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Abstract We present an up-to-date complete model-inde-
pendent global fit to b → s�� observables that confirms
patterns of New Physics able to explain the data. We include
the recent LHCb measurements of RK , RKS , RK ∗+ , Bs →
φμ+μ− and Bs → μ+μ− in our analysis, which now
includes 254 observables. This updates our previous analy-
ses and strengthens their two main outcomes. First, the pres-
ence of right-handed couplings encoded in the Wilson coef-
ficients C9′μ and C10′μ remains a viable possibility. Second,
a lepton flavour universality violating (LFUV) left-handed
lepton coupling (CV

9μ = −CV
10μ), often preferred from the

model building point of view, accommodates the data better
if lepton-flavour universal New Physics is allowed, in partic-
ular in CU

9 . We observe that the LFUV observable Q5 offers
a very interesting possibility to separate both types of sce-
narios.

1 Introduction

The flavour anomalies in b → s�� processes are currently
among the most promising signals of New Physics (NP) [1–
3]. This has been reinforced by the recent LHCb updates of
quantities assessing the violation of lepton-flavour universal-
ity (LFU). On the one hand, we have the ratio RK [4]:

RK = B(B+ → K+μ+μ−)

B(B+ → K+e+e−)

R[1.1,6]
K ,LHCb = 0.846+0.042 +0.013

−0.039 −0.012 (1)

with an extended statistics corresponding to 9 fb−1, reaching
the level of statistical evidence (above 3 standard deviations).
On the other hand, similar quantities have been recently mea-
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sured for the experimentally challenging modes [5]

RKS = B(B0 → KSμ
+μ−)

B(B0 → KSe+e−)

RK ∗+ = B(B+ → K ∗+μ+μ−)

B(B+ → K ∗+e+e−)
(2)

with the results

R[1.1,6]
KS ,LHCb = 0.66+0.20 +0.02

−0.14 −0.04

R[0.045,6]
K ∗+,LHCb = 0.70+0.18 +0.03

−0.13 −0.04 (3)

in agreement each with the SM below the 2σ level but con-
sistent with the downward trend compared to the predictions
of the Standard Model (SM). Indeed, in the SM, these ratios
are protected from hadronic contributions and are known to
be 1 up to (tiny) electromagnetic corrections and (simple)
kinematic mass effects.

The deviations observed in these modes can be efficiently
and consistently analysed in a model-independent effective
field theory (EFT) framework (see, for instance, Refs. [6–
16]), where short-distance physics (SM and NP) is encoded
in the Wilson coefficients of higher-dimension operators.1

This tool has proven particularly helpful in identifying NP
scenarios (or patterns of NP) that could explain the data at the
level of the EFT, providing guidelines for the construction of
phenomenologically viable NP models.

In this context, we present here the latest theoretical and
experimental update of our previous works in Refs. [7–9] to

1 It is interesting to point out that the results in Ref. [12] are very similar
to the ones found in the analysis presented in this article. Although they
use a similar set of observables (with the addition of baryon decays),
the analyses differ through the treatment of hadronic uncertainties (form
factors, charm-loop contributions). This similarity illustrates the robust-
ness of the results with respect to different assumptions on hadronic
uncertainties.
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serve as an accurate guideline for model building, as well
as an overview of observables relevant for the near future.
We follow the same theoretical and statistical approach as in
our previous works, updating and adding new experimental
inputs and their corresponding SM predictions. It is impor-
tant at this point to check if the inclusion of this new data
alters some of our earlier conclusions, in particular concern-
ing best-fit points and confidence intervals that are required
for model building as well as the hierarchy of the various NP
scenarios that are favoured by the current global fits. It turns
out that our conclusions remain unchanged and are thus very
robust. We will therefore discuss the outcome of our updated
global fits but we refer the interested reader to Ref. [9] for
a more detailed interpretation of our results as well as the
differences with respect to other approaches [10–12,14].

The structure of this article is the following. In Sect. 2 we
list the additional and updated measurements included. Sec-
tion 3 is devoted to the methodology of the global fit, with
updated results presented in Sect. 4. The link between neu-
tral and charged anomalies using a scenario involving LFUV
and LFU NP is discussed in Sect. 5. An overview of the main
results and conclusions is given in Sect. 6, together with a
proposal to disentangle the main two solutions of the global
fit. Finally, the list of experimental inputs and SM predic-
tions for the observables included in our fits is discussed in
Appendix A.

2 Observables

We consider the same observables and theoretical inputs as
in Ref. [9], taking into account the following updated mea-
surements (replacing the previous ones):

• The experimental values of RK , RKS and RK ∗+ from the
LHCb collaboration already discussed in the introduction
[4,5]. We also take into account their update of RK [17]
as well as the branching ratios for B0,+ → K 0,+μ+μ−
updated by the Belle collaboration [18] (the Belle mea-
surements of RK (∗) correspond to a combination of the
charged and neutral channels B0,+ → K (∗)0,+�+�−).

• The experimental value of the branching ratio B(Bs →
μ+μ−) from the LHCb collaboration [19], which is com-
bined with the results from CMS [20] and ATLAS [21],
leading to the average B(Bs → μ+μ−) = 2.85+0.34

−0.31 ×
10−9 [22]. This is to be compared with the most updated
theoretical computation [23].

• The angular distribution of B+ → K ∗+μ+μ− [24] using
the optimised observables Pi [25] measured by LHCb,
as well as the longitudinal polarisation and forward-
backward asymmetry measured by the CMS collabora-
tion [26]. Compared to the neutral case, our computation
for the charged case takes into account the different spec-

tator quark not only by modifying the mass and lifetime,
but also the annihilation and hard-spectator interactions
following Ref. [27].

• The angular distribution of B+ → K+μ+μ− from the
CMS collaboration [28].

• The angular analysis of B → K ∗e+e− at low q2 from
the LHCb collaboration [29]. The bins of this analysis are
different from the previous ones [30], but the measure-
ments are correlated since the latter analysis includes the
data of the former, leading us to discard Ref. [30].

• The new angular analysis and branching ratio of Bs →
φμ+μ− from the LHCb collaboration [31,32] super-
seding the previous LHCb analysis [33]. We focus on
CP-averaged quantities, as we will consider only CP-
conserving New Physics.

We do not consider here the baryon mode �b → �μ+μ−
[34], as there is a known issue with the normalisation pro-
vided by the �b production fraction which may distort the
results [3,35]. We think that it is important that LHCb reanal-
yses this normalization without relying on combinations of
LEP and Tevatron studies performed at different energies, so
that corrected results of this mode could be included in future
global analyses of b → s�� transitions in a completely safe
way.

3 Fit approach

Our starting point is the weak effective Hamiltonian [36,37]
in which heavy degrees of freedom (the top quark, the W
and Z bosons, the Higgs boson and any potential heavy new
particles) have been integrated out in short-distance Wilson
coefficients Ci , leaving only a set of operators Oi describing
the physics at long distances:

Heff = −4GF√
2
VtbV

∗
ts

∑

i

CiOi + h.c., (4)

up to small corrections proportional to VubV ∗
us in the SM,

included in our numerical analysis.
In the SM, the Hamiltonian contains 10 main operators

with specific chiralities due to the V − A structure of the
weak interactions. In presence of NP, additional operators
may become of importance. For the processes considered
here, we focus our attention on the operators O7(′),9(′)�,10(′)�
and their associated Wilson coefficients C7(′) , C9(′)�, C10(′)�
where � = e or μ. C7(′) describe the interaction strength
of bottom (b) and strange (s) quarks with the photon while
C9�,10� and C9′�,10′� encode the interaction strength of b and s
quarks with charged leptons.C9�,10� andC9′�,10′� are equal for
muons and electrons in the SM but NP can add different con-
tributions to muon operators compared to the electron ones.
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For C7 and C9�,10� we split SM and NP contributions like
Ci� = CSM

i� + CNP
i� . The Wilson coefficients of the chirally-

flipped operators are zero in the SM, apart from C7′ which
features a small SM contribution of O(ms/mb).

