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Chapter 1

Executive Summary

This report presents the conceptual design of a new experiment, COMET (COherent Muon
to Electron Transition), to search for coherent neutrino-less conversion of muons to electrons
(µ−−e− conversion), in the presence of a nucleus, µ− + N(A,Z) → e− + N(A, Z), with a
single event sensitivity B(µ−N → e−N) < 10−16.

Flavor transitions between the charged leptons (Charged Lepton Flavor Violation,
cLFV) have great potential to reveal new physics phenomena beyond the Standard Model.
Many models of such physics, such as those based on supersymmetric grand unification
(SUSY-GUT), supersymmetric seesaws (SUSY-Seesaw) and extra dimensions, require the
existence of cLFV that is accessible to realizable future experiments.

Muons provide the best laboratory to study cLFV as they can be produced in substantial
numbers and have a sufficiently long lifetime for precise measurements of their decays.
Present accelerators can produce about 1015 muons/year, and it is anticipated that it will be
possible to produce 1018-1019 muons/year with a new high intensity source that is proposed
in conjunction with the main J-PARC proton synchrotron ring (MR).

The main processes which are accessible for cLFV are the decays µ → eγ, µ → eee and
µ−−e− conversion. Of these, µ−−e− conversion has the best sensitivity to new physics, as
the potentially measurable branching ratio of about 10−16 is significantly better than the
limits expected with current technology for the µ → eγ, µ → eee processes. Within the
Standard Model, modified to take account of neutrino oscillation, the expected rate is less
than 10−50 and so any observation of a µ−−e− conversion would be a clear signal of physics
beyond the Standard Model. A measurement ≤ 10−16 for µ−−e− conversion, which is the
COMET goal, is a factor of 10,000 better than that of current experiments.

COMET will use a bunched proton beam, slow-extracted from the J-PARC MR. Beam
bunching will be necessary to reject beam-related backgrounds. The experimental setup
consists of high magnetic-field solenoids for pion capture, C-shaped curved solenoids with
momentum selection, and a C-shaped curved solenoid spectrometer. The experiment will
require about 2× 1018 stopping muons, which, with the expected transmission of muons in
our muon beamline, will require about 8.5 × 1020 8 GeV protons on target.

In the chapters that follow, details of the physics motivation and the conceptual design of
the components needed for the COMET experiment are presented, together with a possible
layout, a preliminary cost estimation, and a technology-limited schedule.

9
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1.1 Response on the J-PARC PAC questions on March 6,
2009

In the J-PARC PAC report dated as 6th March 2009, the four questions and concerns, which
should be addressed in the present CDR, were given. Brief comments to the four questions
and concerns are presented in the following.

1. The COMET proponents should present the experiment’s sensitivity as a
function of time with a total exposure of 8 × 1020 protons on target.

The updated single event sensitivity of 2.6×10−17 is estimated for 8.5×1020 protons,
as shown in Table 11.3. A proton exposure of 8.5× 1020 corresponds to about 2× 107

seconds with the average beam current in the proton beam line of 7 µA. When no
signal events nor background events are found, the single event sensitivity should be
improved linearly with the amount of proton exposure.

2. The CDR should serve as basis for a plausible cost range and operations
schedule. The COMET proponents and the MTF should present a break-
down of the elements of the cost range as well as drivers and milestones
for a plausible schedule. The cost and schedule estimate should include
accelerator modifications, required beamlines, detector elements and civil
construction.

The cost estimate of the COMET experiment is given in Chapter 14. The estimated
cost ranges from about 75 Oku Japanese yen to 90 Oku Japanese yen. The breakdown
of the cost elements, which includes accelerator modifications, a required proton beam
line, a muon beam line, the detector element, and civil construction, is presented in
Chapter 14. These costs were made with assistance from the Muon Task Force (MTF)
group. In particular, the experiment layout and civil construction, which are summa-
rized in Chapter 13, is based on discussions with the MTF.

A plausible schedule for construction and operation is given in Chapter 15. A prefer-
able construction schedule would start from year 2012 and last 4 years. A modest
budget in year 2011 is required. The period of construction of superconducting mag-
nets is expected to be 3 years with one preceding year to manufacture superconductor
wire.

A COMET run period from year 2016 to 2018 is considered. In the first year, we plan
an engineering run of about 1/10 of the total proton exposure (8× 1019), followed by
two physics runs, each of which with a proton exposure of about 3.8× 1020 in the two
year period of 2017 and 2018. If the COMET run period is significantly delayed from
this schedule, it would be difficult for COMET to be competitive with the Fermilab
Mu2e experiment.

3. The COMET proponents should present a plausible plan for how collab-
oration resources, cooperative agreements with the Fermilab Mu2 collab-
oration, KEK resources, J-PARC resources and industry can provide the
resources required to meet the schedule and performance goals of the ex-
periment.



1.1. RESPONSE ON THE J-PARC PAC QUESTIONS ON MARCH 6, 2009 11

Regarding the resources in the COMET collaboration, each of the international groups
in the COMET collaboration will start to prepare and submit their funding requests.
It would be difficult for them to obtain funding without a stage-1 scientific approval of
COMET by the J-PARC PAC. Furthermore, it would be easier with a stage-1 scientific
approval for COMET to acquire more collaborators. Therefore, the stage-1 scientific
approval is considered to be the most important milestone to obtain collaboration
resources and to expand the collaboration.

Under the US-Japan cooperative program, COMET and Mu2e are collaborating in
two R&D programs. These are the problem of proton beam extinction and the design
of superconducting solenoids. The budget size is in the order of 100 k US$. Recently
the agreement “Joint efforts with the Fermilab Mu2e collaboration” was signed, and
joint work on selected items, R&D and design, will start soon. The budget size
for COMET under the US-Japan cooperative program will be increased before the
Tevatron shut down, and we are expecting support from KEK for this work.

The hardware design related to accelerator modification, a proton beam line, and civil
construction would be done with KEK experts. As shown in Chapter 15, the basic
design of a proton beam line and an extension of the experimental hall should be
completed by the end of Japanese fiscal year of 2010, so that a budget request can
be made for the Japanese fiscal year of 2012. In terms of tests of proton extinction,
engineering support on the design and fabrication of AC dipole magnets should be
available in 2011.

With very cooperative support from the KEK cryogenic center, the design of the su-
perconducting solenoid has been developed. Recently a magnet-manufacture company
has become involved in the design work. In this field, the COMET collaboration has
received tremendous help from KEK. The next stages should be some prototyping
which requires significant budgetary support from KEK.

4. What are the relative strengths/weakness of the proposed COMET and
Mu2e experiments ? What are the strategic advantages and risks of the
both experiments going forward and making measurements ?

The COMET design is more advanced, The advantages of the COMET design are
summarized in Chapter 3. In short, the COMET design has the following advantages.
They are

• a C-shape muon transport in the muon beam line (from the pion production
to the muon-stopping target), which would produce a large dispersion of the
muon beam. As a result, momentum selection would be better, and

• a C-shape electron transport in the COMET spectrometer (from the muon-
stopping target to the detector), which would suppress low-energy background
events like decay-in-orbit (DIO) electrons and particularly protons from nuclear
muon capture. As a result, the detector rate would be reduced significantly
and a probability of mis-tracking is highly suppressed. At the same time, it
is not necessary to have a proton absorber. Mu2e must shield their electron
spectrometer from protons produced in nuclear capture of stopping muons so
that COMET will yield a better energy resolution for electron detection. Also
because of suppression of low-energy particles, the detector geometry can be
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made simpler, such as a setup of straw-chamber planes transverse to the field
axis and an electron calorimeter whose front face is perpendicular to the field
axis.

The COMET design is based and tested on on-going R&D programs of the critical
elements for the COMET beam line and detector. For instance, prototyping of super-
conducting coils for the muon transport by the MUSIC project at Osaka University,
proton extinction measurements and others.

Potential strategic advantages of both COMET and Mu2e proceeding parallel is that
one can confirm or refute the finding of the other experiment. Particularly if a signal is
seen, an additional experiment will be required to confirm such a significant result. In
addition, it is possible that one of the experiments, which have significant differences,
may not succeed in reaching the proposed level of sensitivity due to technical or
experimental limitations of the design. A potential risk is the division of resources
such that neither experiment could be successful.



Chapter 2

Physics Motivation

2.1 Introduction

The origin of the flavors of elementary particles is a puzzling enigma. Their properties and
structure should reflect the nature of the physics beyond the Standard Model (SM). Flavor
physics is thereby believed to provide a path to the new physics. The flavor-changing neutral
current (FCNC) processes are of particular interest since they are expected to include
the effect of new physics that are observable in high-precision experiments. Among the
FCNC processes, the charged lepton flavor violation (LFV) processes has recently attracted
much attention from both theoretical and experimental points of views. The search for
LFV processes has notable advantages, including the following. (1) LFV can have sizable
contributions from new physics and thus can manifest themselves in future experiments.
(2) LFV gives no sizable contribution in the Standard Model unlike the FCNC process
of the quarks; such contributions give serious background events and limit the sensitivity
to the new physics.

2.1.1 History I — the establishment of the concept of lepton flavor

“Can a muon convert into an electron ?” This has been a big question since 1937, when
the muon was first discovered[1]. Its mass was about 200 times heavier than the electron’s,
and hence at first it was conjectured to be Yukawa’s meson[2]. Soon afterwards, however,
it was found that its lifetime was too long and its interaction cross section too weak for
it to be the Yukawa meson[3, 4]. This led to the idea of two mesons, which was the first
theoretical notion of the muon[5, 6]. The leptonic nature of the muon was soon confirmed
experimentally[7]. Furthermore, masses aside, the nature of the muon and the electron were
found to be quite similar[8].

“Who ordered that?”, the famous comment by Rabi, suggests how puzzling the existence
of the new lepton was at that time. It was considered that the muon could be an excited state
of the electron. If this were correct, a consequence of this would be that the muon should
decay into an electron and a photon. In 1947 Hincks and Pontecorvo[9] experimentally
searched for the process µ+ → e+ + γ. This was the first search for lepton flavor violation
of charged leptons (cLFV). They found a negative result and set an upper bound for the
branching ratio of this process of less than 10%. Almost at the same time, it was suggested
that the muon could decay into three particles[10]. One of them would be the electron and
the others two neutral particles, namely neutrinos. Note that the neutrinos were assumed
to be identical — thus far, the concept of lepton flavor had not arisen.

13
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Since then, successive searches for muon LFV have been carried out, for example for
the neutrinoless µ−−e− conversion process (µ → e; N , with N a nuclei), and µ → e +
γ[11, 12, 13]. All the results were negative and set strong limits on these branching ratios.

Such a stringent limit on muon decay led to the idea that there are two kinds of
neutrino[14, 15]. This was the first notion of lepton flavor — muon flavor (Lµ) and electron
flavor (Le). This was verified experimentally at Brookhaven National Laboratory (BNL)
by observing that only muons were produced by neutrinos which come directly from pion
decay[16].

Then the concept of generations of particles was developed[17]. It was extended to three
generations[18] and hence the concept of lepton flavor was also extended to include a third
flavor, the tau Lτ . All ideas are finally integrated into the Standard Model (SM), in which
lepton flavor conservation is guaranteed by an exact symmetry, owing to massless neutrinos.

2.1.2 History II — the discovery of lepton flavor violation in neutrinos

Following the initial quest for cLFV, searches with various elementary particles, such as
muons, taus, kaons, and others have been carried out. The upper limits have been im-
proved at a rate of two orders of magnitude per decade, as can be seen in Figure 2.1. The
present upper limits of various LFV decays are listed in Table 2.1, where it can also be
seen how high the sensitivity of the muon system is to LFV. This is mostly because of
the large number of muons available for present experimental searches (about 1014 − 1015

muons/year). Moreover, an even greater number of muons (about 1019 − 1020 muons/year)
will be available in the future, if new highly intense muon sources are realized.
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Figure 2.1: History of searches for LFV in muon and kaon decays

While all of these earlier searches gave negative results for LFV, LFV among neutrino
species has been experimentally confirmed with the discovery of neutrino oscillations[33, 34],
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Table 2.1: Present limits of LFV of the muon, tau, pion, kaon and Z boson.

Reaction Present limit Reference
µ+ → e+γ < 1.2 × 10−11 [19]
µ+ → e+e+e− < 1.0 × 10−12 [20]
µ−Ti → e−Ti < 6.1 × 10−13 [21]
µ−Au → e−Au < 7 × 10−13 [22]
µ+e− → µ−e+ < 8.3 × 10−11 [23]
τ → eγ < 3.9 × 10−7 [24]
τ → µγ < 3.1 × 10−7 [25]
τ → µµµ < 1.9 × 10−7 [26]
τ → eee < 2.0 × 10−7 [26]
π0 → µe < 8.6 × 10−9 [27]
K0

L → µe < 4.7 × 10−12 [28]
K+ → π+µ+e− < 2.1 × 10−10 [29]
K0

L → π0µ+e− < 3.1 × 10−9 [30]
Z0 → µe < 1.7 × 10−6 [31]
Z0 → τe < 9.8 × 10−6 [31]
Z0 → τµ < 1.2 × 10−5 [32]

and lepton flavor conservation is now known to be violated. The phenomenon of oscillation
means that neutrinos are massive and hence the SM must be modified so that neutrinos
are massive and LFV can occur. Furthermore, there are other reasons which compel us
to modify the SM, including the existence of dark matter, and stability of the weak scale
against quantum corrections. These indicate that new physics beyond the SM will reveal
itself at TeV scale. This scale is within the scope of the Large Hadron Collider and expected
cLFV experiments including COMET.

2.2 New physics and µ−−e− conversion

Charged LFV has not been observed experimentally. Indeed, it is well known that in the
minimally extended SM, which includes vanishingly small neutrino masses to account for
neutrino oscillation, the predicted rate for cLFV is too small to be observed. For example,
the prediction for Br(µ → eγ) is given by the graph in Figure 2.2 [35, 36, 37, 38],

Br(µ → eγ) =
α

2π

∣∣∣∣∣∑
k

UekU
∗
µk

m2
νk

m2
W

∣∣∣∣∣
2

≅ α

2π

∣∣∣∣Ue3U
∗
µ3

δm2
atm

m2
W

∣∣∣∣2 < 10−54. (2.1)

Here Uβi is the Maki-Nakagawa-Sakata Matrix[17] with β denoting a charged lepton flavor
eigenstate and i a neutrino mass eigenstate with mass mi, and mW is the W boson mass,
and α is the fine structure constant. Note that the GIM mechanism[39] leads to a prediction
dependent on differences in the masses of the neutrinos. For the µ → eγ process, a similar
suppression arises due to gauge symmetry.

Therefore, the discovery of LFV would imply new physics beyond not only the SM but
also beyond “neutrino oscillations”. In fact, all new physics or interactions beyond the
Standard Model would predict LFV at some level. Examples of such new physics models
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Figure 2.2: One of the diagrams of massive neutrino contributions to a µ to e transition
(µ → e “γ”).

include supersymmetric (SUSY) models, extra dimension models, little Higgs models, mod-
els with new gauge bosons Z

′
, models with new heavy leptons, lepto-quark models and etc..

Each gives a prediction for flavor changing neutral currents (FCNC), including cLFV. In
the following three subsections, we discuss relations between Br(µ → eγ) and Br(µ → e;N)
for several new physics models.

Although expected at the LHC, discrimination of these new physics models will be very
difficult[40]. The search for µ−−e− will be crucial in discriminating between these models,
and it is especially synergistic with the µ → eγ search. Thus the argument for studying the
physics of cLFV throughout the next decade is very robust[41].

2.3 Supersymmetric models

2.3.1 General feature

Supersymmetric extensions to the SM are the leading candidates for physics beyond the
SM. In this class of model, a form of parity, called R-parity, is often imposed to suppress
FCNC, rapid proton decays and other phenomena. In this case the source for cLFV is the
soft mass matrix (m2

l̃
) for sleptons, the scalar partners of the leptons. In principle, this can

be arbitrary and a large FCNC can be introduced. However strong constraints are imposed
on these parameters. For example, the branching ratio of µ → e + γ is given similarly with
Eq. (2.1) by

Br(µ → eγ) =
α

2π

∣∣∣∣∣∑
k

ŨekŨ
∗
µk

δm2
k

m2
S

∣∣∣∣∣
2 (

mW

mS

)4

, (2.2)

where mS is the typical scale of scalar masses, Ũ denotes the mixing matrix between sleptons
and leptons, and δm2

k is the mass squared difference between the kth and the 1st sleptons.
To suppress this, the conditions that, by some mechanism, Ũ is almost diagonal and/or δm2

k

is small enough compared with m2
S have to be assumed. To implement these conditions at

the weak scale, it is often assumed that at a certain scale MG,

Ũ = 1 and δm2
k = 0, (2.3)

and an observable effect arises as a radiative correction. As a result, Ũ ≅ 1 and δm2
k ≅ 0

are maintained at the weak scale.
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Under this condition, the SUSY contribution to a muon-to-electron transition (µ → e
“γ”) is given by Figure 2.3, where the mixing between a smuon (µ̃) and a selectron (ẽ) is
denoted by ∆m2

µ̃ẽ, and plays a key role.
This slepton mixing parameter, ∆m2

µ̃ẽ (or similarly ∆m2
ẽµ̃) is given by the off-diagonal

element of the slepton mass matrix (m2
l̃
) that is given in Eq. (2.4)1.

m2
l̃

=

 m2
ẽẽ, ∆m2

ẽµ̃, ∆m2
ẽτ̃

∆m2
µ̃ẽ, m2

µ̃µ̃, ∆m2
µ̃τ̃

∆m2
τ̃ ẽ, ∆m2

τ̃ µ̃, m2
τ̃ τ̃

 (2.4)

Therefore, the determination of these SUSY contributions would enable us to study the
structure of the slepton mass matrix, and then more importantly the “SUSY soft breaking”
that is the origin of SUSY particle masses. It should be noted that the slepton mixing
is difficult to study, as precisely as in cLFV studies, at high energy collider experiments
such as the LHC. Hence, studies of cLFV would provide a unique opportunity to study
slepton mixing. In the following, the SUSY contributions to LFV are presented in more
detail. � ~�0 e~� ~e
�m2~�~e
Figure 2.3: One of the diagrams of SUSY contributions to a µ to e transition (µ → e “γ”).
∆m2

µ̃ẽ indicates the magnitude of the slepton mixing.

2.3.2 Models with the seesaw mechanism

There are several mechanisms which give the conditions in Eq. (2.3). Among these, gravity-
mediated soft breaking is the most often employed. It gives the conditions in Eq. (2.3)
at the gravity scale (=Planck, ∼ 1019 GeV) or grand unified scale (∼ 1016GeV). Non-zero
off-diagonal matrix elements can then be induced by radiative corrections from MG to the
weak scale (∼ 102 GeV).

To reproduce lepton mixing and the neutrino masses, the seesaw mechanism[42] has
been studied most extensively. In this mechanism, three right-handed neutrinos Ni are
introduced. Mass terms for the neutrinos are given by the Yukawa coupling between the
lepton doublets (Lα) and the right-handed neutrinos and the Majorana mass term for the
right-handed neutrinos:

W = N̄if
iα
ν LαHu +

1
2
N̄iMRiN̄j . (2.5)

1It is noteworthy that the SUSY contributions to the muon g − 2 and the muon electric dipole moments
are the real and an imaginary parts of the diagonal element m2

µ̃µ̃, respectively.
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It induces Eq. (2.4)[43]

(∆m2
L̃
)αβ ≅ −(6 + a2

0)m
2
0

16π2
(f †

νfν)αβ log
MG

MR
. (2.6)

Here m0 denotes the SUSY breaking scale and a0, a parameter for A term breaking, is an
O(1) parameter.

Thus in a SUSY model with the seesaw mechanism, slepton mixing can be induced from
neutrino mixing. LFV processes in muon decays are then also expected to occur[44, 45, 46].
An example of the branching ratio is shown in Figure 2.4.
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The most important result here is the robust relation between the branching ratio of
µ → e + γ and that of µ to e conversion. In this model, µ−−e− conversion is dominated by
a dipole operator similar to Figure 2.3, with a quark line attached at the other end of the
photon line. Therefore the important relation[47]

Br(µ → e;N)
Br(µ → eγ)

∼ α (2.7)

is achieved. The details of this depend on the nucleus, as can be seen in Figure 2.5.

2.4 Little Higgs models

In Little Higgs models[48, 49], Higgs bosons appear as a quasi-Nambu-Goldstone boson
to ensure its stability against quantum corrections. There are several implementations of
this idea. Among them the model with T-parity[50] is the most extensively studied. In
this model, to prevent the little hierarchy problem, mirror fields of the ordinary fields are
introduced. These have odd T-parity, while ordinary fields are even under T-parity. This
parity works similarly to R-parity in SUSY models.
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The source of LFV arises from the misalignment between mirror fields and the ordinary
fields[51]. There is no principle to forbid large FCNC and current limits on cLFV strongly
constrain models. In Figure 2.6, the predictions for µ−−e− conversion and µ → eγ are
shown with an appropriate assumption taken for the misalignment.
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Figure 2.6: Prediction of the branching ratio of µ−−e− conversion and of µ → eγ in Little
Higgs Models. Taken from[53].

The contribution to µ → eγ is depicted in Figure 2.7. In addition to the GIM suppres-
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Figure 2.7: Diagrams for µ → eγ in Little Higgs Models. Taken from[53].

sion, there is another accidental cancellation among these diagrams. Therefore, unlike the
SUSY case these diagrams do not give a leading contribution to µ−−e− conversion, and box
and Z penguin diagrams dominate the amplitude for µ−−e− conversion[52, 53, 54]. Inciden-
tally, due to T-parity conservation, there is no tree-level contribution to µ−−e− conversion
and hence both branching ratios are loop-suppressed.

Thus the branching ratios in this model are almost equal as shown in Figure 2.6

Br(µ → e; N)
Br(µ → eγ)

∼ 1. (2.8)

2.5 Extra dimensional models

There are many kinds of models involving extra dimensional space. Here we discuss two
models. The first is the Randall-Sundrum model[55] and the second is a universal extra
dimensional model (UED)[56]

2.5.1 Anarchic Randall-Sundrum model

To explain the hierarchy among Yukawa couplings, the SM fields are permitted to propagate
in the full 5D space [57, 58]. In this scenario, the SM fields are localized at a different
point of 5th dimension. Yukawa couplings are quite sensitive to the position and this fact
explains the hierarchy among the Yukawa couplings in effective 4D theory with O(1) group
5D couplings. These O(1) couplings indicate a large mixing among generation in a full 5D
theory. It manifests itself in the self-couplings of the 1st Kaluza-Klein (KK) gauge bosons
and the ordinary fermions as follows.

First we note that in the interaction basis (eF , µF , τF ) , the gauge coupling “universality”
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among fermions are modified:

gSM (ēF , µ̄F , τ̄F )/A(n)

 αe 0 0
0 αµ 0
0 0 ατ

  eF

µF

τF

 . (2.9)

Here gSM stands for the gauge coupling in the SM corresponding to the gauge field A. Since
it is the self-coupling of the 1st KK gauge bosons, αe,µ,τ are not necessarily equal to 1. In
the mass eigenstate, (e, µ, τ), therefore, there arise LFV couplings

gSM (ē, µ̄, τ̄)/A(n)UL(R)

 αe 0 0
0 αµ 0
0 0 ατ

 U †
L(R)

 e
µ
τ

 (2.10)

Here UL(R) are the mixing matrices to diagonalize the mass matrix given in the basis of
the interaction state. Note that since αe,µ,τ are not equal, the effect of the mixing matrices
remains. In principle, it causes a large LFV effect. With the appropriate assumption,
the prediction for cLFV is given in Figure 2.8. There is not a strong correlation between
µ → eγ and µ−−e− . The branching ratios are predicted to be rather large and give a
similar magnitude:

Br(µ → e; N)
Br(µ → eγ)

∼ 1. (2.11)

Figure 2.8: Prediction of the branching ratio of µ−−e− conversion and for µ → eγ in
anarchic Randall-Sundrum models. Taken from[59].

2.5.2 UED models

In this class of model, in general, there is no misalignment between ordinary matter and the
KK particles. Therefore even if neutrino masses are introduced[60], no LFV effect beyond
the SM and neutrino contribution in Eq. 2.1 arises. Hence

Br(µ → e;N) ∼ Br(µ → eγ) < 10−54. (2.12)

Note that with information from LHC even if we do not see any cLFV signal, it will
serve a very important information, since in many case new physics must predict no cLFV.
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2.6 µ−−e− conversion at LHC era

There are many other models to account for neutrino LFV (lepton mixing and neutrino
masses), the existence of dark matter, the stability of the electroweak scale and so on. All
of them predict a new particle at TeV scale which will be found LHC. Each model has
its prediction for Br(µ → eγ) and Br(µ → e; N). These are parametrised in the effective
operator as

L =
a2

µemµ

Λ
ēσµνFµνµ +

b2
µe

Λ
ēµq̄q. (2.13)

Here Λ indicates a typical new physics scale and a2
µe and b2

µe stand for couplings and/or loop
factors. The current limits of cLFV[19, 20, 21] give a stringent limit on these effective scales
as Λ/aµe, Λ/bµe > 103 TeV. It means, for example, if these operators are loop suppressed,
the scale explored by the new generation cLFV experiment is the TeV range. This is shown
in Figure 2.9 for the SUSY case.
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Figure 2.9: Prediction of the branching ratio of µ−−e− conversion in Ti in the SUSY-seesaw
models as a function of SUSY mass scale (neutralino). The sensitivity of the proposed
experiment is also shown [61].

In general, the relation between aµe and bµe is model dependent. For example in a
SUSY model they are both loop suppressed and are related with each other tightly while in
a Little Higgs model, they are both loop suppressed but are not related so much. Therefore
the relation between µ → eγ and µ → e; N shows a characteristic feature for each model.
It is expected that the LHC will find evidence for new physics. It is, however very difficult
to discriminate a true model from other candidates. It is, therefore, essential to determine
the relation between aµe and bµe.
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This demonstrates that the µ−−e− conversion search has outstanding physics motiva-
tion, even in the LHC era and after MEG experiment.

2.7 Phenomenology of µ−−e− conversion

2.7.1 What is a µ−−e− conversion process ?

One of the most prominent muon LFV processes is coherent neutrino-less conversion of
muons to electrons (µ−−e− conversion), µ− + N(A,Z) → e− + N(A,Z). When a negative
muon is stopped by some material, it is trapped by an atom, and a muonic atom is formed.
After it cascades down energy levels in the muonic atom, the muon is bound in its 1s
ground state. The fate of the muon is then to either decay in orbit (µ− → e−νµνe) or be
captured by a nucleus of mass number A and atomic number Z, namely, µ− + (A,Z) →
νµ + (A,Z − 1). However, in the context of physics beyond the Standard Model, the exotic
process of neutrino-less muon capture, such as

µ− + N(A,Z) → e− + N(A,Z), (2.14)

is also expected. This process is called µ−−e− conversion in a muonic atom. This process
violates the conservation of lepton flavor numbers, Le and Lµ, by one unit, but the total
lepton number, L, is conserved. The final state of the nucleus (A,Z) could be either the
ground state or one of the excited states. In general, the transition to the ground state,
which is called coherent capture, is dominant. The rate of the coherent capture over non-
coherent capture is enhanced by a factor approximately equal to the number of nucleons in
the nucleus, since all of the nucleons participate in the process.

2.7.2 Signal and background events

The event signature of coherent µ−−e− conversion in a muonic atom is a mono-energetic
single electron emitted from the conversion with an energy of Eµe ∼ mµ −Bµ, where mµ is
the muon mass and Bµ is the binding energy of the 1s muonic atom.

From an experimental point of view, µ−−e− conversion is a very attractive process.
Firstly, the e− energy of about 105 MeV is far above the end-point energy of the muon
decay spectrum (∼ 52.8 MeV). Secondly, since the event signature is a mono-energetic
electron, no coincidence measurement is required. The search for this process has the
potential to improve sensitivity by using a high muon rate without suffering from accidental
background events, which would be serious for other processes, such as µ+ → e+γ and
µ+ → e+e+e− decays.

The electron is emitted with an energy Ee ≈ mµ, which coincides with the endpoint of
muon decay in orbit (DIO), which is the only relevant intrinsic physics background event.
Since the energy distribution of DIO falls steeply above mµ/2, the experimental setup can
have a large signal acceptance and the detectors can still be protected against the vast
majority of decay and capture background events. Energy distributions for DIO electrons
have been calculated for a number of muonic atoms[62, 63] and energy resolutions of the
order of 0.1% are sufficient to keep this background below 10−18.

There are several other potential sources of electron background events in the energy
region around 100 MeV, involving either beam particles or cosmic rays. Beam-related
background events may originate from muons, pions or electrons in the beam. Apart from
DIO, muons may produce background events by muon decay in flight or radiative muon
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capture (RMC). Pions may produce background events by radiative pion capture (RPC).
Gamma rays from RMC and RPC produce electrons mostly through e+e− pair production
inside the target.

There are three methods to suppress the beam-related background events:
• Beam pulsing

Since muonic atoms have lifetimes of the order of 1 µs, a pulsed beam with buck-
ets that are short compared with this lifetime would allow the removal of prompt
background events by performing measurements in a delayed time window. As will
be discussed below there are stringent requirements on beam extinction during the
measuring interval.

• Beam purity
The lifetime of the pion (26 ns) is much shorter than the lifetime of muon (2200 ns).
Thus, if the beam momentum is low enough, most of beam pions will decay away
as they transport through a muon beamline. If the beam momentum is less than 70
MeV/c, the level of pion contamination will be decreased by an order of magnitude
for each 10 m.

• Beam Momentum
The in-flight decay of beam muons would produce 100 MeV/c electrons if the beam
momentum is larger than 70 MeV/c. Beam electrons would be also a source of
100 MeV/c electron background. Thus, if the beam momentum is restricted to be
lower than 70 MeV/c, these backgrounds can be suppressed.

2.7.3 µ−−e− conversion vs. µ+ → e+γ

There are considered to be two possible contributions in the µ−−e− transition diagrams.
One is a photonic contribution, and the other is a non-photonic contribution. For the
photonic contribution, there is a definite relation between the µ−−e− conversion process
and the µ+ → e+γ decay. Suppose the photonic contribution is dominant, the branching
ratio of the µ−−e− conversion process is expected be smaller than that of µ−−e− decay by
a factor of the fine structure constant α (a few hundred). This implies that the search for
µ−−e− conversion at the level of 10−16 is comparable to that for µ+ → e+γ at the level of
10−14.

If the non-photonic contribution dominates, the µ+ → e+γ decay would be small whereas
the µ−−e− conversion could be sufficiently large to be observed. It is worth noting the
following. If a µ+ → e+γ signal is found, the µ−−e− conversion signal should also be found.
A ratio of the branching ratios between µ+ → e+γ and µ−−e− carries vital information
on the intrinsic physics process. If no µ+ → e+γ signal is found, there will still be an
opportunity to find a µ−−e− conversion signal because of the potential existence of non-
photonic contributions.

2.8 Present experimental status

2.8.1 µ−−e− conversion

Table 2.2 summarizes the history of searches for µ−−e− conversion. From Table 2.2, it
is seen that over about 30 years the experimental upper limits has been improved by 5
orders of magnitude. In the following, the past and future experiments of searching for
µ−−e− conversion will be described.
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Table 2.2: Past experiments on µ−−e− conversion. (∗ reported only in conference proceed-
ings.)

Process upper limit place year reference
µ− + Cu → e− + Cu < 1.6 × 10−8 SREL 1972 [64]
µ−+32S → e−+32S < 7 × 10−11 SIN 1982 [65]
µ− + Ti → e− + Ti < 1.6 × 10−11 TRIUMF 1985 [66]
µ− + Ti → e− + Ti < 4.6 × 10−12 TRIUMF 1988 [67]
µ− + Pb → e− + Pb < 4.9 × 10−10 TRIUMF 1988 [67]
µ− + Ti → e− + Ti < 4.3 × 10−12 PSI 1993 [68]
µ− + Pb → e− + Pb < 4.6 × 10−11 PSI 1996 [69]
µ− + Ti → e− + Ti < 6.1 × 10−13 PSI 1998∗ [21]
µ− + Au → e− + Au < 7 × 10−13 PSI 2006 [22]

Figure 2.10: Recent results by SIN-
DRUM II. Momentum distributions
for three different beam momenta
and polarities: (i) 53 MeV/c neg-
ative, optimized for µ− stops, (ii)
63 MeV/c negative, optimized for
π− stops, and (iii) 48 MeV/c pos-
itive, optimized for µ+ stops. The
63 MeV/c data were scaled to the
different measuring times. The µ+

data were taken using a reduced
spectrometer field.

2.8.1.1 SINDRUM-II

The latest search for µ−−e− conversion was performed by the SINDRUM II collaboration
at PSI. Figure 2.10 shows their results. The main spectrum, taken at 53 MeV/c, shows
the steeply falling distribution expected from muon DIO. Two events were found at higher
momenta, but just outside the region of interest. The agreement between measured and
simulated positron distributions from µ+ decay means that confidence can be high in the
accuracy of the momentum calibration. At present there are no hints concerning the nature
of the two high-momentum events: they might have been induced by cosmic rays or RPC,
for example. They set the current upper limit on B(µ− + Au → e− + Au) < 7 × 10−13[22].
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Figure 2.11: Setup of the MECO experiment.

2.8.1.2 MECO

There was an experimental proposal at BNL, which was called the MECO experiment[70],
aiming to search with a sensitivity of 10−16. This project was planned to combat beam-
related background events with the help of a pulsed 8 GeV/c proton beam. Figure 2.11
shows the proposed layout. Pions are produced by 8 GeV/c protons crossing a 16 cm long
tungsten target, and muons from the decays of the pions are collected efficiently with the
help of a graded magnetic field. Negatively charged particles with 60–120 MeV/c momenta
are transported by a curved solenoid to the experimental target. In the spectrometer
magnet, a graded field is also applied. A major challenge is the requirement for proton
extinction in between the proton bursts. In order to maintain the pion stop rate in the
‘silent’ interval, a beam extinction factor better than 10−8–10−9 is required. Unfortunately,
the MECO experiment was canceled in 2005, owing to the NSF funding problems.

2.8.1.3 Mu2e

However, the revival of the MECO experiment has been actively made at the Fermi National
Laboratory (Fermilab). It is called the “Mu2e experiment” (see Fig. 2.12). The muon
beam line and detector for the Mu2e experiment are almost the same as those of the
MECO experiment. The aimed experimental sensitivity is also the same. The experimental
proposal was stage-one approved at Fermilab fall, 2008 [71]. The Mu2e experiment would
strongly compete with the COMET experiment.

The Mu2e experiment will use the Fermilab proton source, and the desired proton beam
structure from their 8 GeV Booster can be made by reusing the 8 GeV Debuncher and
Accumulator storage rings, which are both housed in the anti-proton beam enclosure. At
this moment, anti-protons from the production target are transported into the Debuncher
ring where they are phase-rotated and stochastically cooled, and then are transferred into
the Accumulator ring, where they are momentum stacked. For the Mu2e experiment, proton
bunches from the Fermilab Booster are transported through the Recycler ring and injected
directly into the Accumulator ring, where they are momentum-stacked. Then, they are
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Figure 2.12: A schematic layout of the Mu2e experiment.

transferred into the Debuncher ring and rebunched into a single short bunch. Finally the
beam would be resonantly extracted in a such way that the single bunch would cause a
bunch train. The proton accelerator complex at Fermilab relevant to the Mu2e experiment
is shown in Fig. 2.13.

There are several scenarios on proton delivery for the Mu2e experiment. In the period
of the NOνA program after the Tevatron shutdown, the Mu2e would receive about 4× 1020

protons for several years, with the upgrades of the Booster repetition and improvement of
the beam transmission efficiency of the Booster. In Fermilab, there are proton upgrade
plans, such as the “SuperNuMI” (SNuMI) plan, where the beam power to the NuMI beam
line would increase to roughly 1.2 MW, and more ambitiously the “Project-X” plan, where a
new 8 GeV linac with superconducting RFs would increase to 2 MW (3×1021 protons/sec).
In both cases, the number of protons delivered from the Fermilab proton source would
increase.

Figure 3.1: The relevant parts of the accelerator complex are shown. At right is a detail of the antiproton 

Figure 2.13: Fermilab proton accelerator complex relevant to the Mu2e experiment.
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Figure 2.14: Setup of the MEG experiment.

2.8.2 µ+ → e+γ Decay

The present experimental limit for µ+ → e+γ is 1.2 × 10−11, which was obtained by the
MEGA experiment at LANL in the US[19].

