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Abstract

We show that the (torsional) nonrelativistic string sigma models on R ×S2 can be mapped into deformed
Rosochatius like integrable models in one dimension. We also explore the associated Hamiltonian con-
strained structure by introducing appropriate Dirac brackets. These results show some solid evidence of the 
underlying integrable structure in the nonrelativistic sector of the gauge/string duality.
© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

Over the past one decade, a considerable amount of attention has been paid towards the formu-
lation of nonrelativistic (NR) string sigma models [1–3] on curved manifolds with local Galilean 
invariance. Typically, these sigma models could be classified into two different categories - (1) 
sigma models over String Newton-Cartan (SNC) geometry [4–11] and, (2) sigma models over 
torsional Newton-Cartan (TNC) geometry [12–25].

Studying string theory in either of these geometries could in principle lead to several inter-
esting consequences among which two are centrally important - (1) the emergence of a UV 
complete theory of nonrelativistic quantum gravity (that has found directions until very recently 
in the context of bosonic sigma models [11], [21]) and, (2) deeper understanding of the underly-
ing integrable structure (if any) in the context of nonrelativistic sigma models. This paper aims 
to gain further insights along the second line of thought.

The question that we would like to pose in this paper is whether NR strings are integrable
or not. This question has standard/traditional answers [26–30] in the context of AdS5 × S5

(super)string theory is by reducing the sigma model into 1D and thereby mapping it to Neumann-
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Rosochatius integrable models [31–33]. Here, we are interested in exploring whether similar 
reduction is possible for NR sigma models on R × S2.

We address these issues explicitly by constructing NR sigma models corresponding to spin-
ning string configurations over R×S2. We start by writing down the generic (d +2) dimensional
Lorentzian metric1 [12],

ds2 = 2τ(du−m) + hμνdXμdXν (1)

where we identify each of the individual one forms2 as [14],

τ = dt + 1

2
dψ − 1

2
cos θdϕ = dv − 1

2
cos θdϕ (2)

m = 1

4
cos θdϕ (3)

together with the metric on the two sphere,

ds2
S2 = hμνdXμdXν = dθ2 + sin2 θdϕ2. (4)

As a next step, we set X0 = t = κτ and introduce the embedding coordinates,

Z1 = X1 + iX2 = sin θeiϕ(τ,σ ) = ϑ1(σ )eiϕ(τ,σ ) (5)

Z2 = X3 = cos θ = ϑ2(σ ) (6)

such that, ds2
S2 = dZidZ̄i (i = 1, 2) together with the constraint, ϑ2

i = ϑ2
1 + ϑ2

2 = 1. In terms of 
embedding coordinates (Xm (m = 1, 2, 3)) the metric on two sphere has an equivalent represen-
tation, ds2

S2 = hmndXmdXn where hmn = diag(1, 1, 1).
Closed strings propagating over (1) are described by the 2D sigma model action of the fol-

lowing form [23],

S =
√

λ

4π

∫
d2σL (7)

where the corresponding Lagrangian density could be formally expressed as,

L = √−γ γ αβhμν∂αXμ∂βXν − √−γ γ αβ(ταmβ + τβmα)

+2(
√−γ γ αβτβ + εαβ∂βζ )Aα. (8)

Here, we identify γ αβ = ηabeα ae
β

b (a = 0, 1) as 2D Lorentzian metric on the world-sheet 
together with the determinant 

√−γ = |e|. Moreover, the world-sheet scalar ζ(σα) plays the role 
of an additional compact dimension associated with the null reduced target space geometry. A 
non zero winding of string along ζ is what guarantees the conserved momentum along the null 
isometry direction of the target space geometry [12], [23].

We expand the abelian one form as [13],

Aα = mα + 1

2
(λ+ − λ−)eα

0 + 1

2
(λ+ + λ−)eα

1 (9)

where we identify λ± as Lagrange multiplier.

1 Here, Xu = u is the null isometry direction associated with the 4D Lorentzian spacetime.
2 Here, v = t + ψ is the time coordinate for the reduced TNC spacetime [14].
2
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Substituting (9) into (8) we find,

L = √−γ γ αβhμν∂αXμ∂βXν + 2εαβmα∂βζ

+λ+εαβeα
+(τβ + ∂βζ ) + λ−εαβeα

−(τβ − ∂βζ ) (10)

where we identify, eα ± = eα
0 ± eα

1. The equations of motion corresponding to Lagrange 
multipliers impose the following set of constraint equations,

εαβeα
±(τβ ± ∂βζ ) = 0 (11)

which has a natural solution of the form,

eα
± = (τα ± ∂αζ ). (12)

Substituting (12) into (10) we arrive at the following Nambo-Goto (NG) Lagrangian,

LNG = εαα̃εββ̃

εαβeα
0eβ

1 (eα̃
0eβ̃

0 − eα̃
1eβ̃

1)hmn∂αXm∂βXn + 2εαβmα∂βζ (13)

where for the present configuration we note down,

eα
0 = τα = ∂αt + 1

2
∂αψ − 1

2
cos θ∂αϕ (14)

eα
1 = ∂αζ (15)

together with the 2D Levi-Civita convention, ε01 = −ε01 = +1 both for the world-sheet as well 
as tangent space indices. Here, Xms (m = 1, 2, 3) are the embedding coordinates as introduced 
earlier in (5) and (6).

