (2.5.17).

The former exists for m > Λ and m/Λ > (m̃/Λ)α whereas the conditions for the latter

are (m/Λ)1/α < m̃/Λ < 1. If n1 or z′1 develop VEVs we must work with Eq. (2.5.17),
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Figure 2.3: Vacua of the HT model for N = 5, Ñ = 3 in the Cm̃ domain. All vacua localize
near the circle of radius m̃α in units of Λ.

minimizing Veff . This minimization was done in [39] and we refer the reader to this

paper for further details.

2.5.4 Non-BPS spectrum

In Sec. 2.4 we demonstrated that the spectrum of the zn model in the large-N limit

coincides with that of the HT model; the latter was discussed in detail in [39]. Here we

will calculate the mass of the particles from the vector multiplet V . As was discussed

above, there are N − Ñ Λ-vacua in this model. Let us choose form Eq. (2.5.23) the real

vacuum, namely,

σ0 = Λ (2.5.28)
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and consider field fluctuations around this vacuum (all Λ-vacua are physically equiva-

lent). The effective action for these fluctuations is

L = − 1

4e2
γ

F 2
µν +

1

e2
σ 1

(∂µReσ)2 +
1

e2
σ 2

(∂µImσ)2 + i
1

e2
λ

λ̄γµ∇µλ

+ iIm(b̄ σ) εµνF
µν − Veff(σ)− (iΓσ̄λ̄λ+ H.c.) . (2.5.29)

In the above formula the effective potential Veff(σ) is given by Eq. (2.5.15), while the

gauge and scalar couplings can be calculated from the corresponding one-loop Feynman

diagrams. The gauge field is coupled to the imaginary part of σ. Figure 4.11 displays

the one-loop diagrams which contribute to the mixing. All relevant calculations were

carried out in [39]. Here, in addition to these results, we find the mass of the photon

from the vector multiplet.

γ σ

χ

Figure 2.4: One-loop diagrams which contribute to the the photon-scalar anomalous mixing.

Masses. For vanishing twisted masses the one-loop superpotential Eq. (2.5.15) takes

the following form:

V1−loop =
N

4π

(
−
(
iD + |σ|2

)
log
|σ|2 + iD

Λ2
+ |σ|2 log

|σ|2
Λ2

)

− Ñ

4π

(
−
(
iD − |σ|2

)
log
|σ|2 − iD

Λ2
− |σ|2 log

|σ|2
Λ2

)

+
N − Ñ

4π
iD . (2.5.30)
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In the case of vanishing twisted masses we can approximately solve the vacuum equation

on the Coulomb branch,

N log
|σ|2 + iD

Λ2
− Ñ log

|σ|2 − iD
Λ2

= 0 . (2.5.31)

Near the vacuum σ = Λ we expect D to be small. Therefore, we can rewrite the above

equation as

N log

(
1 +

iD

|σ|2
)
− Ñ log

(
1− iD

|σ|2
)

+ (N − Ñ) log
|σ|2
Λ2

= 0 . (2.5.32)

Then, Taylor-expanding and denoting

d =
iD

Λ2
, s =

Re(σ − Λ)

Λ
, (2.5.33)

we get

d = −N − Ñ
N + Ñ

s . (2.5.34)

Equation (2.5.30) can be rewritten in terms of new variables as

V1−loop =
NΛ2

4π

[
− s(α− 1)− (s+ 1)(α+ 1) log(s+ 1)

+
(2sα+ α+ 1)

α+ 1
log

(
2sα+ α+ 1

α+ 1

)

+
α(2s+ α+ 1)

α+ 1
log

(
2s

α+ 1
+ 1

)]
, (2.5.35)

where α is defined in Eq. (2.5.21). Using Eq. (2.5.34) we get, to the second order in s,

V1−loop =
(N − Ñ)2

2(N + Ñ)

s2Λ2

4π
. (2.5.36)

Next, we will canonically normalize the kinetic terms in Eq. (2.5.29). In particular,

we do a rescaling

Reσ → eσ 1(Reσ) .

As was shown in [39]

e2
σ 1 =

4π

(N − Ñ)Λ2
. (2.5.37)
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Therefore, the mass of real part of sigma is

mσ1 = 2

√
N − Ñ
N + Ñ

Λ . (2.5.38)

Note that this expression has 1/N corrections since the vacua (2.5.23) are given to the

leading order in N . Due to supersymmetry the masses of the photon, fermion and scalar

fields are equal,

mγ = mλ = mσ . (2.5.39)

Notice that, as should be obvious from the discussion in Section 2.3, and as we

confirmed in this section with an explicit calculation, the full spectra of the zn model

and the HT model, including the non-BPS sector, are equivalent at the leading order in

the large-N approximation.

2.6 Nonlinear Sigma Model Description and Geometric

Renormalization

As was first observed in Ref. [57], the HT and zn models have different metrics on their

respective vacua manifolds. In this section we will investigate perturbation theory of

both models using a nonlinear sigma model (NLσM) description. We will consider in

parallel the geometry of the zn and HT models and study their one-loop renormalization

in the geometric language. We will also show that the Kähler potential of the HT model

reduces to that of the zn model in a certain limit.

FromGLσM toNLσM . Let us first illustrate the main idea with a simple example.

We will review here how a vacuum manifold of the CP1 NLσM emerges from the gauged

description of the model in the limit when the gauge coupling(s) are sent to infinity.

The corresponding gauged linear sigma model (GLσM) Lagrangian for the CP1

model in the superfields formalism reads

L =

∫
d4θ

((
|X1|2 + |X2|2

)
eV − rV +

1

e2
|Σ|2

)
, (2.6.1)

where X1, X2 are chiral multiplets, V is a twisted vector multiplet with field strength

Σ, r is the FI parameter, and e is the gauge coupling. One can see that the following
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term belongs to the Lagrangian:

D(|x1|2 + |x2|2 − r) , (2.6.2)

which gives rise to the D-term constraint and it comes from the terms linear in V .

Here x1,2 are the bottom components of fields X1,2. The constraint modulo the U(1)

symmetry (C2 −Z)//U(1), where Z is the locus of |x1|2 + |x2|2 − r defines the vacuum

target manifold of the model. In this particular case is given by CP1 ' S2, the two-

dimensional sphere of radius r. By making the radius of the sphere very large we go into

the flat limit and the target manifold of the model should simply reduce to C1. However,

this statement is not evident from analyzing the D-term constraint (2.6.2). The reason

for this is that X1 and X2 are not the true coordinates of the vacuum manifold, but

their ratio is. Indeed, integrating out V in (2.6.1) we get

L =

∫
d4θ r log

(
|X1|2 + |X2|2

)
. (2.6.3)

Now we need to fix the gauge in order to keep only physical degrees of freedom, doing

this we obtain the Kähler potential for the CP1 model

K = r log(1 + |X|2) , (2.6.4)

where X = X2/X1. Let us further do the rescaling X → X/
√
r and take the limit

r → +∞. What we get is

K = |X|2 , (2.6.5)

which corresponds to the flat metric on C. Note that one could have considered (2.6.4)

and instead of doing the rescaling expand the Kähler potential for fixed r at small

values of |X|2 and get the same result. It is, of course, a reflection of the equivalence

of rescaling the coordinates and metric. We will compare the HT and zn models later

in this section using small field expansion. In the following subsections we will get the

vacuum manifolds for the two models in question from their gauged descriptions which

have been reviewed in Sec. 2.2.

2.6.1 The zn model vs. the HT model

The following Lagrangian describes the zn model [57]

Lzn =

∫
d4θ

(
|Ni|2eV + |Zj |2|Ni|2 − rV +

1

e2
|Σ|2

)
, (2.6.6)
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where we use the following chiral superfields

N i = ni + θαξiα + θ̄θF i , i = 1, . . . , N

Zj = zj + θαχjα + θ̄θF̃ j , j = 1, . . . , Ñ , (2.6.7)

vector field V in the Wess–Zumino gauge (θ1 = θ+ , θ2 = θ− and the same for dotted

components, see [61])

V = θ+θ̄+(A0 +A3) + θ−θ̄−(A0 −A3) + iσθ−θ̄+ + iσ̄θ+θ̄−

+
(
2iθ−θ+(θ̄−λ̄− + θ̄+λ̄+) + H.c.

)
+ 1

2θ
4D , (2.6.8)

and the twisted chiral field Σ = D+D̄−V

Σ = σ + iθ+λ̄+ − iθ̄−λ− + θ+θ̄−(D − iF01) . (2.6.9)

Given the above superfield representations one can derive the full action of the zn model

in components (2.5.1).

Vacuum manifold of the zn model. Let us proceed with the geometric description

of the theory. Taking the limit e→∞ and integrating out vector superfield V in (2.6.6)

we arrive at the following Lagrangian:

Lzn =

∫
d4θ

(
|Zj Ni|2 + r log |Ni|2

)
. (2.6.10)

Similarly to the CP1 case described above we need to get rid of the unphysical degree

of freedom which is present in the above expression. If we define 11

Φi =
Ni
NN

, i = 1, . . . , N − 1 ,

zj = r−1/2NNZj , j = 1, . . . , Ñ , (2.6.11)

we get the following Kähler potential for the zn model:

Kzn = r|ζ|2 + r log(1 + |Φi|2) , (2.6.12)

where

|ζ|2 ≡ |zj |2(1 + |Φi|2) . (2.6.13)

11 Assuming NN 6= 0.
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Note that ζ is not a holomorphic variable in any sense. We use the notation (2.6.13)

as a shorthand. |ζ|2 is the only combination involving zj’s which is invariant under the

global symmetries (2.2.9) of the model. Needless to say, so is any power of |ζ|2.

The Kähler potential (2.6.12) describes geometry of the vacuum manifold of the zn

model in terms of (N + Ñ − 1) unconstrained complex variables. The global SU(N)

is realized nonlinearly much in the same way as in the CPN−1 model while the SU(Ñ)

symmetry is realized linearly on the zj fields. For Ñ = 1, the Kähler potential (2.6.12)

reduces to that describing the blow-up of the CN space at the origin [64]. In this case we

can observe that the SU(N) symmetry becomes manifest and is realized as the isometry

of the target space after the following redefinition:

|ζ|2 = |Ξi|2 , Ξ1 = z1 , Ξi = z1Φi , i = 2, . . . , N . (2.6.14)

In this case the Kähler potential takes the form

Kzn = r|Ξi|2 + r log |Ξi|2 . (2.6.15)

It is instructive to reiterate to make explicit all isometries of (2.6.12). For simplicity

we put N = 1, so that the second part of the action in (2.6.12) is, in fact, that of CP1.

As is well known, CP1 is invariant under nonhomogenious nonlinear transformations

Φ→ Φ + β + β̄ Φ2 , Φ̄→ Φ̄ + β̄ + β Φ̄2 , (2.6.16)

where β and β̄ are infinetissimal transformation parameters. This expresses the SU(2)/U(1)

invariance of the CP1 action. Indeed, under these transformations

1 + ΦΦ̄→
(
1 + ΦΦ̄

) (
1 + βΦ̄

) (
1 + β̄ Φ

)
(2.6.17)

implying Kähler transformations of log
(
1 + |Φ|2

)
under which the CP1 action is invari-

ant. Let us supplement (2.6.16) by the following holomorphic transformations of the

variables zj

zj →
zj

1 + β̄ Φ
, z̄j →

z̄j
1 + β Φ̄

. (2.6.18)

We immediately confirm that |ζ|2 is invariant under the combined action of (2.6.16)

and (2.6.18). Here it is obvious that this is the only independent invariant of this type.

Thus the observed symmetry only allows polynomials in |ζ|2 in the Kähler potential.
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Vacuum manifold of the HT model. Using the same notations for the superfields

as for the zn model we can formulate the HT model (2.2.10) as the following GLσM

(e→∞):

LHT =

∫
d4θ

(
|Ni|2eV + |Zj |2e−V − rV

)
. (2.6.19)

Using the same change of variables as in (2.6.11), after integrating out V in (2.6.19) we

obtain the Kähler potential for the HT model,

KHT =
√
r2 + 4r|ζ|2 − r log

(
r +

√
r2 + 4r|ζ|2

)
+ r log(1 + |Φi|2) . (2.6.20)

For N = 2, Ñ = 1, the Kähler potential (2.6.20) describes the so-called Eguchi–Hanson

space and was discovered by Calabi [65]. For generic Ñ the target manifold in question

is the O(−1)Ñ tautological fiber bundle over CPN−1. For a mathematical derivation of

the Kähler potential (2.6.20) see [66].

From the HT model to the zn model. At first sight the zn and HT models look

quite different, as much as their Kähler potentials (2.6.12) and (2.6.20). This is indeed

the case, but there is a domain of the target space where they reduce to the same model.

As we have already mentioned, the target manifold of the HT model is the total space

of the Ñ -th power of the tautological bundle over CPN−1. Thus this is a noncompact

manifold with Ñ noncompact directions.

We will now make a more quantitative comparison of the two models. Let us consider

Eq. (2.6.20) at small values of |ζ|2. The result of the small |ζ|2-expansion depends on

the sign of the FI parameter r. Below we will consider both branches.

(i) r > 0: For small |ζ|2 we can Taylor-expand around |ζ|2 = 0 and observe that the

Kähler potential (2.6.20) in the second order in |ζ|2 takes the form

KHT = r|ζ|2 + r log(1 + |Φi|2) +O(|ζ|4) , (2.6.21)

This Kähler potential coincides with the one (2.6.12) of the zn model.

(ii) r < 0: Small-|ζ|2 expansion gives the following Kähler potential:

KHT = r|ζ|2 − r log(1 + |̃zj |2) +O(|ζ|4) , (2.6.22)
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where 12

z̃j =
Zj
Z
Ñ

j = 1, . . . , Ñ − 1. (2.6.23)

This model corresponds to the dual zn sigma model with CPÑ−1 as the base manifold.

One can rewrite its Kähler potential as follows

Kz̃n = r|Ni|2(1 + |̃zj |2) + r̃ log(1 + |̃zj |2) , (2.6.24)

where r̃ = −r > 0. This manifold has N noncompact and Ñ compact directions. As

we will see later, the one-loop β function (or first Chern class of the bundle) will be

proportional in this case to N − Ñ . Once we start with the HT model (2.6.20) with

N > Ñ , corresponding to the asymptotically free theory, N − Ñ will be positive, which

will entail growth of the FI parameter r̃ along the RG flow. Thus the dual zn model is

not asymptotically free, but rather IR free. In what follows we will only concentrate on

the first case r > 0.

Thus far we considered small values of |ζ|2. On the contrary, at large values of |ζ|2,

as can be seen from Eqs. (2.6.12) and (2.6.20), the two models behave differently. As

was shown in [57], in this limit the zn model has vanishing scalar curvature, whereas

the HT model has not.

One can see from (2.6.21) that in the leading order the HT and zn models have the

same Kähler potential,

KHT = Kzn +O(|ζ|2) . (2.6.25)

This observation suggests that at one loop, in the leading order in |ζ|2 the two models

have the same one-loop β functions. Nevertheless, beyond one loop one expects the

theories to have different β functions. Moreover, even at one loop for large values of

|ζ|2 the two models get different corrections. We will give explicit expressions later on

in this section.

2.6.2 Perturbation theory

For any Kähler nonlinear sigma model with the Kähler metric gi̄ and coupling constant

g the Gel-Mann–Low functional (in what follows we shall call it β function for short)

12 Again, it assumed that ZÑ 6= 0.
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reads [67, 68, 69, 70, 71]

βi̄ = a(1)R
(1)
i̄ +

1

2r
a(2)R

(2)
i̄ + . . . , (2.6.26)

where a(k) are some constants (k = 1, 2, ...) and R(k) are operators composed from k-

th power of the curvature tensors (see e.g. (2.6.27)). According to the above series a

contribution from the nth loop scales as r1−n. For the metric of a general form the first

several terms are known. The first two of them are

R
(1)
i̄ = Ri̄ ,

R
(2)
i̄ = Rik̄lm̄R

k̄ lm̄
̄ . (2.6.27)

In supersymmetric sigma models, however, most of the coefficients a(k) from (2.6.26)

vanish. For example, in supersymmetric CPN−1 sigma model all terms except the first

one in (2.6.26) are zero [72]. The calculation was based on the instanton counting [73]

and the coefficients of the β function were expressed in terms of the number of the zero

modes.

The common lore in perturbation theory of nonlinear sigma models suggests that

for generic Kähler manifolds the theory is nonrenormalizable, as each order in the per-

turbation series (2.6.26) brings in a new operator, with a different field dependence.

For some particular symmetric target manifolds e.g. for the Einstein manifolds, no new

structures are produced. The renormalization is merely reduced to a single coupling

constant renormalization. It is easy to see that the HT and zn model target spaces

are not of this kind and all terms in the series (2.6.26) have different field dependence.

However, let us have a closer look the one-loop perturbation theory and see how we can

deal with the above mentioned nonrenormalizability.

One-loop renormalization of the Kähler potential in the zn model. For a

Kähler manifold with the Kähler potential K(zi, z̄i) the metric is given by

gi̄ = ∂i∂̄̄K(zi, z̄i) , (2.6.28)

while all other components (such as gij = 0) vanish. The corresponding Ricci tensor is

therefore a total derivative and is given by

Ri̄ = −∂i∂̄̄ log det(gi̄) . (2.6.29)
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For Einstein manifolds Ricci tensor is proportional to the metric, therefore

− log det(gi̄) = αK(zi, z̄i) (2.6.30)

up to a Kähler transformation. For instance, for the CPN−1 model the coefficient α in

the above formula is equal to N . As we emphasized previously, for the CPN−1 model

this result is exact: higher loops do not give any corrections to the β function.

Let us now examine the curvature tensors for the zn model. It turns out that the

calculation of the determinant of the metric tensor can be performed exactly for any N

and Ñ ; the answer is more intricate in the HT model. After some calculations we get13

− log det(g
(zn)
i̄ ) = (N − Ñ) log(1 + |Φi|2)− (N − 1) log(1 + |ζ|2) . (2.6.31)

Let us at this point derive the same quantity for the HT model in order to show how

its one-loop result deviates from the one for the zn model. For the HT model a generic

formula is harder to get, we therefore focus on an example for, say, N = 2, Ñ = 1. One

gets

− log det(g
(HT)
i̄ ) = log(1 + |Φi|2)− log

(
1 +

r√
r2 + 4r|ζ|2

)
. (2.6.32)

This expression obviously gives a different correction to the Kähler potential.

Formula (2.6.31) means that the Kähler potential acquires an infinite correction and

becomes

K(1)
zn =

(
r0 −

N − Ñ
2π

log
M

µ

)
log(1+|Φi|2)+|ζ|2+

N − 1

2π
log

M

µ
log(1+|ζ|2) , (2.6.33)

where M is the UV cutoff and µ is the normalization scale. We immediately see that

the target manifold of the zn model is not of the Einstein type. We can also see that

in order to eliminate the divergence in the last term in the above formula one has to

introduce a new counterterm.

A side remark. There exist the so-called quasi-Enstein manifolds or Ricci solitons,

for which the following equality takes place:

Ri̄ = αgi̄ + ∂iv̄̄ + ∂̄̄vi (2.6.34)

13 This result holds up to an additive constant which depends on r.Since the Ricci tensor is a total
derivative we can allow such a freedom. Certainly we can also change this expression by a Kähler
transformation.
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for some vector field v. None of the manifolds considered in this work are of this kind.

Indeed, one can check that Kählerian structure imposes constraints on the vector field v

which are not satisfied in either zn or HT models. Quasi-Einstein Kähler manifolds had

been investigated by a number of mathematicians as well as physicists. It was shown by

Friedan [74, 75], who carried out a stability analysis of RG equations at one loop, that a

fix point of the RG flow has to be a quasi-Einstein manifold. Quasi-Einstein manifolds

are quite hard to find explicitly, for most of the known cases their Kähler potentials

are known only implicitly and in quadratures (see e.g. [66] and references therein for

examples related to our work). However, in the special case of N = Ñ = 1 one can

specify the metric explicitly. Its only nonzero component is given by (see [66])

gRS =
r

1 + |z|2 , (2.6.35)

where z is a coordinate on the target manifold. Note that for N = Ñ = 1 the zn model

is trivial: it has C as its target space, whereas the HT model has a nontrivial metric 14

gHT =
r√

1 + |z|2
. (2.6.36)

Based on the arguments given in [74, 75] the HT model in this case should flow to the

space with metric (2.6.35). Studying the fixed points of the RG flow in NLσMs is an

interesting question, but it is beyond the scope of the present thesis. Hence we return

to the one-loop renormalization of the zn model.

Renormalization of the FI parameter. The first part of the renormalization pro-

cedure is similar to the CPN−1 model. Indeed, we can extract from the first term the

coupling constant renormalization

rren(µ) = r0 −
N − Ñ

2π
log

M

µ
. (2.6.37)

The so-called dimensional transmutation occurs at the scale Λ, when the theory becomes

strongly coupled, (rren(Λ) = 0),

r0 =
N − Ñ

2π
log

M

Λ
. (2.6.38)

14 Note that this metric appears on the Higgs branch of the theory when two twisted masses collide
(the Argyres–Douglas point) [59].The space is asymptotically C/Z2.



38

Note that this does not happen for N = Ñ , the FI parameter remains unchanged and

the theory has an IR conformal fixed point.

It was shown in [66] that the first Chern class of the Ñ -th power of the tautological

fiber bundle over CPN−1, or in our notation the target space of the HT model, restricted

to the base is given by

c1(MHT)
∣∣∣
CPN−1

= (N − Ñ)
[
ωCPN−1

]
, (2.6.39)

where
[
ωCPN−1

]
denotes the Kähler class of CPN−1. In the above calculations this fact

is reflected by (2.6.37). Since in the N = (2, 2) supersymmetric theories the Kähler

class is only renormalized at one loop [76, 74], (2.6.37) represents the exact answer for

the FI term renormalization. Unfortunately one cannot say much about the exact part

of the Kähler form. Generally speaking, it is known to be modified at every order in

perturbation theory and its structure is unpredictable unless we carry out an explicit

calculation. We will place some argument in the next paragraph about renormalization

of such terms at small |ζ|2.

At this point we can make a connection with the GLσM one-loop computation

(2.3.11). We have mentioned earlier that in the GLσM formulation at finite value of

the gauge coupling e there are only two divergent one-loop graphs which are regularized

by the UV cutoff – the tadpoles emerging from the D-term constraint. The FI renor-

malization (2.3.11) was obtained after calculating these tadpoles. Equation (2.6.37)

confirms this by the corresponding NLσM calculation performed above. One may now

ask if we can trace the origin of the remaining terms in the one-loop β function, like the

last term in (2.6.31)?

The answer is quite tricky, we will sketch a part of it here. One needs to look

more carefully at the perturbation theory at finite e. There will be one-loop (and also

higher loop) graphs which will have log(µ/e), where µ is the IR cutoff (it appears from

propagation of light fields in the loops). After we make a transition from the GLσM

to the NLσM by increasing e, we will hit the UV cutoff on the way e ∼M . In NLσM

we identify M = e.

This argument shows us how additional structures, which were not present in the

genuine UV domain of the GLσM (i.e. the domain above e) appear in the geometrical

renormalization. From the standpoint of the finite-e GLσM they are of the infrared
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origin.

Below we will analyze the renormalization of the linear term in |ζ|2 in (2.6.33).

Renormalization of the non-Einstein part. Equation (2.6.31) gives the exact

one-loop answer for the β function of the zn sigma model (after applying ∂i∂̄̄ to it).

Nevertheless it is instructive to understand how the linear term in |ζ|2 (and higher order

terms as well) appear in perturbation theory in geometric formulation. At small |ζ|2

one can expand the logarithm in the last term in Eq. (2.6.31) to get

− log det(gi̄) = (N − Ñ) log(1 + |Φi|2)− (N − 1)|ζ|2 +O(|ζ|4) . (2.6.40)

Using (2.6.33) and the coupling renormalization (2.6.37) we obtain for the |ζ|2 term

K(1)
zn ⊃ |ζ|2

(
1 +

1

r

N − 1

2π
log

M

µ

)
= Z|ζ|2 . (2.6.41)

Therefore we can absorb this Z factor by redefining |ζ|2 → |ζ|2/Z. The contribution

(2.6.41) arises in the following calculation. Since the general structure of the effective

action is already known, we can perform a calculation at any point in the target space. It

is convenient to choose the background field ni → 0 (while, at the same time, ∂inj 6= 0).

Then, as well-known, the logarithmically divergent contribution comes only from the

tadpole graphs of the type depicted in Fig. 2.5. In the one-loop tadpole

Figure 2.5: Tadpole graphs determining logarithmically divergent contributions to the β function
near the origin of the CPN−1 space. Two contributions are considered in the text: (a) the dashed
line represents the zj fields, while the solid line ∂n̄∂n; and (b) the dashed line represents the ni
fields, the solid line ∂z̄∂z.

graphs the contributions of the second and first terms in (2.6.12) in the effective action
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are completely untangled from each other. The second term produce just the standard

CPN−1 renormalization of r,

rren(µ) = r0 −
N

2π
log

M

µ
, (2.6.42)

cf. Eq. (2.3.9). Now, let us examine the impact of the first term in (2.6.12). There are

two options. We can choose ∂n̄∂n as the background and let zj propagate in the loop

(option (a) in Fig. 2.5) or vice versa. The first option obviously produces

∆K
(1)
(a) =

Ñ

2π
log

M

µ
|Φi|2 , (2.6.43)

which results in the following term in the renormalized Kähler potential

Ñ

2π
log

M

µ
log
(
1 + |Φi|2

)
. (2.6.44)

The difference in signs compared to (2.6.42) appears from the very beginning. Combin-

ing (2.6.42) and (2.6.44) we recover (2.3.9) or (2.6.37). The second option, with the ni

fields are in the loop, leads us to

∆K
(1)
(b) =

N − 1

2π
log

M

µ

Ñ∑

j=1

|zj |2 (2.6.45)

which in turn gives
N − 1

2π
log

M

µ
|ζ|2 . (2.6.46)

In the course of the RG flow from the UV cut-off M down to µ the first term in the

Kähler potential (2.6.12) acquires the following Z factor

|ζ|2 → Z|ζ|2 , Z = 1 +
N − 1

2π
log

M

µ
. (2.6.47)

Thus we can see that at small values of |ζ|2 the theory can be renormalized at one loop

and no counterterm is needed. This is, however, not the case for higher order terms.

2.7 Conclusions

In this Chapter we extensively studied the effective theory on semilocal non-Abelian flux

tubes in N = 2 SQCD. We continued the developments of [57] where an explicit exact



41

Lagrangian of the corresponding two-dimensional theory (zn model) was derived in a

genuinely field theoretic setup. The analysis we have performed in this work for the zn

model has been carried out in parallel with the HT model [35]. The latter was found on

semilocal vortices in a D-brane setup. The bottom line of our investigation is that only

the BPS sector is correctly reproduced by the HT model; the one-loop β functions of zn

and HT models coincide. The one-loop β function exhausts the renormalization of the

FI term, which means that the exact twisted superpotentials and the BPS spectra of the

two models are the same. This result represents the first proof, carried exclusively in a

field theory context, of the correspondence of the BPS spectra between four dimensional

N = 2 SQCD and the effective theory on the semilocal vortices therein constructed. We

also show that the HT and zn model are equivalent in the large-N(Ñ) approximation.

The physics beyond the BPS sector is however different. The difference between

the zn and HT models becomes clear when we look at the perturbation theory in the

geometric formulation. First of all, the target manifolds of the two models are different,

hence their perturbation series do not coincide. We managed to single out a “corner” in

the target space of the two models where the metrics look the same at the leading order in

the FI parameter (alternatively, in the vicinity of the origin in the noncompact subspace,

see Sec. 2.6) for details). However, far from the origin renormalization coefficients are

completely different. Speaking geometrically, the zn model is a deformation of the HT

model in terms of deforming the sections of the bundle (Eqs. (2.6.31) and (2.6.32)

illustrate this).

Contrary to the case of the CPN−1 model, where one-loop renormalization can be

completely understood in terms of a single coupling renormalization (the Kähler class,

or the FI term), which is also one-loop-exact, this is not the case both in the zn and

HT models. It occurs because both target manifolds are non-Einstein, hence the Ricci

tensors (which give the one-loop β functions) are not proportional to the metric. Never-

theless, due to nice geometric properties of the fiber bundles (recall that the HT model

lives on the total space of the tautological bundle for CPN−1), the first Chern class of

this bundle is proportional to the Kähler class with exactly the right coefficient which

also appears in the one-loop renormalization of the FI term.