A new experiment called MEG at PSI[72], which aims to achieve a sensitivity of 10−13

in the µ+ → e+γ branching ratio, is under construction. A schematic view of the detector
is shown in Fig. 2.14. The improved experiment will be expected to utilize a continuous
muon beam of 100% duty factor at PSI. Utilizing the same instantaneous beam intensity
as MEGA, the total number of muons available can be increased by a factor of 16. A
further improvement is the use of a novel liquid xenon scintillation detector of the “Mini-
Kamiokande” type, which is a 0.8m3 volume of liquid xenon observed by an array of 800
photomultipliers from all sides. For e+ detection, a solenoidal magnetic spectrometer with
a graded magnetic field is to be adopted. The engineering run has been started in 2007,
and physics data taking is expected to start soon.

2.8.3 Why is µ−−e− conversion the next step ?

Considering its marked importance to physics, it is highly desirable to consider a next-
generation experiment to search for LFV. There are three processes to be considered;
namely, µ+ → e+γ , µ+ → e+e+e− , and µ−−e− conversion.

The three processes have different experimental issues that need to be solved to realize
improved experimental sensitivities. They are summarized in Table 2.3. The processes
of µ+ → e+γ and µ+ → e+e+e− are detector-limited. To consider and go beyond the
present sensitivities, the resolutions of detection have to be improved, which is, in general,
very hard. In particular, improving the photon energy resolution is difficult. On the other
hand, for µ−−e− conversion, there are no accidental background events, and an experiment
with higher rates can be performed. If a new muon source with a higher beam intensity and
better beam quality for suppressing beam-associated background events can be constructed,
measurements of higher sensitivity can be performed.

Furthermore, it is known that in comparison with µ+ → e+γ , there are more physical
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Table 2.3: LFV processes and issues

Process Major backgrounds Beam Sensitivity Issues
µ+ → e+γ accidental DC beam detector resolution
µ+ → e+e+e− accidental DC beam detector resolution
µ−−e− conversion beam-associated pulsed beam beam qualities

processes that µ−−e− conversion and µ+ → e+e+e− could contribute to. Namely, in SUSY
models, photon-mediated diagrams can contribute to all the three processes, but the Higgs-
mediated diagrams can contribute to only µ−−e− conversion and µ+ → e+e+e− . In
summary, with all of the above considerations, a µ−−e− conversion experiment would be
the natural next step in the search for lepton flavour violation.



Chapter 3

Overview of COMET

3.1 Introduction to the COMET experiment

The aim of the COMET experiment is to search for coherent neutrino-less conversion of
muons to electrons in a muonic atom (µ−−e− conversion),

µ− + N(A,Z) → e− + N(A,Z), (3.1)

at a signal sensitivity of less than 10−16, at the Japanese Proton Accelerator Research
Complex (J-PARC). Here COMET stands for COherent Muon to Electron Transition. This
sensitivity goal is a factor of 10,000 better than that of the current experimental limit1.

COMET is designed to be carried out in the Nuclear and Particle Experimental Hall
(NP Hall) using a bunched proton beam slow-extracted from the J-PARC main ring (MR).
The experimental setup consists of the muon beam line and the detector section. The muon
beam line is composed of the pion capture solenoids with high magnetic field, and the muon
transport with curved and straight solenoids. The detector section is composed of the muon
stopping target, the electron transport for µ−−e− conversion signals, and the detector. A
schematic drawing of the experimental setup is shown in Fig. 3.1.

In order to improve the sensitivity by a factor of 10,000 over the current limit, several
important features have been considered, as highlighted below.

• Highly intense muon source: The total number of muons needed is of the order of
1018 to achieve an experimental sensitivity of 10−16. Therefore, a highly intense muon
beam line has to be constructed. Two methods are adopted in this experiment to
increase the muon beam intensity. One is to use a proton beam of high beam power.
The other is to use a system of collecting pions, which are the parents of muons, with
high efficiency. In the muon collider and neutrino factory R&D, superconducting
solenoid magnets ,producing a high magnetic field surrounding the proton target,
have been proposed and studied for pion capture over a large solid angle. With the
pion capture solenoid system, about 8.5 × 1020 protons of 8 GeV are necessary to
achieve the number of muons of the order of 1018.

• Pulsed proton beam: There are several potential sources of electron background
events in the energy region around 100 MeV, where the µ−−e− conversion signal
is expected. One of them is beam-related background events. In order to suppress

1The present published limit is B(µ− + Au → e− + Au) = 7 × 10−13 from SINDRUM-II at PSI [22].
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Figure 3.1: Schematic layout of the muon beamline and detector for the proposed search
for µ−−e− conversion, the COMET experiment.

the occurrence of beam-related background events, a pulsed proton beam utilizing a
beam extinction system is proposed. Since muons in muonic atoms have lifetimes of
the order of 1 µsec, a pulsed beam with beam buckets that are short compared with
these lifetimes would allow removal of prompt beam background events by allowing
measurements to be performed in a delayed time window. As will be discussed below,
there are stringent requirements on the beam extinction during the measuring interval.
Tuning of the proton beam in the accelerator ring as well as extra extinction devices
need to be installed to achieve the required level of beam extinction.

• Curved solenoids for charge and momentum selection: The captured pions
decay to muons, which are transported with high efficiency through a superconducting
solenoid magnet system. Beam particles with high momenta would produce electron
background events in the energy region of 100 MeV, and therefore must be eliminated
with the use of curved solenoids. The curved solenoid causes the centers of the helical
motion of the electrons to drift perpendicular to the plane in which their paths are
curved, and the magnitude of the drift is proportional to their momentum. By using
this effect and by placing suitable collimators at appropriate locations, beam particles
of high momenta can be eliminated.
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These features were originally developed at the MELC experiment at the Moscow Meson
Factory, but the experiment was not carried out. They have been adopted by the MECO
experiment, which was cancelled in the US.

3.2 Advantages of the COMET experiment

The design of COMET has several advantages. These are mainly due to the C-shape design
of the muon transport and the electron transport:

• C-shape muon transport in the muon beam
Instead of the S-shape that was adopted by MECO, the C-shape muon transport
in the muon beam line (from the pion production to the muon-stopping target) is
adopted in COMET. This requires an additional compensating dipole field, which can
be produced using separate dipole coils or by tilting the solenoid coils. Since the muon
momentum dispersion is proportional to a total bending angle, the C-shape beamline
will produce a larger separation of the muon tracks as a function of momentum. As
a result, the momentum selection will be better.

• C-shape electron transport in the detector
Instead of a straight solenoid, the C-shape electron transport (from the muon-stopping
target to the detector) is adopted in the COMET spectrometer. The principle of
momentum selection is the same as that used in the muon transport system, but, in the
spectrometer, electrons of low momenta which mostly come from muon decay in orbit
(DIO) are removed. As a result, the detector rate will be reduced significantly and the
probability of false-tracking is highly suppressed. The tracking detector rate, including
the direct hit of DIO electrons and secondary electrons from scattering and photon
conversion, is expected to be less than 1 MHz. This is almost two orders of magnitudes
less than the expected detector rate for the MECO experiment. Another advantage of
using a curved solenoid for the electron transport is that it will eliminate the need for a
proton absorber. Mu2e must shield their electron spectrometer from protons produced
by the nuclear capture of stopping muons, therefore, COMET will have a better
energy resolution. Also because of the suppression of low-energy particles, the detector
geometry can be made simpler, such as a setup of straw-chamber planes transverse
to the field axis and an electron calorimeter whose front face is perpendicular to the
field axis.

3.3 Summary of signal sensitivity and backgrounds

The expected signal sensitivity for µ−−e− conversion signals and background events for the
COMET experiment are summarized here. Detailed descriptions can be found in Chap-
ter 11. With 2 × 107 sec running, the number of muons stopped in the muon-stopping
target is estimated for the present design of the muon beam. A net signal acceptance,
which is composed of the detector geometry and the event selection, is also evaluated for
the present design of the detector. Based on these, a single event sensitivity of 2.6 × 10−17

for µ− + Al → e− + Al can be achieved for 2 × 107 sec.
Background events are estimated from four categories intrinsic physics backgrounds;

beam-related prompt backgrounds; beam-related delayed backgrounds; and cosmic-ray and
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other backgrounds. The total expected number of background events for the above sensi-
tivity is expected to be less than 0.4 events.



Chapter 4

Proton Beam

This chapter describes the proton beam used to produce a high-intensity muon beam.
The J-PARC main ring (MR) is used to supply a pulsed 8 GeV proton beam, which is
slow extracted, maintaining its bunch structure, into the J-PARC Nuclear and Particle
Experimental Hall (NP Hall). The pulsed proton beam then hits the pion production target
located inside the pion capture solenoid magnet. The produced pions decay to muons as
they are transported from the pion production target to the muon stopping target. These
muons are momentum selected by the curved solenoid transport channel as described in
Section 5.3.

4.1 Requirements for the proton beam

The J-PARC MR will deliver a proton beam with an intensity of 3.3×1014 protons per cycle
and a cycle time of about 0.3 Hz. Protons from the J-PARC MR are extracted either to the
NP Hall by slow extraction, or to the neutrino experimental hall (T2K) by fast extraction.
When operated in the slow extraction mode, the average beam current and duty factor are
15 µA and 0.2 respectively.

Since COMET requires the highest possible intensity of muons on the stopping target,
the intensity of the proton beam needs to be as high as possible in order to maximise the
production of pions which will decay to muons.

4.1.1 Proton energy

The number of pions (and therefore their daughter muons) produced by a proton beam is
proportional to proton beam power, which is given by the product of the beam energy and
beam current. This is due to the fact that the pion cross-section increases linearly with
proton beam energy. The required beam power is approximately the same as that for the
MECO experiment at BNL-AGS and the Mu2e experiment at Fermilab. The reason for the
relatively low proton beam energy, i.e. 8 GeV, is twofold. One is to suppress production
of anti-protons, and the other is to ease the requirements of the beam extinction system,
where a lower beam energy is easier to deflect, as described in Section 4.3.1.2. Increasing
the beam power can be realized in two ways: increasing the beam energy or increasing the
beam current. The cross section of anti-proton production, p + p → p + p + p + p̄, whose
threshold is at 5.6 GeV, rapidly increases above a proton beam energy of 10 GeV as shown
in Figure 4.1. Thus a proton beam energy of 8 GeV is used in the current design. At this

34
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Figure 4.1: Average multiplicity of anti-proton production as a function of the incident
proton energy [73].

energy, even if anti-protons are produced, most of them can be eliminated by inserting a
stopping foil in the muon transport line.

4.1.2 Proton beam power

The proton beam power of the current design is 8 GeV×7 µA (4.4×1013 protons/second),
which will provide enough muons for COMET to achieve its physics goal within a few years
of running. A reduced beam power would affect the running time of the experiment and
thus the achievable sensitivity. However, even with a reduced sensitivity of say 10−15, the
physics impact would still be significant. Therefore, if the required beam power could not
be delivered from the beginning of the experiment, it would be acceptable to start with a
lower intensity and then increase it without having a catastrophic effect on the physics goal.
In this case the beam power could be upgraded by increasing the repetition cycle of the
accelerator. For example, reducing the acceleration and extraction cycle time by a factor
of two will provide twice the beam power without modifying the proton time structure.

4.1.3 Proton time structure

The proton beam needs to be pulsed with a time separation of the order of 1 µs, which
corresponds to the lifetime of a muon in a muonic atom. The signal electrons will be
emitted from the stopping target and enter the detector during the interval between proton
pulses. On the other hand, the beam related background will come within a few 100 ns after
the proton pulse since these are mostly prompt processes. This timing information is very
important for distinguishing signal events from background events. It is also very important
to reduce the number of residual protons between pulses as these will produce beam related
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background in the signal timing window. For COMET to achieve its expected sensitivity the
residual protons between pulses needs to be 109 times smaller than the number of protons
in the main pulse. In order to achieve this stringent goal a dedicated “beam extinction”
system is used and is described in Section 4.3.1.2.

The number of protons in a pulse is mainly determined by the performance of the
detector. In the COMET design, the detector has an excellent ability to eliminate low
energy charged particles as well as neutral particles. From Monte Carlo simulations, the
fraction of charged particle tracks entering the sensitive part of the detector is 10−8–10−7

of those emerging from the muon stopping target. Thus, if we want to limit the number of
tracks hitting the detector in a micro second to less than 10 tracks, the number of protons
in a pulse should be 1011 or less. This means the number of pulses per cycle should be
an order of 100 or more. On the other hand, it is quite helpful to reduce the total live
time of the detector for suppressing cosmic-ray backgrounds. From that point of view, the
number of pulses per cycle should be as small as possible. Table 4.1summarizes the required
parameters of the pulsed proton beam. Figure 4.2 shows a typical time structure for the
pulsed proton beam suitable for the COMET experiment.

Table 4.1: Pulsed proton beam for the COMET experiment.

Beam Power 56 kW
Energy 8 GeV

Average Current 7 µA
Beam Emittance 10 πmm·mrad

Protons per Bunch < 1011

Extinction 10−9

Bunch Separation 1∼2 µs
Bunch Length 100 ns

1.314 μs (657 ns x 2)

0.7 second beam spill

1.47 second accelerator cycle

100 ns

Figure 4.2: Bunched proton beam in a slow extraction mode.
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Figure 4.3: J-PARC accelerator layout.

4.2 Proton accelerator operation

In this section the proton accelerator operation scheme for the COMET experiment is
described. As already mentioned above and also in the COMET proposal, COMET requires
a special operation mode of the J-PARC main ring in order to obtain the required beam
structure. The time between two consecutive bunches should be as long as the muon life
time when bound by a nucleus, i.e. ∼1 µs, and the bunch width should be small (∼100 ns)
compared to this. In addition to this the proton beam has to be transported to the pion
production target whilst keeping its pulse structure. This can be realized using the bunched
slow extraction technique. The requirements on the time structure is satisfied by operating
the main ring by filling only four out of eight buckets in the case when the ring is operated
at a harmonic number of eight. The four filled buckets are distributed along the ring in such
a way that one empty bucket exists between two filled buckets. Since the time difference
between two consecutive bucket is 657 ns, which is determined by the acceleration RF
frequency, the bunch-bunch width will be 1.341 µs. This satisfies the COMET proton pulse
separation requirement.

The J-PARC accelerator chain, shown in Figure 4.3, consists of a linac, a Rapid-Cycling
Synchrotron (RCS) and the Main Ring (MR). The operation scheme of each component
to realize the beam required by the COMET experiment will be explained in the following
sections.

4.2.1 Proton linac operation

The proton linac operation will be almost same as that in the normal operation mode [74].
The proton beam bunch structure needed to fill the RCS is formed by a high-frequency
chopper cavity and scraper (Figure 4.4) installed in the linac system. The chopper has a
very fast rise time of 10 ns in order to form a gap in the bunch structure to allow the RCS
to be filled without producing huge losses. Figure 4.5 shows the linac bunch time structure,
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Figure 4.4: Overview of the chopper system.

Figure 4.5: Linac bunch structure (left) and RCS bunch structure (right).

which has a micro-bunch structure at 324 MHz, the intermediate bunch structure used to fill
the RCS and the merged bunch structure in the RCS, which has a rate of 25 Hz. Protons
in the intermediate bunch are used to repeatedly fill the RCS to form the macro-bunch
structure in the RCS. In order to create the intermediate bunch structure, 48% of the micro
bunches are removed by the chopper system. This may cause a heat load problem if the
repetition cycle is increased to obtain higher beam powers.

4.2.2 RCS operation

The RCS accepts the beam from the linac, accelerates it to 3 GeV, and then passes it to
the MR for further acceleration. The injection energy of the RCS is currently set to be
181 MeV and will be upgraded to 400 MeV in the future. 600 MeV injection is also planned
in the second phase of construction by installing super-conducting acceleration cavities.

4.2.2.1 Choice of harmonic number

The harmonic number, h, of the RCS is 2 in the normal operation scheme. This is de-
termined by the acceleration RF frequency. The accelerator design is done based on this
number and thus hardware components are optimized for this configuration. In order to
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realize the required proton pulse separation of ∼1 µs in the MR, it is necessary to fill only
one out of the two buckets in the RCS and keep another bucket empty. The two buckets
(one filled and one empty) are passed to the MR four times successively. This RCS bunch
configuration is possible by changing the chopping time structure in the linac. This has
been done during accelerator studies performed in 2009. A drawback of this scheme is the
possible leakage of particles from the filled bucket to the empty bucket in an RCS acceler-
ation cycle, which is caused by the different intermediate-bunch structure produced by the
linac chopper. A systematic study of this leakage effect on the proton beam extinction is
required.

Another possible scheme of the RCS acceleration is to use a harmonic number of 1.
This scheme is actually considered for a future upgrade of the MR power since the number
of protons in one bucket in the RCS can probably be increased more in an h=1 operation
mode compared to an h=2 operation mode. Thus the h=1 operation mode is preferred for
increasing the number of protons in the MR. For the COMET beam acceleration, the h=1
operation mode is preferred since there is only one bucket that contains all the protons,
therefore leakage of protons outside the bucket in the RCS will be strongly suppressed.
It is necessary to modify the hardware for changing the RCS harmonic number since the
acceleration RF frequency needs to be modified. Modification of RF frequency may require
an increase in acceleration voltage. If this is the case, the RF cavities will need to be rebuilt
to avoid the possible increase in heat load. In addition this modification may cause a change
in the bunch length in the RCS and so will affect the bunch length in the MR. A careful
study of whether this effect would have a significant impact on the experiment needs to be
done before adopting this solution.

4.2.2.2 Emittance control

The acceptance of the MR slow extraction line and hadron transport line is limited to
25πmm·mrad. The beam emittance is smaller than this in normal operating conditions
due to adiabatic damping. However, in the accelerator operation for COMET, the proton
beam is accelerated only up to 8 GeV and therefore the damping effect is smaller than
for a 30 GeV beam. This results in the 8 GeV beam having and emittance larger than the
acceptance of the slow extraction and hadron transport lines. The emittance in the nominal
scenario is 54 πmm·mrad at 3 GeV and shrinks during further acceleration in the MR but
only down to 38 πmm·mrad at 8 GeV. The strategy for improving the emittance is twofold.
First, the number of protons per bunch is reduced to minimize the space charge effect while
at the same time the MR repetition rate is increased to as high as possible. For the current
design operation cycle of 1.47 s, as illustrated in Figure 4.6, this will probably be possible.

Second, the acceleration of the proton beam in the MR could be done with an emittance
smaller than nominal. This can be achieved by reducing the painting area in the RCS and
narrowing the collimator apertures in the transport line and MR. A simple estimate indicates
that the beam emittance at 8 GeV will be 10-15 πmm·mrad, which is below the acceptance
limit of the extraction line.

4.2.3 Main ring operation

The operation scheme of the MR for COMET is different from the normal scheme, especially
the pulse structure. As already mentioned above, the COMET beam needs to be pulsed
with pulse separation of ∼1 µs and the pulse width ∼100 ns. This will be realized by filling
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Figure 4.6: Main ring acceleration pattern.

every other bucket, which gives a total of four out of eight buckets filled in the MR. The
scheme is illustrated in Figure 4.7 for the case of the RCS operating with one filled bucket
at h=2. The other possibility is to operate the RCS with h=1, which requires modification
of the RF frequency in the RCS. Furthermore the MR operated with h=4, as illustrated in
Figure 4.8, will be best for COMET from the point of view of the beam extinction since
there are no empty buckets in either the RCS or the MR.

4.2.3.1 Collimator setting

The collimator in the injection line from the RCS to the MR will be optimized to limit the
initial emittance of the proton beam before injection. The collimator consists of a series of
slits and capture jaw to prevent the scraped beam from being transfered into the MR. In
the normal operation mode the collimator is set to limit the beam emittance to be less than
54 πmm·mrad.

4.2.3.2 Beam emittance at 8 GeV

There may be emittance growth during acceleration in spite of adiabatic damping. This
is expected to be small in the COMET beam acceleration but a detailed study is desired
while establishing stable operation of J-PARC.

As already described, the beam emittance needs to be reduced to less than 25 πmm·mrad
in order to extract the beam to the NP hall. It is believed that this can be achieved by
reducing the number of protons per bunch, to limit the painting area at injection from the
linac to the RCS and reducing the collimator gap at injection from the RCS to the MR.
Current estimates show that a beam emittance of <15 πmm·mrad can be achieved in the
MR.
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Figure 4.7: COMET beam acceleration bunch configuration with h=8.
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Figure 4.8: COMET beam acceleration bunch configuration with h=4.

4.2.3.3 Bunched slow beam extraction

The beam in the MR needs to be extracted and delivered to the pion production target
whilst maintaining the pulse structure of the beam. Hardware components used in the
COMET beam extraction system are the same as those used in the normal extraction of
the 30 GeV beam from the MR. Bump magnets change the beam orbit in the MR, two
Electro-Static Septa (ESS) separate part of the beam from the core and transfer it to the
following extraction line. These and a series of septum magnets are located around the
extraction point in the MR as shown in Figure 4.9.

The procedure of normal slow extraction at 30 GeV is described elsewhere [75]. Protons
stored in the MR oscillate (betatron oscillation) in the horizontal plane. The frequency of
oscillation, i.e. the tune ν, is usually an integer to avoid beam divergence during acceler-
ation. After beam acceleration is completed, sextupole magnets are excited for extraction
and then a 3rd order resonance (Qx=22.3333) is produced. Afterwards, a set of quadrupole
magnets are slowly adjusted to shift ν to the resonance at 22.3333 so that the beam edge
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Figure 4.9: Layout of the slow extraction equipment in the MR. BMP1-4 show the bump
magnets, ESS1 and ESS2 are the electro-static septa and MS1-3 are the septum magnets.

can be expanded to be scraped by the ESS.

It is important to keep the beam intensity flat during extraction. This is realized by
spill control using dedicated quadrupole magnets installed in the MR and feedback signals
from beam monitors both in the MR and the extraction line [76]. Two kinds of quadrupole
magnets are employed for this purpose. The macroscopic beam structure is controlled by
Extraction Quadrupole (EQ) magnets located at the 1st arc in the MR. The EQ magnets
have a magnetic field gradient of 2 T/m (less than 1/10 of the field gradient of the normal
quadrupole magnets in the MR) and have a laminated core structure made of 0.1 mm thick
steel to achieve quick response. Two EQs are used in series to cancel out the effect of
beta modulation. These are mainly used to keep the spill shape flat. The other kind of
quadrupole magnets, called Ripple Quadrupole (RQ) magnets, are located near the EQs in
the MR and are used to remove the ripple noise (a few kHz – 100 kHz) caused by the power
supply. The RQ has a similar structure to that of the EQ but its magnetic field gradient is
only 0.2 T/m, which allows it to respond faster than the EQ.

The COMET beam extraction is executed in principle in the same manner. What is
different in the COMET case is that all extraction parameters have to be adjusted and
optimized for 8 GeV operation. In addition to this, the RF voltage needs to be kept at a
certain value in order to maintain the pulse structure during extraction. In normal slow
extraction of the protons from the MR, the RF cavity voltage is usually switched off in order
to yield a flat time structure of the proton beam. However, for the COMET experiment,
the RF cavity voltage is not switched off so that the proton pulse structure is maintained
when pions are produced at the target. This is referred to as the bunched slow extraction
method. It will probably be necessary to reduce the voltage in order to minimize the heat
load in the cavities. This needs to be optimized. It is also necessary to modify the feed-
back time constant for slow extraction. The COMET beam has a time structure of ∼1 MHz
and this needs to be taken into account in spill control. Extraction of the COMET beam
is simulated by using a simple particle tracking method. In Figure 4.10, particle phase
space distributions are shown after extraction at the ESS. Sharp edges in x − x′ and x − y
distributions are due to separation at the ESS. It can be seen that in the right-bottom figure
that the longitudinal distribution of the particles is less than 20 m. This corresponds to a
bunch width of less than 70 ns, which satisfies the COMET beam requirement.

J-PARC is a high-intensity machine and thus the loss during acceleration must be min-
imised. This is a big challenge for the accelerator group and is being achieved step by
step whilst increasing the beam power. It is believed that the COMET requirement for
an extremely “pure” beam, i.e. a very small amount of residual protons outside the pulse,
should be achievable and there is large room for collaboration on this.
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Figure 4.10: Simulations of the phase space distributions of the beam extracted from the
MR.

4.3 Proton beam transport

The proton beam transport line is used to take the 8 GeV beam extracted from the MR
and deliver it to the pion production target. In spite of the different extraction method
to be employed in COMET, the beam transport scheme is the same for COMET and the
other experiments at the NP Hall which use the normal slow extracted beam.

4.3.1 Proton beam optics design

The entire layout of the proton beam line is shown in Figure 4.11. The beam line consists
of a matching section, an AC dipole section and a final focus section. The matching section
is necessary to shape the beam envelope to fit the acceptance of the following section. The
next section, the AC dipole section, is as long as 30 m where protons in empty buckets are
swept out by AC dipoles driven by sinusoidal currents to improve the beam extinction. The
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final section transfers the proton beam to the pion production target and focuses the beam
to a 4 mm radius.

38000
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Final Focus Section

AC Dipole Section
22401

(66557)

Figure 4.11: Entire layout of proton beamline.

4.3.1.1 Matching section

The matching section consists of two Quadrupole doublets and one vertical bending magnet.
This section starts at a switching magnet located on the A line to switch (or separate) the
primary beam to the B line. The proton beam is transported along this B line to the
COMET pion production target. The proton beam is transported in this matching section
point-to-parallel in the x direction and parallel-to-point in the y direction. The design of
the optics was done with TRANSPORT [77]. The designed layout of the matching section
is shown in Figure 4.12. The quadrupole magnet parameters are summarized in Table 4.2.

18500 1000 3000 1000 8500

1500 1500 1500 1500

Matching Section

MQ1 MQ2 MQ3 MQ4

Q Magnet

Figure 4.12: Layout of matching section.

4.3.1.2 AC dipole section

The AC dipole section is a key section in the proton beam transport line. The section
consists of two AC dipoles and a collimator between them. Focusing elements are placed in
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Table 4.2: Quadrupole magnet parameters in the matching section.

Q magnets Gradient [T/m]
MQ1 −5.927
MQ2 4.929
MQ3 3.079
MQ4 −7.143

Q1 Q2 B1 Q3 Q4

Collimator
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AC Dipole
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LQ1
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Figure 4.13: Schematic view of AC dipole section.

front of and behind each AC dipole. The AC dipole field is set in the horizontal direction
thus protons are kicked in the vertical (y) direction. A schematic layout of the optical
components is shown in Figure 4.13, where Qn and Bn indicate quadrupole magnets and
dipole magnets (AC dipoles), respectively.

Protons are delivered to the AC dipole section when the first AC dipole field is zero.
These will go through undeflected to the final focusing section while protons that arrive
at different times will be swept out by the non-zero field of the AC dipoles. The sweeping
angle depends on the phase of the B field when protons arrive in this section. Those protons
deflected through a large angle by the first AC dipole are stopped by the collimator, while
protons deflected through a small angle will be transmitted through it. The second AC
dipole is necessary to eliminate out-of-time protons from being delivered to the final focusing
section. The field direction of the second AC dipole is set opposite to that of the first AC
dipole so that it will compensate the deflection of the first AC dipole and the proton beam
will be moved back to the original beam axis. Figure 4.14 illustrates how the beam profile
is moved in the vertical direction in the AC dipole section.

The B field of the first AC dipole is varied as B(t) = B0 sin(2πft), where the frequency
f is set to fit the bunch-bunch period (T = 1.3 µs) of the proton beam, i.e. f = 1/2T =
0.385 MHz. The amplitude of the B field is currently set to be 600 Gauss. In this case,
protons at the edge of the bunch (the width, τ , is assumed to be 100 ns) see a magnetic field
of B(τ/2) = 72.3 Gauss. Figure 4.15 shows the change of the AC dipole field coincident
with the passage of the proton beam through the section.

Larger apertures for the AC dipole are preferred to ease the requirements on the optics
of the beam transport section. However larger apertures requires a larger driving power
and thus they are currently restricted to ±5 mm in x direction and ±25 mm in y direction.
The length of the AC dipoles is designed to be 2 m. To transmit the proton beam, the
beam should form a waist within the AC dipoles in the x direction and a parallel shape in
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Figure 4.14: Behavior of 2-D phase beam ellipse at the AC dipoles.
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Figure 4.15: Relative timing between proton beam bunch and AC field. It is assumed that
bunch width τ =100 ns and space between beam pulses T =1.3 µs.

the y direction. In addition, the beam should be focused in the y direction (Figure 4.13)
at the collimator. The two dimensional beam phase ellipse at the second AC dipole should
be the same as that at the first AC dipole so that the beam can be returned to the central
axis.

The optics design to satisfy these requirements has been optimized by using the TRANS-
PORT program for a proton beam momentum of 8.889 GeV/c. In this design the section
is separated into four sub-sections as follows.

• ADS1: from the end of the matching section to the center of the 1st AC dipole.

• ADS2: from the end of ADS1 to the center of the collimator.

• ADS3: from the end of ADS2 to the center of the 2nd AC dipole.

• ADS4: from the end of ADS3 to the end of the AC dipole section.

Constraints on the transfer matrices for each sub-section are summarized in Table 4.3. The
optics elements are aligned symmetrically with respect to the central plane of the collimator
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Table 4.3: Constraints applied to the AC dipole section in the TRANSPORT calculation.

x direction y direction
ADS1 parallel-to-point point-to-parallel
ADS2 point-to-parallel parallel-to-point and waist-to-waist
ADS3 parallel-to-point point-to-parallel and waist-to-waist
ADS4 point-to-parallel parallel-to-point

as shown in Figure 4.13. The length of the drift space and optics elements are manually
adjusted, and those values are summarized in Table 4.4. The geometric configuration of
components is shown in Figure 4.16.

Table 4.4: Length of drift spaces and optics elements.

Position Length
L1 1.5 m
L2 0.5 m
L3 1.0 m
L4 1.0 m
L5 0.5 m
L6 0.75 m
LQ1 1.5 m
LQ2 1.0 m
LA 2.0 m
LC 1.5 m

Field gradients of quadrupole magnets, Q1, Q2, Q3, Q4, and Q5 are calculated so that
the optics can satisfy constraints summarized in Table 4.3. The obtained field gradients for
each Q magnet are summarized in Table 4.5.

4.3.1.3 Final focusing section

The layout of the final focusing section is shown in Figure 4.17. The section consists of
dipole magnets to bend the beam to the COMET pion production target and focusing

Table 4.5: Field gradients for quadrupole magnets in the AC dipole section.

Q magnet Field gradient [T/m]
Q1 6.365
Q2 −6.609
Q3 −11.173
Q4 −10.716
Q5 13.001



48 CHAPTER 4. PROTON BEAM

1500 500 1000 1000 500

1500 1500 2000 1000

AQ1 AQ2
AQ3

AQ4
AQ5 AQ6

AQ7
AQ8

AD1 AD2

AC Dipole AC Dipole

Collimator

Q Magnet

Dipole Magnet

15001500

750

1000

500

1500

500

1000 2000

1000

1500

500

1500

15001000

16000

AQ9 AQ10

500

1000

750

30000

Figure 4.16: Geometric configuration of the AC dipole section.

quadrupole magnets located in front and behind them.
Calculated beam envelope profiles and divergences are shown in Figures 4.18 and 4.19

as a function of the proton beamline. The start point is the switching magnet. This shows
that it is possible to provide a sufficiently small profile (<4mm) at the target. Figure 4.20
shows the η functions in the transport line. It can be seen that the η functions successfully
vanish at the target.

4.3.2 G4beamline simulation

Beam tracking simulations were done using G4beamline. Figure 4.21 shows the layout of
the transport line used in the simulations.

The initial beam profiles at the switching magnet need to be optimized so that the beam
can be transmitted through the AC dipole apertures under the beam emittance condition
of ϵx = 5πmm·mrad and ϵy = 10πmm·mrad. Initial beam profile parameters of δx =
0.02m, x′ = 0.00025 rad, δy =0.003m and y′ = 0.00333 rad were used in the simulations.
The behavior of the 2-dimensional phase-space ellipses at the AC dipoles are shown in
Figure 4.22. It is assumed that there is a constant B field of 0.073 T at both AC dipoles,
which is the case when the edge of the beam bunch arrives at the AC dipole section. It
can be seen that at the exit of the 2nd AC dipole the ellipse is pulled back to the original
position at the entrance of 1st AC dipole.

Particle tracking simulations were also done with applying an AC field to the AC dipoles.
In this simulation protons are distributed on an ellipse in 2-dimensional phase space (dt-dP )
where dt = ±50 ns and dP = ±0.3% at the location of the switching magnet (i.e. the initial
tracking position). Tracking results are presented in Figure 4.23. The left (right) figures
show result of proton beam tracking in the main (empty) bucket. The upper (lower) figures
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Figure 4.17: A layout of the final focusing section.

are the beam envelopes in the x (y) direction as a function of the length from the entrance
of the AC dipole section. Collimators are placed at the center of the AC dipole section.
The aperture limit of the collimator is assumed to be ± 15 mm in x and ± 9 mm in y,
respectively. The collimator length is assumed to be 1500 mm. It can be seen that protons
in the main bucket are transmitted to the exit of the section while protons in the empty
bucket are stopped by the collimator and do not reach the exit of the section.

Momentum distributions at the entrance and exit of the collimator are shown in Fig-
ure 4.24 for the proton beam arriving out of time (in an empty bucket) at the AC dipole
section. It can be seen that the main part of the beam is stopped or degraded in the
AC dipole section. Figures 4.25–4.28 show simulated time distributions, momentum spec-
tra, and profiles of the proton beam at various locations on the beam line. As seen in
Figure 4.29, out-of-time protons are displaced by the 1st AC dipole and scraped by the
collimator although particles with a large displacement in the y direction still remain in the
time window. Figure 4.28 shows distributions of the beam on the pion production target.
As can be seen, out-of-time protons in the beam are clearly suppressed at the target due to
the AC dipole section and the final bend in the final focusing section. The reason for a peak
around 5500MeV/c is not completely understood. Some protons in this peak are above the
anti-proton production threshold which could cause unwanted backgrounds, however, these
protons arrive at the target promptly and should easily be identified. Figure 4.30 shows
the relation of the arrival time with proton momentum at particular locations along the
beam line. The current simulation is limited by statistics but it is safe to conclude that this
design for the transport line has the capability to reduce off-timing protons by a factor of
more than 1000.



50 CHAPTER 4. PROTON BEAM

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 20 40 60 80 100 120 140

L (m)

x,
 y

 (
m

)

P
ro

to
n 

T
ar

ge
t

AC Dipole
Section

Matching
Section

Final Focus
Section

Figure 4.18: Proton beam envelope as a function of the beamline length, x in blue and y
in red.
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Figure 4.21: Layout of the proton beam transport line employed in the G4beamline simu-
lations.
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Figure 4.23: Upper (Lower): x(y) vs length from the AC dipole entrance. Left: Proton
beam in a main bucket. Right: Proton beam in an empty bucket.
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phase at the entrance (exit) of the collimator, where the AC dipole is operated in AC mode.



4.3. PROTON BEAM TRANSPORT 55

t (nsec)
-1000-800 -600-400 -200 0 200 400 600 800 1000

E
ve

nt
s

310

time hp1t
Entries  99870
Mean    2.196
RMS       376

time

p (MeV/c)
0 1000 20003000 4000 50006000 7000 80009000

E
ve

nt
s

10

210

310

410

510

pp

x (mm)
-60 -40 -20 0 20 40 60

E
ve

nt
s

1

10

210

310

410

xx

y (mm)
-60 -40 -20 0 20 40 60

E
ve

nt
s

10

210

310

410

yy

Figure 4.25: Time distribution, momentum spectrum, and profiles of the beam at the
entrance of the collimator. Upper left: Supposed time spectrum of the proton beam as an
input. Upper right: Momentum spectrum of the proton beam. Lower left: Beam profile in
the x direction. Lower right: Beam profile in the y direction.
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Figure 4.26: Time distribution, momentum spectrum, and profiles of the beam at exit of
the collimator. Upper left: Time spectrum of the proton beam. Upper right: Momentum
spectrum of the proton beam. Lower left: Beam profile in the x direction. Lower right:
Beam profile in the y direction.
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Figure 4.27: Time distribution, momentum spectrum, and profiles of the beam at the
entrance of the final focus section. Upper left: Time spectrum of the proton beam. Upper
right: Momentum spectrum of the proton beam. Lower left: Beam profile in the x direction.
Lower right: Beam profile in the y direction.
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Figure 4.28: Time distribution, momentum spectrum, and profiles of the beam on the pion
production target. Upper left: Time spectrum of the proton beam. Upper right: Momentum
spectrum of the proton beam. Lower left: Beam profile in the x direction. Lower right:
Beam profile in the y direction.



