
Institut für
Höchstleistungsrechnen

Li Zhong

HYBRID DEEP LEARNING APPROACHES
ON HPC AND QUANTUM COMPUTING
FOR DATA ANALYSIS

 FORSCHUNGS- UND ENTWICKLUNGSBERICHTE

ISSN 0941 - 4665 Juli 2024 HLRS-27

HYBRID DEEP LEARNING APPROACHES
ON HPC AND QUANTUM COMPUTING
FOR DATA ANALYSIS

Höchstleistungsrechenzentrum
Universität Stuttgart
Prof. Dr.-Ing. Dr. h.c. Dr. h.c. Prof. E.h. Michael M. Resch
Nobelstrasse 19 - 70569 Stuttgart
Institut für Höchstleistungsrechnen

von der Fakultät Energie-, Verfahrens- und Biotechnik der
Universität Stuttgart zur Erlangung der Würde eines Doktor-
Ingenieurs (Dr.-Ing.) genehmigte Abhandlung

vorgelegt von

Li Zhong
aus Jiangsu, China

Hauptberichter:	 Prof. Dr.-Ing. Dr. h.c. Dr. h.c. Prof. E.h.
				 Michael M. Resch
Mitberichter:		 	 Prof. Dr. Florina M. Ciorba

Tag der Einreichung:		 	
Tag der mündlichen Prüfung: 16. Juli 2024

ISSN 0941 - 4665 Juli 2024 HLRS-27

D93

04. Oktober 2023

Abstract

In the past decade, machine learning, specifically deep learning methods started to

revolutionize several application domains. From the point of view of simulation in en-

gineering this revolution is especially interesting as it might allow to move from human

planned simulation to computer analysed data usage and data evaluation for engineering

simulations. This can help not only to shorten the simulation testing but also to better

understand the simulation data themselves. This thesis will therefore present material

science as practical example to better understand the potential of machine learning in

engineering simulations. However, deep learning methods are impeded by computational

and storage constraints, which quantum computing can provide potential revolutionary

breakthroughs. Therefore, this thesis also explores the benefits that quantum technolo-

gies can bring to deep learning, and employs image classification and partial differential

equation solving as specific case studies to examine the advantages of quantum neural

networks (QNNs).

In order to tackle the issue of inadequate ground truth data for deep learning and reduce

the demand for expertise, computing resources, and time in determining the validated

parameters for simulation, this thesis proposes a novel hybrid data analysis methodol-

ogy that combines deep learning and simulation on heterogeneous HPC clusters. While

deep learning has demonstrated strong abilities at extracting high-level representations

of complex processes, the lack of sufficient ground truth data is often a critical issue faced

in various areas. In fact, it is almost impossible to generate enough data in real life for

supervised learning in many real-world problems, which are limited by scientific instru-

ments, the physical phenomenon itself, or the complexity of modeling. In this thesis, a

new approach is proposed to solve such issues, which can improve accuracy, accelerate

time to solution and significantly reduce the cost of time and effort. The effectiveness of

this workflow is demonstrated through an experiment of material characteristic identi-

fication. The experiment shows that the proposed workflow and multi-task deep neural

network (DNN) model determine material behaviours with a MSE loss of around 0.03,

which is not only more accurate but also reduces the time, effort, and the requirement

of deep domain knowledge compared to the state-of-the-art methods.

To address the challenge of lack of computation power and storage for deep learning,

this thesis investigates the advantages that quantum computing can bring to DNN. As

a practical example, a comparative study is conducted to demonstrate the benefits of

QNN over classical DNN in image classification. Quantum computing offers the possi-

bility of revolutionary breakthroughs, particularly in solving problems that are impos-

sible or time-consuming for classical computers due to exponential or sub-exponential

time complexity. QNNs integrate the principles of DNNs with the quantum computing

paradigm, thereby conferring several advantages over classical DNNs including quantum

parallelism, exponentially increased memory capacity, faster learning capacity, higher

stability and reliability, and faster information processing speed. The experiment re-

sults indicate that QNNs can achieve a rapid convergence rate without compromising

accuracy.