As we discussed in Sec. 2.3 in the GLσM formulation of both zn and HT models

there are only two divergent graphs (tadpoles), which contribute to the renormalization
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of the FI parameter (2.3.9). However, according to the result (2.6.31), in the NLσM

formulation the one-loop renormalization consists not only of the FI shift, but also from

the wavefunction renormalization of ζ. Moreover, an additional counterterm is needed

in order to fully absorb the one-loop divergence. It is interesting if we relate the two

perturbation series in any physically meaningful way. The answer to this question may

be negative as, generally speaking, perturbations around a GLσM fixed point (small

gauge coupling) and NLσM perturbation theory are different. Moreover, the limit

e→∞ leads us away from the perturbative regime of the corresponding GLσM . Still,

more detailed perturbative analysis of the gauge theory at finite e is required in order

to better understand which Feynman graphs contribute to the UV divergences. This is

a suggestive topic for the future research.



Chapter 3

From N = 2 4d Theories to 2d

CFTs and Integrability

3.1 Introduction

Recent work by Nekrasov and Shatashvili [77] has initiated the program of quantization

of integrable systems by deforming four-dimensional supersymmetric (SUSY) theories

these integrable systems are associated with. The relationship between classical inte-

grable systems and N = 2 supersymmetric gauge theories has been extensively studied

for a long time [78, 79, 80]. Remarkably the low energy dynamics of N = 2 gauge

theories is captured by finite dimensional integrable systems such that the phase space

of the latter is related to the instanton moduli space of the former. To be precise, there

are two different classical integrable systems involved here. The first one is a holomor-

phic integrable system of the Hitchin or the spin chain type giving a Seiberg-Witten

curve whose Jacobian is mapped onto complex Liouville tori and action variables are

identified with order parameters in the gauge theory. The second integrable system is

of the Whitham type emerges from the renormalization group (RG) flows, and the very

RG equation plays the role of the Hamilton-Jacobi equation written in proper variables.

The quantum integrable systems we are considering in this Chapter can be extracted

from four-dimensional theories in Omega background [28] with ε1 = ε, ε2 = 0 (the so

called Nekrasov-Shatashvili (NS) limit [81]). Given a prepotential of the 4d theory

F(a, ε1, ε2) as a function of the Coulomb branch moduli parameters {a} and the Omega

43
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deformation parameters ε1,2, we can consider in the NS limit an effective 2d theory with

the following effective exact twisted superpotential

W̃(a, ε) = lim
ε2→0

F(a, ε, ε2)

ε2
, (3.1.1)

where ε1 is replaced by ε [77]. The F-terms of the effective Lagrangian effectively become

two-dimensional in the NS limit and are described by W̃(a, ε). For small ε formula (3.1.1)

can be even further simplified

W̃(a, ε) =
F(a)

ε
+ . . . , (3.1.2)

where the ellipses denote terms which are regular in ε. The above twisted superpotential

includes both perturbative and instantonic contributions.

Minimization of superpotential (3.1.1) yields the supersymmetric vacua which, ac-

cording to the same authors [82, 81] are intimately connected with quantum integrable

systems. Indeed, according to Nekrasov and Shatashvili, supersymmetric vacua of an

appropriate two (also three and four) dimensional N = 2 gauge theory are in one-to-one

correspondence with the Bethe roots of a certain integrable system. It is useful to make

the Legendre transform and consider the dual superpotential W̃D(aD, ε) depending on

the dual variable aD. Thus the equation

exp

(
∂W̃D(aD, ε)

∂aD

)
= 1 , (3.1.3)

can be viewed as a Bethe ansatz equation for some integrable system. This is consistent

with the interpretation of the prepotential as an action in the Whitham system. Since

aD is the coordinate variable in the Whitham dynamics, one can recognize the exponent

in (3.1.3) as the canonical conjugate momentum.

There also exists a different well known duality between four-dimensional gauge

theories and two-dimensional gauge theories (linear sigma models) [33, 34, 35] (see [45]

for review, we shall refer to it as 4d/2d duality). The four-dimensional theory here sits

at the root of its baryonic Higgs branch; therefore electric and flavor charges can be

combined in a single set of quantum numbers. Together with magnetic charges they form

two sets of quantum numbers which parameterize masses of four-dimensional dyons. On

the two-dimensional side one has kinks interpolating between different supersymmetric
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vacua, their masses also depend on two sets of charges – Nöether and topological ones.

The statement of the 4d/2d duality in its original formulation [33] is that the two sets

perfectly match with each other. Thus the BPS spectrum of an entire four-dimensional

theory can be studied using a relatively simple two-dimensional (gauged linear) sigma

model with four supercharges. It was later shown by Shifman and Yung [45] that the

4d/2d correspondence is not accidental, the underlying two-dimensional theory in fact

could be treated as a low energy effective theory on the worldsheet of a BPS vortex.

The first step in the direction of merging the 4d/2d correspondence and the

gauge/quantum integrabilty duality together was put forward by Dorey, Hollowood

and Lee [83]. The authors considered all three ingredients at once – four-dimensional

N = 2 gauge theory (SQCD with Nf = 2N), a two-dimensional N = (2, 2) gauge

linear sigma model (GLSM) (a certain U(K) gauge theory), and an integrable system.

Critical ingredient of the duality is that the 4d gauge theory sits at a baryonic root

of the Higgs branch, which in Omega background undergoes a deformation, and scalar

field VEV gets shifted by an amount proportional to ε. Provided the baryonic Higgs

root condition is satisfied, the 4d theory is shown to be dual to a given GLSM whose

twisted superpotential plays a role of the Yang-Yang function for a SL(2,R) Heisenberg

magnet. The four-dimensional superpotential is shown to be equal to the effective 2d

twisted superpotential of the form (3.1.1) on shell.

The initial motivation for this research was the identification of the different dualities

known for quantum integrable systems in the framework of SUSY gauge theories and

their brane realizations. However, first it is necessary to explain the geometrical meaning

of degrees of freedom in relevant integrable systems which is a subtle issue. It was clear

for a while that these degrees of freedom are described in terms of brane embeddings into

the internal space. We refer the reader to [84], where geometrical aspects of dualities

between integrable systems are reviewed.

A proper brane content involves surface operators, or equivalently nonabelian strings

with large tension. To begin with we revisit the classification of the BPS solitons of

different codimensions in the ε deformed theory. There is some surprise. It turns out that

some BPS states in the deformed theory to the best of our knowledge were overlooked.

We study carefully the central charges of the Omega-deformed SUSY algebra and argue

that there are new stringy and domain wall type central charges. The key point is that
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tensions of such strings and domain walls are proportional to the graviphoton field and

these defects are absent in the undeformed theory. We shall investigate the string-like

object both for the pure supersymmetric Yang-Mills (SYM) theory and for the SQCD.

It will be argued that there are some singularities akin to those of cosmic strings. The

corresponding BPS equations for such strings will be derived and finiteness of their

tension will be discussed. Similarly the domain walls solitons will be found, which

are more expected to appear, since due to the Omega deformation the theory has the

discrete set of vacuum states, hence domain walls naturally emerge. The monopoles

in Omega background which have been already discussed in the literature [85, 86] also

require some attention for their proper interpretation.

Turning to the dualities in quantum integrable systems we shall focus on two sub-

jects. First we shall consider the quantum bispectral duality relating two different

integrable systems. Classically eigenvalues of the Lax operator in one system get inter-

changed with coordinates in the second system. Quantum mechanically it means that

the single wave function serves for two systems simultaneously when considered as the

function of the spectral or coordinate variables. Although this question has not yet been

elaborated to the full extent in the literature, by employing the quantum version of the

duality we were able to explain the details of the 4d/2d duality in Omega background

[83]. Geometrically bispectrality corresponds to a rotation of the brane configuration

which represents the 4d gauge theory in question. We consider the relation between

Bethe ansatz equations (BAE) for dual integrable systems and briefly discuss their de-

generate solutions corresponding to the analogues of Argyres-Douglas points. Using the

duality between the families of spin chain models and the Calogero-Ruijsenaars systems

we shall identify bispectral pairs in both families. As a byproduct we will show that the

Alday-Gaiotto-Tachikawa (AGT) duality [87] in the NS limit can be proved using the

chain of dualities involving the bispectral pair.

The Chapter is organized as follows. In the next section we review how the N = 2

supersymmetry algebra is affected by the Omega background. We then compute the

central charge for a BPS string in pure N = 2 Super Yang Mills theory and calculate

its tension. In Sec. 3.3 we consider domain walls and monopoles in Omega deformed

SYM. Then in Sec. 3.4 we investigate BPS strings in well-studied example of the 4d/2d

duality – the supersymmetric QCD. Section 3.5 is devoted to brane constructions and
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integrable systems associated with N = 2 gauge theories and dualities between them.

In Sec. 3.6 we show that in the NS limit, the celebrated AGT correspondence [87] can

be reduced to the so-called bispectral duality between two integrable systems. Finally

in Sec. 3.7 we conclude and speculate on further research topics.

3.2 Flux Tubes in Pure Super Yang-Mills Theory

In the standard lore of topological defects in supersymmetric theories, the BPS strings

only exist when a gauge group is at least semi-simple, e.g. U(N). A simple reason

for this is based on existence of a nontrivial fundamental group of the resulting moduli

space due to presence of a U(1) factor. The latter causes a nonzero Fayet-Iliopoulos

(FI) term which supports string solutions, and we shall refer them as FI strings. In

this section, we shall instead consider to a new kind of string-like objects which have

not been discussed in the literature before, we shall refer to them as ε-strings. As we

shall later see their tension is proportional to ε2 and construct the relevant classical

field configurations. For simplicity we shall only focus on the gauge group SU(2) in this

section.

Action. Let us start with the N = 2 Super Yang-Mills theory in four dimensions in

Omega background. To set the notations, the Lagrangian of the undeformed theory

reads

L = 1
4πIm τ

[
Tr

∫
d4θ Φ̄eV Φ e−V + Tr

∫
d2θ (Wα)2

]
, (3.2.1)

where Φ = (φ, ψ, F ) is adjoint chiral superfield, V = (σ, λ,D) is adjoint vector superfield,

Wα is its field strength, and τ = 4πi
g2

+ θ
2π is coupling constant.

Omega deformation. The Omega deformation of a four-dimensional theory like

(3.2.1) can be constructed from a six dimensional theory by compactifying the the-

ory on a two-torus with twisted boundary conditions [88, 89]. Torus action on R4 is

given by two matrices Ωm
an where m,n = 1, 2, 3, 4 and a = 5, 6 which act by rotations

in 12 and 34 planes respectively. In the NS limit matrix Ω6 vanishes, therefore we shall

denote Ω = Ω5. Metric on the deformed torus reads

GABdx
AdxB = Adzdz̄ + (dxm + Ωmdz + Ω̄mdz̄)2 , (3.2.2)
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where z = x5 + ix6, z̄ = x5 − ix6 and the vector field Ωm = Ωm
n x

n. In the notations of

[85] Ωm = (−iεx2, iεx1, 0, 0). In other words vector field Ω = iε ∂ϕ is a rotation generator

around x3-axis. Here we denote ρ =
√
x2

1 + x2
2. The components of the metric in the

limit A→ 0 read

Gmn = δmn , Gam = Ωam , Gab = δab + Ωm
a Ωbm . (3.2.3)

Upon the dimension reduction, the fifth and sixth components of the gauge field form an

adjoint scalar, which undergoes the following deformation due to the Omega background

φ 7→ φ− iΩm∇m + i
2ΩmnSmn , (3.2.4)

where Ωm, Ωmn were introduced after formula (3.2.2) and Smn is the spin operator for

adjoint representation of the gauge group. The latter does not affect the bosonic part of

the theory, however it does modify the fermionic part. This issue will be important when

we consider the supersymmetry algebra of the theory momentarily. Transformation

(3.2.4) itself is not a well-defined change of coordinates, but φ enters the Lagrangian

in a special way, this shift brings us to a well defined Lagrangian of a modified theory

[90]. Another deformation of the theory consists of shifting of the coupling constant,

thereby we promote it to a superfield. In the N = 2 superfield language1 the shift reads

as follows

τ 7→ τ − θ̄mθ̄n(Ω̄mn)† , (3.2.5)

where θ̄m = (σ̄m)α̇I θ̄α̇I is the twisted Grassmann variable for the diagonal su(2)R+R

generators. In components the Lagrangian of the N = 2 SYM after the deformation

takes the following form

L = 1
4g2

(F amn)2 + 1
g2
|∇mφa − F amnΩ̄n|2 + 1

2g2
|φτaφ̄− i∇m(Ωmφ̄a − Ω̄mφa) + iΩ̄mΩnF amn|2

+ 1
g2
λ̄faσm∇mλaf − i

g2
λaf φ̄ τaλf + i

g2
λ̄afφ τ

aλ̄f

+ 1
g2
λfa(Ω̄m∇m − 1

2 Ω̄mnσmn)λaf − 1
g2
λ̄af (Ωm∇m − 1

2Ωmnσmn)λ̄fa , (3.2.6)

where f = 1, 2 denotes the R-symmetry index, and spinor indices are suppressed.

1 See Shadchin’s PhD thesis [89] for details
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SUSY transformations. Recall that N = 2 supersymmetry algebra in four dimen-

sions has the following form

{QIα, Q̄J α̇} = 2Pαα̇δ
I
J + 2Zαα̇δ

I
J ,

{QIα, QJβ} = εαβε
IJZmon + (Zd.w.)

IJ
αβ . (3.2.7)

There are three types on central charges: string, monopole and domain wall types. We

shall focus on the former in this section leaving monopoles and domain walls to Sec. 3.3.

The full global symmetry of the theory is SU(2)L×SU(2)R×SU(2)R (left, right and

the R-symmetry). It is broken by the Omega background in the NS limit to SU(2)L ×
SU(2)R+R by paring the R-symmetry with the right handed SU(2). The supercharges

undergo the Donaldson-Witten twist [91]

Q̄ = δα̇I Q̄
I
α̇ , Qm = (σ̄m)IαQIα , Q̄mn = (σ̄mn)α̇I Q̄

I
α̇ . (3.2.8)

These transformations can be inverted as follows

QIα = 1
2(σm)IαQm , Q̄α̇J = 1

2εα̇JQ̄+ 1
2(σ̄mn)α̇JQ̄

mn . (3.2.9)

It turns out that a generic Omega background breaks all supersymmetries of the the-

ory (3.2.6) except the BRST charge Q̄. Moreover, it can be shown that the Lagrangian

(3.2.6) is a Q̄-exact expression [28], which makes it possible to compute the partition

function of the theory by localization methods.

It is more or less clear that the obstacle to supersymmetry is due to the spin operator

terms 1
2Ωmnσmn in the fermionic sector. The theory thus has to be further deformed

to gain more supersymmetry. To understand what we need to do, let us look at the

supersymmetry transformations of (3.2.6) with the problematic spin operators omitted,

and see what additional terms do we need to introduce. One has [85] the following

under variations

δφ = ζIα(λαI − Ωm(σm)αα̇λ̄Iα̇) + ζ̄Iα̇Ωm(σ̄m)αα̇λIα ,

δλIα = ζIβ((σmn)βαFmn + i[φ, φ̄]δβα +∇m(Ω̄mφ− Ωmφ̄)δβα)

+ ζ̄Iβ̇(σm)β̇α(∇mφ− FmnΩn) . (3.2.10)

However, since the action is not supersymmetric, the above transformations do not leave

the Lagrangian invariant. As suggested in [88] and later extended in [85], one has to
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turn on R-symmetry Wilson lines properly to restore partial supersymmetries. Thus,

in the NS limit one has to add

− ĀJI λIλJ −AJI λ̄I λ̄J , (3.2.11)

where

AJI = −1
2 Ω̄mn(σ̄mn)IJ , (3.2.12)

to the Lagrangian. One can also treat the above terms as emerging from a superpotential

which we add to the theory, and we shall speculate more on this in Sec. 3.3. In the NS

limit, when ε2 = 0, the supersymmetry of the theory is enhanced to N = (2, 2) [85] and

is generated by the following supercharges

Q1, Q2, Q̄13, Q̄14 . (3.2.13)

Using the inverted transformation (B.3.3) we conclude that in the original formulation of

SUSY algebra (B.3.1) the following generators are included into N = (2, 2) subalgebra

Q12, Q21, Q̄1̇2, Q̄2̇1 . (3.2.14)

In the remaining part of the section we shall investigate 1/2 BPS object – a string which

is annihilated by the above charges.

String central charge and string tension. The supercurrent for the Omega de-

formed SYM theory was computed in [85]. Its Euclidean time component has the

following form (assuming static configuration, B3 6= 0, others components of Fmn van-

ish)

J4
Iα =

1

g2

(
(−i[φ, φ̄] + (φΩ̄n − φ̄Ωn)∇n)σ4

αα̇ + F̃4nσ
n
αα̇

)
λ̄α̇I

+
2
√

2

g2
(σ4n)βα(−∇nφ+ FnpΩ̄

p)λIβ (3.2.15)

Let us find the string central charge current. Performing standard variation of the above

supercurrent we get2

δζIα J̄
4J
α̇ = 2σ4

αα̇δ
J
I P4 + ∂m

(
(φaΩ̄m − φ̄aΩm)Ba

3

)
σ3
αα̇δ

J
I , (3.2.16)

2 Technically there is another contribution from the R-current [92], which contributes to the ( 1
2
, 1
2
)

central charge.
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where P4 is Hamiltonian of the system. Note that there is an additional contribution

to the above string charge current which is bilinear in fermions of the form ∂m(Ωmλ̄λ).

For classical analysis, where all fermionic fields can be put to zero, this contribution

can be omitted. We see that there is a correction which represents the string central

charge, specifically the correction takes the following form

ζ3 = 1
2g2
∂m
(
(φaΩ̄m − φ̄aΩm)Ba

3

)
σ3
αα̇δ

IJ , (3.2.17)

where ρ2 = x2
1 + x2

2 is the transversal coordinate to the string. If ε is real then

ζ3 = 1
g2
∂ϕ(Re εφ̄aBa

3 ) . (3.2.18)

The central charge is given by

Zstring =

∫
d3x ζ3 =

1

g2

∫
dz

∫
dρ ρ

2π∫

0

dϕ∂ϕ(Re(εφ̄a)Ba
3 )

=
1

g2

∫
dz

∫
dρ ρBa

3 Re(εφ̄
a)
∣∣∣
2π

0
. (3.2.19)

We can immediately see that multi-valuedness of φ as a function of the azimuthal

angle is required in order to make the central charge nonzero. The tension of the string

solution under consideration (let’s call them ε-strings) is therefore given by

T =
1

g2

∞∫

0

dρ ρBa
3 Re(εφ̄

a)
∣∣∣
2π

0
. (3.2.20)

Assuming that

φ(ρ, ϕ) = φ(ρ)eiαϕ , (3.2.21)

where α is an constant, we arrive to

T =
1

g2

∞∫

0

dρ ρRe
(
εBa

3 φ̄
a(e−2πiα − 1)

)
. (3.2.22)

The above expression for the tension of ε-string only makes sense if it is finite. In order

to establish that one has to solve BPS equations in order to find the profile functions

for φ and B3 as function of the radial coordinate ρ.
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BPS equations. Let us now find the BPS equations which describe such a string.

Once supersymmetry algebra is understood (3.2.14), we can focus on the bosonic part

of the action

L = 1
4g2
F 2
mn + 1

g2
|∇mφ− FmnΩ̄n|2 + 1

2g2
|φτaφ̄− i∇m(Ωmφ̄a − Ω̄mφa)|2 . (3.2.23)

Note that in the NS limit Ω̄mΩnF amn identically vanishes. Let us now do the Bogomolny

completion, as the supersymmetry algebra suggests

L = 1
2g2
|Ba

3 + φτaφ̄− i∇m(Ωmφ̄a − Ω̄mφa)|2 + 1
2g2
|∇1φ

a + i∇2φ
a − (Ω2 − iΩ1)Ba

3 |2

+ 1
2g2
∂m(Ba

3 (Ωmφ̄a − Ω̄mφa)) ≥ 1
2g2
∂m(Ba

3 (Ωmφ̄a − Ω̄mφa)) . (3.2.24)

The above inequality is saturated provided that the following BPS equations are satisfied

Ba
3 + φ̄τaφ− i∇m(Ωmφ̄a − Ω̄mφa) = 0 ,

∇1φ
a + i∇2φ

a − (Ω2 − iΩ1)Ba
3 = 0 . (3.2.25)

One can also check that the above BPS equations are consistent with the N = (2, 2)

supersymmetry algebra. Indeed, by looking at the gluino variation in (3.2.10) we need

to set to zero all expressions which enter the right hand side together with ζ11, ζ22 and

their complex conjugates. Contributions proportional to ζ12 , ζ21 and conjugated terms

vanish automatically due to the BPS condition. By doing so one arrives at equations

(3.2.25).

Sometimes it is more convenient to switch to the complex coordinates

w = x+ iy , w̄ = x− iy , (3.2.26)

then the BPS equations (3.2.25) take the following form

∂w̄A
a
w − ∂wAaw̄ + εabcφbφ̄c − i(w∇w̄ − w̄∇w)(εφ̄a − ε̄φa) = 0 ,

∂w̄φ
a − εabcAbw̄φc + εw(∂w̄A

a
w − ∂wAaw̄) = 0 . (3.2.27)

The above equations can be used in study of the effective two-dimensional theory living

on the ε-string.
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Solution of BPS equations and vortex tension. Let us proceed with the solution

of (3.2.25). We will look for a background solution when all fields are aligned along the

Cartan subalgebra of the gauge algebra. Thus color superscript will always be a = 3,

in the rest of the section we shall omit it. One has the following

B3 − i∂m(Ωmφ̄− Ω̄mφ) = 0 ,

∂1φ+ i∂2φ− (Ω2 − iΩ1)B3 = 0 . (3.2.28)

Decomposing φ = φ1 + iφ2, ε = e1 + ie2 into real and imaginary parts we obtain

B3 = 2∂ϕ(e1φ1 + e2φ2) , (3.2.29)

and two first order equations on φ1 and φ2. After some simple manipulations one gets

∆φ1 + 4e2∂ϕ(e1φ1 + e2φ2) = 0 ,

∆φ2 − 4e1∂ϕ(e1φ1 + e2φ2) = 0 , (3.2.30)

which, after adding these equations with proper coefficients, implies that e1φ1 + e2φ2

is a harmonic function. However, at this point boundary conditions of the solution

remain unclear as we need to have φ(2π) 6= φ(0) in order to gain finite tension (3.2.22).

In order to make the problem mathematically precise we can make the following trick.

The phase difference of e2πiα will be identified with the deficit angle of a cone which is

obtained by gluing ϕ = 0 ray with ϕ = 2π one.

Solution of Laplace equation on a cone is formally given by a series of positive

and negative powers of ρ with angle dependent coefficients. The latter are normally

expressed in terms of ellipsoidal harmonics. Since we are interested in normalizable

solutions we only leave negative powers of the radial coordinate in the series. The

solution will however be divergent at the origin. The dependence on phase α is then

hidden in the harmonic coefficients. We shall refrain from giving more details here since

we are not investigating any dynamics on ε-strings in this paper. Rather we provide the

evidence of existence of ε-strings and finiteness of their tension.

Let us now look at the vortex tension (3.2.22). Using (3.2.29) we conclude that

T =
1

2g2

∫
d2xTrB2 =

1

g2

2π∫

0

dϕ

∞∫

0

dρ ρ ∂ϕ(Re(εφ̄a)Ba
3 ) . (3.2.31)
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As we argued above the integral over the radial coordinate diverges, however it does

not make the tension infinite. To see this let us regularize the radial integral on its

lower limit by putting a cutoff at some small value of ρ = ρ0. After integrating the

full angular derivative we see that the contribution to the integral at the lower limit

cancel each other as ρ0 → 0. Thus we are left with the contribution from large ρ. As we

are not specifying the full solution of the BPS equations we shall not evaluate integral

(3.2.31) here. However, from dimensional ground we anticipate

T = A(α)|ε|2 , (3.2.32)

where A is a constant. Therefore we find that the tension of ε-strings is quadratic in ε,

and it is only nonzero for fractional winding numbers.

To conclude this section let us make a few general comments concerning ε-strings.

First, at large values of the graviphoton field the string tension is large and we can

safely consider it as semiclassical object and the string could serve as the new type

of the surface operator. In this case one can use the standard technique to get the

worldvolume theory. We shall discuss the worldvolume theory elsewhere. The second

point to be mentioned is some analogue with the string in the noncommutative gauge

theory found by Gross and Nekrasov [93]. They have discovered that the Dirac string

attached to the monopole in the noncommutative theory becomes observable and its

tension is proportional to the noncommutativity parameter. Since using the chain of

dualities [94, 95, 96] the ε parameter can be traded to the noncommutativity in the

internal space one could look for more close relation between two types of strings.

Finally, one could ask for the brane realization of the ε-string. Certainly it can not be

identified as D2 brane similar to the FI string since we can not reproduce the tension

with such brane realization. Hence the most natural candidate is the properly embedded

D4 brane. We hope to discuss the details of the brane realization of ε-strings elsewhere.

3.3 Monopoles and Domain Walls

We have discussed color flux tubes in Omega background in Sec. 3.2. Here we shall

address two other types of topological defects we often encounter in supersymmetric

theories – monopoles and domain walls.



55

Central charge. Recall from (B.3.1) that domain walls and monopoles saturate holo-

morphic central charges in supersymmetry algebra. Symmetric combination of these

charges give domain wall piece, whereas an antisymmetric one contributes to monopoles.

Analogously to a string charge density we have evaluated in (3.2.16), we can proceed

with the monopole and domain wall. The former calculation has been performed in [85],

and the latter gives

δζIβJ
4
Jα = 1

g2
δIJ(σ4)αα̇(σ3)α̇β∂3(φa∇n(φaΩ̄n − φ̄aΩn)) . (3.3.1)

We have included here only the bosonic contribution to the supercurrent which is rele-

vant for classical analysis. The full expression will also contain bilinear term in fermions

∂m(Ωmλλ) +H.c. which will be manifest for quantum calculations [97].

Structurally (3.3.1) is very reminiscent of the string current (3.2.16). As in the string

charge case, a field dependent FI term appears

ξa = 1
g2
∇m(Ωmφ̄a − Ω̄mφa) , (3.3.2)

leading to the following expression of the domain wall tension

T = 1
g2
ξa(φa+∞ − φa−∞) , (3.3.3)

which can be viewed as a non-Abelian generalization of the standard calculation in

theories with superpotentials. Let us now have a closer look on the BPS monopoles and

domain walls appearing in N = 2 SYM theory, again for simplicity we shall consider

SU(2) gauge group here.

BPS equations and monopole solution. Ito et al [85, 86] have investigated BPS

monopole solution of N = 2 SYM with gauge group SU(2) in Omega background in

the NS limit. It reads

Ba
i −∇iφa + iεijkΩ

jBak = 0 , (3.3.4)

or in components

Ba
3 −∇3φ

a − ε xmBa
m = 0 ,

Ba
m −∇mφa + ε xmB

a
3 = 0 , (3.3.5)
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where m = 1, 2. The solution of these equations is given in [85]. The authors’ conclusion

is that the monopole’s mass is not changed, the magnetic field strength has the same

form as the one in the undeformed case for ε = 0. However, there is a correction of the

scalar field profile. In the singular gauge (when only φ3 6= 0) the solution reads

φ3(ρ, z) =

√
v2H(ρ, z)2 + ε2 +

2vzεH(ρ, z)√
ρ2 + z2

+G(ρ, z)2 , (3.3.6)

where function

G(ρ, z)2 =
2ρ2vzεF (ρ, z)H(ρ, z)

ρ2 + z2
+
ρ2z2ε2F (ρ, z)2

ρ2 + z2
− 2ρ2ε2F (ρ, z)

ρ2 + z2

− 2ρ2vzεF (ρ, z)H(ρ, z)

(ρ2 + z2)3/2
+
ρ4ε2F (ρ, z)2

(ρ2 + z2)2 (3.3.7)

vanishes at z → ±∞. Functions F and H are taken from the ’t-Hooft-Polyakov

monopole solution [9, 8]

H(ρ, z) = coth v
√
ρ2 + z2 +

1

v
√
ρ2 + z2

, F (ρ, z) = 1− v
√
ρ2 + z2

sinh v
√
ρ2 + z2

. (3.3.8)

Note that scalar field φ does not go to its vacuum value v any longer as it does for

ε = 0, but rather interpolates between φ+∞ = v + ε to φ−∞ = v − ε at plus and minus

z-infinity respectively. This suggests us that maybe 1/2 BPS monopole is not a proper

interpretation of the above solution and more structures can be involved.

Before we go further, let us mention an useful symmetry of equations (3.3.5). In the

above analysis axial symmetry was assumed such that both φ and B fields depended

only on ρ and z. We can also introduce azimuthal angle ϕ in the game by giving the

scalar field a phase

φ 7→ φ eiαϕ . (3.3.9)

In order to preserve (3.3.5) the magnetic field strength also acquires a phase and its

azimuthal component Ba
ϕ gets generated due to ∇mφ term in the second equation.

