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Abstract

Soliton molecules can be formed in some possible mechanisms both theoretically and experimentally.
In this paper, we introduce a new mechanism, namely the velocity resonant, to find soliton molecules.
Under the velocity resonance mechanism, two solitons can form a kink-antikink molecule, an
asymmetric soliton, a two-peak soliton and/or a far away bounded molecule depended on the
selections of the wave numbers and the distance between two solitons of a molecule. The results are
exhibited via three well known fifth order integrable systems which serve as a general fluid model, as
well as models many other physical fields.

Soliton molecules and bound states of solitons have been observed experimentally in optics [ 1-4] and predicted
numerically in Bose—Einstein condensates [5]. On the other hand, solitons play a very important role in various
modern scientific fields including fluids [6], plasmas [ 7], fibers [8], optics [9], complex networks [10], quantum
field theory [11], gravity [12], Bose—Einstein condensates[13], atmospheric and oceanic dynamics[14] and so on.
In addition to optical systems, fluid systems (such as the stratified fluids [ 15], magnetic fluids [16], quantum
fluids [17], fluids of light [ 18], atomic and molecular gases [19], degenerate electron fluids [20] and superfluid
*He [21]) exhibit abundant soliton structures. Solitary waves and solitons were discovered firstly in fluid. We
believe that soliton molecules could be observed in fluids such as oceanic and atmospheric systems.

Resonance is also an important natural phenomena which may lead to terrible disasters (blow up in
mathematics). For integrable systems, because of the complexities introduced by nonlinearity, resonances of
solitons may lead to various types of new excitations such as the breathers (analytic) [22] or complexitons
(singular) [23] (caused by module resonance of wave numbers, say, |k| = |ki|,i.e. k, = 4-k*), soliton fissions
and fusions [24], instantons/rogue waves [25] and rational-exponential waves (caused by wave number
resonance companied by a vanishing procedure, namely, k, — £k — 0)[26], web solitons and lumps (by wave
number resonance 1?2 = :i:l?l in high dimensional cases) [27]. In this paper, we try to find a new mechanism to
form soliton molecules by introducing velocity resonance w; /k; = w, /k.

One of the important fluid models to describe surface and internal waves can be written as

up + [aw? + Bug + € (i + Nt + Va1t + Bitkee)le + 0(€2) = 0, ¢y
which has been derived by many authors [28—30]. Some authors (say, Kodama [31] and Fokas and Liu [32]) have
proved that the model (1) is asymptotic integrable up to the same order €” because it can be asymptotically
changed to either the usual Korteweg de-Vries (KdV) equation (¢ = 0) or the fifth order integrable KdV

equation by using suitable transformations. As a matter of fact, similar to the Kodama’sidea [31], the
transformation
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where a and b are arbitrary constants, solves the original equation (1) approximately up to the same order e. To
check the integrability of (3), one can make a Galileo transformation v — —32/(5aa81¢) + v(x + 3%/(5aB¢€), t)
such that the terms av” and (v, in (3) can be eliminated.

Itis well known that there are three integrable cases, the usual fifth order KdV equation with

{a, b} xay = {%, é}, the Sawada-Kotera (SK) model with {a, b} sx = {1, 1}and the Kaup-Kupershmidt (KK)

equation with {a, b} gx = { 1, i } The approximate transformation (2) for the fifth order KdV case is firstly
given by Kodama [31], while other two cases have not yet been found elsewhere as far as we know.

For the fifth order KdV and SK cases, the multiple soliton solutions possess the form
(fj = kix — wit + 5]-0, w; = 6ﬁlk]-5 + ﬂkf, v — u),

U= @{lnlz K, cosh(iyj_gj)]} , 4)
« v i=1 2 xx

where the summation v should be done for all possible permutations v; = 1, —1 (j = 1, 2,...,N), K, = [[;;
aijz- = (v;k; — v;kj)* for the fifth order KdV case, aijz- = (viki — vjkj)*[5€6, k — v vikik; + ka) -+ 33]for the
SK case, kjand £ o (j =1, 2,...,N) arearbitrary constants.