However, the contemporary hardware limitations of quantum computing pose the chal-

lenge for effective data compression, particularly for a limited number of qubits. To

overcome this issue, an effective data compression approach is proposed that reduces

the dimensions of input data to fit in the limited number of qubits while retaining the

most important information. The proposed approach develops a novel Transformer-

GAN based model to compress information and enhance the performance of QNN on

quantum computers. It is demonstrated that the proposed model can reconstruct im-

ages into a token representation and restore them almost perfectly to their original state.

The method’s effectiveness is also exhibited in extreme data compression scenarios for

Cityscapes dataset in comparison with state-of-the-art methods.

Finally, this thesis proposes a quantum convolutional neural network to give a potential

solution to a long-running problem: partial differential equations (PDEs). The proposed

QNN based PDE solver is enabled fast optimisation with reduced memory requirements.

The effectiveness of this method is demonstrated through an experiment on two practical

problems: Burgers’ Equation and Poisson Equation, which shows that a well-designed

QNN can solve certain types of PDEs. The success of QNN in this work opens a

promising paradigm by complementing physics based DNN model with an emerging

new development of quantum computing, as well as providing a vivid reference for

fusing quantum computing and deep learning algorithms, which can serve as the basis

for further work towards quantum PDE solvers.

In summary, this dissertation explores the impact of hybrid workflows and DL methods

on HPC and quantum computers. It proposes approaches that aim to address the

challenges of existing deep learning methods, including the scarcity of data and the

limitations of computing and storage resources. The methods proposed in this thesis

might serve as the basis for further research and design solutions toward hybrid DL,

HPC, and quantum methods in data analysis.

Kurzfassung

In den letzten zehn Jahren hat Maschinelles Lernen, insbesondere Methoden des Deep

Learnings, zahlreiche Anwendungsbereiche revolutioniert. Für Simulationen aus dem In-

genieurbereich ist diese Revolution besonders interessant, da sie es ermöglichen könnte,

die computergestützte Datennutzung und Datenauswertung technische Simulationen zu

automatisieren. Dies kann nicht nur zur Verkürzung des Aufwands der Validierung

von Simulationen beitragen, sondern auch zum besseren Verständnis der Simulations-

daten selbst. In dieser Arbeit wird die Materialwissenschaft und Werkstofftechnik als

praktisches Beispiel herangezogen, um das Potenzial des maschinellen Lernens für inge-

nieurtechnische Simulationen besser zu verstehen. Trotz stetig zunehmender Rechenleis-

tung sind einige Deep-Learning-Methoden durch Rechen- und Speicherbeschränkungen

aktueller Höchstleistungsrechensysteme in ihrem Potenzial limitiert. Eine Möglichkeit,

in diesem Kontext einen signifikanten Performanceschub zu erzielen, ist der Einsatz von

Quantenrechnern. Daher untersucht diese Arbeit auch Vorteile, die Quantentechnolo-

gien für Deep Learning bieten kann. Als Fallstudien werden die Bildklassifizierung und

das Lösen partieller Differentialgleichungen betrachtet, um die Vorteile von Quanten-

neuronalen Netzen (QNNs) zu untersuchen.

Um das Problem der unzureichenden Ground-Truth-Daten für Deep Learning zu lösen

und den Bedarf an Fachwissen, Computerressourcen und Zeit bei der Bestimmung der va-

lidierten Parameter für die Simulation zu reduzieren, schlägt diese Arbeit eine neuartige

hybride Datenanalysemethode vor, die Deep Learning und die Simulation auf heteroge-

nen HPC-Clustern kombiniert. Deep Learning hat zwar gezeigt, dass es in der Lage ist,

übergeordnete Repräsentationen komplexer Prozesse zu extrahieren, doch ist das Fehlen

ausreichender Ground-Truth-Daten in verschiedenen Bereichen oftmals ein kritisches

Problem. In der Tat ist es beinahe unmöglich, genügend Daten für überwachtes Lernen

für viele reale Probleme zu generieren, die heutzutage durch wissenschaftliche Instru-

mente, physikalische Phänomene oder die Komplexität der Modellierung begrenzt sind.