Provided that such a configuration is chosen, the FI field reads

ξa = i
g2
α(ε̄φa + εφ̄a) . (3.3.10)

Then the corresponding domain wall’s tension (3.3.3) becomes

T = 2
g2
εTrφ2 , (3.3.11)
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for imaginary φ and real ε. Since (3.3.6) still solves equations (3.3.5) we can compute

the tension for the solution in hand. One gets

T = 2
g2
ε
(
(v + ε)2 − (v − ε)2

)
= 8

g2
vε2 . (3.3.12)

Let us now see how to construct monopoles and domain walls in SU(2) SYM theory in

the NS Omega background.

Monopole on a domain wall. We shall perform a slightly different Bogomolny

completion of the action (3.2.23) than the authors of [85, 86]

L = 1
2g2

∣∣∣Ba
3 − i∇m(Ωmφ̄a − Ω̄mφa) +∇3φ

a + iε3jkΩ
jBak

∣∣∣
2

+ 1
2g2
|Ba

1 + iBa
2 + (∇1 + i∇2)φa − (Ω2 − iΩ1)Ba

3 |2

+ 1
g2
∂m
(
Ba

3 (Ωmφ̄a − Ω̄mφa)
)

+ 1
g2
∂3(φa∇m(Ωmφ̄a − Ω̄mφa))− 1

g2
∂i(B

a
i φ

a) .

(3.3.13)

Three terms in the third line above correspond to strings, domain walls and monopoles

respectively. Existence of the first two types of solitons solely relies on the non-trivial

field dependent FI term (3.3.2)

ξa = 1
g2
∇m(Ωmφ̄a − Ω̄mφa) . (3.3.14)

BPS equations follow from (3.3.13) immediately

Ba
3 +∇3φ

a + iε3jkΩ
jBak − i∇m(Ωmφ̄a − Ω̄mφa) = 0 ,

Ba
1 + iBa

2 + (∇1 + i∇2)φa − (Ω2 − iΩ1)Ba
3 = 0 . (3.3.15)

We can now observe that if ε and φa are real valued, as they were chosen to be in

[85, 86], then the latter equation above splits into two, one for the real part, one for the

imaginary part of its l.h.s. Also the field dependent FI term vanishes. We immediately

identify them as the last two equations of (3.3.5). However, if a different ansatz is

chosen, when either ε or φa or both have imaginary part, the FI parameter (3.3.2)

kicks in, and equations (3.3.15) no longer decouple. Their solution is probably more

complicated than reported in [86], and will be reported elsewhere.
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Boojums. At this point let us also mention that the setup we have just described also

admits strings provided that the parameter α in (3.3.9) is non integer, otherwise the

string central charge vanishes, indeed it follows from (3.2.22). Thus the solution above

describes a BPS monopole on a domain wall, and, if α is not integer, a more complicated

boojum construction [45] which is a junction of a string, domain wall and a monopole

Fig. 3.1; it is a 1/4 BPS configuration. Remarkably, all three structures coexist together

and emerge together from Omega deformation. It appears to be impossible, as far as

our analysis suggests, to find, say, only domain wall without a monopole, or vice versa

– they always come in pairs. Strings, however, as we discussed in Sec. 3.2, can exist on

their on provided that α is a non integer.

Interestingly, the object we have just described – a boojum, can be placed on ends

of ε-strings, the same way as monopoles in the Higgs phase of N = 2 theory can have

non-Abelian flux tubes emerging from them [45]. Such a string is depicted in Fig. 3.1

Figure 3.1: Left: Boojum as a monopole-string-domain wall junction. The string is infinite
and is stretched along the z-axis. Right: ε-string ending at monopoles located on two parallel
domain walls in xy-plane can be viewed as the superposition of two boojums. The string does
not continue through the domain walls to the outer area, since the scalar field, main building
block of the ε-string, vanishes outside of the domain walls.

Relationship to coupled 4d/2d systems. In [98, 16] coupled 4d/2d systems were

studied. An example of such a system is a four-dimensional gauge theory with a surface

operator insertion. The 4d theory is considered to be in the Coulomb branch, a 2d
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theory lives on the surface defect and both systems are coupled. Remarkably, both 2d

(kinks) and 4d (monopoles, dyons) BPS states can be found in such systems and the

authors of [16] managed to derive the full 2d/4d wall crossing formula. Bound states

of monopoles on surface defects are present in the theory, since the 4d theory is at

the Coulomb branch, its magnetic field has a spherically symmetric pattern, unlike a

Higgs monopole whose field lines are trapped to a vortex. These two pictures – Higgsed

monopole an a vortex and a Polyakov-’t Hooft monopole on a surface defect Fig. 3.2

may represent two different limiting configurations of a more generic setup, which in-

volves more sophisticated 2d/4d dynamics. Keeping the calculations we have done in

this section, we may hope that 4d theories in Omega background may be reasonable

candidates for such a theory. It would be interesting to investigate the solution of BPS

equations (3.3.15) more closely and study different values of the deformation parameter

ε. At large ε the surface operator limit emerges and Gaiotto et al story [16] may also

arise.

Figure 3.2: Polyakov-’t Hooft monopole on a surface defect.

3.4 N = 2 SQCD in Omega Background

The 4d/2d duality was initially formulated for N = 2 supersymmetric QCD [33], with

gauge group U(N) with N ≤ Nf ≤ 2N flavors. Physical explanation of the duality

[35, 34] (see also [99]) relies on existence of BPS flux tubes (FI strings) – solitonic
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solutions of the theory. Below we demonstrate how these solutions can be constructed

and what are the resulting BPS equations for Omega-deformed theory, which as we

know, preserves only N = (2, 2) part of supersymmetry (4 out of 8 supercharges).

Similarly to the pure SYM discussed in the previous section, the BPS vortex in question

will invariant under the unbroken part of the SUSY algebra, therefore it will still remain

to be a BPS configuration.

3.4.1 Chen-Dorey-Hollowood-Lee duality

Here we shall review main aspects of the duality unveiled in [83, 100]. The authors have

proposed and proved 3 that in NS limit, four-dimensional U(N) SQCD with N funda-

mental hypermultiplets of masses m1, . . .mN together with N antifundamental hyper-

multiplets of masses m̃1, . . . m̃N and coupling constant τ is dual to the two-dimensional

U(K) GLSM with N chiral fundamentals of twisted masses M1, . . . ,MN together with

N chiral antifundamentals of twisted masses M̃1, . . . , M̃N and coupling constant τ̂ . The

above statement holds provided that the four-dimensional theory is considered in the

Higgs branch defined by the condition

φa = ma − naε , (3.4.1)

for some ZN vector na, rank of the gauge group of the 2d GLSM is given by

K =
N∑

a=1

(na − 1) =
N∑

a=1

n̂a , (3.4.2)

masses of the 4d theory and twisted masses of the 2d theory are related to each other

in the following way

Ma = ma − 3
2ε , M̃a = m̃a + 1

2ε , (3.4.3)

and coupling constants obey

τ̂ = τ + 1
2(N + 1) . (3.4.4)

Quantitatively the CDHL duality states that in NS limit, the chiral rings of the 4d and

2d theories are isomorphic and we can relate effective twisted superpotential (3.1.1)

3 We change the notations of [83] to make them consistent with our notations.
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from the 4d gauge theory with the effective twisted superpotential of the corresponding

2d GLSM as follows

W̃(φa = ma − naε)− W̃(φa = ma − ε) = W̃2d
eff (n̂a) . (3.4.5)

This means that the sets of stationary points (vacua) of the two superpotentials are

isomorphic and the above equality holds in the corresponding vacua. The equality

(3.4.5) has been proven by computing the Nekrasov partition function on the Higgs

branch of the theory (3.4.1), and deriving the effective twisted superpotential then

matching it with the 2d superpotential on shell [83, 100]. Let us mention a related

contribution [101], where moduli space of vortices was shown to be a submanifold of the

instanton moduli space of the Omega deformed 4d theory.

Below we shall provide some further supports for this duality based on the study of

non-Abelian BPS vortices in the Omega deformed four-dimensional theory. This will

be done by identifying the classical 2d theory living on the vortex along the course of

the Shifman-Yung program [45].

3.4.2 Constructing non-Abelian vortices Nf = N

Let us now construct the action of theN = 2 SQCD in the NS Omega background in four

dimensions. Although in [83, 100] the superconformal Nf = 2N case was considered,

from the viewpoint of the non-Abelian vortices it is more instructive to start with the

left boundary of the stability window Nf = N .

Action. Let us begin again with the undeformed SQCD Lagrangian in four dimensions

with N = Nf

L =
1

4π
Tr

[
Im τ

(∫
d4θ Φ̄ eV Φ e−V +

∫
d2θ (Wα)2

)]

+

∫
d4θ

(
Q̄ie

VQi + Q̃ie
−V Q̃i

)
+

∫
d2θ

(
Q̃iΦQ

i +mi
jQ̃iQ

j + H.c.
)
, (3.4.6)

where V is an adjoint N = 1 vector superfield, Φ = (φ, λ,D) is an adjoint SU(N) ⊂
U(N) chiral superfield, quark superfields Qi = (qi, ψi, Fi) and Q̃i = (q̃i, ψ̃i, F̃i) are

transformed in N and N̄ of the SU(N) and as Nf and N̄f under global flavor SU(Nf )

respectively; mj
i is quark mass matrix and τ = 4πi

g2
+ θ

2π is coupling constant.
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Omega Deformation. Our task now is to construct the Omega deformed theory.

As in the pure SYM case the deformation can naturally be understood in terms of

the six dimensional N = 1 theory [88]. It is convenient to use dual frame description

GAB = e
(c)
A e

(c)
B . The components of sixbeins read

e(m)
n = δmn , e(m)

a = Ωm
a , e(a)

m = 0 , e
(a)
b = δab . (3.4.7)

Using the above equation we can rewrite the kinetic term for squarks

e(B)
a ∇(B)q = ∇aq − iΩm

a ∇mq . (3.4.8)

Thus we have

|∇Aq|2 = |∇mq|2 + |(φ− iΩm∇m)q|2 , (3.4.9)

and analogously the kinetic term for anti squarks. The bosonic part of the action after

quark masses mi and m̃i are included reads

L = 1
4g2
F 2
mn + 1

g2
|∇mφ− FmnΩ̄n|2 + 1

2g2
|φτaφ̄− i∇m(Ωmφ̄a − Ω̄mφa) + g2(q̄τaq − q̃τa¯̃q)|2

+ 1
2 |∇mq|2 + 1

2 |∇mq̃|2 + 1
2 |(φ−mi − iΩm∇m)qi|2 + 1

2 |(φ− m̃i − iΩm∇m)q̃i|2

+ 2g2|q̃τaq|2 + g2

2 |q̃iqi −NξFI |2 + g2

8 (|q|2 − |q̃|2)2 , (3.4.10)

where we have included Fayet-Iliopoulos term ξFI . This theory has U(N)c × SU(N)f

global color and flavor symmetry group.

Supersymmetry transformations. In what follows it is convenient to package squarks

and anti-squarks into a single vector qif = (qi, ˜̄qi), where f = 1 for squarks and f = 2

for antisquarks. Supersymmetry acts on the fields in the following way4

δφa = −
√

2ζαf (λaαf − Ωαα̇λ̄aα̇f ) + ζ̄fα̇Ωαα̇λafα ,

δλa fα = −ζβfF aαβ + iζgαDa f
g + i

√
2ζ̄α̇f

(
∇αα̇φa − F aαα̇ββ̇Ωββ̇

)
,

δqif =
√

2ζαfψiα + i
√

2ζ̄fα̇
¯̃
ψiα̇ ,

δψiα = −i
√

2ζ̄α̇f∇αα̇qif + 2iζfα

(
φ̄a(τ

a)ijq
j
f − iΩββ̇∇ββ̇qif

)
, (3.4.11)

4 We use chiral notation here.
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where i = 1, . . . , N runs through fundamental representation, a = 1, . . . , N2 runs

through the adjoint representation of U(N), f, g = 1, 2 denote SU(2) R-symmetry

index, and the D-term contribution in the first line above has the following form

Da f
g = −φ̄τaφδfg − g2

(
q̄gτ

aqf − Ξa fg

)
, (3.4.12)

where the generalized FI-term reads

Ξa fg = i
g2
∇αα̇(Ω̄αα̇φa − Ωαα̇φ̄a)δfg + ξfFI gδ

a
N2 . (3.4.13)

The first term we have already seen in the previous section, similar story here – it is

generated by the Omega background. The second contribution to Ξ is the standard FI

term. Here, as in [102], we formally kept the FI parameter ξfFI g as a triplet. Usually

only diagonal part is left over, as it simplifies the calculations, however, it is absolutely

unnecessary. As we can see, generalized FI parameter (3.4.13) is a sum of the two

terms, the field dependent FI term, which appears due to Omega deformation, and the

conventional U(1) FI term, which is normally considered in supersymmetric QCD. As

we know [103], presence of the latter does not affect the supersymmetry of the theory,

however, it’s broken to the (2, 2) SUSY due to the former. Similar to the pure SYM

case, considered in the previous section, generators (3.2.14) form the supersymmetry

algebra. We shall use this information to extract the BPS equations later.

Classical vacua. Vacua of the theory can be chosen similarly to the undeformed

SQCD. Indeed, after identifying

φa = ma q̃ai = q̄ai =
√
ξFIδia , (3.4.14)

we find that the potential in (3.4.10) vanishes. Alternatively one could have put q̃i = 0

and work only with squarks qi (see [45] for details). This vacuum is invariant under the

color-flavor rotations

Gc+f : φ 7→ U−1
c φUf , qia 7→ (U−1

c )ba q
j
b Uf j , (3.4.15)

where Uc = Uf ∈ Gc+f . In the most generic case, when masses ma are arbitrary, one

has

Gc+f = S(U(n1)× · · · × U(nk)) ,

k∑

j=1

nj = N , (3.4.16)



64

where S(. . . ) stands for the stabilizer. If all masses are different thenGc+f = S
(
U(1)N

)
=

U(1)N−1 . The pattern of the symmetry breaking depends on the relationship between

the masses mi and the FI parameter ξFI . In what follows we shall assume ξ � m2
i for

any i and all the masses to be of the same order, thus in our case we have the following

breaking

U(N)c × SU(N)f

√
ξ−−→ U(1)× SU(N)c+f

mi−−→ U(1)×Gc+f . (3.4.17)

Note that U(1) factor in the above formula will be very important in constructing

vortices, which we shall now do. A vortex configuration will further break the above

symmetry in a nontrivial way – the above mentioned U(1) will be coupled to the gener-

ators of the Cartan subalgebra of Gc+f . By using the extra U(1) symmetry we can also

change the second equality relation in (3.4.14), and this is what exactly is done in the

DHL paper. For the convenience of the calculations of [83] squarks have charge −3/2

and anti-squarks have charge +1/2 with respect to this symmetry. In the current paper

it is more convenient to keep the condition (3.4.14) on the vortex solution as well.

Vortex configuration. In order to find non-Abelian BPS strings we need to organize

winding around the z-axis. Thus we allow one of the flavors, say qN , to depend on the

azimuthal angle ein̂ϕqN , where n̂ is an integer. Algebraically it corresponds to breaking

the symmetry of (3.4.17) down to U(1)diag×SU(N − 1), where the first U(1)diag factor

is the diagonal subalgebra of the U(1) from (3.4.17) and the N − 1’st Cartan generator

of the Gc+f . Then for the two terms in the second line of (3.4.10) read

V ⊃
∣∣(φij −mNδ

i
j + n̂εδij + ερ(Aϕ)ij)q

Nj
∣∣2 . (3.4.18)

It vanishes provided that the expression in the parentheses above is equal to zero. So

we put

φNN = mN − n̂ε− ερ(Aϕ)NN . (3.4.19)

It can certainly be generalized to the case where more squark fields have angular de-

pendences

φa = ma − n̂aε− iΩmAam , (3.4.20)

where n̂a is an integer valued vector, which is intended to count the number of flux

quanta which flow through the vortex. We see that the above classical vacuum equation

related the adjoint scalar and the gauge field.
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Vortex BPS equations. While studying a 1/2-BPS object we work with the half of

supersymmetry algebra which acts trivially on it. In the case at hand this algebra is

generated by (3.2.14). Remarkably it coincides with the BPS subalgebra of the non-

Abelian vortex considered by Shifman and Yung [45]. Thus even in the Omega deformed

background in the NS limit, the vortex configuration we are considering in this section

will remain 1/2-BPS.

Performing Bogomol’ny completion of the action (3.4.10) we get the following energy

density

L = 1
2g2

∣∣(Ba
3 )2 + g2(q̄τaq − Ξa)

∣∣2 + i
g2
|(∇1 + i∇2)φa − (Ω2 − iΩ1)Ba

3 |2

+ |(∇1 + i∇2)q|2 +N ξFIB
N
3 + 1

g2
∂m(Ωmφ̄a − Ω̄mφa)Ba

3 . (3.4.21)

Here we assumed that the adjoint scalar and gauge field are only aligned along the

Cartan subalgebra of the gauge Lie algebra. The last two terms in the second line of

the above expression are total derivatives, but due to a different reason: the former

is the Abelian field strength, which gives circulation of the gauge field after removing

one integration, the latter involves ∂ϕ derivative and is of the same kind as (3.2.16).

We can see that the Lagrangian (3.4.10) under the constraint (3.4.20) and color-flavor

locked condition q̄i = q̃i takes almost exactly the same form as for the undeformed

case considered by Shifman and Yung [45]. It means that the BPS construction for the

vortex will also be almost exactly the same. The only difference is that adjoint scalar φa

will have a nontrivial profile defined by the magnetic field and the Omega background.

The corresponding BPS equations read

Ba
3 + g2(q̄iτ

aqi − Ξa) = 0 ,

(∇1 + i∇2)qi = 0 ,

(∇1 + i∇2)φa − (Ω2 − iΩ1)Ba
3 = 0 , (3.4.22)

where, again as in (3.4.13), the color index a = 1, . . . , N2 runs through all U(N) gen-

erators. For convenience we can split up U(1) and SU(N) parts and rewrite the first

equation above using the definition of the generalized FI term (3.4.13)

B3 + g2(|q|2 − ξFI − ξNnFI) = 0 ,

Ba
3 + g2(q̄iτ

aqi − ξanFI) = 0 , (3.4.23)



66

where we have denoted

ξanFI = i
g2
∇αα̇(Ω̄αα̇φa − Ωαα̇φ̄a) = 1

g2
∂ϕ(ε̄φa + εφ̄a) , a = 1, . . . , N , (3.4.24)

the non-Abeilan FI field. In its absence equations (3.4.23) and second equation in

(3.4.22) exactly reproduce the BPS set considered in [45]; hence the solutions for the

profile functions can be extracted from there directly. Thus the modification to the BPS

vortex equations in the Omega background consist of introducing ξanFI (which for some

configurations can vanish) and the nontrivial profile for the adjoint scalar dictated by

the third equation in (3.4.22).

Asymptotic behavior of solutions. Let us for the moment assume that φa is in-

variant under rotations around the z-axis, in other words ξanFI vanishes. From the

analysis of the previous section we conclude that it happens when φ does not depend

on the azimuthal angle ϕ. Then, we know the solution for the magnetic field in all

color directions, since it is exactly the same as in [45]. In particular, far away from the

vortex, the gauge field exhibits 1/ρ behavior. This makes the quantization condition

(3.4.20) physical and well defined. Indeed, it tells us that the adjoint scalar at large ρ

approaches its vacuum value

φavac = ma − ε(na + ka) , (3.4.25)

where ka is a ZN -valued vector of winding numbers of along the different Cartan color

directions. We still need to figure out what ka is in terms of na. The reasoning for

that comes from the following physical requirement – string tension (energy per unit

length) should be finite. Indeed as in the undeformed case, the conclusion comes from

the requirement that |∇mq|2 terms are finite.

+∞∫

0

dρ ρ |∇mqi|2 . (3.4.26)

This was archived by a proper asymptotic behavior of the azimuthal component of

gauge field Aϕ such that the integrand above could decay fast enough. Indeed, let’s say

q ∼ einϕq(ρ), thus the integral becomes

+∞∫

0

dρ
1

ρ
|(in− iAϕρ) qi|2 , (3.4.27)
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so Aϕ → n/ρ at large ρ. In other words, Aϕ should be proportional to the number of

flux quanta which flow through the vortex. So, given (3.4.25) we can easily figure out

that ka = −na and φ tends to its undeformed value ma at large radial distances. Thus

we conclude that the adjoint scalar interpolates between

φa = ma − naε (3.4.28)

at ρ = 0 and

φa = ma (3.4.29)

at ρ =∞, see Fig. 3.3.
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Figure 3.3: Scalar field interpolating between two different minimum values of the potential

Now we understand why in the left hand side of (3.4.5) involves the difference of the

superpotential in two points – they are two different minima of the effective potential

for φ in four-dimensional theory, and the vortex can now be viewed as a kink which

interpolates between these minima! Evidently (3.4.5) is only applicable for nonzero ε.

Note that the superpotential in the left hand side of (3.4.5) is evaluated at values of φ

which are shifted by a unit of ε. As we shall explain below it happens because of an

additional U(1) twist of (anti)squark fields.

Let us mention that a completely different situation occurs if φ acquires nontrivial

topology in the spirit of the previous section. Then BPS equations (3.4.22) do not

decouple any longer. We expect a significant change in the asymptotic behavior of the

solutions in that case. Investigations in this direction will be reported elsewhere.
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3.4.3 Constructing non-Abelian vortices N < Nf ≤ 2N

Let us now address semilocal vortices [54]. In order to be more generic we shall keep

Ñ = Nf −N generic inside the conformal window. The vacuum condition is generalized

as follows

φ = m, qia =





√
ξFIδ

i
a , 1 < i < N

0 , i ≥ N ≥ 0 .
(3.4.30)

Symmetry breaking pattern is similar to (3.4.17), only there is a residual global sym-

metry left due to the additional quark fields

Gc+f = SU(N)c+f × SU(Ñ) . (3.4.31)

Most recent review of the semilocal vortex constructions can be found in [57]. The

structure of the BPS equations (3.4.22) will not change, only the flavor index will now

range i = 1, . . . , N+Ñ . On the level of the low energy effective action the vortex theory

will be modified by adding Ñ so-called size moduli. Kinetic terms of size moduli bring

logarithmic divergence to the energy density of the effective theory, therefore one has

to introduce an infrared cutoff.

Vortex moduli space. The moduli space of the simple vortex (when only one color-

flavor direction has a single winding, say qN ∼ eiϕ) is given by the quotient

M =
U(1)× SU(N)c+f
SU(N − 1)× U(1)

= U(1)× PN−1 , (3.4.32)

is the well know complex projective space coupled to translations in the 12 plane.

The situation becomes more complicated when multiple windings are allowed and in

more color directions. These issues have beed addressed in [104]. Generally speaking

the full metric on the moduli space is not known and is hard to compute. For the

current Chapter we shall leave this problem behind and dwell on more convenient GLSM

description of the effective 2d theory, which in turn was used in [83]. It is believed that

the UV description of such a sigma model (GLSM) is the U(K) gauge theory with K

given in (3.4.2). This can easily been concluded from the brane construction of [83] as

there are K D2 branes in total which coincide in 03 directions.
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The effective worldsheet theory and the 4d/2d correspondence. Once a BPS

string is identified, one can study effective dynamics on its worldsheet. It has now

become a standard lore, we refer the reader to [99] where this procedure is elaborated

in great details. Most importantly, the explicit derivation of the worldsheet effective

theory provides a proof of the 4d/2d correspondence first outlined in [33], in the class of

theories it was constructed, and enables us to match the parameters of the two theories.

Two dimensional degrees of freedom are constructed in [99] explicitly from the

solutions of vortex BPS equations. Fermions are added to the action by analyzing

zero modes, which are generated by nontrivial elements of SUSY algebra, in this case

Q11, Q22 and their conjugates. Such a prescription provided us with the full (2, 2)

supersymmetric worldsheet effective action of the sigma model.

Given a solution of the BPS equation, like (3.4.22), one can make a global rotation

using the isometry of the vortex moduli space. Each field present in the theory, say F

as an U(N) matrix transforms as

F 7→ U−1F U , (3.4.33)

where U ∈ Gc+f is an element of the isometry group. The 2d degrees of freedom we are

looking for are contained in the matrix U , a proper ansatz can help us to extract them

from it. For example, spatial components of the gauge field contributes with

(Am)ij = nian̄aj εmnx
mf(ρ) , m, n = 1, 2 , a = 1, . . . ,K , (3.4.34)

where f(ρ) is some yet to be determined profile function of the radial coordinate. In

order to study the dynamics on the string worldsheet matrices nia are promoted to

functions which depend on t, x3 and after plugging the above formula and other fields

of the theory in terms of nias and unknown profile functions into the four-dimensional

action one arrives to a two-dimensional U(K) theory as a functional of the new fields

n in (3.4.34). This procedure becomes quite elaborate for composite vortices, and a

more generic moduli matrix approach [105] is used. It allows to conveniently package

non-Abelian 2d fields in a moduli matrix and derive an effective 2d nonlinear sigma

model (NLSM). Calculations along these lines have been presented in many sources,

see [45] for review, for the latest complete calculations, which also applies to semilocal

vortices, see [57].
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We will not present the full derivation of the worldsheet effective theory, partly

because the derivation has already been done in [57], however for without adjoint matter.

Let us first assume that the rank of the gauge group (3.4.2) of the 2d theory is unity, so

no adjoint multiplet appears. Then [57] provides a complete derivation of the worldsheet

effective theory.

According to the 4d/2d duality quark masses of the 4d theory are mapped onto the

twisted masses of the 2d theory. As we have already mentioned earlier, the authors of

[33] have a slightly different Higgs branch condition than (3.4.28). Instead they used

φa = ma − naε (recall that na = n̂a + 1) which differs from (3.4.28) by a shift of φ

by one unit of ε. Relations (3.4.28) and (3.4.29) are obtained when q and ¯̃q have the

same phase (3.4.14). However, this can be easily changed by choosing the phase ei5ϕ/2

for the squarks and eiϕ/2 for the antisquarks. Having done so we can see that (3.4.3)

formula is reproduced. From the field theory perspective the choice of phases seems

to be random, and by tuning the phases of the (anti)fundamental fields appropriately

one could change the Higgs branch condition. This, in turn, fixes the relationship

between the 4d masses and 2d twisted masses. However, in the exact computations

of [83, 100] involving Nekrasov partition function all pieces of data are important and

the correspondence only takes place provided that all (3.4.1),(3.4.2),(3.4.3),(3.4.4) are

satisfied. Therefore the instanton calculation only picks a single representative out of

the continuous family of parameters. A better understanding of this fact is certainly

necessary.

Now let us look at higher ranks of the 2d theory’s gauge group, so more than one

na’s are turned on. As me mentioned earlier, it leads to having an adjoint field in the 2d

Lagrangian. However, unless special efforts are taken, this field appears to be massless

as no mass term appears from the flavor part of the action. The new ingredient of

the theory in the Omega background is that the four-dimensional adjoint scalar is no

longer frozen to its VEV, but represents a nontrivial background, and its fluctuations

do contribute to the effective action. Indeed, |∇mφ − Ω̄nFmn|2 in (3.4.10) provides

some new data to the 2d theory. Fluctuations of φ and Am will combine together to

produce kinetic and massive terms. We refer the reader to [57] and its appendices,

where the calculations we are discussing are reported in great details. We can merely

take their calculations and generalize to non-Abelian matter content nia. Thus when
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ε deformation is turned off, and only F 2
mn and squark terms are present, no explicit

mass term is generated. However, in the deformed version of the theory the cross term

in |∇mφ − Ω̄nFmn|2 sources it. One can further speculate that the mass of n field

is proportional to ε. The exact proportionality coefficient can be computed from the

normalization integral, after the integrating along the transversal plane. We refrain

from doing it here leaving it to further contributions, which could be done with more

effective methods, like moduli matrix.

GLSM description. As usual, a GLSM description of the theory is more effective

for computations. The 2d theory which is dual to the 4d SQCD in the NS Omega

background with Nf = N + Ñ quarks is given by the following Lagrangian provided

that (3.4.1)-(3.4.4) hold

L = Tr

[∫
d4θ

(
1

2e2
|Σ|2 + Φ̄ eV Φ e−V

)
+

∫
d2θ̃ (τΣ +H.c.)

