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Abstract: Gamma-ray bursts are the most powerful explosions in the universe and are mainly placed
at very large redshifts, up to z ' 9. In this short review, we first discuss gamma-ray burst classification
and morphological properties. We then report the likely relations between gamma-ray bursts and
other astronomical objects, such as black holes, supernovae, neutron stars, etc., discussing in detail
gamma-ray burst progenitors. We classify long and short gamma-ray bursts, working out their
timescales, and introduce the standard fireball model. Afterwards, we focus on direct applications of
gamma-ray bursts to cosmology and underline under which conditions such sources would act as
perfect standard candles if correlations between photometric and spectroscopic properties were not
jeopardized by the circularity problem. In this respect, we underline how the shortage of low-z gamma-
ray bursts prevents anchor gamma-ray bursts with primary distance indicators. Moreover, we
analyze in detail the most adopted gamma-ray burst correlations, highlighting their main differences.
We therefore show calibration techniques, comparing such treatments with non-calibration scenarios.
For completeness, we discuss the physical properties of the correlation scatters and systematics
occurring during experimental computations. Finally, we develop the most recent statistical methods,
star formation rate, and high-redshift gamma-ray burst excess and show the most recent constraints
obtained from experimental analyses.

Keywords: gamma ray bursts; fireball model; circularity problem; standard candles; calibration; dark
energy; dark matter; cosmography; cosmological parameters

1. Introduction

Gamma-ray bursts (GRBs) represent powerful extra-galactic transient that emit in
γ-rays [1,2]. They are commonly associated with the death of massive stars or with
binary compact object mergers. As expected, due to their enormous luminosity, after the
aforementioned processes, there would be the presence a newborn stellar mass black
hole (BH) that provides particle accelerations and emits a relativistic collimated outflow,
in the form of jets. At the same time, this new system furnishes non-thermal emissions at
almost all wavelengths. The above picture lies on the standard model describing GRBs and
requires isotropic energies in the range 1044–1047 J, or 1051–1054 erg, mostly larger than the
brightest supernova (SN) emission, lying on 1042 J, or 1049 erg [3,4]. Thereby, the need of
singling out GRB progenitors is essential to disclose their fundamental properties as well
as the physical conditions that permit relativistic jets to form and accelerate. Even though a
clear landscape for GRB progenitor is still unclear, in view of their duration, it is plausible
to classify GRBs into long and short ones.

Clearly, in our Precision Cosmology, epoch GRBs could open new windows. 1 toward
the universe description at intermediate redshifts2 [5–7], i.e., much larger than SN ones [8].
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Thus, several new observations have been developed, with always better accuracy, trying
to standardize GRBs and to handle their emissions in analogy to SNe. In general, the most
tricky challenge for cosmology is measuring distances and arguing luminosity in the
cosmic scenario, understanding from astronomical emission at which distance the emitter
is placed [9].

Unfortunately, this is not exactly the case of GRBs that are not standard candles,
i.e., they do not provide the above requirement on distance and luminosity [10,11]. In fact,
their highly variable γ-ray emission, mostly evident during the prompt phase, is thought
to be associated with jet internal energy dissipation. However, the jet kinematics, among all
its speed, collimation, energy, magnetization, etc., are all properties not well clarified,
as well as energy dissipation mechanisms and/or shock acceleration efficiency. Hence, it is
hard to relate luminosity to GRB distances as their microphysics is not well understood.
Although the above caveats plague the overall GRB scenario, both short and long GRBs
have relativistic outflows and share analogous properties3 and many attempts have been
spent to standardize GRBs for both clarifying their nature, internal structure, and origin
together with employing these objects for cosmological purposes [12,13].

In this review, we first introduce the concept of GRB and their main observable
quantities. As stated above, according to time duration, we introduce the role of the t90
duration to classify GRBs following the standard guidelines and underline the issues
related to such a classification, e.g., ultra-long GRBs and X-ray flashes. To this end, we
introduce the concepts of GRB progenitor, showing quantitatively the physical reasons
that limit GRBs to be fully considered as genuine standard candles. However, we also
emphasize how using luminosity correlations found in prompt and afterglow phases
would be useful to characterize some sort of standardization technique. In this respect,
we portray the main observable quantities coming from GRBs and deeply introduce the
standard picture of GRB formation and evolution, dubbed the fireball model.

From all the above aspects, we expect GRBs to able to reconcile the cosmic expansion
history at small and intermediate redshifts, connecting de facto late with early times, trying
to open new windows toward the comprehension of cosmology. We therefore explain how
GRBs serve as complementary probes to frame DE and cosmic expansion throughout the
universe evolution, together with other standard candles, e.g., type Ia SN (SNeIa), baryonic
acoustic oscillation (BAO), cosmic microwave background (CMB), Hubble differential
data, etc. We show how to combine such data sets with GRBs and write the main features
of experimental analysis for cosmological purposes. Great emphasis will be devoted to
the circularity problem that essentially plagues cosmology with GRBs. Once introduced,
we also underline strategies that do not take into account its role for fitting cosmological
models with GRBs.

Hence, we provide how to challenge the standard cosmological model, namely the
ΛCDM paradigm, with GRBs. To do so, we provide the main and evident features of
cosmology with GRBs by showing how to perform error analyses, Bayesian treatments,
and how to handle systematics for several GRB correlations. We therefore develop model
dependent and independent techniques of calibrations and report a few numerical out-
comes related to GRBs, showing the most recent cosmological bounds, found with dis-
tinct procedures.

The review is split as follows. After this short introduction, in Section 2, we classify
GRBs and we report the most interesting properties, among all the classification, the pro-
genitors, and the main observable quantities coming from GRBs. In Section 3, we work
out the standard GRB model, namely the fireball paradigm. Here, we also discuss about
particle and radiative processes, giving emphasis to the possible emissions coming from
GRBs. In Section 4, we start introducing the concept of cosmology with GRBs. We thus
highlight distance indicators and the concept of standard candles. In Section 5, we explain
in detail the experimental tools useful for getting Bayesian analysis with GRBs. Finally,
in Section 6, we provocatively report the concept of standardizing GRBs to permit those
objects to be used in the same manner as other probes. Several issues have been raised
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in Section 7, although likely the most serious one, the circularity problem, is described in
detail in Section 8, where we also stress the opposite view in which one can also avoid
calibration. Last but not least, we report the most recent developments of cosmology with
GRBs in Section 9, while we conclude our journey in Section 10 with our final outlooks and
perspectives of this work.

2. GRB Classification and Properties

To achieve a recognized GRB classification, the strategy is to take into account the
most relevant astronomical properties of such objects. Thus, as the most prominent GRB
component is represented by the prompt γ-ray emission, it is straightforward to use it to
define GRB classes based on similarity criteria.

The prompt γ-ray emission is characterized by highly-variable and multi-peaked
light curves composed of either overlapping or distinct pulses with variable duration. The
duration of these pulses spreads within a wide time range. Since the duration is not fixed a
priori, it is natural to wonder whether one can arbitrarily define a time in which the above
measures can be obtained. Hence, it is a consolidated convention to take the total burst
duration in a time interval, dubbed t90, evaluated in the observer frame over which the 90%,
from 5% to 95%, of the total background-subtracted counts are experimentally detectable.

In view of such a property, one gets a plausible classification, as we report below.

2.1. Classification: Short and Long GRBs

The light curve analysis of the first BATSE GRB catalogue showed a clear bimodal
distribution of the t90 duration, separated at roughly 2 s, and in the hardness ratio (HR),
namely the ratio of the total counts of the hard 100–300 keV energy band over the softer
50–100 keV band [3,14,15].

This leads to the widely-adopted classification into

• short–hard (t90 . 2 s) GRBs, hereafter SGRBs,
• long–soft (t90 & 2 s) GRBs, hereafter LGRBs.

The significance of such a classification scheme has been strengthened with the full
2704 GRBs detected by BATSE and later GRB missions, providing strong evidence for two
GRB progenitor channels (see, e.g., Figure 1).

Figure 1. GRB distribution provided by the first BATSE catalog, lying on the t90–HR plane. The solid
HR histogram shows LGRBs, whereas the dotted one is for SGRBs. The dashed horizontal lines mark
mean HRs for both classes. The solid t90 histogram represents the raw data whilst the dotted one
shows the error-convolved data, credit from Ref. [3].
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However, a significant overlap in the distributions of SGRBs and LGRBs suggests that
a more robust classification scheme based on physical properties is still missing.

2.2. Intermediate GRBs?

We ended the previous subsection with asserting the need of a more robust classifica-
tion order. This scheme is veritably challenged by the existence of an intermediate class
of SGRBs with extended emission (SGRBEEs), characterized by an initial short duration
and spectrally-hard γ-ray pulse, followed by a softer emission lasting up to tens of sec-
onds [15,16]. Depending on the sensitivity and energy range of the GRB alert instrument
and, based on the above classification scheme, a SGRBEE could be classified as short or
long. A GRB detector with low sensitivity at low-energy ranges in γ-ray could detect only
the initial hard part of the burst (resulting in an SGRB), whereas a GRB detector with a
higher sensitivity extending down to lower energies could also detect the softer extended
emission (falling in the LGRB class).

A possible explanation to the origin of this extended emission involves a highly magnetized
neutron star (NS) dipole spin-down emission (see Ref. [17] and Sections 2.4.2 and 3.1.3).

2.3. Ultra-Long GRBs and X-ray Flashes

Furthermore, the detection of rare events characterized by extremely long-lived
prompt emissions lasting & 103 s, named ultra-long GRBs (ULGRBs), represents an addi-
tional classification threat, since it is still unclear whether ULGRBs represent a distinct class
of LGRBs [18], or whether they are the high-end tail of the t90 distribution of LGRBs [19].

Finally, it has been reported the existence of extragalactic transient X-ray sources,
dubbed X-ray flashes (XRFs), with spatial distribution, spectral, and temporal characteris-
tics similar to LGRBs [20,21]. The distinguishing properties of XRFs are

(a) their observed prompt emission spectrum that peaks at energies which are an order
of magnitude lower than those of standard LGRBs;

(b) their time integrated flux in the 2–30 keV X-ray band greater than that in the 30–
400 keVγ-ray band.

In view of these hazy results, classifying GRBs through t90 and HR criteria only turns
out to be puzzling, since the measured t90 varies with energy range. Thus, the definition of
a novel GRB classification scheme requires multi-wavelength criteria to better understand
the physical properties behind the GRB emission.

In this respect, attempts to recategorize GRBs from the popular long/short classes
have been made in Ref. [22], introducing alternative classes of Type I and Type II GRBs.
According to this scheme, the Type I class includes short/hard GRBs and SGRBEEs with
no SN association, typically found in regions of their host galaxy with low star formation,
and very likely originating in compact star mergers (see details in the next Section 2.4). On
the other hand, the Type II class includes long and relatively soft GRBs with SN association,
usually found in star forming regions within irregular host galaxies, and thus associated
with young stellar populations and likely originating in the core-collapses of massive stars
(again, see details in the next Section 2.4).

Though the above scheme seems to be promising, further research on this issue is still
ongoing. Therefore, for historical reasons in Section 2.4, we pursue the description of the
progenitor systems keeping the bimodal classification in LGRBs and SGRBs.

2.4. Progenitors and Open Questions

Beside the above discussion, the working definition of LGRBs and SGRBs suggests
the existence of two different progenitor channels. In summary,

I: LGRBs could arise from the core-collapse of a massive star or collapsar [23],
II: SGRBs could originate from the binary neutron star-black hole (NS-BH) or NS-NS

mergers [24].
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The huge observed isotropic equivalent energy release of ∼1049–1055 erg implies
that: for LGRBs, up to ∼10 M� are converted into radiation during the prompt emission
duration of ∼100 s, whereas SGRBs up to ∼1 M� are converted into radiation within
∼1 s [25]. The energy reservoir and the efficiency of the involved physical processes in
producing the emitted energy represent a stringent requirement, especially for LGRBs4.

The commonly called jets substantially alleviate this issue by reducing the GRB energy
release by jet’s correction factor f = 1− cos θ. Jets can be thought of, in an oversimplified
picture, as outflows of relativistic matter ejected into a double-cone structure of opening
angle θ. In general, the jet correction is poorly constrained because it requires very chal-
lenging measurements of θ and the observer viewing angle relative to the jet axis. This
makes it troublesome to distinguish between geometric and dynamical effects. Indeed,
very soft GRBs could be bursts viewed off-axis, whereas low luminosity GRBs may be the
result of large jet opening angles [15].

Measurements of θ can be obtained by the predicted signature of the achromatic
jet breaks, observable in the afterglow light curve at all frequencies. This feature can be
explained by the dynamics of the GRB ejecta as follows. At the beginning, at high values
of the bulk Lorentz Γ factor5, the ejecta is narrowly beamed into the jets while its Lorentz
factor is Γ−1 < θ and, regardless of the hydrodynamic evolution, a GRB is observed only
from a small fraction of the ejecta [15]. As the ejecta decelerates, Γ decreases below θ−1,
the beaming angle becomes larger, and a larger portion of the ejecta becomes observable.
Continuous deceleration leads to the point that the entire surface of the jet is observable
and the jet begins to spread sideways, producing a break in the light curve across the entire
afterglow spectrum [27,28]. The sharpness of this break and the change in the afterglow
decay rate depend on how long the jet remains collimated and on the jet radial density
profile and energy distribution [29,30]. The time of the jet break is related to the jet opening
angle, the bulk Lorentz factor, and the density of the circumburst medium (CBM). The
above description has two effects:

• an “on-axis” observer detects the prompt emission and then, as the jet decelerates,
the afterglow emission and finally a jet-break due to the faster spreading of the emitted
radiation;

• an “off-axis” observer cannot detect the prompt emission but detects an orphan afterglow,
namely an afterglow without a preceding GRB.

In the pre-Swift era, simultaneous breaks in the optical and near-infrared (NIR) after-
glow light curves were frequently interpreted as jet breaks. Nevertheless, the improved
temporal and spectral coverage of GRB afterglows, especially in X-rays by Swift, have
revealed within the first few hours after the prompt emission a complex structure made
of flares, plateaus, and chromatic breaks [31–34]. The detected achromatic breaks are
observed in a few cases. The absence of jet-break signatures in most GRB afterglows has
been interpreted as due to the over-simplified assumption homogenous jets with sharp
edges, whereas more complex models now include structured jets that produce several
chromatic jet-breaks, or much smoother breaks, or jets that can keep their structure for
longer than previously thought making difficult to detect breaks without a wide temporal
coverage [30].

Besides the jet modeling issue, any GRB model has to deal with features like very
luminous X-ray flares occurring up to a few 104 s after the GRB trigger and with shape
and spectra similar to those flares observed during prompt emission and extended plateau
phases that last for a few hours during the early afterglow evolution [33,34]. Both features
imply an extended central-engine activity with a continuous source of energy injection
lasting the above 104 s. In the standard picture, such long-lived energy injection requires
the accretion of a significant mass onto the central BH via very large (∼ 1 M�) and low-
viscosity (α < 10−2) accretion disk formed at the core collapse time, or via fall-back material
continuously replenishing the accretion disk [35].
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2.4.1. The LGRB-Supernova Connection

The possible connection between LGRB and massive progenitor stars has been spec-
ulated long before the first afterglow detection [23,36]. The first observational evidence
came with the association between the broad line Type Ic (Ic-BL) SN 1998bw and the
low-luminous LGRB 980425 at z = 0.0085 and with lack of an optical afterglow [37]. Later
on, this association was also confirmed between the Type Ic-BL SN 2003dh, temporally
and spatially coincident with the standard more luminous long GRB 030329 at z = 0.1685,
with an optical afterglow light curve comparable with other cosmological GRBs [38].

The launch of Swift has increased the sample of GRB-SN pairs, both spectroscopic,
at z . 0.5 and most of them with isotropic-equivalent γ-ray energies Eiso < 1049 erg,
and photometric, in the form of SN bumps appearing in the optical afterglows 10− 30 days6

after the GRB, at z & 0.5 and Eiso ≈ 1051 − 1052 erg [36]. Most of the GRB-SN pairs belong
to this second kind, very likely at the hand of a selection effect: the more common low-
luminosity LGRBs per unit volume are not detectable at high redshift, whereas luminous
LGRBs, with higher detectability at high redshift, are observed from a larger volumetric
area [39].

SNe Ic associated with some long GRBs are characterized by no hydrogen (H) and
no weak helium (He) lines [36]. Their occurrence close to star-forming regions offers very
strong evidence that long GRBs could be associated with massive star death [36]. In this
regard, the best progenitor candidates are the Wolf–Rayet stars, very massive stars with
a hydrogen envelope largely depleted, endowed with a fast rotation [23,40]. Within the
collapsar model, very massive stars are able to fuse material in their centers all the way
to iron (Fe). At this point, they cannot continue to generate energy through fusion and
collapse mechanisms forming a BH. Matter from the star around the core rains down
towards the center and swirls into a high-density accretion disk. In this picture, the core
carries high angular momentum to form a pair of relativistic jetsout along the rotational axis
where the matter density is much lower than in the accretion disk. Jets propagate through
the stellar envelope at velocities approaching the speed of light, creating a relativistic shock
wave at the front [15,41]. If the star is not surrounded by a thick, diffuse H envelope,
the leading shock accelerates as the stellar matter density decreases. Thus, by the time it
reaches the star surface, Γ ≥ 100 is attained and the energy is released in the form of γ-ray
photons [15,41].

The collapsar model attempts to explain the time structure of GRBs’ prompt emission,
through the modulation of the jets by their interaction with the surrounding medium,
which could produce the variable Lorentz factor needful for internal shock occurrence [23].
As the relativistic jet propagation through the stellar envelope of a collapsing star proceeds,
its collimation was shown to occur analytically and numerically [15]. Another prediction of
this model is the prolonged activity of the central engine which can potentially contribute
to the GRB afterglow [23,40,41]. This occurs because the jet and the disk are inefficient at
ejecting all the matter in the equatorial plane of the pre-collapse star and some continues to
fall back and accrete [23,40,41].