In dieser Arbeit wird daher ein neuer Ansatz zur Lösung solcher Probleme vorgeschlagen,

der die Genauigkeit verbessern, die Zeit bis zur Lösung beschleunigen und die Kosten für

Zeit und Aufwand erheblich reduziert. Die Wirksamkeit dieses Vorgehens wird anhand

eines Experiments zur Identifizierung von Materialeigenschaften demonstriert. Das Ex-

periment zeigt, dass der vorgeschlagene Vorgehen und das Multi-Task-Modell des tiefen

neuronalen Netzes (DNN) das Materialverhalten mit einem MSE-Verlust von etwa 0,03

bestimmen, was nicht nur genauer ist, sondern auch den Zeitaufwand, die Anstrengun-

gen und die Anforderungen an das tiefe Domänenwissen im Vergleich zu modernsten

Methoden reduziert.

Um das zuvor angesprochene Problem der mangelnden Rechenleistung und des fehlen-

den Speichers für Deep Learning zu lösen, untersucht diese Arbeit die Vorteile, die

Quantencomputing für DNN bringen kann. Als praktisches Beispiel wird eine Studie

durchgeführt, um die Vorteile von QNN gegenüber klassischen DNN bei der Bildklas-

sifizierung aufzuzeigen. Das Quantencomputing bietet die Möglichkeit eines revolu-

tionären Durchbruchs, insbesondere bei der Lösung von Problemen, die für klassis-

che Computer heutzutage aufgrund der exponentiellen oder subexponentiellen Zeitkom-

plexität unmöglich oder zeitaufwändig sind. QNNs integrieren die Prinzipien von DNNs

mit dem Paradigma des Quantenrechnens und bieten dadurch mehrere Vorteile gegenüber

klassischen DNNs: Quantenparallelität, exponentiell erhöhter Speicherkapazität, schnellerer

Lernkapazität, höherer Stabilität und Zuverlässigkeit sowie schnellerer Informationsver-

arbeitungsgeschwindigkeit. Ergebnisse dieser Arbeit belegen, dass QNNs eine schnelle

Konvergenzrate erreichen können, ohne die Genauigkeit zu beeinträchtigen.

Die gegenwärtigen Hardwarebeschränkungen des Quantencomputers stellen weiterhin

eine Herausforderung für eine effektive Datenkompression dar, insbesondere bei einer be-

grenzten Anzahl von Qubits. Um dieser Herausforderung zu begegnen, wird in dieser Ar-

beit ein Ansatz zur Datenkompression vorgeschlagen, der die Dimensionen der Eingabe-

daten derart reduziert, dass sie in die begrenzte Anzahl von Qubits passen und gle-

ichzeitig die wichtigsten Informationen erhalten bleiben. Der vorgeschlagene Ansatz

entwickelt ein neuartiges Transformer-GAN-basiertes Modell, um Informationen zu kom-

primieren und die Leistung von QNN auf Quantencomputern zu verbessern. Es wird

gezeigt, dass das vorgeschlagene Modell Bilder in einer Token-Darstellung rekonstruieren

und sie fast perfekt in ihren ursprünglichen Zustand zurückversetzen kann. Die Effek-

tivität der Methode wird auch in extremen Datenkompressionsszenarien im Vergleich zu

State-of-the-Art-Methoden demonstriert.

Schließlich wird im Rahmen dieser Arbeit eine hybride Methodik vorgeschlagen, die

Quanten-Deep-Learning und die Simulation auf HPC-Clustern kombiniert, um eine

mögliche Lösung für ein mathematisches Problem zu finden: partielle Differentialgle-

ichungen (PDEs). Der vorgeschlagene QNN-basierte PDE-Löser ermöglicht eine schnelle

Optimierung mit reduzierten Speicheranforderungen. Die Wirksamkeit dieser Methode

wird durch ein Experiment an zwei praktischen Problemen demonstriert: Burgersgle-

ichung und die Poissongleichung. Anhand beider Gleichungen kann gezeigt werden,

dass ein gut konzipiertes QNNs bestimmte Arten von PDEs lösen kann. Der Erfolg

des QNN in dieser Arbeit eröffnet ein vielversprechendes Paradigma, indem es das auf

der Physik basierende DNN-Modell mit der neuen Entwicklung des Quantencomputers

ergänzt und eine anschauliche Referenz für die Verschmelzung von Quantencomput-

ern und Deep-Learning-Algorithmen liefert, die als Grundlage für weitere Arbeiten an

Quanten-PDE-Lösern dienen kann.