]

+

∫
d4θ




N∑

i=1

X̄ie
V Xi +

Ñ∑

i=1

Ȳie
−V Y i


 , (3.4.35)

where the trace is taken over the adjoint representation of U(K) gauge group, Φ is

adjoint chiral multiplet, and Σ is field strength for 2d vector superfield V . The second

line in the above Lagrangian represents the twisted F-terms of the theory. There are

N+Ñ+1 twisted mass parameters turned on including N+Ñ masses for X and Y fields

together with the twisted mass for the adjoint scalar Φ, which according to [83, 100]

equals to ε. In the limit e → ∞ the gauge field becomes non dynamical, and we can

integrate it out. In this limit we can recover the geometry of the NLSM’s target space,

which naturally appears in the derivation of the low energy theory.

In order to get the effective twisted superpotential in the right hand side of (3.4.5)

we need to integrate out X’s, Y ’s and Φ’s in (3.4.35). When Nf = 2Nc the theory is

superconformal, the coupling does not run and no dynamical scale is generated.

W̃2d
eff (λ) = ε

K∑

a=1

N∑

i=1

f

(
λa −Mi

ε

)
− ε

K∑

a=1

N∑

i=1

f

(
λa − M̃i

ε

)

+ ε

K∑

a,b=1

f

(
λa − λb − ε

ε

)
+ 2πiτ̂

K∑

a=1

λa , (3.4.36)
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where f(x) = x(log x− 1). Note the change of the coupling constant to τ̂ compared to

(3.4.35). Minimizing the above superpotential we arrive to the ground state equations

N∏

l=1

λj −Ml

λj − M̃l

= e2πiτ̂
K∏

k 6=j

λj − λk − ε
λj − λk + ε

, (3.4.37)

which coincide with Bethe ansatz equations for the twisted anisotropic Heisenberg

SL(2,R) magnet. This observation quantifies the so-called Bethe/gauge correspondence

for the N = 2 SQCD.

Theories with Ñ < N can be obtained from the conformal theory by sending some

masses to infinity and renormalizing the coupling constant. Dynamically generated scale

ΛQCD will then appear.

A note on the N = 2∗ theory. Recently a similar to DHL and CDHL study of the

N = 2∗ theory in five dimensions appeared in the literature [106], and a duality with a

three dimensional integrable system was discussed. Although the calculations involving

the Nekrasov partition function look very similar to [83, 100], there is a technical dif-

ference: the Higgs branch condition of the 5d theory looks similar to (3.4.1), however,

there is no shift by N in the rank of the 3d gauge group like in (3.4.2). Clearly, is

occurs because fundamental matter in [83, 100] and adjoint matter in [106] contribute

differently to the Nekrasov partition function; nevertheless physical understanding of

the second duality remains to be uncovered. Since there are no BPS vortices in N = 2∗

theory, one cannot apply the method we used in the current section.

3.5 Brane Constructions and Dualities in Integrable Sys-

tems

Solutions to the Bethe ansatz equations mentioned above correspond to the ground

states in the world volume theory on the non-abelian strings realized as D2 branes, hence

it is desirable to translate the full powerful machinery of the integrable systems into the

brane language. In this section we focus on the particular issue namely the realization

of known dualities between quantum integrable systems using brane language.

We shall first review the Hanany-Witten type IIA brane construction which yields

the N = 2 SQCD and integrable systems related to it – the XXX spin chain and
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Gaudin model together with the dualities these models are involved in. Employing

the Gaudin/XXX duality we will be able to give a vortex interpretation of the AGT

duality in the next section, where the XXX model appears on the N = 2 theory side

and the Gaudin model naturally arises in study of Liouville CFT. Here we shall make

some preparations to that study. In addition to that the Gaudin/XXX duality will be

examined by studying the simplest examples of Argyres-Douglas type points and wall

crossing phenomena in presence of the Omega background. At the end we shall discuss

yet another duality between spin chains and Calogero-Moser systems.

3.5.1 Dualities from the Hanany-Witten brane construction

Brane configuration for the N = 2 SQCD employs the Hanany-Witten construction

[60]. As it was shown in[83] and further explained here in Sec. 3.4, in presence of Omega

background the Higgs branch condition gets deformed (3.4.1). Hence the positions of

the flavor D4 branes are shifted by naε for each color (see bottom picture in Fig. 3.4, 3.5).

It contains two NS5, N D4 branes which are stretched between the two NS5 branes and

two sets of semi infinite D4’s which are attached to these NS5’s. All D4 branes occupy

01236 directions, NS5’s lie in 012345 directions.

0 1 2 3 4 5 6 7 8 9

NS5 x x x x x x

D4 x x x x x

D2 x x x

Under geometric transition the brane configuration described in [83, 100] interpolate

between the 4d theory and the 2d theory. The latter can be obtained by moving the

right NS5 brane in the 7th direction and emerging D2 branes (037) which are stretched

between this NS5 and D4’s (see Fig. 3.5). The value of x7 gives tension of D2 strings

which is equal to ε in our construction.

The rank of the gauge group of the two-dimensional GLSM is given by summing up

all the D2 branes K =
∑

i n̂i, where, we remind, n̂i = ni− 1. The low energy dynamics

of the two-dimensional theory is given by the effective twisted superpotential and the
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m1 � n1✏

m2 � n2✏

mN � nN ✏

em1

em2

emN

m1

m2

mN

Figure 3.4: Type IIA brane picture. Positions of semi infinite D4 branes in 45 plane is given by
mi − niε, where i = 1, . . . , N . In the deformed configuration the Higgs phase of the theory is
given by the condition ai = mi − niε.

following ground state equations

N∏

l=1

λj −Ml

λj − M̃l

= q

K∏

k 6=j

λj − λk − ε
λj − λk + ε

, (3.5.1)

which is the Bethe ansatz equations for the anisotropic SL(2) spin chain. Note that

for generic 2d masses Ma and M̃a at each spins at each site a = 1, . . . , N have different

representations. Indeed, in order to match each term in the left hand side of (3.5.1)

with phases of anisotropic chain

N∏

l=1

λi − θa + Saε

λi − θa − Saε
, (3.5.2)
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n̂1

n̂2

n̂N

D2

em1

em2

emN

Figure 3.5: Vortex strings as D2 branes stretched in the 7th direction.

where νa are anisotropies and Sa are spins5 , one identifies [81]

Ma = θa − Saε , M̃a = θa + Saε . (3.5.3)

3.5.2 The Gaudin/XXX duality

It is known that the Gaudin model [107] enjoys several dualities.6 First we recall the

duality introduced at the classical level in [108]. It relates the rational Gaudin model

with SL(N) group at M sites and SL(M) group at N sites. The positions of marked

points zi on the sphere corresponding to the inhomogenities and the diagonal element

5 For example, Sa = −1/2 gives the SL(2) chain
6 Some details about the Gaudin model are given in App. C.1.
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of the twist matrix get interchanged. At the classical level the spectral curves and the

action differentials are equivalent. At the quantum level the Bethe ansatz equations

reflect this symmetry at the level of spectra.

Let us explain this symmetry in the brane picture. Let us first remind ourselves the

similar symmetry in the Toda system discussed in [80]. It the Toda case this symmetry

merely implies the equivalence of 2× 2 and N ×N Lax operator representations which

can be explained as the 90 degrees rotation of the viewpoint of the brane picture. In

the first representation the gauge group is connected to NS5 branes, while in the second

case it is defined by the number of D4 branes in the IIA picture.

If we add the fundamental matter and consider the conformal case there are addi-

tional data which have to be matched via the duality. In the 2 × 2 representation the

SL(2) twist matrix emerges which reflects the positions of NS5 branes in the 6-10 plane

Fig. 3.6.

NS5

NS5

1
1

q

0
K D20s

2 D40s2 D40s 2 D40s

Figure 3.6: (6 + i10, 7) section of the HW brane construction (view from “below”).

The masses of the fundamentals provide the inhomogenities at the corresponding

lattice sites. Upon the 90 degrees rotation similar to the Toda case the two sets of data

get interchanged.

The duality between a pair of rational Gaudin models can be generalized to a similar

duality between a trigonometric Gaudin model and a XXX spin chain via the so-called
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gl(M)/gl(N) duality [109]. For M = N = 2 Bethe ansatz equations read as follows7

M1 −M2 − ε
ti

+

2∑

b=1

νbε

ti − zb
−

κ2∑

j=1
j 6=i

2ε

ti − tj
= 0, i = 1, . . . , κ2 , (3.5.4)

for trigonometric Gaudin, and

2∏

a=1

λi +Ma

λi +Ma + κaε
=
z2

z1

ν2∏

j=1
j 6=i

λi − λj − ε
λi − λj + ε

, i = 1, . . . , ν2 , (3.5.5)

for the SL(2) XXX chain. The Mukhin-Tarasov-Varchenko (MTV) duality [109] states

that (3.5.4) as set of equations with respect to t1, . . . tκ2 has isomorphic space of orbits

of solutions with the one of (3.5.5) as set w.r.t. λ1, . . . , λν2 provided that

κ2 + κ2 = ν1 + ν2 . (3.5.6)

Parameters M1,2 and z1,2 are generic. We can now recognize (3.5.1) in (3.5.5) with

Ma = −Ma, M̃a = −Ma − κaε, K = ν2, N = 2, z1 = 1, z2 = q , (3.5.7)

and parameters κ1,2 and ν1 will be specified later. Also it will be more useful for us

to use the 4d masses instead of the 2d ones. We can then rewrite set of MTV dual

equations (3.5.4), (3.5.5) as follows

−m1 +m2 − ε
ti

+
ν1ε

ti − z1
+

Kε

ti − z2
=

κ2∑

j=1
j 6=i

2ε

ti − tj
,

2∏

a=1

λi −ma + 3
2ε

λi − m̃a − 1
2ε

=
z2

z1

K∏

j=1
j 6=i

λi − λj − ε
λi − λj + ε

. (3.5.8)

Thus we can see that twists z1, z2, corresponding to the positions of the NS5 branes in

6-10 plane Fig. 3.6, and masses of the fundamentals m1,m2 interchange their roles upon

the duality. We see that matching to the BAE corresponding to U(2), Nf = 4 SQCD

shows that the strange nonequal mass shifts to the fundamentals and antifundamentals

(3.4.3) have now clear interpretation within the duality. Namely, the number of the

7 We have adopted the notation and made some change of variable compared to [109].
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Gaudin Bethe roots yields the asymmetry between the fundamental and antifundamen-

tal masses. Also Gaudin spins match with the number of Bethe roots at the XXX side.

Later in the next section we shall use these spins in order to make the AGT duality

manifest.

Let us emphasize that the Hamiltonian of the Gaudin model is nothing but the r.h.s.

of the Knizhnik-Zamolodchikov (KZ) equation [110] on the sphere with L + 3 marked

points zi [111]

b2
dΨ(zi)

dzi
= HGaudΨ(zi) , i = 1, . . . , L , (3.5.9)

where b is some constant. In the next section, when we will discuss Liouville theory on

the same Riemann surface, we shall specify its value.

One could also introduce the so called dynamical operators with respect to boundary

conditions [109]. Under the bispectral duality transformations the Gaudin KZ operator

and the dynamical operators get interchanged as well. The number of marked points in

the N ×N representation of the Lax operator corresponds to the number of NS5 branes

involved in the gauge theory brane construction.

3.5.3 Bispectral duality and Argyres-Douglas points

Classically, the bispectral duality just states that two systems have almost the same

(differ by the simple factor) spectral curves and action differentials. At the quantum

level the situation is more subtle. Since naively the bispectral duality connects the

systems with different degrees of freedom, one should be able to analyze the phenomena

of merging of two degrees of freedom into the single one. Below the simplest example

shall be considered.

Let us now consider (3.5.4) again, this time we identifyM1 = −M2 = lε. Then one

has
2l − 1

ti
+

ν1

ti − z1
+

ν2

ti − z2
−

κ2∑

b=1
b 6=a

2

ti − tj
= 0, i = 1, . . . , κ2, (3.5.10)

for the Gaudin model and

sa − l − ε
sa − l − ε− κ1ε

sa + l − ε
sa + l − ε− κ2

z1

z2

ν2∏

b=1
b6=a

sa − sb − ε
sa − sb + ε

= 1, a = 1, . . . , ν2 (3.5.11)
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for the XXX model. Integers κa, νa satisfy the relation κ1 + κ2 = ν1 + ν2. One of

the results in [109] is the precise correspondence of the orbits of solutions to the Bethe

equations under the group of permutations of variables (permutations of t1, ..., tκ2 for the

Gaudin model and of s1, ..., sν2 for the XXX model). At first glance such correspondence

seems to be quite weak as it does not establish a direct connection between the roots of

both systems and does not allow one to simplify one set of equations having known the

solution of the other. But it preserves one important feature of the XXX model, namely

the degeneration locus which could be called a little bit loosely “quantum Argyres-

Douglas (AD) points” [112].

The “classical” Argyres-Douglas manifold is the locus in the moduli space of the

theory where different vacua merge together. In the “quantum” case we have one more

parameter from Omega deformation ε and the AD manifold involves this additional

coordinate in the parameter space. The rest is the same and AD manifold corresponds

to the coalessing vacua. In this subsection we shall normalize ε = 1.

Since the solution to the BA equation correspond to the vacuum state “quantum”

AD point corresponds to the appearance of multiple roots. We shall consider a simple

case κ1 = ν2 = 2, κ2 = ν1 = 1 as an example and find the AD manifolds for both

models. Bethe ansatz equations the XXX chain (3.5.11) then read

s1 − l − 1

s1 − l − 3

s1 + l − 1

s1 + l − 2

s1 − s2 − 1

s1 − s2 + 1
= q ,

s2 − l − 1

s2 − l − 3

s2 + l − 1

s2 + l − 2

s2 − s1 − 1

s2 − s1 + 1
= q , (3.5.12)

and the Gaudin system is described by a single Bethe equation. In general, the XXX

BAE contain a number of degenerate solutions, such that for some i, j the roots coincide

si = sj . The vacua of the theory correspond to the non-degenerate solutions of the

system [83]. Obviously every solution to the degenerate system is a solution to the full

BAE system. This property can be used to lower the degree of the Bethe equations. In

our case the degenerate solution is s1 = s2 = s, so from (3.5.12) we obtain

s− l − 1

s− l − 3

s+ l − 1

s+ l − 2
= −q. (3.5.13)

We can now solving the first equation of (3.5.12) with respect to s2 and substitute this

solution into the second equation to obtain a polynomial roots of which solve the XXX
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BAE system. In order to eliminate the degenerate roots we merely need to divide this

polynomial by (3.5.13). To find the AD manifold we calculate the discriminant of the

reduced polynomial

D1(l, q) = 4(1− q)6q2
(
4l2q2 − 8l2q + 4l2 − 4lq + 4l + 8q + 1

)2
(
4l2q4 − 32l2q3 + 56l2q2 − 32l2q + 4l2 + 4lq4 − 36lq3

+ 28lq2 + 4lq + q4 − 18q3 + 17q2 − 8q
)
. (3.5.14)

However, the set D1 = 0 still contains extra roots. Although the equation was divided

by the degenerate one, the discriminant still captures the cases when the roots of the

reduced system coincide with the roots of the degenerate system. In order to exclude

such cases discriminant D1 (3.5.14) must be divided by the resultant of the reduced and

degenerate polynomials. This resultant turns out to be precisely the polynomial in the

last parentheses in (3.5.14). Thus the resulting AD set is described by the zero locus of

the following polynomial (we do not discuss trivial cases when q = 0 and q = 1)

D(l, q) = 4l2q2 − 8l2q + 4l2 − 4lq + 4l + 8q + 1 , (3.5.15)

which is precisely the discriminant of the Gaudin equation written in a polynomial form!

The above example describes the way to calculate the quantum AD set for the

XXX BAE. First, we identify the degenerate subset and divide all equations by the

corresponding polynomials. Then we find the discriminant of the reduced polynomial

and divide it by all possible resultants with the degenerate polynomials. The same

procedure can be done for the Gaudin system. The resulting polynomial describes the

set of the quantum AD points and coincides for XXX and Gaudin systems. Certainly

we have considered the simplest example and this issue deserves a separate study.

3.5.4 Walls of marginal stability

One more issue we shall briefly discuss concerns the interpretation of the walls of

marginal stability in the Omega deformed theory in the language of the quantum in-

tegrable system. The wall can be described in terms of the superpotential however

the Yang-Yang function in the quantum integrable system has the interpretation of the

twisted superpotential as well. Hence we could formulate the problem of finding the
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walls of marginal stability in terms of the YY function for the spin chain or Bethe ansatz

equations.

The ε-deformed theory has exact effective twisted superpotential (3.4.36). XXX

Bethe ansatz equations (3.4.37) specify the positions of the vacua. Kinks in the two-

dimensional theory which interpolate between these vacua possess two kinds of charges:

Noether charges Ml, M̃l or 2d twisted masses (3.5.3) and the topological charges which

are given by the difference of the vacuum values of the superpotential (3.4.36) evaluated

at the vacua the kink is hopping between. A wall of marginal stability is the solution

to the following kinematical condition of the decay of the kink into its constituents

Im
Ztop

ZNöther
=
W̃(λ

(1)
vac)− W̃(λ

(2)
vac)

M1 −M2
= 0 . (3.5.16)

We follow the procedure described in [113, 114]. The idea of the analysis is that the

vacua and the vacuum values of the superpotential should be continuous functions of all

parameters across the wall of marginal stability. We investigate the system depending

on a single complex parameter θ and make all the deformation parameters to be equally

spaced on a circle

θl = θ exp

(
2πil

N

)
, (3.5.17)

where θl are the spin chain impurities and contribute to 2d masses (3.5.3). Note that

the above ZL choice of θ’s is a simplification as it certainly cannot be done for generic

masses. However, as it argued in [113, 114], it is generic enough for the study of wall

crossing phenomena in 2d.

We can now interpret the vacuum solutions to the BAE equations
{
λ

(i)
vac

∣∣∣
θ

}
not

as separate functions, but rather as branches of some continuous function λvac(θ) on

the complex plane. The number of branches ` is of course finite and coincide with the

degree of the BAE system as a system of polynomial equations. The superpotential is

the continuous function depending on λvac(θ). It has infinitely many branches but the

sequence of branches has a certain periodicity of order `.

The supersymmetric PN−1 theory considered in [113, 114, 115] has infinitely many

walls of marginal stability. The vacuum as the function of the twisted mass parameter

M0

Ml = M0 exp

(
2πil

N

)
(3.5.18)
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has N branches and the branches of the superpotential differ by the quantity propor-

tional to m0

W̃(n)
vac(M0) = exp

(
2πin

N

)(
W̃(0)
vac(M0)− 2πinM0

)
. (3.5.19)

The condition for the kink interpolating between nth and (n+1)st vacua to merge with

a state of Nöther charge ml −m0 on the wall of marginal stability reads

Re

(
W̃(0)
vac

Ml
− 2πin exp

(
2πi
N

)

exp
(

2πil
N

)
− 1

)
= 0 . (3.5.20)

The above equation describes N walls which are roughly logarithmic spirals with in-

finitely many branches.

In the case of the Omega deformed theory the situation changes a little bit. In order

to depict the walls of marginal stability graphically in general case, one needs to solve

the system of BAE. We take the case N = 3, K = 1 in (3.5.1) as the simplest example.

The BAE system is
(λ+ Sε)3 − θ3

(λ− Sε)3 − θ3
= q. (3.5.21)

The solution has three branches. The difference between nth and (n+ 3)rd branches of

the superpotential equals 4πi. The walls of marginal stability are depicted in Fig. 3.7.

In the limit ε → 0 the XXX system passes into the Gaudin system. The walls of

marginal stability can be plotted for the Gaudin superpotential too. They possess the

main features of the walls of marginal stability for the XXX system. The superpotential

(3.4.36) at small ε becomes

W̃Gaudin(λj) = G

K∑

j=1

λj − 2

K∑

j=1

N∑

l=1

sl log (λj − θl)−
N∑

j 6=k
log (λj − λk) , (3.5.22)

where G is external field. In the case N = 3, K = 1 the solution to the corresponding

Gaudin equation has three branches. The difference between nth and (n+3)rd branches

of the superpotential remains 4πi as in the XXX case. The corresponding walls of

marginal stability are drawn in Fig. 3.8.

3.5.5 On the spin chain/Calogero duality

One may wonder if the bispectral duality between two different types of the spin chains

has any relation to a similar duality discussed in the context of the Calogero–Ruijsenaars
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The condition for the kink interpolating between nth and (n + 1)st vacua to merge with a
state of Nöther charge ml � m0 on the wall of marginal stability reads

Re

 
fW (0)

vac

Ml

� 2⇡in exp
�

2⇡i
N

�

exp
�

2⇡il
N

�
� 1

!
= 0 . (5.20)

The above equation describes N walls which are roughly logarithmic spirals with infinitely
many branches.

In the case of the Omega deformed theory the situation changes a little bit. In order
to depict the walls of marginal stability graphically in general case, one needs to solve the
system of BAE. We take the case N = 3, K = 1 in (5.1) as the simplest example. The BAE
system is

(�+ S✏)3 � ✓3

(�� S✏)3 � ✓3
= q. (5.21)

The solution has three branches. The di↵erence between nth and (n + 3)rd branches of the
superpotential equals 4⇡i. The walls of marginal stability are depicted in Fig. 6. In the limit

-4
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(✓

3
)

Re(✓3)

Figure 6: The walls of marginal stability for the XXX superpotential on the ✓3 plane. The param-
eters are: q = �1, S = 1

2 , ✏ = 1. The AD point is at ✓3 = i
4 .

✏ ! 0 the XXX system passes into the Gaudin system. The walls of marginal stability can
be plotted for the Gaudin superpotential too. They possess the main features of the walls
of marginal stability for the XXX system. The superpotential (4.33) at small ✏ becomes

fWGaudin(�j) = G

KX

j=1

�j � 2
KX

j=1

NX

l=1

sl log (�j � ✓l) �
NX

j 6=k

log (�j � �k) , (5.22)

30

Figure 3.7: The walls of marginal stability for the XXX superpotential on the θ3 plane. The
parameters are: q = −1, S = 1

2 , ε = 1. The AD point is at θ3 = i
4 .

family of the integrable systems. The answer turns out to be positive. The prototype

of this duality has been discovered in [116], where the correspondence between the zero

locus of the Toda Hamiltonians in the phase space and the manifold associated with the

quantum model has been discovered. This correspondence has been generalized for the

rational Calogero model [117, 118, 119] at fixed coupling which turns out to be dual in

the same sense to the rational Gaudin model [120].

The identification of the parameters goes as follows. The inhomogenities in the

Gaudin model zi are identified with the coordinates of Calogero model xi, while the

eigenvalues of the Gaudin Hamiltonians Hi are identified with the Calogero momenta.

The inhomogenities are Poisson dual to the positions of the marked points, hence their

identification with the Poisson pair in the Calogero model is natural. The duality above

can be extended from the zero locus at the Calogero side to the arbitrary values of the
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where G is external field. In the case N = 3, K = 1 the solution to the corresponding
Gaudin equation has three branches. The di↵erence between nth and (n + 3)rd branches of
the superpotential remains 4⇡i as in the XXX case. The corresponding walls of marginal
stability are drawn in Fig. 7.
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Figure 7: The walls of marginal stability for the Gaudin superpotential on the ✓3 plane. The
parameters are: G = 1, S = 1

2 . The AD point is at ✓3 = 4.

5.5 On the spin chain/Calogero duality

One may wonder if the bispectral duality between two di↵erent types of the spin chains
has any relation to a similar duality discussed in the context of the Calogero–Ruijsenaars
family of the integrable systems. The answer turns out to be positive. The prototype of this
duality has been discovered in [42], where the correspondence between the zero locus of the
Toda Hamiltonians in the phase space and the manifold associated with the quantum model
has been discovered. This correspondence has been generalized for the rational Calogero
model [43] at fixed coupling which turns out to be dual in the same sense to the rational
Gaudin model [44].

The identification of the parameters goes as follows. The inhomogenities in the Gaudin
model zi are identified with the coordinates of Calogero model xi, while the eigenvalues of the
Gaudin Hamiltonians Hi are identified with the Calogero momenta. The inhomogenities are
Poisson dual to the positions of the marked points, hence their identification with the Poisson
pair in the Calogero model is natural. The duality above can be extended from the zero locus
at the Calogero side to the arbitrary values of the classical Calogero Hamiltonians [45]

HCal,k = �k(�) , (5.23)

31

Figure 3.8: The walls of marginal stability for the Gaudin superpotential on the θ3 plane. The
parameters are: G = 1, S = 1

2 . The AD point is at θ3 = 4.

classical Calogero Hamiltonians [121]

HCal,k = σk(λ) , (3.5.23)

where σk is the k-th symmetric power of the Lax connection eigenvalues. It turns out

that the Lax eigenvalues at the Calogero side are mapped onto the eigenvalues of the

twist matrix at the spin chain side.

As we have discussed above the rational Gaudin model enjoys the marked points/twist

duality and in some sense is selfdual. Its bispectral dual – the rational Calogero model

is selfdual as well in the same sense. The bispectral duality can be generalized to

the trigonometric and relativistic cases [122, 123, 124, 125]. Thus the trigonometric

Calogero-Moser model is known to be dual to the rational Ruijsenaars-Schneider model

[126, 124].8 .The quantum version of this duality has been elaborated in [131]. Recall

8 See also [127, 128, 129, 130]
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that in Sec. 3.5.2 we discussed another bispectrally dual pair between the trigonomet-

ric Gaudin and the XXX models [132]. We can now see that the bispectrality at the

Calogero–Ruijsenaars side matches perfectly with the duality at the Gaudin–XXX side.

Note that this duality has the clear interpretation in terms of the Chern-Simons the-

ory with inserted Wilson lines and its Yang-Mills degenerations [133]. The relationship

between the two dualities is summarized in Fig. 3.9

Rational
Ruijsenaars-

Schneider model

Trigonometric 
Calogero-Moser   

model

Trigonometric 
Gaudin  model

Twisted anisotropic    
XXX chain

MTV

bispectral
duality

bispectral
duality

Figure 3.9: A pair of bispectral dualities mapped onto each other

It would be interesting to make the next step and consider the selfdual trigonometric

Ruijsenaars model at the Calogero side of the correspondence. Its dual on the spin

chain side is expected to be the XXZ chain which, according to the correspondence

considered above, should enjoy some kind of bispectral selfduality. Another important

issue concerns the generalization of these dualities to the elliptic integrable models. Not

much is known about the self-dual elliptic model yet (see, however, [133, 134, 84, 135,

136])

3.6 The AGT Correspondence in the NS Limit

The Alday-Gaiotto-Tachikawa duality [87] relates a conformal block of the Liouville

CFT on a Riemann surface of genus g and n punctures with the instanton part of

the Nekrasov partition function of a quiver gauge theory naturally associated with this

Riemann surface. Furthermore it concludes that the n-point correlator in the Liouville
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theory on this Riemann surface can be evaluated as an integral of the square of the

absolute value of the full Nekrasov partition function.

Having done the above analysis on spectral duality between integrable systems, we

arrive at an interesting observation which envisages the AGT correspondence for the

Liouville theory with large central charge on S2 with four punctures and U(2) SQCD

with four flavors. It has already been addressed in the literature earlier [137] where

a Liouville conformal block at large c simply becomes a hypergeometric function of

the conformal dimensions and the instanton number [138] was used. Then the authors

figured out that only chiral terms in the Nekrasov partition function will contribute,

either ε1 or ε2 have to vanishes; it enabled them to identify each multi-instanton con-

tribution with corresponding terms of the hypergeometric function’s expansion. The

proof is rather formal and it will be desirable to have a more physical rationale to it.

The current section is intended to fulfill this goal.

In order to see how the AGT relation comes about, in what follows we shall relate

both the gauge theory and the Liouville theory to a pair of integrable systems which

enjoy a certain duality between them. The roadmap we shall use to guide us through

this section is presented in Fig. 3.10.

Starting from the 4d gauge theory on the top right of Fig. 3.10 we shall use the

results of Sec. 3.4 and [100] in order to relate the 4d theory with the corresponding

2d GLSM. As it was shown in [100], the equivalence was established to all orders in

the instanton parameter. Thus, instead of working with each summand of the instanton

partition function, as all known proofs of the AGT [137, 139, 140] did so far, we shall look

at the entire expression and the effective twisted superpotential (3.1.1) which follows

from it. Following this line of thought we provide a physical rationale for the AGT

correspondence in the NS limit, namely, modulo certain dualities between two given

integrable systems, it is reduced to the 4d/2d duality in the NS limit [100]. The latter

exists due to non-Abelian semilocal BPS vortices which we have discussed in Sec. 3.4,

also vortices exist provided that the corresponding FI parameter is turned on, hence we

uncover why an extra U(1) factor on the gauge theory side is important.