We are interested in finding something new start from (4) except for those from the usual KdV equation
(e = 0in(1)). In additional to the N soliton solutions, the expression (4) includes many kinds of resonant
excitations. All known resonant solutions of (4) are singular ones with blow up properties which include the
complexiton solutions [23] (or namely singular breathers caused by the resonant condition |k;| = |kj,i.e.,
ki = ik;k), the rational-exponential function mixed solutions [26] (produced by the resonant conditions
k; = %k;) and the rational solutions (generated by further resonant conditions k; — k; — 0).

To find some resonant solutions, we take N = 2 as a simple example. For N = 2, the expression (4) reduces

u= @{ln a_cosh(M) + agosh(ﬁ)]} (5)
a | 2 2 .
_ 3B (2a-a.[kj cosh(§) + K cosh(§)] + a’ (ki + ko) + af (ki — k2)*) ©
2a a_cosh (%) + a,cosh (%)]Z

where §; = kix — wit + &, i =1, 2, a? = (k £ k)? for the fifth order KdV case,and a? = (k, & k)2
[5¢6,(k% £ kik, + k) + 303]for the SK case.
The first resonant solution of (6)

1= lim %{ln i [acosh(M) + a+cosh(—€1 _ fz)]}
kh—k « kb — Kk 2 2 "

= @{ln [aysinh (kix — k7 (Biekl + B)t + €) + aki(x — kPt (5B1e ki + 38) + x0)] e (7)
o

can be obtained by taking the limit procedure, the wave number resonance conditions, k, — ki, §, — &, + im,
&0 — 5{0 + (ky — k) x, where {a;, a,} = {1, 1} for the KdV case and
{a), ;} = {\/Sﬂleklz + 343, \/15,6’15k12 + 3} for the SK case.

The second resonant solution of (6) is the simplest rational solution

ie 68 ©

a a(x + xg)

of the KdV and SK cases under the resonant condition k, — k; — 0.

Itis clear that the resonant solutions (7) and (8) are singular at some points expressed by
aysinh (kx — kX (Brek? + B)t + 5{0) + gk (x — kft(58,ekf 4 33) + x¢) = 0for(7)and x = —x, for
(8). These two resonance solutions are not related to soliton molecules.

The third type of resonance solution are also obtained from the wave number resonances but with complex
wave numbers, k, — 1* = k — ik. Ifthe resonant solution is analytic, then the solution becomes a bound state
of two solitons, or a (special type of) soliton molecule [33] and or a breather more popularly. It the resonant
solution is singular, the solution is named complexiton [23]. For the solution (5), we have both the breather and
complexiton resonant solutions for the SK equation and only the complexiton solutions for the KdV equation.
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Figure 1. Density plot of the soliton molecule for the SK equation described by equation (6) with (14).
Taking the complex wave number resonant condition,

ky — ki =k — ki, £ =1y + (10 + ™, &9 = 1y — Tols ©)
we have the complexiton solution,

u= %{ln[lial sinh(n) + kb; sin(7)] }xx»

n=kx + (ek® — 106 k°k? + 5ekr* — k> + 3kr?)t + 1,

T = kx + Gek*s — 10ek?:> + ex® — 3k%k + Kt + T, (10)
where

{a, b1} = {1, 1}

for the KdV case and

{a, bi} = (J&1, 6, ) = (561€k> — 1581 ¢w? + 36, 1561¢k? — 561er* + 30}, 616, > 0

for the SK case. It is clearly, the complexiton solution (10) is singular at the line xa; sinh(n) + kb; sin(7) = 0.
Itis interesting that for the SK case, by taking

ky = ki =k — ki, &y =1y + Toi, &9 = 1y — Tols (11)
we can find another complex wave number resonance solution