The SNe associated with LGRBs appear to belong to the bright tail of type Ic SNe and
can be considered as a “subclass” of SNe Ic, alternatively addressed as hypernovae, in order
to emphasize the extremely high energy involved in these explosions. Remarkably, the SNe
associated with both low- and high-luminous (XRFs and normal LGRBs, respectively)
share very similar spectra and their peak luminosities span only two orders of magnitude,
whereas the associated GRBs isotropic luminosities span six orders of magnitude [36].
Another distinctive feature of the GRB-SN pairs is the high photospheric expansion velocity,
up to 0.1c [36]. In this scenario, one has to also fit the class of ULGRBs. The spectroscopic
detection of the SN 2011kl coincident with the ULGRB 111209A [42] favors a common
core-collapse origin for LGRBs and ULGRBs. This SN exhibited a peculiar, very blue and
featureless spectral shape, which was unlike other SNe Ic associated with LGRBs, but more
like the newly discovered class of superluminous SNe [43]. Other ULGRBs have either
been too far or too dust-extinct to secure any detection of an underlying SN, whereas other
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cases proved the indicative flattening from a rising SN in their optical and NIR light curves
at 10− 20 days after the GRB trigger [36].

In this picture, however, exceptions to the LGRB-SN association have been found
from deep optical observations in two nearby bursts, GRB 060505 and GRB 060614,
for which the hypothetical accompanying SN would have been a hundred times fainter
than SN 1998bw [44–46].

To conclude, ULGRBs and SNless LGRBs give proof for the existence of further
progenitor channels for LGRBs.

2.4.2. SGRBs, Macronovae, and Gravitational Waves

The Swift satellite has enabled rapid and precise localizations and an increase in the
number of X-ray and optical afterglow detection of both LGRBs and SGRBs. However,
SGRBs have less luminous afterglows than those of LGRBs and this fact makes difficult to
obtain optical spectra and a precise burst location to plan optical follow-up to search for
host galaxy associations. The lack of any associated core-collapse SNe, the typically large
offsets of the GRB position with respect to galaxy center, and the frequent association with
galaxies with no ongoing star formation, provide evidence in support of a compact binary
merger progenitor scenario [47].

The proposed progenitors for SGRBs are NS–NS and/or NS–BH binary mergers [24,48–50].
These mergers take place as binary orbits decay due to gravitational radiation emission [51].
A merger releases 5× 1053 erg, but most of this energy is due to low energy neutrinos and
gravitational waves. Thus, there is enough energy available to produce a GRB, notwithstanding
how a merger generates the relativistic wind required to power a burst is still the object of spec-
ulations and not well understood. It has been argued that about one out of thousand of these
neutrinos annihilates and produces pairs that in turn produces γ-rays via νν̄→ e+e− → γγ,
but it has been pointed out that a large fraction of the neutrinos would be swallowed by the
newly-born BH [15].

A further confirmation to the binary merger scenario consists of the detection of the
so-called macronova (MN). The MN emission originates in NS-BH or NS-NS mergers from a
fast-moving, rapidly-cooling ejected debris of neutron-rich radioactive species that decay to
form transient emission and create atomic nuclei heavier than iron through neutron capture
process, named the r-process [52]. The opacities of these produced heavy elements lead
to a dim MN emission, requiring deep follow-up observations down to NIR bands. The
first indication of a MN, in the form of a re-brightening, detected approximately nine days
after the GRB trigger, has been obtained by extensive follow-up of the SGRB 130603B,
one of the nearest and brightest SGRBs ever detected [53]. An MN emission accompanies
also the nearest SGRB ever detected, SGRB 160821B [54,55], and the recently detected
SGRB 200522A [56]. For a list of other MN emissions, see Ref. [57].

In the binary merger scenario, SGRBs are expected to be significant sources of gravita-
tional waves (GWs). The smoking gun occurred on 17 August 2017, when the Advanced
LIGO and Virgo detectors observed the event GW 170817, unambiguously detected in
spatial and temporal coincident with the SGRB 170817A independently measured by the
Fermi Gamma-ray Burst Monitor, and the Anti-Coincidence Shield for the Spectrometer for
the International Gamma-Ray Astrophysics Laboratory [58]7.

As a further confirmation on the nature of the progenitor system of SGRB 170817A,
an intense observing campaign from radio to X-ray wavelengths over the following days
and weeks after the trigger led to the spectroscopic identification of a MN emission, dubbed
AT 2017gfo [59].

The observation of SGRB, GW, and MN emission has improved our understanding of
the physical properties related to the binary merger, such as the mass of the compact object,
the ejected mass, and the details of the CBM surrounding the merger site.
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2.5. Observable Quantities from GRBs

Understanding GRB physics passes through the experimental evidence of the en-
ergy that can be collected from detectors. In particular, we can start discussing about
GRB prompt emission. It is typically observed in the hard-X (above ∼ 5 keV) and γ-ray
energy domain.

The operative duration of the prompt emission is due to the previously defined t90.
Within this time interval, and also within any sub-interval with enough photons to perform
a significant analysis8, the observed spectral energy distribution (SED) of GRBs is non-
thermal, and it is best fitted by a phenomenological model composed of a smoothly joined
broken power-law called Band model [60] (see Figure 2). Its functional form is

NE(E) = K



(
E

100

)α

exp

[
(2 + α)E

Eobs
p

]
, E ≤

(
α− β

2 + α

)
Eobs

p

(
E

100

)β

exp(β− α)

[
(α− β)Eobs

p

(2 + α)

]α−β

, E >

(
α− β

2 + α

)
Eobs

p

(1)

where typical power-law index values are −1.5 . α . 0 (with an average 〈α〉 ' −1) and
−2.5 ≤ β ≤ −1.5 (with an average 〈β〉 ' −2), while the peak energy at the maximum
of the of the E2NE (or EFE) spectrum lies within 100 keV ≤ Eobs

p . few MeV (with an
average of 〈Eobs

p 〉 ' 200 keV). Finally, K is the normalization constant with units of

photons cm−2s−1keV−1. In some cases, the SED is also best fitted by a power-law model9

composed of a power-law plus an exponential cutoff. However, these models are purely
mathematical, i.e., not yet physically linked to GRB intrinsic properties. Hence, fitting
data with them do not provide any insight about the emission physical origin but may be
useful for the classification scheme of GRBs and for comparing the fitted results with the
predictions of different theoretical models.

Figure 2. Band spectral model applied to the data of GRB 990123. In the upper panel, the photon
spectrum is shown; in the lower panel, the E2NE (or EFE) spectrum is shown. Courtesy from Ref. [60].
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In the recent years, with a much broader spectral coverage enabled by detectors
such as Fermi, evidence for more complicated broad band spectra fitted by a combined
Band+thermal model has been found in an increasing number of bursts [61–64], where the
peak of the thermal component is always observed below Eobs

p .
However, the search of the best-fit model in describing GRB prompt emission spectra

depends on the analysis method. Typically, a significant spectral analysis is performed
when enough photons are collected. For weak bursts, only time-integrated spectral analyses
can be done, and this implies that important time-dependent features may be lost or
averaged, leading to a wrong theoretical interpretation. Another issue is that the chosen
spectral model is convolved with the detector response and, because of the nonlinearity of
the detector response matrix, this procedure cannot be inverted. Therefore, two different
models can equally provide a similar minimal difference between the model and the
detected counts’ spectrum and lead to different theoretical interpretations.

From the fit of the time-integrated prompt emission spectrum, one can get the flux F
(in units of erg cm−2s−1) on a detector energy bandpass Emin–Emax as

F = κ
∫ Emax

Emin

ENE(E)dE , (2)

where κ is a constant, commonly used to convert the energy, expressed in keV, to erg.
To compute the total energy emitted by a GRB in all wavelengths, a bolometric

spectrum is needed. However, the GRB prompt emission triggers γ-rays detectors in a
given energy bandpass; therefore, a limited part of the spectrum is available, instead of
a bolometric one. Moreover, GRBs are cosmological sources spread over a wide redshift
range, so, for GRBs observed by the same detector, the measured energy range corresponds
to different energy bands in the cosmological rest frame of the sources.

To standardize all GRBs, fluxes are computed in the fixed rest-frame band 1–104 keV,
which is a range larger than that of most of the γ-ray detectors. The “bolometric” time-
integrated flux is then given by

Fbolo = F×

∫ 104/(1+z)
1/(1+z) ENE(E)dE∫ Emax

Emin
ENE(E)dE

, (3)

and the total isotropically-emitted energy and luminosity are, respectively,

Eiso = 4πd2
LFbolot90(1 + z)−1 (4)

Liso = 4πd2
LFbolo (5)

where the factor (1 + z)−1 corrects the t90 duration from the observer frame to the GRB
cosmological rest-frame. In a similar way, the peak luminosity Lp, computed from the
observed peak flux Fp within the time interval of 1 s around the most intense peak of the
burst light curve and in the rest frame 30–104 keV energy band10, is given by

Lp = 4πd2
LFp . (6)

The luminosity distance dL depends upon the cosmological models adopted as back-
grounds and can be related to the continuity equation recast as

dρ

dz
= 3

(
P + ρ

1 + z

)
, (7)

which relates the total energy density ρ and pressure P to the barotropic factor ω(z) ≡ P/ρ
of a given cosmological model. For a two component flat background cosmology composed
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of standard pressure-less matter with ω = 0 and a generic DE component with ω(z)
(dubbed generically ωCDM), the luminosity distance is then given by11

dL(z) = (1 + z)
c

H0

∫ z

0

dz′√
Ωm(1 + z′)3 + Ωx fx(z′)

, (8)

where H0 is the Hubble constant, Ωm and Ωx are the cosmological density parameters of
matter and DE, respectively, and fx(z) is given by

fx(z′) = exp
[

3
∫ z′

0

1 + w(z̄)
1 + z̄

dz̄
]

. (9)

For the concordance paradigm, namely the ΛCDM model, the DE equation of state is
w(z) ≡ −1 corresponding to a cosmological constant Λ. Thus, fx ≡ 1 and Ωx ≡ ΩΛ. In
the following, the choice w(z) ≡ −1 is adopted, unless otherwise specified.

The above isotropic energy output can be corrected for the beaming (see Section 3),
once the jet opening angle θ is known, leading to beam corrected energy

Eγ = (1− cos θ)Eiso . (10)

It is important to stress that the prompt emission is not limited to the γ-rays and that,
differently from the afterglow emission starting ∼ 100 s after the GRB trigger, current
information in other energy bands is extremely difficult to observe without fast triggering.
Observations at lower energies (optical and X-rays) have been enabled only for GRBs
with a precursor or a very long prompt emission duration, which gave the possibility of
performing fast pointing to the source during the prompt phase [66].

Regarding the GeV energy domain, a delayed (with respect to the trigger), long lived
emission (& 102 s), and separate lightcurve [67] with a decaying luminosity as a power law
in time, LGeV ∝ t−1.2 has been observed [67]. These distinctive features point towards a
separate origin of the GeV with respect to the lower energy photons.

After∼ 100 s since the trigger, the prompt emission starts to decay in flux and, in many
cases, this feature is caught by X-ray detectors Swift-XRT within the 0.3–10 keV energy
band. In general, X-ray afterglow light curves show complex behaviors [15] consisting of
(see Figure 3):

(1) an early steep decay, interpreted as the tail of the prompt emission at large angles,
followed by a very shallow decay, called the plateau, usually accompanied by spectral
parameter variations, and

(2) a final decay, less steep than the first one.
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Figure 3. The X-ray afterglow of GRB 060729 with all the three power-law segments and an initial flare
clearly shown.
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The X-ray afterglow is also characterized by the presence of a flaring activity [15].
The observed behavior of these flares, the rapid rise, and exponential decay together with
a fluence comparable in some cases to the prompt emission, points out that the same
mechanism for the prompt emission is responsible for the flaring activity [15]. Concluding,
as already stressed above, these X-ray afterglow features are important to understand the
nature of GRB progenitors.

Timescales and Characteristic Energy as Observable Signature of GRBs

There are other GRB observable quantities often employed in the literature, e.g.,
to construct GRB correlations (see Section 6.1). They span from characteristic energies
to timescales measured in several wavelengths. More specifically, a selection of them is
summarized below:

• tb, the time at which the late X-ray afterglow power-law decline suddenly steepens
due to the slowing down of the jet until the relativistic beaming angle roughly equals
the jet opening angle θ.

• τlag, the time lag is computed as the difference of arrival times to the observer of the
high energy photons (100− 300 keV) and low energy photons (25–50 keV)12.

• tX, the rest-frame time, defined by a broken power-law fit of the X-ray afterglow light
curve, at which a late power-law decay after the plateau phase is established.

• τ, the rest-frame time marking the end of the plateau phase, defined from a fit of the
X-ray afterglow with a smooth function given in Ref. [68].

• FX and F0 are the observed X-ray fluxes respective to tX and τ, whereas the corre-
sponding rest-frame 0.3–10 keV luminosities LX and L0 are computed as follows:13

LX/0 = 4πd2
LFX/0

∫ 10/(1+z)
0.3/(1+z) ENX/0

E (E)dE∫ 10
0.3 ENX/0

E (E)dE
= 4πd2

LFX/0(1 + z)γ−2 (11)

where we used the fact that X-ray data are observed by the Swift-XRT in the 0.3–10 keV
energy band and the SED is in general a power-law spectrum with NX/0

E (E) ∝ E−γ

and power-law index γ > 0.
• V, the variability of the GRB light curve. It is computed by taking the difference

between the observed light curve and its smoothed version, squaring this difference,
summing these squared differences over time intervals, and appropriately normalizing
the resulting sum.

3. Theory of GRB Progenitors

GRBs require progenitor systems able to guarantee enough energy for their powerful
explosions to occur and emission mechanisms that can explain the above discussed spectral
features. Although it is essential to better understand the physics of GRBs, neither clear
evidence for consolidated classes of suitable progenitors nor a definitive GRB model have
been yet established, as stressed above. However, observations, in the form of GRB spectra
and light curves (see Section 2.5) and correlations between observable quantities (see
Sections 6.1 and 7), enhanced our comprehension of these phenomena and led to a general
agreement on a few aspects listed below [69]:

- GRB progenitors harbor a BH14 which acts as a central engine powering the GRB emission.
- The burst energy must be gravitational, and it is released in a very short time and

from a compact region.
- Substantial part of this energy is converted into kinetic energy and a relativistic jetted

outflow is formed.
- The acceleration process and the role played by magnetic fields are still unclear.
- The dissipation of part of the kinetic energy produces the observed prompt emission.
- The thermal emission of the prompt emission may be the relic of the photons emitted

during the initial explosion, whose energy has not been converted into kinetic form.
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- Afterward, relativistic jets interact with the CBM, gradual energy conversion occurs,
and the afterglow (from X-ray down to radio) is produced.

The observed spectra have a considerable amount of γ-ray photons. Photons with high
energy E1 annihilate with those at a low energy E2 and produce e+e− pairs if

√
E1E2 & mec2

(up to an angular factor), where me is the electron mass. If GRBs were not relativistic sources,
the observed light curve variability time scale of δt ≈ 10 ms would imply that their emission
would originate from a very compact region not larger than R = cδt ≈ 3000 km. For typical
values of the luminosity distance dL ≈ 3Gpc ≈ 1022 cm and fluence S ≈ 10−7erg cm−2

(energy at the detector per unit area) of GRBs, the opacity for pair creation is enormous,
and it is given by [69]

τγγ = fe±
σTd2

l S
mec2(cδt)2 ≈ 1014 fe± (12)

where fe± is the fraction of photons with energies sufficient to produce pairs and σT is the
Thomson cross-section. Such a large optical depth would imply that that the source must
be optically thick leading to a thermal spectrum. On the contrary, observations indicate
that GRB spectra are typically non-thermal, pointing to the opposite conclusion that their
source must be optically thin. This issue is called the compactness problem [69].

However, the problem is only apparent, once relativistic effects are taken into account.
In fact, the causality limit of a source moving relativistically with bulk Lorentz factor Γ� 1
towards the observer is R ≤ Γ2cδt. Consequently, the observed photons are blue-shifted
and their energy at the source is lower by a factor ≈ 1/Γ, which may be insufficient for
pair production. This leads to a decrease in the opacity, by a factor Γ−2(β+1), where the β
is the high-energy power-law index of a photon spectrum of the burst. For Γ & 100, one
obtains the optically thin condition of the source. Ultra-relativistic expansion of GRBs is
unprecedented in astrophysics. There are indications that relativistic jets in active galactic
nuclei have Γ ∼ 2–10, but some GRBs have Γ & 100. These large expansion velocities in
GRB outflows find confirmations from the radio scintillation observed in their afterglows,
and also from the apparent observation of self-absorption in the radio spectrum of the
afterglow, where it is possible to obtain independent estimates of the dimensions of the
afterglow relic [15].

3.1. The Fireball Model

The GRB standard model considers a homogeneous fireball [69]. For a pure radiation
fireball, a large fraction of the initial energy released by the newly-formed BH is converted
directly into photons. Close to the BH, at a radius r0 larger than the Schwarzschild radius,
RS = 2GM/c2, the photon temperature is

T0 =

(
L

4π a c r2
0

)1/4

= 1.2 L1/4
52 r−1/2

0,7 MeV (13)

where a is the radiation constant, and the luminosity L and the radius r0 are expressed,
respectively, as L52 = L/1052 erg/s and r0,7 = r0/107 cm. In the following, to understand
the order of magnitude of the key physical parameters characterizing GRBs, we use the
notation Qx = Q/10x, where the quantity Q is given in cgs units. The temperature T0 is
above the threshold for pair production, hence a large number of e± pairs are created via
photon–photon interactions, leading to a fully thermalized pairs-photons plasma with the
opacity in Equation (12)15.

