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Abstract
Solitonmolecules can be formed in some possiblemechanisms both theoretically and experimentally.
In this paper, we introduce a newmechanism, namely the velocity resonant, tofind solitonmolecules.
Under the velocity resonancemechanism, two solitons can form a kink-antikinkmolecule, an
asymmetric soliton, a two-peak soliton and/or a far away boundedmolecule depended on the
selections of thewave numbers and the distance between two solitons of amolecule. The results are
exhibited via threewell known fifth order integrable systemswhich serve as a general fluidmodel, as
well asmodelsmany other physicalfields.

Solitonmolecules and bound states of solitons have been observed experimentally in optics [1–4] and predicted
numerically in Bose–Einstein condensates [5]. On the other hand, solitons play a very important role in various
modern scientificfields including fluids [6], plasmas [7],fibers [8], optics [9], complex networks [10], quantum
field theory [11], gravity [12], Bose–Einstein condensates[13], atmospheric and oceanic dynamics[14] and so on.
In addition to optical systems,fluid systems (such as the stratifiedfluids [15], magnetic fluids [16], quantum
fluids [17],fluids of light [18], atomic andmolecular gases [19], degenerate electron fluids [20] and superfluid
3He [21]) exhibit abundant soliton structures. Solitary waves and solitonswere discovered firstly influid.We
believe that solitonmolecules could be observed influids such as oceanic and atmospheric systems.

Resonance is also an important natural phenomenawhichmay lead to terrible disasters (blowup in
mathematics). For integrable systems, because of the complexities introduced by nonlinearity, resonances of
solitonsmay lead to various types of new excitations such as the breathers (analytic) [22] or complexitons
(singular) [23] (caused bymodule resonance of wave numbers, say, =k k2 1∣ ∣ ∣ ∣, i.e. = k k2 1*), soliton fissions
and fusions [24], instantons/roguewaves [25] and rational-exponential waves (caused bywave number
resonance companied by a vanishing procedure, namely,   k k 02 1 ) [26], web solitons and lumps (bywave
number resonance = k k2 1

 
in high dimensional cases) [27]. In this paper, we try tofind a newmechanism to

form solitonmolecules by introducing velocity resonance w w=k k1 1 2 2.
One of the important fluidmodels to describe surface and internal waves can bewritten as
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which has been derived bymany authors [28–30]. Some authors (say, Kodama [31] and Fokas and Liu [32]) have
proved that themodel (1) is asymptotic integrable up to the same order ò2 because it can be asymptotically
changed to either the usual Korteweg de-Vries (KdV) equation (ò=0) or thefifth order integrable KdV
equation by using suitable transformations. As amatter of fact, similar to theKodama’s idea [31], the
transformation
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where a and b are arbitrary constants, solves the original equation (1) approximately up to the same order ò. To
check the integrability of (3), one canmake aGalileo transformation b ab b b - + + v a v x t a t5 5 ,2

1
2

1( ) ( ( ) )
such that the termsαv2 andβvxx in (3) can be eliminated.

It is well known that there are three integrable cases, the usualfifth order KdV equationwith

=a b, ,KdV
2

3

1

3{ }{ } , the Sawada-Kotera (SK)model with =a b, 1, 1SK{ } { }and theKaup-Kupershmidt (KK)

equationwith =a b, 1,KK
1

4{ }{ } . The approximate transformation (2) for thefifth order KdV case isfirstly

given byKodama [31], while other two cases have not yet been found elsewhere as far as we know.
For thefifth order KdV and SK cases, themultiple soliton solutions possess the form
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where the summation ν should be done for all possible permutations n = - = ¼j N1, 1 1, 2, , ,j ( ) = n <K a ,i j ij
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SK case, kj and x = ¼j N1, 2, ,j0 ( ) are arbitrary constants.

We are interested infinding something new start from (4) except for those from the usual KdV equation
(ò=0 in (1)). In additional to theN soliton solutions, the expression (4) includesmany kinds of resonant
excitations. All known resonant solutions of (4) are singular ones with blow up properties which include the
complexiton solutions [23] (or namely singular breathers caused by the resonant condition =k ki j∣ ∣ ∣ ∣, i.e.,

= k ki j*), the rational-exponential functionmixed solutions [26] (produced by the resonant conditions
= k ki j) and the rational solutions (generated by further resonant conditions  k k 0i j ).
Tofind some resonant solutions, we takeN=2 as a simple example. ForN=2, the expression (4) reduces
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Thefirst resonant solution of (6)

b
a

x x x x

b
a

b b x b b

=
-

+
+

-

= - + + ¢ + - + +


- +

 

u
k k

a a

a k x k k t a k x k t k x

lim
6

ln
i

cosh
2

cosh
2

6
ln sinh 5 3 , 7

k k
xx

xx

2 1

1 2 1 2

1 1 1
3

1 1
2

10 2 1 1
2

1 1
2

0

2 1

⎧⎨⎩
⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

⎫⎬⎭
{ [ ( ( ) ) ( ( ) )]} ( )

can be obtained by taking the limit procedure, thewave number resonance conditions, x x p  ¢ +k k , i ,2 1 10 10

x x ¢ + -k k x20 10 2 1 0( ) , where =a a, 1, 11 2{ } { } for theKdV case and

b b b b= + + a a k k, 5 3 , 15 31 2 1 1
2

1 1
2{ } { } for the SK case.