4.3. PROTON BEAM TRANSPORT 59

0

200

400

600

800

1000

1200

1400

t (nsec)
-1000-800 -600-400 -200 0 200 400 600 800 1000

y 
(m

m
)

-60

-40

-20

0

20

40

60

y vs ty vs t

0

50

100

150

200

250

300

350

t (nsec)
-1000-800-600 -400-200 0 200 400 600 800 1000

yp
 (

ra
d)

-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01

yp vs typ vs t

0

2000

4000

6000

8000

10000

x (mm)
-60 -40 -20 0 20 40 60

xp
 (

ra
d)

-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01

xp vs xxp vs x

0

100

200

300

400

500

600

700

800

y (mm)
-60 -40 -20 0 20 40 60

yp
 (

ra
d)

-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01

yp vs yyp vs y

0

200

400

600

800

1000

1200

x (mm)
-60 -40 -20 0 20 40 60

y 
(m

m
)

-60

-40

-20

0

20

40

60

y vs xy vs x

0

500

1000

1500

2000

2500

3000

t (nsec)
-1000-800-600 -400-200 0 200 400 600 800 1000

p 
(M

eV
/c

)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

p vs tp vs t

0

200

400

600

800

1000

1200

1400

1600

t (nsec)
-1000-800 -600-400 -200 0 200 400 600 800 1000

y 
(m

m
)

-60

-40

-20

0

20

40

60

y vs ty vs t

0

50

100

150

200

250

t (nsec)
-1000-800-600 -400-200 0 200 400 600 800 1000

yp
 (

ra
d)

-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01

yp vs typ vs t

0

200

400

600

800

1000

1200

1400

1600

x (mm)
-60 -40 -20 0 20 40 60

xp
 (

ra
d)

-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01

xp vs xxp vs x

0

200

400

600

800

1000

y (mm)
-60 -40 -20 0 20 40 60

yp
 (

ra
d)

-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01

yp vs yyp vs y

0

200

400

600

800

1000

x (mm)
-60 -40 -20 0 20 40 60

y 
(m

m
)

-60

-40

-20

0

20

40

60

y vs xy vs x

0

500

1000

1500

2000

2500

3000

t (nsec)
-1000-800-600 -400-200 0 200 400 600 800 1000

p 
(M

eV
/c

)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

p vs tp vs t

Figure 4.29: Time vs y profile at the entrance of the collimator (left) and at an exit of the
AC dipole section (right).
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Figure 4.30: Time vs p at the entrance of the collimator (top), at the entrance of the final
focus section (middle), and at the exit of the final focus section (bottom).
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Figure 4.31: Pumping speed of ISP-250B oil-free pump.

4.3.3 Proton beam line hardware

In this section, the proton beam line hardware is described. Most of the hardware elements
introduced in the proton beam transport line are conventional, thus we do not need any
special development except for the AC dipole magnet. Auxiliary components such as power
supply and vacuum systems are also standard.

4.3.4 Magnet system

Most of the beam transport line magnets will be shared with the 30 GeV line and they are
therefore required to be able to transport a proton beam of 30 GeV. The beam is bent in
the NP hall for the COMET experiment to transport the beam onto the target. For this
bending we need a series of bending magnets probably with a C-shape for beam branching.
An interlock system is necessary for radiation safety and needs to be designed to allow for
different magnet excitation configurations such that the experimental area can be accessed
both in the high momentum proton beam line and COMET beam line without shutting
down the accelerator.

4.3.5 Power supply system

The power supply system can be the same as those used in the A-line beam transport line.
The necessary electricity and cooling water is listed in Section 13.5 and is based on the
estimates for the A-line magnets.

4.3.6 Vacuum system

Since we need to reduce beam loss and unexpected radiation doses, it is necessary to evacuate
the transport line beampipe. The required level of 0.1–1 Pa can be realized without any
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difficulty by installing scroll vacuum pumps at about every 20 m of the beam line. Oil-free
scroll will be used to prevent radiation contaminated oil mist from being distributed in the
environment. Figure 4.31 show a typical performance of such pump1. This type of pump
has been introduced in the A-line and its actual performance has been already proved in
the operation of the A-line.

1ISP-250B Oil-free scroll vacuum pump, ANEST IWATA



Chapter 5

Muon Beam

This chapter describes the muon beam proposed for the COMET experiment. An 8 GeV
proton beam from the J-PARC Main Ring (MR) is collided with a target to produce pions.
The pions thus produced are captured with high efficiency using a 5 T superconducting
solenoid magnet surrounding the pion-production target. The muons, which are produced
by pion decays, are captured and transported through subsequent solenoids and are brought
to a muon-stopping target in the detector solenoid. The muon beam line is composed of
a combination of straight and curved superconducting solenoids. The curved solenoids are
used to select the charge and momentum of muons in the beam line and have a compensating
dipole magnetic field overlaid. The expected muon beam intensity is enormous, about 1011

µ−/sec, which would be the highest in the world. In the following sections describe the pion
production, pion capture and muon transport in detail.

5.1 Pion production

5.1.1 Pion production yields

The COMET experiment uses negatively-charged low-energy muons, which can be easily
stopped in a muon-stopping target. The low-energy muons are mostly produced by in-flight
decay of pions of low energy. Therefore, the production of low energy pions is of major
interest. At the same time, high-energy pions, which could potentially cause background
events, should be eliminated as much as possible.

The π− production yields by protons incident on gold are presented in Figs. 5.1 for
different momentum regions. They were produced by a hadron production code, MARS15
(2004)[78]. It can be seen that there is a maximum at a transverse momentum (pT ) around
100 MeV/c for a longitudinal momentum (pL) of 0 < pL < 200 MeV/c for both the forward
and backward scattered pions. The maximum total momentum for backward scattered pions
is about 120 MeV/c, whereas that for forward scattered pions is about 200-400 MeV/c. It
can also be seen that high-energy pions are suppressed in the backward direction. The yields
of low energy pions are not so different, lying within a factor of two between the forward
and backward directions. Thus backward pions are less contaminated by high energy pions
while retaining those having low energy. For these reasons, it has been decided to collect
pions emitted backward with respect to the proton beam direction.

Figure 5.2 shows yields of pions and muons as a function of proton energy. As seen
in Figure 5.2, the pion yield increases almost linearly with proton energy, therefore with
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Figure 5.1: Pion production in a gold target. (top) Correlation between pL and pT . (middle)
Total momentum distributions for forward and backward π−s. (bottom-left) pT distribu-
tions for −0.2 < pL < 0 GeV/c, −0.4 < pL < −0.2 GeV/c, and −0.6 < pL < −0.4 GeV/c.
(bottom-right) pT distributions for 0 < pL < 0.2 GeV/c, 0.2 < pL < 0.4 GeV/c, and
0.4 < pL < 0.6 GeV/c.

proton beam power. Also it is seen that at a very high proton energy (> 30 GeV), pion
production yield starts to be saturated.

The choice of proton energy can be determined from consderation of the pion production
yield and backgrounds. In particular backgrounds from proton beam between beam pulses
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(extinction) and antiproton production. At this moment, our choice of proton energy is
8 GeV, as described in Section 4.
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Figure 5.2: Yields per proton of backward pions and muons (in left) and forward pions and
muons (in right) from a graphite target in a magnetic field of 5 Tesla as a function of proton
energy.

5.1.2 Comparison of different hadron production codes

In order to study the pion production yields, Monte Carlo simulations have been performed
using three different types of hadron codes, namely QGSP, QGSP BIC in the Geant4 [79]
physics lists and MARS [78]. It is noted that the MARS code is a hadron production code
developed at Fermilab. Figure 5.3 shows momentum spectra of π− forward and backward
production from a tungsten target for different hadron codes. As seen in Figs. 5.3, a
difference of a factor of about two exists. The π− yields at low-energy are summarized in
Table 5.1.

Table 5.1: Ratios of π−/p for different hadron codes.

Hadron π−/p backward π−/p forward
codes (p < 500 MeV/c) (p < 500 MeV/c)
MARS 0.11 0.15
QGSP 0.10 0.75
QGSP BIC 0.22 0.41

5.1.3 Pion production target

5.1.3.1 Target material

Pion production cross section is higher for heavier materials, as shown in Figure 5.4. The
production cross section is almost 2 times larger for tungsten than graphite. Although our
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original target material was graphite, the present candidate for the target material is either
platinum, gold or tungsten. However, if it is a metal target, it would melt when exposed
to an incident high power proton beam. Therefore target cooling is necessary. The current
target design for this experiment is based on a water-cooled rod of heavy material.
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Figure 5.4: Pion yields for various target materials.

5.1.3.2 Target length and radius

Figure 5.5 shows pion yields as a function of a graphite target length. The pion yield at
low energy is almost proportional to the target length up to about 1.5 interaction lengths
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(60 cm). Although the longer target provides more pion yields, it must be optimized consid-
ering radiation heat loads to the pion capture solenoid in which the target is embedded. In
the current design with a tungsten target, the length (which corresponds to 1.5 interaction
lengths) is about 16 cm.
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Figure 5.5: Yields of backward pions from a graphite target in 5 Tesla magnetic field as a
function of target length (left figure) and target tilt angle (right figure).

Figure 5.6 shows muon yields for various cases of target radius and proton beam size.
Low-momentum muons (pµ <80 MeV/c) are counted after transfer in a 15 m straight
solenoid. The yield of pions at low energy decreases as the radius of the target increases.
This result can be explained by absorption of pions at low energy. It has been found that
the optimum radius is about 0.6 cm for a gold target.

5.1.3.3 Target tilt angle

The pion production target is embedded in a solenoid magnet to capture and transport
the generated pions. Since the proton beam is injected into the solenoid magnet through
a gap in the coils, the proton beam axis and the target should be tilted with respect to
the solenoid axis. Figure 5.5 shows the pion yields as a function of tilt angle of a graphite
target. As seen in Fig. 5.5, the pion yield is almost saturated around a tilt angle of 10
degree.

5.1.3.4 Target heating

Target heating by proton bombardment was simulated by MARS15(2004). Densities of
energy deposition in a tungsten target are shown in Figure 5.7. Here, the length and
diameter of the tungsten target are 16 cm and 0.8 cm, respectively. From the simulation, a
total heat of 3.4 kW for a proton beam of 8 GeV and 7 µA was obtained. And the maximum
heat density is found to be about 170 joule/g/1014 protons.
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Figure 5.6: Muon yields for various cases of target size and proton beam size. Low-
momentum muons (pµ <80 MeV/c) are counted after transfer in a 15 m straight solenoid.

l

Figure 5.7: Energy deposit density in a tungsten target for a proton beam of 8 GeV and
7 µA.

Cooling of a tungsten target by water has been considered. The estimation by the
ANSYS CFD analysis was made with the assumption of steady state conditions. The result
is shown in Figure 5.8, where the size of the tungsten target is 0.8 cm in diameter and 16 cm
in length. The inlet temperature of the cooling water is about 300 K.

Table 5.2 summarizes the ANSYS analysis results, where pressure drops and target
temperature are shown for different thickness of the coolant layer surrounding the target,
and the flow rate of water. From these, it can be concluded that target cooling by water
can be made.
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l

Figure 5.8: Tungsten target cooling by water. Color indicates temperature from 300 K
(Blue) to 356 K (Red). Water with initial temperature of 300 K flows in a thin layer
surrounding the target rod from the left to the right.

Table 5.2: Parameters in cooling of tungsten target by water obtained by ANSYS analysis.
The length and diameter of the target is 16 cm and 0.8 cm, respectively. Inlet water
temperature is fixed to be 300 K. Proton beam power is assumed to be 8 GeV × 7 µA.

Thickness of coolant layer (mm) 0.3 0.3 1.0
Flow rate (ℓ/min) 2 5 17
Speed (m/s) 3 10 10
Pressure drop (MPa) 0.099 0.476 0.080
Maximum fluid temperature (K) 343 322 322
Target temperature (K) 356 343 343

5.2 Pion capture

5.2.1 Pion capture in a solenoidal magnetic field

To collect as many pions (and cloud muons) of low energy as possible, the pions are captured
using a high solenoidal magnetic field with a large solid angle. Figure 5.9 shows a layout of
the pion capture system, which consists of the pion production target, high-field solenoid
magnets for pion capture, and a radiation shield. In this case, pions emitted into a half
hemisphere can be captured within the transverse momentum threshold (pmax

T ). This pmax
T

is given by the magnetic field strength (B) and the radius of the inner bore of solenoid
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magnet (R) as

pmax
T (GeV/c) = 0.3 × B(T) × R(m)

2
. (5.1)

The optimization of the magnetic field of the capture solenoid was performed by looking at
the muon yields 10 m downstream from the target; the exit of the transport solenoid located
downstream of the capture solenoid magnet. Note that most pions decay into muons in the
transport solenoid magnet. As shown in Fig. 5.10, it was observed that the higher the pion
capture magnetic field, the better the muon yield at the exit of the pion decay system.
Therefore, a higher magnetic field is preferable. According to Section 5.1,placing pmax

T at
around 100 MeV/c would be sufficient. Furthermore, since we are interested in the muon
momentum being less than 75 MeV/c, a solenoid magnet with the bore radius of 15 cm can
accept most of the parent pions of such low-energy muons. Detailed optimization of the
bore radius strongly depends on the available technology of the superconducting solenoid
magnet. In the current design, we employ conservative design values, namely of B = 5 T,
R = 15 cm and a length of 1.4 m.

5.2.2 Layout of the pion capture system

Figure 5.11 shows a schematic view of the system of pion production and capture. It consists
of a proton target, a surrounding radiation shield, a superconducting solenoid magnet for
pion-capture with a 5 Tesla magnetic field, There is a matching section needed to connect to
the transport solenoid system with a 2 Tesla field. The radiation shield is inserted between
the pion production target and the coil which generates 5-Tesla magnetic field.

Backward-scattered pions are captured in the 5-Tesla magnetic field and focused forward
in the degrading magnetic field. The matching section has a large bore due to the increasing
diameter of the pion orbits in the tapered magnetic field, and to contain both the coils of
the matching and capture sections in the large cryostat.

Figure 5.9: Layout of the pion capture system, which consists of the pion production target
(proton target), the pion capture solenoid magnets, and its radiation shield.
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Figure 5.10: Muon yields at 10 m from the entrance of the pion decay system as a function
of magnitudes of a pion capture field.
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Figure 5.11: A layout of the pion capture solenoid system.

5.2.2.1 Superconducting solenoid design

The details of the design of the pion capture solenoids can be found in Chapter 12. If copper
is used as the stabilizer of the superconducting coils, a total thickness of the coil might be
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about 20 cm or more, and a total impact on the 4.5 K refrigeration load is over 1 kW.
In order to overcome this difficulty, we have started a design using an aluminum-stabilized
superconducting coil.

To achieve a low heat load enough below 100 W, a 30 cm-thick tungsten shield is
necessary. An inner radius of the 5-Tesla coil is 50 cm. The inner bore of the shield is
tapered to keep it away from beam protons and high-energy pions, which are scattered
forward. To collect backward-scattered pions, the proton beam should be injected through
the barrel of the solenoid, and should be tilted with respect to the solenoid axis by 10
degrees. The solenoid coils near the proton beam duct should have a larger radius to escape
the beam halo. In the current design, the coil edge is designed to be placed greater than
10-cm from the beam axis.

5.2.2.2 Radiation heating and radiation dose

Radiation dose from proton bombardment on the pion production target was estimated by
MARS15 (2004). The radiation heat comes mostly from neutrons. One of the purpose of
this study is to estimate heat loads by radiation in the pion capture solenoid that surrounds
the pion production target, as well as a total radiation dose in it. To reduce radiation at
the pion capture solenoid, radiation shielding made of tungsten is inserted between the pion
production target and the pion capture solenoid magnet. The maximum thickness of the
radiation shielding is about 30 cm.

In this MARS simulation, the density of superconducting coils of about 4 g/cm3 and
the thickness of the coils is 9 cm with 1cm-thick aluminum support structure (being located
at from 50 cm to 60 cm radially from the solenoid axis). The energy deposited for each
component is presented in Fig.5.12. It was found that an average energy deposited at the
pion capture solenoid coils including matching section to the transport solenoid is about 39
W for a proton beam of 8 GeV and 7 µA. A total radiation dose for 8 × 1020 protons is
about 0.6 MGy.

5.2.3 Adiabatic transition from high to low magnetic fields

Since the pions captured at the pion capture system have a broad directional distribution,
it is intended to make them more parallel to the beam axis by changing a magnetic field
adiabatically. From the Liouville theorem, a volume in the phase space occupied by the
beam particles does not change. Under a solenoidal magnetic field, the relation between
the radius of curvature (R) and the transverse momentum (pT ) leads to the relation given
by

pT × R ∝
p2

T

B
= constant, (5.2)

where B is a magnitude of the magnetic field. Suppose the magnetic field decreases gradu-
ally, pT also decrease, yielding a more parallel beam. This is the principle of the adiabatic
transition. Namely, when a magnetic field is reduced by a factor of two, pT decreases by
1/

√
2. On the other hand, since

pT × R ∝ B × R2 = constant′. (5.3)

the radius of curvature increase by a factor of
√

2. Therefore, the inner radius of a magnet
in the pion decay section has to be

√
2 times that of the pion capture solenoid. With the

cost of a beam blow up, a pion beam becomes more parallel. Furthermore, it is not effective
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Figure 5.12: Energy deposit at the pion capture solenoid and radiation shielding.

in reality to have a long magnet with a high magnetic field, connected to a magnetic field
that has to be lowered at some point. Figure 5.13 illustrates the principle of adiabatic
transition.

5.3 Muon transport

5.3.1 Requirements for muon transport

Muons and pions are transported to the muon-stopping target through the muon beamline,
which consists of curved and straight superconducting solenoid magnets. A schematic layout
of the muon beamline, including the capture and detector sections, is shown in Fig. 5.14.
It is composed of two 90◦ curved solenoid magnets and a straight solenoid magnet between
the two.

The requirements for the muon transport section are

• the muon transport should be long enough for pions to decay to muons. For instance,
for about 20 meters, the pion survival rate for pions with the reference momentum is
about 2 × 10−3,

• the muon transport should have a high transport efficiency for muons with a momen-
tum of 40 MeV/c, and

• the muon transport should select muons with low momentum and eliminate muons of
high momenta (pµ > 75 MeV/c) to avoid backgrounds from muon decays in flight.

The last item above is one of the important requirements for the muon beamline; an ability
to select electric charge and momenta. That is, negatively-charged muons with momenta
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Figure 5.13: Adiabatic transition from a high magnetic field to a low magnetic field. This
adiabatic transition reduces the magnitude of transverse magnetic field.

around 40 MeV/c should be selected. At the same time, it is necessary to eliminate ener-
getic muons having a momentum larger than 75 MeV/c, since their decays in flight would
produce spurious signals of ∼105 MeV electrons. Therefore, such energetic muons and
other unwanted particles need to be strongly suppressed before the stopping target using
the curved solenoid with a late-arrival particle tagger and a beam collimator.

5.3.2 Beam optics of curved solenoids

5.3.2.1 Dispersive beam shifts in curved solenoids

The selection of electric charge and momentum of beam particles can be performed by
using curved (toroidal) solenoids, which makes the beam dispersive. It is known that, in
a curved solenoid, the center of the helical trajectory of a charged particle drifts towards
the perpendicular direction to the curved solenoid plane. The magnitude of drift (D[m]) is
given by

D =
1

qB

( s

R

) p2
L + 1

2p2
T

pL
, (5.4)

=
1

qB

( s

R

) p

2

(
cos θ +

1
cos θ

)
, (5.5)

where q is the electric charge of the particle (with its sign), B[T] is the magnetic field at
the axis, and s[m] and R[m] are the path length and the radius of curvature of the curved
solenoid, respectively. Here, s/R(= θbend) is a bending angle θbend and D is proportional
to θbend. pL and pT [GeV/c] are longitudinal and transverse momenta, respectively. θ is a
pitch angle of the helical trajectory. Charged particles with opposite signs move in opposite
directions. This can be used for charge and momentum selection if a suitable collimator is
placed after the curved solenoid.
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Figure 5.14: Present design of the solenoid channel used in the tracking studies.

5.3.2.2 Dipole fields for drift compensation

To keep the center of the helical trajectories of the muons with reference momentum p0 in
the bending plane, a compensating vertical dipole field should be applied. The magnitude
of the compensating dipole field is given by

Bcomp =
1

qR

p0

2

(
cos θ0 +

1
cos θ0

)
, (5.6)
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where the trajectories of negatively charged particles with momentum p0 and pitch angle
θ0 are corrected to be on-axis.

The present design of the COMET beamline utilizes two curved solenoids with a bending
angle of 90◦ in the same bending direction. Each of them has a magnetic field of 2 T and a
radius of curvature of 3 m. Adjusting the inner radius of the solenoid to act as the collimator
would bring down cost of this design.

To keep the center of trajectory of the low energy muons, a compensating field of 0.030 T
for the first 90◦ and 0.050 T for the second 90◦ were applied. We propose two options to
realize this dipole field: tilting coils and additional dipole coils. In the tracking simulation
these compensating fields are calculated by tilting the solenoid coils.

Figure 5.15 shows a result from finite element method (FEM) calculations of the dipole
coils with superconducting wire that is wound on each element of the transport solenoid
coils. The average field strength is about 0.03 T in the calculation, and the field integral
along the solenoid axis is controled within ±5% of the midplane.

Figure 5.15: Dipole field for drift compensation in the transport solenoid calculated by FEM
analysis. The average field strength is about 0.03 T.

5.3.3 Curved solenoid tuning

In order to compensate for the vertical drift of particles in the curved transport channels,
a vertical dipole field is produced by tilting the sections of the curved transport channel.
This is a cost effective way of producing the dipole field, however, using this method means
that the relative magnitude of the vertical dipole field component is fixed by the geometry
and thus is fixed once the solenoid has been manufactured. It may be necessary to tune the
magnitude of the vertical dipole component after manufacture to correct for manufacturing
tolerances and thermal contraction due to cooling the magnets to superconducting operating
temperatures.
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It may be possibile to have some control over the vertical dipole component by powering
alternate solenoids with a different current. Simulations were done to demonstrate whether
this method could provide the ability to control the momentum distribution, vertical dis-
persion and composition of the beam at the stopping target. For these simulations, only
the muon transport has been considered and only the simple scenario where all solenoids in
the bent transport channel have identical geometries and only two different power supplies
are used.

5.3.3.1 G4beamline field distribution

Initial simulations were done using G4beamline [80] by taking the existing baseline design
of the COMET beamline. The geometry was altered to include the tilt of the solenoids but
all other parameters were kept the same. Figure 5.16 shows the model that was simulated
and Figure 5.17 shows the tilt of the solenoids, which is 1.43◦. All the solenoids in the

Figure 5.16: G4beamline model of the muon transport channel. The blue solenoids are the
pion capture channel, the red solenoids are the curved, tilted solenoids for pion decay and
muon transport and the final yellow solenoids end just before the stopping target. The
virtual detector (green circle) labeled 1 shows the position of the pion production target.
Alternate solenoids in the transport channel (in red) were powered with a different current.
Field measurements were made at the center of the solenoid labeled 3.

Figure 5.17: Drawing of the curved, tilted muon transport channel of the COMET beamline
showing the tilt used to produced the vertical dipole field. The tilt angle shown here is
exaggerated as the angle used in the simulations is 1.43◦.

G4beamline simulations are ideal solenoids composed of infinitely-thin current sheets. Four
different scenarios for powering the curved, tilted solenoids were investigated, see Table 5.3.
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Table 5.3: Values for Current1 and Current2 used in the simulations. Current1 was applied
to every other solenoid starting with the first one and Current2 was applied to the other
solenoids, see Figure 5.16.

Current1 (A) Current2 (A)
1 631890 631890
2 758268 758268
3 631890 1263780
4 631890 315945

Figure 5.18 shows the Bx, By and Bz field components at the centre of the third solenoid
(labelled 3 in Figure 5.16) for the different powering schemes. The z direction is parallel
to the axis of each solenoid and the x axis is in the plane of the bend. As can be seen,
by supplying alternate solenoids with a different current it is possible to adjust, to some
extent, the vertical dipole component (i.e. By) independently.
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Figure 5.18: Results of the G4beamline simulation. The plots show the Bx, By and Bz

components as a function of x for the different powering schemes described in Table 5.3.

5.3.3.2 EM studio field distribution

To obtain a more accurate field distribution of the beamline, a 3-D magnetostatic simulation
using EM Studio [81] was done. The geometry was kept the same as in the G4beamline
simulations. Preliminary designs of the superconducting solenoids have a non-magnetic steel
wall inside the coils and an iron yoke outside. To obtain a comparison with the G4beamline
model the iron yoke was not considered and the permeability of the steel was set to 1.

Figure 5.19 shows the Bx, By and Bz field distributions, for the same location as in
the G4beamline simulation, for the same four current scenarios listed in Table 5.3. The
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Figure 5.19: Results of the EM Studio simulation. The plots show the Bx, By and Bz

components as a function of x for the different powering schemes described in Table 5.3.

By and Bz components show good agreement with the G4beamline simulation but the Bx

component shows significant differences, though the absolute magnitude of the differences
are small. This is likely due to the way in which fringe fields are considered in G4beamline.
However, the fact that the Bx component in the EM Studio simulations does not follow the
same trend as in the G4beamline simulations will complicate tuning the beam transported
by the channel.

5.3.3.3 Particle tracking

To understand the effect of altering the field in the solenoids, some preliminary tracking
studies have been done using the G4beamline model of the muon transport channel. Initially,
a simple muon beam was tracked through 90◦ of the curved solenoid. The input beam
contained on-axis, parallel muons with a momentum range of 10−−150 MeV/c. Figure 5.20
shows the momentum distribution as a function of the vertical position after the muons were
tracked through half of the curved solenoid. This figure shows that it is possible to affect
the vertical dispersion produced by the transport channel by powering alternate solenoids
with a different current.

Since the COMET experiment requires a very low background rate it is important to
track particles using a realistic beam to determine the composition of the beam at the
stopping target. An input beam produced by a MARS [78] simulation of 8 GeV protons on
a graphite target was tracked through the whole G4beamline model. Figure 5.21 shows the
momentum distribution of muons and Table 5.4 shows the composition of the beam at the
stopping target for the different current scenarios.

Although it is possible to affect the momentum distribution of muons at the stopping
target by powering alternate solenoids with a different current, the change in the muon
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Figure 5.20: Momentum as a function of vertical position for an on-axis, parallel muon
beam with a momentum range of 10−150 MeV/c.

Table 5.4: Fractional beam composition at the stopping target for the four different scenar-
ios.

µ− µ+ e− e+ π− π+ p+

1 0.89 0.02 0.055 0.030 0 0 0.0024
2 0.89 0.011 0.072 0.029 0 0 0.001
3 0.91 0.014 0.063 0.009 0 0 0.0006
4 0.96 0.027 0 0 0.018 0 0

yield is quite significant. This may be detrimental if tuning the solenoid requires reducing
the current.

5.3.3.4 Curved solenoid tuning conclusions

By powering alternate solenoids with a different power supply it is possible to independently
control the vertical dipole component of the curved, tilted solenoids. The simulations using
EM Studio show deviations of the Bx component compared to the G4beamline solenoid
model. To make the model more accurate it will be necessary to include the iron yoke. The
effect of this on the transport of particles will need to be investigated. Thus, tracking with
a field map from the EM Studio simulations is essential.

It is also important to study the mechanical forces applied to the support structure of the
solenoid as having significantly different currents in adjacent solenoids may put significant
additional stress on the support structure. It will also be useful to study the effect of thermal
contraction on an optimised version of the muon transport channel, tuning of the momentum
spectrum to obtain the best yield and apply this method to the electron spectrometer to
allow tuning of the momentum selection.
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Figure 5.21: Momentum distribution of muons at the end of the muon transport channel
for the different scenarios.

5.3.4 Muon beam collimators

The muon beam collimators are placed in front of the muon-stopping target to eliminate
muons that would not be stopped in the muon-stopping target and other charged particles
that would become backgrounds. The function of the beam collimator and the beam blocker
is to block the beam particles so that they do not enter the torus section. Table 5.5 shows
geometrical dimension of the beam collimator, the beam blocker and the muon-stopping
target. The loss in the muon stopping rate due to the beam collimator is only 11%.

5.3.5 Distributions of the muon beam

Tracking simulation studies were performed using G4beamline, which is a single-particle
tracking code based on GEANT4. The magnetic field of the solenoids can be computed by
G4beamline using a realistic configuration of coils and their current settings. A magnetic
field configuration used in the studies is shown in Figure 5.27. MARS was used to generate
secondary particles from the production target. The particles were recorded on the surface
of the production target. Then particle tracking was performed using G4beamline using
QGSP BIC as the physics model.

5.3.5.1 Momentum distributions

Figure 5.22 shows the momentum distributions of different charged particles in the muon
beam, such as µ−s, π−s, and e−s at the first 90◦ bend, just before the beam collimator, and
after the beam collimator. It can be seen that the momentum selection around 40 MeV/c is
properly done by the curved solenoids and the beam collimator. The averaged beam rates
are summarized in Table 5.6.
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Table 5.5: Geometrical dimensions of the muon beam collimator, beam blocker and muon
stopping target.

Beam Collimator
Inner Radius 150 mm
Lower Jaw -100 mm from the beam center
Length 1.2 m
Material Tungsten

Muon Stopping Target
Shape Layers of flat disks
Disk Radius 100 mm
Disk Thickness 200 µm
Number of disks 17
Disk spacing 50 mm
Material Aluminum

Beam Blocker
Radius 150 mm
Length 40 mm
Material Tungsten
Position 100 mm downstream of the last target disk

Table 5.6: Average beam rates (Hz) of µ−s, π−s, and e−s at different positions in the muon
beam line.

Particle type at the first 90◦ bend before the collimator after the collimator
µ− 9 × 1011 6 × 1011 3 × 1011

π− 5 × 1010 2 × 109 6 × 108

e− 3 × 1012 5 × 1012 3 × 1012

5.3.5.2 Time distributions

Figure 5.23 shows the time distributions of different charged particles in the muon beam,
such as µ−s, π−s, and e−s at the first 90◦ bend, just before the beam collimator, and after
the beam collimator. It can be seen that the full time width of the muon beam is about less
than 200 nsec. The width is determined by different helical pitches of the muon trajectories.
The time distribution of electrons is very sharp earlier in the pulse though with a small tail
throughout the rest of the time.

5.3.5.3 Muon momentum dispersion

After the 180◦ bending of the COMET muon beamline, the muon beam becomes very
dispersive. Momentum dispersion of the muons at the end of the muon beamline (just before
the beam collimator located at the end of the muon beamline) is presented in Fig. 5.24 as
a function of vertical position. This momentum dispersion is very important and useful
for eliminating high energy muons above 75 MeV/c, which would otherwise contribute to
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Figure 5.22: Momentum distributions of µ− (top), π− (middle) and e− (bottom). Left
figures : after the first 90 bend of the transport solenoid. Center figures : just before the
beam collimator. Right figures : after the beam collimator.

background events by their decay in flight. The COMET muon beamline has a bending angle
of 180◦, which is twice larger than that in Mu2E, and therefore the momentum dispersion
is twice better.

5.3.5.4 Muon beam transverse profiles

The muon beam profiles at the end of the muon beamline1 are presented in Fig. 5.25, where
the total momentum distribution, correlation of transverse versus longitudinal momenta,
the arrival time distribution and the transverse beam profiles are shown.

5.3.6 Late-arriving particle tagger

As shown in Section 11.2, any beam particles arriving at the detector at a late time between
the beam pulses could become potentially a critical background source. They could be
produced by prompt protons (beam-related prompt background events) or protons leaking
between the proton pulses (beam-related prompt background events) or by cosmic muons or

1The end of the muon beamline is defined here as the front of the muon beam collimators that will be
described later.
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Figure 5.23: Arrival time distributions of µ− (top), π− (middle) and e− (bottom). Left
figures : after the first 90 bend of the transport solenoid. Center figures : just before the
beam collimator. Right figures : after the beam collimator. Proton pulse width of 100 ns
is assumed.

other, unknown sources. Just for additional insurance to suppress such background events,
it would be wise to consider a detector, which can be placed in the muon beam line and be
used to tag late-arriving particles in a muon beam. The detector might be only turned on
when the detection of µ−−e− conversion is active, and otherwise be off at a beam prompt
time. This tagging system can be used to examine any beam particle (in particular pion)
coming at the same time as µ−−e− conversion signal events.

In the consideration of such a detector, two critical issues to be considered exist. They
are

• capability to handle high counting rates, and
• radiation hardness due to energy deposit by charged particles passing through.

For the latter, a number of beam particles (including electrons) are about 1012/sec. With
2× 107 second running, a total number of beam particles is 2× 1019. Assuming that beam
particles spread over an area of the beam solenoid bore (∼ 20 cm), the beam size is about
1.2 × 103cm2. Therefore about O(1016)/cm2.

Candidates of the detector are either radiation-hard silion detector or gas chambers with
GEM or micromegas. The location of the late-arriving particle tagger is between the two
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Figure 5.24: Dispersion of the muon beam at the end of the muon beamline (just before
the beam collimator).

90◦ bending solenoids. Details are under study.

5.3.7 Specifications of magnets in the muon beam line

Table 5.7 summarizes specifications of the solenoids and Fig. 5.28 defines the solenoid names.
A C-shaped curved solenoid channel is adopted for the muon transport solenoid. At 90◦

of the muon transport solenoid, a late-arriving particle tagger is installed. This is used
to eliminate backgrounds originating from the late-arriving particles by measuring arriving
time of the particles. At the same time, the tagger can work as an absorber for protons,
neutrons and antiprotons. At the end of the muon transport solenoid, a collimator is located
to suppress the unwanted particles. In this section, we discuss the muon transport solenoid
and its components.
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Figure 5.25: Plots for muons just before the beam collimator. Total momentum (top-
left), correlation between transverse and longitudinal momentum (top-right), time of flight
relative to the time when the proton beam hit the production target (bottom-left), and
beam profile (bottom-right) are shown.
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Figure 5.26: Plots for muons just after the beam collimator. Total momentum (top-left),
correlation between transverse and longitudinal momentum (top-right), time of flight rela-
tive to the time when the proton beam hit the production target (bottom-left), and beam
profile (bottom-right) are shown.
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COMET Solenoid Name Definition

for the CDR

version 090609.001

Capture solenoid

Muon beam transport solenoid

Detector solenoid

Muon target solenoid

Curved sepctrometer solenoid

Matching solenoid

CS01MS01
MS02

MS03

MS04

TS01

TS03

TS05

TS02B

TS04B

DS01

DS02 DS03 DS04

DS05B

DS06

Figure 5.28: Definition of the solenoid name in Table 5.7.
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Chapter 6

Detector

Figure 6.1 shows a cutaway view of the COMET detector, overlaid with a typical
µ−−e− conversion signal track. The COMET detector consists of the following three com-
ponents:

• a muon target section, where a muon-stopping target is placed under a graded mag-
netic field,

• a µ−−e− conversion electron transport section which is composed of a curved solenoid
forming a 180◦ arc, and

• a detector section, where an electron tracker and an electron calorimeter are placed.

In the following, all the three sections are described in detail.

6.1 Muon-stopping target

The muon-stopping target is placed in its own solenoid and connected to the pion-capture
solenoid by a curved muon-transport solenoid. The muon-stopping target is designed to

Figure 6.1: A cutaway view of the COMET detector. It consists of the muon-target section,
the electron-transport section and the detector section. A typical µ−−e− conversion signal
track is shown in red.

91



92 CHAPTER 6. DETECTOR

maximize the muon-stopping efficiency and the acceptance for the µ−−e− conversion elec-
trons to arrive at the spectrometer. Also, it has to be designed to minimize the energy loss
of the µ−−e− conversion electrons as they exit the target in order to minimise the momen-
tum spread of the electrons. It is also important to make the target as small as possible to
reduce possible backgrounds.

6.1.1 Material for muon-stopping target

To eliminate beam-related background events arising from both prompt and delayed parti-
cles, it is planned that the measurement time window will be opened about 700 nsec after
the primary proton pulse, as shown in Section ??. Therefore, it is not suitable to use heavy
materials, for which the lifetime of muonic atoms is short. Table 6.1 shows a comparison
between several materials. From all these, aluminum is our first choice for a muon-stopping
target, and a heavier material will be tried later.

It should be noted that the branching ratio of µ−−e− conversion processes, B(µ−+N →
e− + N), increases with atomic number Z for small values of Z, and then plateaus above
Z ≅ 30, and decreases again for Z > 60. The branching ratio for aluminum (Z=13) is
smaller than titanium (Z = 22), but by a factor of only 1.7.

Table 6.1: Lifetimes and relative strengths of µ−−e− process for different muon-stopping
materials.

aluminum titanium lead
Atomic number 13 22 82

Lifetime of muonic atoms (µsec) 0.88 0.33 0.082
Relative µ−−e− conversion branching ratio 1 1.7 1.15

6.1.2 Geometrical configuration of the muon-stopping target

The configuration and dimensions of the muon-stopping target have been studied in order
to maximize the muon-stopping efficiency and the suppression of backgrounds. The main
parameters to be considered are the disk thicknesses and diameters, the number of disks
and their spacing, and the magnetic field strength and magnetic field gradient. Monte Carlo
simulations have been performed for various target configurations. The target configuration
we have chosen is shown in Table 6.2.

Table 6.2: Configuration of the muon-stopping target.