GRB luminosities are many orders of magnitude above the Eddington luminosity,
LE = 1.25× 1038(M/M�) erg s−1; therefore, the radiation pressure is much larger than
self gravity and the fireball expands under its own pressure up to Γ ≈ 102–103 [48,49].
Since the final kinetic energy cannot exceed the initial explosion energy Etot, the maximum
attainable Lorentz factor is defined as Γmax = Etot/Mc2 and depends upon the amount of
baryons (baryon load) of rest mass M within the fireball [69].
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3.1.1. Photon-Dominated Scenario

The simplest scenario considers a photon-dominated expanding shell of width δr′

“instantaneously” releasing its energy. From here on, prime symbols indicate quantities
measured in the comoving frame of the shell, namely from an observer within it. On the
other hand, r is the radial coordinate of the laboratory frame, a frame outside the shell
where the observer is sitting on the central engine.

Enforcing energy and entropy conservation laws, the shell keeps accelerating up to
Γmax ' η, which is attained at at the so-called dissipation radius rs ∼ ηr0; beyond it, most
of the internal energy of the shell has been converted into the kinetic one, so the flow no
longer accelerates and it coasts. Thus, the fireball obeys the following scaling laws of the
shell comoving temperature, Lorentz factor, and comoving volume, respectively{

T′(r) ∝ r−1 , Γ(r) ∝ r , V′(r) ∝ r3 , r < rs
T′(r) ∝ r−2/3 , Γ(r) = η , V′(r) ∝ r2 , r & rs

. (14)

from which it follows that, as the shell accelerates (as Γ increases with r), its internal
energy drops (as T′ decreases with r). Finally, the evolution of the observed temperature is
given by

Tob(r) = Γ(r)T′(r) =
{

T0 , r < rs
T0(r/rs)−2/3 , r & rs

. (15)

3.1.2. Internal Shock Scenario and Photospheric Emission

In the case of LGRBs, the progenitor continuously emits energy at a rate L, over a
longer duration t� r0/c, and ejects mass at a rate Ṁ = L/(ηc2). In this case, the scaling
laws for the instantaneous release are still valid, provided that E is replaced by L and M by
Ṁ, and a further equation for the mass conservation of the baryons (within the spherical
symmetry assumption) is required [72]

n′p(r) =
Ṁ

4πr2mpcΓ(r)
=

L
4πr2mpc3ηΓ(r)

(16)

where n′p(r) is the comoving number density of baryons and mp is the proton mass.
For longer activity of the inner engine, fluctuations in the energy emission rate would

result in the propagation of independent shells, each of them with analogous thickness r0
and dynamics. For two consecutive shells with a difference in their Lorentz factors δΓ ∼ η
or velocities δv ≈ c/(2η2), collisions become possible after a typical time tcol = r0/δv and
an observer frame radius [73]

rcol = vtcol ' ctcol ' 2η2r0 . (17)

Above rcol , which is a factor η larger than rs, collisions occur, dissipate the kinetic
energy, and convert it into the observed radiation [74,75]. The advantages of the internal
shock scenario are listed below:

1. Light curve variability. The time delay between the photons produced by the colli-
sions and a photon emitted from the central engine towards the observer, i.e., δtob '
rcol/(2η2c) ∼ r0/c, is similar to the central engine variability and can explain the
observed variability (& 1 ms).

2. Particle acceleration. Shell collisions generate internal shock waves, which can accel-
erate particles to high energies via Fermi mechanism and produce γ-rays.

3. Thermal radiation. Equation (13) states the fireball is optically thick [48,49,76]. For
r > rs, an effective photosphere radius rph ' LσT/(8πmpc3Γη2) ' 2× 1011 L52 η−3

2.5 cm
can defined by requesting τ(rph) = 1 [77]. Internal shocks take place at rcol ∼ ηrs >
rph. In a more realistic picture, photons decouple the plasma on “photospheric sur-
face” [78] and the emerging emission is a convolution of different Doppler boosts
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and different adiabatic energy losses of photons [62,78]. This emission explains the
thermal-like emission embedded in the non-thermal spectra of some GRBs [62,79,80].

However, the internal shock scenario manifests some drawbacks.

1. Efficiency. From the energy and momentum conservation, the kinetic energy dissi-
pation is highly efficient only if two shells have masses m1 ' m2 and Lorentz factors
Γ1/Γ2 � 1. The average over several collisions leads to a low global efficiency of
1-10% [81,82], which contrasts with the much higher efficiency ∼ 50% inferred from
afterglow measurements [31,33]. Higher efficiency up to the ∼ 60% can be attained by
considering larger contrasts Γ1/Γ2 � 10 [82]. However, these Lorentz factor contrasts
unlikely occur within the traditional collapsar or the merger scenarios.

2. Observed spectra. This model does not explain the observed spectra and needs
further assumptions on how the dissipated energy produces photons (i.e., involving
standard radiative processes such as synchrotron emission or Compton scattering).

3.1.3. Magnetized (or Poynting-Flux Dominated) Outflows

The Poynting-flux dominated model speculates that the gravitational energy produces
very strong magnetic fields, which may be crucial in the jet formation of GRBs, similarly
to the Active Galactic Nuclei (AGN), where magnetic energy is converted into particle
acceleration via Blandford–Znajek [83] or Blandford–Payne [84] mechanisms. The idea
behind this model is that the collapse of a white dwarf (WD) induced by accretion from a
massive star, the core collapse of a massive star, or NS merger does not immediately form a
BH, but rather a rapidly-spinning (with a period of ∼ 1 ms) and highly-magnetized NS
(with a magnetic field B & 1015 G) NS, known as magnetar [70]. The maximum amount
of magnetic energy that can be stored is ∼ 2× 1052 erg, and it can be extracted in a short
timescale of ∼ 10 s and drives a jet along the polar axis of the NS powering the prompt
emission [71]. The decay of rotational or magnetic energy may continue to power late time
flaring or afterglow emission. The dipole radiation naturally produces a plateau phase up
to the dipole spin-down time scale [15].

In this model, the magnetic field is essentially toroidal (i.e., ~B ⊥ ~β) and its polarity
in the flow changes on small scale defined by the light cylinder in the central engine.
The total luminosity is given by L = Lk + LM, where Lk = ΓṀc2 is the kinetic part and
LM = 4πr2c[B2/(4π)] is the magnetic part [85,86]. The key parameter is the magnetization
σ ≡ LM/Lk = B2/(4πΓ2nmpc2), which plays a similar role to the baryon load in the
classical model and defines the maximum attainable Lorentz factor Γmax ≈ σ3/2, whereas,
during the acceleration phase, one gets Γ(r) ∝ r1/3 [85,86].

In this model, the rapid variability observed in GRBs and the low efficiency in dissipat-
ing the kinetic energy via shock waves in highly magnetized plasmas are still open issues.
Recent recipes suggest that central engine variability leads to the ejection of magnetized
plasma shells which expand due to internal magnetic pressure gradient and collide at a
distance rcol . The ordered magnetic field lines of the ejecta get distorted and fast reconnec-
tion occurs. The induced relativistic turbulence may be able to overcome the low efficiency
difficulty of the classical internal shock scenario [87].

3.1.4. Particle Acceleration

To produce the non-thermal GRB spectra, part of the kinetic energy needs to be dissi-
pated and used to increase the random motion of the outflow particles and/or accelerates
some fraction of them to a non-thermal distribution. Once accelerated, these high-energy
particles emit non-thermal photons.

The most widely proposed particle acceleration mechanism within the internal shock
scenario is the Fermi mechanism [88]. In this process, the accelerated particles cross the
shock fronts, and, during each crossing, their energy increases at a constant rate ∆E/E ∼ 1.
The accelerated particles have a power-law energy distribution N(E) ∝ E−δ with index
δ ≈ 2.0–2.4 [89].
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Dissipation mechanisms in magnetized outflows have been discussed at length (see
Ref. [90] and references therein). Furthermore, particles may also be accelerated via Fermi
mechanism in shock waves, but it has been pointed out that, in highly magnetized plasma,
this process may be inefficient [91].

3.1.5. Radiative Processes

After kinetic energy dissipation and particle acceleration, energy conversion is needed
to produce the non-thermal spectra observed in GRBs. The most discussed radiative model
in the literature is the optically thin synchrotron emission [74,92–95], accompanied by
synchrotron-self Compton (SSC) at high energies [96–98].

Recently, with mounting evidence of thermal components in GRB spectra [63,99],
the photospheric model has acquired growing relevance [61,100,101]. This model is not in
contrast with and has to be considered complementary to the synchrotron+SSC emission,
which originates from a different region of the outflow.

• Synchrotron Emission

The synchrotron emission has been extensively studied for first interpreting the non-
thermal emission in AGNs and then the GRB afterglow emission [102]. Regarding the
explanation of the GRB prompt emission spectra [74,93–95,103], the synchrotron emission
model has several advantages:

(1) requires energetic particles and strong magnetic fields, both expected in shock waves;
(2) has a broad-band spectrum with characteristic peak, associated with the observed

peak energy;
(3) for typical parameters, energetic electrons radiate nearly 100% of their energy.

A source at redshift z, expanding with Γ =
√

1− β2 and at an angle θ with respect to
the observer, emits photons which are seen with a Doppler boostD = [Γ(1− β cos θ)]−1. In
the comoving frame, electrons move in a magnetic field B and thus have random Lorentz
factor γe. Their typical energy is [102]

εob =
3qh̄Bγ2

e
2mec

D
(1 + z)

= 1.75× 10−19Bγ2
e
D

(1 + z)
erg . (18)

Typical GRB peak energies εob ≈ 200 keV require strong magnetic fields and very en-
ergetic electrons, both feasible for Poynting flux-dominated outflows or photon-dominated
outflows where strong magnetic fields may be generated via Weibel instabilities [104]16.

On the other hand, strong magnetic fields imply the comoving cooling time of the
electrons to be t′cool . t′d ∼ R/(Γc). Thus, the expected synchrotron spectrum below
the peak energy would be Fν ∝ ν−1/2 (or NE ∝ E−3/2) [106,107], which is inconsistent
with the average low energy spectral slope 〈α〉 = −1 (see Figure 2) and, hence, the value
α = −3/2 is called “synchrotron line of death”. To overcome this problem, electrons must
cool slowly, leading to a spectrum below the peak given by Fν ∝ ν1/3 (or NE ∝ E−2/3),
which is roughly consistent with the observations. However, the condition t′cool & t′d leads
to high values of γe, whereas B would be very low and, in order to explain the observed
flux, the electron energy would be several orders of magnitude higher than that stored in
the magnetic field [108]. To overcome this, the inverse Compton contribution has to be
significant, producing ∼ TeV emission. To avoid a substantial increase of the total energy
budget, the emission radius should be R & 1017 cm but cannot explain the rapid variability
observed [108].

Suggested modifications (and drawbacks) to the synchrotron scenario can be found in
the literature [25,98,109–113].

• Photospheric Emission

For rph � rs, a large fraction of the kinetic energy is dissipated below the photo-
sphere [114]. The produced non-thermal photons cannot directly escape and are advected
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with the flow until the transparency. Within the flow, multiple Compton scatterings occur
and modify the synchrotron spectrum of the heated electrons, which rapidly cool, mainly
by IC scattering. The electron distribution becomes quasi-Maxwellian, with a temperature
determined by the balance between heating (external and by direct Compton scattering of
energetic photons), and cooling (adiabatic and radiative) [115]. Finally, the photon field is
modified by the scattering from the quasi-Maxwellian electron distribution [114].

Furthermore, the thermal photons of the fireball contribute as seed for IC scattering,
hence the non-thermal electrons, heated by energy dissipation below the photosphere,
rapidly cool, and reach a quasi-steady state distribution [101]. The result is a two temperature
plasma, with electron temperature Te > Tph. If dissipation processes occur at intermediate
optical depth τ ∼few–few tens, the resulting spectrum is:

(1) similar to the Rayleigh–Jeans part of the thermal spectrum, for T < Tph;
(2) Fν ∝ ν−1 (or NE ∝ E−2) because of multiple Compton scattering, for Tph < T < Te;
(3) an exponential cutoff, for for T > Te.

The spectral slope obtained in the above 2) is similar to the high energy spectral
slope in GRB spectra, 〈β〉 ∼ −2; thus, it could be concluded that Ep is associated with
Tph. However, recently, Fermi data have shown thermal peaks at lower energies than Ep,
which points rather to the more natural interpretation that the thermal peak is associated
with Tph and suggests that Ep may be associated with Te or with the synchrotron emission.
Moreover, if dissipation occurs at τ & 102, the resulting spectra is thermal-like. On the
other hand, for τ ., a few more complex spectrum forms, with the main contribution
coming from synchrotron photons (emitted by the electrons) below the thermal peak and
above it from multiple IC scatterings (leading to a nearly flat energy spectrum) [115]. All of
the above discussions are viable for dissipation processes from highly magnetized plasma
as well [86,116].

However, the above model also suffers two major drawbacks, since it cannot explain

(1) low energy spectral slopes less steep than the Rayleigh—Jeans part of a Planck spectrum;
(2) the observed GeV emission, which may originate from some dissipation above the pho-

tosphere.

4. Reconciling Cosmological Indicators to GRBs

After the first part of this review, in which we faced the main properties of GRBs, their
possible theoretical background and progenitors, we are now in a condition to relate our
understanding directly to cosmology. In fact, for cosmological purposes, it is essential to
get the distance of astronomical objects and thus the use of GRBs would help in computing
such distances up to very large redshifts. In particular, source physical parameters mostly
depend on luminosity and size and then cosmic bounds can be inferred if there exists a
relation between distances and redshifts. This prerogative is intimately related to two
distinct concepts, i.e., distance indicators17 and standard candles18.

Below, we elucidate the main properties of such objects and the most important
consequences they have in observational cosmology.

4.1. Distance Indicators

At the beginning of our review, we emphasized how distances in cosmology are
relevant to compute GRB luminosity/energy. A further step consists of noticing the
distance measurements are classifiable by

Absolute measures, as they are computed through previously known information,
e.g., trigonometric parallax.
Relative measures, as they involve empirical relations based on indirect or direct
probes, e.g., Cepheids period–luminosity relation, for which the distance measures
are calibrated against an absolute method to enable those measurements to be some-
how anchored.
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Standard cosmology shows how to relate the redshift to metric distances in both of the
above cases. The machinery of dynamical distance indicators involves tightly packing all
the ingredients of cosmological physics. We thus require the cosmological principle to hold
in an expanding universe in the context of general relativity. Despite it being obvious, there
is no direct analogy to classical dynamical distance indicators, as the laboratory in which
measurements are obtained is moving as well. Precision cosmology would enrich data
during the incoming years, as future surveys will provide resources of data to constrain
and refine our understanding about distances and cosmological parameters.

Using current data catalogs, it appears evident that GRBs can be significantly in-
vestigated once the calibration of the correlation functions are deduced from absolute
confidence. Recently, techniques of non-calibration have been more often used, overcoming
the problem of standardizing GRBs that are, as known, not perfect standard candles for
cosmological distance tests. Later on, we confront the calibration and non-calibration
procedures, emphasizing how to single out the most promising treatment to handle GRBs
in cosmology.

4.2. Standard Candles

Above, we stated astrophysical distances are crucial for picturing the current universe.
Though essential, estimating cosmic distances mainly remains a complicated prerogative.
In view of the above classification, the distance estimation passes through the use of
standard candles. These objects hold the fundamental property of relating the intrinsic
luminosity, namely L, to some known property, enabling one to get constraints over it.
Once the luminosity is known, the distance can be computed accordingly.

A standard procedure is to get measures of the energy emitted from astrophysical
objects. The energy bounds are obtained in a precise time interval, say ∆t and by virtue of
E = L · ∆t, i.e., the relation between luminosity and energy, it is possible to get distances
from the energy itself, through a well-consolidated strategy, reported below.

Detectors are able to catch fractions Ed of the emitted energy E, which is proportional
to the ratio between the detector area A and the spherical shell 4πd2

L in which one defines
the cosmic distance dL, i.e.,

Ed =
E A

4πd2
L

. (19)

A general relation for dL(z) is written as

dL(z, θ) = c (1 + z)
∫ z

0

dz′

H(z′, θ)
(20)

where the set of free parameters to constrain is indicated by θ. Exploring a given cosmolog-
ical model is equivalent to obtaining θ.

Thereby, combining the aforementioned quantities, we obtain the energy per unit
detector area A and per unitary time ∆t, which defines the flux expressed by

F =
Ed

A ∆t
=

L
4πd2

L
. (21)

As we highlighted, the luminosity L is known for standard candles, thus one can
measure F in order to get a given astrophysical object distance.

4.3. Classifying Standard Candles

We above stressed that physical laws underlying a particular astronomical object
permit one to know the luminosity of standard candles. Clearly, such rules are essentially
based on thermodynamic or chemical processes of a given astrophysical object. Conse-
quently, one can classify standard candles by means of these physical laws and, according
to the simplest classification scheme, we can handle at least two kinds of standard candles
summarized below [117].
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• Standard candles as primary distance indicators, which can be calibrated within the Milky
Way galaxy.

• Standard candles as secondary distance indicators, which can be observed at larger dis-
tances than Milky Way scales. However, they require calibration, typically performed
using known primary distance indicators within distant galaxies.

4.3.1. Primary Distance Indicators

The above first typology mainly includes Variable stars, i.e., among which, Cepheids,
RR Lyrae, and Mira. Here, the variable star type is based on the possible correlation
between their period of variation, steadily measured, and their luminosity. Even though
this set of stars mainly constitutes the primary indicators, further typologies are main
sequence and red clump stars. Here, using the luminosity-temperature relations from the
standard Hertzsprung–Russell diagram, one deduces stellar luminosity within a fairly
narrow range. Last but not least, eclipsing binaries are also primary distance indicators,
since their luminosity is computed by the Stefan–Boltzmann law through a direct estimate
of their radius, by means of a Doppler measurement of orbital velocities combined with
the light–curve data, together with the temperature, deduced from the spectrum.