Zusammenfassend untersucht diese Dissertation die Auswirkungen von hybriden Work-

flows und DL-Methoden auf HPC- und Quantencomputer. Es werden Ansätze vorgeschla-

gen, die darauf abzielen, die Herausforderungen bestehender Deep-Learning-Methoden

zu bewältigen, einschließlich der Datenknappheit und der Beschränkungen von Rechen-

und Speicherressourcen. Die in dieser Arbeit vorgeschlagenen Methoden könnten als

Grundlage für weitere Forschung und Designlösungen für hybride DL-, HPC- und Quan-

tenmethoden in der Datenanalyse dienen.

Acknowledgements

This thesis is the result of the research work conducted at the High Performance Com-

puting Center Stuttgart at the University of Stuttgart. It would not have been possible

without the support of many people.

First of all, I would like to express my sincere gratitude to Prof. Michael Resch for his

guidance, support, advice, and encouragement. I would like to thank him for introducing

me into this interesting topic and guiding me through the whole research work. I would

also like to thank Prof. Florina Ciorba for agreeing to be the co-reviewer and co-examiner

of this thesis.

I am gratitude to Dennis Hoppe and Oleksandr Shcherbakov, many research works have

resulted from the discussions and collaborations with them. I would also like to thank

all my colleagues at the High Performance Computing Center Stuttgart including Dr.

Bastian Koller, Neriman Emre, Dr. Jing Zhang, Dr. Huan Zhou, Qifeng Pan, Aihong

Yin, Sergiy Gogolenko, Kamil Tokmakov, Thomas Beisel, and many others. It has been

a great pleasure to know them and work with them.

Finally, I would like to thank my parents, my sister, and my wife - Lei Zhou for the

continuous support, spur, as well as encouragement. I would also like to thank my son

Taiyang Zhong who asked me several times per day if I had finished my dissertation

after I told him that I can only play Pokemon with him when it is finished. Now, I can

finally play with him.