Item specification
Material aluminum
Shape flat disk
Disk radius 100 mm
Disk thickness 200 µm
Number of disks 17
Disk spacing 50 mm
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6.1.3 Graded magnetic field at the muon-stopping target

To maximize the geometrical acceptance, a graded magnetic field at the location of the
muon-stopping target is considered. A graded field would be useful in two ways. These are:

• to maximize the acceptance for µ−−e− conversion signals, because it would reflect
some electrons emitted in the backward direction, due to magnetic mirroring, and

• to maximize the transmission efficiency of µ−−e− conversion signals at the subsequent
electron-transport solenoid and the suppression factor for backgrounds, by making the
electrons move in paths more parallel to the axis.

The acceptance of the signal electrons εacc can be modelled as

εacc =
1 − cos θcrit

2
, (6.1)

where

θcrit = π − sin−1

(√
Btarget

Bin

)
. (6.2)

Here, Btarget and Bin are the magnetic fields at and before the muon-stopping target re-
spectively. It can be seen that the higher Bin is, the larger the acceptance will be. On the
other hand, the maximum polar angle at the detector section θmax

detector is given by

θmax
detector = sin−1

(√
Bdetector

Btarget

)
, (6.3)

where Bdetector is the magnetic field at the detector solenoid. A larger value of the ratio
Bdetector/Btarget is preferred for improving the background rejection power of the spectrom-
eter solenoid.

Figure 6.2: Distribution of a magnetic field at the beam axis and the target location.

Figure 6.2 shows the baseline configuration for the graded magnetic field at the stopping
target region. Here, Bin and Bdetector are set to 3 T and 1 T, respectively. The aluminum
disks of 17 layers are placed where the magnetic field varies between 2.43 T to 1.90 T with
a target radius of 100 mm.
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6.1.4 Muon stopping efficiency

Monte Carlo simulations were performed to evaluate the muon-stopping efficiency of the
target, as described above. These Monte Carlo simulations include the pion production, pion
capture, muon transport processes with the momentum selection at the curved solenoids, as
well as the potential mirroring-back of muons at the entrance to the muon-stopping target
section, where the field strength increases from 2 T to 3 T. The momentum distribution of
muons as they enter the stopping target solenoid is shown in Figure 6.3, where the muons
which stopped in the target disk are shaded. The net stopping efficiency is 0.29 with this
configuration. The relative number of muons stopped in each of the 17 aluminum disks is
shown in Figure 6.4.

The time distribution of muons stopped in the muon-stopping target is shown in Fig-
ure 6.5.

6.1.5 Energy loss of outgoing electrons

Figure 6.6 shows the momentum distribution for outgoing electrons, having been generated
with momentum 105 MeV/c in the muon-stopping target. Their passage through the alu-
minium is simulated using GEANT3. It is found that the average energy loss without the
Landau tail is about 0.4 MeV.

6.2 Muon beam stop

A beam collimator is placed upstream of the stopping target, and a muon beam stop is
placed downstream of the last target disk. The beam collimator together with the beam
stop prevent beam particles from entering the curved, transport solenoid connecting the
stopping target and detector solenoids.

The beam stop is a thick disk with diameter 30 cm, while that of the target disk is 20 cm.
The expected rate of particles in the detector would be more than 1 GHz if a beam stop
were not used. Figure 6.7 shows the radial position distribution of conversion electrons at
the beam stop, where those with pT > 50 MeV/c are indicated separately. From the figure,
a beam stop 30 cm in diameter preferentially blocks electrons with transverse momenta
smaller than 40 MeV/c. As a result, the number of µ− − e− electrons transported to the
detector is decreased by 43%. However, it is known that in order to suppress background
from electron scattering, it is necessary to apply a cut pT > 50 MeV/c. This cut is correlated
to the acceptance loss due to the beam stop. Therefore, the cumulative net loss of the
conversion electrons is increased by an additional 4%.

The beam collimator decreases the number of stopping muons by 11%, and the beam
stop reduces the number of conversion electrons entering the detector solenoid by a factor
of 2. However, the transverse momentum of the electrons blocked by the beam stop tends
to be small, indicating that these electrons would be cut in the data analysis to suppress
various backgrounds. The detector rate due to beam particles is anticipated to be less than
300 kHz with the beam collimator and beam stop, as opposed to more than 1 GHz if these
are not installed.



6.3. ELECTRON TRANSPORT SOLENOID 95

h2

Entries  9184

Mean    36.64

RMS     8.713

Underflow       0

Overflow        0
Integral    9184

p (MeV/c)

0 10 20 30 40 50 60 70 80 90 100

p
ro

to
n

s 
/ 

M
eV

/c
)

6
1

0
×

 /
 4

-
µ(

0

50

100

150

200

250

300

350

400

450

h2

Entries  9184

Mean    36.64

RMS     8.713

Underflow       0

Overflow        0
Integral    9184

 momentum just before stopping targets-
µStopped 

Figure 6.3: Momentum distribution of the muons as they arrive at the muon-stopping
target. Of these muons, those that are stopped in the muon-stopping target are given in
the shaded histogram.
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Figure 6.4: The longitudinal distribution of muons stopped in the aluminum foils.

6.3 Electron transport solenoid

6.3.1 Requirements for electron transport

The requirements of the electron transport in the COMET electron spectrometer are:
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Figure 6.7: Radial coordinate of the µ− − e− electrons at the beam stop position for all
electrons (green) and those with pT > 50 MeV/c at the detector (red).

• to remove charged-particle backgrounds of low momenta so as to reduce single counting
rates of the detectors, and

• to maximize the transmission of µ−−e− conversion signals.

To meet these requirements, a curved solenoid at the electron transport is adopted in the
COMET electron spectrometer. The electron transport consists of curved superconducting
solenoids with collimators inside the solenoid.

6.3.2 Curved solenoid in electron transport

The toroidal magnetic field of the curved electron transport solenoid momentum selects
charged particles. A charged particle in a uniform toroidal field moves along a helical
trajectory, and if the solenoid is slightly curved, the center of the helix drifts perpendicular
to the plane of curvature. The amount of the drift, D, is given by;

D =
1

qB0

( s

R

) (
p2

L + 1
2p2

T

pL

)
. (6.4)

In the above q is the charge, B0 is the magnetic field strength at the center of the helix, R
is the radius of the toroid, s is the path length along the center of the helix, and pL (pT )
is the momentum component parallel (perpendicular) to the magnetic field direction. The
above equation may be rewritten as

D =
1

qB0

( s

R

) p

2

(
cos θ +

1
cos θ

)
. (6.5)

Here p is the total momentum and θ is the angle between the momentum of the particle
and the magnetic field. For the same value of θ, the amount of drift scales with the
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total momentum, but the drift is different for different θ when the momentum is constant.
However, as cos θ → 1 the angular term approaches 2. Therefore, the magnetic field in the
muon-target solenoid is graded to reduce the angle of the momentum vector. The width of
the cos θ+1/ cos θ distribution at the entrance of the transport solenoid is about 2% (r.m.s).
Thus, the difference of drift due to θ is 2 cm and the momentum dispersion is 1 cm/MeV/c
at the exit of the transport solenoid.

6.3.2.1 Compensation dipole field

In order transport the 105 MeV/c electrons through the curved solenoid section, a com-
pensation field of 0.17 T along the vertical direction will be applied. The accuracy of the
compensation field is defined by the decay-in-orbit (DIO) rejection power rather than the
transmission efficiency. The DIO rate changes one order of magnitude if the average com-
pensation field changes only by 6%. This means that the mechanism to fine tune the vertical
drift power is necessary.

One method is to use an independent coil for producing the compensation field. The
tune of the compensation field becomes very easy. On the other hand, the magnet structure
will become complicated since torus coils and compensation coils should be wound in layers.

6.3.3 Radius of the electron transport solenoid

Figure 6.8 shows correlation between the initial cos θ and the cos θ at the torus entry,
where θ is the angle of µ−−e− conversion electron with respect to the solenoid axis. It can
be clearly seen that electrons initially emitted to backward direction (−0.5 < cos θ < 0)
were mirror-backed to the torus entry, increasing the geometrical acceptance by a factor
of 50%. In addition, the distribution of cos θ at the torus entry becomes very narrow by
the graded field as shown in Fig. 6.9. Since the power of the vertical drift scales by the
factor cos θ + 1/ cos θ for the same momentum, this narrowness is beneficial to maximize
the transmission efficiency of the µ−−e− conversion electrons through the torus section.

According to Fig. 6.9, the maximum pT of the µ−−e− conversion electron is 75 MeV/c,
thus the maximum radius of the helix for µ−−e− conversion electron is about 25 cm.
Therefore, the inner radius of the curved solenoid section should be larger than 25×2+5 =
55 cm, where 5 cm comes from the radius of the muon-stopping target disk. The inner
radius of the current design is 70 cm.

6.3.4 Decay-in-orbit background rate

Many background particles are generated from the muon-stopping target. They come from
muons in the muon-stopping target, contamination in the muon beam and others. Since
the background rate is so high, they need to be suppressed so that the electron detectors
can work efficiently.

The background rate is mostly dominated by muon decay-in-orbit (DIO) electrons. Its
energy spectrum has a distribution to the high energy region near to that of the µ−−e− sig-
nal (of about 105 MeV). Figure 6.10 shows a number of DIO electrons normalized to one
muon decay as a function of different energy threshold. The DIO event rate in the detector
region will be reduced significantly by an energy threshold. For example, an expected num-
ber of DIO events for one muon decay is about 10−8 for an energy threshold of 80 MeV as
shown in Fig. 6.10. In that case, a detection rate is estimated to be of the order of 1 kHz
for 1011 muons per second in the muon-stopping target.
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Figure 6.8: Correlation between cos θ of the initial state (before the incline by the graded
field) and cos θ of the torus entry (after the mirror and incline by the graded field).

6.3.5 Decay-in-orbit (DIO) blocking slit

Electrons with p < 60 MeV/c are blocked at the exit of the transport solenoid, in order to
suppress the detector rate due to DIO electrons. Figure 6.11 shows the difference in the
vertical position at the exit of the transport solenoid between µ−−e− conversion electrons
and DIO electrons. A half-slit which extends ∼ 20 cm below the median plane of the
transport solenoid removes most of the DIO electrons. Figure 6.12 shows the DIO electron
rate and µ−−e− conversion electron acceptance as a function of the slit position. The DIO
electron rate is very sensitive to the slit position while the change in the µ−−e− acceptance
is modest.

The DIO stop is composed of Aluminium in order to reduce the number of back scattered
electrons. The rate of electrons that hit the detector after backscattering is reduced by
almost one half compared to the number if a heavier metallic stop were used.

6.3.6 Electron transport acceptance

The curved solenoid rejects most of the DIO electrons at a cost of acceptance loss to
µ−−e− conversion electrons. In order to suppress the detector rate due to the DIO elec-
trons, the height of the DIO blocking slit should be 20 cm below the median plane of the
curved solenoid. At this value the acceptance is 47%. In addition to DIO, the background
also includes nucleons and photons from nuclear de-excitation following muon capture, elec-
trons from various sources traversing the detector, and bremsstrahlung photons that pair
produce or Compton scatter in the tracking detector (often after first scattering somewhere
else in the detector solenoid).
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entering the torus section. Green line is cos θ of electrons at the torus entry without the
muon beam stop. Red line is cos θ of electrons at the torus entry with the muon beam stop.

6.4 Detector solenoid

A straw tube tracking detector and a calorimeter trigger are mounted within the constant
magnetic field of the detector solenoid. The total length of this solenoid is not yet fully
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function of energy threshold.



6.5. ELECTRON TRACKER 101

Vertical Position (cm)
-100 -80 -60 -40 -20 0 20 40 60 80 100
0

200

400

600

800

1000

1200

Vertical Position

Minimum Height of Helix (cm)
-100 -80 -60 -40 -20 0 20 40 60 80 100
0

100

200

300

400

500

600

700

800

900

Minimum Height of Helix

Figure 6.11: Upper plot shows vertical position of electrons from µ−−e− conversion con-
version (green) and DIO (blue). Lower plot shows lower height of the helix for µ−−e− con-
version signals (green) and DIO (blue).

Figure 6.12: Signal electron (105 MeV) transmission efficiency and detector rate from DIO
for several different settings of the Ymax cut.

optimized, since it depends on tracker design, but presently, the tracker is at least 3 m in
length and has readout electronics enclosed within the vacuum of the detector solenoid.

6.5 Electron tracker

6.5.1 Overview

The tracking detector design is driven by the need to be insensitive to the majority of an
approximately 1 kHz of muon decays per second, and the associated backgrounds inherent
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to a high flux beam of charged particles. High detector rates can limit the experimental
sensitivity in several ways. First, detector occupancy could be so high that the efficiency
of obtaining valid position information in the tracker is reduced. This problem may be
mitigated by increasing detector granularity and time resolution. Second, noise (accidental)
hits may be combined with the trajectory of a lower energy decay-in-orbit (DIO) electron
to create an event consistent with the energy of a conversion electron (105 MeV). This
is a problem common to many high rate experiments that look for rare events, and it
may be suppressed by increasing the time resolution, increasing the redundancy in position
measurements, and by analyzing only hits from particles of interest (particle ID). Third,
there may be contributions to the trigger rate due to pile-up of lower energy signals in the
trigger detector. This possibility may be addressed by increased segmentation, optimizing
the geometric design, and by appropriate pulse shaping and timing.

For µ−−e− conversion in particular, a high flux of charged particles passes from a
proton production target through a muon beam channel and impacts a stopping target.
Beam components that are not stopped at this point are transported to a down-stream
beam stop. The beam must be pulsed, so one looks for muon conversions between beam
spills taking advantage of the fact that the muon mean lifetime is 2.2µs. Thus muons
continue to interact or decay between pulses of the primary beam. Therefore the detector
is active (read out) for µ−−e− conversion data only during the last 700ns between each
proton beam spill.

In contrast to an earlier design (MECO [82]), COMET places the production tar-
get, stopping target, and detector in different solenoids, all connected by curved transport
solenoids. Appropriate blocking shields are placed to limit rates and unwanted particles
from entering the target and detector solenoids. Also magnetic field lines, which traverse
all the solenoids, are carefully designed to avoid traps which could result in the late arrival
of particles at the detector.

The tracking detector is located in a uniform magnetic field (1T) region of the detector
solenoid. It is designed to measure with good efficiency, the parameters of the helical
trajectory of electrons that are emitted from the muon stopping target. These electrons
must lie within the angular acceptance of the detector and have momenta near 105 MeV/c.
As an electron moves through the detector components, it loses energy and is deflected by
scattering. Thus, knowledge of the amount and type of material through which the electron
passes, and a careful measurement of the changing helical trajectory are necessary to obtain
the best estimate of the initial electron momentum.

Energy loss of the electron has two effects; 1) it broadens the central peak in the reso-
lution function, as well as introducing a small mean energy loss, and 2) it produces a low
energy tail. This latter effect decreases the detector acceptance. However, if a sufficient
number of position measurements are made, an error measurement in the crossings of an
electron trajectory with the detector planes does not significantly contribute to the energy
resolution.

The measured helical parameters, when fit in analysis to a helical trajectory, determine
the momentum of the electrons. A minimum of 3 position measurements can determine a
helix, but many more points are needed to over constrain a fit as uncertainty in the helical
parameters is not the only contribution to uncertainty in the momentum measurement.
There are also errors in pattern recognition, which does not significantly reduce the detector
acceptance, but can generate high energy tails in the resolution distribution. This can
overlap the signal region of the spectrum. Thus, accidental events, noise, and detector
inefficiencies can conspire to yield a pattern recognition error, and these need to be carefully
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Figure 6.13: Cut view of COMET detector. Red rings around the curved solenoid section
are magnet coils, and tilted to produce the compensation field (A field that cancels the drift
for a 105 MeV electron)

understood and controlled.
A schematic of the stopping target and detector solenoids is shown in Figure 6.13.

The tracking detector is located downstream of a curved transport solenoid and the muon
stopping target. The detector consists of a set of 5 straw planes, 48 cm apart, and placed so
that the axial direction of the straws is transverse to the axis of the solenoid. Each of the
5 planes contains a set of 4 straw tube arrays. One array measures position in x, and one
measures position in y (coordinates rotated by π/2). An identical (x,y) pair is attached to
the first array, but rotated by 45 deg., in order to break hit ambiguities and add redundancy.
A hit location is determined by the plane position, the straw position within a plane, and
the drift time. There is presently no second coordinate readout, although charge division
on a straw anode wire is under consideration. The azimuthal position is obtained from
hits in the rotated coordinate measurements. Both timing and pulse height information
are recorded from one end of each hit wire. Pulse height is used to discriminate between
electron and low-energy, heavily ionizing tracks (e.g. protons) which can occur through
atomic muon absorption on nuclei. There are 208 straws in each array for a total of 832
straws per plane and 4160 straws in the full 5 planes of the detector. Therefore there are
4160 readout channels.

The calorimeter is positioned behind the tracker. Electrons which pass through the
tracker are absorbed in the calorimeter and if the deposited energy lies within a small window
around 105 MeV, a trigger signal is generated. Appropriate signals that were previously
inserted into in a latency pipeline in the readout electronics of the tracking detector are
then processed by a second level trigger, and the resulting information, including data from
the calorimeter and cosmic ray shield, are stored as an event for further data analysis. In
this section, the construction and readout of the tracking detector is mainly addressed.

6.5.2 Design of the electron tracker

The requirement to the tracker system is as follows:
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1. should withstand for the total rate of charged particle up to 800 kHz,

2. should withstand for the total flux of gamma up to 8 MHz.

Please note that the signal rate coming from the gamma rays will be much less than 8 MHz
as long as the tracker is thin enough to be transparent to the gamma rays. The average
energy of gamma is about 0.2 MeV, and the mean free path of these gammas is about
5.5 g/cm2. If the thickness of the tracker is thinner than, 0.1 g/cm2 for examples, the rate
from gamma will be only less than 200 kHz. The average number of hits per 100 nsec is
only 0.1. Therefore, the track reconstruction error should be negligibly small.

In the current design, the tracker consists of 5 superlayers of a simple strawtube chamber.
Each strawtube chamber consists of X, X’, Y and Y’ planes to provide X and Y information
without left-right uncertainty. The total thickness of the tracker is less than 0.1 g/cm2 since
the straw-wall thickness is less than 20 µm. Therefore, the total rate coming from both
electrons and gamma conversions is less than 1 MHz.

The tracker resolution is limited by the following three factors:

1. spatial resolution of the tracker,

2. multiple scattering by the tracker plane,

3. miss of the track reconfiguration.

A transverse momentum of the track should be larger than 50 MeV/c in order to suppress
the beam electron scattering background. The minimum radius of the helix in 1 T magnetic
field is 16.7 cm. On the other hand, the momentum resolution is required to be less than
1 MeV/c-FWHM to maintain signal acceptance, this corresponds to 0.4%(RMS) of the
momentum resolution, and 700 µm of the spatial resolution. This spatial resolution can be
easily achieved by standard technology of gas tracker.

The multiple scattering will change the momentum direction of the track. The track
displacement by the multiple scattering becomes maximum after π/2 turns of helix, and
minimum (zero at the 1st order) after π turns. Therefore, the 2nd superlayer should be
placed at the position where the phase of helix turns π from the 1st superlayer. However, if
it is exactly at π, the information of the charge of helix is lost. Taking into account of those
point of views, the phase advance of the helix between the superlayers should be maximized
but not exceed π. In the current design, the distance between the superlayers are chosen
to be 480 mm, which corresponds to 2π/3 turns in average. The minimum phase advance
of the track is about 1.3 rad, thus 5 superlayers will cover 1 turns of helix for all tracks.

As for the track reconstruction error coming from the accidental background hits, it
can be minimized by requiring the number of hits per a superlayer being only one. The
reduction of the analysis efficiency by doing this is only 15% since the tracker rate is only
less than 1 MHz. This is one of advantages due to the curved solenoid configuration.

6.5.3 Expected performance of the electron tracker

In order to estimate the tracker performance, a Monte Carlo calculation was carried out with
a slightly simplified tracker geometry. Each superlayer was approximated by a single film
of Polyimide with 160 µm thickness. This thickness corresponds to 20 µm of the strawtube
thickness, while 15 µm of the thickness is possible.

figure 6.14 shows the number of total hits on the whole superlayers. Even if we strictly
select the events with the number of hits being equal to 5, the loss of the efficiency is only
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Figure 6.14: Total number of hits in the tracking detector.

12%. In this study, we accept the events with 5 ≤ Nhits ≤ 8, and the acceptance loss is
only 5%.

The track fitting algorithm we employed takes care of the multiple scattering effect.
The track helix was a chain of 4 partial helices. The adjacent helices were connected at
the superlayer position with angles, where the angle imitate the deflection by the multiple
scattering. In the track fitting procedure, the χ2 function was formulated by using not only
the hit positions but also the deflection angles as follows:

χ2(p, θx, θy, x, y, θscat
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where X and Y are the expected x- and y-position of hit, σx and σy are the spatial resolu-
tion of detector, σscat

x and σscat
y are the root mean square of the multiple scattering angle

distribution. X and Y are the function of parameters defining the chain of partial helix:
momentum (p), angles (θx, θy), position (x, y) of the 1st helix and deflection angles θscat

x ,
θscat
y on successive superlayers. The number of parameters to be fitted is nparam = 5+2nscat,

and the degrees of freedom (d.o.f) is nd = 5.
The function minimization for the above χ2 was performed by using non-linear function

minimization package, MINUIT. The detector resolution was conservatively assumed to be
250 µm. The RMS of the multiple scattering was found to be σscatθ = 0.0025 rad so that the
obtained χ2 distribution becomes consistent with the one for 5 d.o.f. It was consistent with
the expected value of σscatθ from the superlayer thickness. Figure 6.15 shows a probability
distribution of the track fitting. Peak at P < 0.05 may be caused by large angle tail of
the multiple scattering, which is not considered in the current fitting function. The fitting
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Figure 6.15: Probability distribution of the track fitting with the detector resolution σx =
σy = 0.250 mm, and the uncertainty of the multiple scattering angle σscat

θ = 0.0030 radian.
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Figure 6.16: Left plot shows true total energy, Etrue, at the tracker entrance. Right plot
shows fit momentum. The detector resolution is σx = σy = 0.250 mm, and the uncertainty
of the multiple scattering angle is σscat

θ = 0.0030 radian.

algorithm could be improved to save those events, but for the moment, the track with
P < 0.05 is selected for the good track.

Figure 6.16 shows true momentum spectrum and analyzed momentum spectrum at the
tracker entrance.

Figure 6.17 shows the momentum resolution obtained by the track fitting after applying
the further event selection (pT > 52 MeV/c). The net momentum resolution from the track
fitting is 110 keV/c, and the root-mean-square (rms) of the gross momentum distribution
(including the effect of energy loss in the target) is 740 keV/c. The low momentum tail
may come from energy loss of the electron by Moller scattering. The high momentum tail
extends only up to 1 MeV/c above.

Figure 6.18 shows net momentum resolutions as a function of spatial resolution of de-
tector. There is no significant difference in the momentum resolution even if the detector
resolution is as worse as 100 µm. This is because of the current momentum resolution is
limited by the multiple scattering. It is also note worth that the gross momentum resolu-
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the uncertainty of the multiple scattering angle is σscat

θ = 0.0030 radian.
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Figure 6.18: Track-fit momentum resolution as a function of spatial resolution of detector
plane.

tion is a convolution of the net momentum resolution by the tracker and the energy loss
uncertainly in the muon-stopping target. The contribution from the later factor is almost
200 keV/c-RMS. In order to balance the tracker performance with this natural width, The
detector resolution could be even 1 mm(RMS), and the detector thickness could be as thick
as twice1.

6.5.4 Response of the straw detector to ionizing events

The simulation of drifting ionization deposited by the movement of a charged projectile
through various media has been the subject of many previous studies [83]. For example,
the code, GARFIELD, is available from the CERN library [84]. We have adapted a code,
previously used to determine the drift time contours in a wire chamber embedded in a
magnetic field. In general, this simulation calculates, for the proposed detector geometry,

1Please note, in that case, the gamma induced tracker rate will be also twice, about 400 kHz
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Table 6.3: The Ionization Energies and Ionization Potentials of Various Gases

Gas W(eV) I(ev) Ion Total
Clusters Pairs

H2 36.3 15.4 5.2 9.2
He 42.3 24.6 5.9 7.8
Ne 36.4 21.6 12. 39.
Ar 26.3 15.7 29.4 94.
Kr 24.1 14.0 22. 192.
Xe 21.9 12.1 44. 307.

CO2 32.8 13.8 34. 91.
C2H6 24.4 11.4 21. 103.
CH4 28. 13.0 12. 53.

C4H10 23. 10.8 46. 195.

the charge collected on the anode wire as a function of drift time. The code simulates the
ionization by a Vavilov distribution [85], and both the projectile and the drifting ionization
move under the influence of the local E and B fields. Recombination of the drifting charge is
ignored but diffusion is included. The drift time vs position for each track is determined by
recording the time of arrival of the first drifting cluster for the closest distance of approach
between the incident track and the anode wire. The first electron arrival cannot be directly
measured, as the charge arrives in clusters and the discrimination threshold must be set
above a cluster size of one electron. In any event, the readout electronics integrates the
signal over ≈ 15 ns. However, it is possible to use pulse shape to extrapolate the time from
a threshold measurement backwards to obtain a better estimate of the first arrival time.

A charged particle ionizes the medium through which it travels, depositing on average, an
energy loss given by the Bethe-Bloch equation [86]. The number of atomic collisions along
any given path is approximated by a Poisson distribution [83], and the energy loss of the
traversing particle is obtained from the energy expended in the ionization, and the kinetic
energy imparted to the ionized electrons. All of this energy is deposited in the medium if
photons from the de-excitation of the ionized atoms are absorbed and the ionized electrons
are stopped in the medium. The average energy loss depends on the medium, the projectile
velocity, and the charge, having a minimum value [87] (minimum ionizing particle or MIP)
when the relativistic γ factor of of the projectile is ≈ 3.5-4.0. The number of clusters and
the primary electrons per cm-atmosphere for a MIP, produced in various gases are listed in
Table 6.3.

As an example of an energy loss calculation, Figure 6.19, shows the simulated energy loss
for electrons and protons with momenta of 100 MeV/c in 5mm of a chamber gas consisting
of 60% Ar and 40% C2H6. Note that the energy scale is logarithmic.

To study the drift equations in the presence of a magnetic field, we assume that the
direction and velocities of the drifting electrons can be obtained from the application of
the Lorentz force with the addition of a dissipative term (σV⃗ , representing resistive flow
(collisions)).

dP⃗

dt
= q(E⃗ + V⃗ × B⃗) − σV⃗ (6.6)
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Note that for equilibrium drift (V⃗ = constant). Then the drift velocity from the above
equation is;

V = (
qE

σ
) cos(θ) (6.7)

Here θ is the Lorentz drift angle which depends on σ, B, and q. The detector geometry has
B⃗ in the z direction, with the E field in the (x,z) plane. In this case, the Lorentz drift angle
is a complicated expression as it no longer lies in the plane containing E. A typical drift
trajectory is shown in Figure 6.20. Here we provide views in the (x,z) and (x,y) planes as
the drift is 3-dimensional. One can see the spread of the drift trajectories in the y direction
from the original positions of ionization due to the v⃗ × B⃗ term of the Lorentz force. The
first arrival time as a function of closest approach is linear.

Protons

Electrons

C
ou

nt
s

Log Energy Loss (MeV)

Log Energy Loss for
Electrons and Protons

1cm Ar(60)/C  H  (40)2 6

Figure 6.19: A simulation of the energy loss for 100 MeV/c protons and electrons in 5mm
of drift gas consisting of 60% Ar and 40% C2H6

Drift Velocities have been measured for a number of gases and gas mixtures [88]. In
some cases these have been obtained as a function of an applied magnetic field. Appropriate
parameters are not readily available for the gases and fields proposed for COMET, although
one can use measured drift parameters as a function of the electric field strength in the
absence of a magnetic field to extract the mean time between collisions, as a function of the
field. Then one use the above equations to obtain the velocities in the various coordinate
directions as a function of both the electric and magnetic fields. Generally this seems to
produce a somewhat smaller Lorentz angle than measured, in some cases by as much as 10-
20% at higher fields. The drift velocity can be corrected for pressure differences by scaling
the velocity by the square root of the pressure.

The charge collected on the anode (electrons) as a function of time can be obtained from
the simulation. If it is assumed that there is a linear relationship between the number of
electrons collected in each time increment, then this number is proportional to the number
of positive ions produced by avalanche at the anode wire. These ions are then drifted away
from the anode with ionic drift velocity creating the signal on the anode.
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Figure 6.20: The figure shows the calculated drift trajectories for a track through a straw
in the tracker in both the (x,z) and (x,y) planes. The gas mixture is 60% Ar and 40% C2H6

and the E⃗ and B⃗ fields are 1500 V and 1.2 T respectively. The B⃗ field is in the z direction.
The line represents the track trajectory. The point of confluence of the drifting electrons in
the left figure is the wire. In the right figure the wire is the y axis
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Figure 6.21: The figure shows a simulated current output due to a signal on a straw anode.
The pulse shape is a function of the circuit filter, time constant, and time of arrival of the
ionization clusters

The resulting electron current is passed through a simple electronic filter simulating a
preamplifier circuit, which imposes a bandwidth of ≈ 75 Mhz and an RC time constant of
≈ 15 ns. With appropriate selection of the circuit components, the resulting anode current
is shown in Figure 6.21. While the pulse shape varies with the statistical collection of the
drifting electrons, it is reasonably consistent with experimentally observed anode signals in
an oscilloscope. The bipolar nature of the current is a consequence of the filter circuit and
can be adjusted by selection of the various constants.
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6.5.5 Pulse saturation and pile-up

Studies of saturation due to heavily ionizing events involved the use of a pulser and an
alpha particle source as well as beam tests using an intense, low-energy proton beam. It
was found that saturation in the preamplifier can be significantly reduced by a feedback
loop to drain charge from the front end when the pulse amplitude exceeds a set threshold.
The curved solenoid removes a substantial number of beam flash components reducing the
problem of pile-up and saturation.

Pile-up due to dead-time in the calorimeter is a more significant problem. If the maxi-
mum calorimeter rates given in Table 6.10 are correct and the summed energy is obtained
in 100 ns, then the dead-time due to calorimeter pileup is 6%.

6.5.5.1 Backgrounds induced by pattern recognition errors

We next turn to a discussion of backgrounds due to high energy tails in the resolution func-
tion of the spectrometer. In previous studies for MECO, these were shown to be primarily
due to an analysis combining hits from a low energy electron and random accidentals (noise
clusters). We refer to this as pattern recognition errors.

Background can, in principle, arise from a variety of sources: multiple scattering, large
tails in position resolution, etc. MECO found that DIO electrons in this energy range
primarily produce background pattern recognition errors [89], but at a level well below the
sensitivity of the experiment. These studies were done to determine the number of mis-
reconstructed trajectories. They employed GEANT simulations, and used different pattern
recognition and background rejection strategies. The calculations proceeded by determining
the cluster positions of the DIO electrons and superimposing, on average, an additional 24
noise clusters. This is larger than was expected and allowed an efficient determination
of the most probable topology of background events. The studies were statistics limited,
but indicated that this type of pattern recognition error for MECO was could be resolved.
With the caveat that the MECO and COMET trackers are slightly different and that DIO
backgrounds in COMET are substantially lower than for MECO, we anticipate that this
type of background will not present a problem for COMET as well. However, any rare decay
experiment always finds that a confluence of unforeseen issues produce the background limits
to the experiment. Redundancy, shielding, resolution, and timing can mitigate this type of
background.

6.5.6 Mechanical construction and maintenance

The tracking detector and its mounting frame fit inside the detector solenoid. The distance
between the inner wall of the solenoid and the mounting mounting frame of the detector
requires at least 3cm of radius to provide space for mounts and cables.

Figure 6.22 shows a layout view of one plane of the tracking detector. The design
assumes 5mm diameter conducting straws, composed of a double layer of over-woven straws
composed of metalized Kapton with ∼ 12 µm thickness per layer. The glue thickness
between the wound Kapton layers is approximately 3 µm. The construction of the straw
is illustrated in figure 6.23. Thinner walled straws are possible, however gas leakage may
become significant. Gas leakage for Cu and Al coated Kapton, and Al coated Mylar straws
with walls 25 µm thick has been measured, and is approximately the same. However, outgas
rates from, and radiation damage on, Al coated Mylar straws are significantly larger. For
this reason we propose to use 25 µm thick Kapton straws metalized by 5000

◦
A Cu.
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Figure 6.22: A layout of a tracking detector plane. The figure shows straw units of
16 mounted on the front and back of a mounting ring. The manifolds that holds, ten-
sions, and allows the insertion and extraction of gas, HV and signal cables are also shown
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Figure 6.23: A schematic showing the cross section of the wall of a straw. It is constructed
by over winding and glueing together two 12µm layers of metalized kapton

The straws range in length from 68 to 112 cm. They are mounted on aluminum supports
in the shape of rings, with inner and outer radii of 55 and 67cm respectively. There is 3cm
between the outer radius of the ring and the radius of the inner wall of the spectrometer
cryostat. One x and one y array are mounted on either side of the ring, forming an (x,y)
double-array. Another ring with a double-array of straws is then attached, but with the
measurement coordinates rotated by 45 degrees; x to x′ and y to y′. Gas manifolds, electrical
connections, and local readout electronics are also attached to the ring. The gap between
the rings is approximately 6cm, providing space to mount the readout electronics. Thus
total thickness of a detector plane is ∼ 9 cm. Finally, each of the 5 planes and the trigger
detector are properly spaced, and rigidly attached to a frame which is designed to slide on
linear bearings into the detector solenoid. This allows access to the detector, albeit with the
detector vacuum enclosure opened and the detector package extracted from the solenoid.

The support ring of a straw plane is constructed of two layers of 1
4 inch Al tooling plate,

cut in the shape of a ring. The rings, in overlapping arcs, are bonded together by bolts and
pins, or are welded together. The ring has an outer diameter of 134cm. The inner diameter
is notched so that the active area of the straw does not extend over the Al ring in order to
reduce the number of Compton scattered electrons entering the active region of the straws,
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Figure 6.24: The mounting frame for 2 straw arrays, one in front and one behind the ring.
The inner diameter of the ring is notched so that the number Compton scattered electrons
entering the active area of the straws is reduced.

Figure 6.24. The two rings contain the straw arrays are spaced 6cm apart.
Individual straws are bonded together in units of 16 on an alignment fixture, using a

thin layer of casting epoxy [90]. This epoxy easily wicks between the straws, and un-
dergoes minimal shrinkage when set. Feedthroughs are inserted into the ends of straw
and the feedthrough is then inserted into a tensioning/gas-manifold. The diameter of the
feedthrough end that is inserted into the manifold is less than the straw diameter so that
straw units when mounted together form a gap-less array of straws. Gas flows into and out
of the manifold through the feedthroughs. The manifold, Figure 6.25 is gas sealed with
casting and conducting epoxy, and electrically grounds the straw surface. The straws in
each manifold unit are tensioned at approximately 80 g/straw to reduce expansion and sag
under gravity. Each tensioned unit is then transferred from a holding fixture to the detector
frame ring, and the procedure repeated. Each manifold may be attached to the ring with
a spring system in order to keep constant tension on the straws and wires as the straws
expand in vacuum.A finished straw array is composed of 13 hexadecimal straw units, on
both sides of a ring. Once mounted on the ring, anode wires are strung inside each straw,
tensioned, and clamped inside a feedthrough.

Wires are held at high voltage and the conducting straw wall is grounded. One high
voltage channel is distributed to the 416 (2 x 208) wires of each array. The high voltage for
each unit of 16 straws in a manifold has a filter capacitor, 8200 pf, to ground and passes
through a bias resistor of 100 kΩ to each wire. The signal is extracted through a blocking
capacitor of 180 pf. Each wire is fused with a 65ma slow-blow fuse to remove broken
wires which short to ground. In the event that a short to ground occurs on a wire, the
polarity of the HV is reversed and the normally back-biased diode across the bias resistor
allows sufficient current to flow around the resistor and through the fuse to open the HV
connection. The HV input and signal output from a manifold is constructed on a flex, flat
cable on which the components are surface mounted, Figure 6.26. This cable extends from
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Figure 6.25: A manifold design that feeds and extracts drift gas, provides high voltage,
extracts signals, and tensions a unit of 16 straws

Figure 6.26: The circuit design for the flex cable that connects the electronic readout to
the straw anodes through the manifold. The cable provides the HV as well as fusing each
channel to remove shorted wires

the preamplifiers outside the gas volume, through a gas seal into the manifold where the HV
distribution occurs. There is one HV input line per flex cable, and this line, encapsulated
within the Kapton of the flex cable, is insulated against HV discharge/breakdown.