4.3.2. Secondary Distance Indicators

On the other hand, the second class of standard candles is essentially based on
very different indicators with respect to the first case. For instance, the prototypes of
such indicators are the properties of galaxies, among all, the Tully–Fisher relation. This
law matches spiral galaxy rotation speed and stellar luminosity. In particular, to argue
the spiral galaxy rotation speed, one can consider, for example, the spectral line width.
Another relation, widely adopted as an underlying second type of indicator, is the Faber–
Jackson relation. Here, it is possible to infer elliptical galaxy random stellar velocities
using the total luminosity. Again, the way to get these velocities consists of the use
of spectral line widths. Another quite relevant relation is the fundamental plane law,
i.e., a treatment that extends the Faber–Jackson one by including surface brightness as an
additional observable parameter.

Besides galaxy properties, another second typology of standard candles is represented
by SNe Ia, i.e., probably the most used cosmological standard candles to accredit the late
time cosmic speed up. The scenario in which they form is due to thermonuclear explosions
of WDs that exceed the Chandrasekhar’s limit, namely ∼ 1.4M�. For such objects, we
see a correlation between the time scale of the explosion and the peak luminosity. The
corresponding light curves follow given shapes, in agreement with the so-called Phillips
curve [118]. As stated, SNe Ia are the most fruitful standard candles. For each event,
even if the luminosity is clearly different for every SN, the Phillips curve relates the B
magnitude peak to the luminous decay after 15 days with an overall set of SNe distributed
in the range z = 0–2.5. These redshifts span between decelerating and accelerating phases
of universe’s evolution, corresponding to the matter and DE dominated epochs19. Last
but not least, these indicators are present in all galaxies, except in the arms of spiral
galaxies, but their physical internal processes are still the object of investigations as they
are not fully-interpreted.

5. Going Ahead with Standard Indicators: The χ2 Analysis

Using standard candles, it is possible to establish data catalogs that can be used and
matched with GRB data. Hence, to experimentally fit a given model with a given set of
free parameters, one requires the definition of a merit function that quantifies the overall
agreement between the working model with the aforementioned cosmic data. Equivalently,
it is of utmost importance to get best fit parameters and corresponding estimates of error
bars, together with a method to possibly measure the goodness of fit. The parameter fitting
treatment commonly makes use of least-squares analyses, based on the combination among
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data points, say Di, a model for these data, namely the y(x,~θ), function of θ. Naively,
the simplest approach to least squares for uncorrelated data becomes

χ2 = ∑
i

wi[Di − y(xi|~θ)]2 (22)

where the weights wi reach the maximum variance in case wi = 1/σ2
i , with σi the data

point errors. For correlated data, we have

χ2 = ∑
ij
(Di − y(xi|θ))Q−1

ij (Dj − y(xj|θ)) (23)

in which the inverse of covariance matrix, Q, has been introduced describing the degree
of correlations among data. Minimizing the χ2 is equivalent to getting suitable sets of
findings that represent the best fit for our procedure. Different χ2 values lead to probability
distribution around the minimum.

5.1. Probability Distribution

Analyzing the probability distribution, once the above treatment is worked out, be-
comes essential. In particular, probabilities p that the observed χ2 exceeds by chance a
value χ̂ for the correct model is clearly calculable and, in fact, Q provides a measure of the
goodness of fit, as one infers it at the minimum of χ2. Two limiting cases, unfortunately,
are possible, Q is too small or too large. The first occurrence leads to the fact that the
model is either wrong or errors are underestimated and/or they do not distribute Gaussian.
The second occurrence happens when either errors are overestimated or data are correlated
while rarely it could also happen that the distribution is non-Gaussian.

In general, the statistical procedure suggests that χ2 is roughly comparable with the
data number. Consequently, using the reduced chi square, as the ratio between the chi
square and the number of degrees of freedom, could be a useful trick to handle experimen-
tal workarounds.

5.2. The SNe Ia Measurements

SNe are widely-adopted in astrophysics as standard candles. Thereby, several SN
catalogs are often updated, furnishing today a large number of data points that combined
with other data sets enable one to fix tighter constraints over the universe expansion history
in terms of its constituents. In particular, SNe Ia are likely the most used objects that
constrain DE at late times. The standard procedure makes use of the luminosity distance
dL(z) and of apparent magnitude. A general relation for dL(z) has been previously written,
with θ the set of free parameters of a given model. Then, we can notice that exploring a
given cosmological model is equivalent to getting the whole set of parameters, θ.

In particular, when one adopts a given cosmological model, then an indirect require-
ment naturally holds: the underlying cosmological model is the most suitable one. This is
clearly a limitation because this hypothesis does not always coincide with the most feasible
statistical model. Thus, more than one scenario can lead to subtle bounds, indicating a
degeneracy problem among different models. This justifies the need of analyzing different
cosmological paradigms working out data set hierarchy, i.e., combining more than one
data catalog. In addition, statistical criteria are also crucial to check the goodness of a
given paradigm.

For SNe Ia, by virtue of Equation (20), it is possible to relate the brightness to fluxes to
get the distance modulus

µ(z) = 25 + 5 log
(

dL

Mpc

)
. (24)
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Neglecting error bars on z, we underline errors on µ, namely σµ, whereas the best fit is
determined by the standard maximization of the underlying likelihood function, or simply
minimizing the χ2, provided by

χ2(θmin) =
Ns

∑
i=1

[
µi(zi, θ)− µobs,i(zi)

σµ,i

]2

(25)

where the subscript min refers to the set of values that minimize the chi square function,
as requested above. Theoretical models can be therefore tested by χ2 statistics, leading
to probing DE by inferring dL in units of megaparsecs and using it by means of the
apparent magnitude.

Again, intertwining more than one data set with other surveys is quite essential to
determine the whole set of parameters, with refined accuracy. For instance, SNe alone,
as well as GRBs20, H0 cannot be arguable. In fact, expanding up to the first order the
luminosity distance, valid up to z . 0.001, one gets

dL(z, H0) '
cz
H0

(26)

that clearly vanishes at z = 0, implying that H0 cannot be constrained with SNe Ia alone.
In addition, a multiplicative degeneracy between H0 and the other free parameters occurs.

Once the chi square statistic is computed, the confidence regions are planes with fixed
χ2. For example, one can get ΩM − θi planes by marginalizing the likelihood functions
over H0. This procedure consists of integrating the probability density p ∝ exp(−χ2/2)
for all values of H0. Marginalization is a generic technique, clearly not limited to H0.
In fact, one who desires to simultaneously constrain a few parameters and in the meantime
wants to get the corresponding probability distribution regardless of the values of a given
parameter, say θ?, can proceed with marginalizing. Let us call θ? the parameter we do not
care about; the marginalized probability density, computed for example for Ωm, is given by
p(Ωm) =

∫
dθ? p(Ωm, θ?).

5.3. BAO Measurements

The BAO measurements are due to overdensity of baryonic matter due to acoustic
waves. These waves propagate in the early universe [119,120] and represent the standard
ruler for cosmological length scale. This signature, in the large-scale clustering of galaxies,
constrains cosmological parameters by detection of a peak in the correlation function [121],
by defining the A parameter as follows:

A =

√
Ωm

z1

[
z1

E(x, z1)

1
|Ωk|

sinn2
(√
|Ωk|

∫ z1

0

dz
E(x, z)

)] 1
3

(27)

where x is the set of cosmological density parameters, E(x, z) = H(x, z)/H0, and sinn(x) =
sinh(x) for the curvature parameter Ωk > 0, sinn(x) = x for Ωk = 0, and sinn(x) = sin(x)
for Ωk < 0. The A parameter has been measured from the SDSS data and reads to
be A = 0.469(0.95/0.98)−0.35 ± 0.017, with z1 = 0.35, so the χ2 in terms of A reads
χ2

BAO = (A− 0.469)2/0.0172. The BAO corresponding angular distance measures can be
defined by means of

dz(x, z) ≡ rs(zd)

[
c z

H(x, z)

]−1/3[dL(x, z)
1 + z

]−2/3

. (28)

The corresponding χ2 is given by

χ2
BAO =

NBAO

∑
i=1

[
dth

z (x, zi)− dobs
z,i

σdz,i

]2

. (29)
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It is clear that BAO measures are slightly model-dependent as they depend on the
comoving sound horizon rs(zd). In particular, in Equation (28), the sound horizon depends
upon the baryon drag redshift zd. This quantity requires calibration that typically is
performed with CMB data, adopting a given background model that commonly is the
ΛCDM scenario. Very often, the best expected values are given by zd = 1059.62± 0.31 and
rs(zd) = 147.41± 0.30 [122].

5.4. Differential Age and Hubble Measurements

Another intriguing treatment, widely used in observational cosmology and also
for calibrating GRB correlations, has been firstly proposed in Ref. [123]. The idea is to
measure the Hubble rate by using galaxies, in a quite model-independent way. In the
context of GRBs, the Hubble catalog has been widely explored. For example, in Ref. [123],
the core idea is to match the observational Hubble rate data (OHD) with model independent
expansion of H made by Bézier polynomials. At a first glance, this differential age method (see,
e.g., Refs. [124,125]) does not require any assumption over the form of H, although spatial
curvature can affect the overall treatment if it varies with time, instead of being fixed21.

To better introduce the method, we notice that it is well known that spectroscopic
measurements of the age difference ∆t and redshift difference ∆z of couples of passively
evolving galaxies lead to∆z/∆t ≡ dz/dt and so, if galaxies formed at the same time
(redshift z), the Hubble rate can be approximated by

H(z) = −(1 + z)−1∆z/∆t . (30)

Consequently, model-independent estimates may come from cosmic chronometers
based on the assumption that observable Hubble rates are given by the exact formula

Hobs = −
1

(1 + z)

(
dt
dz

)−1
(31)

if approximated as in Equation (30). The χ2 from the current 31 OHD measurements reads

χ2
OHD =

31

∑
i=1

[
Hth(x, zi)− Hobs(zi)

σH,i

]2

. (32)

This procedure has the great advantage of directly considering H without passing
through any cosmic distance.

5.5. TheR Parameter

The CMB represents a cosmic recombination epoch remnant and contains abundant
early universe information. Consequently, the acoustic peak positions [120,126] can be
used to characterize a given cosmological model by means of the shift parameter, defined
as [127]

R =

√
ΩM√
|Ωk|

sinn
(√
|Ωk|

∫ zls

0

dz
E(x, z)

)
= 1.70± 0.03 . (33)

The last scattering redshift, namely zls, is fixed to

zls = 1048[1 + 0.00124(Ωbh2)−0.738][1 + g1(ΩMh2)g2 ], (34)

where g1 = 0.078(Ωbh2)−0.238[1 + 39.5(Ωbh2)0.763]−1 and g2 = 0.56[1 + 21.1(Ωbh2)1.81]−1

[128] and the χ2 reads

χ2
CMB =

(R− 1.70)2

0.032 . (35)

In analogy with BAO measures, the shift parameter is not fully model-independent.
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5.6. Confidence Levels and Uncertainties

As one performs fits combining GRBs with other observable quantities, meaningful
information on the best-fit parameters is achieved by computing their confidence limits
or contour plots, which define the allowed parameter phase-space. These are essentially
regions constructed around a set of best fit parameters obtained from computation. One
does not mind about the number of dimensional parameter space, namely m, corresponding
de facto to the number of parameters, since, to make those regions compact, one holds
constant χ2 boundaries, fixing the chi squared values to specific numbers. Thus, one takes
m to be the number of parameters, n the number of data, and p to be the confidence limit
that one desires to reach. Assuming to shift by solving Q[n − m, min(χ2) + ∆χ2] = p,
and to find the parameter region where χ2 ≤ min(χ2) + ∆χ2, immediately one gets
the requested confidence region. Once the regions have been computed, it is necessary
to obtain uncertainties. To do so, expanding the log likelihood in Taylor series lnL =

lnL(θ0) +
1
2 ∑ij(θi − θi,0)

∂2 lnL
∂θi∂θj

∣∣∣
θ0
(θj − θj0) + ..., we define the Hessian matrix by

Hij = −
∂2 lnL
∂θi∂θj

. (36)

Since its non diagonal terms indicate correlated parameters, one can assume the errors
on a given i parameter to be 1/

√
Hii. This naive representation of errors is a coarse-grained

approach, dubbed conditional error, not frequently adopted in the literature. On the other
hand, one can compute the Fisher information matrix, as a forecast expression for error bars

Fij = 〈H〉 = −
〈

∂2 lnL
∂θi∂θj

〉
, (37)

with the ensemble average over observational data. In analogy to conditional errors, we
write σ2

ij ≥ (F−1)ij, while the marginalized errors become σθi ≥ (F−1)1/2
ii .

We underlined above that the Fisher matrix is somehow related to error bars. In this
respect, we mean that the Fisher Information matrix enables to estimate the parameters
errors before the experiment is performed. Hence, it permits to explore different exper-
imental set ups that could optimize the experiment itself. For these reasons, the Fisher
matrix is largely adopted in the literature.

5.7. Binning Procedure

In several cases, it is useful to get constraints directly on the universe equation of state.
Thus, fitting it for the late-time universe constituents is extremely important to understand
the dark energy evolution. In particular, pointing out a possible variation of the equation of
state of dark energy is essential to disentangle the standard model predictions from possible
theoretical extensions and, in this respect, GRBs can be seen as intermediate redshift probes
to disclose such an evolution.

To do that, an intriguing strategy consists of binning the dark energy equation of state,
say w, in short intervals of z and then fit w in each bin, assuming it is constant in each bin.
Indicating with a generic function f (z) the dark energy evolution, we have

f (zn−1 < z ≤ zn) = (1 + z)3(1+wn)
n−1

∏
i=0

(1 + zi)
3(wi−wi+1), (38)

where wi is the barotropic factor within the ith redshift bin. The bin is built up by an upper
boundary at zi, whereas the zeroth bin is defined as z0 = 0.

Therefore, uncorrelated sub-equations of state in every bin can be experimentally
refined adding data points and, in particular, GRBs, being calibrated as we will discuss
later. Several indications have shown good agreement with the standard paradigm, up to
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z ' 9, albeit relevant deviations have been found, indicating that the situation is not
still clear.

6. Standardizing GRBs

Being successful in standardizing GRB data is of utmost importance to characterize
new data catalogs up to high redshifts. In particular, getting redshifts, or more generally
spectroscopic observations, is essential for GRB-related science, as we summarized below:

(1) Computing the luminosity function for GRBs, constructing it from the prompt emis-
sion as well as afterglows. This treatment is analogous to what we do for SNe Ia.

(2) Computing the redshift distribution of GRBs. This enables one to use GRBs as tracers
for the cosmic star-formation history. Consequently, spotting very high redshift GRBs
will shed light on their distribution at intermediate epochs of the universe evolution.

(3) Studying the host galaxies, in particular those faint, high-redshift galaxies that are un-
likely to be found and studied with other methods, characterizing the dust extinction
curves of high-z galaxies.

(4) Studying GRB-selected absorption line systems and probing cosmic chemical evolu-
tion with GRBs.

(5) Studying if and how much GRBs can be used for determining the cosmological
parameters of dark energy models and/or to rule out a few models. Analogously,
the use of GRBs can be tested in view of determining cosmographic parameters,
i.e., getting model independent bounds over the cosmic evolution.

6.1. GRB Correlations and Related Issues

Since the first discovery of GRBs independent groups has found different correlations
that represent a key to using GRBs for cosmological purposes, the basic idea is to intertwine
different quantities of such objects among them. The observable quantities of interest are in
relation with the cosmological model that lies on the background. This fact permits GRBs
to be distance indicators at a first glance but limits their use because it requires postulating
the underlying cosmological model, providing a circularity in the process itself, which is
known as the circularity problem.

The widest majority of GRB correlations prompts the same requirement: the GRB
standardization in terms of cosmological tools. Attempts for new correlations have been
severely investigated, relating different observable quantities with each other. The way in
which this is realized provides the theoretical interpretation behind the relation itself. In other
words, evidence for a given correlation leads to interpreting particular physical processes.
Thus, achieving the goal of standardizing GRBs brings the certainty of getting feasible bounds
on cosmological parameters. Intriguingly, a narrow set of correlations enables one to also
estimate GRB redshifts. Even though this is still under speculation, in general, a wide number
of correlations could provide information about GRB progenitors.

More precisely, standardizing GRBs for cosmological purposes aims at reaching further
hints toward progenitors of different groups of GRBs. Multi-wavelength instruments of
recently-adopted satellites have significantly increased the number of GRBs that could
be observed to check the validity of a given relation. Thus, it is even possible that a
few correlations may be derived from experimental evidence, instead of theoretically.
Unfortunately, this could open further issues related to data processing whose outputs can
be biased in the overall computations.

Going ahead, it is certainly possible to constantly observe new hints undertaking
novel correlations to allow free theoretical speculations that deeply probe into new physics
beyond the standard comprehension of GRBs.

6.2. Prompt Emission GRB Correlations

The correlations that make use of prompt emission quantities are listed below with
the corresponding properties of each of them. For details on the involved quantities, see
Section 2.5.
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6.2.1. L iso–τlag Correlation

This correlation holds for LGRBs and indicates that the more luminous bursts possess
shorter time lags, i.e., Liso ∝ τ−1.25

lag [129]. It has been used as a GRB redshift indicator
and to constrain cosmological parameters. However, the existence of this correlation is
challenged by recent studies. For details, see Ref. [130].

6.2.2. L iso–V Correlation

This correlation holds for LGRBs and indicates that the more luminous bursts have
the more variable light curves [131]. However, the intrinsic scatter is very large, and the
index is still not completely settled, also in view of the fact that the variability V is different
for various instruments. For details, see Ref. [130].

6.2.3. Amati or E p–Eiso Correlation

This correlation is of the form Ep ∝ E0.52
iso and shows that Eiso is correlated with the

rest-frame spectral peak energy, namely Ep = Eobs
p (1 + z) [132]. Observations by Swift and

Fermi detectors confirmed this correlation for LGRBs. An analogous Ep–Eiso correlation
with a slope similar to that of LGRBs but a larger value of the normalization holds also for
SGRBs, though with a much smaller data set [133]. Moreover, the Ep − Eiso correlation also
holds within individual GRBs using time-resolved spectra, and the slopes are consistent
with the correlation from time-integrated spectra. For details, see Ref. [130].

6.2.4. Yonetoku or L p–Ep Correlation

This correlation reads Lp ∝ E2
p [65] and holds for both LGRBs and SGRBs [133].