Our evaluation of the various observables follows the same
approach as in Ref. [6] with the updates of the theoretical
inputs discussed in Refs. [7,9]. Attention must naturally be
paid to hadronic uncertainties [38–44], which stems from
two different sources in exclusive b → s�� decays such as
B → K (∗)�+�− and Bs → φ�+�−. First, form factors must
be determined through different methods at large recoil of
the final hadron (light-cone sum rules involving either light-
meson [45,46] or B-meson [47–50] distribution amplitudes)
or low recoil (lattice QCD [51,52]). Second, the non-local
contribution from cc̄ loops can be tackled similarly either
at low recoil, through quark-hadron duality arguments for
observables averaged over a large dilepton invariant mass
[53–56], or large recoil, using various approaches (order-
of-magnitude estimates, light-cone sum rule computations
[47,48], interpolation from the unphysical region below the
photon pole up to the lowest charmonium resonances [50,57],
…). Obviously, the uncertainties of the theoretical predic-
tions for these observables (within the SM or any NP sce-
nario) are partly dependent on these assumptions. However,
it is quite striking to notice that different analyses based on
different underlying assumptions for these hadronic uncer-
tainties may yield different numerical values for statistical
quantities (significances, pulls, …) but they have repeatedly
led to very similar patterns of favoured scenarios, best-fit
points and confidence regions for NP contributions to Wil-
son coefficients (see for instance Refs. [10–12,22,58]).

In practice, we perform fits to obtain information on the
values of the parameters collectively denoted here as θ , which
represent the unknown NP contributions from the different
scenarios that we estimate (e.g. CNP

9μ , CNP
9μ = −CNP

10μ, etc).
We work within a frequentist framework based on a gaus-
sian approximation for the likelihood function L(θ) where
theoretical and experimental uncertainties are treated on the
same footing:

− 2 lnL(θ) = χ2(θ)

=
Nobs∑

i, j=1

(
Oth(θ) − Oexp

)

i

×
(
V th(θ) + V exp

)

i j

(
Oth(θ) − Oexp

)

j
,

(5)

with Nobs the total number of observables in the fit, Oth
i (θ)

the central value of the theory prediction for the i-th observ-
able, Oexp

i the experimental measurement (i.e. the central
value quoted by experiments) of the same observable and
V th
i j and V exp

i j the theoretical and experimental covariance
matrices respectively.

On the one hand, the experimental covariance matrix con-
tains all the available information on the errors and correla-
tions among the measurements of the relevant observables
released by the different experiments. Whenever the correla-
tions are not available, we take those measurements as uncor-
related. In the case of asymmetric uncertainties (such as RK ),
in order to be consistent with the gaussian approximation of
the likelihood function, we symmetrise the errors by taking
the largest uncertainty, with no change in the central value.
On the other hand, the theoretical covariance matrix is esti-
mated by performing a multivariate gaussian scan over all
the nuisance parameters entering the calculation of theory
predictions which we do not fit through the minimisation
procedure.

The central values of the unknown parameters in our anal-
yses are estimated by means of the method of maximum like-
lihood (ML). By construction of the likelihood, the ML esti-
mators θ̂ coincide with the best-fit points obtained by min-
imising the χ2 function:

∂χ2

∂θi

∣∣∣∣
θ̂

= 0 such that χmin = χ2(θ̂), (6)

for i = 1, ..., n, with n being the number of parameters. The
minimisation is performed numerically using MIGRAD from
the Python package iMinuit [59]. For computational rea-
sons, the theoretical covariance is assumed to depend mildly
on the NP parameters, hence we take V th(θ) in Eq. (5) at the
SM point. We checked that our results remain unchanged if
we repeat the fits with the V th(θ) evaluated at different NP
points, confirming the validity of our approximation. This is
in agreement with the results of Refs. [6,11,60], where the
impact of accounting for the correlated theoretical uncertain-
ties at each point in the Wilson coefficient parameter space
was analysed in full detail.

In order to provide a complete description of the parame-
ters, we also assess their errors and correlations. This infor-
mation is encoded in the likelihood function and can be
accessed through the Rao–Cramér–Fréchet formula for the
inverse V−1 of the covariance matrix Vi j = cov(θ̂i , θ̂ j ) of
the estimators

(
V−1

)

i j
= − ∂2 lnL

∂θi∂θ j

∣∣∣∣
θ̂

= 1

2

∂2χ2

∂θi∂θ j

∣∣∣∣
θ̂

. (7)

In practice, the likelihood’s Hessian matrix is numerically
computed by MIGRAD as one of the outputs of the min-
imisation routine. Instead, for the computation of confidence
intervals we use iMinuit’s MINOS algorithm [59].

To quantify the level of agreement between a given
hypothesis and the data, we compute the corresponding p-
value of goodness-of-fit:

p =
∫ ∞

χ2
min

dχ2 f (χ2; ndof), (8)
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Table 1 Most prominent 1D patterns of NP in b → sμμ. PullSM is quoted in units of standard deviation. The p-value of the SM hypothesis is
0.44% for the fit “All” and 0.91% for the fit LFUV

1D Hyp. All LFUV

Best fit 1 σ /2 σ PullSM p value (%) Best fit 1 σ / 2 σ PullSM p value (%)

CNP
9μ −1.01 [−1.15,−0.87] 7.0 24.0 −0.87 [−1.11,−0.65] 4.4 40.7

[−1.29,−0.72] [−1.37,−0.45]
CNP

9μ = −CNP
10μ −0.45 [−0.52,−0.37] 6.5 16.9 −0.39 [−0.48,−0.31] 5.0 73.5

[−0.59,−0.30] [−0.56,−0.23]
CNP

9μ = −C9′μ −0.92 [−1.07,−0.75] 5.7 8.2 −1.60 [−2.10,−0.98] 3.2 8.4

[−1.22,−0.59] [−2.49,−0.46]

Table 2 Most prominent 2D patterns of NP in b → sμμ. The last five rows correspond to Hypothesis 1: (CNP
9μ = −C9′μ, CNP

10μ = C10′μ), 2:

(CNP
9μ = −C9′μ, CNP

10μ = −C10′μ), 3: (CNP
9μ = −CNP

10μ, C9′μ = C10′μ), 4: (CNP
9μ = −CNP

10μ, C9′μ = −C10′μ) and 5: (CNP
9μ , C9′μ = −C10′μ)

2D Hyp. All LFUV

Best fit PullSM p value (%) Best fit PullSM p value (%)

(CNP
9μ , CNP

10μ) (−0.92,+0.17) 6.8 25.6 (−0.16,+0.55) 4.7 71.2

(CNP
9μ , C7′ ) (−1.02,+0.01) 6.7 22.8 (−0.88,−0.04) 4.1 37.5

(CNP
9μ , C9′μ) (−1.12,+0.36) 6.9 27.4 (−1.82,+1.09) 4.5 60.2

(CNP
9μ , C10′μ) (−1.15,−0.26) 7.1 31.8 (−1.88,−0.59) 5.0 88.1

(CNP
9μ , CNP

9e ) (−1.11,−0.26) 6.7 23.8 (−0.52,+0.34) 4.0 35.3

Hyp. 1 (−1.01,+0.31) 6.7 24.0 (−1.60,+0.32) 4.5 62.5

Hyp. 2 (−0.89,+0.06) 5.4 8.0 (−1.95,+0.25) 3.6 20.4

Hyp. 3 (−0.45,+0.04) 6.2 15.9 (−0.39,−0.14) 4.7 70.2

Hyp. 4 (−0.47,+0.07) 6.3 16.8 (−0.48,+0.15) 4.8 79.6

Hyp. 5 (−1.15,+0.17) 7.1 31.1 (−2.13,+0.50) 5.0 89.4

where ndof = Nobs − n. Finally, to compare the descriptions
offered by two different nested hypotheses H0 and H1 (with
nH0 , nH1 the respective number of degrees of freedom and
nH0 < nH1 ), we compute their relative Pull, measured in
units of Gaussian standard deviations (σ ):