viii

Contents

Declaration of Authorship i

Abstract iii

Kurzfassung v

Acknowledgements viii

Contents ix

List of Figures xii

List of Tables xv

Abbreviations xvi

1 Introduction 1

1.1 Motivation . 2

1.2 Contribution . 5

1.3 Experiments Overview . 6

1.4 Organization and Publications . 8

1.4.1 Organization . 8

1.4.2 Publication . 8

2 Background 11

2.1 Deep Learning . 11

2.1.1 Artificial Neurons . 13

2.1.2 Network Architecture . 17

2.1.3 Optimization . 21

2.1.3.1 Loss Functions . 21

2.1.3.2 Algorithms . 22

2.2 High Performance Computing . 23

2.2.1 HPC System Design Architectures 23

2.2.2 Interconnection Network . 26

2.2.3 I/O and File Systems . 28

2.2.4 Scheduling and Resource Management 31

ix

Contents x

2.2.5 HPC Systems at HLRS . 32

2.3 Quantum Computing . 33

2.3.1 Qubits and Superposition . 35

2.3.2 Quantum Computation and Circuits 36

2.3.3 Quantum Algorithms . 38

2.3.4 IBM Quantum System One at Ehningen 40

2.4 Conclusion . 40

3 Methods for Scaling Deep Learning Workloads on HPC 41

3.1 Introduction . 41

3.2 Environment Setup . 43

3.2.1 Containerization . 43

3.2.2 Container Orchestration . 46

3.2.3 Other Methods . 46

3.3 Parallelization . 47

3.3.1 Model Parallelization . 48

3.3.2 Data Parallelization . 49

3.3.3 Pipeline Parallelization . 51

3.3.4 Local Parallelization . 51

3.3.5 Hyrbid Parallelization . 52

3.4 Communication . 53

3.5 Tools and Frameworks . 54

3.5.1 Deep Learning Frameworks . 54

3.5.2 Scaling DL Frameworks on HPC Systems 56

3.6 Conclusion . 58

4 Hybrid Workflow of HPC and Deep Learning for Material Character-
istic Identification 59

4.1 Introduction . 60

4.2 Related Work . 61

4.3 Methodology . 61

4.3.1 Simulation . 62

4.3.2 Multi-Task Neural Network . 63

4.3.3 Experiment . 64

4.3.4 Optimization . 67

4.3.4.1 Learning Rate Schedule 67

4.3.4.2 Distributed Strategy . 68

4.3.4.3 Data Pipeline Optimization 68

4.4 AutoML through NAS . 70

4.5 Conclusion and Outlook . 71

5 Evaluation of Variational Quantum Neural Networks for Image Clas-
sification 72

5.1 Introduction . 73

5.2 Variational Quantum Machine Learning 74

5.3 Data Encoding . 75

5.4 Experiment . 77

5.4.1 Quantum Transfer Learning . 77

Contents xi

5.4.2 Quanvolutional Neural Network . 78

5.4.3 Quantum Convolution Neural Network 81

5.5 Conclusion . 82

6 TransGAN: A Transformer-GAN Based Model for Image Compression 84

6.1 Introduction . 85

6.2 Related Work . 86

6.3 Methodology . 87

6.4 Experiment and Analysis . 90

6.4.1 Experiment Settings . 90

6.4.2 Result and Analysis . 91

6.5 Conclusion and Discussion . 96

7 Quantum Neural Network for Solving Partial Differential Equations 99

7.1 Introduction . 99

7.2 Related Work . 101

7.2.1 DNN Solver for PDE . 101

7.2.2 QNN . 101

7.3 Mathematical Preliminaries . 102

7.3.1 Data Driven PDE Solver . 102

7.3.2 QNN . 103

7.4 Method . 104

7.5 Experiments . 107

7.5.1 Burgers’ Equation . 107

7.5.2 Poisson Equation . 109

7.5.3 Trainability . 110

7.6 Conclusion and future work . 110

8 Concluding Remarks 114

8.1 Summary . 115

8.2 Discussion and Future Work . 116

A Multi-Task Neural Architecture Search 118

B TransGAN Structure 119

C Details of QDNN PDE Solver Model 121

Bibliography 124

List of Figures

1.1 Data, algorithm, and compute power: the key factors for AI development 2

2.1 ML workflow: features are extracted and fed to the model which highly
depends on the features and some parameters, then the cost is calculated
which is the difference between the real output and the expected output.
Afterwards, the model is updated to reduce the cost, so that the accuracy
could be improved. 12

2.2 Relationship among AI, machine learning, deep learning, data science,
and big data . 13

2.3 An artificial neuron which takes the sum of n input parameters and a
bias as input of the activation function κ, the output of the activation
function is the output of the neuron y . 15

2.4 Different kinds of activation functions . 17

2.5 A feed-forward deep neural network . 18

2.6 Architecture of generative adversarial networks 19

2.7 Multi-head attention module . 20

2.8 HPC cluster architecture . 25

2.9 The development of design architectures of HPC systems within the TOP
500 List from 1993 to 2023. Image source: Top500 [1] 26