Similarly to the Ep–Eiso correlation, the Lp–Ep correlation holds also within individual
GRBs using time-resolved spectra. For details, see Ref. [130].

6.2.5. Ghirlanda or E p–Eγ Correlation

This represents a tight, less scattered, correlation between Ep and Eγ, valid for LGRBs
[134]. One of the major drawbacks is the lack of achromatic breaks in the Swift afterglow
light curves of most of the GRBs. This fact limits the increase in the correlation sample.
For details, see Ref. [130].

6.3. Prompt and Afterglow Emission Correlations

The following correlations involve prompt and afterglow emission observables. Below,
we report the most common correlations. For details on the involved quantities, see
Section 2.5.

6.3.1. Liang–Zhang or E p–Eiso–tb Correlation

It is a correlation valid for LGRBs among Eiso, Ep and the rest-frame break time in the
optical band tb, i.e., Ep ∝ E0.52

iso t0.64
b [135]. If we take the optical break time as the jet break

time, this correlation is similar to the Ghirlanda one. However, the inclusion of additional
GRBs made this correlation more scattered. For details, see Ref. [130].

6.3.2. Dainotti or L X–tX Correlation

This correlation links the X-ray luminosity LX and rest-frame time tX, i.e., LX ∝ t−1
X ,

at the time when the X-ray afterglow light curve establishes a power-law decay after the
plateau phase [136]. This correlation holds for LGRBs and SGRBEEs. By adding a third
parameter, Eiso, the new correlation of the form LX ∝ t−0.87

X E0.88
iso [137] has been found.

However, both relations are quite scattered and seem to be a selection effect due to the flux
detection limit of Swift-XRT instrument. For details, see Ref. [130].

6.3.3. EX
iso–Eiso–Ep Correlation

This is a universal correlation for both LGRBs and SGRBs which links Eiso and Ep to
the isotropic energy of the X-ray afterglow EX

iso computed in the rest-frame energy band 0.3–
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30 keV, i.e., EX
iso ∝ E1.00

iso E0.60
p [138]. However, due to the fact that this correlation depends

upon two cosmology-dependent quantities, it is unsuitable to constrain cosmological
parameters. For details, see Ref. [139].

6.3.4. Combo Correlation

The correlation represents the combination of the Amati correlation and the EX
iso–Eiso–

Ep correlation and, like the Amati correlation, it holds for LGRBs only [140]. It relates the
prompt emission Ep and the X-ray afterglow luminosity L0 and rest-frame duration τ of
the plateau phase, and the late power-law decay index α, i.e., L0 ∝ E0.90

p τ−1|1 + α|. The
main drawback is that it is much more complicated than other correlations, as it depends
upon four parameters. For details, see Ref. [141].

6.3.5. L–T–E Correlation

This correlation connects the rest-frame end time tX and luminosity LX of the X-ray
afterglow plateau phase with Eiso, i.e., LX ∝ t−1.01

X E0.84
iso [142]. This correlation is very similar

to the Combo correlation, but, unlike it, the L–T–E one holds for a few SGRBs and requires
being corrected for the redshift evolution effects. For more details, see Ref. [142].

7. Further Issues Related to Constructing GRB Correlations

Despite having so many correlations reported in the literature, all of them suffer from
several issues related to constructing the correlations themselves. Besides the circular-
ity problem, we face several issues to be addressed. In the following, we list the most
common ones.

7.1. Evolution Effects

GRBs are observed from a large redshift range and in principle correlation parameters
may evolve with the redshift. In some cases, to estimate the cosmological parameters,
a correction of the kind of (1 + z)−d to the energy or luminosity parameters is needed,
introducing a further parameter to fit. However, though tested for subsamples of GRBs
and several correlations, this issue is still ongoing [143].

7.2. Instrumental Selection Effects

A still open issue is the instrumental selection effects that may affect the observed
GRB energy or luminosity correlations. There are at least two kinds of issues due to (a) the
trigger threshold, i.e., the minimum photon peak flux that a burst must have in order to be
detected by a given instrument, and (b) the spectral analysis threshold, i.e., the minimum
fluence to perform a reliable spectral analysis and determine the SED parameters.

Several analyses have been performed in the literature, using different samples and
correlations of GRBs and searching for outliers and inconsistent GRBs. Several conclusions
were drawn: (a) some correlations may exist, though due to selection effects; (b) other
correlations may exist when accounting for the intrinsic scatter; and (c) some correlations
may have statistical significance, though affected by the thresholds of GRB detectors, etc.
See Ref. [144], for more details. Interestingly, using the time-resolved spectra, similar corre-
lations were found in individual bursts, strongly supporting the fact that the correlations
may be physical [64].

7.3. Systematic Errors

Sources of systematic errors for GRBs are the sensitivity of the detectors, the differences
in the estimated spectral parameters depending on detectors and/or fitting models, the lack
of unknown parameters, etc. All of these might dominate over the intrinsic dispersions
of GRBs.

In general, due to the vast number of systematic errors, a technique to consider them
in GRB fitting procedures consists of deriving those errors requiring the chi-square to be
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comparable to the fitted degrees of freedom ν, namely χ2 ' ν, and then summing them in
quadrature with the statistical errors [145].

However, studies on different GRB correlations suggest that the systematic uncer-
tainties of correlation parameters are not sensitive to the assumptions about cosmological
parameters [146].

7.4. Issues and Interpretation of Prompt Emission GRB Correlations

In the following, attention is given to the above described GRB prompt emission cor-
relations, focusing on possible issues and their physical interpretation. Particular emphasis
is given to the functional form of Ep–Eiso (or Amati), Ghirlanda and Yonetoku correlations,
the most popular and most quoted correlations for prompt emission observables.

7.4.1. L iso–τlag Correlation

As established in Ref. [147], this correlation holds also for X-ray flares (in the rest
frame energy band 0.3–10 keV) and proposed that their underlying mechanism is similar.
However, this correlation is affected by evolution effects, as discussed in Ref. [130].

One of the latest proposed explanations of the Liso–τlag correlation involves only
kinematic effects [148], as the observed time-lag is τlag ∝ D−1 and the luminosity is
Liso ∝ D, where D is the Doppler boost defined in Section 3.1.5.

As discussed in Ref. [149], this correlation was constructed from a small sample of
heterogeneously collected GRBs and is severely affected by sample incompleteness.

7.4.2. L iso–V Correlation

This correlation has a non-negligible scatter; thus, it is the least reliable one among all
GRB prompt emission correlations [130]. The physical origin of the Liso–V correlation is
still unclear. Within the internal shock scenario (see Section 3.1.2), it seems to be related to
the activity of the central engine through the values of Γ and the jet-opening angles [150]
and, based on this interpretation, Liso (V) is proportional to a high (low) power of Γ, hence
high-luminosity pulses imply high variability prompt light curves [145].

As discussed above for the Liso–τlag correlation, the luminosity–variability correlation
as well is severely plagued by sample incompleteness [149].

7.4.3. Amati or E p–Eiso Correlation

Likely, the most used and investigated relation is represented by the so-called Ep–Eiso
or Amati correlation [151] that can be recast here by

log
(

Ep

keV

)
= a0 + a1

[
log
(

Eiso

erg

)
− 52

]
. (39)

Here, we have two free constants, namely a0 and a1, that represent the calibration
constants to determine once the relation is somehow calibrated. A possible limitation of
the Ep–Eiso correlation is due to the extra source of variability σa. This is thought as a direct
consequence of hidden variables that contributes to the overall calibration, albeit we cannot
directly observe them [152].

A possible explanation for the Ep–Eiso correlation considers the thermal radiation
emitted when the GRB jet drills through the core of the progenitor star (see Section 2.4.1),
responsible for the thermal peak in the spectrum, and the Compton scattering of this
radiation by relativistic electrons outside the photosphere (see Section 3.1.5 and Ref. [153],
for details).

There are claims that the Amati correlation is caused by some selection effect of
observations, rather than being an intrinsic property of GRBs [149,154]. However, there
is a general consensus on the fact that the correlation is real [155–157], though detector
sensitivity affects the correlations and a weak fluence dependence may be larger than the
statistical uncertainty and contributes to the dispersion of the correlation [158,159].
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7.4.4. Ghirlanda or E p–Eγ Correlation

From theoretical and observational arguments in favor of the jetted nature of GRBs [36],
the radiated GRB energy can be corrected by means of the collimation factor f = 1− cos θ,
leading to Eγ = f Eiso. In particular, the jet opening angle θ is evaluated at the characteristic
time tb for specific assumptions on the circumburst medium that can be assumed to be
homogeneous [28]. The functional form adopted here for the Ghirlanda relation reads

log
(

Ep

keV

)
= b0 + b1

[
log
(

Eγ

erg

)
− 50

]
(40)

in which, as usual, b0 and b1 are the two free constants, fixed by means of calibration.
The extra scatter, σb, behooves us to better constrain the relation itself.

The Ghirlanda correlation shares with the Ep–Eiso one a similar physical interpretation
(see Section 3.1.5 and Ref. [153], for details). This correlation also takes into account the jet
correction in the computation of the GRB energy output (see Section 2.4).

The Ghirlanda correlation is linked to the Amati one and, thus, criticisms/analyses
against/in favor of being an intrinsic property of GRBs. In Ref. [160], it was shown that
as many as 33% of the BATSE bursts would not be consistent with the Ghirlanda relation,
but these results depended upon the assumed distribution for the jet’s correction factor
f [161]. This fact limits the increase in the correlation sample. For details, see Ref. [130].
Likewise for the Amati correlation, the Ghirlanda one is statistically real but strongly
affected by the thresholds of GRB detectors [159].

7.4.5. Yonetoku or L p–Ep Correlation

The Yonetoku or Lp–Ep, [65] correlation functional form here adopted reads

log
(

Lp

erg/s

)
− 52 = m0 + m1 log

(
Ep

keV

)
. (41)

Here, the free terms are m0 and m1 and require to be calibrated. Again, σm is the extra
scatter term.

Detailed hydrodynamical simulations suggest that Yonetoku correlation may be due
to the emission of photons from the photosphere of a relativistic jet, where the outflow
becomes optically thin, whereas most of it is still optically thick (see Section 3.1.5). Quasi-
thermal radiation is thus expected and the expected spectral shapes are obtained [162].

Like previous correlations, for the Yonetoku correlation there are also ongoing dis-
cussions whether it is a by-product of some selection effect or not [149,154–157]. For
this correlation, however, a weak redshift dependence has been confirmed, which may
contribute to the dispersion of the correlation [158].

7.5. Issues and Interpretation of Prompt and Afterglow Emission GRB Correlations

Analogous with the prompt emission correlations, we here focus on possible issues and
physical interpretation of prompt and afterglow emission correlations. The emphasis on
the functional form is given to the Combo correlation, one of the less scattered correlations
for both prompt and X-ray observables without evolution effects.

7.5.1. Liang–Zhang or E p–Eiso–tb Correlation

The Ep–Eiso–tb correlation [135] has been proposed by purely considering phenomeno-
logical considerations, thus avoiding any theoretical assumption, unlike that made for
the Ghirlanda correlation. However, as stated above, the Ep–Eiso–tb somehow shares
similar implications and drawbacks to the Ghirlanda one, as well as analogous physical
interpretation (see Sections 2.4 and 3.1.5 and Ref. [153], for details).

As proposed in Ref. [163], this correlation, like the Ghirlanda one, appears to be
affected by a selection effect on Ep (whereas, for the Ghirlanda correlation, Eγ is affected as
well) and suffers sample incompleteness.
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7.5.2. Dainotti or L X–tX Correlation

The Dainotti correlation, akin to the Liso–τlag correlation, may be retrieved from
kinematic effects (see Section 3.1.5 and Ref. [148], for details), pointing out to a common
origin between the two correlations.

As already discussed above, this correlation is quite scattered and seems to be a
selection effect due to the flux detection limit of Swift-XRT instrument [130]. Moreover, it is
also affected by evolution effects with the redshift [164].

7.5.3. EX
iso–Eiso–Ep Correlation

This correlation depends upon two cosmology-dependent quantities, although it is
unsuitable to constrain cosmological parameters. Since it holds for both SGRBs and LGRBs,
with different progenitor and surrounding medium properties (see Sections 2.4.1 and 2.4.2),
its physical interpretation has not been yet established. There is a speculation that it may
be connected with the Γ of the outflow, which might regulate the efficiency of conversion
from γ-rays to X-rays [138].

The EX
iso–Eiso–Ep correlation utilizes the prompt emission observables Eiso and Ep on

which the Amati correlation is based. For this reason, it is straightforward to deduce that
the biases and selection effects, at work for the Amati correlation, partially affect this hybrid
correlation. Moreover, unlike pure afterglow correlations such as the Dainotti one, this
correlation is also plagued by double truncation in the flux limit, both in the prompt and
X-ray afterglow emissions, making the correction for any selection effect difficult and the
use as redshift estimators and cosmological tool (see discussions in Ref. [164]).

7.5.4. Combo Correlation

The Combo correlation is a hybrid correlation linking the prompt emission Ep and
the observable quantities determined from the X-ray afterglow light curve, i.e., among all
the rest-frame 0.3–10 keV plateau luminosity L0, its rest-frame duration τ, and the late
power-law decay index α [140]. For each GRB, L0, τ, and α can be obtained by fitting the
rest-frame 0.3–10 keV flare-filtered afterglow luminosity light curves with the function
L(t) = (1 + t/τ)α.22 The general expression is much more complicated than previous ones
and reads

log
(

L0

erg/s

)
= k0 + k1 log

(
Ep

keV

)
− log

(
τ/s
|1 + α|

)
. (42)

Here, the constants k0 and k1 need to be determined by means of the calibration
procedure. Again, the correlation is characterized by an extra scatter σk.

The Combo correlation can be explained by the external shock scenario (see Section 3).
The correlation is the result of the synchrotron emission from the electrons accelerated in
a relativistic shock (see Section 3.1.5). The shock propagates through the external CBM
and interacts with the magnetic field of the the turbulent plasma. Hence, the relationship
among Ep, L0, and τ and the corresponding comoving quantities scale with the initial
Lorentz factor of the bulk motion Γ0, whereas the intrinsic scatter is due to the uncertainties
on the source spectral energy distribution [165].

Keeping in mind the hybrid nature and the Combo correlation, which is a combination
of the Amati and the EX

iso–Eiso–Ep correlations, the same biases and selection effects at work
in the EX

iso–Eiso–Ep affect the Combo correlation as well.

7.5.5. L–T–E Correlation

As already stated, this correlation shares similarities with the Combo correlation but,
unlike it, needs to be corrected for the redshift evolution effects [142].

The L–T–E correlation, as well as the Combo correlation, may be explained within the
magnetar scenario, which justifies the plateau phase observed in the X-ray afterglow light
curves as due to the continuous energy supply from a supra-massive NS (see Section 3.1.3
and Ref. [71], for details).
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Like the Combo correlation, which shares similar features, the same discussion on the
biases and selection effects holds for the L–T–E correlation as well. In addition, in Ref. [142],
it is shown that GRBs of the sample at high redshifts usually have relatively larger LX and
Eiso. This is very likely a selection effect due to the fact that very distant GRBs with small
LX and Eiso cannot be observed in view of the limited threshold of current detectors.

8. Circularity or Not Circularity?

Even though GRBs could be thought of as indicators toward the determination of
the universe’s expansion history, it is remarkable to stress that small redshift GRB data
are still missing. Consequently, if one requires to calibrate GRBs with small redshift
data, there is the strict need of other data sets, whose data points lie around z ' 0 that
permit performing the calibration procedure. The calibration procedure is essentially a
consequence of the correlation functional forms that, by virtue of the above considerations,
are commonly written as y = a x + b, with a, b real constants that depend upon the relation
itself. Bearing this in mind, we focus below on different calibration strategies. In this
respect, we highlight whether it is absolutely necessary or not to calibrate our correlations
in order to confront cosmological models with GRB data. Below, we start with such
considerations, critically discussed.

8.1. Calibration Versus Non-Calibration

Constraining cosmological parameters using GRBs is plagued by several conceptual
and practical issues.

First, all GRB correlations by definition are built assuming an a priori background
cosmology (see Sections 2.5 and 6.1 for details) and, consequently, introducing a circularity
problem [166]. Second, the majority of GRB correlations holds for LGRBs (see Section 6.1
for details), whose observational rate falls off rapidly at low-z and, in some cases, such a
nearby LGRB seems to be intrinsically different from the cosmological ones [37,167]. Third,
unlike SNe Ia, which are calibrated with a selected sub-sample at a very low redshift23 by
anchoring them to primary distance indicators as Cepheids, the shortage of low-z GRBs
prevents anchoring them to primary distance indicators.

Focusing on the above circularity problem, this is essentially an epistemological issue
due to the lack of very low-z GRBs and arising from the need of a background cosmology
to compute the above-defined Eiso, Eγ, and Liso entering GRB correlations [166]. For exam-
ple, calibrating GRBs through the standard ΛCDM model, the estimate of cosmological
parameters of any dark energy framework inevitably returns an overall agreement with
the concordance model. Debates toward its use in cosmology seem to indicate that this
effect could be minor, albeit it plagues cosmological constraints obtained from GRBs.

Possible ways out known in the literature involve calibration techniques based on the
use of SNe Ia distance moduli, cosmographic series, cosmic chronometers, etc. All of these
procedures represent plausible solutions, but at the same time introduce possible issues
that we are going to describe below.

The above calibration procedures have to compare with an alternative method which
completely by-passes the calibration procedure [10]. This uncalibrated procedure consists
of a simultaneous fit of correlation parameters together with the cosmological model
parameters. This uncalibrated procedure consists of a simultaneous fit of correlation and
cosmological model parameters. This procedure and the related issues are also discussed
in the following.