u= %{ln [k« — 81 cosh(n) + k\/é_z cos(7)] Jxx» 6162 < 0, (12)
Q@

where nand Tare same as in (10). Obviously, the solution (12) is an analytical breather for |/$\/——61 | > |k\/672 |
and a singular complexiton for |I€\/——(51 | < |k\/672 |
In this paper, we focus on the fourth type of resonance solutions (soliton molecules) from the multiple
soliton solutions (4) by introducing a novel type of resonance conditions (k; = =%k;), the velocity resonances,
ki _ Bik? + 5":’3' (13)
ki b kjs + ﬂk;
Because of the resonant condition (13), the ith and jth solitons are bounded and form a soliton molecule or an
asymmetric soliton under appropriate selections of the solution parameters.
Two-soliton solution (4) exhibits one soliton molecule structure under the resonance condition (13).
Figure 1 displays the molecule structure expressed by (6) with the parameter selections (o« = 3, = —(; = 1
are chosen for the rest of this paper),

ki=2V21, k =4, e = 0.01, &, = 0, &, = 20, (14)

for the SK case.
Figure 2 is a three dimensional plot of the soliton molecule (6) of the fifth order KdV case with (14).
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Figure 2. Soliton molecule structure for the fifth order KdV case described by (6) with (14).
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Figure 3. Asymmetric soliton for the fifth order KdV equation described by (6) with (16).

From figures 1, 2 and the expression (6), one can find that two solitons in the molecule are different because
ki = k, though the velocities of them are the same.

The sizes of the soliton molecule, the distance between two solitons of the molecule, depends on the
parameters &), &9 and k; via

1
st = 4_w3ﬂ16k13(cflo - 520)2(k12 + W12), (15)
1

where ¢ = % k_;‘ and w; = k' (B + €BikD).
1 191€

Itis clear that the soliton molecule will become an asymmetric one soliton solution if two solitons in one
molecule are close enough. Figure 3 and figure 4 depict the structures of the asymmetric soliton solutions related
to the fifth order KdV and the SK cases, respectively. The parameter selections related to figure 3 are

klzzm,k2=4,e:%,ngo,gzo:1. (16)

The parameters utilized in figure 4 are same as those in figure 3 except for £,o = 0.1.
Figure 5 displays the interaction property for the two-soliton molecule solution (4) of the fifth order KdV
equation with N = 4, and the parameter selections

k1=2\/ﬁ, k2=8, k3:6’ k4:4’ €= 0.01’
€10 = &0 = 0, £ = 20, {49 = 15. (17)

From the figure 5, one can find that though the interactions among separated solitons elastic, the sizes of the
soliton molecules will be changed.

For the KK case (3) with {a, b} = {1, 1/4}, the multiple soliton solutions do not possess the form (4) [34],
however, it is interesting that the resonant cases of (4) with
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Figure 4. Asymmetric soliton for the SK system described by (6) with the same parameters as in figure 3 except for £,y = 0.1.
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Figure 5. Plot of the interaction property between two soliton molecules for the fifth order KdV equation described by (4) along with
(17)andN =4, = 3,8 = 6, = 1.

Neom K 9 4y i1 (18)
knvi  woyi

do exist for all n. Here, we just list the details forn = 1andn = 2.

The resonant solution (4) with (18) and n = 1 for the KK equation (3) with {a, b} = {1,1/4} is of the form
v —u, &=ke — wt + &),

w="0 4 8 e 4 cosh(©)hes
o) o
w=>5kBiea; + k(5Biek* +28)ay + K (Biek® + ), (19)
where the parameters do, 4; and ¢ can be taken in three nonequivalent ways
2 g2
ap = _(C 4)k - /B > ap = 3) (20)
4(c*—1)  5B6¢
2
a():_k__ia :i) C2: 1) (21)
4 5B 2
and
ap= —2k* — g = 2=
0= ,a =12, ¢ =1, (22)
1€

while k, £, and cin the first case (20) remain free.
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Figure 6. Kink-antikink molecule for the KK equation described by (19) with the parameter selections (23).
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Figure 7. Soliton molecule structure for the KK equation described by (19) where the parameters are fixed by (25).