The quantum duality, together with its brane interpretation, was discussed earlier in

Sec. 3.5.2. Now we shall start with the left column of Fig. 3.10 by reminding ourselves

how the Gaudin model is related to Liouville conformal blocks, and later on, by means
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on     with singularities 
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model with singularities 
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eq with Gaudin
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Figure 3.10: Roadmap of the AGT duality in the NS limit. The main statement (top horizontal
line) is obtained by the chain of dualities between various integrable systems.

of the bispectral duality, we shall connect the story to the Heisenberg SL(2) chain and

to the 4d gauge theory.9

3.6.1 Liouville theory and rational Gaudin model

Recall that the Liouville theory has central charge

c = 1 + 6Q2 , Q = b+
1

b
, (3.6.1)

and in the classical limit b → ∞ so Q → ∞ as well. Let us now consider a conformal

block F µ0 µ1
α0 α α1(q) of the Virasoro algebra with central charge c → ∞ with the four

9 Some remarks on the role of bispectral duality between the trigonometric Gaudin model and the
XXX chain on the classical level can be found in [141, 142]
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primary operators of dimensions

∆1 = α0(Q−α0) , ∆2 = µ0(Q−µ0) , ∆3 = µ1(Q−µ1) , ∆4 = α1(Q−α1) , (3.6.2)

inserted at points ∞, 1, q, 0 respectively on the S2 with an intermediate s-channel state

of dimension ∆ = α(Q− α). In the above formula

α0 = 1
2Q+ µ̃0 , α = 1

2Q+ a , α1 = 1
2Q+ µ̃1 , (3.6.3)

where a is the SU(2) Coulomb branch coordinate. In the above formulae the mass pa-

rameters represent the following linear combinations of the SQCD quark masses m1,2,3,4

µ0 = 1
2(m1 +m2), µ̃0 = 1

2(m1−m2), µ1 = 1
2(m3 +m4), µ̃1 = 1

2(m3−m4) . (3.6.4)

There is an obvious notational conflict with [87], where µ’s and m’s are interchanged

compared to our work. We had to switch the notations in order to be consistent with

Sec. 3.4, were m’s are used for the quark masses. As far as the rest of the notations

are concerned, they will be in agreement with [87]. Note that in Sec. 3.4 we treated

all the four flavors as fundamental hypermultiplets, however, in [87] as well as in [83]

two of them, with masses m3 and m4 are considered to be fundamental and two others,

with masses m1 and m2 to be antifundamental. For the purposes of Sec. 3.4 this

turned out to be a mild difference and we were able to relate the 4d and 2d theories by

studying the vortex effective theory. Also from the GLSM perspective it was natural to

distinguish fundamental and antifundamental fields. In this section we have to be more

careful about this issue as contributions from the fundamental and anti-fundamental

multiplets to the Nekrasov partition at finite ε are different.

Note that all conformal dimensions (3.6.2) diverge at least linearly with b, however,

as we shall later see, in order to match the Liouville CFT with the four-dimensional

theory in this limit, the dimensions will diverge quadratically and proper regularization

is needed. Teschner in [143] have identified effective twisted superpotential (3.1.1)10

with the NS limit of a Liouville conformal block on the sphere as well as the proper

regularization of the conformal dimensions. Conformal block Ψ(zi) as the function of

punctures’ locations was found to satisfy the KZ equation (3.5.9) for the dual WZNW

10 According to the NS dictionary this is also a Yang-Yang function
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model with level k and b2 = −(k + 2)−1

− 1

k + 2

dΨ(zi)

dzi
= HGaudΨ(zi) , i = 1, . . . , L , (3.6.5)

where HGaud is the Hamiltonian of the rational Gaudin model11 . Thus the large b limit

corresponds to taking k → −2. The conformal dimensions of chiral primary operators

get rescaled and become

δi = −∆i

b2
, (3.6.6)

as b → ∞ . For S2 with four punctures at ∞, 1, q and 0 respectively from (??) and

(3.6.17) we obtain

δ1 =

(
µ̃0

b
− 1

2

)(
µ̃0

b
+

1

2

)
,

δ2 =
(µ0

b
− 1
) µ0

b
,

δ3 =
(µ1

b
− 1
) µ1

b
,

δ4 =

(
µ̃1

b
− 1

2

)(
µ̃1

b
+

1

2

)
, (3.6.7)

as b→∞. Our next step is to allow the mass parameters µa and µ̃a scale with b upon

identification with the 4d theory.

Equivalently one can also probe Liouville conformal blocks with surface operator

insertions [32, 145], those conformal blocks satisfy Gaudin eigenvalue problem in the

NS limit12 .

3.6.2 N = 2 SQCD in the NS Omega background

On the 4d gauge theory side, we compute the Nekrasov partition function for the 4d

N = 2 SQCD with mass parameters µ0, µ̃0, µ1, µ̃1 whose instanton part is

Zinst(a, µ0, µ̃0, µ1, µ̃1) = (1− q)2µ0(Q−µ1)F µ0 µ1
α0 α α1

(q) , (3.6.8)

where α = 1
2Q − a and a is the SU(2) Coulomb modulus. For a generic Omega back-

ground the AGT dictionary says the deformation parameters are related to the 2d

11 See also [144]where the matrix model approach to Hitchin systems in connection with the Liouville
CFT was constructed.

12 See also [146]where a systematic study of 4d gauge theories with surface operators in Omega-
background was done.
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Liouville theory via

b2 =
ε1
ε2
, ~2 = ε1ε2 . (3.6.9)

The usual NS limit ε2 → 0 corresponds to b→∞ and ε1 is kept fixed, then the Liouville

theory becomes classical as ~ → 0.13 In this section, we will be rather interested in

the quantum regime of the Liouville theory so we shall allow ε1 → ∞ such that ~ is

kept fixed. It is clear that by a proper tuning of ε1 and ε2 one can obtain any desired

value of the Planck constant.

As we have already discussed above, in the NS limit a more appropriate object to

study is not the Nekrasov partition function but the effective twisted superpotential

(3.1.1). As it was shown in [83] that this superpotential also emerges from the (2, 2)

GLSM which we have described in Sec. 3.4.

The DHL paper has done a perturbative calculation in the instanton number q in

order to establish their 4d/2d duality (3.4.5) and the proof to all orders was further

established in [100]. CDHL showed that in the NS limit the Nekrasov partition function

can be represented as an integral over a finite set of variables and can be explicitly

evaluated, and the saddle point condition is shown to be equivalent to the Bethe ansatz

equations for the SL(2) XXX chain. One may ask immediately why the vortices are

relevant, indeed they only exist in a Higgs branch of the four-dimensional theory, whereas

the AGT statement relates Liouville momenta with Coulomb branch coordinates. In

order to understand this, let us recall that at zero value of the FI term the Higgs branch

touches the Coulomb branch, and as it was pointed out in [83], by making a proper

limit in the relation14

aa = m2+a − naε , a = 1, 2 , (3.6.10)

one may recover any point of the Coulomb branch of the U(2) SQCD. Indeed, as ε→ 0

the Higgs lattice becomes more and more dense filling the Coulomb branch in that

limit. However, for what we are doing here, the opposite ε→∞ limit is relevant, as it

is required by the connection to the Liouville theory. Still we want to be able to cover

any point on the Coulomb branch, so one has to scale the fundamental masses ma with ε

as well in order to keep combination (3.6.10) finite. So at any given Liouville momentum

we only need to sit at a certain point on a Coulomb branch and the Higgs branch root

13 Note that ~ is not a Planck constant per se, rather it signifies that Z ∼ e−H/~.
14 From now on we shall work with the U(2) SQCD with 4 flavors.
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has all information we need about that point. Recall that the anti-fundamental masses

and, correspondingly µ0 and µ̃0 are not affected by (3.6.10) and therefore do not scale

with ε.

We now make an observation that the ground state equations for the (2, 2) GLSM

(3.5.1) (or second equation in (3.5.8) where m̃1,2 are now denoted as m1,2 (antifunda-

mental) and m1,2 became m3,4 (fundamental) respectively15 .)

2∏

a=1

λi −m2+a + 3
2ε

λi −ma − 1
2ε

= q

K∏

j=1
j 6=i

λi − λj − ε
λi − λj + ε

, (3.6.11)

can be written as the second equation from the MTV dual pair (3.5.8). In order to see

this we need to employ (3.6.10) and substitute m3 and m4 into the numerators of the let

hand side of (3.6.11). Then we take the limit of large ε keeping in mind that rapidities

λi also scale with ε. Neither Coulomb moduli aa nor the antifundamental masses m1,2

enjoy this scaling, so they will drop out from the equations. We then arrive to (3.5.8)

where z2/z1 = q and

na = κa + 2 . (3.6.12)

3.6.3 The duality

Now let us start connecting the story with the Liouville. By means of the bispectral du-

ality these equations are mapped onto (3.5.4) yielding the trigonometric Gaudin model

from the Heisenberg chain. Note that (3.5.4) depends only on two points z1 and z2

corresponding to the locations of the NS5 branes in 6-10 plane in Fig. 3.4. However, the

Liouville conformal block depends on four operators sitting at ∞, 1, q, 0. Interestingly

we can mention that trigonometric Gaudin Bethe equations (3.5.4) when only z1 and

z2 punctures are involved can be treated as a rational sl(2) Gaudin Bethe equations on

S2 with all four punctures included. Indeed,

3∑

b=0

νbε

ti − zb
−

κ2∑

j=1
j 6=i

2ε

ti − tj
= 0 , (3.6.13)

15 The obvious notational conflict occurs here. In spite of this we still keep the notations of this
section and Sec. 3.4 as they are since both are natural in where they stand. We hope this issue will not
confuse the reader.
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where z0,1,2,3 = {∞, 1, q, 0}, is equivalent to (3.5.4) with

εν2 = K, εν3 = m3 −m4 − ε = 2µ̃1 − ε , (3.6.14)

being spins of the sl(2) representations sitting at points q and 0. Specification of ν0 is not

important, as the corresponding contribution drops out from the equation since z0 =∞.

Also, as we have already mentioned in (3.6.12) there is an exact matching between the

number of the Gaudin Bethe roots with the parameters na of the Higgs branch. In other

words, all sectors of the trigonometric Gaudin model Hilbert space parameterized by

number of Bethe roots (excitations over the Bethe vacuum), by means of the bispectral

duality, are mapped onto various points of the Higgs branch lattice {na} of the four-

dimensional theory. Finally, the value of ν1 can be found from (3.5.6) and (3.6.12). We

conclude that ν1 = −2, which formally corresponds to the spin −1 representation for

z1 = 1

Note that one should also take out the U(1) factor from the U(2) gauge group, as

it does not have an analogue in the Liouville theory. Imposing it on the U(2) Coulomb

moduli a1, a2 with the help of (3.6.10) we get

m3 +m4 − (n1 + n2)ε = 0 , (3.6.15)

or, using the Liouville mass parameters, one gets

µ1

ε
=
n1 + n2

2
. (3.6.16)

The U(1) condition balances the count of the parameters on both sides of the corre-

spondence as in order to match sl(2) spin at z4 = 0 we used only one antifundamental

mass parameter (which is related to the fundamental one).

Again, from the gauge theory perspective we are interested in keeping Coulomb

branch parameters in (3.6.10) finite while masses µ0 and µ1 and ε are sent to infinity.

The rescaled conformal dimensions (3.6.7) upon identification b = ε and by using (3.6.16)

therefore read

δ0 = −1

4
, δ1 = 0 , δ2 =

K

2

(
K

2
+ 1

)
, δ3 = γ0(γ0 + 1) , (3.6.17)

where

γ0 = − n̂1

2
+
n̂2

2
− 1

2
=
ν3

2
, (3.6.18)
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and we recall K = n̂1 + n̂2 is the number of the D2 branes stretched between the NS5

brane at z2 = q and the D4 branes. We can also see that in such limit the SU(2)

Coulomb coordinate and the anti-fundamental masses have dropped from the formulae.

In the last two terms of (3.6.17) we recognize sl(2) quadratic Casimir eigenvalues on

representations of spins 1
2K and ν3

2 respectively. We can see from (3.6.14) and (3.6.17)

that the matching occurs at these points. Vanishing eigenvalues δ1 confirms the fact

that ν1 = −2 corresponds to the spin −1 representation. Spin of the representation at

z0 =∞ is formally equal to −1
2 .

Here is the summary table of the correspondence between the objects we have dis-

cussed in this section in addition to the standard AGT dictionary

Liouville conformal block at b→∞ U(2) , Nf = 4 SQCD instanton

on S2 with four punctures partition function in the NS limit

Rational Gaudin model from KZ SL(2) spin chain from the ground state

equation on conformal blocks equation for the 2d GLSM dual to 4d theory

Punctures’ positions z2/z1 Instanton number q

sl(2) spin at z2 = q U(1) condition, number of D2 branes

emerging at NS5 brane at z2 = q

Conformal dimensions of chiral operators Quadratic sl(2) Casimir eigenvalues on

at points z2 = q, z3 = 0 spin 1
2 n̂1 + 1

2 n̂2 and

−1
2 n̂1 + 1

2 n̂2 − 1
2 representations

Gaudin Hilbert space sectors with Higgs branch lattice {na}
different number κa of Bethe roots

3.6.4 Generalization to SU(2) linear quivers

One can easily generalize the above construction to the Liouville theory on S2 with

L + 3 punctures. A natural quiver gauge theory associated to this Riemann surface

has L SU(2) gauge nodes with Coulomb moduli ai successively connected together.

Liouville conformal block of L+ 3 operators located at points

∞, 1, q1, q1q2, . . . , q1q2 . . . qL, 0 , (3.6.19)
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with the following scaling dimensions

α0(Q− α0) , µ0(Q− µ0) , . . . , mL(Q−mL) , αL+1(Q− αL+1) , (3.6.20)

respectively glued by operators of dimensions αi(Q−αi) in the intermediate s-channels.

NS limit of such quiver theory has been elaborated in [100]. Brane interpretation

of the bispectral duality is very useful in this case. The corresponding Hanany-Witten

picture view from “below” (in (6 + i10)− 7 space) is shown in Fig.3.11. Quiver

NS51
1

0

2 D40s 2 D40s 2 D40s 2 D40s2 D40s2 D40s

z1

z2
z3

zL

K1 D20s

K2 D20s
K3 D20s

KL D20s
NS5

NS5
NS5

NS5

Figure 3.11: (6 + i10) − 7 slice of the CDHL quiver construction. Vertical lines correspond to
stacks of D2 branes.

theories have bifundamental matter with masses µ
(p)
k , so the Higgs branch conditions

get changed

a(p)
a = m(p)

a + n(p)
a ε+

L∑

k=1

µ
(p)
k . (3.6.21)

Using the above relation we can express conformal dimensions (3.6.20) in terms of

Coulomb branch coordinates, quantization parameters and bifundamental masses. Per-

forming the rescaling analogous to (3.6.7) we conclude that operators located at

z1 = q1, z2 = q1q2, z3 = q1q2q3, . . . , zL = q1 . . . qL (3.6.22)

have dimensions
K1

2

(
K1

2
+ 1

)
, . . . ,

KL

2

(
KL

2
+ 1

)
, (3.6.23)

where Ki = n̂
(i)
1 + n̂

(i)
2 , i = 1, . . . , L, corresponding to the sl(2) Casimir eigenvalues on

representations of spins 1
2K1 . . . ,

1
2KL. Spins sitting at each point zi (multiplied by 2)
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correspond to the total number of D2 branes stretched between the i’th NS5 brane and

both D4 branes. Our construction has to be supplemented by L U(1) conditions similar

to (3.6.16) for each gauge group.

The full treatment of the AGT duality for linear quivers requires the construction

of the bispectral dual to the twisted anisotropic SL(L,R) chain, which emerges from it

[100]. We shall postpone this analysis for the future work.

3.7 Conclusions

In this Chapter we have investigated BPS solitons – strings, monopoles and domain walls

in N = 2 four-dimensional gauge theories in Omega background with the Nekrasov-

Shatashvili limit imposed. We derived the central charges for these solitons from the

supersymmetry algebra and observed that string and domain wall charges are propor-

tional to the external graviphoton field present in Omega background. At large values

of ε, string and domain wall tensions are large which makes semiclassical considerations

legitimate. Existence of a BPS string in pure SYM implies fractional windings for the

adjoint scalar and hence presence of a conical singularity. We have presented arguments

that its tension is nevertheless finite. Moreover we have argued that BPS monopoles

found in [86] are actually located on domain walls interpolating between two different

vacua of the theory. The next step along this road will be to analyze the complete set of

the moduli space of the corresponding solutions and worldvolume theories of BPS soli-

tons. Also one may expect more surprises in study of wall crossing phenomena for such

BPS objects. We postpone the discussion on these issues for a separate publication.

There is an interesting question regarding the behavior of solitonic BPS states at

small ε. In the pure SYM strings and domain walls become highly quantum objects

and could potentially condense. However it is not clear if such condensation of the

extended defects should be taken into account. In SQCD at large value of the FI term

in the large ε limit the standard nonabelian string is recovered. Note that small ε limit

corresponds to semiclassical regime from the integrability viewpoint, hence the potential

condensation of BPS solitons also deserves further investigation in the Hamilton-Jacobi

framework.

An interplay between quantum integrability and Omega deformed gauged theories
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allowed us to apply some known dualities in the integrable systems literature. Degrees

of freedom in an integrable systems are interpreted as coordinates of the corresponding

brane positions since all dualities can be reformulated in brane language. The integra-

bility being just the reflection of the symmetry of the brane geometry involved plays a

role of a consistency condition for the whole construction. We have shown that different

dualities connecting Gaudin, XXX and Calogero type models can be explained in terms

of brane geometry both at classical and at quantum levels.

As a byproduct of the vortex construction and the dualities between integrable sys-

tems we were able to reconstruct the AGT correspondence in the NS limit. The Liouville

CFT has infinite central charge and all scaling dimensions needed to be regularized. In

this Chapter we discussed the Liouville theory on S2 with L+ 3 punctures, which was

shown to be dual to linear quiver gauge theories with corresponding matter content.

Our construction certainly has to be extended to other known AGT dual pairs, e.g. a

torus with multiple punctures, etc.

There are many questions which certainly deserve additional study. Surely, more

complicated defects involving strings, domain walls and monopoles have to be explored.

It would be interesting to investigate similar defects in five and six dimensions and with

the complete Omega deformation beyond the NS limit.



Chapter 4

Heterotic Sigma Models

4.1 Introduction

For many years two-dimensional CPN−1 sigma-models have been providing extremely

useful insights into physics of four-dimensional non-Abelian gauge theories. One of

the most important features the two types of theories share is the non-perturbative

generation of a mass gap [58, 63]. The connection has been tightened up thanks to

recent results in gauge theories with extended supersymmetry. First it has been proven

that the N = (2, 2) extension of the two-dimensional CPN−1 sigma-model has the same

spectrum of massive BPS states as the N = 2 four-dimensional SU(N) gauge theory

with N hypermultiplets, provided that the parameters of the two theories are identified

in a proper way [40, 33]. Remarkably, the correspondence holds at both the classical and

quantum levels. The physical reason behind that was unclear until it was realized that

the correct two-dimensional model arises naturally as an effective theory on string-like

solitons existing in the four-dimensional bulk theory. The key point was the discovery

of non-Abelian vortices [44, 43, 147, 148], which posses internal degrees of freedom with

non-trivial dynamics. The fluctuations of the fields around the vortex configuration can

be thought of as the original particles confined to the world-sheet of the vortex, due to

the Higgs screening [35, 34].

In an attempt to further study the relationship between the theories (in a set-up

which may be closer to the real QCD) one introduces mass terms which decouple the

adjoint scalar fields [149] present in N = 2 theories. Having done that, one breaks

97



98

supersymmetry down to N = 1. SUSY breaking terms correspond to a very interesting

deformation of the vortex world-sheet theory which gives rise to a particular type of

N = (0, 2) CPN−1 sigma-model called “heterotic” [150, 151, 152].

Two-dimensional sigma-models with (0, 2) supersymmetry have been considered

some time ago [61, 153]1 . More recently, the new interest in the heterotic CPN

sigma model was induced by the fact that this model naturally emerges as an effective

theory of the moduli on the world-sheet of the non-Abelian flux tubes [147] which are

present in four dimensional SU(N) Yang-Mills theories [44, 35, 34, 43, 148](for a review

see [45, 48, 46]). The non-Abelian vortices for arbitrary gauge group in particular for

SO(N) and USp(N) were constructed in [155, 156], while the generalization for the

higher winding numbers was done in [104]. Edalati and Tong suggested [150] that the

world sheet theory is a heterotic N = (0, 2) theory. It was proven to be correct in the pa-

pers [151, 157], where the heterotic model was explicitly obtained from the N = 2 SYM

bulk theory deformed by the mass terms of the adjoint fields. Since then the different

aspects of the CPN sigma model were considered in great details [63, 158, 152, 159, 160].

Historically Polyakov introduced the O(N) bosonic sigma model and showed that it

is asymptotically free [42]. This model was solved exactly for N = 3 in Zamolodchikov’s

paper [161]. The supersymmetric generalization of the O(3) sigma model was con-

structed by Witten in [162]. He also developed a technique for solving the CPN−1 sigma

model at large N for both supersymmetric and non-supersymmetric theories [58]. The

common feature of the sigma models (without a mass), apart from being asymptotically

free, is that due to quantum effects the spontaneous symmetry breaking disappears, and

the symmetry gets restored. This fact is reflected by the absence of massless (not sterile)

particles in the theory.

We would like to start this Chapter with the study of heterotic deformation of a

supersymmetric O(N) sigma model before going into the complex projective spaces. The

undeformed theory contains N scalar and N spinor real-valued fields. The bosonic fields

are confined on a (N − 1)-sphere. For generic values of N only (1, 1) supersymmetry is

present in the model, while for N = 3 the model is equivalent to the supersymmetric CP1

sigma model, which actually possesses N = (2, 2) supersymmetry.2 The O(3) sigma

1 More references about study of superspaces, renormalization of heterotic sigma models can be
found in [154]

2 Due to the Kähler structure of the target manifold, which is S2 in this case, the extra supercurrent
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model is also distinguished among the other O(N)s due to the presence of instantons,

which are absent for N 6= 3.

Although, to our knowledge, no bulk theory has been constructed for the heterotic

O(N) supersymmetric sigma model 3 – it is interesting in its own right.

Given these obvious differences between SU(N) and O(N) models, one may expect to

see different physical properties in the large N limit. In the current Chapter we find the

spectrum of both (1, 1) and (0, 1) supersymmetric O(N) sigma models and observe that

it is very much reminiscent of the SU(N) models. The only major difference between

the two models is the number of vacua – it is always two in the orthogonal case and N

in the unitary case (for the CPN−1 model).

The heterotic CPN−1 sigma-model was first analyzed in [164], then it was solved

in the large-N approximation in [158, 159]. The model shows a rich set of phe-

nomena like spontaneous supersymmetry breaking and transitions between Higgs and

Coulomb/confining phases. Again, the two-dimensional sigma-models have proven to

capture important properties of the corresponding four-dimensional bulk theories [164,

165].

We shall investigate a particular extension of the CPN−1 sigma-model which can be

obtained by gauging N positively charged fields. Considering additional Ñ = NF −N
matter multiplets with negative charge, we obtain what is called a “weighted” CPNF−1

(or WCPNF−1) sigma-model.4 The target space WCPNF−1 contains CPN−1 as a

subspace. The crucial point is that the weighted projective space is not compact. The

model was proposed in [44] as the low-energy description of non-Abelian semi-local

vortices. Semi-local vortices appear in gauge theories when large global symmetries are

present [52]. These symmetries are usually realized as flavor symmetries by introducing

additional matter fields. The main feature of these vortices is the existence of a new set

of degenerate solutions with arbitrary size [53, 54, 166]. In fact, this property makes

semi-local vortices quite similar to instantons and lumps [50, 56, 167, 168]. Employing

emerges lifting (1, 1) supersymmetry up to (2, 2).
3 However, there is an example [163] when the O(3) sigma model emerges as an effective theory on

the world-sheet of the string in the N = 1∗ supersymmetric SU(2) gauge theory. But as we know the
N = 3 case is special.

4 The notation is borrowed from a previous work of one of the authors [56], where it was used in
connection with the moduli space of semi-local vortices. ln the context of algebraic geometry, where

these spaces are well studied, they are more correctly referred to as O(−1)Ñ line bundles over CPN−1.
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a D-brane construction, the authors of [150] found the unique heterotic deformation to

this model which could arise when the symmetry breaking term in the bulk theory is

turned on. Motivated by this, we use the large-N techniques exploited in [58, 158, 159]

to solve the model and understand its physics.

In the correspondence between the supersymmetric QCD and the N = (2, 2) sigma-

model mentioned above, the complex masses of the hypermultiplets in the former theory

coincide with the twisted masses of the latter theory. In the model addressed in the

current Chapter, we introduce N twisted masses mi for each positively charged field

and additional Ñ twisted masses µj for each negatively charged field. As is known

from the CPN−1 sigma-model, the values of the twisted masses control the phases of

the theory. Indeed, if the masses are much bigger than the dynamically generated scale

Λ, the theory is essentially classical, whereas quantum effects become significant for

mi . Λ. Due to larger variety of twisted masses, the phase diagram of the theory is

quite complicated. We shall consider a particular choice of the masses which preserves

a discrete symmetry, by appropriately putting them on two circles of radii m and µ. We

thus focus on the determination of the phase diagram of the model in terms of these

two parameters.

The supersymmetric CPN−1 sigma-model is known to have an exact “twisted” su-

perpotential [169, 62, 40] which is similar to the Veneziano–Yankielowicz superpotential

[170]. It can be straightforwardly generalized to the weighted sigma-model [62, 59, 33].

The exact superpotential depends only on the twisted chiral superfield containing the

gauge multiplet and twisted masses of the theory. Once the superpotential is known

one can in principle determine the full BPS spectrum, including the vacua of the theory

for any N and Ñ . However, if we break half of the supersymmetries by introducing

the heterotic deformation, we cannot rely on the existence of an exact superpotential

anymore, and we have to dwell on a more robust technique of solving quantum theories

at strong coupling, like the large-N approximation.

This Chapter is organized as follows. In Sec. 4.2 we discuss the (1, 1) supersymmetric

O(N) sigma model and introduce its heterotic deformation first in terms of superfields,

then in components. In Sec. 4.3 we find the vacua of (0, 1) heterotic O(N) model and

derive the effective potential. Sec. 4.4 is devoted to the investigation of the spectrum

of the model in question, we give explicit formulas for the masses and the couplings at
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different values of the deformation parameter. Then we turn our attention to complex

projective spaces in Sec. 4.5. First we introduce the heterotic model on WCPN−1 and

discuss its quantum aspects. Then in Sec. 4.6 we present the master set of equations

which gives the vacuum expectation values of all the fields. We solve them exactly in the

massless case, while we give approximate analytical solutions and numerical evaluations

in various regimes for non-zero masses. In Sec. 4.7 we discuss the one-loop low-energy

effective action which describes excitations above the vacua found earlier. Sec. 4.8

contains conclusions and discussions.

4.2 Supersymmetric O(N) sigma model and its heterotic

deformation

The bosonic O(N) sigma model with coupling constant g0 can be formulated as follows.

The dynamics of N real-valued scalar fields, subject to the constraint

(ni)2 = 1, (4.2.1)

is governed by the action

S =
1

4g2
0

∫
d2x ∂µn

i∂µni . (4.2.2)

The constraint (4.2.1) means that the isovector field ni , i = 1, N is confined on a

unit (N − 1)-sphere. The coupling constant g0 in (4.2.2) is a bare one. Considering

additional fermionic degrees of freedom one can easily supersymmetrize the model [162].

Supersymmetry is obvious when the action is written in terms of the superfields 5

L =
1

4

∫
d2θ εαβDβN iDαNi = 2∂Ln

i∂Rn
i + iψiL∂Rψ

i
L + iψiR∂Lψ

i
R +

1

2
(F i)2,

(4.2.3)

where the the so-called isovector superfield has the following components

N i = ni + θ̄ψi + 1
2 θ̄θF

i , i = 1, . . . , N , (4.2.4)

with a generalization of the bosonic constraint (4.2.1)

N 2 = r0, (4.2.5)

5 Our notations can be found in Appendix A.2.
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where coupling r0 = g−2
0 . In (4.2.4) ψ is a Majorana two-component spinor together

with θ in (4.2.3). All components of the isovector superfield N i (4.2.4) are real-valued.

We have rescaled the fields in such a way that the coupling constant appears in the

constraint (4.2.5) rather than in the action (4.2.3). Taking into account that

N 2 = nini + 2θ̄ψini + θ̄θ
(
F ini − 1

2 ψ̄
iψi
)
, (4.2.6)

one can write the relations for the components of the superfields N i in the following

form

n2 = r0 ,

niψαi = 0 ,

F ini − 1
2 ψ̄

iψi = 0. (4.2.7)

The usual way to take into account the constraint is to introduce a Lagrange multiplier.