8.2. Fitting Procedures with Calibration
8.2.1. SN Calibration

A widely-used method to calibrate GRB correlations is through the use of SNe Ia that
span within z . 2.3. In such a way, assuming this could work for any LGRBs, the GRB
data points are mixed with SNe in order to build up a whole, quite large, Hubble diagram,



Galaxies 2021, 9, 77 30 of 53

where in the small redshift domain one has the majority of SNe, while, at large z, GRBs are
the most. Here, the simplest error bars on distance modulus are [168,169]

σµ = ([(zi+1 − z)/(zi+1 − zi)]
2ε2

µ,i + [(z− zi)/(zi+1 − zi)]
2ε2

µ,i+1)
1/2, (43)

where εµ,i and εµ,i+1 and µi and µi+1 are the errors and distance moduli of the SNe Ia at zi
and zi+1, respectively.

For each SN catalog, we could find different interpolating functions to model the SN
distribution. Thus, calibrating GRBs with SNe would seriously depend on the choice of
these expressions for each catalog. Hence, GRB calibrations may turn out to be extremely
sensitive to SNe Ia and the approach should be carefully handled since GRB luminosity
correlations may no longer be fully independent from SN data points.

8.2.2. Model Dependent Calibration

The model dependent procedure fixes the background cosmology with a given cos-
mological model, where typically the dark energy evolution is assumed a priori. Since
the background cosmology24 enters the correlation functions, generically in the form
y = ax + b; this means that one has to (1) assume a background cosmology, (2) fix the
most suitable numerical bounds over the free coefficients of the background cosmology,
and (3) calibrate the correlation.

As it appears evident, this strategy consists of determining an accredited cosmological
model with particular choices of the free parameters, determined elsewhere.

This procedure is obviously strongly plagued by the circularity problem. It fixes the
cosmological evolution with a given model and does not permit constraining suitably
another cosmological paradigm. In fact, if one calibrates with a generic model, say H(1)(z),
any other statistical expectations on a different model, say H(2)(z), would favor the model
that better matches H(1)(z). In other words, calibrating with H(1)(z) implies that the best
fits are statistically argued for H(2)(z) ' H(1)(z).

Another dramatic fact is that one has to constrain the free parameters of the back-
ground scenario by means of additional fits, with different data sets. This implies that an
overall analysis would be plagued by error propagation between different catalogs of data
and limits severely the analysis itself. To avoid other fits, one can assume exact versions
of the cosmological models that should be used as backgrounds. In such a way, the corre-
sponding error propagation reduces, albeit one does not take a real tested cosmological
scenario, but rather a simplified version of it.

8.2.3. Model Independent Calibration

Calibrating correlations via model independent treatments permits using GRBs as
distance indicators, although the calibration is made by means of other standard candles.
The idea of model-independent calibrations, however, enables getting the luminosity
distance dL without a priori postulating the background cosmology, healing de facto the
circularity problem.

A nice possibility consists of relating distances with model-independent quantities
written in terms of a Taylor series expansion of the scale factor. Thus, we first notice

H(z) =
{

d
dz

[
dL(z)
1 + z

]}−1

(44)

and then we consider the following expansions:

dL(z) =
z

H0

N

∑
n=0

αn

n!
zn (45)

H(z) =
M

∑
m=0

Hm

m!
zm (46)
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where αn are the coefficients of the luminosity distance expansion and Hm are the coeffi-
cients of the Hubble rate expansion. Thus, baptizing the cosmographic set, q0, j0, s0, as the
present values of the following quantities:

q(t) = −1
a

d2a
dt2

[
1
a

da
dt

]−2
, j(t) = +

1
a

d3a
dt3

[
1
a

da
dt

]−3
, s(t) = +

1
a

,
d4a
dt4

[
1
a

da
dt

]−4
(47)

where the scale factor a has been considered, with the requirement a ≡ (1+ z)−1. The above
quantities are named deceleration, jerk, and snap parameters, respectively, we formally have

d(4)L ' z
H0

(
α0 + α1z + α2

z2

2
+ α3

z3

6

)
. (48)

The coefficients in Equations (45) and (46), say αi ≡ αi(q0, j0, s0) and Hi ≡ Hi(q0, j0, s0),
can be determined directly with data, without considering a cosmological model a priori.
This treatment is known with the name of cosmography or cosmokinetics, i.e., the part of
cosmology that reconstructs the universe’s kinematics model-independently. Thus, at z = 0,
we have

α1 =
1
2
(1− q0) (49)

α2 = −1
6
(1− q0 − 3q2

0 + j0) (50)

α3 =
1

24
(2− 2q0 − 15q2

0 − 15q3
0 + 5j0 + 10q0 j0 + s0) (51)

and

H1 = 1 + q0 (52)

H2 =
1
2
(j0 − q2

0) (53)

H3 =
1
6

[
−3q2

0 − 3q3
0 + j0(3 + 4q0) + s0

]
. (54)

Although powerful, the above formalism suffers from shortcomings due to the con-
vergence at higher redshifts25, i.e., the high GRB redshifts are very far from z = 0. In other
words, the standard cosmographic approach fails to be predictive if one employs data at
higher redshift domains, which is exactly the case of GRBs.

Healing the convergence problem leads to a high-redshift cosmography. In this respect,
several strategies have been suggested. For instance, one could (1) extend the limited
convergence radii of Taylor series by changing variables of expansion, using the so-called
auxiliary variables, or (2) changing the mathematical technique in which the expansions are
performed, i.e., involving expansions different from Taylor ones, etc.

In the case of auxiliary variables, one employs a tricky method in which the expansion
variable is reformulated as a function of the redshift itself, but with particular convergence
properties. In other words, we cosmic quantities are rewritten in a more complicated
function of the redshift z, namely y. Changing the redshift variable from z to y modifies
accordingly the convergence radius. Formally speaking, we write y ≡ F (z) [? ], where we
assume F (z) a generic function of the redshift. The function F (z) is properly chosen from
physical prime principles. All F (z) prototypes, however, might fulfill a few mathematical
conditions:

1. F (z)
∣∣ z=0 = 0

2. F (z)
∣∣ z=0 < ∞ .

The first guarantees that at z = 0, our time, even y is zero. The second that the
auxiliary variable does not diverge; otherwise, the convergence problem would still persist.
In addition, a further requirement is helpful in constructing F (z):
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3. F (z)
∣∣ z=−1 < ∞ .

The former condition enables y to converge at a future time, as well as z. Using
these hints toward the formulation of F (z), we can suggest a couple of well-consolidated
examples of F (z):

y1 =
z

1 + z
(55)

y2 = arctan z . (56)

The second possibility is offered by rational approximations, where the expansion is
thought to be a rational function, instead of a polynomial. This guarantees to optimize the
Taylor series with rational approximants that better approach large z than the Taylor series,
guaranteeing mathematical stability of the new series if data points exceed z = 0. Among all
the possible choices, here the attention is given to the Padé polynomials, firstly introduced
in Ref. [170]. This technique of approximations turns out to be a bookkeeping device to
keep the calculations manageable for the cosmography convergence issue. Thus, provided
we have Taylor expansions of f (z) under the form f (z) = ∑∞

i=0 cizi, with ci = f (i)(0)/i!, it
is possible to obtain the (n, m) Padé approximant by

Pn,m(z) =

(
n

∑
i=0

aizi

)(
1 +

m

∑
j=1

bjzj

)−1

(57)

and requires that b0 = 1. Furthermore, it is important that f (z)− Pn,m(z) = O(zn+m+1)
and the coefficients bi come from solving the homogeneous system of linear equations
∑m

j=1 bj cn+k+j = −b0 cn+k, valid for k = 1, . . . , m. Once bi are known, ai can be obtained

using the formula ai = ∑i
k=0 bi−k ck. Just for an example, we report the (2, 1) Padé

polynomial as

P2,1(z) =
z

H0

{
6(q0 − 1) + [q0(8 + 3q0)− 5− 2j0]z
2q0(3 + z + 3q0z)− 2(3 + z + j0z)

}
. (58)

8.3. The Use of Bézier Polynomials

The left term of Equation (30) can be approximated by means of particular choices,
such as using model-independent Bézier parametric curves. They are constructed to
be stable at the lower degrees of control points. They can be rotated and translated by
performing the operations on the points and assuming a degree n. They formally are
defined as

Hn(z) =
n

∑
d=0

βdhd
n(z) , hd

n(z) ≡
n!(z/zm)d

d!(n− d)!

(
1− z

zm

)n−d
(59)

where we notice the linear combination of Bernstein basis polynomials hd
n(z). Assuming

the coefficients βd to be positive in the range of 0 ≤ z/zm ≤ 1, where zm is the maximum z
of OHD, we soon can classify those polynomials by means of the exponent n.

In particular, besides the constant case, n = 0, both linear growth that happens for
n = 1 and oscillatory regimes, say n > 2, work well. This implies that a suitable choice is
n = 2. In this case, we have

H2(z) = β0

(
1− z

zm

)2
+ 2β1

(
z

zm

)(
1− z

zm

)
+ β2

(
z

zm

)2
. (60)

The comparison between H2(z) and the OHD data points give β0 = 67.76± 3.68,
β1 = 103.3± 11.1, and β2 = 208.4± 14.3, all in units of km s−1 Mpc−1.
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After having approximated H(z) with Equation (60), for spatially flat cosmology,
Ωk = 0, the calibrating luminosity distance becomes

dcal(z) ' (1 + z)
∫ z

0

dz′

H2(z′)
. (61)

Once the luminosity distance is written, it is possible to calibrate Eiso, Eγ, Lp, and L0
for the correlations that we intend to test. For Ep − Eiso, Ghirlanda, Yonetoku, and Combo
correlations, we report in Table 1 the corresponding numerical outcomes related to the
calibration process.

Table 1. For brevity, we report in this table only a few calibrated correlations. In particular, in the
columns, we prompt four correlations, i.e., Amati, Ghirlanda, Yonetoku, and Combo, with the data
set number points and the corresponding last update year. On the right, we display the calibrated
best fit parameters. The statistical method behind these calibrations is reported in Section 9.2.

Correlation N Update Parameters

Amati 193 2015 a0 = 2.06± 0.03 a1 = 0.50± 0.02 σa = 0.20± 0.01
Ghirlanda 27 2007 b0 = 2.09± 0.04 b1 = 0.63± 0.04 σb = 0.10± 0.02
Yonetoku 101 2018 m0 = −3.43± 0.21 m1 = 1.51± 0.08 σm = 0.35± 0.03
Combo 60 2015 q0 = 50.04± 0.27 q1 = 0.71± 0.11 σq = 0.35± 0.04

Once calibrated, the corresponding distance moduli from Equation (24) are computed
for each correlation.

8.3.1. Simultaneous Fits

Another relevant strategy is based on the idea to constrain the cosmological parameters
together with the luminosity correlation [171,172]. In particular, the real distance modulus
can be computed as

µfit =
∑i µi/σ2

µi

∑i σ−2
µi

, (62)

where the sum is over a given number of different correlations. In particular, µi is the best
estimated distance modulus and the subscript i-th refers to the correlation, with σµi the
error bars. The uncertainty of the distance modulus for each burst is σµfit = (∑i σ−2

µi
)−1/2.

A great advantage is that, as one computes bounds on cosmological parameters,
the normalization functions and slopes of each correlations are marginalized. Consequently,
we write down the χ2 as

χ2
GRB =

N

∑
i=1

[µi(zi, H0, ΩM, ΩDE)− µfit,i]
2

σ2
µfit,i

, (63)

where µfit,i and σµfit,i are the fitted distance modulus and its error, respectively.

8.3.2. Narrow Calibration

Another intriguing technique consists of calibrating standard candles using GRBs in a
narrow redshift range, hereafter δz. This short interval is placed near a fiducial redshift
[173,174] with the great advantage that, in some cases, see e.g., Ref. [173], no low-redshift
GRB sample is necessary.

8.4. Fitting Procedures without Calibration

Constraints on the cosmological parameters can be obtained with an alternative
method which completely by-passes the calibration procedure. It consists of taking all best
data sets of any GRB correlations, introducing the lowest intrinsic dispersion. The method
is described below.
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Any correlation between a generic energy/luminosity quantity Y and a GRB observ-
able X has the form

logYobs = a logX + b . (64)

The energy/luminosity quantity in general contains the information on the cosmo-
logical parameters Ωi through dL(z, Ωi), defined by the theoretical model describing the
background cosmology

Y th = 4πd2
L(z, Ωi)Fbolo (65)

where Fbolo may be the rest-frame bolometric fluence Sbolo(1 + z)−1 for Amati-like cor-
relations, or the bolometric observed flux Fbolo for Yonetoku-like correlations. Please
notice that we only focus on these two relations just for giving an example. The same
can be reformulated for other correlations, although, for brevity, we do not report other
treatments here.

The best cosmological and correlation parameters are then obtained by maximizing
the log-likelihood function [152]

lnL = −1
2

N

∑
i=1


(

logYobs
i − logY th

i

)2

σ2
i

+ ln(2πσ2
i )

, (66)

where σ2
i = σ2

logYobs
i

+ a2σ2
logXi

+ σ2
ext. Here, σlogYobs

i
is the error in the measured value of

logYobs
i , σlogXi is the error in logXi, and σext is the intrinsic dispersion of the correlation.
The above treatment avoids calibrating GRB data. This procedure has been applied to

an uncalibrated Ep–Eiso correlation in Ref. [175] and to an uncalibrated Combo correlation
in Ref. [10]. In both cases, the correlations have been built up from samples of GRBs that
have lower intrinsic dispersion. As byproducts, the resulting GRB correlations are close for
different cosmological models, which can be interpreted with the fact that this procedure
is model-independent. However, the application of this method seems to indicate that
current GRB data are not able to put stringent constraints on cosmological parameters,
though consistent with those resulting from better-established cosmological probes.

However, as hinted by the above results, this method may introduce a possible
bias, namely that the GRB correlation may adjust itself to the cosmology that maximizes
Equation (66), rather than allowing the derivation of Ωi from a cosmology independent
calibrated correlation. Moreover, it may be possible that a more exotic cosmological model
would lead to best-fit GRB correlations significantly different from simpler models, thus
failing in providing a model-independent procedure. Therefore, this method is still the
subject of ongoing studies.

9. Recent Developments of Cosmology with Gamma-Ray Bursts
9.1. Numerical Results Using Correlations

Observational data indicate that the cosmological expansion is currently accelerating.
They also indicate that, in the recent past, the expansion was decelerated. The standard
spatially-flat ΛCDM model [176–178] is the simplest model consistent with these observa-
tions [122,179–181]. Here, a cosmological constant Λ dominates the current energy budget
and fuels the currently-accelerating cosmological expansion. In this model, above a redshift
z ≈ 0.75, non-relativistic cold dark matter and baryons dominate over Λ and powered
the then-decelerating cosmological expansion. While the observations are consistent with
dark energy being time- and space-independent, they do not rule out slowly-evolving and
weakly spatially-inhomogeneous dynamical dark energy or spatial flatness.

Significant constraints on cosmological parameters come from the CMB anisotropy
data—that primarily probe the z ∼ 1100 part of redshift space—as well as from BAO
observations—the highest of which reach to z ∼ 2.3—and other lower-redshift SNeIa and
OHD measurements. Observational data in the intermediate redshift range, between z ∼
2.3 and ∼ 1100, are not as constraining as the lower and higher redshift data, but hold
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significant promise. Intermediate redshift observations include those of HII starburst
galaxies that reach z ∼ 2.4 [182–188], quasar angular sizes that reach z ∼ 2.7 [186,189–193],
quasar X-ray, and UV fluxes that reach z ∼ 7.5 [193–201], as well as GRBs that have now
been detected to z = 9.4 [202]. Observed correlations between GRB photometric and
spectroscopic properties that can be related to an intrinsic burst physical property would
allow GRBs to be used as valuable standard candles that reach high z and probe a largely
unexplored region of cosmological redshift space (see, e.g., [136,140,142,145,151,203–206],
and references therein), similar to how SNeIa are used as standard candles [118] at z < 2.3.
However, as stressed many times in this review, this is still a challenge for GRBs.

After it was established that GRBs were at cosmological distances, many attempts
have been made to use burst correlations to constrain cosmological parameters. The first
GRB Hubble diagram of a small sample of 9 bursts, obtained in Ref. [207] from the Liso–V
correlation [131], led to a current non-relativistic matter energy density parameter limit
of Ωm0 < 0.35 at the 1σ confidence level (for the flat ΛCDM model). Soon after, using
the Ghirlanda correlation, in Ref. [208], with a sample of 12 bursts, it has been found
Ωm0 = 0.35± 0.15 for the flat ΛCDM model, and in Ref. [171], with 14 GRBs as well as
SNeIa, it has been inferred that Ωm0 = 0.37± 0.10 and a cosmological constant energy
density parameter ΩΛ = 0.87± 0.23, in the non-flat ΛCDM model, and Ωm0 = 0.29± 0.04
in the flat model. Similar constraints were obtained in Ref. [135], using the Ep–Eiso–tb
correlation: 0.13 < Ωm0 < 0.49 and 0.50 < ΩΛ < 0.85 at 1σ confidence level in the flat
ΛCDM model.

More recently, many contrasting results have been reported in the literature. In
Ref. [209], cosmological parameter constraints, within the ΛCDM model and dynamical
dark energy models from two different GRB data sets, were found to be different from
the two data sets and also relatively broad. Similarly, in Ref. [210], it has been shown
that at that time GRB data could not significantly constrain cosmological parameters.
In addition, in Refs. [211,212], it has been shown that most GRB correlations have large
scatter and/or their parameters differ somewhat significantly between low- and high-
z GRB data sets. From the calibration of the Ghirlanda correlation, by using a SNeIa
distance-redshift relation—through the (3, 2) Padé approximant—in Ref. [211], it has been
obtained Ωm0 = 0.302± 0.142 within the flat ΛCDM model.26 Based on a cosmographic
approach, an updated Ep–Eiso correlation with 162 GRBs has been used to get cosmological
constraints. In Ref. [12], GRBs were calibrated with SNeIa, resulting in Ωm0 = 0.25+0.29

−0.12
within the flat ΛCDM model, whereas, in Ref. [214], a cosmographic expansion, up to the
fifth order, involving SNeIa is used to calibrate the Ep–Eiso correlation for GRBs, which are
then used in conjunction with OHD and BAO measurements to constrain cosmographic
parameters, resulting in a 1σ deviation from the ΛCDM cosmological model.