Each plane consisting of the two double-arrays is constructed as a stand-alone unit.
These units are then mounted on the detector frame which positions and aligns the planes
with respect to each other and the trigger counter. The frame is inserted and removed from
the detector solenoid on rails and linear bearings for access and maintenance. A spare plane
will be constructed so that it can be swapped, when needed, with a malfunctioning one,
decreasing downtime for detector repairs.

The description and placement of the readout electronics are discussed below.
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6.5.6.1 Anode wire and wire supports

The sense wire is chosen to be Au coated W containing 3% Re. This wire has excellent
properties with respect to creep. The measured creep in a 180 cm, standard W wire is
shown as a function of time in Figure 6.27. The problem of creep can be lessened by using
good quality wire, smaller tensions, and pre-stressing the wires.
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Figure 6.27: The figure shows creep of a standard 25 µm W wire as a function of time

The capacitance per unit length of the anode wires is obtained from the equation.

Cl =
2π ϵ0

ln(s/a)
(6.8)

Here is the radius of the straw (2.5mm) and the radius of the wire. Table 6.4 gives some
parameters of relevance to anode wires of various diameter. In this Table, the equation
used to calculate the maximum tension for stable operation does not exactly apply to the
case of a straw chamber [see however [91]].

The sense wires are held at high voltage and although this requires a blocking capacitor
on each readout channel, maintaining the wires at voltage prevents large current discharge
through a wire if a spark occurs since the entire charge stored in the cathode capacitance
would then flow through the spark. Note that all the straws are electrically connected to
provide cathode ground.

So long as the straws remain stable, we do not expect to require support for the an-
ode wires. Wire stability can be estimated using the following equation derived from the
electrostatic force on a non-central anode wire [91].

Lc = πR(CV )[2πϵ0T ]1/2 (6.9)
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Table 6.4: Some Parameters of Relevance for Straws Detectors having Different Anode Wire
Diameters

Parameter Wire Diameter
20 µm 25 µm 32.5 µm

Capacitance/length (pf) 10.07 10.49 11.06
Voltage Scaling for 0.96 1 1.05
Same Charge Gain

Max Operating Voltage (kV) 1.9 2.0 2.1
Elastic Limit (g) 51 80 135

Max Length for Elastic 0.97 1.1 1.3
Limit Tension (m)

Table 6.5: Anode length limits for the tracker
Parameter Value

Straw radius 2.5 × 10−3m
Anode wire radius 12.5 × 10−6 m
Capacitance/length 10.5 × 10−12 f/m
Tension 380 0.79 (80 g)
Voltage (Max) 2200 V
Critical Length 1.98 m

with T the tension of the wire, V the voltage, C the capacitance per unit length, Lc the
critical wire length for a given tension, and R the straw radius. The wires should be
tensioned at about 80 g. Appropriate parameters for straw operation are given in table
6.5. The operational voltage is nominally 1.8 kVA. The straws themselves will be tensioned
with approximately 80g.

6.5.6.2 Drift gas

Gas gain as a function of wire diameter and applied voltage is shown in figure 6.28, and
the number of ion pairs for various gases is given in Table 6.3. Gas gains are for a gas
mixture of 57 % Ar and 43 % C2H6 with a planar drift cell geometry of 0.5cm sense wire
to field wire. Other gases have different gains.

The drift velocity of various gas mixtures is given in Table 6.6. The radial drift will
decrease due to the magnetic field, but in the case of the Ar/C2H6 mixture only about 15%.
We intend to use a fast drift gas such as 80% CF4 with 20% isobutane [92]. In addition,
we plan to limit the gas gain to approximately 5 × 104. Although this will also limit the
spatial resolution of hits, the requirements of ∆x = 200 µm are easily obtained. Magnetic
fields up to 2 T in CF4/isobutane have been studied [88] in the laboratory. At 1 T, the
Lorenz angle is ≈ 45 deg at 1 keV/cm and ≈ 20 deg at 4 keV/cm. The drift velocity in
the drift direction varies from 70 µ m/ns at 1 keV/cm to 120 µm/ns at 4 keV/cm. The
magnetic field in the detector region is constant ( 1T) along the axis of the solenoid but
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Figure 6.28: The figure shows the gas gain as a function of the sense wire diameter and
the applied voltage. The gas used for this measurement is a mixture of 57 % Ar and 43 %
C2H6 The measurement used a 5mm radius drift cell.

the E field varies as a function of radial distance r. We expect the drift velocity along the
radial direction to be 50 µm/ns at 1 keV/cm and 110 µm/ns at 4 keV/cm.

6.5.6.3 Deformation of straw tubes

Deformation of the straws when loaded by gas pressure and wire tension has been inves-
tigated. If treated as a cylinder, the internal gas pressure results in an outward force of
1.9 N per straw, and this exceeds the expected wire tension of 0.78 N (80g). At issue is
the extent to which the straw deforms due to this loading. It is noted that long straws are
generally placed under an outward tension of about 0.78 N in order to align them before
wiring [93]. We tested the fractional stretch of a mylar straw by increasing the pressure
in a sealed straw with one end fixed and the other free. The typical fractional change in
length is 0.04% (for one atmosphere overpressure). In addition a straw changes dimensions
as a function of humidity. The CKM collaboration found that straws of approximately
5mm diameter experienced dimensional changes [94] as given in Table 6.7. is the relative
humidity. One notes that the expansion due to atmospheric pressure is only about 40%
of the expansion that occurs for an externally applied force of the same magnitude. We
observe similar expansions in our measurements. In addition we have observed creep on the
order of ∆L/L ≈ 1.6x10−4 over the period of 7 days for various tensions, and as a wound
straw expands in length it also tends to exert a twisting torque on the end clamp.
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Table 6.6: Drift times of various gas mixtures at a nominal operational voltage. The drift
distance is calculated for a 0.5 cm diameter straw in the absence of a magnetic field

Gas Velocity (cm/µs Drift Time(ns)
Ar/C2H6 4.8 52
Ar/CO2 4.8 52
Ar/CH4 3.4 74
Ar/CO2/CH4 4.9 51
Ar/C4H10 6.1 41
Ar/CF4 9.5 26
CF4 8.5 30
CF4/CH4 12. 21
Ar/CH4/C4H10 7.1 35

Table 6.7: Linear expansion data measured for a Kapton straw of 1m length and 5.1 mm
in diameter

Parameter Value
Linear Expansion Coefficient 5.1 µm/g
Linear Thermal Expansion 9.9 µm/F◦

Linear Humidity Expansion 12.0 µm/%RH
Linear Pressure Expansion (15 Psi) 380 µm
Radial Expansion (15 Psi) 6.7 µm
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In order to stabilize the mechanical properties of the straws, we may attach thin carbon
wires, lengthwise along the straw surface.

6.5.7 Straw operation in vacuum

The leak rate of various straws which could be used have been tested in vacuum [95].
Tests used straws of two layers of Kapton having several thicknesses, and spiral wound
with a half strip overlap. The layers have 5000 Angstroms of copper deposited on the
outer walls. Leak rates of both the bulk straw material and the end fittings were tested by
measuring the rate of rise of the pressure in an evacuated tube containing sample straws
with one atmosphere pressure. The rise of the chamber pressure was measured as a function
of time after pumping ceased on the tube. The rise decreased with the prior pumping time,
indicating a residual background due to outgassing. The residual rise for a nominal straw
after 5 days of pumping corresponded to a leak rate of ≈ 2 × 10−8 l/min/m for the bulk
straw, and a leak rate of ≈ 3 × 10−9 l/min per end. These leak rates, when scaled to the
full spectrometer, are well within modest pumping rates. Furthermore, straw tubes have
been operated in vacuum in a previous experiments [96].

6.5.8 Readout electronics

6.5.8.1 DAQ architecture

In order to develop a readout architecture, one must make a fundamental choice about
the position of the front-end electronics. Obviously placing the electronics in an accessible
region outside the detector vacuum chamber provides the most flexibility as it allows man-
ual adjustments, replacements, etc., without breaking the detector vacuum and removing
the detector from the solenoid. Additionally, placing the electronics within the detector
volume exposes these components to radiation damage and enhances the problem of heat
dissipation.

On the other hand, placing most of the electronics some distance away from the detector
comes with significant disadvantages, as for example, the substantial cable volume, expense,
and sending approximately 4000 signals over 10 m of cable through a vacuum wall with its
inherent increased noise and signal degradation. For example with respect to cable volume,
if signals are transmitted from preamps through the vacuum wall, then a set of ribbon
coaxial cables about 5 cm thick surrounding the entire circumference of the detector would
be required. Of course, all electronics must be positioned, in-so-far as possible beyond the
turning radius of electrons of interest, but mounting them on the detector supports may
require active cooling and somewhat complicates the mechanical structure.

We choose here to discuss a tracker readout system designed to take advantage of modern
electronic design using distributed signal processing [97]. All signals are digitized at the
front end, and stored in digital pipelines for trigger latency. Once a trigger is presented,
only those channels having signals above a set threshold are read, stored in buffers, and
then serially transferred to a data acquisition system outside the vacuum wall. At this point
the events are rebuilt, analyzed, filtered, and finally committed to permanent storage.

Suppose an electron track generates 60 electron-ion pairs. We propose to use a gas gain
of 5 × 104 so the analog signal presented to the anode preamplifier will be 480 fC. We can
assume that 10% of this charge is collected within the 6 ns which will be required for the
signal to reach its peak. We should then set the discriminator threshold at approximately
16 fC or 2 primary electrons expecting a noise level of 1-2 fC. The total capacitance of the
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straw is 30 pF and the characteristic impedance is 317 Ω. Thus, we use a 200 series resistor
coupled to a 100 transimpedance preamplifier. We expect the discriminator to have 2-3 ns
timing resolution.

The electronics read the anode wires of the detector. In general, the number of readout
channels is large (> 4000), power consumption must be severely restricted, and cabling
and the electronic footprint are constrained by space limitations. Therefore the readout
architecture will take advantage of modern integrated circuit technology, placing a multi-
channel IC at the front end of the detector to read, digitize, and buffer the signal. The
advantages of a fully digitized, pipelined, dead-timeless front-end, have been implemented in
several modern data acquisition, DAQ, systems. From particle flux calculations, including
neutron fluence, we expect that “rad-hard” production processes will not be necessary. Thus
COMET can use standard CMOS technology.

Because of space limitations we assume a preamplifier placed on the detector plane near
the anode wires and cathode strips. These preamplifiers then feed an amplifier/discriminator
placed on a digitizing board controlled through a local bus by a readout controller.

6.5.8.2 Front end ICs

Prototypes previously studied for the MECO experiment used an amplifier-shaper-
discriminator (ASD) chip, which was designed for the Atlas thin gap chamber [98]. The
threshold could be set remotely by computer and it had both timing and analog outputs,
and it has 4 independent channels. However, this ASD must be replaced because it is
too old to be reproduced in modern foundries, but more modern, lower power consuming
preamps are available. Thus we intend to investigate newer amplifier ASICs that have the
performance features which meed our needs. For example the ASICs described in [99, 100]
have at least some features that we require. If a suitable ASD is not available we propose
to develop an Amplifier Shaper Discriminator (ASD) that will meet the requirements of the
tracker and perhaps the calorimeter (APD readout) as well. The ASD should have analog
(linear) outputs as well as digital (discriminated) outputs. A calibration feature is needed to
inject signals of a known size to individual channels. Finally, the power dissipation should
be less than about 50mW per channel, and preferably ≤ 35 mW per channel, as these ICs
will be used in vacuum. The ASD should have 4-8 channels per package.

The preamp must be able to handle bipolar input signals since the anode wires provide
negative pulses and the APDs will provide positive pulses. To some extent any amplifier
will amplify signals of either polarity, however usually one polarity is favored as it will have
a larger linear dynamic range. We expect a front end capacitance of some 20 pf, which
includes the anode wire and readout cable, and a signal amplitude of 2-60 fC.

Furthermore, to optimize noise vs speed trade-off and perhaps the APD readout of the
electron calorimeter, it may be desirable to adjust the bias of the input transistor. Therefore
it is desirable for the preamplifier to incorporate a means of adjusting the input impedance
or the biasing of the input transistor. This technique has been used in the amplifier ASIC
of the BaBar drift chamber [101].

The equivalent noise charge should be less than 0.5fC ( 3000e) in both the tracker
applications as well as its potential application in the APD calorimeter readout. Achieving
this will depend somewhat on the shaping or filtering employed in the entire processing
chain. To maintain maximal flexibility only bandwidth-limiting filtering will be required,
e.g. 10ns peaking time for a delta-fn input, in the ASD. Other shaping can occur in subse-
quent circuitry. For example the ion-tail-cancellation for tracker signals can be performed
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on the digitized waveform data. This digitally filtered waveform could then be used of-
fline to correct the timing of the digital output if necessary. Similarly the rise-time of the
amplified APD signals can be stretched by a linear circuit preceding its digitizer.

Each channel of the ASD should have a linear output to drive subsequent circuitry. The
tracker electronics will have the ASD and waveform digitizer either on the same PC board or
separated by a short flex cable. The linear output should be a differential ”current-steering”
type (LVDS) to avoid ground bounce and other common-mode noise/instabilities. Each
channel should also have a discriminated (digital-LVDS) output with duration corresponding
to time-over-threshold, perhaps modified by hysteresis. The threshold should be applicable
either chip-wide or on a channel-by-channel basis. In the former case AC coupling with
a baseline restorer to reduce threshold dispersion might be needed. However the response
of a baseline restorer to over-range signals (i.e. possible overshoot) must be thoroughly
investigated before we adopt that approach.

All components would be mounted directly on the support structure of the tracker and
perhaps actively cooled by chilled coolant owing through pipes attached to this structure.
The 4 preamplifier ICs in units of 8 channels each are mounted onto a daughter board that
connects with 4 digitizing ICs (8 channels each) channels to compose a building block. This
board covers 16 cm of readout (32 channels of either straws or strips). The 4 building blocks
are mounted on a mother board which contains the local buffers and local readout control.

6.5.8.3 Digitizer

Most of the power in any readout system is expended on bus interfaces and impedance
matching connections. These factors can be deleted or reduced in a front-end application
specific, ASICs. For example, an analysis of power consumption indicates that to drive an
AT signal out of the detector vacuum enclosure requires at least 150mW/channel, and in
addition, has the difficulty of making tens of thousands of vacuum feed-through connections.
An A/D ASIC consumes ∼ 30 mW /channel, and can have only ten or twenty readout cables.
An example of an older design is the Electronic Front-end Amplitude aNd Timing, ASIC,
(Elefant) used in the BABAR experiment at the Stanford Linear Accelerator [102]. It has 8,
parallel channels of flash ADC and 8 channels of delay lock loop (DLL) TDC, and a latency
buffer to temporarily store the digitized data and send selected events to an event buffer at
the presentation of the first level trigger, L1. The L1 trigger is the external physics trigger
that initiates the readout sequence, and occurs at some time latency after the detector
signals are stored. The chip can handle high single rates, and has low power (250mW/
8-channel). However, Elefant was designed 7 years ago [9], and although successfully used
for drift chamber readout, was fabricated in a 0.8µm, 3-metal, 2-poly, CMOS process that
is obsolete. In addition its 5V I/O is difficult to interface to modern FPGA designs, and
its clock speed is insufficient. An upgrade of Elefant was completed for MECO before
this experiment was terminated, and while it offers an example of what could be done we
propose to now review the suitability of several newer designs with the possibility of making
modifications to them as needed.

To illustrate a possible design architecture the block diagram of for the upgraded Elefant
prototype architecture is shown in Figure 6.29. All function blocks are built around the
latency buffer, which temporarily stores the signal information before the trigger decision
is made. The latency time is equal to the depth of the buffer times the clock cycle. This
must be more than the time delay to make the trigger decision.

The A to D block processes 8 data channels in parallel, and the ADC and TDC encodes
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with 10 bit accuracy. Since the latency buffer alternatively stores the ADC and TDC data,
two characteristic bits are used. The prototype design has a 64 bit bus-width. Two dual port
SRAMs, (SRAM1 for data storage as an event buffer and SRAM2 for time stamp and hit
map storage) are fed by the latency buffer. Upon an L1 trigger, a pre-defined record length
(8, 16, or 32 of data words each containing 64-88 bits) are moved from the latency buffer into
SRAM1, and a corresponding time stamp is stored into SRAM2. When the data are moved,
an 8 bit hit-map is formed, in which a bit is set when at least one TDC hit is recorded in
the corresponding channel. The data in these SRAMs are then sequentially moved to the
next buffer level under control of a FPGA, which uses the hit-map for zero suppression. A
unique component is the hit map, which provides hit occupancy for use in the generation
of the event trigger. An external trigger logic circuit could then select appropriate data
to be read from the latency buffer. In the low occupancy situation, the system can be
self-triggered where all hits can be read into the local bus. In high occupancy situations
an external trigger can be constructed by coincidence with additional information so that
only a filtered set of events are recorded, thus increasing the bandwidth for this subclass of
events.
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Figure 6.29: A block diagram of the front end architecture for the readout electronics. The
figure shows the preamplifier board (ASD), the Elefant digitizer board, and the readout
controller.

6.5.8.4 Tracker readout

The COMET electronic system consists of four major components: 1) the tracking detec-
tor,2) the calorimeter front-end, 3) the trigger, and 4) the data acquisition processors. We
discuss only the tracking detector in this section. However, note that the calorimeter gen-
erates an analog signal proportional to the energy deposited by the energy of an electron
after it penetrates the tracker. If this energy lies within a window about 105 MeV a readout
of the tracker and cosmic veto is triggered.

As an example of a proposed architecture, signals from the tracker anodes wires are ca-
bled through a preamplifier to shaping amplifiers on the front-end/digitizing, FEB, boards.
The FEB process 32 channels/board and contains a four 8 channel digitizing ASICs which
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provides a digitized timing output (16 bits) and a digitized waveform containing 15 time
slices each containing 16 bits (total of 16 x 16 bits) for each channel. This information
is pipelined for latency, gated, readout is zero suppressed, buffered, labeled with a trigger
stamp, and transmitted on command to a higher processing level. Each FEB is connected
via a backplane to a readout controller, ROC, whose FPGA memory and commands can
be programmed interactively. A ROC controls approximately 6.5 FEB and there are 33
ROC in the detector. Each ROC is connected through a local bus (16 bits) to a readout
sequencer. Each sequencer controls 4 ROC and uploads data and downloads communication
via a serial bus link. There are 18 sequencers which then transmit data and information
serially on parallel lines via an optical link through the vacuum wall to a memory in an
external memory/processor. All modules are in a shielded enclosure. Data transfer rates of
a few hundred Mb/s are possible.

6.5.8.5 Data rates

Data rates are based on the expected single hit structure and background rates in the
tracker. If the background rate is 0.6x106 per plane as per Table 6.10 and the trigger
gate is 167 ns (for an assumed ASIC clock of 60 MHz and readout of 10 clock ticks of the
pipeline), then the probability of a plane hit is ∼0.1 on average. However, most of these
are due to DIO or backscattered electrons which penetrate the detector and calorimeter
so they should not be included as accidentals as they penetrate the detector entering the
calorimeter, unless of course they are incorporated into a triggered event. Photons create
local ionization and thus accidentals and we assume from the table ∼ 200 kHz of accidental
events. This would produce on average about 340 wire hits to be combined with a hit in all
4 arrays of 5 planes of 20 hits that causes a trigger. Assuming a hit multiplicity average of
1.5 this gives (1.5 x (20 + 340)) 540 wires to read per trigger. There are 20 words/trigger
and 2 bytes bits/word which results in 173 kbits/trigger. For 1000 triggers/s the data to
be transferred is 173 Mb/s to be transferred over transferred serially over 16 optical lines.
A schematic representation of the placement of the readout electronics is shown in Figure
6.30

6.5.8.6 Signal bus lines

The total number of optical serial transfer lines would be (16 data + 6 control) 24. Although
the data transfer is designed to be serial, it could be parallel transfer, 16 bits wide. There
are additional signals which must be sent to the tracker from the DAQ. These include;

1. a system clock which will be regenerated by the local bus sequencer,
2. a trigger input which could be associated with a readout quadrant of wires,
3. a sync (trigger reset) counter that determines the time stamp placed on the data,
4. a system reset to return the readout to a standard operating condition,
5. a slow control bus that sends control signals and environmental monitor information,

and
6. low voltage power of +3.3V (300A) and -3.3V (100A).

6.5.8.7 Cable and connections

Designs for vacuum feedthrough for multi-cable connections can be copied from other de-
tector designs. If we choose to use fiber optic links for data transfer, standard systems are
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Figure 6.30: The figure shows a schematic view of the placement of the readout electronics
for the T-Tracker. The ROC are connected by a local bus to a sequencer at the downstream
of the detector but within the detector vacuum enclosure, which sends data serially out of
the vacuum to the data acquisition system and communicates with the DAC by fast and
slow controls. Only two of the five tracker planes are shown in the figure. The calorimeter
has a similar readout architecture.

installed at ATLAS, CMS, BABAR, and ALICE. We choose to use an optic link to reduce
system noise, but copper is also possible. Internal cables must be shielded and treated as
transmission lines, and the design keeps all cables, including PCB lands as short as possible.

6.5.8.8 Mounting and servicing

Maintenance of the electronics must be reduced to minimum, as once installed in the vacuum
it will not be easy to access the system. Therefore the design must be:

• robust and have adequate operational margins for thresholds, noise limits, and power;

• remotely controlled and have adequate diagnostic information supplied to an operator;

• redundant and sufficiently flexible that channels can be remotely removed without
significantly impairing operations.

6.5.8.9 Transmitted data structure

The data structure is to be transmitted to the DAQ processor in the following sequence.

1. Begin Transfer header 1 16bit word

2. Buss number, Status

(a) Header 2 16bit words

(b) Trigger/time, ROC number, and status
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(c) Data 17 16bit words/channel

(d) Channel number, length 1 16bit word

(e) TDC - 1 16bit word

(f) Wave form - 15 16bit word

(g) Repeat Above for All ROC Controlled by a ROC

3. ROC number buss number 1 16bit word

4. Sequence through all ROCs

5. EOF

The local memory buffers are flushed into remote memory buffers placed in VME crates
outside the detector solenoid. Each event is then reconstructed by assigning one processor in
a farm to a particular trigger ID. This event is filtered by this processor for reconstructability
and probability that it could be an event of interest. The filtered data set is then committed
to permanent storage for off-line analysis. Sufficient data is stored, however, to allow a
proper background analysis.

6.5.8.10 Low voltage cower and cooling

In a similar readout system (BaBar), the front end electronics expended 5-6 kW of low
voltage power. It is possible that if the ICs are redesigned using more modern technology
the power could be reduced. However 5-6 kw is not large and can be easily removed. If
required, we proposed to use chilled coolant to maintain a reasonable and static temperature
for the readout electronics.

Low voltage power will be separated into units supplying digital and front end analog
ICs. Each board will use its own low-ripple regulator to provide its DC voltage. This ar-
rangement reduces ground loop currents and isolates digital noise. Switching power supplies
can be used for the digital ICs. The preamplifiers will use linear regulators to further reduce
the power noise level down to less than 1 mVPP. We will evaluate the use of ferrite-core
inductances in any power supplies in the cryostat.

6.5.8.11 High voltage

Separate High voltage will be individually supplied to each array of each plane (5 planes x
4 arrays). The HV lines enter the downstream gas manifold and are split to supply the 208
channels of straw anodes. Each channel must be fused in order to allow that channel to
be removed in case of a malfunction. We envision this process occurring by passing a high
current through the fused panel disabling a selected channel. Readout of a channel must
occur through a HV blocking capacitor. All these components are within the gas volume
contained within the manifold. The gas is held at atmospheric pressure so HV discharge
should not present a problem.

We anticipate operational HV of the anode wires at about 2000 V to obtain a gas gain
of 5 × 104. HV will be supplied by commercial units which are computer controlled and
monitored.
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6.6 Electron calorimeter

6.6.1 Overview

The electron calorimeter is positioned downstream of the tracking detector and serves three
purposes:

1. to measure the energy of electrons, where good energy resolution is necessary to
produce an efficient trigger and add redundancy to the energy measurement.

2. to provide a timing signal, i.e. a trigger, with respect to which the electron events are
referenced.

3. to provide additional position information on the electron track trajectory correlating
the measured energy with the track.

Independent and redundant measurements of the energy and momentum of electrons are of
critical importance to separate true muon-to-electron conversion from reconstructed tracks
that conspire to mimic a signal. Although the likelihood of a combination of lower energy
electrons being mistaken for a 105 MeV electron track is small, it must be remembered that
the number of low energy electrons between 85 to 95 MeV is a factor of more than a thousand
larger than for electrons above 95 MeV. A calorimeter constructed of segmented scintillating
crystals can have an energy resolution of better than 5% and an energy-correlated position
coordinate accuracy of about 1 cm (rms). Finally, the event topology, given good crystal
granularity, helps discriminates between electrons, neutrons and low energy gammas. The
crystals need good light yields, fast time response, and fast decay time to reduce pile-up.

6.6.2 Crystal selection

Table 6.8 compares various scintillating crystals, which have a large light yield and a small
decay constant. GSO(Ce) and LYSO are attractive crystals in view of their performance.
Newly developed inorganic crystals, such as LaBr(Ce) and LGSO, would also result in good
performance. We need further studies on their fundamental characteristics which would
affect the performance of the calorimeter. The choice of crystal type depends on not only
its performance, but also cost of the crystal. Here, we describe one of the plans to construct
the electron calorimeter with cerium doped Gd2SiO5 (GSO) crystals with dimensions of
3×3×15 cm3.

Table 6.8: The characteristics of inorganic scintillator crystals.

GSO(Ce) LYSO PWO CsI(pure)
Density (g/cm3) 6.71 7.40 8.3 4.51
Radiation length (cm) 1.38 1.14 0.89 1.86
Moliere radius (cm) 2.23 2.07 2.00 3.57
Decay constant (ns) 600s,56f 40 30s,10f 35s,6f

Wave length (nm) 430 420 425s,420f 420s,310f

Refraction index 1.85 1.82 2.20 1.95
Light yield (NaI(Tl)=100) 3s,30f 83 0.083s,0.29f 3.6s,1.1f
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Segmentation is necessary to reduce pile-up and provide position information. The
calorimeter will consists of GSO cells which have a 3 × 3 cm2 cross-section and are 11
radiation lengths long (about 15 cm for GSO). If the calorimeter covers the full cross-section
of the detector region (552π = 9053 cm2), then we will use 1056 crystals which is also a
hexadecimal unit compatible with the readout architecture (16 × 66). From Table 6.10,
the total rate in the calorimeter is 9670 kHz which is 92 kHz per crystal if the shower hit
multiplicity is 10.

6.6.3 Photon detector

Operation of the calorimeter readout in a 1 T field essentially precludes the use of high-gain,
low-noise phototubes. In order to circumvent this problem, we have two candidates of the
photon detector for the readout: Avalanche photodiodes (APD) and Multi Pixel Photon
Counters (MPPC).

6.6.3.1 Avalanche photodiode

High quantum efficiency photodiodes can be used for the crystal readout, although these
have the disadvantage of greater electronic noise due to the thermal noise of the input
field-effect transistor. This noise is not easily integrated out of the signal, due to the short
shaping times that are required. However the development of large area photodiodes, with
large depletion depths which reduce the parallel capacitance, has improved the signal-to-
noise ratio. Avalanche photodiodes (APD), with typical gains of 500-1000, are now generally
available [103]. MECO was able to achieve an energy spectrum with a full width at half
maximum of 4 MeV with a low energy tail from energy leakage. Generally, resolution can
be represented by the following form.

σE(E) = A ⊕ B
√

E ⊕ CE (6.10)

The first term is the contribution from electronic noise. The second is due to photon statis-
tics, and the third term which is proportional to the energy, includes errors in calibration,
non-uniform light collection, energy leakage, and temperature and gain drifts. Additional
terms, dependent on other powers of E are sometimes included as well. The equivalent noise
energy is the ratio of the equivalent charge noise (expressed in units of e) to the collected
light (in photoelectrons per MeV).

R&D for the MECO calorimeter found that the series noise contribution can be reduced
using two APDs. In the MECO CDR it was found that using 2 PIN diodes, the resolution
for a BGO crystal and an RC time constant of 300 nsec was 1.3 MeV/crystal, 0.42 MeV,
and 1.7 MeV for electronic noise, photostatistics, and shower fluctuations, respectively.
Combining these in the above equation and summing in quadrature over the noise from
nine crystals (expected shower size) the expected resolution, exclusive of pileup, would be
4.3 MeV. The signal reaches its maximum at 900 nsec. It is anticipated that both the
resolution and shaping time can be significantly reduced when using APD’s.

Light collection is also an important parameter and must be carefully studied. A smaller
area diode has less capacitance and thus less noise, and if the crystal-diode configuration
is carefully constructed (e.g. wrapped or coated crystal light that misses the diode can
be reflected and collected later. Thus the selection of an optimum diode(s) and crystal
preparation requires R&D. The use of a wave shifters is another approach to light collection.
The wave shifter re-emits the light from the crystal at a longer wavelength which is in a
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more sensitive region of the diode, and concentrates the light into a smaller area, potentially
reducing noise through the use of a smaller APD.

6.6.3.2 Multi pixel photon counter

MPPCs are novel photosensors which take the form of multi-pixel devices with each pixel
being an APD, biased to be in Geiger mode and with all pixels connected together in
parallel. They are able to provide photon-counting with gains on the order of 106 as
with PMTs, similar or better photodetection efficiencies and response times, and excellent
linearity. They are practically immune to adverse effects from magnetic fields, and require
bias voltages of less than 100 V. Typical devices have dimensions of one to a few millimetres
squared, and pixel counts ranging from a hundred to the tens of thousands.

For photon-counting applications which require good spatial granularity, or which do
not need to cover very large areas, MPPCs can often be the perfect detector. The main
drawback of MPPCs is their relatively high noise rates which can be in the hundreds of MHz
for signals at the level of a few photoelectron equivalents, but if signals can be measured in
coincidence across multiple MPPCs, or thresholds can be set above a few PE, this problem
can be overcome.

The T2K near detector (ND280) at J-PARC is the first high-energy physics experiment
to opt for the large-scale deployment of MPPCs[106]. The experience from the extensive
testing that was carried out as the ND280 collaboration studied the properties of MPPCs
and their suitability for their experiment will be directly applicable to the needs of COMET.

Unlike MPPCs at ND280, which read out photons on the order of dozens to a few hun-
dred from 1.2 mm diameter light fibres, for the task of reading out the COMET calorimeter
crystals, MPPCs with larger sensitive areas and pixel counts will be better suited. Initial
studies on the performance of 3×3 mm2 MPPCs with 14,400 pixels are shown below.

6.6.4 Electronics

Because of APD noise, the signal from the crystals must be integrated over 100-300 ns.
The front-end preamp takes the output current, shaping the signal and sends it to a wave-
form digitizer. An example of a modern waveform ASIC is the DRS3 used to readout the
MEG photon calorimeter [104]. Analysis of the waveform permits the removal of pile-up,
improving the energy resolution and trigger efficiency.

Full analysis of the waveform is expected to be undertaken offline. To develop a trigger,
calorimeter signals will be processed locally by an FPGA that will cut on energy deposited
in shower clusters within the calorimeter. At trigger decision must be made within 500 ns
in order to extract valid information from the tracker.

In the case of MPPCs, the front end boards for ND280, designed at Imperial College
and based around the Trip-t chip, provide a good example of the type of electronics which
are appropriate[108]. These are designed to read out the charge and timing signals from
each MPPC, in cycles that are synchronised with the J-PARC MR beam bunches. The
individual MPPC bias voltages are supplied by the front end electronics boards, and their
signals are digitised by FPGAs through two gain channels to cover the full dynamic range of
the photosensors. The electronics are designed to allow self-triggering, although in ND280
they will be triggered by the beam signal and the signals from all the MPPCs recorded.

These electronics are already being used in testing for the ND280 detectors, and should
be recording real data from the J-PARC beam by the end of 2009. This will allow us to
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accumulate a good body of experience on the operation of MPPCs in real-world conditions
at J-PARC, which will no doubt be very useful if MPPCs are chosen for the COMET
calorimeter.

6.6.5 Performance

Energy resolutions of the calorimeter was studied using Geant4 with Optical Photon Pro-
cesses. The resolution depends on crystal, light guide, photon detector, and their geomet-
rical configuration. In this section, we discuss dependence of the resolution on the crystals
under a possible configuration of the calorimeter. This selection would be a cost effective
case for the photon detector, since the ratio of active area of the photon detector to the
cross section of the crystal is set to 0.09.

Figure 6.31: A typical event display of the simulation study of the calorimeter. An electron
injected to the calorimeter, then optical photons from scintillation processes are ray-traced
to the photon detectors.

Figure 6.31 shows a typical event display of this simulation. The calorimeter is a cylinder
1 m in diameter, and consists of 7850 rectangular segments. Figure 6.32 illustrates a segment
of the calorimeter. It consists of a crystal, a light guide, and a photon detector. GSO(Ce),
LYSO, PWO were studied in this simulation. The crystal has size of 10×10×L mm, here
L is the length of the crystal, 120 mm for GSO(Ce) and LYSO, and 100 mm for PWO.
The material of the light guide is set to acrylic resin with a refractive index of 1.49. The
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size of the photon detector is 3×3 mm2, which corresponds the maximum size of MPPC,
S10362-33 series of Hamamatsu Co., commercially available at the present moment. The
light guide is connected using optical cement with a reflective index of 1.46. The crystal
and light guide is wrapped by a Teflon sheet to collect photons effectively.

Crystal Bar : size 10 x 10 x L mm3

Light Guide : 50 mm

Photon Detector : 3 x 2 mm2

Figure 6.32: A schematic view of a segment of the calorimeter used in the simulation study.
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Figure 6.33: The energy distribution of electrons, which are injected to the calorimeter.

Electrons of 105 MeV emitted from the stopping target disks, then transported to the
calorimeter. The energy distribution of electron just before the calorimeter is shown in
Fig. 6.33. In the calorimeter, electrons interact with the material and scintillation photons
are emitted. The photons are ray-traced to the surface of the photon detectors. In order to
get simulation result in a reasonable computing time, the photon yield of the scintillation
process was reduced by factor of 10 for GSO(Ce) and a factor of 36 for LYSO. Figure 6.34
shows distributions of the number of photons arrived at the photon detectors. We applied
a light yield correction considering the light yield factor and a photon detection efficiency
(PDE) to estimate the energy resolution.

The energy resolution obtained from this study are summarized in Table 6.9 for
PDE=0.25 and 0.75. The PDE of the MPPC depends on its pixel size. The typical PDE of
MPPCs at 420 nm are 0.73, 0.45, and 0.25 at room temperature for the pixel size of 100 µm,
50 µm, and 25 µm, respectively [105]. The ADPs have a high PDE in general, for example
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Figure 6.34: Distributions of the number of photons arrived at the photon detectors for
GSO(Ce) (top), LYSO (middle), and PWO (bottom). Number of photons emitted by the
scintillation process is reduced by some factors.

S8148 of Hamamatsu Co., of which active area is 5×5 mm2, has PDE of 0.75 at 420 nm for
room temperature [107]. The real energy resolution would be worse, since the resolutions
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in the table don’t include the contributions from electronic noise, non-uniformity of the
crystals and light collection, and temperature and gain drifts. GSO(Ce) and LYSO can
fulfil the requirement of the energy resolution with this configuration. On the other hand,
PWO needs larger ratio of the photon detector area.

Table 6.9: Energy resolutions obtained from this study for PDE=0.25 and 0.75.
PDE = 0.25 PDE = 0.75

Crystal Length (mm) σEe (MeV) σEe (MeV)
GSO(Ce) 120 4.8 4.4
LYSO 120 2.6 2.5
PWO 100 22.2 13.4

6.7 Detector rates

The detector single rates are important for high precision experiments, and should be sup-
pressed as much as possible. One of the reasons is that high single counting rates of the
detector would introduce false tracking and pileups and would mimic signal events. Ta-
ble 6.10 summarizes detector rates for the electron tracker and the electron calorimeter.
Those detector rates are much smaller than those proposed by a MECO-type detector. The
reduction of the detector single rates mostly come from the curved solenoids adopted in the
electron transport. This is one of the advantages of COMET.

Table 6.10: Detector singe rate : tracker and calorimeter.

Timing Tracker Calorimeter Energy
(kHz) (kHz) (MeV)

DIO electrons Delayed 10 10 50–60
Back-scattering electrons Delayed 15 200 < 40
Beam flash muons Prompt < 150‡ < 150‡ 15–35
Muon decay in calorimeter Delayed — < 150‡ < 55
DIO from outside of target Delayed < 300 < 300 < 50
Proton from muon capture Delayed — — —
Neutron from muon capture Delayed — 10 ∼ 1
Photons from DIO e− scattering Delayed 150 9000 〈E〉 = 1

‡ Monte Carlo statistics limited numbers.