PullH0H1 = √
2 Erf−1

[
F(	χ2

H0H1
; nH0H1)

]
, (9)

with 	χ2
H0H1

= χ2
H0,min − χ2

H1,min, nH0H1 = nH1 − nH0 , F

the χ2 cumulative distribution function and Erf−1 the inverse
error function. Most of the time, we compare a given NP sce-
nario with the SM case, denoting the result as PullSM unless
there is a risk of ambiguity. Our statistical interpretation,
based on Wilks’ theorem [61], assumes that the large num-
ber of observables leads to a statistical question where the
linear/Gaussian approximation holds and that all observables
have a similar sensitivity to all Wilson coefficients, so that the
number of degrees of freedom can be computed as described
above. This issue has been recently discussed in Refs. [62,63]
(see also earlier discussions on this topic in Refs. [44,64]).
These studies suggest that the effective number of degrees of
freedom to be actually considered could be lower than what

a naive computation would indicate, due to a weak sensitiv-
ity of the χ2 function to some of the Wilson coefficients. In
that case, our interpretation would be conservative, since it
yields higher p values and lower pulls than with the smaller
effective number of degree of freedom advocated in these
references.

4 Fit results

We start by considering the fits to NP scenarios which affect
muon modes only. Tables 1, 2 and 3 and Fig. 1 update the
corresponding tables and figures of Ref. [9] based on fits to
the full set of data (“All”, 254 observables2) or restricted to
quantities assessing LFUV (“LFUV”, 24 observables). The
results are similar to those in Ref. [9].

2 We detail the full list of the observables present in our fits in the
appendix, where we also provide their theoretical predictions within
the SM, as well as the individual tension with respect to the experi-
mental value. In the LFUV fits we include the observables Q4 and Q5
(measured by Belle) instead of P ′

4e,μ, P ′
5e,μ.
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Table 3 1 and 2 σ confidence intervals for the NP contributions to Wilson coefficients in the 6D hypothesis allowing for NP in b → sμμ operators
dominant in the SM and their chirally-flipped counterparts, for the fit “All”. The PullSM is 6.3σ and the p-value is 27.8%

CNP
7 CNP

9μ CNP
10μ C7′ C9′μ C10′μ

Best fit + 0.00 −1.08 + 0.15 + 0.00 + 0.16 −0.18

1 σ [−0.02,+0.01] [−1.25,−0.90] [+0.02,+0.28] [−0.01,+0.02] [−0.20,+0.53] [−0.36,+0.02]
2 σ [−0.04,+0.03] [−1.41,−0.72] [−0.10,+0.42] [−0.03,+0.03] [−0.56,+0.92] [−0.54,+0.22]
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Fig. 1 From left to right: allowed regions in the (CNP
9μ , CNP

10μ), (CNP
9μ , C9′μ = −C10′μ) and (CNP

9μ , CNP
9e ) planes for the corresponding 2D hypotheses,

using all available data (fit “All”) upper row or LFUV fit lower row. Dashed lines represent the 3 σ regions while the solid lines represent 1, 2 and
3 σ regions

We turn to scenarios that allow also for the presence of
lepton flavour universal NP [8,65] in addition to LFUV con-
tributions to muons only. We define the separation between
the two types of NP by considering the following shifts to
the value of the Wilson coefficients

Cie = CU
i , Ciμ = CU

i + CV
iμ , (10)

(with i = 9(′), 10(′)) for b → see and b → sμμ transitions
respectively. We update the scenarios considered in Ref. [9]
in Table 4 and Fig. 2. Interestingly, when we perform the 10-
dimensional fit allowing for NP in both muon and electron
coefficients (i.e. C7, C9�, C10� and C7′ , C9′�, C10′� for both � =
e and μ), we obtain almost the same results as in Table 3 for

the muon coefficients, whereas the electron coefficients are
only very loosely constrained, indicating the need for more
data on electronic modes. We obtain a PullSM of 6.0σ (p-
value of 28.3%) for this 10-dimensional fit.

5 Favoured scenarios and connection with other
observables

Several scenarios exhibit a significant improvement in the
description of the data compared to the SM. Figure 3 shows
the predictions for the observables Q5, RK and RK ∗ in sev-
eral of these scenarios. The large uncertainties for RK ∗ in
most NP scenarios come from the presence of three different
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Table 4 Most prominent patterns for LFU and LFUV NP contributions from Fit “All”. Scenarios 5 to 8 were introduced in Ref. [8]. Scenarios 9
(motivated by 2HDMs [66]) and 10–13 (motivated by Z ′ models with vector-like quarks [67]) were introduced in Ref. [9]

Scenario Best-fit point 1 σ 2 σ PullSM p value (%)

Scenario 5 CV
9μ −0.55 [−1.02,−0.11] [−1.56,+0.32] 6.6 25.2

CV
10μ +0.49 [+0.08,+0.84] [−0.44,+1.15]

CU
9 = CU

10 −0.35 [−0.73,+0.07] [−1.06,+0.60]
Scenario 6 CV

9μ = −CV
10μ −0.52 [−0.59,−0.44] [−0.67,−0.37] 6.9 26.6

CU
9 = CU

10 −0.38 [−0.50,−0.26] [−0.60,−0.13]
Scenario 7 CV

9μ −0.85 [−1.07,−0.63] [−1.30,−0.42] 6.7 23.8

CU
9 −0.26 [−0.52,+0.01] [−0.79,+0.30]

Scenario 8 CV
9μ = −CV

10μ −0.34 [−0.41,−0.27] [−0.49,−0.20] 7.2 34.5

CU
9 −0.82 [−0.99,−0.63] [−1.16,−0.42]

Scenario 9 CV
9μ = −CV

10μ −0.53 [−0.63,−0.43] [−0.74,−0.33] 6.3 17.5

CU
10 −0.24 [−0.44,−0.05] [−0.63,+0.15]

Scenario 10 CV
9μ −0.98 [−1.13,−0.84] [−1.27,−0.69] 6.9 27.9

CU
10 +0.27 [+0.13,+0.42] [−0.01,+0.56]

Scenario 11 CV
9μ −1.06 [−1.20,−0.91] [−1.34,−0.76] 6.9 27.4

CU
10′ −0.23 [−0.35,−0.10] [−0.47,+0.02]

Scenario 12 CV
9′μ +0.49 [+0.34,+0.65] [+0.19,+0.81] 3.2 1.4

CU
10 −0.25 [−0.38,−0.13] [−0.50,−0.00]

Scenario 13 CV
9μ −1.11 [−1.27,−0.96] [−1.41,−0.79] 6.7 29.6

CV
9′μ +0.37 [+0.13,+0.60] [−0.11,+0.84]

CU
10 +0.28 [+0.10,+0.47] [−0.08,+0.66]

CU
10′ +0.03 [−0.15,+0.21] [−0.33,+0.40]

helicity amplitudes involving different combinations of form
factors: if the SU (2)L symmetry of the SM is respected, one
amplitude dominates leading to reduced uncertainties for the
prediction of RK ∗ , but in other cases, the presence of several
helicity amplitudes leads to larger uncertainties. One can also
notice that Q5 is able to separate three cases of interest: the
SM, scenario 8 (CV

9μ = −CV
10μ, CU

9 ), and the scenarios with
right-handed couplings and a large negative contribution to
C9μ (Fig. 4a illustrates the importance of RK and P ′

5 in high-
lighting these scenarios compared to others considered in the
previous section).