The second resonant solution of (6) is the simplest rational solution
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of theKdV and SK cases under the resonant condition  k k 02 1 .
It is clear that the resonant solutions (7) and (8) are singular at some points expressed by

b b x b b- + + ¢ + - + + = a k x k k t a k x k t k xsinh 5 3 01 1 1
3

1 1
2

10 2 1 1
2

1 1
2

0( ( ) ) ( ( ) ) for (7) and = - ¢x x0 for
(8). These two resonance solutions are not related to solitonmolecules.

The third type of resonance solution are also obtained from thewave number resonances but with complex
wave numbers, k = -k k k i2 1* . If the resonant solution is analytic, then the solution becomes a bound state
of two solitons, or a (special type of) solitonmolecule [33] and or a breathermore popularly. It the resonant
solution is singular, the solution is named complexiton [23]. For the solution (5), we have both the breather and
complexiton resonant solutions for the SK equation and only the complexiton solutions for theKdV equation.
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Taking the complexwave number resonant condition,
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for the SK case. It is clearly, the complexiton solution (10) is singular at the line k h t+ =a kbsinh sin 01 1( ) ( ) .
It is interesting that for the SK case, by taking
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we can find another complexwave number resonance solution

b
a

k d h d t d d= - + <u k
6

ln cosh cos , 0, 12xx1 2 1 2{ [ ( ) ( )]} ( )

where η and τ are same as in (10). Obviously, the solution (12) is an analytical breather for k d d- > k1 2∣ ∣ ∣ ∣
and a singular complexiton for k d d- < k1 2∣ ∣ ∣ ∣.

In this paper, we focus on the fourth type of resonance solutions (solitonmolecules) from themultiple
soliton solutions (4) by introducing a novel type of resonance conditions ( ¹ k ki j), the velocity resonances,
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Because of the resonant condition (13), the ith and jth solitons are bounded and form a solitonmolecule or an
asymmetric soliton under appropriate selections of the solution parameters.

Two-soliton solution (4) exhibits one solitonmolecule structure under the resonance condition (13).
Figure 1 displays themolecule structure expressed by (6)with the parameter selections (a b b= = - =3, 11

are chosen for the rest of this paper),

x x= = = = =k k2 21 , 4, 0.01, 0, 20, 141 2 10 20 ( )

for the SK case.
Figure 2 is a three dimensional plot of the solitonmolecule (6) of thefifth order KdV casewith (14).

Figure 1.Density plot of the solitonmolecule for the SK equation described by equation (6)with (14).

3

J. Phys. Commun. 4 (2020) 041002



From figures 1, 2 and the expression (6), one canfind that two solitons in themolecule are different because
¹k k1 2 though the velocities of them are the same.
The sizes of the solitonmolecule, the distance between two solitons of themolecule, depends on the

parameters ξ10, ξ20 and k1 via

w
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It is clear that the solitonmolecule will become an asymmetric one soliton solution if two solitons in one

molecule are close enough. Figure 3 andfigure 4 depict the structures of the asymmetric soliton solutions related
to thefifth order KdV and the SK cases, respectively. The parameter selections related tofigure 3 are

x x= = = = =k k2 21 , 4,
1

100
, 0, 1. 161 2 10 20 ( )

The parameters utilized infigure 4 are same as those infigure 3 except for ξ20=0.1.
Figure 5 displays the interaction property for the two-solitonmolecule solution (4) of thefifth order KdV

equationwithN=4, and the parameter selections

x x x x
= = = = =
= = = =

k k k k2 21 , 8, 6, 4, 0.01,
0, 20, 15. 17

1 2 3 4

10 30 20 40 ( )

From thefigure 5, one canfind that though the interactions among separated solitons elastic, the sizes of the
solitonmolecules will be changed.

For theKK case (3)with =a b, 1, 1 4{ } { }, themultiple soliton solutions do not possess the form (4) [34],
however, it is interesting that the resonant cases of (4)with

Figure 2. Solitonmolecule structure for thefifth order KdV case described by (6)with (14).