6.7.1 Decay-in-Orbit (DIO) electrons

The curved solenoid for the electron transport between the muon-stopping target and the
detector provides huge suppression of the DIO electrons. The electron flux entering the
detector solenoid is less than 300 kHz as shown in Table 6.10. Most of the background
particles are time-delayed, so that the detector rates remain almost constant during the
proton pulse cycle. This would be a substantial improvement over the previous MECO
design, in which the detector experiences high rates during the beam flash. As the COMET
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Figure 6.35: Transmission efficiency of the electron transport in the C-shape curved solenoid
spectrometer.

detector remains operable during the beam flash, charged particles produced by prompt
protons can be measured to study beam related backgrounds.

Figure 6.35 shows the transmission efficiency of the electron transport. It was estimated
by Monte Carlo calculations with step-by-step transportation of charged particles in a non-
uniform magnetic field of the curved solenoid with a compensation dipole field. when the
vertical position of the DIO blocker is set at −20 cm, the number of expected DIO electrons
hitting the detector is about 10 kHz, estimated by convoluting the transmission efficiency
of the electron transport with the DIO momentum spectrum. Please note that the number
is obtained by optimizing the DIO rates and the signal acceptance, which will be described
in the detector section. Therefore, it could be reduced to be about 1 kHz at a further cost
of the signal acceptance loss, or could be 100 kHz by increasing the signal acceptance if the
detector can stand such a high rate. This adjustment can be made at the stage of detector
commissioning with a real beam.

6.7.2 Back scattering electrons

Low energy electrons are back scattered from the DIO blocking slit and the inner wall of
the transport solenoid. Most DIO electrons either stop or are forward scattered, hitting the
walls again as the drift effect always pushes them in the same direction. Back scattered
electrons, however, drift away from the walls and potentially mirror in the magnetic field.
These electrons may eventually enter the detector solenoid and hit the detector. It is
illustrated in Fig. 6.36. A Monte Carlo calculation estimates a detector rate of 150 kHz due
to back scattered electrons which originally come from evenly distributed muon DIO in the
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muon-stopping target.

Figure 6.36: Illustration explaining the mechanism of how the back scattering electrons
enter detector region.

6.7.3 Beam flash muons

A Monte Carlo calculation using MARS+G4beamline with a realistic beam distribution
input, reveals that none of the beam flash muons hit the detector. However, the study was
statistically limited, so that the present estimation provides only an upper limit of the rate
less than 1 MHz for the entire detector. Such events associated with the muon beam flash
can be removed in analysis by a timing cut.

Most of the beam muons that do not stop in the muon-stopping target but are blocked
by the muon beam stop located downstream of the muon stopping target. However, if the
momentum of a beam flash muon is higher than ∼ 60 MeV/c, it may hit the tracking detector
and is stopped in the calorimeter. These muons then can emit DIO electrons, increasing
the calorimeter rate. Although a Monte Carlo estimation of this rate is statistically limited,
an expected rate of less than 1 MHz is obtained.

On the other hand, if the momentum of the muons that are not blocked by the beam
stop is less than ∼60 MeV/c, they will be stopped in the DIO blocking slit. At this point,
a DIO electron may be emitted. If the initial direction of the DIO electron is downstream,
it will continue to hit the DIO blocker and rarely hit the detector. However, if the initial
direction is backward, it acts as a back scattered electron and can hit the detector. The
present estimation of such a background rate is statistically limited, but it is expected to
be less than 150 kHz per plane.

6.7.3.1 Muon decays in the electron calorimeter

The beam flash muons passing through the electron transport might be stopped in the
electron calorimeter, where µ-decay electrons are produced. They will increase the rate
of the electron calorimeter in a delayed time window. The estimated rate is Monte Carlo
statistically limited, but should be less than 1 MHz.

6.7.4 Particle and photon emission from nuclear muon capture

For aluminum, approximately 60% of stopped muons are captured by nuclei, and the muon
nuclear captures produce protons, neutrons, and photons. Approximately 2 γs, 2 neutrons,
and 0.1 protons are emitted on average for each capture.
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6.7.4.1 Protons from muon nuclear capture

The total instantaneous flux of protons exiting the stopping target is ≈ 1.6×1010 s−1 [109],
and without their removal, rates in the individual tracking detector elements would be well
above 1 MHz. In addition, these protons are emitted in a momentum range that is accepted
by the magnetic transport system, and they have a mean ionization approximately 25 times
that of a minimum ionizing electron. However, as discussed in earlier sections, the curved
transport solenoid provides a huge suppression to low energy protons, since a positively
charged proton drifts in the opposite direction to that of an electron. Thus essentially no
protons are expected to enter the detector solenoid. In a straight solenoid system of a
MECO type, a proton absorber to remove protons has to be installed, and it is known that
it would degrade the momentum resolution of the electron detection in the electron tracker.
It is absent in the COMET experiment.

6.7.4.2 Neutrons from muon nuclear capture

Neutrons are produced during the muon nuclear capture process. A neutron spectrum,
typical for an Al target, can be estimated from experimental data [110]. Neutrons be-
low 10 MeV are represented by a thermal distribution and have an exponential tail above
10 MeV. Detector rates can be calculated assuming two neutrons are emitted per capture.
Neutron interactions in the detector can be neglected, but they could increase the calorime-
ter rates. In the COMET design, these neutrons cannot hit the calorimeter without passing
through shielding which reduces the neutron flux at the calorimeter position by more than
3 orders of magnitude. In order to shield the calorimeter from neutrons produced by muon
nuclear capture, 70 cm of iron and 20 cm of polyethylene are needed. The average neutron
energy deposited in the calorimeter within 100 nsec is less than 0.01 MeV. As the intrinsic
resolution of the calorimeter is ≤ 5%, pile up due to neutrons will not significantly effect
the calorimeter resolution and the experimental trigger.

6.7.5 Target bremsstrahlung

Beam electrons emit bremsstrahlung radiation as they traverse the stopping target. These
photons may Compton scatter and pair produce in the detectors. The pulsed beam and
the muon beam line are designed to reduce the flux of low energy electrons that reach the
stopping target during the active time window.

6.7.6 Cosmic muons

Cosmic muons may enter, or decay in (or near) the tracking detector and constitute a
background that must be identified and removed An active cosmic ray shield is placed to
veto events that are coincident with a detector track.

6.8 Muon intensity monitor

The number of muons stopped in the muon-stopping target will be monitored by observing
characteristic X-rays from muonic atoms. An X-ray detector will be used for this purpose.
We are considering to employ a Ge(Li) detector to be located near the target. As in the
case of SINDRUM II [22], it will be probably possible to locate the detector outside the
target solenoid, and to observe X-rays through the magnet wall. Figure 6.37 shows an
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Figure 6.37: Spectrum of the muonic Balmer series in Al [111].

example spectrum of the muonic Balmer series in Al [111]. By using several lines (or even
higher energy X-ray lines if their intensities are sufficient) to clearly separate background,
the number of muons will be continuously monitored during data acquisition. Simulation
will be necessary to evaluate this.
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Cosmic Ray Shield

The cosmic ray shield system consists of three main layers of components:

1. an outer shield,

2. a cosmic active veto counter system, and

3. an inner shield.

The outer shield is a block of heavy concrete that covers the whole detector area. The
function of the outer shield is

• radiation safety shielding for humans outside of the experimental area,

• a shield for low energy cosmic nucleons, and

• a shield for skyshine neutrons.

The cosmic active veto counter system consists of four (or more) layers of plastic counters.
Since the expected number of fake signals induced by cosmic muons is about 70, they should
be properly tagged by the counter system so that any signal electrons associated with the
cosmic veto counter activity could be rejected. Inefficiency of the cosmic veto system should
be much less than 0.01. The inner shield protects the cosmic veto counter system from a
large flux of neutrons coming from muon capture inside of the target solenoid. Without
the inner shield, the signal rate of the cosmic veto counter system would be more than
500 MHz.

Please note that it is practically impossible to shield cosmic muons on the surface at sea
level. Several meters of heavy concrete will provide only a limited reduction of the cosmic
muon flux. The key to controlling the cosmic background is the cosmic veto counter system,
and the outer and inner shields only support the function of the veto system.

7.1 Outer shield

The outer shield is a block of heavy concrete. The thickness of the outer shield is not yet
fully optimized. The minimum thickness would be defined by looking at the rate of the
veto counter system from skyshine neutrons. The calculation will be performed by using
MCNPX code package in the near future.
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7.2 Inner shield

The inner shield consists of , from outside to inside, an iron layer, a polyethylene layer and a
lead layer. The iron layer will reduce fluxes of high energy neutrons, mostly En > 2 MeV, by
3–4 orders of magnitudes. The flux of low energy neutrons (which is called “fast neutrons”)
would be increased since the high-energy neutrons slow down. As a result, the total neutron
flux after iron shield is only one order of magnitude less than the original flux.

The polyethylene layer absorbs fast neutrons. The total neutron flux, including the
low energy region, after polyethylene layer (20 cm) is almost three orders of magnitude
reduced from the original flux. On the other hand, the gamma ray flux becomes high due
to gamma-ray emission by fast neutron absorption. These gamma-rays are absorbed by the
lead layer.

7.3 Cosmic active veto system

The cosmic veto system consists of four layers of plane plastic counters. We conservatively
assume the inefficiency of the single layer is a few %. Four layers of counter would have
an inefficiency of less than 10−4. The requirement on inefficiency for each counter is less
than 0.1. It should be mentioned that the backgrounds induced from cosmic rays can be
estimated and measured at the time of beam off during proton acceleration cycle, since they
are not related to a beam. The time of beam off is about 0.8 sec since the flat top time of
the J-PARC MR is 0.7 sec, while one proton cycle is 1.5 sec.
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Data Acquisition System

8.1 Basic trigger concept

An event trigger is obtained by measuring the total energy of an electron that is absorbed
in the calorimeter. The DIO electron energy spectrum falls as the 5th power of the dif-
ference between the energy of this electron and its kinematic endpoint where conversion
electrons would be emitted. Setting a window about the endpoint energy (1–2 MeV around
105 MeV) provides a trigger that contains a sample of the falling DIO background and
the endpoint region. By changing the lower edge of this window, the trigger rate can be
adjusted to provide a compromise between the DAQ acquisition rate and a sampling of the
DIO background spectrum.

The trigger is based on an analog summation of energy deposited in the calorimeter
crystals within a time window. This is information is processed by a trigger FPGA module
which uses the total deposited energy, and the number of contiguous crystals that have a
signal above a minimum energy threshold. It can be made as cascade structure, as shown
in the schematic of the trigger system Fig. 8.1.
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Figure 8.1: The trigger schematic by the analog summation.
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Table 8.1: Estimation of numbers of readout channels and data size.

Detector Number of Number of Hits Measurement Data size
channels per event factors

Calorimeter 1056 10 (shower) Waveform (sampled 200
+ 40 (4 BG events at 250 Mhz) (bytes/trigger)
assumed)

Tracker 4160 40 (signal) + 4 (BG) Timing and 352
charge (bytes/trigger)

Cosmic veto 1625 20 (10 MHz total rate Timing and 80
counter assumed) charge (bytes/trigger)
Extinction 10 Waveform 12.5 kB
Monitor

8.2 Data acquisition

8.2.1 Data flow rate estimation

COMET has several types of detectors, such as the electron tracker, the electron calorime-
ter, the cosmic-ray active shield, the late-arriving particle tagger, the proton extinction
monitor, the muon intensity monitor, and others. It is anticipated that information from
the calorimeter and extinction-monitor will be read out by a waveform digitizer such as the
DRS3 ASIC [104] which is used in MEG experiment. The sampling rate of the calorimeter
is planned to be 250 MHz with a width of about 400 ns. The extinction-monitor would be
sampled at 500 MHz, that is triggered by the RF bunch-time from the J-PARC main ring
with a width of approximately 2 µs. The tracker is digitized and read as described in the
tracking section, by an ASIC that provides both time and analog information. Numbers of
the readout channels and the estimated data size are summarized in Table 8.1.

Data rates are based on simulation information summarized in Table 6.10. Electrons
that hit the tracker are assumed to penetrate to the calorimeter, causing a hit in all the
tracker arrays. A photon, on the other hand causes only a local hit in a specific tracker
array. Assuming on average a hit multiplicity of 1.5, the singles rate on a tracker wire is
(460/208 + 150/832)× 1.5 = 3.6 kHz per wire. In the calorimeter only high energy photons
and electrons shower. It is assumed that the simulated photon rate given in Table 6.10 is
mainly from showered photons which would cover approximately 10 calorimeter crystals.
Thus the singles rates in a crystal are approximately (9670/1056)×10 = 92 kHz per crystal.
There is then an approximate 4% probability of at least 1 overlap of 2 showers within 400 ns.

The trigger rate can be assumed to be 10 kHz as estimated by simulations. As mentioned
previously this may be tuned by changing the lower edge of the calorimeter trigger window.
The data flow of the electron detector is 4 Mbytes/s and the data flow of the extinction-
monitor is 125 Mbytes/s. The data of extinction monitor can be suppressed using the
pedestal suppression and the simple data compression. We estimate the data flow of the
extinction-monitor after the suppression to be approximately 25 Mbytes/s. The total data
flow is estimated as about 30 Mbytes/s.
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Figure 8.2: Network based DAQ system

8.3 Network based DAQ system

To handle the 30 Mbytes/s data flow, we plan to build a network based data acquisition
(DAQ) system. A network based system has several advantages:

• High speed devices are commercially available at reasonable cost

• A network is flexible and easily modified

• A network offers direct control and monitoring of the DAQ FPGAs and DAQ opera-
tions

Each front-end will be locally controlled by an FPGA, programmed to read its detector
and process an event structure, storing this information in a local memory from which it is
read via a command from the system. Because each detector has a local buffer from which
events are transferred to a system processor, an event builder must sort the data stream
by event number, before event processing and storage. A PC farm, also controlled by a
system computer, processes the data committing appropriate events to permanent storage,
and transferring a sample for on-lime monitoring.

A schematic view of a network configuration is shown in Figure 8.2. Such a network
DAQ system can accept over 100MB/sec data flow.

Finally, there will be a second acquisition system for slow control and environmental
monitoring. Environmental variables will be read every fixed number of beam spills and
will be correlated with in time sequence with the data triggers.



Chapter 9

Simulation and Analysis

The desired sensitivity of the COMET experiment requires careful and thorough simulation
of the signal and backgrounds and the identification of background sources. There are
fundamental challenges posed by the nature of the experiment, in that its success could be
affected by a single stray particle, arriving over timing windows of microseconds following
the initial beam pulse containing of the order of 1013 protons.

The simulation, reconstruction and analysis software framework will be a key component
in allowing the experiment to overcome these challenges.

9.1 Software requirements

In this section, we discuss the functionality that the software must supply, and the solutions
we have available at the present time as we prepare for a fully-functional framework.

9.1.1 Proton beam and pion production

The simulation of the COMET experiment starts with the incoming proton beam and its
collisions with the fixed target used to produce pions. The beam has a pulsed time-structure
with pulses at approximately 1.2 µs intervals during a spill, which is obtained by only
filling every other accelerator beam bucket in the Main Ring. The extinction of the proton
beam between the pulses is one of the most critical aspects of the experiment, and this is
achieved with a dedicated extinction system designed to remove particles arriving off-pulse,
as described in Chapter 4. The aim is to have a beam extinction factor between pulses at
the unprecedented level of about 10−9, and simulations of the proton beam, together with
the extinction system and associated beam monitors, will be very important in ensuring
that we understand the beam fully and to investigate the effect on the measurement of the
signal due to protons outside the pulse.

Here, the COMET software framework will need to interface closely with the proton
beam simulation and monitoring code used in the proton beamline upstream of the experi-
ment.

The protons, which have energies of about 8 GeV, slam into a fixed target, causing the
production of a large number of hadrons. Currently, MARS [78] and the QGSP model in
GEANT4 [79] have been used to simulate an 8 GeV proton bunch colliding with a fixed
target. This gives the initial hadrons to be used for tracking through the beamline. There
are discrepancies on the order of a factor of two or three between these simulations, and
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detailed comparisons with data from dedicated hadron production experiments such as
HARP [112] will be very important.

9.1.2 Particle transport

The initial particle distribution produced at the pion production target, and simulated
by MARS, is then tracked through the muon transport part of the experiment using
G4beamline [80], see Section 5.3. The simulation of the next part of the experiment, i.e.
the stopping target through to the calorimeter, is simulated using a custom GEANT4-based
application.

The successful operation of curved, high-field solenoids form the crux of the experiment,
and it is important that the particle transport simulation includes accurate field models
of these solenoid channels, in particular accurate simulation of the fringe fields of adjacent
sections. This requires using a field map for the particle transport for the muon transport
section and the spectrometer.

Separating the simulation of the muon transport beamline from the remainder of the
experiment can however lead to certain background processes being excluded from the
simulation, e.g. backward going secondary particles being reflected in the muon transport
channel. It is therefore imperative that we combine the beamline and detector simulations
in a single framework. There also needs to be the flexibility to study the effect of different
particle interaction and decay models on the performance of the whole experiment and not
just the detector.

9.1.3 Particle interactions

The simulation of particle interactions is done by GEANT4, which includes a number of
models for different particle interaction processes as well as particle decay. The primary
energy of particles in the COMET experiment is much lower than traditional high-energy
physics experiments so understanding the applicability of each of the available models is
essential. In particular, models for energy straggling, secondary particle production and
nuclear interactions will need to be studied carefully. In many cases, the physics inputs for
these effects may be measured as part of the COMET program itself. The current custom
GEANT4-based application provides a good framework for applying these models to the
latter half of the experiment; however this will also need to be made possible for the muon
transport part.

9.1.4 Detector simulation

As well as including particle interaction effects in the tracker and calorimeter, the detector
simulation also needs to include accurate simulation of the data acquisition and triggering
electronics. The large signal-to-background ratio, as typified by the beam extinction require-
ments, requires the data acquisition and triggering systems to have a large dynamic range
or be gated at the sub-microsecond level. Simulation of this will be needed to understand
the experiment’s measurement errors and thus its sensitivity.

The framework also needs to have the flexibility to allow simulation of the active cosmic
ray shield, optimization of the passive cosmic ray and neutron shield geometry and to
allow the study of different triggering configurations and their efficiencies. This will be
very important for determining the rate of background events that are not flagged by the
background rejection systems.
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Figure 9.1: Hadronic interaction models in GEANT4, plotted against the relevant energies.
The 100 MeV energy scale of the COMET experiment falls in an energy range where
several models compete to describe the physics of hadronic interactions. (The GEANT4
Collaboration)

9.1.5 Simulation framework

The integral nature of the beamline and the detectors requires a new approach to the simu-
lation of the experiment, since current simulation tools, such as GEANT4 and G4beamline,
focus on beamline and detector aspects separately. Both have significant, but different,
strengths as simulation tools for their respective systems, and COMET needs to take ad-
vantage of all of these in the same framework. Treating the experiment as a whole would
reduced the possibility of certain background processes being excluded from the simulation.
For an experiment like COMET, where individual events can impact its ability to succeed,
it is crucial that all significant sources of backgrounds are included in the simulation.

A possible approach to combining the beamline and detector simulations would be to
include the beamline components in a custom GEANT4-based application. One important
task would be to implement time-varying electro-magnetic field maps. Although this is not
a simple task it is likely to be easier than the converse solution of including data acquisition
and triggering simulations in G4beamline.

9.2 Present status and future plans

The physics of hadron production at the energies of interest are not well understood, and
the precise angular and momentum distributions of hadrons leaving the target cannot be
accurately predicted at this time. Comparisons between data and simulations models, and
their extrapolation to particle production at COMET, will be a very important task. Work
of this nature is being done as part of the optimization of the design of the Neutrino Factory,
and this will be leveraged to improve our understanding of the COMET beam.

The close relationship between the beamline and detector components of the COMET
experiment requires the development of a framework that includes the functionality pro-
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vided by G4beamline and GEANT4. The development of a new simulation framework
that incorporates both the beamline and the detector is a large undertaking but would be
beneficial for other similar experiments.

Discussions have already begun with the Mu2E experiment at Fermilab on developing a
common software framework. In addition to saving duplication of effort, a single, powerful
framework would also provide a common basis on which comparisons of the two experi-
ments could easily be made. However, the framework would need to have the flexibility
to implement specific models of detector and beamline components without unnecessary
computational overhead. Forcing the use of a common framework across different collabo-
rations and experimental setups could also introduce unnecessary inefficiencies. It may be
that restricting compatibility requirements to the level of detector geometry and physics
model interfaces is sufficient to allow such comparisons. The pros and cons of developing a
common framework between COMET and Mu2E are currently being evaluated.

Since the establishment of a fully-working, integrated software framework will contribute
greatly to the design optimization phase of the experiment, the decision to select the software
solution that most suited to our needs must not be delayed. Therefore we plan to spend
the coming months making this decision so that the most important aspects of the software
can be brought to usable state as soon as possible.



Chapter 10

Calibration System

Calibration of the detector is always an important issue in any kind of particle physics
experiment. In COMET, determination of the energy scale is most important to identify the
µ−−e− conversion signal among DIO background electrons. Signal electron identification
will be done by measuring its momentum with the tracker. Calorimeter information will
support this. Alignment of the tracker supporting structures will be done with an optical
survey when we install the tracker. Precise magnetic field measurement of the detector
solenoid must be done on site. Such information will be stored in a database to be utilized in
off-line analysis. Absolute momentum calibration will be done by using electrons generated
by an on-site electron linac being installed in the experimental area. Figure 10.1 shows a
schematic of the linac.

Because we do not need an intense beam for calibration, we may be able to utilize
a radioactive source normally used in laboratories as a beam source. Electrons will be
accelerated twice in the same but directionally opposite path, each of which can accelerate
electrons up to 50 MeV, resulting in electron acceleration up to 100 MeV. The linac will be
designed so that the electron beam energy can be variable within a range of ±10% and the
precision of the beam energy less than 10−3. Beam repetition rate can be as high as a few
kHz for efficient acquisition of calibration data.

The electron beam will be injected to the muon stopping target or a dedicated calibration
target made of a thin heavy-metal foil. Those electrons will scatter off target atoms via
Mott scattering and enter the spectrometer. However due to the effect of energy loss in
the target material the electron energy to be measured in the spectrometer will be slightly
lower than the beam energy, depending on the target thickness. The muon -topping target
might not be suitable for this purpose because the COMET electron spectrometer cannot
identify the target disk where the electron is scattered and energy loss correction would be
complicated.

The scattered electron will enter the curved solenoid and its momentum will be measured
by the detector. It is necessary to design the magnet system so that we can inject electrons in
this way. A possible procedure is to mount the target and the curved and detector solenoids
on a movable stage and to slide the stage when we perform calibration. Coupling between
the electron linac and target solenoid needs to be carefully designed with a vacuum junction.
It is also important to separate the cooling system between the muon transport solenoid and
target solenoid in this sense, which will be realized by using small GM-type refrigerators for
target and downstream solenoids. The electron beam calibration will possibly be performed
during shutdown periods. Stability of the electron tracker can be monitored continuously
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Figure 10.1: Schematic of the electron linac used for detector calibration.

during data acquisition by measuring the slope of the DOI electron spectrum.
Calibration of the calorimeter can be carried out in the electron beam calibration taking

into account the effect of energy loss in the tracker material. During data acquisition period,
crystal light yield will be monitored by using cosmic rays going through the crystal array
vertically. Dedicated triggers can be prepared to take calorimeter cosmic-ray data during
proton beam acceleration. Calorimeter photo-sensor calibration can be done independently
by using a light source such as LEDs.



Chapter 11

Sensitivity and Backgrounds

This chapter describes estimations of the sensitivity for µ−−e− conversion signals and
background events for the COMET experiment. With 2 × 107 sec running, the number
of muons stopped in the muon-stopping target is estimated with the present design of the
muon beam. A net signal acceptance, which is composed of the detector geometry and
the event selection, is also evaluated for the present design of the detector. Based on
these, a single event sensitivity of 2.6 × 10−17 for µ− + Al → e− + Al can be achieved for
2×107 sec. The background events, which can be grouped into four categories, are estimated.
They are intrinsic physics backgrounds, beam-related prompt backgrounds, beam-related
delayed backgrounds and cosmic-ray and other backgrounds. The total expected number
of background events at the above sensitivity is about 0.3 events. In the following sections,
the expected signal sensitivity and backgrounds are described in detail.

11.1 Signal Sensitivity

11.1.1 Muon yields

Estimation of the yield of the muons stopped in the muon-stopping target is described.
As shown in Chapter 4, the momentum and beam current of a proton beam from the J-
PARC MR are planned to be 8 GeV and 7 µA, respectively. It is also required that every
other proton beam pulse is filled. As a result, the number of protons per the beam spill
is about 6.4 × 1013protons/spill, and an average number of protons per second is about
4.4 × 1013 protons/sec. With physics running of a total of 2 × 107 sec, the total number of
protons available for the COMET experiment is about 8.5×1020. As shown in Chapter 5, the
number of muons transported to the muon-stopping target is about 0.0035 muons/proton
with the muon beam collimators. With a muon stopping efficiency of 0.66, the total number
of the muons stopped in the muon-stopping target is about 2.0×1018 for 2×107 sec running.
The breakdown of the muon yields is summarized in Table 11.1. It should be noted that
the pion production cross section for 8 GeV protons is different between different hadron
production codes. The present estimation is based on the most conservative cross sections.

11.1.2 Total signal acceptance

The signal acceptance is obtained as a product of geometrical acceptance, the acceptance
in event selection and the trigger acceptance. Table 11.2 summarizes the signal acceptance.
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Table 11.1: Breakdown of the muon yield expected for COMET.

Total number of protons: Np 8.5 ×1020

Proton kinetic energy 8 [GeV]
Harmonics of MR 8
Bunch time spacing 657 [nsec]
Number of RF bunches filled with protons per spill 4
Time between adjacent filled bunches 1314 [nsec]
Number of protons in each RF bunch 1.6×1013

Cycle time of MR (=spill period) 1.47 [sec]
Flat top for the slow extraction 0.7 [sec]
Number slow-extracted pulse in a spill 5.3×105 [pulses/spill]
Number of Protons in each slow-extracted pulse 1.2×108

Average beam current 7.0 [µA]
Average beam power 56 [kW]
Average proton intensity 4.4×1013 [protons/sec]
Total running time 2.0×107 [sec]
Running time per year 1.0×107 [sec/year]

Number of stopped muons per proton: N stop
µ/p 0.0023 [muons/proton]

Rate of muons per proton transported to the target 0.0035 [muons/proton]
Muon stopped acceptance 0.66

Number of stopped muons: N stop
µ/year 1.0×1018 [muons/year]

Total number of stopped muons: N stop
µ 2.0 ×1018

The geometrical acceptance and then the acceptance in event selection are described in
detail in the subsequent subsections.

11.1.3 Geometrical acceptance

11.1.3.1 Solid angle with a magnetic mirroring effect

Since the muon-stopping target is placed in a graded magnetic field, a solid angle for detec-
tion of µ−−e− conversion electrons should be evaluated considering a magnetic mirroring
effect, with which some muons going backward might be reflected forward, to the detector.
The range of a polar angle of the detection for µ−−e− conversion electrons can be deter-
mined by distribution of a graded magnetic field. Now, a maximum field strength is about
3 T, and magnetic fields at the muon-stopping target range from 2.0 T to 2.6 T. From this,
a maximum polar angle can be given by

sin θ >

√
B0

Bmax
, (11.1)

where θ is the polar angle between the initial direction of µ−−e− conversion electron and
the axis of the magnetic field, B0 is the strength of the magnetic field at the initial position
of the charged particle and Bmax is the maximum strength of the magnetic field. To obtain
the solid angle, a Monte Carlo simulation was used; a value of of 0.73 has been obtained.
A naive estimation using Eq. 11.1 is in good agreement with the Monte Carlo evaluation.
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Table 11.2: Breakdown of the signal acceptance.

Category Item Value
Geometrical Solid angle with mirroring 0.73

Muon beam stop 0.57
Curved Solenoid Acceptance 0.47

Event selection Track Reconstruction Efficiency 0.88
Track Quality Cut Efficiency 0.89
Transverse Momentum Cut Efficiency 0.83
E/p Cut Efficiency 0.99
Helix Pitch Cut Efficiency 0.99
Momentum Selection Efficiency 0.72
Timing Window Selection Efficiency 0.39

Trigger acceptance Trigger acceptance and DAQ live efficiency 0.9
Total signal acceptance 0.031

11.1.3.2 The muon beam stop

The muon beam stop is a thick disk placed downstream of the last disk of the muon-stopping
target. The diameter of the beam stop is 30 cm, while that of the target disk is 20 cm. The
major purpose of the muon beam stop is to reduce the number of beam particles, which
would hit the detector. An expected counting rate of the detector would be more than
1 GHz without the beam stop.

The muon beam stop also reduce the acceptance of µ−−e− conversion electrons, es-
pecially for those whose transverse momentum is smaller than 40 MeV/c. Monte Carlo
simulations were used for the acceptance evaluation. As a result, the number of µ−−e− con-
version electrons that enter the detector reduces to 57% of those for the case of no muon
beam stop. However, as shown later, the event selection of µ−−e− conversion signals re-
quires pT > 50 MeV/c, where pT is a transverse momentum, in order to suppress the beam
electron scattering background. It turns out that this event selection on pT is correlated
to the acceptance loss by the muon beam stop. Therefore, a net increase of the loss of the
µ−−e− conversion signal acceptance by the muon beam stop is estimated to be only 4%
after all the event selections.

11.1.3.3 The electron transport

The curved solenoid in the electron transport removes most of the DIO electrons at the
cost of the signal acceptance loss for the µ−−e− conversion electrons. A maximum detector
rate, dominated mostly by the DIO electrons, of 10 kHz can be tolerated. The requires
that the height of the DIO blocker should be 20 cm below the median plane of the curved
solenoid. In this case, as discussed before, the signal acceptance becomes 0.47.
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11.1.4 Acceptance in the event selections

11.1.4.1 Track reconstruction

The tracking code that was used in this analysis includes multiple scattering effect by the
“break point” method. The probability distribution function of the multiple-scattering
effects was approximated by a Gaussian distribution, with the large angle tails are ignored.
Because of this, the tracking code fails to find a proper track if the multiple-scattering angle
is large. The track finding acceptance is therefore only 88%. In the future, the efficiency of
tracking can be improved by using e.g. a Kalman filter.

11.1.4.2 Track quality

In this analysis, a good track is selected by requiring the probability of finding such a track
being more than 5%, where the probability is calculated from the properly normalized χ2

value of the track fitting. The acceptance is about 0.89.

11.1.4.3 Transverse momentum

In order to suppress the background from beam electron scattering, the transverse mo-
mentum is required to be pT > 50 MeV/c. After the acceptance of the muon beam stop
is included, the acceptance of this event selection is 83%, since most of such tracks were
already blocked by the muon beam stop.

11.1.4.4 E/p ratio

The event selection on the ratio of measured energy E versus measured momentum p is
important to reject the background from cosmic muons, where primary cosmic muons di-
rectly hit the electron tracker. The expected cosmic muon background without this cut is
0.05 by assuming the inefficiency of the active cosmic veto is 10−4. It is note worth that
the assumption about the active cosmic veto inefficiency is quite challenging, therefore it
is worth to prepare yet another means to reduce the cosmic background. The E/p cut
requires 0.8 < E/p < 1.2 for good events, and the number of cosmic muon background with
this cut will be only 0.002. Therefore, even if the cosmic veto inefficiency fails to be 10−4,
for examples an order of magnitude worse, the number of background will be still small
enough, 0.02. The acceptance loss with this cut is only 1%.

11.1.4.5 Helix pitch

For µ−−e− conversion electrons, the angle of the track with respect to the solenoid axis, θe,
is mostly more than 0.6. The cosmic induced electrons produced in a 1 T field region could
have θe < 0.6. Therefore the cut is applied to suppress the cosmic ray induced electron
backgrounds. The acceptance loss to µ−−e− conversion electrons is less than 1%.

11.1.4.6 Electron momentum

The momentum selection is the only way to discriminate the DIO backgrounds from
µ−−e− conversion signals. Due to energy loss in the muon-stopping target, the momentum
distribution of µ−−e− conversion signal has a large low energy tail. Because of this, when
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the momentum region is selected to eliminate the DIO electron backgrounds, the signal
acceptance is also reduced.

For the present event selection, the momentum window cut of 103.5 MeV/c < pe <105.2
MeV/c has been chosen. From Monte Carlo simulation, the signal acceptance is 72%,
where the DIO background rate is about 0.15 events, which will be described in detail in
Section 11.2.1.1. Further optimization of this momentum cut should be done in the analysis
stage.

11.1.4.7 Time window of the measurement

The muons stopped in the muon-stopping target have the lifetime of a muonic atom. The
time distribution of muon decays with the distribution of muon arrival timing is shown in
Figure 11.1.

The µ−−e− conversion electrons are measured between the proton pulses to avoid beam-
related background events. However, some beam-related backgrounds would come even
after the prompt timing, as seen in Figure 11.2 for pions in a muon beam. Therefore,
the measurement time window is selected to start after the prompt timing. Figure 11.3
shows the acceptance of µ−−e− conversion signals as a function of a starting time of the
time window. Figure 11.4 also shows the expected number of the pions coming in the
measurement window as a function of the starting time of the measurement time window.
From this, a time window from 700 nsec to 1314 nsec is chosen, where the number of the
pions in the measurement time window is expected to be about 10−17/proton.

The acceptance due to the time window cut, εtime, can be given by,

εtime =
Ntime

Nall
, (11.2)

Ntime =
n∑

i=1

∫ t2+Tsep(i−1)

t1+Tsep(i−1)
N(t)dt, (11.3)

where Nall and Ntime are the number of muons stopped in the target and the number of
muons which can decay in the window, respectively, Tsep is the time separation between
the proton pulses, t1 and t2 are the start time and the close time of the measurement time
window, and n indicates the window for the nth pulse. The time distribution of the muon
decay timing N(t) is obtained by Monte Carlo simulations. In our case, t1 and t2 are 700
nsec and 1314 nsec, respectively and Tsep is 1.47 µsec, and εtime of 0.39 is obtained.

Similar distributions for a titanium target are shown in Figs. 11.5 and 11.6 for future
consideration of a different target material.
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Figure 11.1: Time distribution of muon decays for an aluminum target. The lifetime of
muons on Al is 864 nsec, and the width of the proton pulses is 100 nsec.
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Figure 11.2: Time distribution of pion arrival at the muon stopping target. The histogram
was made in such a way that pion decay was turned off and later survival probability was
convoluted.

11.1.5 Single event sensitivity

The single event sensitivity is expressed as

B(µ− + Al → e− + Al) =
1

N stop
µ · fcap · Aµ-e

, (11.4)
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interval Tsep for the aluminum target. The lifetime of muons on Al is 864 nsec and the
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Figure 11.5: The time distribution of the muon decay time for the titanium target. The
lifetime of muons on Ti is 330 nsec and the width of the proton pulses is 100 nsec.
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where N stop
µ is the number of muons stopping in the muon target, fcap is the fraction of muon

capture and Aµ-e is the detector acceptance. The fraction of muon capture for Aluminum
is fcap = 0.61.

Table 11.3 shows a summary of the signal sensitivity. The single event sensitivity of
2.6 × 10−17 can be achieved for 2 × 107 sec running.

Table 11.3: Summary of the expected sensitivity for 2.0 × 107 sec running.

Total number of protons: Np 8.5 ×1020

Proton kinetic energy 8 [GeV]
Harmonics of MR 8
Bunch time spacing 657 [nsec]
Number of RF bunches filled with protons per spill 4
Time between adjacent filled bunches 1314 [nsec]
Number of protons in each RF bunch 1.6×1013

Cycle time of MR (=spill period) 1.47 [sec]
Flat top for the slow extraction 0.7 [sec]
Number slow-extracted pulse in a spill 5.3×105 [pulses/spill]
Number of Protons in each slow-extracted pulse 1.2×108

Average beam current 7.0 [µA]
Average beam power 56 [kW]
Average proton intensity 4.4×1013 [protons/sec]
Total running time 2.0×107 [sec]
Running time per year 1.0×107 [sec/year]

Number of stopped muons per proton: Nstop
µ/p 0.0023 [muons/proton]

Rate of muons per proton transported to the target 0.0035 [muons/proton]
Muon stopped acceptance 0.66

Number of stopped muons: Nstop
µ/year 1.0×1018 [muons/year]

Total number of stopped muons: Nstop
µ 2.0 ×1018

Fraction of captured muon: fcap 0.61

Net acceptance: Aµ-e 0.031
Geometrical acceptance, fitting and selection criteria 0.09

Solid angle with mirroring acceptance (0.73)
Muon beam stop acceptance (0.57)
Curved solenoid acceptance (0.47)
Track reconstruction efficiency (0.88)
Track quality cut efficiency (0.89)
Transverse momentum cut efficiency (0.83)
E/p cut efficiency (0.99)
Helix pitch cut efficiency (0.99)
Momentum selection efficiency (0.72)

Timing window selection efficiency 0.39
Trigger acceptance and DAQ live efficiency 0.90

Single event sensitivity = (Np · Nstop
µ/p · fcap · Aµ-e)−1 2.6 ×10−17

90% confidence level upper limit 6.0 ×10−17

Events per 1×10−16 BR 3.8
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11.2 Background rejection

Potential background sources in the COMET experiment are grouped into four categories:

1. intrinsic physics backgrounds,

2. beam-related prompt backgrounds,

3. beam-related delayed backgrounds, and

4. cosmic background and other backgrounds.