Other recent works (involving GRB data only or in conjuction with other probes) also
report inconsistencies with the ΛCDM model. In Ref. [215], the Ep–Eiso correlation has been
used, including also modeling the potential evolution of GRB observables, to conclude that
calibrated GRB, SNeIa, and OHD data favor a dynamical dark energy model described by
a scalar field with an exponential potential energy density. In Ref. [216], Amati, Ghirlanda,
Yonetoku, and Combo correlations have been calibrated in a model-independent way via
OHD and jointly analyzed with SNeIa and BAO by using cosmographic methods, such as
Taylor expansions, auxiliary variables, and Padé approximations, to conclude that GRB do
not favor the flat ΛCDM model but instead favor a mildly evolving dark energy density
model. Similarly, in Ref. [217], the Ep–Eiso and Combo correlations have been calibrated via
OHD actual and machine-learned data, and again, based on a joint analysis with SNeIa and
BAO, indications against a genuine cosmological constant have been found. Analogously,
in Ref. [218], different combinations of SNe Ia, quasar, and GRB data sets have been used for
testing the ΛCDM model and dynamical dark energy parametrizations. It was found that
GRB and quasar data sets were inconsistent with the flat ΛCDM model, in agreement with
Ref. [219] for similar data. In Ref. [220], strong gravitational lensing data in conjunction
with SNe Ia and GRBs have been considered, and it has been found that the best-fit value
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of the spatial curvature parameter favored a closed universe, although a flat universe can
be accommodated at the 68% confidence level.

On the other hand, some recent efforts have shown that the Ep–Eiso and Combo
correlations calibrated using better-established cosmological data—such as SNe Ia or OHD
measurements—provide cosmological constraints that are consistent with the flat ΛCDM
model (see Table 2). In Ref. [123], an updated Ep–Eiso correlation with 193 GRBs and a
calibration based on an interpolation of the OHD data set have been considered, leading
to Ωm0 = 0.397+0.040

−0.039 in a flat ΛCDM cosmology, though the value of the mass density
is higher than the one established by Ref. [122]. In Ref. [221], the Ep–Eiso correlation,
calibrated with the latest OHD data set, has been jointly fit with CMB, BAO, and SNe Ia
data in a search for cosmological parameter constraints within the standard cosmological
model, as well as in dynamical dark energy parametrizations, finding no evidence in favor
of the alternatives to the ΛCDM model. Finally, by using the Combo correlation with
174 GRBs calibrated in a semi-model independent way, in Ref. [141], it has been found:
a) for a flat ΛCDM model Ωm0 = 0.32+0.05

−0.05 and Ωm0 = 0.22+0.04
−0.03 for the two values of the

Hubble constant H0 of Ref. [122] and Ref. [222], respectively, and b) for a non-flat ΛCDM
model Ωm0 = 0.34+0.08

−0.07 and ΩΛ = 0.91+0.22
−0.35 for the H0 of Ref. [122], and Ωm0 = 0.24+0.06

−0.05
and ΩΛ = 1.01+0.15

−0.25 for the H0 of Ref. [222].

Table 2. Summary of some recent cosmological constraints obtained by using Amati and Combo correlations, with or
without other well established cosmological probes, within the flat and non-flat ΛCDM models. The numbers near the
correlations name indicate the size of the GRB sample. For details on the names of the other probes, see the text.

Correlation Sample H0 (km s−1Mpc−1) Ωm0 ΩΛ Ωk0 Reference

Amati (193) GRB + SNIa 67.76± 3.68 a 0.397+0.040
−0.039 0.603+0.040

−0.039 0 [123]

Amati (74) GRB + SNIa + BAO + CMB 70.81± 3.68 b 0.3180± 0.0006 0.6820± 0.0006 0 [221]

Combo (174) GRB 74.03± 1.42 c 0.22+0.04
−0.03 0.78+0.03

−0.04 0 [141]
0.24+0.06

−0.05 0.68+0.05
−0.05 −0.24+0.16

−0.25
67.4± 0.5 d 0.32+0.05

−0.05 0.68+0.05
−0.05 0

0.34+0.08
−0.07 0.91+0.22

−0.35 −0.24+0.24
−0.35

Amati (118) GRB + H(z) + BAO 68.544+0.871
−0.862 0.316± 0.016 0.684± 0.016 0 [175]

67.499+2.281
−2.279 0.310± 0.016 0.639+0.072

−0.078 0.051+0.094
−0.088

Amati (118) GRB + H(z) + BAO + QSO + HIIG 69.3± 1.2 0.313± 0.013 0.687± 0.013 0 [186]
a Inferred from the interpolation of the OHD data by using Bézier polynomials. b Inferred from the interpolation of the OHD data with
additional systematic errors [221] by using Bézier polynomials. c Value from Ref. [222]. d Value from Ref. [122].

Again, by examining an uncalibrated Ep–Eiso correlation built up from a sample
of bright Fermi-LAT GRBs [223] and another GRB sample with lower average fluence
GRBs [224], in Ref. [175], cosmological parameter constraints have been obtained in a
number of cosmological models, concluding that current GRB data are not able to restric-
tively constrain cosmological parameters, and that cosmological parameter constraints
from the more-reliable GRBs are consistent with those resulting from better-established
cosmological probes. In Ref. [187], a joint H(z)+BAO+quasar (QSO)+HII starburst galaxy
(HIIG)+GRB fit determined Ωm0 = 0.313± 0.013 in the flat ΛCDM model, consistency with
a cosmological constant and zero spatial curvature, though mild dark energy dynamics or
a little spatial curvature are not ruled out at all.

Mixing all together the cosmological results summarized above, obtained through
GRB data, seem to be mutually inconsistent. This reflects all the efforts made so far to
employ GRB as distance indicators are still affected by a certain number of issues, as we
outlined previously.

First of all, we recall that GRB correlations involve a number of observable quantities
affected by the so-called circularity problem [166], caused by having to compute the
GRB correlations in an a priori assumed background cosmological model, being not fully
model-independent [12,136,138,140,151,206,209,214]. However, even uncalibrated GRB
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correlations, in principle free from the circularity issue, are not able to put stringent
constraints on the cosmological parameters, though consistent with those resulting from
better-established cosmological probes. In addition, we recall that all GRB correlations
are characterized by large intrinsic dispersions, conceivably caused by unknown large
systematic errors27 [64,143–145] in comparison to the case of better-established probes, such
as BAO, OHD, and SNeIa, where many error sources have been better modeled. On the
other hand, the influence of possible selection bias and evolution effects are currently
debated [154–158]. One may therefore conclude that the large intrinsic dispersions of GRB
correlations could be a consequence of yet undiscovered GRB intrinsic properties and/or a
yet unidentified sub-class within the population of GRBs, analogously to SN populations.

9.2. Applications of Statistical Analysis with GRBs

In this section, we describe a few applications of statistical analysis using GRBs.
Clearly, we focus on a particular choice and, in principle, it is possible to work out different
fits and/or experimental procedures. In particular, we here propose a calibration at the
very beginning, adopting the most consolidated route to handle GRBs. Above, we also
described the non-calibration procedure that, for brevity, we do not report here.

A widely consolidated approach is based on sampling the original catalog by means of
a Monte Carlo technique, essentially built up using Markov Chain Monte Carlo simulations
that are sampled within the widest possible parameter space. Commonly, the most adopted
algorithm is the Metropolis–Hastings and the standard approach to get limits uses the
minimization of the total χ2 function. As we stated above, in this review, the idea of
combining more than one sample is essential in order to refine cosmological bounds on the
model parameters. Hereafter, we denote with x the set of parameters and include in our
analysis SNe Ia and BAO data sets together with the calibrated GRB data. The former data
have been obtained through calibrating the correlations. For the sake of brevity, as well
as above, we only consider Amati, Ghirlanda, Yonetoku, and Combo correlations. In the
specific case of our three samples, i.e., GRBs, SNeIa, and BAO, we combine the chi square
functions by

χ2
tot = χ2

GRB + χ2
SN + χ2

BAO (67)

with the following recipe:

- GRB χ2. Here, we define

χ2
GRB =

NGRB

∑
i=1

[
µobs

GRB,i − µth
GRB(x, zi)

σµGRB,i

]2

(68)

where NGRB and µth
GRB are the experimental and theoretical GRB distance moduli.

- SN χ2. Here, by virtue of the above discussion concerning SN statistical analysis, we
rewrite the chi square function in Equation (25) by

χ2
SN = (∆µSN −M1)TC−1(∆µSN −M1) (69)

where ∆µSN ≡ µSN − µth
SN(x, zi) is the module of the vector of residuals, and C the

covariance matrix.
In particular, we prompt the distance modulus for the most recent SN catalog, named
Pantheon Sample. This represents the current largest SN sample consisting of 1048 SNe
Ia lying on 0.01 < z < 2.3 [180]. The corresponding magnitudes read

µSN = mB − (M− αX1 + βC − ∆M − ∆B) . (70)

Here, M and mB are the B-band absolute and apparent magnitudes, respectively.
The above distance moduli also depend upon other quantities required to standard-
ize/correct the light curves of SNe Ia. The quantities X1 and C are the light curve
shape and color parameters, respectively, whereas α and β are the coefficients of the
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luminosity–stretch and luminosity–color relationships, respectively. ∆M is a distance
correction determined on host galaxy mass of SNe, while ∆B a distance correction that
is built up from predicted biases determined by means of simulations.
By marginalizing overM through a flat prior, it is possible to demonstrate that SN
uncertainties do not depend onM, and this permits one to simplify the chi square
function through

χ2
SN,M = a + log

e
2π
− b2

e
(71)

where a ≡ ∆~̄T
SNC−1∆~̄SN, b ≡ ∆~̄T

SNC−1~1, e ≡~1TC−1~1.
- BAO χ2. The chi square function for BAO data is given in Equations (27)–(29).

Below, we summarize a couple of statistical methods applied to GRB data to extract
cosmological constraints.

9.2.1. Bézier Polynomials and Cosmographic Series

The first method utilizes GRB data, calibrated through the above Bézier polynomials,
to extract cosmological constraints by means of cosmographic model-independent series
and heal de facto the circularity problem without postulating the model a priori [216].
This method has been implemented to Amati, Ghirlanda, Yonetoku, and Combo GRB
correlations in conjunction with SNe Ia and BAO data sets to get more stable and narrow
constraints. We considered the most recent approaches to cosmography, comparing among
them Taylor expansions with z and y2 series, and Padé polynomials. Two hierarchies have
been considered: hierarchy 1, up to j0, and hierarchy 2, up to s0.

Reasonable results have been found for both hierarchies through several MCMC fits
showing possible matching with the standard paradigm (see Tables 3–6). Moreover, we
only partially alleviated the tension on local H0 measurements as hierarchy 2 is considered.
Taylor outcomes are quite stable within each hierarchy, as portrayed by the results in
Table 3, and work well with Amati, Ghirlanda, and Yonetoku correlations in the sense that
the corresponding numerical outcomes are consistent within 1–σ with previous findings.
Again, this suggests a spatially flat ΛCDM paradigm as a statistically favored model,
with mass density parameter Ωm = 2(1 + q0)/3 ∼ 0.3 for Combo correlation, whereas the
other correlations seem to indicate smaller values.

The auxiliary y2 variable is not stable enough compared to Taylor expansions. It
significantly enlarges h0, see, e.g., Table 4, and the overall results are however quite non-
predictive at the level of hierarchy 1. Moreover, Padé fits seem to improve the quality of
Taylor expansion hierarchy 1, as expected by construction (see Table 5). This is particularly
evident for Combo and Yonetoku correlations, while, for Amati and Ghirlanda correlations,
it is not. It is worth noticing that, to go further, jerk term implies ≥(3,1), leading to higher
orders than P3,1, quite unconstrained at higher redshift domains.

Quite surprisingly, our findings summarized in Tables 3–6 show that the ΛCDM
model is not fully confirmed using GRBs. Although this can be an indication that more
refined analyses are necessary, as GRBs are involved, simple indications seem to be against
a genuine cosmological constant [122] and may be interpreted either with a barotropic dark
energy contribution or with the need of non-zero spatial curvature [216]. Nevertheless,
at this stage, our findings are in line with recent claims on tensions with the ΛCDM model
[195,219,225].
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Table 3. Cosmographic best fits and 1–σ (2–σ) errors from Taylor expansions labeled as hierarchy 1 (h0, q0, j0) and hierarchy 2
(h0, q0, j0, s0). Letters A, G, Y, and C indicate Amati, Ghirlanda, Yonetoku, and Combo correlations, respectively.

Taylor Fits

Hierarchy 1 Hierarchy 2
h0 q0 j0 h0 q0 j0 s0

A 0.740+0.005 (+0.010)
−0.006 (−0.013) −0.68+0.03 (+0.06)

−0.02 (−0.04) 0.77+0.08 (+0.16)
−0.10 (−0.20) 0.700+0.007 (+0.014)

−0.008 (−0.015) −0.51+0.02 (+0.03)
−0.01 (−0.02) 0.71+0.06 (+0.12)

−0.05 (−0.10) −0.36+0.05 (+0.13)
−0.10 (−0.20)

G 0.716+0.006 (+0.013)
−0.006 (−0.014) −0.63+0.03 (+0.06)

−0.03 (−0.05) 0.76+0.09 (+0.17)
−0.09 (−0.18) 0.691+0.008 (+0.016)

−0.007 (−0.015) −0.50+0.02 (+0.05)
−0.02 (−0.05) 0.64+0.06 (+0.15)

−0.10 (−0.19) −0.42+0.10 (+0.17)
−0.08 (−0.16)

Y 0.737+0.008 (+0.014)
−0.008 (−0.015) −0.73+0.03 (+0.06)

−0.01 (−0.04) 0.88+0.02 (+0.13)
−0.13 (−0.23) 0.695+0.007 (+0.014)

−0.008 (−0.015) −0.54+0.02 (+0.04)
−0.01 (−0.03) 0.70+0.07 (+0.13)

−0.05 (−0.11) −0.36+0.08 (+0.16)
−0.09 (−0.18)

C 0.706+0.007 (+0.013)
−0.007 (−0.013) −0.59+0.03 (+0.07)

−0.03 (−0.06) 0.72+0.09 (+0.18)
−0.10 (−0.18) 0.693+0.006 (+0.014)

−0.009 (−0.015) −0.52+0.02 (+0.05)
−0.01 (−0.03) 0.73+0.06 (+0.13)

−0.09 (−0.15) −0.38+0.06 (+0.14)
−0.10 (−0.19)

Table 4. Cosmographic best fits and 1–σ (2–σ) errors from expansions with y2 labeled as hierarchy 1 (h0, q0, j0) and hierarchy
2 (h0, q0, j0, s0). Letters A, G, Y, and C indicate Amati, Ghirlanda, Yonetoku, and Combo correlations, respectively.

y2 Fits

Hierarchy 1 Hierarchy 2

h0 q0 j0 h0 q0 j0 s0

A 0.76+0.01 (+0.02)
−0.01 (−0.02) −1.35+0.05 (+0.09)

−0.04 (−0.08) 3.85+0.25 (+0.49
−0.28 (−0.50) 0.78+0.01 (+0.02)

−0.01 (−0.02) −0.53+0.06 (+0.11)
−0.04 (−0.10) −2.52+0.31 (+0.71)

−0.42 (−0.78) −4.41+1.00 (+1.82)
−0.58 (−1.29)

G 0.75+0.01 (+0.02)
−0.01 (−0.02) −1.04+0.05 (+0.10)

−0.05 (−0.10) 2.40+0.24 (+0.47)
−0.23 (−0.47) 0.74+0.01 (+0.02)

−0.01 (−0.02) −0.45+0.10 (+0.17)
−0.06 (−0.13) −2.17+0.42 (+0.96)

−0.61 (−1.14) −3.08+1.41 (+2.68)
−0.56 (−1.28)

Y 0.75+0.01 (+0.02)
−0.01 (−0.02) −1.05+0.05 (+0.10)

−0.04 (−0.09) 2.47+0.22 (0.50)
−0.23 (−0.49) 0.74+0.01 (+0.02)

−0.01 (−0.02) −0.43+0.03 (+0.08)
−0.10 (−0.21) −2.19+0.62 (+1.62)

−0.32 (−0.63) −2.70+0.37 (+0.86)
−1.04 (−1.51)

C 0.75+0.01 (+0.02)
−0.01 (−0.02) −1.01+0.04 (+0.9)

−0.05 (−0.09) 2.29+0.23 (+0.44)
−0.20 (−0.40) 0.74+0.01 (+0.02)

−0.01 (−0.02) −0.43+0.06 (+0.16)
−0.09 (−0.17) −2.19+0.64 (+1.19)

−0.38 (−1.03) −2.79+0.90 (+2.59)
−0.82 (−1.50)

Table 5. Cosmographic best fits and 1–σ (2–σ) errors from Padé expansions labeled as hierarchy 1.
Letters A, G, Y, and C indicate Amati, Ghirlanda, Yonetoku, and Combo correlations, respectively.

Padé Fits

Hierarchy 1

h0 q0 j0

A 0.70+0.01 (+0.03)
−0.02 (−0.03) −0.33+0.05 (+0.09)

−0.03 (−0.08) 0.240+0.010 (+0.020)
−0.010 (−0.020)

G 0.70+0.02 (+0.03)
−0.01 (−0.02) −0.31+0.02 (+0.06)

−0.05 (−0.09) 0.235+0.013 (+0.027)
−0.002 (−0.006)

Y 0.68+0.01 (+0.02)
−0.01 (−0.02) −0.32+0.02 (+0.06)

−0.04 (−0.07) 0.240+0.010 (+0.021)
−0.005 (−0.010)

C 0.68+0.01 (+0.02)
−0.01 (−0.02) −0.33+0.03 (+0.06)

−0.03 (−0.06) 0.244+0.009 (+0.019)
−0.006 (−0.012)

Table 6. χ2 values of the cosmographic fits performed over the considered approximants. For each
GRB correlation, the number of degrees of freedom (DoF) and the considered hierarchy are reported.
Correlations are sorted for increasing values of the ratio χ2/DoF with respect to the Taylor hierarchy
1 expansion.