As discussed in Ref. [9], scenario 8 allows for a model-
independent connection between the anomalies in b → s��
decays and those in b → cτν transitions [68]. This con-
nection arises in the SMEFT scenario where C(1) = C(3)

expressed in terms of gauge-invariant dimension-6 opera-
tors [69,70]. The operator involving third-generation leptons
explains RD(∗) and the one involving the second generation
gives a LFUV effect in b → sμμ processes. The constraint
from b → cτν and SU (2)L invariance leads to large con-
tributions enhancing b → sτ+τ− processes [70], whereas
the mixing into O9 generates CU

9 at μ = mb [71]. Therefore,
the SMEFT scenario described above reproduces scenario 8
with an additional correlation between CU

9 and RD(∗) [70,71]:

CU
9 ≈7.5

(
1 −

√
RD(∗)

RD(∗)SM

)(
1 + log(�2/(1TeV2))

10.5

)
,

(11)

where � is the typical scale of NP involved. We show the
global fit of scenario 8 without and with the additional
input on RD(∗) from Ref. [68] in Fig. 4b, taking the scale
� = 2 TeV. The best-fit point for (CV

9μ = −CV
10μ, CU

9 )

is (−0.36,−0.68), with 1 σ intervals [−0.43,−0.29] and
[−0.80,−0.55] respectively. The agreement among all data
is very good, shown by the fact that scenario 8 supplemented
with RD(∗) exhibits a pull with respect to the SM of 8.0 σ and a
p-value of 33.1%. Interestingly, the agreement between sce-
nario 8 and the allowed region for RD(∗) has increased with
the addition of RKS , RK ∗+ and Bs → φμ+μ− into the global
analysis, with a fit favouring less negative values for CU

9 . An
even better agreement could be reached if RD(∗) is slightly
further away from the SM expectations, or if the scale of New
Physics is increased.

6 Discussion

We have presented in this paper our most complete and
updated results of the global fit to b → s�� data includ-
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Fig. 2 From left to right : Allowed regions for the 2D scenarios presented in Table 4. Scenarios 6 and 7 on the upper row, 8 and 9 in the middle
row and 10–12 in the bottom row using all available data (fit “All”). Dashed lines represent the 3 σ regions while the solid lines represent 1, 2 and
3 σ regions

ing 254 observables. We see that the recent measurements
of LFUV observables RK , RKS , RK ∗+ by the LHCb col-
laboration together with the Bs → φμ+μ− update con-
firms the main conclusions of the previous update of RK

and Bs → μ+μ− with only marginal changes. Indeed, the
slight reduction of significances in most scenarios is mostly
driven by the inclusion of more SM-like observables com-
ing from the update of Bs → φμ+μ− (new bins) with little
sensitivity to C9μ and higher experimental precision. On the
other side, even if the scenario C9μ = −C9′μ can explain
neither RK nor RKS , it yields an acceptable solution for RK ∗

and RK ∗+ leading to a marginal increase of its significance
in the LFUV fit.

The overall hierarchy of preferences for specific scenarios
remains unchanged. In our previous update [9] we observed
an increase in the consistency among the data analysed in the
framework of the favoured scenarios. More specifically, we
saw that the most favoured 1D scenario remains the case of a
vector coupling to muons encoded in C9μ. The LHCb update
of the Bs → μ+μ− branching ratio, in better agreement with
the SM expectation, reduced marginally the room available
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Fig. 3 Values of 〈Q5〉[1.1,6],
〈RK 〉[1.1,6], 〈RK ∗ 〉[1.1,6] in the
SM and nine different scenarios:
SM (black), CNP

9μ (orange),

(CNP
9μ , C9′μ) (yellow),

(CNP
9μ , C10′μ) (light green),

(CNP
9μ = −C9′μ, CNP

10μ = C10′μ)

(dark green),
(CNP

9μ , C9′μ = −C10′μ) (light

blue), (CV
9μ = −CV

10μ, CU
9 ) (dark

blue), (CV
9μ, CU

10) (purple),

(CV
9μ, CU

10′ ) (pink),

(CV
9μ, CV

9′μ, CU
10, CU

10′ ) (red). The
boxes correspond to the
predictions of the 1 σ regions at
the b.f.p. value of the Wilson
coefficients in each of the
scenarios for the fit to the “All”
data set

(a) (b)

Fig. 4 Left: 〈RK 〉[1.1,6] versus 〈P ′
5〉[4,6] in five different scenarios:

CNP
9μ (blue), CNP

9μ = −CNP
10μ (orange), and (CV

9μ = −CV
10μ, CU

9 ) (red),

(CNP
9μ , C9′μ = −C10′μ) (black), and CNP

10μ (purple). The curves corre-
spond only to the predictions for central values. In the 2D scenarios
(red and black) the Wilson coefficient not shown is set to its b.f.p. value.
The current experimental values from the LHCb collaboration are also
indicated (orange horizontal and green vertical bands respectively). The

dots correspond to the b.f.p. values of the corresponding scenario for the
fit to the “All” data set. Right: Preferred regions at the 1, 2 and 3 σ level

(green) in the (CV
9μ = −CV

10μ, CU
9 ) plane from b → s�� data. The red

contour lines show the corresponding regions once RD(∗) is included in
the fit (for � = 2 TeV). The horizontal blue (vertical yellow) band is
consistent with RD(∗) (RK ) at the 2 σ level and the contour lines show
the predicted values for these ratios

for NP in C10μ for the scenarios considered here, which do
not feature NP contributions from (pseudo)scalar operators.

Finally, the two classes of favoured scenarios of Ref. [9]
find their status strengthened, namely

• The purely muonic hypotheses with right handed cur-
rents (CNP

9μ , C10′μ) and (CNP
9μ , C9′μ = −C10′μ). The lat-

ter scenario (called Hypothesis 5 in Table 2) features
a right-handed contribution which becomes compatible
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with zero once the 2σ confidence region is considered.
Such right-handed currents tend to counterbalance the
impact on RK of a large negative C9μ which is preferred
by many observables considered in the global fit.

• Scenario 8 (CV
9μ = −CV

10μ, CU
9 ) with a universal com-

ponent CU
9 together with a muonic component obeying

SU (2)L invariance. As illustrated in Fig. 4b, this sce-
nario reaches 8.0 σ once combined with RD and RD∗ in
an EFT framework explaining b → c�ν and b → s�+�−
through correlated singlet and triplet dimension-6 oper-
ators combining quark and lepton bilinears.

As an outlook for the future, besides the importance of
updating the LFU ratios RK (∗) and the angular distributions
of B → K ∗�+�− and Bs → φ�+�− modes, two experimen-
tal inputs can help guiding future analyses. First, the obser-
vation of enhanced b → sτ+τ− transitions would favour
naturally a scenario with a LFU contribution in CU

9 . Second,
the measurement of a large Q5 would favour a scenario with
a large negative vector coupling C9μ, possibly with addi-
tional right-handed currents. Indeed, as illustrated by Fig. 3,
the observable Q5 [72] can distinguish between the purely
muonic hypotheses with right handed currents (e.g. Hypoth-
esis 5) and scenario 8 with a universal component in CU

9 , with
a higher value in the former case and a slightly lower value
in the latter [65].

Further progress may also be achieved through a bet-
ter understanding of the theoretical uncertainties involved
[49,50,73],more data on other modes and with other experi-
mental setups (in particular Belle II [74]), but also the deter-
mination of additional observables [75–77]. This supplemen-
tary information should help us to corner the actual NP pat-
tern hinted at by the b → s�� anomalies currently observed
and confirmed as an evidence in RK by the LHCb collabo-
ration.