Table 11.4 shows a list of some candidate backgrounds. They will be discussed below.
The intrinsic physics backgrounds come from muons that are stopped in the muon

stopping target. They are called “physics backgrounds” because they appear from different
muonic physics processes. Suppression of the physics backgrounds can only be achieved by
improving the detection system.

The beam-related backgrounds are produced by any beam particles other than the
muons stopped in the muon-stopping target. There are two groups for the beam-related
backgrounds: one of which is those arising from protons leaking between the beam pulse
(which is called “beam-related prompt background”), and the other is those which are
produced by protons in the prompt pulses but arrive late between the beam pulses (which
is called “beam-related delayed background”). For suppression of the former, the proton
beam extinction is critical. The requirement of the on/off ratio of proton beam extinction
of less than 10

9
is required at a signal sensitivity of less than 10−16. For the latter, slowly-

arriving particles of long (or relatively long) lifetime are important to consider. One of the

Table 11.4: Backgrounds.

Beam related prompt BG
Radiative pion capture π− + A → γ + A′ and γ → e− + e+

Beam electrons e− scattering off a muon stopping target
Muon decay in flight µ− decays in flight to produce e−

Pion decay in flight π− decays in flight to produce e−

Neutron induced backgrounds neutrons hit material to produce e−

Beam Related Delayed BG
Delayed-pion radiative capture π− + A → γ + A′, γ → e− + e+

Anti-proton induced backgrounds p hits material to produce e−

Physics BG
Muon decay in orbit Decay of muons bound in a muonic atom
Radiative muon capture µ− + A → νµ + A′, A′ → γ + A,

and γ → e− + e+

µ− capture µ− + A → νµ + A′, A′ → n + A,
with neutron emission and neutrons produce e−

µ− capture with µ− + A → νµ + A′, A′ → p(d, α) + A,
charged particle emission and p(d, α) produce e−

Cosmic BG
Cosmic-ray induced backgrounds
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Table 11.5: Partial lifetimes of muon capture processes and their total lifetimes of µ−s for
various materials.

Hydrogen Aluminum Titanium Lead
Atomic number (Z) 1 13 22 82
Partial Lifetime (µs) 1.47 0.39 0.085
Lifetime of µ− (µs) 2.2 0.88 0.33 0.082
DIO:MC 100:0 40:60 15:85 4:96

background candidates is anti-protons which are very slow. As another candidate, pions,
which are copiously produced at the pion-production target, might have a finite probability
coming late, depending on their pitch angle of helical trajectories.

The cosmic-ray backgrounds are one of the serious potential background sources. The
number of the expected cosmic-ray background events is proportional to the total active
running time of the measurement. There are several ways to suppress cosmic-ray back-
grounds, such as (1) to veto them by active shielding, (2) to reduce the cosmic-ray fluxes of
low energy by passive shielding, (3) event selection and (4) to minimize the total running
time with a higher muon flux. The items (1) and (2) might cover not only the detector
but also the muon beam line (to some extent). Item (4) requires improvement of detection
which can run at a higher counting rate and it is not the option yet.

In the following sections, all of these backgrounds will be described in detail.

11.2.1 Intrinsic physics background

Negative muons stopped in a material are immediately trapped by the Coulomb potential
of the nucleus of the material, and fall down to the 1S orbit. There are two major allowed
processes in which a bound µ− could proceed. They are

1. muon decay in orbit (DIO), and

2. nuclear muon capture (NMC).

These processes are allowed in the Standard Model at a high rate and become potential
backgrounds in the search for µ−−e− conversion.

11.2.1.1 Muon decay in orbit

Muon decay in orbit (DIO) is a Michel decay µ− → e−νµνe of the muons that are bound in
a muonic atom, under a Coulomb potential of the nucleus. Because of recoil of the nucleus,
an electron from the Michel decay can be boosted, obtaining a high energy. The maximum
energy of the e− exceeds the end point energy of the ordinary Michel decay of 58.3 MeV
and extends to the momentum region of the µ−−e− conversion signal.

The width of DIO process is obviously 1/2.2 µs. The width of NMC depends on atomic Z
of the material due to the difference in the overlap of the muon wave function and nucleus. It
is smaller for small-Z material than large-Z material. Table 11.5 shows comparison between
several different materials. We assumed that the material for the muon stopping target is
Aluminum in the background study.
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Figure 11.7: Total energy spectrum of electrons from muon decays in orbit for Aluminum.

The probability of a µ− DIO having stopped in the Aluminum target is 40%. The
energy spectrum of electrons from DIO is very similar to the Michel decay in free space.
The difference lies in high momentum region in which the ordinary Michel decay should
never produce electrons. Since DIO occurs in the Coulomb potential of nucleus, the nucleus
recoils to share the final-state momenta and compensate momentum balance. As a result,
the maximum energy of DIO electrons extends to the same energy of µ−−e− conversion
electron. However, the intensity decreases rapidly with increasing electron energy. The
spectrum shape is known to be approximated by (Eµ-e − Ee)5. Therefore, DIO electrons
can be suppressed by raising the lower energy threshold of µ-e signal region at a cost of
acceptance loss.

The DIO spectrum is expressed by the following formula [113]:

NShanker(Ee)dEe =
(

Ee

mµ

)2 (
δ1

mµ

)5 [
D + E ·

(
δ1

mµ

)
+ F ·

(
δ

mµ

)]
dEe , (11.5)

where mµ is the mass of the muon, δ ≡ Emax−Ee, δ1 ≡ Eµ−Ee−Erec. Emax is the end-point
energy (maximum electron energy), Eµ ≡ Emax+E2

max/(2MA), and Erec is the nuclear-recoil
energy given by Erec ≡ E2

e/(2MA). MA is the mass of the recoiling nucleus. Coefficients D,
E and F are functions of the Z number of nucleus, and given in a table in the article [113] for
Z = 12, 16, 18, 23, 25, 29, 34, 45, 55, 65 and 82. In this study, the coefficients for Aluminum
(Z = 13) were calculated by linear interpolations; D = 0.388×10−21, E = 1.03×10−21, and
F = 2.27 × 10−21. 1 The value Eµ is expressed as Eµ ≡ mµ − BE, where BE is the muon
binding energy. The muon binding energy for Aluminum is [114] 0.463 MeV, and thus the
Eµ for Aluminum is Eµ = 105.195 MeV, and the end-point energy is Emax = 104.97 MeV.2

Since the Equation 11.5 is not valid for lower momentum region, Ee < 90 MeV. we
took another spectrum given in [114], which is believed to be valid from 1 MeV up to
100 MeV. Both spectra were connected smoothly at around Ee = 97 MeV. Then, the
total integration of the combined spectrum was normalized to a single decay of a bound
muon. The electron total energy spectrum thus obtained is shown in Fig. 11.7. A GEANT4
Monte Carlo calculation was performed in order to estimate the number of DIO electrons
in the signal region. The calculation was started from DIO electrons generated in the

1D, E, and F used in this study are slightly different from the values shown in the proposal, (D =
0.36 × 10−21, E = 0.95 × 10−21, and F = 2.27 × 10−21). This produces only a 5% of difference and it is
negligibly small.

2The end-point energy of Aluminum given in [113] is 105.0 MeV.
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Figure 11.8: Electron momentum spectra of µ−−e− conversion signal and DIO background
from a muonic atom of Aluminum. Both spectra correspond to 1020 stopped muons, which
is 100 times more than the expected muon yield. The branching ratio if assumed to be
10−16 for µ−−e− conversion spectrum. The horizontal axis is the reconstructed momentum
from the electron tracker system.

muon stopping target disks. The electron energy was generated according to the spectrum
shown in Fig. 11.7. In order to complete the Monte Carlo calculation within a reasonable
time, electrons with momentum larger than 103 MeV were generated. The fraction of such
electrons is 8.8× 10−16. Figure 11.8 shows reconstructed electron momentum for both DIO
and µ-e signal electrons. The generated number of electrons corresponds to 1020 stopped
muons, which corresponds to 100 times the number for the proposed experiment. Standard
analysis was applied for those spectra except for the momentum cut and the time window
cut. After applying the time window cut and the momentum cut, the expected number
of DIO electrons in the signal region (103.5 < Ee < 105.2 MeV) is 0.15. If we make
the signal region narrower to 104.0 < Ee < 105.2 MeV, the expected DIO background
becomes 0.011 and the signal acceptance decreases by 22%. We use the standard cut
(103.5 < Ee < 105.2 MeV) for this report.

11.2.1.2 Radiative muon capture

Muon nuclear capture is analogous to electron capture. It is given by

µ− + N(N,Z) → νµ + N(N,Z − 1) . (11.6)

The daughter nucleus produced by nuclear muon capture is usually in an excited state and
may emit γs, neutrons and charged particles through de-excitation. They would become
sources of fake signals.

Radiative muon capture (RMC),

µ− + N(A,Z) → νµ + N(A,Z − 1) + γ, (11.7)
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followed by asymmetric e+e− conversion of the photon, is another source of intrinsic back-
ground events. In an Aluminum target, it is µ− +Al → νµ +Mg + γ, where the endpoint of
photon energy is 102.5 MeV. The probability per muon capture of producing a photon with
energy exceeding 100.5 MeV is about 4×10−9 [115]. The conversion probability of a photon
in the target is about 0.005, and the probability that the energy of the electron produced
from the photon conversion exceeds 100 MeV is about 0.005. Thus, The probability of pro-
ducing an electron above 100 MeV is about 10−13. These electrons are all less than 102 MeV.
It is only possible to observe such electrons in the signal region (103.5 < Ee < 105.2 MeV)
if the tracking system mis-measures the electron momentum by more than 2.0 MeV larger
than the real momentum. The probability of such a mis-measurement is evaluated to be
less than 10−5. This type of mis-measurement will occur due to errors in the pattern recog-
nition of the tracker. In COMET, the average number of hits to the tracker plane in the
detection time window is only 1 per proton pulse, and thus the pattern recognition error
rarely occurs. The acceptance of the analysis without time window and total momentum
cut is 0.13. The background rate from RMC is about < 0.001 at the signal sensitivity of
10−16.

11.2.1.3 Muon capture with neutron emission

A typical energy spectrum of neutrons emitted from the muon capture process is shown
in Fig. 11.9. The structure of the spectrum is decomposed to three parts as shown in the
Fig. 11.9. The first part dominates the low energy region (< 7 MeV), which can be explained
by the neutron evaporation of the excited daughter nucleus. The typical temperature of the
excitation is about 1 MeV. The fraction of this component is almost 90%. However, there
is no process to produce 100 MeV electrons from such a low energy neutron. Therefore, we
focused on the other two components that could produce high energy neutrons and thus
high energy electrons. In these processes, high energy neutrons are directly produced by
the elemental process of the muon capture,

µ− + p → νµ + n . (11.8)

This neutron will escape the nucleus (direct process) or kick another neutron’s escape
(precompound process). Since the maximum energy of those neutrons will extend up to
100 MeV, it could produce background electrons if the neutron hit a nucleus and produced
high energy photons which then convert to electron.

The inclusive energy spectrum for neutrons emitted after muon capture for Si and Ca
is shown in Fig. 11.10, which is measured in Ref. [117]. They are consistent with an
exponential dependence on the neutron energy given by the expression P (E) = exp(−αEn+
β). The fit results for Si and Ca are summarized in Table 11.6. Since the probability is not
much different for different materials, the values of Si are used for aluminum.

Background electrons coming from the neutrons from muon capture were estimated
by GEANT3 simulation with GCALOR as a hadron package. The estimated background
contamination into the signal region is less than 0.001.
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Figure 11.9: Experimental and theoretical neutron spectrum from the muon capture by Bi.
The vertical scale is given in units per capture. This figure is reprint from [116]

11.2.1.4 Muon capture with charged particle emission

With a much lower probability than neutron emission, there are reaction channels involving
the emission of protons and α-particles.

µ− + N(A,Z) → νµ + p + xn + N(A − x − 1, Z − 2), (11.9)
µ− + N(A,Z) → νµ + α + N(A − 4, Z − 3). (11.10)

where (A,Z) is a nucleus with a mass number of A and an atomic number Z. From the
cross section table in Ref. [118], the partial reaction probability of muon capture with
charged particles is plotted against the Coulomb barrier. The classical Coulomb barrier V
is calculated as

V =
zZ ′e2

r0A1/3 + ρ
(11.11)

V [MeV] =
zZ

r0[fm]A1/3 + ρ[fm]
197.3
137.0

(11.12)

where z and Z ′ are the charges of the outgoing particles and of the residual nucleus, re-
spectively. r0 is taken as 1.35 fm, and ρ as 0 fm for protons and 1.2 fm for α-particles. For
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Figure 11.10: Probability of muon capture with a neutron as a function of neutron kinetic
energy (En) for Si and Ca.

Table 11.6: The probability of muon capture with neutrons emission for Si and Ca by the
expression of P (E) = exp(−αEn + β).

α β

Si −0.096 ± 0.005 −2.970 ± 0.136
Ca −0.121 ± 0.004 −2.927 ± 0.110

example, V for Aluminum is calculated as 5.4 MeV and 7.2 MeV for protons and α-particles,
respectively. The probability of muon capture with outgoing charged particles is expressed
an exponential function of the Coulomb barrier, and the results are summarized in Table
11.7. In Table 11.7, the probability for Aluminum and Titanium is also shown.

The kinetic energy spectrum of the outgoing charged particles is expressed as

P (Ec) = P0 exp(−Ec/E0), (11.13)

where P0 is a normalization constant and Ec is the kinetic energy spectrum of the outgoing
charged particles and E0 is a parameter to determine the shape of the spectrum distribution
[119]. The E0 is expressed as a function of Z, which is shown in [119] as a table. Fitting a
linear function, E0 is determined as,

E0 = 0.03614 · Z + 7.103. (11.14)

For aluminum (Z=13), E0 is 7.6 MeV.
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Table 11.7: The probability of muon capture with outgoing charged particles as a function
of exp(αV + β), where V is the Coulomb barrier. The probability for Al and Ti is also
shown.

Reaction α β Al Ti
P (p) −0.379 ± 0.017 −3.631 ± 0.187 5.2 × 10−3 2.5 × 10−3

P (pn) −0.371 ± 0.022 −1.910 ± 0.186 3.0 × 10−2 1.5 × 10−2

P (p2n) −0.383 ± 0.024 −2.104 ± 0.211 2.3 × 10−2 1.1 × 10−2

P (p3n) −0.338 ± 0.121 −2.504 ± 1.141 1.9 × 10−2 1.0 × 10−2

P (α) −0.460 ± 0.030 −2.203 ± 0.267 7.0 × 10−3 1.5 × 10−3

Background electrons produced by charged particles from muon capture are estimated
by GEANT3 simulation. In this simulation, GCALOR is used as the hadron package. The
background is estimated to be less than 0.001.

11.2.2 Beam-related prompt background

As described, the beam-related prompt backgrounds are those arising from protons leaking
between the beam pulse. These backgrounds are suppressed by the proton beam extinction.

11.2.2.1 Radiative pion capture

The radiative pion capture (RPC) background is caused by pions contaminated in the
muon beam. Those pions are stopped in the muon stopping target, and are captured by an
aluminum nucleus immediately to form an excited state of the daughter nucleus.

There are two processes, one of which produces directly a γ ray of high energy (direct
process) and the other produces γ rays as an evaporate process of the excited daughter
nucleus to their ground state. During these processes, a probability of γ ray emission is
as high as 2%. Some of such emitted γ rays convert into e− and e+ in the target or in
material outside the target. When the e+e− pair creation occurs in an asymmetric energy
distribution and the e− has a high energy, it would mimic µ−−e− conversion signals.

The probability of γ emission and the energy spectrum of γs were extensively studied
experimentally and theoretically more than 20 years ago. According to [120], the probability
of γ emission has very small Z dependence. It is almost 2% for C, O, and Ca as shown
in Table 11.8. The energy of γ from RPC ranges from 50 MeV to 140 MeV as shown

Table 11.8: Experimentally measured branching ratios of radiative pion capture. This table
was taken from the Table 4 in [120].

12C 1.84 ± 0.08, 1.92 ± 0.91, 1.6 ± 0.1
16O 2.27 ± 0.24, 2.24 ± 0.48
40Ca 1.82 ± 0.05

in Fig. 11.11 The overall shapes of the spectra are very similar between C, O, and Ca.
Therefore, we implemented the experimentally obtained spectrum for Ca to our Monte
Carlo code for this study.
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Figure 11.11: Momentum distribution of γs from RPC. This figure was reprinted from [120].
The histogram is experimental data, and the lines are from some theoretical models.

The number of RPC backgrounds is expressed as

NRPC = Np × Rextinction × Rπ−stop/p ×
PRPC × Pγ−e− × Ageometry × Aanalysis , (11.15)

where Np is a total number of protons on the pion production target, Rextinction is an
extinction ratio of proton beam, Rπ−stop/p is a ratio between number of stopped π− in a
muon stopping target and number of initial protons, PRPC is a branching ratio of gamma
emission in the pion capture process, Pγ−e− is a probability of RPC-gamma converting to
an electron probably in the muon stopping target, Ageometry is a detector acceptance of
RPC-originated electrons in a µ-e signal region Aanalysis is an analysis acceptance.

Parameters that have to be evaluated specifically for COMET are Rπ−stop/p, Pγ−e− ,
Ageometry, and Aanalysis. In order to estimate those numbers, a Monte Carlo simulation
was performed. Fifty million primary protons were generated to hit a production target
made from Carbon by using MARS simulation code. Pions thus produced were transported
through the muon beamline using G4beamline. A beam collimator placed at the exit of the
muon beamline blocked most of pions. As a result, there is only 17.7 of π−s out of 50M
protons stopped in the muon stopping target: Rπ−stop/p = 3.5 × 10−7. Please note that,
since the number of π− passing through the beam collimator is 24, Rπ−stop/p < 4.8 × 10−7

even if the target thickness is increased to make all the pions stop in the muon stopping
target.

In order to estimate other parameters, another Monte Carlo simulation was performed.
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The simulation was started from RPC gamma rays generated directly inside the muon
stopping target. The position of the gamma ray was uniformly distributed in the 17 target
disks. The direction of the gamma was symmetric and the energy spectrum obeyed that
of Fig. 11.11. The total number of gammas generated was 200 k, and 78 electrons arrived
at the detector section. The number of electrons from 100 MeV/c to 105 MeV/c is only 8,
thus the number of electrons entering to the signal region (103.5–105.2 MeV/c) would be
only 3: Pγ−e− × Ageometry = 1.4 × 10−5.

The analysis efficiency for the RPC-gamma-produced electrons is broken down into the
following components: They are track reconstruction efficiency of 88%, track quality cut
efficiency of 89%, transverse momentum cut acceptance of 83%, and the other cuts (90%).
Therefore, Aanalysis = 58%. These numbers are all the same as that for the signal electrons.
The time window cut is not applied since the RPC background that is discussed here is a
prompt background.

The rest of the parameters are quite trivial. Np is 8.8 × 1020 for 2-years running.
Rextinction is 10−9 in this study, PRPC is known to be 2%. As a result, we obtained NRPC =
0.05.

11.2.2.2 Beam electrons

Beam electron background is caused by electrons contaminating in the muon beam. Elec-
trons will scatter off the muon-stopping target and fake the signal electrons if the electron
momentum is in the signal region (103.5–105.2 MeV/c). The number of beam electron
background is express by

Ne-scat = Np × Rextinction × Re-col out/p × R<95 MeV/c × Pe-det , (11.16)

According to the Monte Carlo simulation using MARS and G4beamline, There are
3067 electrons passing through the beam collimator for 50M primary protons. Therefore,
the ratio between the number of electrons downstream of the beam collimator and the
number of primary protons is Re-col out/p = 6 × 10−5. The momentum distribution of
electrons downstream of the beam collimator is peaked at 40 MeV/c, and quickly falls off
as momentum increases. The number of electrons with momentum larger than 95 MeV/c
in this simulation was zero.

Increasing the total number of protons in the simulation is not realistic due to the
necessary CPU time. We modeled the momentum versus y-position distribution of electrons
by using -1.24 MeV/cm of momentum dispersion. The momentum distribution at the same
y-position is approximated by a Gaussian. Then, these electrons were passed through the
beam collimator to produce the momentum distribution of electrons at the exit of the beam
collimator. The ratio between the electrons with pe > 95 MeV/c to the total number of
electrons downstream of the beam collimator was obtained to be R<95 MeV/c = 1.7× 10−5.

The probability of high-momentum (Ptotal) electrons scattered off the muon-stopping
target and hit the detector is about 0.5%, which is not small enough to suppress the back-
ground. In order to achieve extra rejection to the beam electron background, the event
selection using electron pT is employed. Since the pT of scattered electrons (with 90 MeV/c
< p < 110 MeV/c) are mostly less than 50 MeV/c, the event selection with pT > 50 MeV/c
will provide background rejection of about two orders of magnitudes at a cost of 17% loss
of signal acceptance (Transverse momentum cut acceptance). After all, the probability of
scattered high-momentum electrons entering to the signal region is Pe-det < 5.5 × 10−5

(90%C.L.).
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As a result, we obtained

Ne-scat < 0.1 , (11.17)

and this is limited by Monte Carlo statistics.

11.2.2.3 Muon decay in flight

Muons decaying in flight can produce energetic electrons that have sufficient total momen-
tum (of about ptotal > 102 MeV/c) and transverse momentum (of about pT > 50 MeV/c).
For the decay electrons to have ptotal > 102 MeV/c, the muon momentum must exceed
77 MeV/c (pµ > 77 MeV/c). A Monte Carlo simulation has been done to estimate the
yield of muons of pµ > 77 MeV/c transported through the muon beam line and entering to
the target region. The result is about 10−6 per incident proton. The probability for muons
to decay in flight in the muon beam line is about 3 × 10−2. The probability of having an
electron energy of 103 MeV/c < ptotal < 105 MeV/c, and pT > 50 MeV/c is less than 10−8.
With the beam extinction of 10−9, the total background level from muon decay in flight
is less than 0.0002. It improves the number obtained for MECO by two orders of magni-
tudes. The reason of the improvement may be the much higher momentum dispersion of
the COMET muon beamline compared to that of MECO.

11.2.2.4 Pion decay in flight

Beam pions decaying to electrons (π → e + ν) are also a potential source of background.
The π momentum must exceed 60 MeV/c to make this background process. A Monte Carlo
simulation was done to estimate the probability of pions with pπ > 60 MeV/c passing though
the muon beam line and a beam collimator to enter the target region. The probability is
only about 6×10−8. The branching ratio of π → e+ν is about 1.0×10−4. The probability
of the decay electron from π → e + ν to have Ee > 102 MeV and pT > 50 MeV/c is about
5 × 10−6. With the beam extinction factor of 10−9, the background level from pion decay
in flight is less than 10−4.

11.2.2.5 Neutron induced background

Background induced by neutrons in a beam with high kinetic energy coming through the
muon beam line is estimated. Those neutrons could pass through the muon beam line
by continuously reflecting from its inner sides. The neutrons which can produce electrons
of 100 MeV must exceed its kinetic energy of 100 MeV. The rate and energy distribu-
tion of neutrons whose kinetic energy is more than 100 MeV/c were examined by MARS
simulations. It is about 3 × 10−7 neutrons/proton. And by using GEANT3 Monte Carlo
simulation, an average transit time of those neutrons arriving at the muon stopping target
is estimated and it is about 300 nsec, and much less than the waiting time of 700 nsec be-
fore detection window opens. Therefore, it is regarded as a prompt background. By using
GEANT3 Monte Carlo simulation, the probability for those neutrons to produce electrons
of about 100 MeV in energy was estimated and found to be about 10−7. With the beam
extinction of 10−9, the background rate of neutron induced of this type is about 0.024.
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Figure 11.12: The absolute vertical muon spectrum.

11.2.3 Beam related delayed background

11.2.3.1 Radiative capture of delayed pions

This background is caused by RPC coming from late-arriving pions which take a very
long time to traverse and arrive at the muon-stopping target very late. For those events,
the proton extinction does not apply a rejection. However, since the detection window
starts about 700 nsec after the proton pulse, those pions should live longer than 700 nsec.
The probability for those late arriving pions surviving longer than 700 nsec is 1 × 10−17

(Figure 11.4) which should replace Rext×Rπ−stop/p in Eq.(11.15). As a result, the expected
number of RPC background of this type is about 0.002 events. Please note that, this
type of background is easily monitored by measuring the number of energetic electrons
as a function of event time after the proton pulse. The detection time window can be
appropriately adjusted during the analysis stage.

11.2.4 Cosmic ray background

Cosmic ray induced background can be divided into two categories:

1. Cosmic muons directly hitting the detector,

2. Electrons induced by cosmic muons hitting the detector.

A GEANT4 Monte Carlo calculation was performed to estimate the cosmic muon included
backgrounds. In the calculation, the target solenoid, curved solenoid and detector solenoid
were all covered by an iron shield with 70 cm thickness. The iron shield works as return
yoke of the magnets, thus there should be a magnetic flux inside of the iron shield. However,
for this particular calculation, the magnetic flux is assumed to be zero for the inside of the
iron shields.

A vertical flux of cosmic muons at sea level is shown in Fig. 11.12 [121]. The angular
distribution of cosmic muons is known to be ∝ cos2 θ for typical muon energies (≅ 3 GeV),
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and it becomes steeper as the energy decreases and it flattens as the energy increases. In the
Monte Carlo, the approximate formula given in [122] is employed to generate cosmic muon
spectrum with a realistic angular distribution at sea level. This approximation formula was
obtained by fitting 36 experimental data samples for the zenith angles ranging from 0◦ to
88.5◦ and energy ranges up to 100 GeV/c. It basically shows the proper energy dependence
of the angular distribution. However, probably because of the polynomial expansion used
in the approximation formula, the angular distribution in the GeV range is not exactly a
cos2 θ shape, and it shows a dip around 0◦. The difference between the angular shape of
this formula and cos2 θ seems to be at the 10–20% level. This difference is negligible for our
estimation.

The total number of cosmic muons generated in the Monte Carlo calculation is 5 × 107

events. They are uniformly distributed in 6m × 6m square region that coves whole muon-
target, curved and detector solenoids.

11.2.4.1 Electrons induced by cosmic muons

Figure 11.13 shows a 2D plot between electron momentum and cosine of electron track
angle, where the angle is from the axis of the detector solenoid. It is apparent that the
angle distribution for high energy electrons (p > 80 MeV/c) does not exceed 0.5. On the
other hand, the angle distribution for the µ-e signal electrons is known to be larger than 0.6.
Therefore, an event selection condition requiring cos θ > 0.6, where θ is the angle of electron
flight direction from the detector axis, is really powerful to suppress the cosmic induced
electron backgrounds. After applying this cut, there is no event left in the momentum
region 80–120 MeV/c, and the signal momentum region is only 3% of 80–120 MeV/c. The
integrated cosmic muon flux at sea level is 0.015 cm−1s−1, and the total active time for
2 × 107 s of physics run is 2 × 107 × 0.7/1.5 × 0.5/1.2, where the second factor is the main
ring duty cycle, and the third factor is the duty of COMET active time window. Thus, the
number of cosmic muon induced electron background is 20.

In order to suppress this number to much less than 1, an active cosmic shield will be
installed. The active cosmic shield is two layers of plastic scintillating counters covering
the whole outer surface of the iron shield. A single layer will provide 99% of efficiency to
tag a charged particle. The total tagging efficiency of the active cosmic shield would be,
therefore, 99.99%. With this factor applied, the expected number of cosmic muon induced
electron background becomes 0.002 for a 2 × 107 s physics run.

11.2.4.2 Direct hit of cosmic muons

Figure 11.14 shows a 2D plot between muon momentum and cosine of the muon track
angle, where the angle is from the axis of the detector solenoid. The cos θ dependence
that was observed for the electrons is no longer visible. Without any additional cuts, the
number of expected cosmic muon background would become 0.05, and heavily rely on the
active shield performance. In order to avoid such a situation, another event selection is
introduced, cutting on E/p, where E is measured by the calorimeter and p is measured by
the tracker. The E/p of muons is generally less than 0.8. There is a small number whose
E/p is higher than 0.8 for muons due to pile up of decay-in-orbit Michel electrons. This
pile up is unavoidable since the lifetime of the µ− is very short in heavy materials such
as inorganic scintillator of the calorimeter. A suppression factor of 20 from the E/p cut
is feasible according to a Monte Carlo simulation. The expected number of cosmic muon
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Figure 11.13: Two dimensional correlation between total momentum and angle from the
detector axis for cosmic muon induced electrons.
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Figure 11.14: Two dimensional correlation between total momentum and angle from the
detector axis for cosmic muon.

background becomes 0.002 for a 2 × 107 s physics run.
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Table 11.9: Summary of Estimated Backgrounds.

Radiative Pion Capture 0.05
Beam Electrons < 0.1‡

Muon Decay in Flight < 0.0002
Pion Decay in Flight < 0.0001
Neutron Induced 0.024
Delayed-Pion Radiative Capture 0.002
Anti-proton Induced 0.007
Muon Decay in Orbit 0.15
Radiative Muon Capture < 0.001
µ− Capt. w/ n Emission < 0.001
µ− Capt. w/ Charged Part. Emission < 0.001
Cosmic Ray Muons 0.002
Electrons from Cosmic Ray Muons 0.002
Total 0.34

‡ Monte Carlo statistics limited.

11.2.5 Summary

Table 11.9 shows a summary of estimated backgrounds. The total number of background
event is 0.3.



Chapter 12

Superconducting Solenoid

The superconducting solenoid magnets are one of the most critical components in order
for the COMET experiment to achieve a high intensity muon beam and also a large solid-
angle spectrometer for µ−−e− conversion signals. Superconducting solenoids are utilized
for the whole beamline from pion capture through to the detector. There exist several
technical challenges for the construction of the superconducting solenoid magnets used in
the COMET experiment. The main challenges are

• A high magnetic field (of about 5 T) and radiation-hardness for the pion capture
solenoid that surrounds the pion production target,

• Construction of curved solenoids with a compensating dipole field,

• Precise control of the magnetic field from pion capture to the detector, and

• Quench protection for a large-stored energy solenoid system in which all solenoids are
magnetically coupled to each other.

Additionally, it would be beneficial to reduce the cost the of superconducting solenoids as
they are a major part of the cost of COMET.

12.1 Pion capture solenoids

12.1.1 Pion capture solenoid layout

Figure 12.1 shows a layout of the pion capture system, which consists of four different
superconducting solenoid magnets.

12.1.2 Conductor choice and quench protection

The solenoid is designed to use aluminum stabilized conductor to reduce the heat load
due to the secondary beam heat load. The parameters of aluminum stabilized conductor
considered are summarized in Table 12.1. The cross sectional image of the conductor is
shown in Figure 12.2. The conductor uses a Rutherford type cable with 14 copper stabilized
strands. The cable is encased in the aluminum stabilizer by a conforming technology.

The capture solenoid consists of 4 coils. Coil 1 is the closest to the target and wound
from the cable with edgewise solenoid winding with a 6-layer structure. Coils 2, 3, and 4
create the matching field to the transport solenoid. They are wound from the same cable
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Figure 12.1: A layout of the pion capture solenoid system.

Table 12.1: Main parameters of aluminum stabilized conductor.

Item Value
Cable Dimension (without insulation) 15 × 4.7 mm2

Cable Dimension (with insulation) 15.3 × 5.0 mm2

Strand Diameter 1.15 mm
Strand Number 14
Al/Cu/NbTi 7.3/0.9/1.0
Aluminum RRR 500
Copper RRR 50
NbTi Jc at 5 T 4.22 K 2700 A/mm2

Al yield strength 55 MPa
Overall yield strength 150 MPa

with the same winding method, but have a 2-layer structure for coils 2 and 3 and a 4-layer
structure for coil 4. The coils are structurally connected to each other making a single ridged
cold mass. The cold mass is encased in the cryostat that provides the thermal insulation
vacuum. The cryostat is then covered by an iron return yoke. There is about a 160 ton
electromagnetic force between the yoke and the cold mass. The support structure will be
designed such that the cold mass does not move with respect to the iron yoke. Figure 12.3
shows the computed flux lines in the capture solenoid system. A maximum magnetic field
on the coils is about 5.5 T at coil 1 with an operation current of about 4 kA. The load line
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Figure 12.2: Cross section image of the aluminum stabilized superconductor.

curve of coil 1 is shown in Figure 12.4. The critical temperature at the operating point is
about 6.5 K.

Figure 12.3: Computed flux lines in the capture solenoid system.���������������������� �������
��������	
��	
��

Figure 12.4: Critical current of aluminum stabilized superconductor as a function of tem-
perature. The load line curve of Coil 1 is shown.
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The quench protection of the solenoid is made mainly by an external dump resister
system. The dump resistor maybe set to 0.1 Ohm that gives maximum terminal voltage
of 400 V during the dump. The inductance of the solenoid is about 2 H that results in a
dumping time constant of 20 sec. The temperature rise of the conductor is estimated by the
integral of current squared (MIITs)1 that is shown in Figure 12.5 with the various residual
resistances of aluminum stabilizer (RRR). The cable is designed with the aluminum RRR
of about 500. The time constant defined by the protection dump circuit of 20 sec will give
MIITs of 160. The resultant maximum temperature in the coil is about 100 K. There will
be also a normal zone resistance in the coil that will enhance the current dumping. The
maximum temperature is thus further reduced.

 

 

RRR=500 
RRR=50 

RRR=5 

Figure 12.5: Temperature rise of aluminum stabilized superconductor. The curves are, from
top to down, for aluminum RRR=500, RRR=50, and RRR=5.

12.1.3 Influence of radiation

Although the solenoid is protected by a tungsten shield, the coil is still subjected to a large
amount of radiation. The heat load to the coil is estimated to be about 30 W overall
and this must be removed. The heat removal is performed by aluminum strips installed
in between coil layers that carry heat to cooling pipes attached to the coil ends and outer
support cylinder. The maximum temperature in the coil is estimated to be less than 5.5 K.
The critical temperature of the conductor at the operation current is estimated about 6.5
K. The temperature margin is thus estimated more than 1 K. Details of the cooling scheme
must be examined carefully.

The radiation damage to the coil material is also a critical issue. A maximum lifetime
neutron flux on the coil is estimated to be about 6.6×1021 neutron/m2. A neutron flux can
degrade the RRR of aluminum stabilizer. With 1021 neutron/m2 observation of degradation
starts and with 1022 neutron/m2 degradation of about 1/100 is estimated. Figure 12.5
indicated that RRR degradation of about 1/10, RRR of 50, gives a maximum temperature
of 150 K that is still acceptable. While, degradation of 1/100, RRR of 5, gives a maximum
temperature of more than 300 K that is probably not acceptable. This rough estimation

1MIIT is a time-integral of current squared and given by Mega I (current) × I (current) × T (time),
namely MIIT.
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indicates that the lifetime neutron flux of 6.6 × 1021 neutron/m2 can be critical for the
solenoid quench protection. The RRR degradation can be recovered by a thermal cycle to
room temperature. The solenoid should be thermal cycled to the room temperature before
significant degradation is observed. The degradation may be detected by warming up the
solenoid to about 10 K and measuring the conductivity of the cable. If the degradation
of the RRR is detected the solenoid should be warmed up to room temperature to recover
RRR.

The radiation damage to the organic materials such as coil insulation must be investi-
gated as well. The lifetime radiation doze on the coil is estimated about 4×105 Gy that is
acceptable for most of the radiation hard organic materials such as polyimide. The large
neutron flux, however, may also accelerate the damage and should be examined carefully.

12.2 Muon transport solenoids

The muon transport solenoid system consists of two bend solenoids that bend the muon
beam 90 degree each. Some additional straight solenoids are also considered to connect the
first bend solenoid and the second bend solenoid for the purpose of further extension of the
total beam line length and an additional location for muon beam collimators. The solenoids
have inner coil diameter of 450 mm that gives beam tube inner diameters of 350 mm. The
bend sections are made from the 32 (16 each) short solenoids each 200 mm long and 32 mm
coil thickness. The straight solenoids are in the range of 1000 to 800 mm long and the coil
thickness is about 20 mm, except the last solenoid to connect the target solenoid that has
length of 300 mm and coil thickness of 6.3 mm. The solenoids are connected in series and
produce the solenoid field of about 2 T. In the bend solenoids, a small cos θ dipole coil is
also wound in each solenoid bobbin and produces a vertical field of about 0.02 T.