For the case at hand the latter is the following superfield

S = σ + θ̄λ+ 1
2 θ̄θD. (4.2.8)

Again, as in (4.2.4) all the components of the superfield S are real-valued. Therefore

the action (4.2.3)can be rewritten in the following form

L =

∫
d2θ

[
1

4
εαβDβN iDαNi +

1

4e2
0

εαβDβS DαS +
i

2
S
(
N 2 − r0

)]
, (4.2.9)

where the limit for the coupling constant e2
0 →∞ is implied. Hence the auxiliary fields

are not dynamical for the time being, however, in Sec. 4.7 it will be shown that the

coupling constant gets renormalized, therefore, providing non vanishing kinetic terms

for the auxiliary fields. Those will be used in investigating the mass spectra of the

theory.

Heteroric deformation. The model (4.2.9) is N = (1, 1) supersymmetric, namely

it is invariant under both left-handed and right-handed transformations. Now we are

going to deform it by adding an extra left-handed fermion mixing with the initial ones,

obviously breaking the (1, 1) supersymmetry down to (0, 1). Using the language of



103

the superfields, we add the new term which contains only left-handed fermion and an

auxiliary field

∆L =

∫
d2θ

[
1
4 εαβDβBDαB − iγSB

]
, (4.2.10)

where the chiral superfield B has the form

B = θ̄ζ + 1
2 θ̄θG , ζ =

(
0

ζL

)
. (4.2.11)

It can be checked by a direct calculation that the above expression is indeed a superfield

only with respect to the following left-handed transformations

δζL = εLG , δG = −2iεL∂RζL . (4.2.12)

It is clear that the transformations involving εR do not preserve the form of B.

In the expression (4.2.11) the first term is the kinetic term for the left-handed field

B (4.2.11), γ is the real-valued parameter of the deformation, and the latter term has

explicit dependence on the Lagrange multiplier field S. Combined together with (4.2.9)

the new constraint on the isovector superfield reads

N iNi = r0 + 2γB, (4.2.13)

which only changes the latter two constraints from (4.2.7), namely

ψiLn
i = γζL ,

F ini − iψiLψiR = γG , (4.2.14)

leaving the first constraint and the constraint for the right-handed component of ψR

intact. The full Lagrangian is given by the expression

L = 2∂Ln
i∂Rn

i + iψiL∂Rψ
i
L + iψiR∂Lψ

i
R + 1

2F
i2

+ iζL∂RζL + 1
2G

2 + iγλRζL + γGσ

− σ
(
F ini − iψiLψiR

)
− 1

2D
(
nini − r0

)
− iλRψiLni + iλLψ

i
Rn

i . (4.2.15)

Integration over the auxiliary fields F i and G yields

L = 2∂Ln
i∂Rn

i + iψiL∂Rψ
i
L + iψiR∂Lψ

i
R

+iζL∂RζL − iλR(ψiLni − γζL) + iλLψ
i
Rn

i

−1
2γ

2σ2 − 1
2

(
D + σ2

)
nini + 1

2Dr0 + iσψiLψ
i
R . (4.2.16)
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4.3 Effective Potential and Vacua

Given (4.2.16) we first wish to find the vacua of the theory similarly to [58] where the

nonsupersymmetric U(N) sigma model was solved in the large-N limit. Integrating out

ni and ψi fields and expressing the result in terms of the dynamical scale Λ related to

the bare coupling constant by

r0 =
N

4π
log

M2
UV

Λ2
, (4.3.1)

with MUV being the ultraviolet cutoff, we obtain the following effective potential pro-

vided the rest of the fermionic fields are put to zero

Veff =
N

8π

[
D log

Λ2

D + σ2
+ σ2 log

σ2

σ2 +D
+D + uσ2

]
, (4.3.2)

where we have introduced a new deformation parameter

u =
4πγ2

N
. (4.3.3)

Minimizing the potential with respect to D and σ one finds the vacua of the theory

σ0 = ±Λe−
u
2 ,

D = Λ2 − σ2 . (4.3.4)

Thus, there are two different vacua for any finite parameter u. One can integrate out

the D field (4.3.2) and obtain the potential which depends only on σ

Veff =
N

8π

[
Λ2 + σ2

(
log

σ2

Λ2
− 1 + u

)]
. (4.3.5)

Vacuum Energy. Plugging the vacuum solution (4.3.4) into (4.3.2) we calculate the

vacuum energy

Evac =
N

8π
Λ2
(
1− e−u

)
. (4.3.6)

From the expression above it is obvious that the supersymmetry is spontaneously broken

for u 6= 0. At small u the vacuum energy behaves linearly with u or quadratically with

the deformation parameter γ

Evac ∼
N

8π
uΛ2 =

γ2

2
Λ2 . (4.3.7)

At large u the vacuum energy scales linearly with N

Evac ∼
N

8π
Λ2 . (4.3.8)
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4.4 Spectrum of the O(N) Model

The next goal is to find the spectrum of the theory. To do so we are to obtain the

one-loop effective action. The most straightforward way to calculate the action is to

consider small fluctuations of the fields around the vacuum and to use what is called

the long wave approximation. As a result we get the one-loop effective action in the

large-N approximation for the fields σ, λ and ζ

Leff =
1

2e2
σ

(∂µσ)2 +
i

2e2
λ

λ̄γµ∂µλ− Veff (σ) + iζL∂RζL +
1

2
Γσλ̄λ+ iγλRζL, (4.4.1)

where eσ and eλ are the coupling constants that define the wave function renormalization

of the σ and λ fields correspondingly, and Γ is induced the Yukawa coupling of the λ and

σ. The wave function renormalization is easily calculated in the limit of small momenta.

The diagrams contributing to eσ are shown in Fig. 4.1 The actual calculation yields

σ

ψ

ψ

σ

σ

σ

σ

σ

n

n

Figure 4.1: Feynman diagrams contributing to the wave function renormalization of σ.

1

e2
σ

=
N

8π

(
2

3

σ2
0

(σ2
0 +D)2

+
1

3

1

σ2
0

)
=

N

24π

eu

Λ2

[
1 + 2e−2u

]
. (4.4.2)

Similarly, the renormalization of λ is given by the diagram in Fig. 4.2.

1

e2
λ

=
N

4π

(
1

D
− σ2

0

D2
log

σ2
0 +D

σ2
0

)
=
N

4π

1

Λ2

1− e−u(1 + u)

(1− e−u)2
. (4.4.3)

Finally, the Yukawa coupling Γ can be found from either the triangular graph (see

Fig. 4.3), or, equivalently, as the masses renormalization from the diagram in Fig. 4.2,

Γ =
N

4π

1

D
log

σ2
0 +D

σ2
0

=
N

4π

1

Λ2

u

1− e−u
. (4.4.4)

It is worth noting that although the fields σ and λ were introduced as auxiliary dummy

fields in (4.2.10), they become dynamical after integrating out the fields n and ψ. It
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λ

ψ

λ

n

Figure 4.2: The wave function renormalization for λ.

is clear that in the limit D → 0 or u → 0, which corresponds to the restoration of the

supersymmetry, the coupling constants eσ and eλ coincide

1

e2
σ

=
1

e2
λ

=
N

8π

1

σ2
0

. (4.4.5)

Now we can turn to actual calculation of the mass spectrum. It is obvious that the

ψψ

λ
λ

σ

n

Figure 4.3: The induced Yukawa vertex.

n and ψ fields acquire mass due to the VEV of D and σ, namely

m2
ψ = σ2

0,

m2
n = σ2

0 +D. (4.4.6)

From the effective Lagrangian (4.4.1) one can easily find the expressions for the masses

of the auxiliary field σ

mσ = Λ
√

6
eu/2√

1 + 1
2e

2u
. (4.4.7)

At nonzero values of the heterotic deformation parameter mixing between ζL, λL and

λR occurs. In order to find the mass states, one needs to transform the fermion mass
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matrix to the canonical form. However, it is clear that there is a massless mode since

only the left fermion was introduced. To see this, one has to find the solution of the

characteristic polynomial, corresponding to the fermion mass matrix

m
(
m2 − γ2e2

λ − σ2
0e

4
λΓ2
)

= 0, (4.4.8)

which indeed has zero solution for any u. There is also another solution of the charac-

teristic polynomial. Summarizing, we find the following masses of the fermions

mF = 0,

mF =
√
γ2e2

λ + σ2
0e

4
λΓ2 = 2Λ

√
u (eu − 1)

eu − 1− u sinh
u

2
. (4.4.9)

4.4.1 Spectrum of masses at small u

First, when the supersymmetry is unbroken u = 0, D = 0 the masses of superpartners

coincide. For the fields ni and ψi it become

mψL,R = mn = Λ, (4.4.10)

while for the fermion λL,R and boson σ we have

mλL,R = mσ = 2Λ . (4.4.11)

The ζL field is decoupled from other fields, it is sterile and massless.

4.4.2 Spectrum of masses at large u

When the parameter of heterotic deformation gets bigger, the splitting between the

masses in our theory becomes more dramatic. For the ni and ψi particles they are

mn =
√
D + σ2 = Λ , mψ = Λe−

u
2 , (4.4.12)

thus the fermions become much lighter than bosons. The couplings behave differently

as well. The coupling for σ is
1

g2
σ

=
N

4π

eu

6Λ2
, (4.4.13)

and for λ it becomes
1

g2
λ

=
N

4π

1

Λ2
. (4.4.14)
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The mass of the σ field goes exponentially to zero for large u

mσ = 2
√

3Λe−u/2. (4.4.15)

The fermion mass matrix has a zero eigenvalue corresponding to the now massless left

component of the field λL, while the mixture of the fields ζL and λR produce the mass

term

mλR,ζL = Λ
√
u. (4.4.16)

We see that being equal in the limit u→ 0 the masses of σ and λ now become essentially

different. For arbitrary value of the deformation parameter the ratio of the fermion

matrix eigenvalue and the mass of σ is plotted in Fig. 4.4. Although the masses

0 1 2
u

1

2

mF

m
Σ

Figure 4.4: The ratio of the fermion mass matrix eigenvalue to the mass of σ as a function
deformation parameter u.

become equal not only for u = 0, there is no restoration of the supersymmetry. First,

there is still a Goldstino and second, the vacuum energy (4.3.7) is not equal to zero at

that point.

4.5 Heterotic N = (0, 2) CPN−1 Sigma Model

Here we formulate the sigma-model in gauged approach and discuss its moduli space.

First we consider the (2, 2) sypersymmetric model and then introduce the heterotic

deformation.
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4.5.1 N = (2, 2) weighted non-linear sigma-model

Let us start by introducing the undeformedN = (2, 2) weighted sigma-model6 WCPNF−1.

A detailed discussion of these models can be found in [61], where a relationship with

Landau-Ginzsburg models is considered.7 The same models can be studied in the mir-

ror representation [172, 173, 174]. The model can be built out of N positively charged

fields ni, Ñ negatively charged fields ρj and a non-dynamical auxiliary field. The full

Lagrangian, including the fermionic superpartners can be written in a superfield for-

malism which make supersymmetry manifest (see Sec. B.1). The Lagrangian (B.4.4)

has the following component expansion

LWCPNF−1 = |∇µni|2 + |∇µρj |2 − |σ|2|ni|2 − |σ|2|ρj |2 −D
(
|ni|2 − |ρj |2 − r0

)

+ iξ̄L, i∇RξiL + iξ̄R, i∇LξiR + iη̄L, j∇RηjL + iη̄R, j∇LηjR +

+
[
in̄i
(
λLξ

i
R − λRξiL

)
− iσξ̄R, iξiL − iρ̄j

(
λLη

j
R − λRη

j
L

)
+ iση̄jRη

j
L + H.c.

]
,

(4.5.1)

where the covariant derivatives are given by

∇µni = (∂µ − iAµ)ni, ∇µρj = (∂µ + iAµ)ρj . (4.5.2)

The fields Aµ, σ, λL,R and D all belong to the same N = 2 supermultiplet, they are

non-dynamical, and can be integrated out using their equations of motion. However, as

we shall see later, in strongly coupled phases these auxiliary fields do become dynamical

and describe particles in the low energy effective theory.

The model has a unique parameter which determines the strength of the interac-

tions, the two-dimensional Fayet-Iliopoulos term r0 [175]. Classically, the model has a

continuous set of vacua determined by the vacuum equation

N−1∑

i=0

|ni|2 −
Ñ−1∑

j=0

|ρj |2 = r0 . (4.5.3)

6 Many gauged sigma-models which are studied in the literature, including this one, follow from a
very generic construction developed by Distler and Kachru [171].

7 For an alternative superfield formulation of the model see Sec. B.4
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The first and the most important quantum effect is the generation of a dynamical

scale Λ through dimensional transmutation. In fact, the Fayet-Iliopoulos term gets

renormalized, flowing with respect to the energy scale ε through the following one loop

expressions

r(ε) = r0 −
N − Ñ

4π
log

(
M2
UV

ε2

)
≡ −N − Ñ

4π
log

(
Λ2

ε2

)
. (4.5.4)

The theory is thus asymptotically free for N > Ñ . From the expression above we can

also guess that for N = Ñ we have super-conformal theory, and this is indeed the case

[61].

Actually, thanks to supersymmetry, (4.5.4) is exact in perturbation theory because

of the vanishing of higher order contributions. Furthermore, integrating out the matter

fields in the functional integral we can find an exact superpotential for the field σ

[61, 169, 62, 59]

W (σ) =
N − Ñ

4π
σ
(

log
(σ

Λ

)
− 1
)
. (4.5.5)

This superpotential includes all the non-perturbative instantonic contributions to the

functional integral. At the classical level the theory has two U(1) R-symmetries,

U(1)R × U(1)V . The first one is an axial symmetry, under which σ has charge +2.

This symmetry is anomalous and is broken down to Z
2N−2Ñ

by the one-loop correc-

tions. By minimization of the superpotential (4.5.5) we find N − Ñ massive vacua. We

will discuss in more details the vacuum structure of the theory in Sec. 4.6.

4.5.2 N = (0, 2) weighted sigma-model: heterotic deformation

As is well-known from early studies of two-dimensional supersymmetric sigma-models

[176], there is no smooth N = (0, 2) deformation of the N = (2, 2) CPN−1 sigma-model8

. On the other hand, it is possible to have deformation of the C×CPN−1 model, which

is the relevant effective theory emerging in when studying the non-Abelian vortices (the

C factor describes the translation modes of the vortex). From the additional C piece,

one can keep only a right-handed fermion, while the scalar and left-handed fermionic

8 See [150, 177] for a discussion of this issue in a context related to non-Abelian vortices
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super-partners is free. A similar situation occurs for the weighted sigma-model9 . As

a result we consider the following Lagrangian

LhetWCPNF−1 = LWCPNF−1 + i
2 ζ̄R∂LζR − 2|ω|2|σ|2 − [iωλLζR + H.c.] . (4.5.6)

The heterotic coupling ω is introduced by means of an additional right-handed fermion

ζR. Obviously the modification dramatically changes the physics of the sigma-model at

hand. For example, the Witten index is modified from N − Ñ to zero as in the CPN−1

case. This observation is indeed consistent with supersymmetry breaking [158, 178]

occurring in the model.

Adding the twisted masses. Twisted masses can be easily introduced into the

model by first gauging the U(1)NF−1 independent flavor symmetries and then setting

to zero all the fields in the additional twisted multiplets but not the lowest components

[59]. The resulting Lagrangian takes the following form

LhetWCPNF−1 = |∇µni|2 + |∇µρj |2 + iξ̄L, i∇RξiL + iξ̄R, i∇LξiR + iη̄L, j∇RηjL + iη̄R, j∇LηjR

−
N−1∑

i=0

|σ −mi|2 |ni|2 −
Ñ−1∑

j=0

|σ − µj |2 |ρj |2 −D
(
|ni|2 − |ρj |2 − r0

)

+

[
in̄i
(
λLξ

i
R − λRξiL

)
− i

N−1∑

i=0

(σ −mi) ξ̄R, iξ
i
L + H.c.

]

+


−iρ̄j

(
λLη

j
R − λRη

j
L

)
+ i

Ñ−1∑

j=0

(σ − µj) η̄R, jηjL + H.c.




+ i
2 ζ̄R∂LζR − [iωλLζR + H.c.]− 2|ω|2|σ|2 . (4.5.7)

For zero values of the twisted masses there is a U(1) R-symmetry under which the

fermions ξiR, η
j
R, λR (ξiL, η

j
L, λL) have charge +1(−1), whereas σ has charge +2. A

generic choice of the masses mi and µj breaks this symmetry completely. Instead,

9 In fact, it is possible to introduce N = (0, 2) deformations of the weighted sigma-model without
introducing any new degrees of freedom, or C factors. However, all the possible deformations different
from the one considered in the text do not arise in the context of non-Abelian vortices. Nevertheless, it
may be interesting to study the effects of such deformations. For more details on this aspect, see [150].
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we make the following choice for the masses

mk = me2πi k
N , k = 0, . . . , N − 1 ,

µl = µ e2πi l
Ñ , l = 0, . . . , Ñ − 1 . (4.5.8)

For the further convenience we define a new constant α = Ñ/N . Notice that in the

N → ∞ limit, the masses are distributed uniformly on circles with radii |m| and |µ|
correspondingly. We consider m and µ to be real. There are particular choices of α

which are interesting because they leave some residual discrete symmetry on the classical

level. In particular, if N and Ñ have N − Ñ as a common divisor, a discrete Z
N−Ñ

symmetry is preserved10 . As we shall later see in Sec. 4.6, in quantum theory VEV of σ

breaks this symmetry, however, for certain values of the twisted masses (4.5.8) 〈σ〉 = 0

and the symmetry gets restored.

4.6 Large-N Solution of the WCPN−1 Model

In this section we solve the model in the large-N approximation, closely following the

analysis of [158, 159]. Since the ni , ρj , ξi , ηj fields appear in the action quadratically,

we can perform the Gaussian integration over these fields. We integrate over all but the

following four fields (n0, ρ0, ξ0, η0). The scalar fields (n0, ρ0) will represent the helpful

set of the order parameters defining various phases of the theory.

The Gaussian integration leads to the following determinants

N−1∏

i=1

[
det
(
(∂k + iAk)

2 +D + |σ −mi|2
)

det ((∂k + iAk)2 + |σ −mi|2)

]
Ñ−1∏

j=1

[
det
(
(∂k − iAk)2 −D + |σ − µj |2

)

det ((∂k − iAk)2 + |σ − µj |2)

]
.

(4.6.1)

The large-N approximation is technically equivalent to a one-loop calculation of the

above determinants, where we can also drop the gauge fields [58]. The result gives an

10 This symmetry is a combination of the flavor and R symmetry.
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effective potential for the σ field11

V1−loop =
1

4π

N−1∑

i=1

(
−
(
D + |σ −mi|2

)
log
|σ −mi|2 +D

Λ2
+ |σ −mi|2 log

|σ −mi|2
Λ2

)

− 1

4π

Ñ−1∑

j=1

(
−
(
D − |σ − µj |2

)
log
|σ − µj |2 −D

Λ2
− |σ − µj |2 log

|σ − µj |2
Λ2

)

+
N − Ñ

4π
D . (4.6.2)

To get the above result we have again traded the UV cut-off for the scale Λ. Including

the pieces already present at the classical level we get the expression for the effective

potential

Veff = V1−loop +
(
|σ −m0|2 +D

)
|n0|2 +

(
|σ − µ0|2 −D

)
|ρ0|2 +

uN

4π
|σ|2 ,(4.6.3)

where we set u = 8π|ω|2/N .

Vacuum equations. The extremization12 of this potential with respect to n0 and

ρ0, D and σ gives us the master set of equations which determines the vacuum structure

of the theory
(
|σ −m0|2 +D

)
n0 = 0 ,

(
|σ − µ0|2 −D

)
ρ0 = 0 , (4.6.4)

1

4π

N−1∑

i=1

log
|σ −mi|2 +D

Λ2
− 1

4π

Ñ−1∑

j=1

log
|σ − µj |2 −D

Λ2
= |n0|2 − |ρ0|2 ,

1

4π

N−1∑

i=1

(σ −mi) log
|σ −mi|2 +D

|σ −mi|2
+

1

4π

Ñ−1∑

j=1

(σ − µj) log
|σ − µj |2 −D
|σ − µj |2

=

= (σ −m0) |n0|2 + (σ − µ0) |ρ0|2 +
uN

4π
σ . (4.6.5)

The second equation above gives us the renormalized coupling constant

r = |n0|2 − |ρ0|2 . (4.6.6)

11 For a discussion of the relationship between the Large-N potential and the exact N = (2, 2)
superpotential (4.5.5) see [159]. It is indeed possible to reconstruct a full exact potential like (4.5.5)
from this expression, by noticing that the large-N expression must give, at the first linear order in D,
the following term: D(W ′(σ) + h.c). We thank A. Vainshtein for this observation.

12 The solution of the vacuum equations for D gives Veff a maximum rather than a minimum. This
fact, being usual in supersymmetric gauge theories, is consistent since the D field is not dynamical. We
get a true minimum with respect to the σ field.
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In the next section we shall solve the weighted heterotic CPN−1 model in the large-N

approximation. First we address the massless case, and then work out the more involved

model with twisted masses.

4.6.1 Massless case

Let us warm-up with the problem when all twisted mass are zero. We will be able to

investigate more easily all the features which will be also present in the massive case.

The potential (4.6.3) takes much simpler form now13

Veff =
N

4π

(
D log

Λ2

|σ|2 +D
+ |σ|2 log

|σ2|
|σ|2 +D

)

− Ñ

4π

(
D log

Λ2

|σ|2 −D − |σ|
2 log

|σ2|
|σ|2 −D

)

+
N − Ñ

4π
D +

uN

4π
|σ|2 , (4.6.7)

from which the corresponding vacuum equations follow

log
|σ|2 +D

Λ2
− α log

|σ|2 −D
Λ2

= 0 ,

σ log

(
1 +

D

|σ|2
)

+ σα log

(
1− D

|σ|2
)

= uσ . (4.6.8)

Let us rewrite them in a more compact form

(1 + x)(1− x)α = eu ,

(1− x)
α

1−α (1 + x)
1

α−1 = s , (4.6.9)

where we introduced the following dimensionless parameters

s ≡ |σ|2/Λ2, x ≡ D/|σ|2 . (4.6.10)

Let us first discuss the undeformed case (u = 0). From the first equation of (4.6.9)

we get x = 0, and from the second s = 1, thus

|σΛ| = Λ, D = 0 . (4.6.11)

13 Notice that in this case we have integrated out all the fields.



115

The vanishing of the VEV of D implies unbroken supersymmetry. The VEV of σ, on

the contrary, lies on a circle14 . We can compare this result with the exact N = (2, 2)

solution at finite-N by minimizing the potential (4.5.5), from which we get the vacuum

equation

σN−Ñ = ΛN−Ñ . (4.6.12)

There are N − Ñ vacua characterized by the vacuum expectation value of σ

σΛ,k = Λe
2πi k

N−Ñ . (4.6.13)

We can see that in the large-NF limit the number of vacua becomes infinite and uni-

formly distributed on the circle.

Let us now turn on the heterotic deformation. The first equation from (4.6.9) gives

us x, the second one can be used to find both D and σ in the vacuum configuration.

The r.h.s of the first equation has an upper bound. There is thus a critical value ucrit for

the heterotic deformation such that there are no solutions for larger u. Maximization

of this term gives

ucrit = log

[
2(2α)α

(1 + α)α+1

]
at xcrit =

1− α
1 + α

, scrit =
1

2
(1 + α)α

α
1−α . (4.6.14)

The numerical solution of equations (4.6.9) is presented in Fig. 4.5. Note that

x is always smaller than unity. This is consistent with the fact that larger values of D

(D > |σ2|) would imply imaginary masses for the scalar particles, as it can easily be

seen from (4.5.1).

The disappearance of the solutions which minimize the energy becomes clear after we

look at the plots of the effective potential at different values of the heterotic deformation

parameter. Using (4.6.8) we can find the auxiliary field D and substitute it into the

effective potential (4.6.7), which we can now plot in Fig. 4.6 as a function of σ.

Conformal sector. The existence of a critical value for u forces us to search for a

new vacuum solution other than those given by (4.6.11). Indeed, Fig. 4.6 clearly shows

14 This is a natural result if we keep only the leading terms in the large-N approximation. Separating
vacua into a discrete set should be possible, in principle, by considering sub-leading corrections to the
potential.
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Figure 4.5: On the left plot, values of s and x are shown as a function of u, for α = 0.5. On the
right plot, the critical values as functions of α are shown. s is solid-blue, x dashed-red and u
dotted-yellow.

a new vacuum located at σ = 0 which survives at nonzero heterotic deformations. For

arbitrary value of u equations (4.6.9) admit the following solution

|σ0| = 0, D = 0 . (4.6.15)

This solution formally exists for the CPN−1 sigma-model as well, but in that case it

must be discarded. As can be seen in Fig. 4.6, it represents a maximum, rather than a

minimum. Strictly speaking, the effective potential cannot be trusted for σ = 0, where

some degrees of freedom become massless. The existence of massless kinks is ensured

once we interpret the vacuum at σ = 0 as a degenerate point where Ñ vacua coalesce.

We will check this explicitly in the next section, where we will resolve the Ñ vacua by

the introduction of twisted masses [33, 40, 61]. This sector of the theory is described by
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Figure 4.6: On the left: one-loop effective potential for the weighted WCPNF−1 sigma-model,
u = 0, 0.07, 0.13 (from the lowest to the highest curve) and α = 0.5 as functions of σ in units of
Λ. The lower lying plot corresponds to the unbroken SUSY (u = 0) where the vacuum energy of
both zero vacuum and Λ vacuum is equal to zero. When we enhance the heterotic deformation
the vacuum energy of the Λ vacuum becomes nonzero (the vacuum becomes metastable), whereas
it always vanishes for the zero vacuum. At some value of the deformation parameter, ucrit the
metastable vacuum ceases to exist. On the right: potential for the ordinary CPN−1 sigma-model,
u = 0, 1, 4. The vacuum value of σ approaches zero for large u, but there is no loos of vacua, as
soon as the deformation is kept finite.

a super-conformal field theory. This was first conjectured in [33, 179], by analogy with

the four dimensional case: coalescence of vacua in two-dimensional theories corresponds

to the degeneration of Seiberg-Witten curves [10, 11] at the so-called Argyres-Douglas

points of four-dimensional theories15 , where the appearance of massless, mutually

non-local degrees of freedom gives rise to an interacting super-conformal field theory

[112, 180]. This expectation was confirmed in [181], where it was shown that the two-

dimensional theory flows to an interacting super-conformal fixed point, identified as an

AN−1 minimal model [182, 183, 184], as σ → 016 . Notice that we can trust both the

large-N effective potential and the exact twisted superpotential for arbitrarily small σ as

soon as we interpret them as valid at energy scales ε much smaller than the masses of the

hypermultiplets ε� |mhyp| ∼ |σ| (see (4.5.1)). The divergences of both potentials arise

because of infrared instabilities due to the developing of massless states, as described

15 The four-dimensional curve y2 = f(x,Λ) is given in terms of the two-dimensional superpotential:

y2 = (∂W (x)/∂x)2. Using (4.5.5) we have y2 = x2Ñ (xN−Ñ − ΛN−Ñ )2, which has Ñ degenerate
singularities.

16 [181] deals with the case of complete degeneration of the vacua: y2 = x2N . The qualitative
aspects of that analysis hold in our case as well.
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Figure 4.7: Numerical solutions for the vacuum energy of the massive vacua for various values
of α = .2, .5, .8, from the lowest to the highest curve. The solid line is the line given by (4.6.18).

above.

If we assume continuity of physical quantities in the limit σ → 0, the result of

this section (see Fig. 4.6) implies that this super-conformal sector is not lifted by the

heterotic deformation. Furthermore, supersymmetry is not broken for σ = 0. The

massive vacua discussed in this section become metastable when we turn on u, and

disappear as we increase the heterotic deformation above the critical value ucrit.