Such identification at the EFT level is the first and manda-
tory step to build viable phenomenological models for New
Physics, to be probed and confirmed through decays involv-
ing other families of quarks and leptons, as well as direct
production experiments.
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Appendix A: Inputs to our global fits

We provide here the observables included in our Fits “All”
(254 observables) and “LFUV” (24 observables, replacing
P ′

4e,μ, P ′
5e,μ by Q4, Q5, measured by Belle). In the following

table, we provide all the observables considered in both types
of fits with the corresponding legend: no mark for observables
for the fit “All” only, ‡ for the fit “LFUV” only, and † for
both fits “LFUV” and “All”. The theoretical predictions of
the observables in the SM as well as the individual tension
with respect to the experimental value are also provided.

Our angle convention and definition of the angular observ-
ables for the B → K ∗�+�− decay differs from the usual
LHCb convention [78,79]. We follow the conventions given
in Ref. [6] where a dictionary relating both conventions can
be found in Eq. (16).

Standard model predictions

107 × BR(B+ →
K+μ+μ−)[LHCb]

Standard
model

Experiment
[80]

Pull

[0.1, 0.98] 0.32 ± 0.10 0.29 ± 0.02 +0.3
[1.1, 2] 0.33 ± 0.10 0.21 ± 0.02 +1.2
[2, 3] 0.37 ± 0.11 0.28 ± 0.02 +0.7
[3, 4] 0.36 ± 0.12 0.25 ± 0.02 +0.9
[4, 5] 0.36 ± 0.12 0.22 ± 0.02 +1.2
[5, 6] 0.36 ± 0.12 0.23 ± 0.02 +1.0
[6, 7] 0.36 ± 0.13 0.25 ± 0.02 +0.9
[7, 8] 0.36 ± 0.13 0.23 ± 0.02 +0.9
[15, 22] 1.02 ± 0.14 0.85 ± 0.05 +1.2
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Standard model predictions

107 × BR(B0 →
K 0μ+μ−)[LHCb]

Standard
model

Experiment
[80]

Pull

[0.1, 2] 0.65 ± 0.20 0.23 ± 0.11 +1.9
[2, 4] 0.68 ± 0.21 0.37 ± 0.11 +1.3
[4, 6] 0.67 ± 0.22 0.35 ± 0.10 +1.3
[6, 8] 0.66 ± 0.24 0.54 ± 0.12 +0.5
[15, 22] 0.94 ± 0.13 0.67 ± 0.12 +1.6

107 × BR(B0 →
K ∗0μ+μ−)[LHCb]

Standard
model

Experiment
[81]

Pull

[0.1, 0.98] 0.92 ± 0.80 0.89 ± 0.09 +0.0
[1.1, 2.5] 0.56 ± 0.35 0.46 ± 0.06 +0.3
[2.5, 4] 0.58 ± 0.40 0.50 ± 0.06 +0.2
[4, 6] 0.91 ± 0.66 0.71 ± 0.07 +0.3
[6, 8] 1.12 ± 0.89 0.86 ± 0.08 +0.3
[15, 19] 2.50 ± 0.21 1.74 ± 0.14 +3.0

107 × BR(B+ →
K ∗+μ+μ−)[LHCb]

Standard
model

Experiment
[80]

Pull

[0.1, 2] 1.40 ± 1.08 1.12 ± 0.27 +0.3
[2, 4] 0.84 ± 0.56 1.12 ± 0.32 −0.4
[4, 6] 0.99 ± 0.72 0.50 ± 0.20 +0.7
[6, 8] 1.22 ± 0.96 0.66 ± 0.22 +0.6
[15, 19] 2.69 ± 0.23 1.60 ± 0.32 +2.8

107 × BR(Bs →
φμ+μ−)[LHCb]

Standard
model

Experiment
[32]

Pull

[0.1, 0.98] 1.06 ± 0.23 0.68 ± 0.06 +1.6
[1.1, 2.5] 0.71 ± 0.15 0.44 ± 0.05 +1.7
[2.5, 4] 0.71 ± 0.15 0.35 ± 0.04 +2.3
[4, 6] 1.04 ± 0.21 0.62 ± 0.06 +1.9
[6, 8] 1.21 ± 0.25 0.63 ± 0.06 +2.2
[15, 19] 2.29 ± 0.15 1.85 ± 0.13 +1.9

FL (B0 → K ∗0μ+μ−)

[LHCb]
Standard
model

Experiment
[82]

Pull

[0.1, 0.98] 0.23 ± 0.24 0.26 ± 0.03 −0.1
[1.1, 2.5] 0.68 ± 0.26 0.66 ± 0.05 +0.1
[2.5, 4] 0.77 ± 0.23 0.76 ± 0.05 +0.0
[4, 6] 0.71 ± 0.28 0.68 ± 0.04 +0.1
[6, 8] 0.63 ± 0.32 0.65 ± 0.03 −0.0
[15, 19] 0.34 ± 0.03 0.35 ± 0.02 −0.1

P1(B0 → K ∗0μ+μ−)

[LHCb]
Standard
model

Experiment
[82]

Pull

[0.1, 0.98] 0.03 ± 0.08 0.09 ± 0.12 −0.4
[1.1, 2.5] −0.00±0.05 −0.62±0.30 +2.0
[2.5, 4] 0.00 ± 0.06 0.17 ± 0.37 −0.4
[4, 6] 0.02 ± 0.12 0.09 ± 0.24 −0.2
[6, 8] 0.02 ± 0.13 −0.07±0.21 +0.4
[15, 19] −0.64±0.06 −0.58±0.10 −0.6

P2(B0 → K ∗0μ+μ−)

[LHCb]
Standard
model

Experiment
[82]

Pull

[0.1, 0.98] 0.12 ± 0.02 0.00 ± 0.04 +2.8
[1.1, 2.5] 0.44 ± 0.03 0.44 ± 0.10 −0.0
[2.5, 4] 0.23 ± 0.13 0.19 ± 0.12 +0.2
[4, 6] −0.19±0.11 −0.11±0.07 −0.6
[6, 8] −0.38±0.07 −0.21±0.05 −2.1
[15, 19] −0.36±0.02 −0.36±0.02 −0.1

P3(B0 → K ∗0μ+μ−)

[LHCb]
Standard
model

Experiment
[82]

Pull

[0.1, 0.98] −0.00±0.00 −0.07±0.06 +1.3
[1.1, 2.5] 0.00 ± 0.00 −0.32±0.15 +2.2
[2.5, 4] 0.00 ± 0.01 −0.05±0.20 +0.3
[4, 6] 0.00 ± 0.01 0.09 ± 0.14 −0.6
[6, 8] 0.00 ± 0.00 0.07 ± 0.10 −0.6
[15, 19] 0.00 ± 0.02 −0.05±0.05 +1.0

P ′
4(B

0 → K ∗0μ+μ−)

[LHCb]
Standard
model

Experiment
[82]

Pull

[0.1, 0.98] −0.50±0.16 −0.27±0.24 −0.8
[1.1, 2.5] −0.07±0.16 0.16 ± 0.29 −0.7
[2.5, 4] 0.53 ± 0.21 0.87 ± 0.35 −0.9
[4, 6] 0.82 ± 0.15 0.62 ± 0.23 +0.7
[6, 8] 0.93 ± 0.11 1.15 ± 0.19 −1.0
[15, 19] 1.28 ± 0.02 1.28 ± 0.12 +0.0

P ′
5(B

0 → K ∗0μ+μ−)

[LHCb]
Standard
model

Experiment
[82]