2.10 Different kinds of network topologies . 29

2.11 Bloch sphere: qubit states can be represented as points on the surface of
the sphere . 35

2.12 A sample quantum circuit with three qubits, one Hardamard gate and
two CNOT gates . 39

3.1 Scalable deep neural network training on HPC through container and
container orchestrator . 44

3.2 Model parallelism . 49

3.3 Data parallelism . 50

3.4 Pipeline parallelism . 51

3.5 Local parallelism . 52

4.1 General workflow of deep learning aided simulation on HPC 62

4.2 Hybrid workflow of simulation and distributed deep learning on HPC for
material characterization . 63

4.3 DNN model structure . 65

4.4 Visualization of the dataset generated by FEM simulation 66

4.5 The training and validation loss of the multi-task regression dnn model . 66

4.6 Errors between the predicted values and the real value of the 8 parameters 67

xii

List of Figures xiii

4.7 Profile of DNN model training process . 67

4.8 Comparison of the training time before and after data pipeline optimization 69

4.9 Errors between the predicted values given by the MTL-NAS model and
the real value of the 8 parameters . 71

5.1 Variational quantum machine learning . 75

5.2 Quantum transfer learning with Resnet18 77

5.3 Comparison between the performance of transfer learning and quantum
transfer learning based on Resnet18 . 78

5.4 Quanvolutional neural network, revised from [2] 79

5.5 The output of the quanvolutional layer, which are four channel feature
maps . 80

5.6 Comparison between the performance of classical CNN and quanvolu-
tional neural network . 80

5.7 Workflow of quantum convolution neural network 81

5.8 Quantum convolution neural network, image revised from [3] 81

5.9 Comparison between the performance of classical QCNN and CNN 82

6.1 The workflow of the proposed TransGAN model 89

6.2 Data encoding and decoding process . 90

6.3 Comparison of the rebuilt image with and without adding stochastic noise
to the iuput . 92

6.4 The effect of quantization with and without adding noise 93

6.5 Comparison of the proposed method with different residual blocks 94

6.6 Comparison of quantity representation with different numbers of tokens . 95

6.7 Comparison between the original and rebuilt image with different model
configurations . 97

7.1 Observable loss over training iterations for 1D Burgers’ equation 108

7.2 Comparison between the analytical solution [4] and the predicted solution
by QCNN of the 1D Burgers’ equation on some random points. 108

7.3 Observable loss over training iterations for 2D Poisson equation 110

7.4 Comparison between the solution given by analytical solver and proposed
QCNN model for 1D Burgers’ Equation 112

7.5 Comparison between the solution given by analytical solver [5] and QCNN.
The left column is the visualization of the solution give by analytical solver
and the right column is the solution given by the proposed QCNN 113

A.1 Task-agnostic neural architecture search towards general-purpose multi-
task learning[6] . 118

B.1 Configuration of discriminator part of TransGAN for image compression . 119

B.2 Configuration of generator part of TransGAN for image compression . . . 120

C.1 Details of the convolutional unitary gate 122

C.2 Details of the pooling unitary gate . 122

C.3 Details of the quantum convolutional layer 122

C.4 Details of the quantum pooling layer . 122

C.5 The QNN structure adopted for solving the 1D Burgers’ Equation 123

List of Figures xiv

C.6 The QNN structure adopted for solving the 2D Poisson Equation 123

List of Tables

2.1 Technical Specification of Hawk and Vulcan 33

2.2 A selection of quantum gates . 37

2.3 Parameterized Gates . 37

2.4 Technical Specification of IBM Quantum System One at Ehningen 40

3.1 Comparison of HPC and DL stack . 42

3.2 Comparison of different parallelism strategies 53

3.3 Comparison of open source DL frameworks and libraries 56

3.4 An overview of recent researches on distributed DL frameworks and libraries 58

6.1 Performance of the predicted model with different model configurations . 95

6.2 Comparison of the performance of the proposed model, Deep Generative
Model [7], and JPEG . 96

7.1 Two qubit unitary circuit F, which is used to encode the classical infor-
mation into quantum information . 104

7.2 Two-qubit unitary circuit U, which is used to construct the quantum
convolutional layer . 105

7.3 Two-qubit unitary circuit V, which is used to construct the quantum
pooling layer . 105

xv

Abbreviations

AutoML Automatic Machine Learning

PFS ParallelFile System

POSIX PortableOperating System Interface

GAN Generative Adversarial Network

AI Artificial Intelligence

CNN Convolutional Neural Network

NLP Natural Language Processing

Matmul Multi-Head Attention Module

Relu Rectified Linear Unit

DCT Discrete Cosine Transformation

Resnet Residual Neural Network

RNN Recurrent Neural Network

CGAN Conditional GAN

BPP Bit Per Pixel

SSIM Structural Similarity Index Measure

PSNR Peak-Signal-to-Noise Ratio

QCNN Quantum Convolutional NeuralNetwork

QNN Quantum Neural Network

NAS Neural Architecture Search

MTL Multi Task Learning

SGD Stochastic Gradient Descent

FEM Finite Element Method

FEMU Finite Element Method Update

DWT Discrete Wavelet Transform

DCT Discrete Cosine Transform

xvi

Abbreviations xvii

JPEG Joint Photographic Experts Group

CFD Computational Fluid Dynamics

MSE Mean Squared Error

L-BFGS-B Limited Memory Broyden-Fletcher-Goldfarb-Shanno Bound Constraints

FFT Fast Fourier Transform

NISQ Noisy Intermediate-Scale Quantum Computation

LSTM Long Short-Term Memory

GRU Gated Recurrent Units

VAE Variational AutoEncoders

GPU Graphical Processing Units)