12.2.1 Conductor choice

The conductor used for the coil is NbTi based copper stabilized conductor. The conductor
is used for magnetic resonance imaging, is commercially available and hence chosen to
optimize cost. The typical conductor example has a strand diameter of 1.2 mm and copper
to superconductor ratio of 4. The operation current of 100 A is selected to ensure the
critical temperature of about 7.5 K. The conductor current density is estimated to be about
90 A/mm2 and the coil overall density is about 80 A/mm2.

12.2.2 Quench protection

The quench protection of the solenoid system is made by protection heaters attached to the
solenoid coil. As shown in Figure 12.6, the heaters are connected in series with a protection
dump circuit. The system will be designed to aim a dump time constant of 20 sec. The
conductor MIITs computation gives the maximum coil temperature of about 200 K with a
100 A operation current with the 20 sec dump time constant.

12.2.3 Negative field gradient at the muon transport

A negative field gradient at the muon transport system is being considered at the old-
MECO type and Mu2e. In the COMET design of the muon transport, a negative field
gradient can be accommodated if it is necessary. The technical issue has been discussed
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Figure 12.6: Quench protection scheme of transport solenoids.

with a magnet manufacture company, and it turns out that it is not difficult to make such
solenoids. Detailed study will be carried out soon.

12.3 Muon-stopping target solenoid

The muon-stopping target solenoid is wound from the same conductor used for the transport
solenoid. The operation current of 100 A is selected to keep the same aimed current dump
time constant for the quench protection. Since the maximum field of the target solenoid is
larger than the transport solenoid, the critical temperature is slightly lower, about 7.2 K.
The value is still a comfortable safety margin. The quench protection combines an external
dump circuit with a passive quench back of aluminum strip that also provide the cooling.

12.4 Cryogenics system for capture, transport and target
solenoids

The solenoids for pion capture, muon transport and muon-stopping target are cooled by
a helium refrigerator that provides two-phase liquid helium. The helium is supplied to
the solenoid using a thermo-siphon system. The estimated heat loads are summarized in
Table 12.2, with an overall heat load from those solenoids of about 150 W. The refrigeration
power of at least 200 W at 4.4 K (which corresponds to the compressor power consumption
about 100 kW at a room temperature) may be required for the refrigerator. The refrigerator
system should be designed such that the thermal cycle to 10 K and the cycle to room
temperature can be achieved in 6 hours and in one week respectively. The system also
should be designed such that capture solenoid can be warmed up without warming up the
other solenoids.

12.5 Electron transport solenoid and detector solenoid

12.5.1 Conductor choice

For the electron transport solenoid and detector solenoid, a new type of superconductor
based on MgB2 is proposed. The main parameters of the conductor are summarized in
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Table 12.2: Estimated heat loads.

Heat Load Item Value
Beam to capture (×2) 60 W
Beam to transport (×2) 5 W
Static to Capture 15 W
Static to transport 10 W
Static to target 10 W
Static to control dewar TRT etc. 50 W

Table 12.3. The cross section of the superconductor is shown in Figure 12.7 and a critical
current of the conductor is reported in Figure 12.8. The solenoid is designed such that
the operation current is about 50 A, which results in the coil overall current density of
about 40 A/mm2. With the estimated coil maximum field of about 1.2 T, the critical
temperature is estimated to be about 28 K. The coil can be cooled by two GM refrigerators
for each solenoid. The coils can be cooled to below 10 K even with a single refrigerator
giving a significant enthalpy margin because of large heat capacity compare to that of
4.5 K. The large enthalpy margin makes the solenoid practically quenchless. The quench
protection may be made using the same scheme as the transport solenoid; that is use
of dump resistors as quench protection heaters. The GM refrigerators provide structural
independence from the other solenoids giving those solenoids relative freedom to move.
Easier to move spectroscopy solenoids result in easier access to both the muon-stopping
target and the detectors, allowing better maintenance.

Figure 12.7: Cross section of MgB2 superconductor.

For the spectroscopy solenoids, the dipole magnets provide the vertical field of about
0.12 T. The curved dipole magnet wound from the MgB2 superconducting wire is required.
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Figure 12.8: Critical current of MgB2 superconductor.

Details of the design are now under consideration.

12.6 Alternative magnet design

Another option for producing a curved solenoid channel with a vertical dipole field is
to use the Double-HelixTMdesign from Advanced Magnetic Labs [123]. The Double-
Helix TMmagnet design uses two tilted solenoid windings that are tilted in opposite di-
rections. The axial field components cancel giving a dipole field. The magnet is produced
using a unique manufacturing process whereby the coil windings are formed by matching
grooves in a composite substrate material into which the windings are placed. This allows

Table 12.3: Main parameters of MgB2 superconductor.

Item value
Strand Diameter (mm) 1.2
Composition MgB2 (Vol%) 14.6

Fe (Vol%) 10.8
Cu (Vol%) 13.8
Ni (Vol%) 15.8
Monel 400 (Vol%) 45.0
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multiple layers of different pole configurations over the length of the cylinder which can also
be curved. These qualities would be ideal for the curved transport channels as the design
has the advantage of being able to produce a more uniform solenoid field over a region that
is truly curved and not composed of a number of straight sections. Since the dipole winding
would be on top of the solenoid winding, the current in it can be adjusted independently
eliminating the need for any complex tuning mechanisms.

The down side to this design is the additional cost of the dipole winding coil material.
However, initial discussions with AML have proven to be quite positive that this design
can be very competitive compared to a more conventional superconducting magnet. The
first step will be to perform tracking simulations using a calculated field map of the AML
magnet to compare the performance with the curved tilted solenoid. This will allow a
cost-performance comparison of the two transport channels.
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Experimental Layout

13.1 Layout at the NP hall

The following are the main considerations when designing the layout of the COMET exper-
iment:

• the location of the pion production target

• the location of the beam dump

• the transportation of muons from the production target to the stopping target

These three issues must be considered together. in order for the experiment realized.
Needless to say, the supplying of sufficient electricity and cooling water to experimental
equipment is a general requirement that the layout of the experiment must allow for.

The pion production target needs to be located in a 50 to 100 kW primary beamline.
The proton beam is expected to lose between 2 to 4 kW of its power as it passes the target
and adequate radiation shielding between the target and beam dump must be provided.
The target is located in a large pion capture solenoid. A chain of solenoid magnets then
transport the pions from the target as they decay into muons. In addition, the experimental
setup, including the muon stopping target, is contained in another chain of solenoid magnets.
This implies that suppression of magnetic field leakage will be an issue in the design. These
details will be addressed in the following.

Most of the experiments planned at the J-PARC NP hall will use secondary beamlines
carrying particles produced in reactions between the primary protons and the material in
a shared target. Some other experiments are planning to use the primary beam directly
and are called primary beam experiments. The COMET experiment uses the proton beam
extracted from the accelerator and directs it onto a custom target to produce pions and
hence muons; it therefore has similar requirements to those of the primary beam experi-
ments. Therefore, it will be beneficial to share the beamline with the other primary beam
experiments to transport the proton beam from the accelerator to the experimental hall.
The other primary beam experiments need proton beam energies of up to 30GeV, with a
beam power of less than 10 kW, while for the COMET experiment a proton beam energy of
8GeV is preferable, to suppress backgrounds which may be caused by antiprotons at higher
beam energies.

These conditions lead to a layout design where the COMET production target and the
beam dump are located outside the current experimental hall. The straight section of the
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Figure 13.1: Possible layout of the target and beam dump.

primary beam transport can be shared with other primary beam experiments. Once in the
experimental hall, an 8GeV beam can be bent relatively easily compared to a 30GeV beam,
which will make it easier to direct to a location outside the experimental hall. Furthermore
it is easier to construct the COMET target station and beam dump outside the hall from the
view point of the civil engineering. The muon transport solenoid will carry pions/muons
through the wall of the hall to the muon stopping target. The spectrometer solenoid,
downstream of the stopping target, will be set back in the experimental hall where hall
facilities such as a crane are available. Air conditioning might also be necessary to maintain
the calorimeter crystal at the require temperature. Figure 13.1 shows a plan view of a
possible layout of the experiment.

If the available space for COMET in the NP hall is limited, installing the whole exper-
iment outside the hall may be a solution. In this case the hall crane will not be available
and in addition we would need a building to include not only the target/dump but also the
detector itself, which would increase costs. However this would allow for more flexibility in
the layout, for example for an electron linac for detector calibration, which could be highly
beneficial. A possible layout is shown in Figure 13.2.

In either case, radiation shielding for the whole beamline, transport solenoid and spec-
trometer solenoid is needed, together with magnetic shielding to suppress stray fields.

13.2 Proton beam dump

The proton beam dump is requested to have a capability to stop a proton beam of 56 kW 1

without distributing radiation around the experimental area above safety limits. The main
part of the dump will be made of metal with relatively high thermal conductivity and high
density so that the deposited heat can be taken away quickly with good radiation shielding.
Concrete shielding will surround the main part to reduce the radiation level sufficiently at
a reasonable cost. Currently we plan to use copper or iron for the main part of the beam

1A 100 kW design is considered in parallel as a possible upgrade.
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Figure 13.2: Possible layout of the detector outside the NP hall.

dump. Cooling with water will be probably necessary to keep the temperature of the metal
below a certain level. For example in the case of copper, the maximum temperature must
be kept below its softening temperature at around 200 ◦C. The shape of the metal needs to
be optimized so that the proton beam impacts a wide area of the metal surface. This can be
realized by making a hole with a special shape to fit the beam profile at the dump. Stress
calculations must be done after completing the estimation of heat distribution. The metal
will expand depending on its temperature during operation. Stress between the metal and
concrete needs to be reduced below the maximum allowed stress of about a few MPa. Figure
13.3 shows a prompt dose distribution between the pion production target and beam dump
estimated by a MARS calculation. The geometrical configuration is illustrated in Figure
13.4. According to the J-PARC regulation, the prompt dose must be reduced below 5mSv/h
at the environment boundary. Thus we need to cover the beam dump with at least a 5.5m
thick concrete wall or equivalent amount of material.

13.3 Radiation safety and radiation shielding

It is necessary to keep the radiation dose blow a certain level and due to this sufficient
amount of shielding material must be prepared. A careful (and conservative) estimation
based on the simulation is absolutely critical. As already mentioned above, there will be
a maximum dose along the proton beamline between the pion production target and the
beam dump. The prompt dose level underground must be reduced to below 5mSv/h on
the surface of the shielding so as not to contaminate underground water. According to our
simple calculation using MARS as already described, we need to locate 5.5m thick concrete
shied underneath the target. This is the reason why we have settled on a layout described
above. The transport line of the primary beamline in the experimental hall needs to be
shielded, too. The necessary thickness of the shielding wall is estimated to be 4m from
our experiences in KEK-PS and is confirmed to be sufficient by a calculation using the
Sanford-Wang formula [124].
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Figure 13.3: Prompt dose distribution between the pion production target and beam dump.

13.4 Magnetic field safety

The COMET experimental setup include many solenoid magnets to capture pions, to trans-
port muons and to perform momentum analysis of electrons. Equipment used in the ex-
periment might be affected by the magnetic field leakage although they can be protected
by local shielding around them. We do not think that this will be a serious problem. How-
ever, one important issue we have to take into account is that the magnetic field strength
around the COMET experimental setup must be reduced to as low as the earth’s magnetic
field in order not to disturb other experiments running in the hall. The detector will be
surrounded by an iron cosmic-ray shield that can work as a return yoke of the spectrometer
magnet. The transport solenoid and capture solenoid magnets need special care to reduce
their stray fields by also using a return yoke. It might be difficult to realize this for the
transport solenoid since it has a curved shape. In that case shielding the whole transport
line by surrounding it with iron plates as in the case of the detector solenoid would be a
solution. In any case it is important to continue design work with help of 3-dimensional
magnetic field simulations.

13.5 Infrastructure

13.5.1 Power requirements

In this section, the electric power requirements are summarized. This includes electricity
for the proton beam transport magnets, the pion capture solenoid and its refrigerator, the
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Figure 13.4: .

muon transport solenoid, the detector solenoid, and the detector components. Electricity
for solenoid magnets will be supplied by a single power supply with 100 kVA output capabil-
ity. These super-conducting magnets require cooling below critical temperature. The pion
capture solenoid will be cooled with liquid helium thus we need to operate a refrigerator for
helium liquefaction. We plan to install a 20 0W helium refrigerator. Power consumption of
such a refrigerator is much reduced with current technology and is usually about 600 times
the cooling power of helium. The other solenoid will be cooled by using small GM-type
refrigerators directly mounted on solenoid magnets. Currently we estimate that 20 refriger-
ators will be required for this purpose. Electricity for the proton beam transport magnets
is conservatively estimated based on real power consumption in 2008 J-PARC runs. In the
COMET experiment, external extinction devices like AC-dipole magnets will be employed
to improve the beam extinction level. An R&D program for the AC-dipole is currently in
progress and it is not easy to estimate power consumption reliably. We therefore quote a
number with a 100% uncertainty. Air conditioning and lighting in the experimental area
are not considered yet but they are expected to be small. In addition, electricity for the
cooling water facility is not considered here. Table 13.1 summarizes the estimated required
electric power. A significant amount of electricity is necessary for power supplies for the
beamline transport magnets and refrigerators. Proton beam transport magnets are shared
with other experiments that use primary protons. They use A 30GeV proton beam; here
estimation of electric power is based on 8GeV beam transport for the COMET experiment.

13.5.2 Cooling water requirement

The followings need cooling water for their operation:

• beam transport magnets and external extinction devices

• helium refrigerator compressor

• compressors for GM-type refrigerators

The necessary amount of cooling water for normal conductor magnets can be estimated by
simply assuming a temperature increase of 20K in each device. In this case, 1MW heat
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Table 13.1: Power requirements in the COMET experiment.

Equipment Power (MW)
Beam transport magnets 0.2
External extinction devices 0.2
Solenoid magnets 0.12
He refrigerator 0.12
GM-type refrigerators 0.2
Vacuum pumps 0.1
Detectors Electronics < 0.02
DAQ system < 0.02
Frontend computers < 0.02
Total 1.0

Table 13.2: Cooling water requirement in the COMET experiment

Equipment Cooling water (ℓ/min)
Magnets and extinction devices 400
Helium refrigerator compressor 120
GM-type refrigerator compressors 100

can be taken away by

1000 (kW)
4.1855 (kJ/(kg ·◦ C) × 20 ◦C

= 11.9 ℓ/sec = 717 ℓ/min (13.1)

cooling water [125]. In this estimation we assume additional cooling water in order to
compensate heat loss in the power supplies themselves and take a simple factor of 1000 ℓ/min
cooling water for 1MW magnet cooling. Super-conducting magnets used in the COMET
experiment do not need cooling water for direct cooling, however the compressor for the
helium refrigerator and compressors for GM-type refrigerators require cooling water. The
necessary cooling water for the compressor of the helium refrigerator is estimated in the
same way as for the beam transport normal conductor magnets, thus we need 120 ℓ/min
cooling water. Cooling water for GM-type refrigerator compressors is estimated by using a
commercial product2 with 6 kW power which requires cooling water of 5 ℓ/min. Table 13.2
summarizes necessary amount of cooling water. Here we assume a cooling water temperature
at 20–25 ◦C.

13.5.3 Refrigeration Requirement

As already explained, the solenoid magnets to be used in the COMET experiment are all
super-conducting magnets and hence need a refrigerator for cooling. The capture solenoid
surrounding the pion production target will be exposed to heavy radiation. From the
magnet operation point of view it is necessary to minimize the temperature increase caused

2Leybold vacuum COOLPAK 6000/6200.
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1m

Compensation coil

Outer end coil
Inner end coil

Gradient coil
Central coil

GM Refrigerator

Figure 13.5: An example of super-conducting magnet using GM-type refrigerators directly
mounted on it for cooling.

by radiation for safe operation of the magnet. In the current design this is realized by
installing a tungsten shield block inside the capture solenoid to reduce particle penetration
to the coil and utilizing aluminum stabilized super-conducting wire to reduce the mass of
the wire. During normal data acquisition period of COMET, the heat load to the coil
due to radiation is estimated to be 2·10−5 W/g for 8GeV × 7µA accelerator operation.
Integrating this over the coil volume gives an estimated heat load of 10W. There will be
additional heat load caused by conduction. Although this highly depends on the design
of the coil supporting structure in the cryostat, we estimate that this is small enough (≪
10W). Currently we plan to install a 200W helium refrigerator so that we can manage coil
cooling with a sufficient margin. It would be probably possible to use redundant cooling
power for transport and detector solenoid magnets. However cooling of these magnets is
better done by separate small refrigerators because those magnets needs to be separated
off from the capture solenoid for maintenance work. We need 20 GM-type refrigerators for
cooling the solenoid magnet chain of 20m length. This assumption is based on the design
of a similar magnet of 2.5m length as shown in Figure 13.5 [126]. In this magnet the coil
chain is cooled down to 4.2–4.4K by using two GM-type refrigerators in 5 days. Each
refrigerator3 has a two-stage cooling procedure of power 31W and 1W at 40K and 4.2K,
respectively.

3SHI, SRDK-408D.



Chapter 14

Cost Estimate

The cost estimate for the whole COMET project is presented here. In the subsequent
sections, some detailed descriptions for selected cost items are presented and the total cost
estimate (with and without contingency) is given.

14.1 Superconducting solenoids

The most significant cost-driving items are the superconducting solenoids for the muon beam
line and the detector. The muon beam line is composed of the pion capture solenoid and
the muon transport solenoid, while the detector is composed of the muon-stopping target
solenoid, the electron transport solenoid and the detector solenoid. The specifications of
these solenoid magnets are shown in Table 5.7.1

A preliminary quotation of the cost for all the solenoid magnets (without high-power
refrigerators) has been obtained from a magnet-manufacture company, based on the speci-
fications presented in Table 5.7. A total cost of about 35.7 Oku Japanese yen (JPY). Here
“Oku” is 108 and one Oku JPY corresponds to a million US$ when 1 US$=100 JPY. The
cost breakdown is summarized in Table 14.1.

The cost includes the power supplies, the magnet control system including quench-
protection system, installation fee, the engineering design cost, and tax. The cost of a high-
power refrigerator, which is used to cool the pion capture solenoid and the muon transport
solenoid, is not included, but cryo-coolers, which are used to cool the muon-stopping target
solenoid, the electron-transport solenoid and the detector solenoid are included.

1In the original COMET proposal, a rough analytical cost estimation was made using two empirical
formulas [127], which are given by

cost (M US$) = 1.34 × 0.844 · U0.459 (14.1)

cost (M US$) = 1.34 × 0.77 · Ω0.631 , (14.2)

where U is a stored energy in units of MJ, and Ω is a product of a magnetic field and a volume in units of
T·m3. For the superconducting magnets in the proposed experiment, equations (14.1) and (14.2) give 18.0
M US$ and 20.9 M US$, respectively. The conservative cost of 20.9 M US$ corresponds to about 20.9 Oku
Japanese yen (JPY)

188



14.2. PROTON BEAM LINE 189

Table 14.1: Preliminary cost quote for the superconducting solenoid magnets from a magnet-
manufacture company. The specifications for the solenoid magnets are based on Table 5.7.

Item Cost
(Oku Yen)

Solenoid Magnets
Capture and matching solenoids 9.8
Muon beam transport solenoids 6.8
Muon target, curved spectrometer, and detector solenoids 10.4

Power supplies 2
Magnet control system 1
Design and installation fee 5
Tax 0.7
Total (with tax) 35.7

14.2 Proton beam line

A new proton beam line with magnets and a proton beam dump in the NP experimental hall,
where the COMET beam line and detector are accommodated, are needed. The breakdown
is presented in Table 14.2.

Table 14.2: Preliminary cost for the proton beam line

Item Cost
(Oku Yen)

Proton “B” line construction∗ 7
Proton beam line for COMET including AC dipole magnets 10
Proton beam dump 2
Radiation shielding 3
Total 22

∗ This item can be removed if the proton B line is considered as a shared item.

The cost of the “B” proton beam line would cover the proton beam line from the
branching point from the proton “A” proton beam line to the NP experimental hall. This
section of the proton beam line can be shared by other experimental users, and therefore
this can be removed from the COMET cost estimate if it is regarded as a common item.

The proton beam line for COMET in Table 14.2 starts from the branching point of
the B line in the NP experimental hall shown in Figure 14.1. The cost of external proton-
extinction devices such as AC dipoles is also included in this item. The sub-total cost is
about 10 Oku JPY.

The cost of a proton beam dump (for about 50 kW proton beam power) of about 2 Oku
JPY is listed. The cost of radiation shielding (made of mostly concrete), installed in the
NP experimental hall, of about 3 Oku JPY is also included.
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14.3 Civil construction and infrastructure

Figure 14.1: Possible layout of the detector outside the NP hall.

An experimental hall extension is needed when the COMET beam line and the detector
are installed. It requires an extra excavation of a cavern south of the NP experimental
hall, as shown in Figure 14.1. The cost of the extension of the experimental hall and of the
construction of a building associated with it is about 3 Oku JPY. This cost also includes
an electricity supply and a cooling water system.

The cost of refrigeration of about 4.7 Oku JPY includes compressors, a gas buffer tank
and a cooling tower.

Table 14.3: Preliminary cost for the civil construction and infrastructure.

Item Cost
(Oku Yen)

Extension of the NP experimental hall 3
Refrigeration 4.7
Total 7.7

14.4 Detectors

The detectors include an electron tracker based on gas straw chambers and an electron
calorimeter based on scintillating crystals.

14.5 Summary of cost estimate

Table 14.4 summarizes the total cost estimate for COMET. An estimation with 20 % con-
tingency is also given.
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Table 14.4: Cost estimate of the COMET experiment (2009).

Item Cost
(Oku JPY)

Proton beam line
Proton beam line magnets 17
Proton beam dump 2
Radiation shielding for a proton beam line 3

Superconducting Solenoid 35.7
Detector

Electron tracker 2.1
Electron calorimeter 2.3
Cosmic ray shield 3
DAQ system 0.5

Infrastructure
Refrigeration 4.7
Pion production system and tungsten shielding 2.3

Civil construction
Extension of the NP experimental hall 3

Total 75
Total (with 20% contingency) 90



Chapter 15

Schedule

Figure 15.1 shows the schedule of the COMET experiment. In our current plan, we will
start engineering runs in 2016 and start physics data acquisition one year later in 2017.
Construction takes four years which is dominated by superconducting magnet construction.
Detector construction is estimated to be finalized in 5 years including an R&D period of 3
years. Details of the schedule concerning each part are described in the following.

15.1 Technical design report

We plan to finalize our Technical Design Report (TDR) one year after submitting this CDR.
Technical details necessary for constructing each component will be described in the report.
Design work for construction will be done in parallel. Submission of the TDR will be a
critical milestone for starting construction.

15.2 Main ring

A series of extinction studies including abort line measurement will be repeated from time
to time before starting construction. An attempt to perform bunched slow extraction will
be an important issue. In this schedule chart we allow 3 years study of the proton beam,
however this is to be repeated until necessary performance of the proton beam is proven. In
case we need modification of the RF system to change the harmonics number in RCS (and
also MR), this must be evaluated before the start of engineering runs. This means that
the schedule of the main ring study may change depending on the situation of the beam
performance achieved in studies.

15.3 Proton transport line

Development of an external extinction device, that is AC dipole, is a key part of the proton
transport line design and construction. We estimate two years R&D and four years con-
struction time including developing other conventional magnet system. Concerning magnets
other than AC dipoles, they are conventional an existing magnets and power supplies are
expected to be used for this purpose. In case we need to upgrade the power station and
cooling water facility in the NP hall, additional cost will be necessary. However this is not
a technically challenging issue and everything can be managed in time by the KEK facility
group.
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15.4 Magnets and pion production target

R&D work on the pion production target will continue for two years focusing on cooling
techniques. Construction of the pion capture solenoid will be a technical challenge to achieve
such a complicated and high magnetic field in a hard radiation environment. Operation
and the maintenance scheme of the pion capture solenoid needs to be carefully considered
before construction. Such details will be summarized in the coming TDR. Production
of the capture magnet is estimated to take four years. This include production time of
superconducting wires necessary for the magnet construction. Construction of the muon
transport solenoid and detector solenoid is thought to be technically easier than construction
of the pion capture solenoid. Because of this, construction will be performed in parallel and
is estimated to be completed in two years.

15.5 Experimental area

As described in Chapter 13, the COMET pion production target and beam dump will be
located outside the NP hall. This certainly requires civil engineering work in the hall and
the area nearby. The work should be arranged in such a way that other experiments being
executed in the hall can continue their data acquisition. In our current schedule, area
construction work is scheduled to be started in 2013 and continues for two years including
detector installation in 2015.

15.6 Detector

We evaluate necessary detector R&D period of three years and construction time of two
years. The COMET detectors, tracker, calorimeter, and cosmic-ray shield do not require
any technical challenges such as the proton beam, external extinction devices, and the
pion production target and capture solenoid. Therefore, we consider that construction of
the detectors can be constructed in a timely manner to fit in with the whole construction
schedule.

15.7 Data acquisition

The data acquisition system will constructed using conventional techniques as described
in Chapter 8. We estimate three year preparation time for setting up the DAQ system.
We believe that this is sufficient to prepare the DAQ system to start engineering runs and
following physics DAQ.

15.8 Simulation

Simulation will play an important role in such a rare-decay search experiment like COMET.
In the schedule described here, six years are allocated for simulation development. However
as in the case of other rare-decay search experiments, continuous improvements of the simu-
lation will be required. We certainly intend to do this. Detector optimization needs reliable
simulation output before construction, and later offline analysis requires full simulation for
a thorough understanding of the background.
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15.9 Offline analysis

The offline analysis program should be prepared together with the simulation. It is also
important to provide feedback information for hardware optimization during the engineering
run period. We evaluate that this development should be started sometime around 2013
in parallel to other developments and construction. Before this we need to carefully choose
between employing an existing framework or developing our own.
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Figure 15.1: Schedule of the COMET experiment



Chapter 16

R&D Plan

In this chapter our R&D plan toward the start of experiment construction is described.

16.1 Measurement of intrinsic proton beam extinction

As repeated many times, proton beam extinction is a key issue in the COMET experiment.
An achieved extinction value will determine the sensitivity of the experiment. Better ex-
tinction will provide better control of the background until we reach the sensitivity of the
order of 10−16.

The COMET collaboration has been working with the Muon Task Force (MTF) of KEK,
which has been established to investigate facility issues to realize the COMET experiment.
Extinction measurement is one of MTF’s major projects. There are two methods proposed
to measure the proton beam extinction [128]. One is to directly see the proton beam in
the main ring (MR). Two sets of hodoscopes installed in the abort line of the MR play this
role. The hodoscopes are viewed by multi-anode photomultipliers (PMTs) in the beam duct
vacuum. The PMT has a very fast response while the signal dynamic range is limited. It
is possible to inspect an empty bucket sitting in front of a filled bucket. We need to excite
the abort line kicker so that an empty bucket is kicked to the abort before the following
filled bucket arrives. Actually this can be realized by controlling the filling order of the MR
buckets with protons from the RCS. Measurements will be performed during accelerator
studies. The current detector is a prototype composed of plastic scintillator, which will
eventually be damaged by radiation. Thus, we plan to upgrade the detector after several
trials using the real proton beam and to install an extinction monitor that can permanently
stay in the abort line. This monitor is suitable for accelerator studies since we can provide
we can provide “quick” feed back to the accelerator. Development of this monitor is foreseen
in three years in collaboration with the J-PARC accelerator group. We may also need an
improvement of the chopper in the Linac.

Another method proposed by the MTF is to use the secondary beam. We measure time
structure of prompt secondary beam around 1.0 GeV/c relative to the MR RF timing. The
relative time distribution will be accumulated for more than 109 secondary particles. We
need to control the momentum slit of the secondary beam line so that the mean of the
number of secondary particles arriving at the counter should be around one per one proton
bunch 1 in order to suppress pile-up and to reduce the ambiguity of normalization. The
proton beam will be extracted from the MR with bunched-slow extraction and injected on

1Here we suppose the bunch-to-bunch width of the proton beam of ∼1 µsec
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Figure 16.1: Photograph of the prototype electron tracker with seamless straw-tubes.

the T1 target in the NP hall. Spill control for bunched-slow extraction can be attempted
in this study. We plan to repeat this measurement for three years. The first two years will
be spent to establish the measurement technique and third year will be devoted to a special
study with the external extinction device system using AC dipoles.

In our current design the proton bunch structure formation relies only on the chopper
in the Linac. This might not guarantee the beam quality at a sufficient level. We have to
clarify whether we need new hardware installation to improve the chopping quality during
the R&D work of the proton beam extinction measurement.

16.2 Electron tracker

As already described in detail in Section 6.5, design work of the electron tracker has been
almost completed including readout electronics. Prototype study has been also carried
out and necessary performance has already been proven [129]. In this prototype study we
successfully produced a seamless straw-tube instead of ordinary wound-type straw-tube.
Seamless straw-tubes have various advantages over ordinary wound-type straw tubes, in
particular, in terms of mechanical strength and narrower wall thickness. These advantages
are extremely beneficial for the COMET experiment where precise electron momentum
measurement around 100 MeV/c is a critical issue. Figure 16.1 shows a photograph of the
prototype composed of seamless straw-tubes of 350 mm length. An anode position resolution
of 112 µm has been obtained in a beam test with this prototype. We need further detailed
technical design work before construction but we do not need to invest much resource for
R&D work on the electron tracker.

16.3 Electron calorimeter

It is necessary to select the calorimetry material to be used. Fast response and short decay
time of the signal is required so that the calorimeter signal can be used for event triggering
in the data acquisition system. That helps also to associate a hit in the calorimeter with a
track in a simple manner. Moderate energy resolution is probably sufficient since the tracker
system provides superior information of electron momentum although this does not exclude
achieving good energy and time resolutions within reasonable production cost. We are
considering to use cerium doped GSO crystals or LYSO crystals as described in Section 6.6.
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Figure 16.2: Photograph of stacked crystals for a prototype electron calorimeter composed
of 160 GSO(Ce) crystals of 4×6×30 mm3.

We have already started R&D work on the calorimeter using cerium doped GSO crystals.
We constructed a prototype module by stacking commercially available GSO(Ce) crystals
for PET application as shown in Figure 16.2. Crystal performance was investigated with
PMT readout in a beam test using 150 MeV electrons. Studies with LYSO crystals have just
started. Readout with MPPC was also tried taking into account operation of photo sensors
in magnetic field and production cost. Results obtained in the test has been imported to
Monte Carlo simulation to estimate the energy resolution of the calorimeter. Optimization
including the crystal and photon detector selection is necessary.

Our R&D will proceed like the following. We will spend 1.5 years for crystal selection.
Production of sample crystals has been already started in Russia and other places. Selection
and performance test of the photon detector, including their readout electronics, will be
performed in parallel. Candidates detectors are APD and MPPC. Although the MPPC is
an attractive device, we need to investigate basic characteristics such as stability, radiation
hardness, and linearity. Then we invest a half year to construct a prototype before evaluating
the final prototype performance in one year. Engineering design needs to be done in parallel
to this R&D work as is done in the electron tracker system.

16.4 Cosmic veto system

The cosmic veto system will be a simple detector although it is required to cover large area
with sufficient uniformity. We can simply employ a conventional detector technology such as
plastic scintillator with photo sensor readout or resistive plate chamber (RPC). Mechanical
structure of the detector and readout system with reasonable cost will be studied for three
years. Installation procedure and maintenance scenario needs to be considered carefully
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since this will be a largest counter necessary to cover the whole COMET detector.

16.5 Superconducting magnet

The pion capture solenoid will be constructed by using an aluminum stabilized conductor
as described in Chapter 12. Specification of the conductor is summarized in Table 12.1.
The coil itself must be thin to reduce radiation load. This is the reason why we selected this
conductor. Strength of the electromagnetic force between the cold mass and return yoke will
be as large as 160 t. This means that careful design is necessary although we can build a rigid
support structure differently from usual spectrometer magnets necessary to be transparent
including whole structure. Quench protection design has been already considered based on
our experience. The cooling scheme must be examined to realize operation at 5 K under
COMET radiation load condition with allowed temperature increase of 1.3 K. There are
certainly many technical issues involved in the construction. However almost all of them
are thought to be cleared without critical difficulties based on our experience accumulated
in KEK Cryogenic Center.

Construction of muon transport and stopping target solenoids is expected to be easier
since field strength is less than that of the capture solenoid and radiation load will be also
less. The conductor used for them will be NbTi copper stabilized conductor, which is widely
used in MRI magnets and commercially available. Quench protection design is already in
our scope as in the case of the capture solenoid. We are conducting R&D work to study
the structure of the curved solenoid. The solenoid will be constructed by arranging coil
“pancakes” electrically and thermally connected in series along the curve. We are studying
basic parameters like cooling performance and electromagnetic forces between pancakes by
constructing a prototype comprising of three pancakes (Fig. 16.3). After completing this
R&D work for about one year, we will start the engineering design of the magnet.

We plan to utilize a new type of super-conductor, MgB2, for electron-transport and
detector solenoids. We do not have much experience with this conductor for magnet con-
struction. In this sense we probably need certain R&D work to finalize the design. However
the estimated critical temperature will be as high as 28 K for these solenoids, providing us
a sufficient temperature margin for operation. Thus effort in R&D work will be to study
how much we can tolerate critical design parameters compared to other solenoids using
NbTi conductors. For these reasons, the cryogenic center of KEK and Osaka University has
decided to construct one prototype coil for the muon transport using MgB2 superconductor.
The MgB2 superconductor were purchased from an Italian manufacture company and the
coil construction was completed. Tests of the coil are underway.

16.6 Pion production target

Significant R&D work is thought to be necessary for the pion production target, but a
tungsten target with water cooling can probably be adopted as described in Chapter 5. It
is preferred to use a heavier metal target since a larger pion production rate is expected.
When constructing the target, target cooling under radiation dose needs to be carefully
considered otherwise the target would melt down. Supporting structure design including
realization of cooling will be done with complete 3-dimensional modeling and finite element
analysis. The system will stay in a heavy radiation environment. Due to this, a maintenance
scenario needs to be carefully considered for the case of unexpected failure of the target
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Figure 16.3: Arrangement of three “pancake” coils for R&D work.

system. A graphite target with gas helium cooling is considered as a backup solution. This
type of target has been developed and employed in the T2K experiment and is known to
work stably although we need to take into account periodic maintenance work since graphite
would deteriorate after certain amount of radiation on it.
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Summary

This report presents the conceptual design of a new experiment, COMET (COherent Muon
to Electron Transition), to search for coherent neutrino-less conversion of muons to electrons
(µ−−e− conversion), in the presence of a nucleus, µ− + N(A,Z) → e− + N(A, Z), with a
single event sensitivity B(µ−N → e−N) < 10−16.

Flavor transitions between the charged leptons (Charged Lepton Flavor Violation,
cLFV) have great potential to reveal new physics phenomena beyond the Standard Model.
Many models of such physics, such as those based on supersymmetric grand unification
(SUSY-GUT), supersymmetric seesaws (SUSY-Seesaw) and extra dimensions, require the
existence of cLFV that is accessible to realizable future experiments.

Muons provide the best laboratory to study cLFV as they can be produced in substantial
numbers and have a sufficiently long lifetime for precise measurements of their decays.
Present accelerators can produce about 1015 muons/year, and it is anticipated that it will
be possible to produce 1018–1019 muons/year with a new high intensity source that is
proposed in conjunction with the main J-PARC proton synchrotron ring (MR).

The main processes which are accessible for cLFV are the decays µ → eγ, µ → eee and
µ−−e− conversion. Of these, µ−−e− conversion has the best sensitivity to new physics, as
the potentially measurable branching ratio of about 10−16 is significantly better than the
limits expected with current technology for the µ → eγ, µ → eee processes. Within the
Standard Model, modified to take account of neutrino oscillation, the expected rate is less
than 10−50 and so any observation of a µ−−e− conversion would be a clear signal of physics
beyond the Standard Model. A measurement ≤ 10−16 for µ−−e− conversion, which is the
COMET goal, is a factor of 10,000 better than that of current experiments.

This report present a new experiment (COMET) of searching for coherent neutrino-less
µ−−e− conversion in a muonic atom of aluminum, µ− + Al → e− + Al, at a sensitivity of
B(µ−Al → e−Al) < 10−16 at J-PARC.

COMET will use a bunched proton beam, slow-extracted from the J-PARC MR. Beam
bunching will be necessary to reject beam-related backgrounds. The experimental setup
consists of high magnetic-field solenoids for pion capture, C-shaped curved solenoids with
momentum selection, and a C-shaped curved solenoid spectrometer. The experiment will
require about 2× 1018 stopping muons, which, with the expected transmission of muons in
our muon beamline, will require about 8.5 × 1020 protons of 8 GeV on target.

This new initiative has been taken to achieve an early and timely start of a series of
searches for µ−−e− conversion. We consider that the proposed experiment would have large
opportunity for great discovery and J-PARC is the best proton facility to carry out this
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important experiment.
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