Pull

[0.1, 0.98] 0.67 ± 0.13 0.52 ± 0.10 +0.9
[1.1, 2.5] 0.19 ± 0.11 0.37 ± 0.12 −1.0
[2.5, 4] −0.47±0.12 −0.15±0.15 −1.7
[4, 6] −0.82±0.08 −0.44±0.12 −2.7
[6, 8] −0.94±0.08 −0.58±0.09 −2.9
[15, 19] −0.57±0.05 −0.67±0.06 +1.2

P ′
6(B

0 → K ∗0μ+μ−)

[LHCb]
Standard
model

Experiment
[82]

Pull

[0.1, 0.98] −0.06±0.02 0.02 ± 0.09 −0.7
[1.1, 2.5] −0.07±0.03 −0.23±0.13 +1.2
[2.5, 4] −0.06±0.03 −0.16±0.15 +0.6
[4, 6] −0.04±0.02 −0.29±0.12 +2.2
[6, 8] −0.02±0.01 −0.16±0.10 +1.4
[15, 19] −0.00±0.07 0.07 ± 0.07 −0.8

P ′
8(B

0 → K ∗0μ+μ−)

[LHCb]
Standard
model

Experiment
[82]

Pull

[0.1, 0.98] 0.02 ± 0.02 0.01 ± 0.24 +0.0
[1.1, 2.5] 0.04 ± 0.03 0.73 ± 0.32 −2.2
[2.5, 4] 0.05 ± 0.03 −0.07±0.34 +0.4
[4, 6] 0.03 ± 0.02 −0.33±0.25 +1.4
[6, 8] 0.02 ± 0.01 0.26 ± 0.20 −1.2
[15, 19] −0.00±0.03 −0.02±0.14 +0.2
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FL (B+ → K ∗+μ+μ−)

[LHCb]
Standard
model

Experiment
[24]

Pull

[0.1, 0.98] 0.23 ± 0.24 0.34 ± 0.12 −0.4
[1.1, 2.5] 0.68 ± 0.26 0.54 ± 0.19 +0.5
[2.5, 4] 0.77 ± 0.23 0.17 ± 0.24 +1.8
[4, 6] 0.71 ± 0.28 0.67 ± 0.14 +0.1
[6, 8] 0.63 ± 0.32 0.39 ± 0.21 +0.6
[15, 19] 0.34 ± 0.03 0.40 ± 0.13 −0.4

P1(B+ → K ∗+μ+μ−)

[LHCb]
Standard
model

Experiment
[24]

Pull

[0.1, 0.98] 0.03 ± 0.08 0.44 ± 0.41 −1.0
[1.1, 2.5] −0.00±0.05 1.60 ± 4.93 −0.3
[2.5, 4] 0.00 ± 0.06 −0.29±1.45 +0.2
[4, 6] 0.02 ± 0.12 −1.24±1.21 +1.0
[6, 8] 0.02 ± 0.13 −0.78±0.70 +1.1
[15, 19] −0.64±0.06 −0.70±0.44 +0.1

P2(B+ → K ∗+μ+μ−)

[LHCb]
Standard
model

Experiment
[24]

Pull

[0.1, 0.98] 0.12 ± 0.02 0.05 ± 0.12 +0.6
[1.1, 2.5] 0.44 ± 0.03 0.28 ± 0.45 +0.4
[2.5, 4] 0.23 ± 0.13 −0.03±0.28 +0.8
[4, 6] −0.19±0.11 0.15 ± 0.21 −1.5
[6, 8] −0.38±0.07 0.06 ± 0.14 −2.9
[15, 19] −0.36±0.02 −0.34±0.10 −0.2

P3(B+ → K ∗+μ+μ−)

[LHCb]
Standard
model

Experiment
[24]

Pull

[0.1, 0.98] −0.00±0.00 0.42 ± 0.22 −2.0
[1.1, 2.5] 0.00 ± 0.00 0.09 ± 1.01 −0.1
[2.5, 4] 0.00 ± 0.01 0.45 ± 0.65 −0.7
[4, 6] 0.00 ± 0.01 0.52 ± 0.83 −0.6
[6, 8] 0.00 ± 0.00 −0.17±0.34 +0.5
[15, 19] 0.00 ± 0.02 0.07 ± 0.13 −0.5

P ′
4(B

+ → K ∗+μ+μ−)

[LHCb]
Standard
model

Experiment
[24]

Pull

[0.1, 0.98] −0.50±0.16 0.18 ± 0.76 −0.8
[1.1, 2.5] −0.07±0.16 −1.16±1.26 +0.9
[2.5, 4] 0.53 ± 0.21 1.62 ± 2.20 −0.5
[4, 6] 0.82 ± 0.15 1.58 ± 0.96 −0.8
[6, 8] 0.93 ± 0.11 0.86 ± 0.91 +0.1
[15, 19] 1.28 ± 0.02 0.78 ± 0.47 +1.1

P ′
5(B

+ → K ∗+μ+μ−)

[LHCb]
Standard
model

Experiment
[24]

Pull

[0.1, 0.98] 0.67 ± 0.13 0.51 ± 0.32 +0.5
[1.1, 2.5] 0.19 ± 0.11 0.88 ± 0.72 −1.0
[2.5, 4] −0.47±0.12 −0.87±1.68 +0.2
[4, 6] −0.82±0.08 −0.25±0.41 −1.4
[6, 8] −0.94±0.08 −0.15±0.41 −1.9
[15, 19] −0.57±0.05 −0.24±0.17 −1.9

P ′
6(B

+ → K ∗+μ+μ−)

[LHCb]
Standard
model

Experiment
[24]

Pull

[0.1, 0.98] −0.06±0.02 −0.02 ± 0.40 −0.1
[1.1, 2.5] −0.07±0.03 0.25 ± 1.32 −0.2
[2.5, 4] −0.06±0.03 −0.37 ± 3.91 +0.1
[4, 6] −0.04±0.02 −0.09 ± 0.41 +0.1
[6, 8] −0.02±0.01 −0.74 ± 0.40 +1.8
[15, 19] −0.00±0.07 −0.28 ± 0.19 +1.4

P ′
8(B

+ → K ∗+μ+μ−)

[LHCb]
Standard
model

Experiment
[24]

Pull

[0.1, 0.98] 0.02 ± 0.02 −0.90 ± 1.02 +1.0
[1.1, 2.5] 0.04 ± 0.03 −0.24 ± 1.52 +0.2
[2.5, 4] 0.05 ± 0.03 −0.24±15.80 +0.0
[4, 6] 0.03 ± 0.02 0.30 ± 0.97 −0.3
[6, 8] 0.02 ± 0.01 0.78 ± 0.78 −1.0
[15, 19] −0.00±0.03 0.22 ± 0.38 −0.6

P1(Bs → φμ+μ−)

[LHCb]
Standard
model

Experiment
[31]

Pull

[0.1, 0.98] 0.11 ± 0.08 −0.01 ± 0.19 +0.6
[1.1, 4] 0.01 ± 0.06 −0.22 ± 0.42 +0.5
[4, 6] −0.17±0.11 −1.09 ± 0.47 +1.9
[6, 8] −0.21±0.11 0.07 ± 0.43 −0.6
[15, 18.9] −0.69±0.03 −0.77 ± 0.14 +0.6

P ′
4(Bs → φμ+μ−)

[LHCb]
Standard
model

Experiment
[31]

Pull

[0.1, 0.98] −0.45±0.15 −0.98 ± 0.38 +1.3
[1.1, 4] 0.44 ± 0.15 0.49 ± 0.35 −0.1
[4, 6] 1.01 ± 0.08 0.97 ± 0.41 +0.1
[6, 8] 1.08 ± 0.06 0.73 ± 0.32 +1.1
[15, 18.9] 1.30 ± 0.01 0.87 ± 0.20 +2.2