NLP Natural Language Processing

Chapter 1

Introduction

Deep learning methods are becoming increasingly important and driving revolutions in

various areas. However, the performance of deep learning methods is highly dependent

on the model and data size. Therefore, several critical issues are becoming the bottle-

neck of the development of deep learning, including the lack of ground truth data, the

limitation of storage and compute power, etc. This thesis at hand proposes approaches

to address these challenges and explores the impact and potential development trend of

hybrid workflows and DL methods on HPC and quantum computers. In particular, a

novel hybrid data analysis methodology is proposed to showcase the potential of deep

learning methods in revolutionizing engineering simulations, which can address the prob-

lem of data sparsity for deep learning, and reduce the demand for expertise and time

in determining validated parameters for simulation. This thesis also investigates the

advantages of quantum computing in DNN by conducting a comparative study of QNN

and classical DNN. In addition, an effective data compression approach is proposed to

address the hardware limitations in current quantum computing. To demonstrate the

power of QNN, a novel QNN method is proposed to give a potential solution to partial

differential equations (PDEs). This chapter provides an introduction to the context of

this thesis, where the motivation, the problem setting, and the main contributions are

given.

Chapter outline: This chapter is organized as follows. Firstly the motivation is ex-

plained in Section 1.1, where the central topics related to this thesis are also described.

Section 1.2 then summarizes the main contributions of this thesis. Finally, the organi-

zation of the thesis and the list of corresponding publications are provided in Section

1.4.

1

Chapter 1. Introduction 2

Figure 1.1: Data, algorithm, and compute power: the key factors for AI development

1.1 Motivation

Over the past decade, artificial intelligence (AI) has demonstrated strong abilities to

extract high-level representations of complex processes, leading to significant improve-

ments in accuracy and generalization. Moreover, among the various AI methods, deep

learning methods have made significant advancements in revolutionizing several appli-

cation domains, including image recognition [8], video analysis [9], natural language

processing [10], etc. Data, computing power, and algorithm are the three major fac-

tors driving the development of artificial intelligence, especially deep learning[11], as

is depicted in Figure 1.1. Massive data provides fuel for the development of artificial

intelligence, the richness and large-scale nature of datasets are particularly important

for algorithm training. Algorithms play a central role in the development of artificial

intelligence. Excellent algorithms can improve the performance of the model, making it

more accurate and efficient in handling problems. Computing power is also crucial, both

the training of algorithms and the processing of massive data pose a high requirement

of computing power. Significant computational strength can accelerate the training pro-

cess of the model, allowing the model to converge and optimize faster. Moreover, the

increase in computing power helps to process larger and more complex data.

However, several critical issues are faced by data, computing power, and algorithms,

becoming the bottleneck of the development of deep learning.

The first is the limitation of storage and compute power: deep learning methods involve

processing extra large datasets, which is not only a big challenge for the machine to

Chapter 1. Introduction 3

store and process but also makes the model harder to converge in a reasonable amount

of time. In addition, training large-scale deep learning models with billions of param-

eters involves performing billions of mathematical operations, which require enormous

computational resources. Furthermore, despite significant breakthroughs in GPU mem-

ory, its memory size remains relatively small concerning the model size. To address this

issue, researchers have found that supercomputers can be a good fit. HPC systems are

designed to provide greater computational power than traditional computing systems,

making them well-suited for deep learning tasks that require large amounts of compu-

tational resources. By leveraging the parallel computing capabilities of HPC systems,

deep learning models can be trained faster and more efficiently, leading to improved

performance. Furthermore, HPC systems are capable of handling large and complex

datasets that would be impossible to process on traditional computing systems. For

example, it would take 355 years to train the GPT-3 model(175 billion parameters) on

a single NVIDIA Tesla V100 GPU, while it takes only 34 days on an HPC cluster with