We are now going to explore the integrability criteria in the tensionless limit [12] of the TNC 
sigma model (13). This limit is achieved by taking a simultaneous large c limit of the associated 
world-sheet d.o.f. Taking a second scaling limit on the world-sheet fields results in the so called 
U(1) Galilean geometry [12] as the target space over which NR strings are propagating.3 To start 
with, we scale [22]-[23] the world-sheet fields as,

λ = g

c2 ; t = c2t ; ψ = ψ ; θ = θ ; ϕ = ϕ ; ζ = c ζ̃ (16)

which upon substitution into the original action (13) yields the NR action, S̃NR =
√
g

4π

∫
d2σLNR

together with the NR Lagrangian,

LNR ≈ εαα̃εββ̃

εαβ∂αt∂β ζ̃
∂α̃t∂β̃ t hmn∂αXm∂βXn + 2εαβmα∂β ζ̃ +O(c−2). (17)

We choose to work with NR spinning string solitons those are extended along the polar angle 
(θ ) as well as wrapping and spinning along the azimuthal direction (ϕ) of S2,

ϕ(τ, σ ) = �τ + ξ(σ ) ; t= 2τ ; ζ̃ = σ ; θ = θ(σ ) (18)

3 In case of type IIB (super)strings propagating on AdS5 ×S5 the corresponding dual gauge theory (also known as the 
Spin-Matrix Theory (SMT) [20]) has been identified as some sort of a decoupling (λ → 0) limit of N = 4 SYM where 
only states close to the near BPS bound survive [12]. This opens up new possibilities for better understanding of the 
nonrelativistic holography in the near BPS sector.
3
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which upon substitution into (17) yields,

LNG = ϑ ′2
i + ξ ′2ϑ2

i δi1 − �(ϑ2
i − 1) + �ϑ2. (19)

The above Lagrangian (19) effectively describes a one (i = 1) dimensional harmonic oscillator 
that is constrained to remain on a unit two sphere. This precisely looks like the integrable 1D 
Rosochatius model [28] in the presence of a spin deformation (�ϑ2) term.

Given the deformed Lagrangian (19), the first step is to find out the corresponding Hamil-
tonian dynamics and in particular classify the underlying constraint structure4 associated to the 
deformed 1D Rosochatius model under consideration. In order to do so, we first note down the 
canonical momenta,

�1 = 2ϑ ′
1 (20)

�2 = 2ϑ ′
2 (21)

�ξ = 2ξ ′ϑ2
1 = const. (22)

which yields the corresponding canonical Hamiltonian density as,

Hc = �2
i + �2

ξ

ϑ2
1

+ �̃(ϑ2
i − 1) + �h (23)

where we have re-scaled the Hamiltonian (as well as the Lagrange multiplier, � → �̃ = 4�) by 
an overall factor of 4 and identify the corresponding deformation piece,

�h = −4�ϑ2. (24)

Notice that, the deformation �h vanishes as we set the limit, � → 0 and therefore the corre-
sponding Hamiltonian system (23) reduces to the standard Rosochatius like integrable models as 
discussed in [28].

Finally, we note down the primary Hamiltonian,

HP = Hc + λ̃φP (25)

where we identify the associated primary constraint,

φP = ��̃ = ∂LNG

∂�̃′ ≈ 0. (26)

Given the structure (25), we next categorize the class of constraints associated with the dy-
namical system under consideration. Setting the variation of φP equal to zero we find,

�1 ≈ {φP ,HP }PB = ϑ2
i − 1 ≈ 0. (27)

The zero variation of �1 results in the secondary constraint of the following form,

�2 ≈ {�1,HP }PB = �iϑi ≈ 0. (28)

4 The integrability of the reduced 1D model (19) could be anticipated from a naive counting of the integrals of motion 
associated with the dynamical phase space under consideration. Given a dynamical phase space configuration of dimen-
sion 2N that is subjected to set of (secondary) constraints �i(i = 1, .., n) where, n < N is said to be Liouville integrable
if it possess Ia(a = N − n ) conserved charges those are in involution [28].
2
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Any further variation of �2 gives back the canonical structure (23) which thereby concludes 
the chain of constraints in the theory. We are therefore left with two integrals of motion one of 
which is the canonical momenta (�ξ ) conjugate to ξ . The other integral of motion is what we 
identify below as the generalized conserved charge associated with deformed Rosochatius model 
constructed above.

Before we get into the integral(s) of motion, it is customary first to introduce Dirac brackets 
in the context of NR sigma models. We define Dirac bracket between observables in the phase 
space as,

{A1,A2}DB = {A1,A2}PB − {A1,�i}(�−1)ij {�j ,A2} (29)

where, �ij = {�i, �j }PB .
Below we propose the generalized integral of motion,

FR = 1

2
(�iϑj − �jϑi)

2 + �2
ξ

ϑ2
2

ϑ2
1

+ f(�i,ϑi) (30)

subjected to the evaluation of the constraints (27) and (28). We also set,

f(�i,ϑi) = −4�ϑ2 (31)

which thereby yields,

FR = Hc − �2
ξ . (32)

Notice that, f(�i, ϑi) → 0 in the limit � → 0 and thereby one recovers the original 
Rosochatius model [28]. As a further crosscheck we notice that,

{FR,Hc}DB = {Hc,Hc}DB = 0 (33)

together with the fact, {FR, �ξ }DB = 0 which ensures that all the charges are in involution.
To conclude, we notice that nonrelativistic spinning string sigma models on R × S2 could 

be mapped into (spin)deformed 1D Rosochatius integrable models where one can obtain the 
corresponding deformed Uhlenbeck integrals [32] and show that those are in involution. There 
are some further issues that also remains to be explored. It would be really nice to construct the 
most general class of solutions by introducing so called ellipsoidal coordinates [26]. The other 
direction that could possibly be interesting is to construct the nonrelativistic (NR) analogue of 
the 2D dual version of the rotating string configuration by exchanging the role of world-sheet 
coordinates [27]. This leads to what is known as NR pulsating string configurations [22] with 
time dependent radial functions. We hope to address some of these issues in the near future.
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