The resonant soliton solution (19) with (20) shows abundant structures because of the existence of the free
parameter ¢ which does not exist for the KdV and SK cases (6). For —1 < ¢ < land 1 < ¢ < 2, the solution (19)
with (20) can be viewed as an analytic single soliton with one peak. For ¢ = 2, the resonant solution (19) with
(20) can be considered as a bounded kink-antikink soliton (a kink-antikink molecule), or a fat soliton, and /or a
plateau soliton as shown in figure 6 with the parameter selections

c=2,6=01,k=0.1,§=0. (23)
This critical solution, ¢ = 2 case, may be called a plateau soliton because of the property
Uxle=0 = Uxcle=0 = Uxxx|e=0 = 0 (24)

at the center, ¢ = 0, of the soliton.
For ¢ > 2, thesolution (19) with (20) is appropriately a two-soliton molecule, of which the two peaks will
separate as c increasing. Figure 7 displays the structure of the soliton molecule (19) with the parameter selections

¢ = 3000, ¢ = 0.1, k = 2.828428, £, = 0. (25)

Different from the SK and the fifth order KdV cases, two solitons in one molecule of the KK equation are
completely identical.

The second and third types of the soliton solutions (19) with (21) or (22) are only single analytical peaked
solitons forc = 1.

The resonant solution (4) with (18) and n = 2 for the KK equation (3) with {a, b} = {1, 1/4} possesses the
form (v — u),
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Figure 8. Interactions between two kink-antikink molecules of the KK equation described by (26) with (27).
Figure 9. The numerical evolution of the molecule shown in figure 2 under the 10% random perturbation.
B 34
= —— 1t~ o6
5a /Bl € o

with ¢ = 8(k12 — k22)2 + 12k12k22 + 4aya_[cosh(§) + cosh(&,)] —I—ai cosh(§ — &) + a? cosh(§ + &),
where af = (k + k)2 (k + kk + k3), & = kix — (ﬂlekis — ki—’gz))t + & (=1, 2)and k;, ky, §,and &y

5¢0,
are arbitrary constants.

Figure 8 displays the interaction between two kink-antikink molecules described by (26) with the parameters
ki=2k =16 e=0.1, & = &y = 0. (27)

Finally, we numerically check the stability of the soliton molecule (shown in figure 2) for the KdV equation
by using the initial condition
[1088 cosh(2+/21 x) + 5712 cosh(4x + 20) + 4624](1 + 0.1rand(x))
u(x, 0) = (28)
[(2V21 — 4)cosh(V21x + 2x + 10) + (2+/21 + 4)cosh(2x — V21 x + 10)]?
where the random function 0 < rand(x) < 1are taken as the random perturbation to the original exact
solutionat t = 0. The figure 9 shows us that the soliton molecule (6) is very stable under the 10% random
perturbation.

In summary, soliton molecules can be found not only in the optical systems [2, 4] but also in fluid systems,
which may be applied for the oceanic surface and internal waves [29, 30], plasma waves [35], electromagnetic
waves in discrete transmission lines [36] and so on. The fluid model (1) is integrable only in three special cases
involving the fifth order KdV equation, the SK equation and the KK equation. However, everyone of three
integrable models can be used to solve the original nonintegrable fluid system (1) approximately up to the same
order of e. Though the integrable systems are well known, the soliton molecules and asymmetric solitons of these
models have not yet been reported previously. The soliton molecules for the fifth order KdV and SK equations
are quite similar, however, the soliton molecules of the KK equation are very different to those of the fifth order
KdV and SK cases. For the SK and fifth order KdV systems, two solitons in the molecule possess different
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amplitudes and widths while two solitons in the soliton molecule of the KK system possess completely the same
properties except for the positions. The kink-antikink molecules with arbitrary wave numbers exist only for the
KK equation. Soliton molecules can be considered as some types of special soliton resonance solutions. Soliton
molecules are stable in the sense that the soliton-molecule is stable under small perturbations. When two
solitons of the molecule is close enough, the molecule looks like one peak soliton that is asymmetric for the SK
and fifth order KdV cases, and symmetric for the KK equation. Both the soliton molecules and the asymmetric
solitons obtained in this letter may be observed in the fluid systems such as the atmospheric and oceanic
dynamics, the stratified fluids, the magnetic fluids, the quantum fluids, the fluids of light, the atomic and
molecular gases, the degenerate electron fluids, the superfluid *He [14—21], and other physical systems where the
model equation (1) is valid approximately.
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