Let us conclude this section by analytically solving (4.6.9) for small values of u. As

we see from Fig. 4.5 this also implies small x. One thus has from (4.6.9)

(1 + x)(1− αx) = 1 + u ,(
1− α

1− αx
)(

1 +
1

α− 1
x

)
= s , (4.6.16)

which gives

x ≈ u

1− α , s ≈ 1− 1 + α

(1− α)2
u . (4.6.17)

Substituting (4.6.17) in the expression for the effective potential (??) we find the the

following expression for the vacuum energy

Veff =
N

4π
uΛ2 , (4.6.18)

which is to be compared with the numerical solution in Fig. 4.7. Notice that the small

u limit does not depend on the value of α.
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4.6.2 Massive case

We shall now determine the vacuum structure of the massive model in terms of the

two-dimensional space of parameters m and µ. With a quick inspection to the first line

of (4.6.4)

(
|σ −m0|2 +D

)
n0 = 0 ,

(
|σ − µ0|2 −D

)
ρ0 = 0 ,

(4.6.19)

we can easily identify three branches of solutions, which correspond to three different

phases of the theory

Hn : Higgs phase with non-zero VEV for ni

ρ0 = 0 , D = − |σ −m0|2 , (4.6.20)

Hρ : Higgs phase with non-zero VEV for ρj

n0 = 0 D = |σ − µ0|2 , (4.6.21)

C : Coulomb phase

n0 = ρ0 = 0 . (4.6.22)

Recall that the renormalized coupling is given by (4.6.6), r = |n0|2 − |ρ0|2. Thus, the

Hn phase is characterized by a positive coupling, while in the Hρ phase the renormal-

ized Fayet-Iliopoulos term is negative. In the C phase r = 0. We will determine the

appearance of these phases in the m− µ plane, by starting with the undeformed case.

Undeformed case

The N = (2, 2) sigma-model is solved by virtue of the exact superpotential. As we have

mentioned in the introduction, in the current Chapter we shall work with the large-N

approximation as it can be used both for the (2, 2) and (0, 2) models.

We anticipate here the discussion of this section by proposing the phase diagram in

Fig. 4.8. Below we list the vacua solutions in each domain of the phase diagram.
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Figure 4.8: Phase Diagram of the weighted (2, 2) CPN−1 model in the large-N approach. There
are four domains with different VEVs for σ: two Higgs branches Hρ and Hn, and two Coulomb
branches C. In the Coulomb phase C r = 0. The curve µ/Λ = (m/Λ)1/α together with horizontal
and vertical lines starting from µ = Λ and m = Λ respectively separates the C phases from the
Higgs phases. In Hn r > 0 and in Hρ r < 0. On the super-conformal line µ/Λ = (m/Λ)1/α a
new branch described by a super-conformal theory opens up.

Hn phase. The unbroken supersymmetry of the undeformed model implies D = 0

for all the phases. From (4.6.20) we thus find

σ = m0 , ρ0 = 0, D = 0 . (4.6.23)

From the second line of (4.6.4) we determine the coupling constant

r = |n0|2 =
1

4π

N−1∑

i=1

log
|m0 −mi|2

Λ2
− 1

4π

Ñ−1∑

j=1

log
|m0 − µj |2

Λ2
≥ 0 . (4.6.24)
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The sums in the expression above can be exactly calculated in the large-N limit as

shown in [152]

r =





N−Ñ
2π log m

Λ , µ < m

N
2π log m

Λ − Ñ
2π log µ

Λ , µ > m .

(4.6.25)

By asking for r to be positive, we obtain the following conditions for the existence of

the Hn phase

Hn :





m > Λ, µ < m

m
Λ >

( µ
Λ

)α
, µ > m .

(4.6.26)

Hρ phase. In this phase we use (4.6.21) to find

σ = µ0 , n0 = 0, D = 0 , (4.6.27)

and the coupling constant

r =





N−Ñ
2π log µ

Λ , µ > m

N
2π log m

Λ − Ñ
2π log µ

Λ , µ < m

(4.6.28)

Negativity of r now implies the following conditions for the existence of the Hρ phase

Hρ :
(m

Λ

)1/α
<
µ

Λ
< 1 . (4.6.29)

The renormalized coupling constant vanishes, as expected, along the boundaries of

the Higgs phases. As we will explain later the curve defined as

m

Λ
=
(µ

Λ

)α
, (4.6.30)

is of particular interest. Notice that the renormalized coupling in both Higgs regimes

scales with N . Let us mention that a more natural coupling constant would be

` =
1

λ
=

4πr

N
, (4.6.31)
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which is reminiscent of the ’t-Hooft coupling constant which naturally appears in large-

N gauge theories.

C phases. The Coulomb phase exists in the regions where |n0| = |ρ0| = 0. There

are two distinct regions, Cµ and Cm, which complete the phase diagram as shown in

Fig. 4.8. With the first and the third equations of (4.6.4) being satisfied automatically

for u = D = 0, the second one gives

N−1∏

i=1

|σ −mi|2 = ΛN−Ñ
Ñ−1∏

j=1

|σ − µj |2 . (4.6.32)

Note that each part of this equation is real for the complex variable σ. This implies a

continuous set of solutions which are located on a closed line. Again, this is the effect

of the large-N approximation, where an infinite number of vacua is continuously dis-

tributed on a curve. The solution in the leading approximation is qualitatively different

in the two C regions. In the Cµ region the vacua sit on a single circle

|σµ| = Λ
(µ

Λ

)α
, µ > Λ

(m
Λ

)1/α
, µ > Λ . (4.6.33)

In the Cm region the vacua split between two separate circles

|σm| = Λ
(
m
Λ

)1/α
,

|σΛ| = Λ

µ < Λ
(m

Λ

)1/α
, m < Λ . (4.6.34)

In order to resolve the vacua into a discrete set we can compare the result above with

the exact one given by the N = (2, 2) superpotential. Vacua are the solutions of the

equation [33]
N−1∏

i=1

(σ −mi) = ΛN−Ñ
Ñ−1∏

j=1

(σ − µj) , (4.6.35)

which, making use of Eq. (4.5.8), can be rewritten as the following:

σN −mN = ΛN−Ñ (σÑ − µÑ ) . (4.6.36)

It is exact even for small N , but in the large-N approximation one obtains three groups

of solutions: N “µ-vacua” in the Cµ region

σµ,j = Λ
(µ

Λ

)α
e2πi j

N j = 0, . . . , N − 1 ,

(4.6.37)
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while in the Cm we have N − Ñ “Λ-vacua”

σΛ,k = Λ e
2πi k

N−Ñ , k = 0, . . . , N − Ñ − 1 , (4.6.38)

and Ñ “m-vacua”

σm,l = Λ
(m

Λ

)1/α
e2πi l

Ñ , l = 1, . . . , Ñ − 1 . (4.6.39)

Super-conformal line. The following special situation occurs on the line

µ

Λ
=
(m

Λ

)1/α
, (4.6.40)

where (4.6.36) degenerates to

σN = ΛN−ÑσÑ . (4.6.41)

This equation has two sets of solutions

σN−Ñ = ΛN−Ñ , σ = 0 , (4.6.42)

where the latter solution applies to the conformal regime. Recall that we had a similar

situation in the massless case. For this particular configuration we obtain N−Ñ massive

vacua and a sector where σ vanishes. The same considerations made for the massless

case apply in the massive case on the whole super-conformal line.

Superconformal vortices and 4d/2d duality at glance. Notice also that the

Seiberg-Witten curve of the corresponding four-dimensional theory

y2 = xN −mN − ΛN−Ñ (xÑ − µÑ )2 , (4.6.43)

provided that (4.6.40) holds, is reduced to

y2 =
(
xN − xÑΛN−Ñ

)2
, (4.6.44)

i.e. it has the same form along the whole super-conformal line. As it was mentioned in

[181], the the above equation can be written as

y2 =

(
∂W̃(x)

∂x

)2

, (4.6.45)
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where we expand the effective twisted superpotential W̃ near the vacuum. The above

relation can be viewed as the shortest way to formulate the 4d/2d duality. Indeed,

from the Seiberg-Witten curve at the superconformal point (4.6.40) one can read off the

twisted superpotential immediately together with scaling dimensions of chiral primary

operators of the 2d SCFT.

Small heterotic deformation

We shall now introduce the heterotic deformation in the model. Let us first study

corrections to the vacuum expectation values of our fields for small u.

Hn phase. We can easily solve the first and second equations of (4.6.4) for D and

|n0|2. The third line is thus an equation for σ

N−1∑

i=1

(σ −mi) log

(
1− |σ −m0|2
|σ −mi|2

)
+
Ñ−1∑

j=1

(σ − µj) log

(
1 +
|σ −m0|2
|σ − µj |2

)
+

− (σ −m0) r = uNσ . (4.6.46)

We shall now expand the equation above in terms of small deviations from the unde-

formed case

σ = m0 + δσ, D = 0 + δD, r = r0 + δr , (4.6.47)

which is a consistent procedure when u is small. Equation (4.6.46) gives the following

result

δσ = −muN

r0
, (4.6.48)

where r0 is given by (4.6.25). The correction to D can be easily found to be

δD = −|δσ|2 . (4.6.49)

Finally we write the expression for the correction to the renormalized coupling constant

δr =
N

2π
δσ


 1

N

N−1∑

i=1

2 Re(m0 −mi)

|m0 −mi|2
− α 1

Ñ

Ñ−1∑

j=1

2 Re(m0 − µj)
|m0 − µj |2




= − Nu

2πr0

(
1− αf

( µ
m

))
, (4.6.50)
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where

f(β) =





2 , β < 1

1 , β = 1

0 , β > 1 .

(4.6.51)

The last equality holds in the large-N limit. Notice that all the corrections contain a

1/r0 factor. They all diverge as we approach the Coulomb phase boundary, when r → 0.

In this region our approximation fails. Nonetheless, in the boundary region with the

Coulomb phase we have µ > m and the correction is negative, thereby reducing the

value of r. We can argue that the Hn phase gets shrunk. This expectation will be

confirmed further in the study of the large u case.

Hρ phase. We can proceed analogously to the Hn phase, obtaining

δσ = µ
uN

r0
, (4.6.52)

whereas the correction to the coupling reads

δr =
Nu

2πr0

(
f

(
m

µ

)
− α

)
. (4.6.53)

The same comments holds for this phase. In particular, the correction near the boundary

with the Coulomb phase µ < m is positive, thus it is plausible that the second Hρ region

is also reduced.

C phase. In this phase both n0 and ρ0 vanish. We only need (4.6.4) to determine the

correction to the VEV of σ. The second equation of (4.6.4) now is

N−1∏

i=1

(|σ −mi|2 +D) = ΛN−Ñ
Ñ−1∏

j=1

(|σ − µj |2 −D) , (4.6.54)

while the third one gives

N−1∑

i=1

(σ −mi) log

(
1 +

D

|σ −mi|2
)

+
Ñ−1∑

j=1

(σ − µj) log

(
1− D

|σ − µj |2

)
= Nuσ . (4.6.55)



126

We look again for the solution of the form σ = σ0 + δσ. From (4.6.55) we get

δD = u|σ0|2 , m < |σ0| < µ ,

δD = −u
α
|σ0|2 , µ < |σ0| < m ,

δD =
u

1− α |σ0|2 , µ,m < |σ0| . (4.6.56)

From (4.6.54) we can find the correction to σ0. Expanding this equation we get

N(σN0 −mN )2(δσσ0f(m/σ0) + δDg(m/σ0)) =

= ÑΛN−Ñ (σÑ0 − µÑ )2(δσσ0f(µ/σ0)− δDg(µ/σ0)),

(4.6.57)

where f(β) is defined in (4.6.51) and g(β) is [152]

g(β) =
1

N

N∑

k=1

1

|1− βe2πik/N |2 =
1

|1− β2| . (4.6.58)

We are now ready to write down the results for the two Coulomb regions. First,

in the Cµ region, from (4.6.33) we have µ > σµ,0 > m; information that we need to

correctly evaluate (4.6.57). Using also the first line of (4.6.56) we obtain for the µ-vacua

Cµ : |σµ| = Λ
(µ

Λ

)α
(

1− u/2

1−m2/σ2
µ,0

+ α
u/2

1− µ2/σ2
µ,0

)
. (4.6.59)

In the Cm we need to find the corrections for both the m-vacua and the Λ-vacua. Using

the right values of σ and the second and third line of (4.6.56) we get respectively

Cm :

|σm| = Λ
(
m
Λ

)1/α
(

1− u
2α

1
1−µ2/σ2

m,0
+ u

2α2
1

1−m2/σ2
m,0

)
,

|σΛ| = Λ
(

1− u
2(1−α)2

1
1−m2/Λ2 − uα

2(1−α)2
1

1−µ2/Λ2

)
.

(4.6.60)

Let us make a couple of comments. The presented calculation is valid in the large-N

limit for all values of masses m and µ in the two Coulomb regions. All the corrections are

negative, thus they reduce the VEV of σ. The calculation breaks down at the boundary

of the Coulomb regions with the Higgs phases. Notice that the value of D tends to zero

if we approach the massless case (we can reach it, for example, through the Cm phase
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along the µ = 0 axis). This is a strong hint that the theory in the super-conformal

regime does not break supersymmetry. Unfortunately, it is not possible to use this

small-u expansion to check the same result for the whole super-conformal line, where

the corrections calculated above diverge17 . The factor 1− α in the expression for the

Λ-vacua arises naturally if we recall that the theory is conformally invariant for α = 1.

In this limiting case there are no Λ-vacua. Moreover, the result is consistent with the

expectation that a critical value of u appears in the massive case such that the Λ vacua

disappear at larger values of u. As in the massless case, the value of ucrit should tend

to zero as α approaches 1.

For small u, the vacuum energy is simply given by the heterotic deformation in the

potential:

E =
uN

4π
|σ0|2 . (4.6.61)

As expected, vacuum energy is thus larger for larger values of the VEV of σ. While in

the Cµ region all the vacua have the same energy, in the Cm phase the Λ-vacua acquire

a much larger energy, as compared to the µ-vacua. As was noticed in the massless case,

Λ-vacua become metastable once we turn on the heterotic deformation. In the next

section we consider the large u limit and we will assume that σ is always small in the

vacuum, which is a consistent assumption once the Λ-vacua have ceased to exist for a

sufficiently large u.

Large heterotic deformation

At generic values of the deformation parameter u we can only rely on numerical solutions

of the full equations (4.6.4). Unfortunately, this is quite complicated. In this section

we will simplify the problem by looking at large values of u. Then we will compare the

results with some full numerical calculations done at generic values of u, as a double

check of both results.

Hn phase. As noted in [159] the large u approximation can be exploited by consid-

ering σ � m. Finding D from the first line of (4.6.4) and substituting it in the third

line, if we ignore σ compared to m , we get (we also ignore terms enhanced by the

17 We will be able to prove this in the large u limit in the next section.
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logarithms)
4π

N
r − log

(
4π

N
r + 1

)
= log

m2

uΛ2
− α log

m2 + µ2

Λ2
, (4.6.62)

where r is given by

r =
N

4π
log
(σm

Λ2

)
− Ñ

4π
log

(
m2 + µ2

Λ2

)
. (4.6.63)

We can now find the boundary of this branch with the Coulomb branch of the theory

by forcing r = 0 in the above equation. It gives us

(m
Λ

)2
= u

(
m2 + µ2

Λ2

)α
. (4.6.64)

This boundary is shown in Fig. 4.9. One can see that it gets shifted towards the large

values of m as u increases. The value of the phase transition point on the µ = 0 axis is

m∗ = Λu
1

2−2α . (4.6.65)

Hρ phase. The procedure in this phase is similar. Now we exploit the approximation

σ � µ valid in the large u limit. The equation for the renormalized coupling is

4π

N
r + α log

(
4π

N
r + α

)
= log

m2 + µ2

Λ2
− α log

µ2

uΛ2
, (4.6.66)

where r is given by

r = − Ñ
4π

log
(σµ

Λ2

)
+
N

4π
log

(
m2 + µ2

Λ2

)
(4.6.67)

The boundary between the Hρ and Coulomb is parametrized by the following equation

(µ
Λ

)2
=
u

α

(
m2 + µ2

Λ2

)1/α

. (4.6.68)

This boundary is shown in Fig. 4.9. The phase transition for m = 0 occurs at

µ∗ = Λ
(α
u

) α
2−2α

. (4.6.69)
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C phases. In [159] a new phase within the Coulomb regime at large u was found

where 〈σ〉 = 0 and the residual discrete symmetry was not broken. For the masses

which are exponentially small in u, a VEV for σ is restored, and a Coulomb phase with

broken symmetry appears. To study how their picture is generalized for the weighted

sigma-model, we search for a broken Coulomb phase in the two following regions

Cµ : m � µ,

Cm : µ � m, (4.6.70)

where we shall use the following assumptions18

Cµ : σ, m � µ, D

Cm : σ, µ � m, D . (4.6.71)

Let us start with the Cµ phase. By employing the approximations (4.6.71) in (4.6.4)

we get the following equations

D = Λ2

((µ
Λ

)2
− D

Λ2

)α
,

2ασ2 log

(
µ2 −D

Λµ

)
− uσ2 =

{
2σ2 log

(
σ
Λ

)
m < σ

2σ2 log
(
m
Λ

)
m > σ

. (4.6.72)

Notice that the equations above admit only the solution σ = 0 as long as m > σ.

This is the Coulomb symmetric phase. For smaller m, we pick the first line in (4.6.72),

wich gives non-trivial values for σ. We can actually determine the boundary Cµ-Cs by

solving the above equations for m < σ and then imposing the condition σ = m. The

Cµ phase gets extended towards smaller values of µ, when it will eventually meet the

Hρ phase. As a final check, let us further simplify (4.6.72) in the large µ limit

D = Λ2
(µ

Λ

)2α
,

σ = Λ
(µ

Λ

)α
e−u/2 , (4.6.73)

which is consistent with the results of [159]. In this region, in fact, our model reduces

to the ordinary CPN−1 model, with the new scale Λ̃ = Λ(µ/Λ)α.

18 These assumptions are justified because we search for exponentially small values of σ and m (or
µ) and we expect D to be large for large u.
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The Cm phase is completely analogous. The correct approximation leads us now to

the following equations

m2 +D = Λ2

(
−D

Λ2

)α
,

2σ2 log

(
m2 −D

Λm

)
− uσ2 = α

{
2σ2 log

(
σ
Λ

)
µ < σ

2σ2 log
( µ

Λ

)
µ > σ

. (4.6.74)

We proceed as for the Cµ phase to determine the boundary with the symmetric phase.

The result is shown in Fig. 4.9. If we look at very small values of m, we can simplify

(4.6.74) a bit more. From the first equation we see that very small m implies m2 � D.

Finally we get

−D = Λ2
(m

Λ

)2/α
,

σ = Λ
(m

Λ

)1/α
e−u/(2α) . (4.6.75)

Super-conformal line. Keeping the results of this section in mind, it is now easy to

check that supersymmetry is effectively unbroken as we approach the super-conformal

line
µ

Λ
=
(m

Λ

)1/α
. (4.6.76)

Since we are looking into the Cs phase, we put from the beginning r = 0 and σ = 0 in

the second line of(4.6.4)

(
m2 +D

)N
= ΛN−Ñ

(
µ2 −D

)Ñ
, (4.6.77)

which is clearly solved by D = 0 provided that (4.6.76) holds. This condition is enough

to show unbroken supersymmetry. One can also directly check that the vacuum en-

ergy vanishes. In general, in the Cs phase D does not vanish, and supersymmetry is

generically broken.

4.7 Spectrum of the WCPN−1 Model

As was shown by Witten in the supersymmetric CPN−1 sigma-model photon is massive

due to a coupling to fermions and its mass is given by the chiral anomaly [58]. However,
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the photon remains massless in the bosonic CPN−1 sigma model. It was shown in [159]

that once the twisted masses are nonzero and the heterotic deformation is turned on,

the photon becomes massless in the symmetric Coulomb phase. The authors also call

this phase confining, since existence of long range interactions with massless carrier

allows bound states of particles (“kinks”). In CPN−1 sigma-model only n̄n mesons

could be formed, our model also admits, in principle, ρ̄ρ and nρ mesons. Below we

calculate the photon mass at different values of twisted masses m and µ as well as

the heterotic deformation parameter u, and show that it vanishes in the symmetric

Coulomb phase as is prescribed by the unbroken discrete symmetry. Since analogous

calculations in supersymmetric sigma-models have been previously performed (see, for

instance [158, 159, 38]) here we shall just list our result. Generic expressions for the

effective coupling constants can be found in Sec. B.2.

The one-loop effective Lagrangians for the WCPNF−1 (0, 2) sigma-model reads

L = − 1

4e2
γ

F 2
µν +

1

e2
σ 1

(∂µReσ)2 +
1

e2
σ 2

(∂µImσ)2 + iIm(b̄ δσ)εµνF
µν −Veff(σ) + Fermions .

(4.7.1)

We shall only consider photon-scalar mixing in this section, that is why we specified only

bosonic part of the action. In the above expression we denote σ = σ0 + δσ, where σ0 is

the VEV of the field σ in the vacuum where our effective theory lives. In (4.7.1) effective

potential Veff(σ) is given by (4.6.3), gauge and scalar couplings can be calculated from

the corresponding one-loop Feynman diagrams. Gauge field is coupled to the imaginary

part of σ and the mixing can straightforwardly be generalized from [159]. In Fig. 4.11

one-loop diagrams which contribute to the mixing are shown. The result is

given by

b =
N

4π


 1

N

N−1∑

i=1

1

σ̄0 − m̄i
− α 1

Ñ

Ñ−1∑

i=1

1

σ̄0 − µ̄i




=
N

4π

1

σ̄0

(
f

(
m

|σ0|

)
− αf

(
µ

|σ0|

))
, (4.7.2)

where the function f(β) was introduced in (4.6.51) and we assumed that σ0 6= 0. If the

VEV for σ vanishes at a vacuum (which happens in the symmetric Cs phase) then the

result is different

b =
1

4π

(
− 1

m
+
α

µ

)
. (4.7.3)
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The photon mass can be obtained by diagonalization of the mass Lagrangian

mγ = eσ 2eγ |b| . (4.7.4)

We can immediately see from (4.7.3), (4.7.4) and the formulae for the couplings (B.2.2),

(B.2.3) that in the symmetric Cs phase photon is massless in the large-N approximation.

This result is universal, it is dictated by the unbroken discrete ZN−Ñ symmetry present

in the Cs phase, and it is independent of the value of the heterotic deformation.

Let us now calculate the photon case for zero and nonzero values of u in the strongly

coupled Coulomb phases Cm and Cµ, where discrete symmetries are spontaneously

broken by the VEVs of σ.

4.7.1 Undeformed (2, 2) Model

If the (2, 2) supersymmetry is unbroken the masses of the particles of the same multiplet

should be the same

mγ = mσ = mfermi . (4.7.5)

Using (4.7.4) we can easily find

mγ =
A

|σ0|
||σ0|2 −m2| + α

|σ0|
||σ0|2 − µ2|

, (4.7.6)

where the numerator reads

A =

∣∣∣∣f
(
m

|σ0|

)
− αf

(
µ

|σ0|

)∣∣∣∣ . (4.7.7)

Depending on the VEV σ0 the masses (4.7.5) can have different values, in particular,

they can vanish.

Λ-Vacua. The Λ-vacua (4.6.34) appear only in the Cm region. The mass of theN = 2

multiplet is given by (4.7.6) with |σ0| = Λ and the following numerator

A = 2(1− α) . (4.7.8)
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0-Vacua. In the Coulomb phase there are also 0-vacua which are the solutions of the

vacua equations in the two regions of the parameter space Cm and Cµ (see Fig. 4.8).

In this case in formulae (4.7.6) and (4.7.7) we should use we have

A = 2α , |σ0| = Λ
(m

Λ

)1/α
in Cm phase

A = 2 , |σ0| = Λ
(µ

Λ

)α
in Cµ phase . (4.7.9)

4.7.2 Deformed (0, 2) Model

As we have observed in the previous sections, Λ vacua become metastable as we increase

u and for u > ucrit disappear completely. Keeping this in mind let us focus on 0-vacua,

which continue to exist for any value of the deformation, assuming that u is large enough

for the approximations we have used in the end of Sec. 4.6 to be valid.

In the Cm phase we get

4π

Ne2
γ

=
1

m2
+
α

3

1

Λ2

(
Λ

m

)2/α

+
2α

3

1

Λ2
(
m
Λ

)2/α
e−

u
α − µ2

,

4π

Ne2
σ 2

=
1

m2
+

α

Λ2
(
m
Λ

)2/α
e−

u
α − µ2

, (4.7.10)

where we have neglected all the terms as in the calculation of VEV D and σ0. The

photon mass by means of (4.7.4) is then given by

mγ =
√

6 Λ

(
Λ

m

)1/α((m
Λ

)2/α
−
(µ

Λ

)2
eu/α

)
e−

u
2α , (4.7.11)

where we have used (4.7.7) which implies that A = α in the Cm phase. The above

expression may seem to diverge at large u, but we do not need to forget that the

expression in the parentheses above should be bigger that zero for all u. The bigger u

is the smaller is µ and the whole expression becomes suppressed.

Analogously, the photon mass in the Cµ phase reads

mγ =
√

6Λ

(
Λ

µ

)α((µ
Λ

)2α
−
(µ

Λ

)2
eu
)
e−u/2 , (4.7.12)

where we used that A = 2.
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4.8 Conclusions

We have started this Chapter with constructing of the heterotic N = (0, 1) supersym-

metric O(N) sigma model. Similarly to the CPN sigma model it can be solved at large

N . As a result we found the effective potential of the theory, which allowed us to get

the spectrum. It appeared to be very much reminiscent of the spectrum of the (0, 2)

CPN sigma model in spite of the fact that the latter possesses a Kähler structure, and

therefore a larger supersymmetry, whereas the former does not. For all values of the

deformation parameter there is a massless fermion. For γ = 0 it is the extra left-handed

sterile fermion, while for γ 6= 0 it is a Goldstino (mixture of the additional left-handed

fermion and the initial right-handed one) corresponding to the supersymmetry break-

ing. The existence of the Goldstino is the evidence of the fact that the supersymmetry

becomes broken at any nonzero value of the deformation parameter. Another proof of

the supersymmetry breaking is the presence of the nonzero vacuum energy density. Also

fields from the same multiplet acquire different masses when the deformation is turned

on.

The low energy one-loop effective potential has two vacua. From the naive point of

view there should be one kink (and one antikink) interpolating between those vacua.

However, such an argument leads to a wrong conclusion about the number of kinks for

the CPN sigma model. For the latter kink dynamics has been studied to a very high

extent (see [35, 40, 174] and [160]). It was found that the different kinks correspond to

the different integration contours in the σ plane and that the number of kinks interpo-

lating between two different vacua depends not only on N but also on the number of

vacua separating those two. Therefore, the question about the number of kinks in the

O(N) theory should be worked out more carefully.

In the current Chapter we used Majorana N = 1 superfield formalism while con-

structing the action of the O(N) sigma-model. The heterotic deformation was rendered

by the coupling of the extra chiral superfield to the auxiliary superfield we have used

to build up the undeformed theory. We then generalize this construction to the het-

erotic (0, 2) CPN and weighted CPN sigma models by adding an additional auxiliary

superfield and modifying the interaction between the chiral superfield and the auxiliary

superfields. One may now try to use our methods for investigating sigma models with
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twisted masses and their chiral deformations.

Perhaps at this point the most intriguing question to be answered is from which

four-dimensional bulk theory does the O(N) sigma model originate from (if any). The

analogy with U(N) Yang-Mills theory and CPN−1 sigma models discussed in [147] and

references therein is not clear – what number of supersymmetries does the bulk theory

have to have? It is interesting to understand by means of what (extended object or

mechanism) the bulk supersymmetry gets broken.

Further on in this Chapter we solved, in the large-N approximation, a particular

kind of two-dimensional N = (0, 2) non-linear sigma-model which we referred to as

“heterotic” WCPNF . As it was already noticed, we didn’t study the most general kind

of heterotic deformations, rather, we focused on the particular case relevant to the

study of non-Abelian vortices. The main result of the Chapter is the determination of

the phase diagram of the theory summarized in Fig. 4.9, which generalize the well-known

N = (2, 2) case (see Fig. 4.8), once a heterotic deformation is turned on. In addition

to the two Coulomb phases Cm, Cµ and the two Higgs phases Hn and Hρ, already

present at zero values of the deformation parameter, a new Cs [159] phase emerges

around what we called the super-conformal line: µ/Λ = (m/Λ)1/α. On this line some

excitations become massless, and the theory is described by a super-conformal theory

of the minimal AN−1 type [181, 182, 183, 184]. A discrete Z
N−Ñ symmetry is broken

in all phases but it is preserved in the Cs phase. Supersymmetry is also generically

broken. The vacuum energy and the expectation value of the auxiliary field D vanish

as we approach the super-conformal line suggesting that supersymmetry is unbroken on

the line. The Cµ phase contains two well-defined sets of vacua which we called µ-vacua

and Λ-vacua (in this region µ < Λ). Once the heterotic deformation is turned on, the Λ

vacua become metastable. For sufficiently large values of the deformation (u > ucrit),

the Λ vacua do not exist at all. All the phase transitions look like being of the second

order [159], but it is important to stress that this is an effect of the leading order large-N

approximation: at finite N , they should rather look like sharp crossovers.