P ′
6(Bs → φμ+μ−)

[LHCb]
Standard
model

Experiment
[31]

Pull

[0.1, 0.98] −0.07±0.02 −0.41 ± 0.16 +2.1
[1.1, 4] −0.07±0.02 −0.23 ± 0.17 +0.9
[4, 6] −0.03±0.01 0.38 ± 0.20 −2.1
[6, 8] −0.02±0.01 0.07 ± 0.17 −0.5
[15, 18.9] −0.00±0.07 0.01 ± 0.10 −0.1

FL (Bs → φμ+μ−)

[LHCb]
Standard
model

Experiment
[31]

Pull

[0.1, 0.98] 0.28 ± 0.09 0.25 ± 0.05 +0.3
[1.1, 4] 0.77 ± 0.05 0.72 ± 0.06 +0.6
[4, 6] 0.71 ± 0.05 0.70 ± 0.05 +0.1
[6, 8] 0.60 ± 0.06 0.62 ± 0.05 −0.3
[15, 18.9] 0.36 ± 0.02 0.36 ± 0.04 −0.1
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B0 → K ∗0e+e−
[LHCb]

Standard
model

Experiment
[29]

Pull

FL [0.008, 0.257] 0.03 ± 0.06 0.04 ± 0.03 −0.2
P1[0.008, 0.257] 0.03 ± 0.08 0.11 ± 0.10 −0.6
P2[0.008, 0.257] 0.01 ± 0.00 0.03 ± 0.04 −0.5

RK+ [LHCb]† Standard
model

Experiment
[17]

Pull

[1.1, 6.0] 1.00 ± 0.01 0.85 ± 0.04 +3.4

RK 0 [LHCb]† Standard
model

Experiment
[5]

Pull

[1.1, 6.0] 1.00 ± 0.01 0.66 ± 0.20 +1.7

RK [Belle]† Standard
model

Experiment
[18]

Pull

[1.0, 6.0] 1.00 ± 0.01 1.03 ± 0.28 −0.1
[14.18, 22.90] 1.00 ± 0.01 1.16 ± 0.30 −0.6

RK ∗0 [LHCb]† Standard
Model

Experiment
[83]

Pull

[0.045, 1.1] 0.91 ± 0.02 0.66 ± 0.11 +2.2
[1.1, 6.0] 1.00 ± 0.01 0.69 ± 0.12 +2.6

RK ∗+ [LHCb]† Standard
model

Experiment
[5]

Pull

[0.045, 6.0] 0.93 ± 0.05 0.70 ± 0.18 +1.2

RK ∗ [Belle]† Standard
model

Experiment
[84]

Pull

[0.045, 1.1] 0.92 ± 0.02 0.52 ± 0.36 +1.1
[1.1, 6.0] 1.00 ± 0.01 0.96 ± 0.46 +0.1
[15, 19] 1.00 ± 0.00 1.18 ± 0.53 −0.5

P ′
4(B → K ∗e+e−)

[Belle]
Standard
model

Experiment
[85]

Pull

[0.1, 4] −0.09±0.15 −0.68±0.93 +0.6
[4, 8] 0.88 ± 0.13 1.04 ± 0.48 −0.3
[14.18, 19] 1.26 ± 0.03 0.30 ± 0.82 +1.2

P ′
4(B → K ∗μ+μ−)

[Belle]
Standard
model

Experiment
[85]

Pull

[0.1, 4] −0.06±0.16 0.76 ± 1.03 −0.8
[4, 8] 0.88 ± 0.13 0.14 ± 0.66 +1.1
[14.18, 19] 1.26 ± 0.03 0.20 ± 0.79 +1.3

P ′
5(B → K ∗e+e−)

[Belle]
Standard
model

Experiment
[85]

Pull

[0.1, 4] 0.18 ± 0.09 0.51 ± 0.47 −0.7
[4, 8] −0.88±0.07 −0.52±0.28 −1.3
[14.18, 19] −0.60±0.05 −0.91±0.36 +0.9

P ′
5(B → K ∗μ+μ−)

[Belle]
Standard
model

Experiment
[85]

Pull

[0.1, 4] 0.17 ± 0.10 0.42 ± 0.41 −0.6
[4, 8] −0.89±0.07 −0.03±0.32 −2.7
[14.18, 19] −0.60±0.05 −0.13±0.39 −1.3

Q4(B → K ∗)
[Belle]‡

Standard
model

Experiment
[85]

Pull

[0.1, 4] 0.03 ± 0.01 1.45 ± 1.39 −1.0
[4, 8] 0.00 ± 0.01 −0.90±0.80 +1.1
[14.18, 19] 0.00 ± 0.01 −0.08±1.14 +0.1

Q5(B → K ∗)
[Belle]‡

Standard
model

Experiment
[85]

Pull

[0.1, 4] −0.02±0.01 −0.10±0.62 +0.1
[4, 8] −0.00±0.01 0.50 ± 0.42 −1.2
[14.18, 19] −0.00±0.01 0.78 ± 0.51 −1.5

107 × BR(B+ →
K+μ+μ−)[Belle]

Standard
model

Experiment
[18]

Pull

[1, 6] 1.82 ± 0.58 2.30 ± 0.40 −0.7
[14.18, 22.9] 1.23 ± 0.17 1.34 ± 0.23 −0.4

107 × BR(B0 →
K 0μ+μ−)[Belle]

Standard
model

Experiment
[18]

Pull

[1, 6] 1.69 ± 0.54 0.62 ± 0.38 +1.6
[14.18, 22.9] 1.14 ± 0.15 0.98 ± 0.40 +0.4

FL (B0 → K ∗0μ+μ−)

[ATLAS]
Standard
model

Experiment
[86]

Pull

[0.04, 2] 0.36 ± 0.30 0.44 ± 0.11 −0.3
[2, 4] 0.76 ± 0.23 0.64 ± 0.12 +0.5
[4, 6] 0.71 ± 0.28 0.42 ± 0.18 +0.9

P1(B0 → K ∗0μ+μ−)

[ATLAS]
Standard
model

Experiment
[86]

Pull

[0.04, 2] 0.02 ± 0.07 −0.05±0.31 +0.2
[2, 4] −0.00±0.05 −0.78±0.61 +1.3
[4, 6] 0.02 ± 0.12 0.14 ± 0.50 −0.2

P ′
4(B

0 → K ∗0μ+μ−)

[ATLAS]
Standard
model

Experiment
[86]

Pull

[0.04, 2] −0.35±0.14 −0.62±0.89 +0.3
[2, 4] 0.43 ± 0.21 1.52 ± 0.75 −1.4
[4, 6] 0.82 ± 0.15 −1.28±0.75 +2.7

P ′
5(B

0 → K ∗0μ+μ−)

[ATLAS]
Standard
model

Experiment
[86]

Pull

[0.04, 2] 0.50 ± 0.10 0.67 ± 0.31 −0.5
[2, 4] −0.36±0.12 −0.33±0.34 −0.1
[4, 6] −0.82±0.08 0.26 ± 0.39 −2.7

P ′
6(B

0 → K ∗0μ+μ−)

[ATLAS]
Standard
model

Experiment
[86]

Pull

[0.04, 2] −0.06±0.02 −0.18±0.21 +0.6
[2, 4] −0.06±0.03 0.31 ± 0.34 −1.1
[4, 6] −0.04±0.02 0.06 ± 0.30 −0.3

P ′
8(B

0 → K ∗0μ+μ−)

[ATLAS]
Standard
model

Experiment
[86]