Sample DoF Hierarchy Approximant χ2

Taylor Function y2 Padé P2,1

Combo 1113 1 1116.84 1230.71 1113.77
1112 2 1089.25 1160.04

Ghirlanda 1080 1 1120.19 1271.92 2203.16
1079 2 1075.01 1184.42

Yonetoku 1154 1 1235.08 1350.27 1178.07
1153 2 1147.72 1227.25

Amati 1246 1 2334.35 2818.25 2202.75
1245 2 2174.13 2539.98



Galaxies 2021, 9, 77 40 of 53

9.2.2. Bézier Polynomials and ΛCDM and ωCDM Cosmological Models

In a second method summarized here, the circularity problem affecting GRBs is again
overcome by using Bézier polynomials to calibrate, in this case, the Amati correlation
alone [123]. Unlike the previous method, GRB data are utilized now in conjuction with
the SNe Ia JLA data set alone [226] and employed to explicitly constrain two different
cosmological scenarios: the concordance ΛCDM model and the ωCDM model, with the
dark energy equation of the state parameter free to vary [123].

In the Monte Carlo integration, through the Metropolis–Hastings algorithm, H0 has
been fixed to the best-fit value obtained from the model-independent analysis over OHD
data, i.e., H0 = 67.76 km s−1 Mpc−1. The results for Ωm and w (see Table 7) agree with
previous findings making use of GRBs. The statistical performance of the models under
study has been evaluated through the Akaike information criterion (AIC) criterion [227]

AIC ≡ 2p− 2 lnLmax

where p is the number of free parameters in the model andLmax is the maximum probability
function calculated at the best-fit point, and the deviance information criterion (DIC)
criterion [228]

DIC ≡ 2pe f f − 2 lnLmax ,

where pe f f = 〈−2 lnL〉+ 2 lnLmax is the number of parameters that a data set can effec-
tively constrain28. The best model is the one that minimizes the AIC and DIC values. Unlike
the AIC criterion, the DIC statistics do not penalize for the total number of free parameters
of the model, but only for those which are constrained by the data [229]. Differently from
the previous approach, we found that the ΛCDM model is preferred with respect to the
minimal ωCDM extension (see Table 7) and then conclude that no modifications of the
standard paradigm are expected as intermediate redshifts are involved. However, future
efforts dedicated to the use of our new technique to fix refined constraints over dynamical
dark energy models are encouraged in order to fix the apparent dichotomy in the results of
the two described methods.

Table 7. 95% confidence level results of the MCMC analysis for the SN+GRB data. The AIC and DIC
differences are intended with respect to the ΛCDM model.

Model ω Ωm ∆AIC ∆DIC

ΛCDM −1 0.397+0.040
−0.039 0 0

wCDM −0.86+0.36
−0.38 0.34+0.13

−0.15 1.44 1.24

9.3. The Role of Spatial Curvature

An updated sample of GRBs has been developed in 2020, in which the Combo relation
extracts bounds on the spatial curvature with no other probes [141], differently from
previous attempts that commonly assume a spatially flat background, with the inclusion of
SNe Ia and BAO.

The way in which the Combo relation is calibrated is without an OHD data set,
but rather invokes two step methods. In this picture, we assume [140]

I. the terms k1 and σk are obtained from small GRB sub-samples with almost the
same redshift;

II. k0 is determined from the use of SNe Ia limited to the lowest redshift of the GRBs of
the Combo data set, in which the calibration of SNe Ia is negligible [140].

GRB sub-samples with the same z are chosen among those ones providing well
constrained best-fit parameters.

Considering that in each sub-sample the GRB luminosity distances dL are quite the
same, we employ the rest-frame 0.3–10 keV energy flux F0. This improves the dependence
on the model and enables one to render our procedure cosmology-independent. In the
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specific example, reported here, seven sub-samples have been suggested and the best fits
reported in Table 8, showing no evident trends with z within the errors. This technique
is used for Combo relation since previous results suggest its advantages in the fitting
strategies described above29. One can perform a simultaneous fit of the above sub-samples
with the same k1 and σk implying k1 = 0.90± 0.13 and σk = 0.28± 0.03.

Table 8. Best-fit parameters of the seven sub-samples at average redshift 〈z〉: the slope q1,z, the nor-
malization log F0,z, and the extrascatter σq,z are shown.

〈z〉 k1,z log
[
F0,z/

(
erg cm−2s−1)] σk,z

0.54± 0.01 0.81± 0.49 −7.38± 1.08 0.29± 0.10
1.18± 0.07 0.83± 0.31 −7.93± 0.77 0.26± 0.08
1.46± 0.05 0.80± 0.32 −8.29± 0.79 0.26± 0.08
1.70± 0.06 0.94± 0.32 −8.92± 0.84 0.19± 0.08
2.05± 0.05 1.05± 0.32 −9.44± 0.90 0.34± 0.08
2.27± 0.07 0.78± 0.20 −8.57± 0.54 0.16± 0.06
2.69± 0.08 1.02± 0.34 −9.38± 0.87 0.34± 0.10

The calibration of k0 is performed by means of the nearest couple of GRBs of the
employed sample with the same redshift. In particular, it is possible to take GRB 130702A
at z = 0.145 and GRB 161219B at z = 0.1475. Then, µobs

C can be replaced via its average
distance modulus 〈µSNIa〉 = 39.21± 0.24, determined by SNe Ia with the same z as the
above two GRBs, considering the bound over k1 and the values of F0, Ep, τ, and α for the
two GRBs adopted throughout the computation. The computed value is k0 = 49.54± 0.21.

At this stage, comparing between GRB distance moduli µobs
C , with uncertainties σµobs

C ,
with theoretical expectations, it is possible to get constraints over background cosmologies.
In particular, for a non-flat ΛCDM model, i.e., the simplest scenario to work with, we write

dL =
c

H0

(1 + z)√
|Ωk|

sinn

(∫ z

0

√
|Ωk|dz′√

Ωm(1 + z)3 + ΩΛ + Ωk(1 + z)2

)
, (72)

and we compute numerical bounds once H0 is marginalized30 as in Table 9.
In particular, slightly larger estimations on matter density are obtained from GRBs,

i.e., Ωm = 0.32+0.05
−0.05 with H0 of Ref. [122] and the opposite, i.e., Ωm = 0.22+0.04

−0.03, for the H0
of Ref. [222]. Analogous results, i.e., compatible with the flat case, are computed using the
non-flat ΛCDM model.

Table 9. Best-fit parameters with 1–σ uncertainties for the various cosmological cases discussed in
this work. The last column lists the values of the χ2. H0 is fixed to the values given by Ref. [122,222],
respectively the Planck and Riess expectation values.

H0 Ωm ΩΛ Ωk χ2

Flat ΛCDM (DOF = 173)

P18 0.32+0.05
−0.05 0.68+0.05

−0.05 0 165.54
R19 0.22+0.04

−0.03 0.78+0.04
−0.03 0 171.32

ΛCDM (DOF = 172)

P18 0.34+0.08
−0.07 0.91+0.22

−0.35 −0.24+0.24
−0.35 164.38

R19 0.24+0.06
−0.05 1.01+0.15

−0.25 −0.24+0.16
−0.25 169.23

10. Further Application of GRBs as Probes of the High-Redshift Universe

Above, we faced some of the standard statistical methods associated with GRBs,
and we proposed a few applications with the corresponding experimental bounds. Now
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we shortly review other phenomenological applications of GRBs that can shed light on the
high-redshift Universe.

10.1. Star Formation Rate from GRBs

LGRBs are likely associated with core-collapse SNe [38,230]. By virtue of this fact, GRB-
SN associations may provide a complementary technique that measures a high-redshift
star formation rate [231–235]. Again, a problem related to calibration occurs, i.e., how to
calibrate a GRB event rate with a star formation rate. Moreover, the luminosity function is
not known a priori, and its reconstruction depends on the particular model selected for the
analysis [236–239]. The typical functional structures for the luminosity functions are (i)
a broken power law [240] and (ii) a single power law with an exponential cut-off at low
luminosities [237]. Reconstructed SFRs from GRBs are typically larger than those from
other observations [241]. The reason behind this apparent inconsistency may reside in the
fact that usually SFR at high-z is obtained from the observations of the brightest galaxies,
whereas GRBs, in view of their high luminosities, may help in detecting faint galaxies at
high-z otherwise unobserved [241,242].

10.2. High-Redshift GRB Rate Excess

Although appealing, the above developments do not show why GRBs do not follow
the star formation history being enhanced by hidden high-redshift mechanisms [242–247].
In particular, the star formation rate at high-redshift, namely z > 6, appears too large if
confronted with the star formation rate obtained from high-redshift galaxy surveys [248].

A natural origin of the high-redshift GRB rate excess can be found in the metallicity
evolution, as LGRBs seem to prefer a low-metallicity environment, as supported by recent
studies that favor such a requirement31. Typical mass bounds on stars suggest > 30M�,
being responsible for BH remnants.

10.3. Gravitationally-Lensed GRBs

Gravitationally lensed GRBs (GLGRBs) have been proposed in Ref. [49], where it
was speculated that such a phenomenon would result in multiple light curves detected at
different times, as due to the different light paths of the produced multiple GRB images.

Quests for GLGRBs were mostly based on strong lensing32 and similarities among
GRB light curves with identical spectra and close locations in the sky, as primary search
criteria [251–255]. However, such searches led to null results, possibly due to Poisson noise
uncertainties, affecting GRB light curves especially at low signal-to-noise ratios, which
may have introduced large differences between the lensed GRB images [254]. On the other
hand, some GLGRB could exhibit time delays shorter than (or comparable to) the burst
duration, hence leading to unresolved (or locally separated) peaks separated by the time
delay [256–258].

Several searches have been performed in the literature, resulting in a few or null
candidates, based on different techniques and lens models, such as globular cluster with a
mass of ≈ 105–107 M� [256], Population III stars with a mass range of 102–103 M� [257],
diverse objects with a mass range of 102–107 M� [259], or a supermassive BH with a mass
in the range of ≈ 105–107 M� [260].

Considering models where the lens is a supermassive BH [259,260], GLGRB candidates
can provide an opportunity to estimate the number density of massive compact objects at
cosmological distances by calculating the rate of GRB lensing. Assuming such supermassive
BH lenses with mass≈ 106 M� as dark matter compact objects [261], the density parameter
of BHs is ΩBH = 0.007 ± 0.004, or equivalently ΩBH/ΩM = 0.027 ± 0.016 [260]. In
this respect, finding more GLGRBs candidates from supermassive BH may enhance our
understanding of the matter content of the Universe.
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11. Conclusions

In this review, we outlined some of the most recent developments toward GRB physics,
properties, and their applications to cosmology. In particular, the review is structured into
two main parts.

In the first part, we discussed the basic demands of GRBs, including their main observ-
able quantities, their classification scheme into LGRBs and SGRBs and the corresponding
issues, emphasizing new possible ways of classification, still the object of speculation.
Afterwards, we put emphasis on GRB progenitors and on their fundamental microphysics,
in view of the experimental evidence characterizing prompt and afterglow emissions, etc.
LGRB connections with SNe have been explored as well along with SGRB matching with
KNe and GWs. Great emphasis has been devoted to portray the standard GRB formation,
working with the well consolidated fireball model. Particle acceleration and radiative pro-
cesses, predicted in such a picture, have been largely reported, with particular concern for
observable signatures and the standard model frontiers. Even in this part, we illustrated
that GRBs cannot be contemplated as genuine standard candles, since there is no consensus
toward their internal processes that we depicted throughout the manuscript. Accordingly,
their luminosity cannot be easily related to their redshifts as, for instance, one does for SNe.

For these aspects and for the overall limitations described above, we developed in the
second part considerable cosmological applications of GRB physics. We tried to standard-
ize GRBs by means of the most recent techniques and accentuated GRBs are essential to
reconcile small with intermediate redshift domains, opening new scenarios toward our
universe comprehension. In this respect, we featured how GRBs could be used as com-
plementary and outstanding probes to trace dark energy’s evolution in support of other
indicators, e.g., SNeIa, BAO, CMB, Hubble differential data, etc. Thereby, we have shown
a few statistical treatments related to Bayesian analysis in cosmology, able to combine
GRBs with other catalogs of data, reporting the most recent cosmological constraints on
dark energy models. To do so, we expounded the bristly circularity problem, burdening
GRBs in cosmological set ups. In particular, we also changed perspective, showing how to
avoid calibration, i.e., how not to employ the circularity. We confronted the two methods
and checked which departures could be expected from the standard cosmological model
through the use of GRBs in both of the cases. Details on error propagation and GRB
systematics have been discussed for several cosmic GRB correlations. Model dependent
and independent techniques of calibrations have been likewise portrayed.

Perspectives about GRB developments will be based on clarifying the overall issues
raised in this review. In particular, it is of utmost importance to shed light on how to
standardize GRBs, in view of a likely self-consistent evolutionary paradigm, so far missing.
With this recipe, we expect in the incoming years to improve GRB use in cosmology and
get rid of circularity and greatly reduce the systematics and all the other issues that affect
GRB data and challenge their use in cosmology. In particular, some models akin to those
characterizing other cosmic indicators will spell out how to describe in toto GRB physics
and evolution.

Funding: Partial support of the Ministry of Education and Science of the Republic of Kazakhstan,
Grant No. IRN AP08052311. M. M is supported by INFN as part of the MoonLIGHT-2 experiment in
the framework of the research activities of CSN2.

Data Availability Statement: Data are taken from the papers quoted in the text.

Acknowledgments: We acknowledge the financial support provided by the Ministry of Education
and Science of the Republic of Kazakhstan,Grant No. IRN AP08052311.

Conflicts of Interest: The authors declare no conflict of interest.



Galaxies 2021, 9, 77 44 of 53

Notes
1 New data come from the newly born gravitational wave, neutrino, and BH astronomy. We remark that precision cosmology

is essential to shed light on the mysteries that jeopardize the standard cosmological puzzle. In this respect, GRBs could play a
significant role since they represent outstanding explosions whose nature can trace the dark energy (DE) and BH natures.

2 GRBs approximately span in the range z ' 2–10.
3 Like the long-lived GeV emission, which is consistent with the afterglow emission of a blast wave in adiabatic expansion
4 For a different perspective, see, e.g., [26]
5 Hereafter the bulk Lorentz factor is indicated with Γ to avoid confusion with the power-law photon index γ, describing simple

power-law GRB spectra.
6 In the observer frame.
7 The GW signal, originating from the shell elliptical galaxy NGC 4993, had a duration of ∼ 100 s. By the characteristics in intensity

and frequency, GW 170817 has been unambiguously associated with the inspiraling of a binary NS-SN merger of total mass
2.82+0.09

−0.47 M�, which is consistent with the masses of all known binary NS systems.
8 Typically dubbed time-integrated and time-resolved analyses, respectively.
9 However, in this case the spectral break is very likely below or above the detector bandpass.

10 This energy band is the one established in the original work by Ref. [65].
11 Additional details on dL(z) will be summarized later in this review. Here, we stress that this definition has been written for

spatially flat DE models.
12 The time lag is historically computed in these energy bands which are the BATSE energy channels 3 and 1, respectively.
13 As a convention, the X-ray luminosities are computed in a rest-frame energy band with similar extrema with respect to the

observed one; with this prescription, their expressions are simple, as portrayed in Equation (11).
14 An alternative scenario proposes that an NS remnant could be left after a GRB emission, though this issue is still under debate.

For details, see Refs. [15,70,71] and Section 3.1.3.
15 Astrophysical fireballs include also some baryons from the surrounding medium, remnant of the progenitor system.
16 However, both B and γe are much higher than the ones inferred from the fit with the synchrotron model of the GRB afterglow,

whose microphysics of particle acceleration and magnetic field generation should be similar to that of the prompt emission
environment [105].

17 Examples are main sequence fitting method, variable stars, Tully–Fisher and Faber–Jackson relations, etc.
18 Examples are SNe Ia, Cosmic Microwave Background (CMB) measurements, Baryonic Acoustic Oscillations (BAO), etc.
19 They refer to “Type Ia” for the absence of hydrogen and the presence of once ionized silicon (SiII) in their early-time spectra.
20 Weak similarities between GRBs and SNe Ia may occur at the level of formal computation, although the GRB nature is absolutely

different from SNe. The core idea is to write a GRB luminosity distance as well and proceed analogously.
21 We here focus on vanishing spatial curvature, i.e., Ωk = 0 [122].
22 The flare-filtered luminosity light curves are iteratively fitted with the above function: at every iteration, data points with the

largest positive residual are discarded, until a final fit with a p-value > 0.3 is obtained.
23 Where their luminosity distance is essentially independent from the choice of the cosmological model
24 The cosmological model under exam, or background cosmology, is intimately determined by knowing the functional form and

evolution of H(z).
25 For the sake of completeness, this problem is not related to GRB redshifts only, but it remains an open issue of cosmography.
26 Similar conclusions have been reached in Ref. [213], who confirmed that only the Ghirlanda correlation has no redshift dependence,

and determined Ωm0 = 0.307+0.065
−0.073 in the flat ΛCDM model from SNeIa calibrated GRB data.

27 Possibly including those associated with detector sensitivity, and the differences in estimated spectral parameters determined
from measurements taken with different detectors or from different models.

28 Here, the brackets indicate the average over the posterior distribution.
29 By construction, these sub-samples exhibit the same correlation with the same q1 and σq but involve different normalizations.
30 Constraints come from H0 = (67.4± 0.5) km s−1Mpc−1 [122] and H0 = (74.03± 1.42) km s−1Mpc−1 [222].
31 There is uncertainty on measuring GRB metallicity at high-redshifts, due to chemical inhomogeneity, for example [249,250]. Thus,

this approach cannot be seen as definitive.
32 In the case of strong lensing, the time delay between the images is larger than the duration of the burst.
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