The vacuum diagram in Fig. 4.9 also gives us the spectrum of non-Abelian vortices

in the associated N = 1 four-dimensional gauge theory. In particular, supersymmetry

breaking means that vortices are not BPS saturated at the quantum level. Furthermore,

the vacuum energy (see (4.6.61)) is translated into a correction to the classical formula
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T = 2πξ for the tension of vortices19 . In the Cm regime, for example, N − Ñ

vortices become metastable and eventually disappear from the spectrum. Moreover,

as was shown in [58] and later discussed in [59, 63, 152, 159], the fundamental fields

n’s and ρ’s, together with their fermionic superpartners, can be interpreted as kinks

interpolating between two vacua, or vortices. As already mentioned, kinks correspond

to monopoles in the four-dimensional gauge theory. The study of spectrum of the model

we considered, thus, gives informations about the monopole spectrum in N = 1 theories.

The discovery that non-Abelian vortices are the precise link between two and four-

dimensions is a recent exciting result in the study of supersymmetric gauge theories.

Given the tighten relationship between two-dimensionalN = (2, 2) and four-dimensional

N = 2 theories, it is tempting to explore systems with less supersymmetry, to find if

and how the physics of N = 1 theories is “seen” on the two-dimensional N = (0, 2)

theory, and vice versa. Interesting results have already been found when no additional

hypermultiplets have been considered [164, 165] where a qualitative matching of the

supersymmetry braking pattern and of the meson spectrum was observed. Our results

are the first important step to extend this line of research when an additional number of

flavors Ñ is included. In this case, physics ofN = 1 SQCD varies dramatically [185, 186].

The most remarkable feature is the existence of an electric-magnetic duality (Seiberg

duality). More recently it was found that dynamical supersymmetry breaking is a quite

common feature [187]. It would be interesting to search for signs of these phenomena

on the two-dimensional side. With the better understanding of the quantum physics

of vortices when additional flavors are included, it should be possible to extend, for

example, the analysis made in [149, 188, 189], where the role of vortices in the context

of Seiberg duality was investigated. In these works, the dual quarks of the “electric”

theory were interpreted as monopoles of the “magnetic” theory.

The investigations on “heterotic” WCPNF−1 are by no means finished here. First

of all we think it may be interesting to further study the model on the super-conformal

line. This line as a direct counterpart in the four-dimensional gauge theory, where

the coalescence of multiple vacua give rise to the appearance of super-conformal vacua

called Argyres-Douglas points, where the relevant degrees of freedom are mutually non-

local [112, 180] . An analysis of this kind has been initiated for example in [181]. A

19 ξ is the four-dimensional Fayet-Iliopoulos
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comprehensive study of kinks is also in order. The spectrum of kinks is in fact related

to the monopole spectrum in four dimensions. This study started in [160]. A careful

study of kinks interpolating between different kind of vacua is still to be done.
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Figure 4.9: Phase Diagram for u = 10 and α = .3. At u = 0 the C phase of the theory had
non-zero VEV for σ everywhere but on the graph µ/Λ = (m/Λ)1/α. As we increase u the domain
with unbroken ZÑ symmetry (Cs phase) gets widened pushing C phases with broken symmetry
towards the axes. At very large values of u the latter phase occupies only two small domains
as is shown in the figure. The Higgs phases Hn and Hρ are also pushed apart by blowing Cs
phase, one can see it from (4.6.65) and (4.6.69). In the limit u → ∞ the theory has only Cs
phase. To show all the phases, we magnified Cm region by a factor of 107 and the Cµ by a
factor of 20.
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Figure 4.10: Dependence of m∗ (left plot) and µ∗ (right plot) as a function of u. Here we
compare numerical solutions (solid lines) and the analytical values (4.6.65) and (4.6.69) (dashed
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Figure 4.11: One-loop diagrams which contribute to the the photon-scalar anomalous mixing.



Chapter 5

Conclusions and Open Questions

In this concluding Chapter we would like to highlight some directions of possible future

work on N = 2 supersymmetry and outline the connection with other developments

which were not represented in the bulk of the current thesis.

In Chapter 3 we only briefly discussed wall crossing phenomena in two dimensional

models, however, there is a vast literature existent nowadays on this topic. In four di-

mensions WCF seems to be more intricate than in 2d, however, as recent developments

suggest [190, 191, 192], they may not me as complicated as they seem at least for certain

class of theories (so-called compete N = 2 theories). According to the authors whose

papers we have just cited, a 4d BPS quiver (a picture which uniquely describes BPS

spectrum of the theory in a chamber of the moduli space of the theory with certain

identifications) can be viewed as a scheme of 2d vacua (which minimize twisted super-

potential) and arrows between the nodes represent simple kinks interpolating between

these vacua! One can travel to another chamber in the moduli space, and when the cor-

responding wall between the two chambers is crossed, a certain transformation of the

quiver has to be made, which is called mutation (physically it roughly corresponds to

a Seiberg duality [185] in the four dimensional language). Such a correspondence exists

for all complete theories in 4d. It would be interesting to find a relationship between

this fact and the 4d/2d duality we have discussed in the current thesis. Indeed, for our

story we need a BPS vortex and the 2d theory can be identified as its worldvolume low

energy effective theory. A typical example of such theory, as we have discussed it in the

text, would be a SQCD. However, the class of theories considered in [190, 191, 192] is
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wider, for instance it includes theories which do not have any flavors, e.g. pure Yang-

Mills theory. Yet, the relationship with a 2d theory can be found. One can pose the

following question: What is the symmetry (both on the 2d side and in the 4d side of

the duality) which relates two pairs of dual theories?

In Chapter 4 we have mostly discussed the 2d (0,2) theory. As we have reported in

the text, a relationship with the 4d bulk theory was established in [151], where the (0,2)

theory was derived as a wolrdvolume theory of the heterotic vortex string. It would be

nice to have an independent confirmation of this observation, which to the best of our

knowledge is not present in the literature. We have presented in the text a family of

superconformal theories in two dimensions and a concise way to related them to the 4d

counterparts (4.6.45). For N = 1 theories in 4d and for (0, 2) theories in 2d the proposed

answer cannot be made as simple as in the N = 2 case as there is no Seiberg-Witten

curve any longer. Yet, some methods of investigating such SCFTs are present in the

literature and we should take advantage of them in order to answer the question posed

above.

The list can be completed with many other interesting problems related to non-

abelian mirror symmetry, Langlands duality in connection with the 4d/2d correspon-

dence.
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[129] L. Fehér and C. Klimč́ı k. Poisson-Lie Interpretation of Trigonometric Ruijsenaars

Duality. Communications in Mathematical Physics, 301:55–104, January 2011,

0906.4198.
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Appendix A

Notations

A.1 4d Notations

In this work we are intended to use Euclidean signature. We benefit from this while

studying static configurations, where in the gauge A4 = 0 the Lagrangian is nothing

but the energy density. Below we list some definitions and conventions. Raising and

lowering of spinor indices is performed by means of Levi-Civita symbol

ε12 = −ε21 = −ε12 = ε21 = 1 , (A.1.1)

the same for the Levi-Civita symbol with dotted indices. The definition is consistent

with

εαβεβγ = δαγ . (A.1.2)

Scalars can then be obtained by contracting spinor indices, for example ηαχ
α = −ηαχα.

Vector indices are contracted with Euclidean metric δmn.

Sigma matrices

(σm)αα̇ = (−iτ1, −iτ2, −iτ3, 1) ,

(σ̄m)α̇α = (iτ1, iτ2, iτ3, 1) = ((σm)αα̇)† , (A.1.3)

where τ1,2,3 are standard Pauli matrices. Thus for σm the undotted index goes first,

whereas for σ̄m it is the last.
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Lorentz projectors

(σmn)αβ = 1
4

(
(σm)αα̇(σ̄n)α̇β − (σn)αα̇(σ̄m)α̇β

)
,

(σ̄mn)α̇β̇ = 1
4

(
(σ̄m)α̇α(σn)α

β̇
− (σ̄n)α̇α(σm)α

β̇

)
. (A.1.4)

Chiral and antichiral electromagnetic field strength

Fαβ = −1
2Fmn(σm)αα̇(σn) α̇

β = −( ~E + ~B) · ~σ σ2 ,

F̄ α̇β̇ = 1
2Fmn(σ̄m)α̇α(σ̄n)β̇α = (− ~E + ~B) · ~σ σ2 . (A.1.5)

A.2 2d Notations

Gamma matrices

γ0 = σ2 =

(
0 −i
i 0

)
, γ1 = iσ1 =

(
0 i

i 0

)
, γ5 = γ0γ1 = σ3 =

(
1 0

0 −1

)
. (A.2.1)

Antisymmetric symbol

εαβ =

(
0 1

−1 0

)
. (A.2.2)

Left and right coordinates

xL = x0 + x1, ∂0 = ∂L + ∂R, ∂L = 1
2 (∂0 + ∂1) ,

xR = x0 − x1, ∂1 = ∂L − ∂R, ∂R = 1
2 (∂0 − ∂1) . (A.2.3)

Left and right fermions

ψ =

(
ψR

ψL

)
(A.2.4)

are eigenstates of γ5

γ5ψR,L = ±ψR,L . (A.2.5)

Derivatives and integrals
∫
d2θ θ̄θ =

∫
dθ1 dθ2θ̄θ =

∫
dθ1 dθ2 2iθ2θ1 = 2i ,

∂

∂θ̄α
θβ = γ0

αβ . (A.2.6)
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Contraction of indices for Majorana fermions

ψ̄θ = ψ†γ0ψ = ψTγ0ψ = iθ2ψ1 − iθ1ψ2 = θ̄ψ , (A.2.7)

θ̄γ0,1θ = (θ1)2 = (θ2)2 = 0 , (A.2.8)

θ̄θ = 2iθ2θ1 = −2iθ1θ2 ,

θαθβ =
i

2
εαβ θ̄θ = −1

2γ
0
αβ θ̄θ ,

θ̄αθβ = 1
2δαβ θ̄θ . (A.2.9)

Some relations for gamma matrices

γµT = −γ0γµγ0 ,

γµ† = γ0γµγ0 . (A.2.10)

Supersymmetry transformations. Coordinate transformations

xµ → xµ + iε̄γµθ,

θα → θα + εα,

θ̄α → θ̄α + ε̄α. (A.2.11)

Chiral superfield

Φ = φ+ θ̄ψ + 1
2 θ̄θF , (A.2.12)

obeys the following supertransformations

δn = ε̄ψ,

δψ = −i∂µnγµε+ εF,

δF = −iε̄γµ∂µψ . (A.2.13)

A natural generalization of the chiral superfield is the isovector superfield

N i = ni + θ̄ψi + 1
2 θ̄θF

i , i = 1, . . . , N . (A.2.14)

Supertransformations act as

δΦ = ε̄QΦ (A.2.15)
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Supersymmetry generators

Qα =
∂

∂θ̄α
− i (γµθ)α ∂µ , (A.2.16)

Covariant derivative

Dα =
∂

∂θ̄α
+ i (γµθ)α ∂µ , (A.2.17)

anticommutes with the supercharge

{Qα,Dβ} = 0 . (A.2.18)

Chiral Notation. One can use the following identification

xµ = γµαβx
αβ , µ = 1, 2 , α, β = 1, 2 . (A.2.19)

Having done so we can write

Qα = εαβ
∂

∂θβ
+ θβ∂αβ . (A.2.20)

Accordingly we have

{Q1,Q1} = 2∂12 = 2

(
i
∂

∂t
− i ∂

∂x

)
= 2(H+ P) ,

{Q2,Q2} = 2∂21 = 2

(
i
∂

∂t
+ i

∂

∂x

)
= 2(H−P) ,

{Q1,Q2} = 0 , (A.2.21)

where H and P are energy and momentum charges respectively. Covariant derivative

reads

Dα = iεαβ
∂

∂θβ
− iθβ∂αβ . (A.2.22)



Appendix B

SUSY Gauge Theories

B.1 Superfield Formalism

In this section we present the superfield derivation of the Lagrangian (4.5.1) of the

weighted sigma model without twisted masses. Inclusion of twisted masses (4.5.7) can

naturally be realized in the brane picture. Here we briefly review the derivation of the

Lagrangian given in Ref. [38]

Lhet
WCPN =

∫
d2θ

[
1
4εβα(Dα + iAα)N †i (Dβ − iAβ)Ni + 1

4εβα(Dα − iAα)R†j(Dβ + iAβ)Rj+

+ iS




N∑

i=1

N †i Ni −
Ñ∑

j=1

R†jRj − r0




+ 1
4εβαDαB†DβB +

(
i ω B(S − i

2D̄γ5A) + H.c.
)
]
, (B.1.1)

where the covariant derivative is given in (4.5.2) and in the third line of the above

Lagrangian it is implied that

Dγ5A = Dα
(
γ0γ5

)
αβ
Aβ , (B.1.2)

isovector superfields are represented by

N i = ni + θ̄ξi + 1
2 θ̄θF

i, i = 1, . . . , N,

Rj = ρj + θ̄ηj + 1
2 θ̄θG

j , j = 1, . . . , Ñ , (B.1.3)
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constraint superfield

S = σ1 + θ̄u+ 1
2 θ̄θD (B.1.4)

gets multiplied by the D-term constraint in the second line of (B.4.4), and spinor su-

perfield under the proper gauge1

Aα = −i(γµθ)αAµ + (γ5θ)ασ2 + θ̄θ vα .

The heterotic deformation is conducted by the chiral field

B = −θ̄ζ + 1
2 θ̄θF̄F . (B.1.5)

which by definition contains only the right-handed fermion:

ζ =

(
ζR

0

)
(B.1.6)

In the formulae (B.4.4)-(B.1.5) θ is a Majorana spinor, σ1, σ2, Aµ, uα, vα and D are

real fields, while ζ and F are complex fields. The complex-valued parameter ω stands

for the heterotic deformation. The complex-valued fields σ and λ from (??) can be

assembled using the components of S and Aα as follows

σ = σ1 + iσ2 , λα = uα + ivα . (B.1.7)

B.2 One-loop Effective Action

Below we list generic expressions for the effective couplings of (4.7.1) in terms of D,σ, u

and twisted masses. Let us first for completeness specify the full action including the

fermionic part

L = − 1

4e2
γ

F 2
µν +

1

e2
σ 1

(∂µReσ)2 +
1

e2
σ 2

(∂µImσ)2 + i
1

e2
λ

λ̄γµ∇µλ+
i

2
ζ̄R∂LζR

+ iIm(b̄ σ)εµνF
µν − Veff(σ)− (iΓσ̄λ̄λ+ iωλLζR + H.c.) . (B.2.1)

The gauge coupling can be calculated using the wavefunction renormalization for the

photon Fig. B.1 and reads2

1 see Ref. [38] for further details
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γ

ρ

ξ

η

γ γ γ
n

n ξ

γ γ γ γ
ρ η

Figure B.1: Four series of one-loop diagrams which give photon wavefunction renormalization.

1

e2
γ

=
1

4π

N−1∑

i=1

[
1

3

1

|σ0 −mi|2 +D
+

2

3

1

|σ0 −mi|2
]

+
1

4π

Ñ−1∑

i=1

[
1

3

1

|σ0 − µi|2 −D
+

2

3

1

|σ0 − µi|2
]
. (B.2.2)

Feynman diagrams corresponding to the scalar couplings renormalization can be found

in Fig. B.2. Performing the integrals we obtain

ξ

ξ

σ

σ

η

η

σ

σ

σ

σ

n

n

σ

σ

σ

σ

σ

σ

ρ

ρ

Figure B.2: Four series of one-loop diagrams which give scalar wavefunction renormalization.

2 We assume for simplicity that for the vacuum Imσ0 = 0.
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1

e2
σ 1

=
1

4π

N−1∑

i=1

1

|σ0 −mi|2
[

1

3
+

2

3

|σ0 −mi|4
(|σ0 −mi|2 +D)2

]

+
1

4π

Ñ−1∑

i=1

1

|σ0 − µi|2
[

1

3
+

2

3

|σ0 − µi|4
(|σ0 − µi|2 −D)2

]
,

1

e2
σ 2

=
1

4π

N−1∑

i=1

1

|σ0 −mi|2
+

1

4π

Ñ−1∑

i=1

1

|σ0 − µi|2
. (B.2.3)

We see that real and imaginary components of the σ0 field acquire different renormal-

izations, in particular, if the SUSY is broken, their couplings are different. The fermion

coupling renormalization given by the diagrams in Fig. B.3 reads

ξη

ρ

λλ

n

λλ

Figure B.3: Two series of one-loop diagrams which give scalar wavefunction renormalization.

1

e2
λ

=
N − Ñ

4π

2

D
− 1

2π

N−1∑

i=1

|σ0 −mi|2
D2

log
|σ0 −mi|2 +D

|σ0 −mi|2

− 1

2π

Ñ−1∑

i=1

|σ0 − µi|2
D2

log
|σ0 − µi|2 −D
|σ0 − µi|2

. (B.2.4)

The Yukawa coupling can be found as the mass renormalization using Fig. B.3 and is

given by (equivalently one could compute the corresponding triangular graph)

Γ =
1

4π

2

D



N−1∑

i=1

log
|σ0 −mi|2 +D

|σ0 −mi|2
+
Ñ−1∑

i=1

log
|σ0 − µi|2 −D
|σ0 − µi|2


 . (B.2.5)

The sums in the above formulae can be done explicitly. Below we list those formulae

we used in Sec. 4.7. Using

1

N

N−1∑

k=1

1

|1− γe 2πik
N |2

=
1

|1− γ2| , (B.2.6)



167

and, for nonzero D

1

N

N−1∑

k=1

1

1− γ cos 2πik
N

=
1√

1− γ2
, (B.2.7)

the value of the gauge coupling (B.2.2) can be evaluated and reads

1

e2
γ

=
N

4π


1

3

1√
(|σ0|2 +m2 +D)2 − 4|σ0|2m2

+
2

3

1

||σ0|2 −m2|




+
Ñ

4π


1

3

1√
(|σ0|2 + µ2 −D)2 − 4|σ0|2µ2

+
2

3

1

||σ0|2 − µ2|


 , (B.2.8)

whereas the coupling for the imaginary part of σ is given by

1

e2
σ 2

=
N

4π

1

||σ0|2 −m2| +
Ñ

4π

1

||σ0|2 − µ2| . (B.2.9)

Thus if the SUSY is unbroken we can get from the above two formulae and (B.2.4) the

following

1

e2
γ

=
1

e2
σ 1

=
1

e2
σ 2

=
1

e2
λ

=
N

4π

(
1

||σ0|2 −m2| + α
1

||σ0|2 − µ2|

)
. (B.2.10)

B.3 Supersymmetry Algebra and Central Charges

N = 2 supersymmetry algebra in four dimensions has the following form

{QIα, Q̄J α̇} = 2Pαα̇δ
I
J + 2Zαα̇δ

I
J ,

{QIα, QJβ} = εαβε
IJZmon + (Zd.w.)

IJ
αβ . (B.3.1)

There are three types on central charges: string, monopole and domain wall types. The

full global symmetry of the theory is SU(2)L×SU(2)R×SU(2)R×SU(2)c. It is broken

by the Omega background in the NS limit to SU(2)R+R×SU(2)c. Twisted supercharges

Q̄ = δα̇I Q̄
I
α̇ , Qm = (σ̄m)IαQIα , Q̄mn = (σ̄mn)α̇I Q̄

I
α̇ . (B.3.2)

The former operator above is also known as BRST operator. The transformations can

be inverted as

QIα = 1
2(σm)IαQm , Q̄α̇J = 1

2εα̇JQ̄+ 1
2(σ̄mn)α̇JQ̄

mn . (B.3.3)
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Plugging these formulae into (B.3.1) we get the twisted version of the supersymmetry

algebra check on the domain wall charge

{Q̄,Qm} = 8Pm + 8Zm , {Qm, Q̄nk} = 4(δmkδln − δmlδkn − εmlnk)(P l + Z l) ,

{Qm, Qn} = 2δmn(Zmon − Zd.w.) , {Q̄, Q̄} = 4(Z̄mon − Z̄d.w.) ,
{Q̄, Q̄mn} = 0 , {Q̄mn, Q̄pq} = 2i(δmpδnq − δmqδnp − εmnpq)(Z̄mon − Z̄d.w.) .(B.3.4)

B.4 Alternative Superfield Formulation of the Heterotic

N = (0, 2) CPN−1 sigma model

Distler and Kachru [171] constructed a very wide class of heterotic (0, 2) Calabi-Yau

sigma models and provided gauged formulation for them. Their construction employs

fiber bundles over complex projective spaces and includes heterotic (0, 2) CPN−1 sigma

model in it. In this section we give a simple alternative derivation of the (0, 2) heterotic

(weighted) CPN sigma model from the Majorana formalism we used above.

Recall that for the O(N) sigma model we used the following trick – the constraint

on the isovector superfield was replaced by a different one, but it did not affect the

lowest component constraint; thereby the geometry of the theory was not deformed. In

order to apply this trick for the CPN−1 model we write its action in the form found in

[193, 194] and deform it by adding the coupling of chiral field

B = −θ̄ζ + 1
2 θ̄θF̄F , (B.4.1)

constraint superfield

S =
√

2σ1 +
√

2θ̄u+ 1
2 θ̄θD (B.4.2)

and spinor superfield

Aα = −i(γµθ)αAµ +
√

2(γ5θ)ασ2 +
√

2θ̄θ vα,

where θ is a Majorana spinor, σ1, σ2, Aµ, uα, vα and D are real fields, while ζ and F
are complex ones 3 . Introducing now the complex isovector superfield

N i = ni + θ̄ξi + 1
2 θ̄θF

i, (B.4.3)

3 Note that for the present section we changed the notations of the fields in order for the reader to
see the equivalence with the Lagrangian from [158] more easily. Also for convenience we consider ζ to
be a right-handed fermion and use the definition ∂L,R = ∂0± ∂1 instead of one mentioned in Appendix.
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we can write the Lagrangian of the model in the following form

LCPN =

∫
d2θ

[
1
2εβα(Dα + iAα)N †i (Dβ − iAβ)Ni + iS(N †i Ni − r0)

+1
4εβαDαB†DβB +

(
i ω B(S − i

2Dγ5A) + H.c.
) ]
,

(B.4.4)

where ω is the complex-valued deformation parameter and Dγ5A = Dα
(
γ0γ5

)
αβ
Aβ.

Some comments about the Lagrangian are due. The advantage of the superfield for-

mulation is that the supersymmetry is manifest without an explicit check. Although

the Lagrangian for the undeformed theory is written using the N = (1, 1) formula-

tion it possesses N = (2, 2) symmetry due to the Kähler structure of the target space

[176]. The field B is a superfield only with respect to the half of supertransformations

θR → θR + εR, therefore the symmetry of the deformed Lagrangian is N = (0, 2) one.

Also it should be noted that the field Aα has the form (B.4.3) only if one considers a

particular gauge. Starting from the most general expression for the real spinor field

Aα = aα +Aθα − i(γµθ)αAµ +
√

2(γ5θ)ασ2 + θ̄θ
(
vα + i

2(γµ∂µa)α
)
, (B.4.5)

one can use the following gauge transformations

Aα → Aα −DαΦ, (B.4.6)

with Φ being the scalar real superfield, to eliminate aα and A. The undeformed La-

grangian is obviously gauge invariant, while the invariance of the deformation is more

subtle. The transformation of the termDα
(
γ0γ5

)
αβ
Aβ is proportional to

(
γ0γ5

)
αβ
DαDβΦ,

which is identically zero since the operators D1 and D2 anticommute.

Carrying out the calculations and integrating out the auxiliary fields F and F we

recover the Lagrangian of the (0, 2) CPN−1 sigma model considered in [158]

LCPN = |∇µni|2 + iξ̄iL∇RξiL + iξ̄iR∇LξiR − 2|σ|2|ni|2 −D
(
|ni|2 − r0

)

+
[
i
√

2n̄i
(
λLξ

i
R − λRξiL

)
− i
√

2σξ̄iRξ
i
L + H.c.

]
− 4|ω|2|σ|2

+ i
2 ζ̄R∂LζR −

[
i
√

2ωλLζR + H.c.
]
, (B.4.7)

where the following complex fields have been introduced

σ = σ1 + iσ2 , λα = uα + ivα, (B.4.8)
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and ∇µ = ∂µ − iAµ is a usual notation for the covariant derivative.

Analogously, the weighted CPN sigma-model considered in [160] which emerges from

the reduction of N = 1 supersymmetric QCD with gauge group U(Nc) and Nf flavors

can be easily deformed to the chiral version by (B.4.4), where the constraint N †i Ni = r0

is replaced by
Nc∑

i=1

N †i Ni −
Nf∑

i=Nc+1

N †i Ni = r0 . (B.4.9)

In components the Lagrangian reads

Lw
CPN = |∇µni|2 + |∇µρi|2 + iξ̄iL∇RξiL + iξ̄iR∇LξiR + iη̄iL∇RηiL + iη̄iR∇LηiR

− 2|σ|2|ni|2 − 2|σ|2|ρi|2 −D
(
|ni|2 − |ρi|2 − r0

)
− 4|ω|2|σ|2

+
[
i
√

2n̄i
(
λLξ

i
R − λRξiL

)
− i
√

2σξ̄iRξ
i
L + H.c.

]

+
[
−i
√

2ρ̄i
(
λ̄Lη

i
R − λ̄RηiL

)
+ i
√

2σ̄η̄iRη
i
L + H.c.

]

+ i
2 ζ̄R∂LζR −

[
i
√

2ωλLζR + H.c.
]
, (B.4.10)

with

N i = ni + θ̄ξi + 1
2 θ̄θF

i, i = 1, . . . , Nc,

NNc+i = ρi + θ̄ηi + 1
2 θ̄θF

i, i = 1, . . . , Nf −Nc. (B.4.11)



Appendix C

Liouville and Toda Theories

C.1 Gaudin model from Liouville CFT

Here we discuss the Gaudin model – the key tool in our AGT construction, its relations

with the XXX spin chain and how it appears in conformal field theories.

Gaudin model from XXX chain. The Gaudin model is the simplest example of

the Hitchin system on a sphere with marked points [195]. It is also known to be a large

impurity limit of an anisotropic twisted XXX spin chain. This fact can be realized both

in the transfer matrix at the classical limit and in the Bethe ansatz equations in the

quantum case. We shall be interested in the quantum case and upon the proper limit

Bethe ansatz equations for the Gaudin model can be obtained. Let us start with Bethe

equations for anisotropic XXXS
2

spin chain1 with twist q = e2πiτ̂

N∏

a=1

λi − νa + ε
2Sa

λi − νa − ε
2Sa

= q
K∏

j=1
j 6=i

λi − λj − ε
λi − λj + ε

. (C.1.1)

By taking logarithms of both parts of the above equations, then rescaling

λi 7→ xλi, νa 7→ xνa, τ̂ 7→ τ̂

x
, (C.1.2)

1 We measure spectral parameters λi in units of iε here.
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and sending x→∞ we arrive at the following set of equations

log q

ε
−

N∑

a=1

Sa
λi − νa

=

K∑

j=1
j 6=i

2

λi − λj
, (C.1.3)

which are nothing but Bethe equations for the Gaudin model. The anisotropies νa at

each site still play the role of the inhomogenities in the model, while the twist q in the

XXX chain play the role of the external field in the Gaudin system. As we can see the

latter vanishes as ε→∞.

Bethe ansatz equations for the Gaudin model. Let us now recall how the Bethe

ansatz equations for the rational Gaudin model with the Lie algebra symmetry g are

derived. For our purposes we need merely g = sl(2) and and L points on the sphere. At

each point we fix a representation V (ν1), . . . , V (νL) of sl(2) algebra with some dominant

weights νa, a = 1, . . . , L. According to the Bethe ansatz prescription [107] we construct

the following operator

S(u) =
4∑

a=1

Ha
u− za

+
4∑

a=1

∆(νa)

(u− za)2
, (C.1.4)

where Ha are Gaudin Hamiltonians at each site of the lattice

Ha =
∑

b6=a

J
(a)
α Jα (b)

za − zb
, (C.1.5)

where α = 1, . . . ,dim(g), J
(b)
α of the acts with Jα ∈ sl(2) on the b-th site of the spin

chain and with identity on the others. ∆(νa) are eigenvalues of the U(sl(2)) quadratic

Casimir acting on V (νa). For such a system Bethe ansatz equations for the sector with

κa Bethe roots read as follows

L∑

b=1

νbε

ti − zb
−

κa∑

j=1
j 6=i

2ε

ti − tj
= 0, i = 1, . . . , κa . (C.1.6)
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