Figure 3.Asymmetric soliton for thefifth order KdV equation described by (6)with (16).
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do exist for all n. Here, we just list the details for n=1 and n=2.
The resonant solution (4)with (18) and n=1 for theKK equation (3)with {a, b}={1, 1/4} is of the form

( x w x = - +v u kx t, 0),
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where the parameters a0, a1 and c can be taken in three nonequivalent ways
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while k, ξ0 and c in the first case (20) remain free.

Figure 4.Asymmetric soliton for the SK systemdescribed by (6)with the same parameters as infigure 3 except for ξ20=0.1.

Figure 5.Plot of the interaction property between two solitonmolecules for thefifth order KdV equation described by (4) alongwith
(17) andN=4,α=3,β=β1=1.
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The resonant soliton solution (19)with (20) shows abundant structures because of the existence of the free
parameter cwhich does not exist for theKdV and SK cases (6). For- < <c1 1and 1<c<2, the solution (19)
with (20) can be viewed as an analytic single solitonwith one peak. For c=2, the resonant solution (19)with
(20) can be considered as a bounded kink-antikink soliton (a kink-antikinkmolecule), or a fat soliton, and/or a
plateau soliton as shown infigure 6with the parameter selections

x= = = =c k2, 0.1, 0.1, 0. 230 ( )

This critical solution, c=2 case,may be called a plateau soliton because of the property

= = =x x x= = =u u u 0 24x xx xxx0 0 0∣ ∣ ∣ ( )

at the center, ξ=0, of the soliton.
For c>2, the solution (19)with (20) is appropriately a two-solitonmolecule, of which the two peakswill

separate as c increasing. Figure 7 displays the structure of the solitonmolecule (19)with the parameter selections

x= = = =c k3000, 0.1, 2.828428, 0. 250 ( )

Different from the SK and thefifth order KdV cases, two solitons in onemolecule of the KK equation are
completely identical.

The second and third types of the soliton solutions (19)with (21) or (22) are only single analytical peaked
solitons for c=1.

The resonant solution (4)with (18) and n=2 for theKK equation (3)with =a b, 1, 1 4{ } { }possesses the
form ( v u),

Figure 6.Kink-antikinkmolecule for theKK equation described by (19)with the parameter selections (23).

Figure 7. Solitonmolecule structure for theKK equation described by (19)where the parameters arefixed by (25).
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Figure 8 displays the interaction between two kink-antikinkmolecules described by (26)with the parameters

x x= = = = =k k2, 1.6, 0.1, 0. 271 2 10 20 ( )

Finally, we numerically check the stability of the solitonmolecule (shown infigure 2) for theKdV equation
by using the initial condition

=
+ + + +

- + + + + - +
u x

x x

x x x x
, 0
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2
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where the random function < <x0 rand 1( ) are taken as the randomperturbation to the original exact
solution at t=0. Thefigure 9 shows us that the solitonmolecule (6) is very stable under the 10% random
perturbation.

In summary, solitonmolecules can be found not only in the optical systems [2, 4] but also in fluid systems,
whichmay be applied for the oceanic surface and internal waves [29, 30], plasmawaves [35], electromagnetic
waves in discrete transmission lines [36] and so on. Thefluidmodel (1) is integrable only in three special cases
involving thefifth order KdV equation, the SK equation and theKK equation.However, everyone of three
integrablemodels can be used to solve the original nonintegrable fluid system (1) approximately up to the same
order of ò. Though the integrable systems are well known, the solitonmolecules and asymmetric solitons of these
models have not yet been reported previously. The solitonmolecules for the fifth order KdV and SK equations
are quite similar, however, the solitonmolecules of theKK equation are very different to those of the fifth order
KdV and SK cases. For the SK and fifth order KdV systems, two solitons in themolecule possess different

Figure 8. Interactions between two kink-antikinkmolecules of theKK equation described by (26)with (27).

Figure 9.The numerical evolution of themolecule shown infigure 2 under the 10% randomperturbation.
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amplitudes andwidthswhile two solitons in the solitonmolecule of the KK systempossess completely the same
properties except for the positions. The kink-antikinkmolecules with arbitrary wave numbers exist only for the
KK equation. Solitonmolecules can be considered as some types of special soliton resonance solutions. Soliton
molecules are stable in the sense that the soliton-molecule is stable under small perturbations.When two
solitons of themolecule is close enough, themolecule looks like one peak soliton that is asymmetric for the SK
andfifth order KdV cases, and symmetric for theKK equation. Both the solitonmolecules and the asymmetric
solitons obtained in this lettermay be observed in thefluid systems such as the atmospheric and oceanic
dynamics, the stratifiedfluids, themagnetic fluids, the quantumfluids, the fluids of light, the atomic and
molecular gases, the degenerate electron fluids, the superfluid 3He [14–21], and other physical systemswhere the
model equation (1) is valid approximately.
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