Pull

[0.04, 2] 0.03 ± 0.02 0.58 ± 1.03 −0.5
[2, 4] 0.05 ± 0.03 −2.14±1.13 +1.9
[4, 6] 0.03 ± 0.02 0.48 ± 0.86 −0.5
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P1(B0 → K ∗0μ+μ−)

[CMS 8 TeV]
Standard
model

Experiment
[87]

Pull

[1, 2] 0.00 ± 0.06 0.12 ± 0.48 −0.2
[2, 4.3] 0.00 ± 0.05 −0.69±0.62 +1.1
[4.3, 6] 0.03 ± 0.12 0.53 ± 0.38 −1.3
[6, 8.68] 0.02 ± 0.14 −0.47±0.31 +1.4
[16, 19] −0.70±0.05 −0.53±0.25 −0.7

P ′
5(B

0 → K ∗0μ+μ−)

[CMS 8 TeV]
Standard
model

Experiment
[87]

Pull

[1, 2] 0.33 ± 0.11 0.10 ± 0.33 +0.7
[2, 4.3] −0.41±0.12 −0.57±0.38 +0.4
[4.3, 6] −0.84±0.08 −0.96±0.33 +0.4
[6, 8.68] −0.95±0.08 −0.64±0.23 −1.3
[16, 19] −0.53±0.04 −0.56±0.14 +0.2

FL (B0 → K ∗0μ+μ−)

[CMS 8 TeV]
Standard
model

Experiment
[88]

Pull

[1, 2] 0.63 ± 0.28 0.64 ± 0.12 −0.0
[2, 4.3] 0.76 ± 0.23 0.80 ± 0.10 −0.2
[4.3, 6] 0.71 ± 0.28 0.62 ± 0.12 +0.3
[6, 8.68] 0.62 ± 0.32 0.50 ± 0.08 +0.3
[16, 19] 0.34 ± 0.03 0.38 ± 0.07 −0.6

AFB(B0 → K ∗0μ+μ−)

[CMS 8 TeV]
Standard
model

Experiment
[88]

Pull

[1, 2] −0.20±0.18 −0.27±0.41 +0.3
[2, 4.3] −0.08±0.08 −0.12±0.18 +0.2
[4.3, 6] 0.09 ± 0.11 0.01 ± 0.15 +0.4
[6, 8.68] 0.22 ± 0.21 0.03 ± 0.10 +0.8
[16, 19] 0.34 ± 0.03 0.35 ± 0.07 −0.2

107 × BR(B0 → K ∗0μ+μ−)

[CMS 8 TeV]
Standard
model

Experiment
[88]

Pull

[1, 2] 0.42 ± 0.26 0.46 ± 0.08 −0.1
[2, 4.3] 0.89 ± 0.61 0.76 ± 0.12 +0.2
[4.3, 6] 0.78 ± 0.58 0.58 ± 0.10 +0.4
[6, 8.68] 1.57 ± 1.25 1.26 ± 0.13 +0.2
[16, 19] 1.73 ± 0.14 1.26 ± 0.13 +2.5

FH (B+ → K+μ+μ−)

[CMS 8 TeV]
Standard
model

Experiment
[28]

Pull

[1, 2] 0.05 ± 0.00 0.21 ± 0.49 −0.4
[2, 4.3] 0.02 ± 0.00 0.85 ± 0.37 −2.4
[4.3, 8.68] 0.01 ± 0.00 0.01 ± 0.04 +0.0
[16, 18] 0.01 ± 0.00 0.07 ± 0.10 −0.6
[18, 22] 0.01 ± 0.00 0.10 ± 0.13 −0.7

AFB(B+ → K+μ+μ−)

[CMS 8 TeV]
Standard
model

Experiment
[28]

Pull

[1, 2] 0 ± 0.00 0.08 ± 0.23 −0.4
[2, 4.3] 0 ± 0.00 −0.04±0.14 +0.3
[4.3, 8.68] 0 ± 0.00 0.00 ± 0.04 +0.0
[16, 18] 0 ± 0.00 0.04 ± 0.06 −0.8
[18, 22] 0 ± 0.00 0.05 ± 0.05 −1.1

FL (B+ → K ∗+μ+μ−)

[CMS 8 TeV]
Standard
model

Experiment
[26]

Pull

[1, 8.68] 0.67 ± 0.29 0.60 ± 0.34 +0.2
[14.18, 19] 0.35 ± 0.04 0.55 ± 0.14 −1.7

AFB(B+ → K ∗+μ+μ−)

[CMS 8 TeV]
Standard
model

Experiment
[26]

Pull

[1, 8.68] 0.08 ± 0.09 −0.14 ± 0.39 +0.6
[14.18, 19] 0.37 ± 0.03 0.33 ± 0.12 +0.3

FL (B0 → K ∗0μ+μ−)

[CMS 7 TeV]
Standard
model

Experiment
[89]

Pull

[1, 2] 0.63 ± 0.28 0.60 ± 0.34 +0.1
[2, 4.3] 0.76 ± 0.23 0.65 ± 0.17 +0.4
[4.3, 8.68] 0.65 ± 0.31 0.81 ± 0.14 −0.5
[16, 19] 0.34 ± 0.03 0.44 ± 0.08 −1.3

AFB(B0 → K ∗0μ+μ−)

[CMS 7 TeV]
Standard
model

Experiment
[89]

Pull

[1, 2] −0.20 ± 0.18 −0.29 ± 0.41 +0.2
[2, 4.3] −0.08 ± 0.08 −0.07 ± 0.20 −0.0
[4.3, 8.68] 0.18 ± 0.18 −0.01 ± 0.11 +0.9
[16, 19] 0.34 ± 0.03 0.41 ± 0.06 −1.1

107 × BR(B0 → K ∗0μ+μ−)

[CMS 7 TeV]
Standard
model

Experiment
[89]

Pull

[1, 2] 0.42 ± 0.26 0.48 ± 0.15 −0.2
[2, 4.3] 0.89 ± 0.61 0.87 ± 0.18 +0.0
[4.3, 8.68] 2.35 ± 1.82 1.62 ± 0.35 +0.4
[16, 19] 1.73 ± 0.14 1.56 ± 0.23 +0.6

105 × BR(B0 → K ∗0γ )

[PDG]†
Standard
model

Experiment
[90]

Pull

4.57 ± 5.27 4.18 ± 0.25 +0.1

105 × BR(B+ → K ∗+γ )

[PDG]†
Standard
model

Experiment
[90]

Pull

4.61 ± 5.49 3.92 ± 0.22 +0.1

105 × BR(Bs → φγ )

[PDG]†
Standard
model

Experiment
[90]

Pull

4.86 ± 1.35 3.40 ± 0.40 +1.0

104 × BR(B → Xsγ )

[HFLAV]†
Standard
model [91]

Experiment
[68]

Pull

3.32 ± 0.15 3.40 ± 0.17 −0.4

S(B → K ∗γ )

[BaBar+Belle]†
Standard
model [92]

Experiment
[68]

Pull

−0.03 ± 0.01 −0.16 ± 0.22 +0.6

AI (B → K ∗γ )

[BaBar+Belle]†
Standard
model [92]

Experiment
[68]

Pull

0.041 ± 0.025 0.063 ± 0.017 −0.7

109 × BR(Bs → μ+μ−)

[LHCb+CMS+ATLAS]†
Standard
model [23]

Experiment
[22]

Pull

3.64 ± 0.14 2.85 ± 0.34 +2.2

106 × BR(B → Xsμ
+μ−)

[BaBar]†
Standard
model [93]

Experiment
[94]

Pull

[1, 6] 1.73 ± 0.13 0.66 ± 0.88 +1.2
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106 × BR(B →
Xse+e−)[BaBar]†

Standard
model [93]

Experiment
[94]

Pull

[1, 6] 1.78 ± 0.13 1.93 ± 0.55 −0.3
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