1024 NVIDIA A100 GPUs [12].

Another challenge for deep learning is the lack of sufficient ground truth data. In

many real-world contexts, generating massive data needed for supervised learning is

almost impossible due to limitations in scientific instruments, physical phenomena, or

modeling complexity. Different methods have been developed to solve this problem, e.g.,

transfer learning, data augmentation, synthetic data usage, new data generation through

Generative Neural Networks(GAN), etc. Recently, scientists and engineers have begun

experimenting with a relatively new approach: training a deep learning model with the

virtual dataset produced by simulations. Studies [13–15] have proven that training deep

learning models on data generated by simulation can improve accuracy, accelerate time

to solution, and significantly reduce the cost.

It is evident and clear that HPC can help accelerate the development of deep learning.

However, some challenges still exist in driving the convergence of HPC and deep learning.

For example, scaling the deep learning workload on HPC systems is a complex problem.

The parallelism strategy, communication, I/O system, etc. must be carefully designed to

achieve the optimum performance on supercomputers. Another challenge is the difficulty

in designing a hybrid simulation and deep learning workflow. It is quite challenging to

generate data by simulation that is suitable for training a deep learning model. This

often requires careful selection of simulation parameters, ensuring that the simulation

produces data that is diverse and representative of the real-world problem. Furthermore,

there is the issue of integrating the simulation and deep learning workflows, which often

requires a good understanding of both simulation software and deep learning frameworks,

as well as experience in designing data pipelines to manage the large volumes of data

generated by simulations. Furthermore, there also exists the challenge of optimizing

Chapter 1. Introduction 4

the overall workflow to ensure that it is computationally efficient and can be scaled for

larger simulations and models.

Therefore, this thesis explores the methods that enable the seamless execution of deep

learning on the HPC system, which aims at achieving optimum performance and capi-

talizing on the power of HPC. Further, a novel hybrid workflow that combines a deep

learning model and the simulation on HPC clusters with CPU and GPU support is

proposed which can address the problem of data sparsity and reduce the demand for

expertise, and time in determining the validated parameters for the simulation. The

effectiveness of this workflow is demonstrated through a well-designed experiment to

determine the material behavior. The experiment shows that the proposed workflow

and multi-task deep neural network (DNN) model can accurately and readily identify

the material characteristics, significantly reducing the time, effort, and requirement of

deep domain knowledge.

However, even with the most advanced supercomputers, many of the problems remain

intractable. Therefore, the possibility of quantum computing must be explored, which

indicates revolutionary breakthroughs in computing, such as turning computationally

inaccessible problems into tractable ones. For example, quantum systems are notori-

ously difficult to simulate using classical computers since the complexity of the simu-

lation grows exponentially when the number of particles in the system grows, which is

impossible to realize when the number of particles is large [16]. On the other hand,

quantum computers are naturally suited for simulating quantum systems, as they can

represent and manipulate quantum states in a natural way. Furthermore, many real-

world optimization problems, such as the Traveling Salesman Problem [17], are difficult

for classical computers to solve efficiently. In contrast, quantum computers have been

shown to have the potential to speed up optimization. However, many previous quantum

algorithms hold promise for the future when large-scale quantum computers exist with

enough qubits for quantum error correction but cannot be implemented in the near term

due to the required circuit depth. Thus, a crucial question is how to make use of such

noisy intermediate-scale quantum (NISQ) computers and whether the implementation

of quantum machine learning algorithms on the NISQs can bring benefits to practical

problems. An interesting strategy to make use of NISQ devices is to employ variational

hybrid quantum-classical algorithms (VHQCAs) [18], which are developed to reduce

quantum circuit depth at the expense of additional classical optimization. Specifically,

the cost function is evaluated through a short-depth quantum circuit, which is composed

of a sequence of quantum gates that depend on the parameters that are optimized by

leveraging well-established classical optimizers. Recently, a novel and applicable con-

cept derived from Variational Quantum Machine Learning (VQML) has been proposed,

known as quantum neural networks (QNNs). The development of QNNs combines the

Chapter 1. Introduction 5

basic principles of DNN and the quantum computing paradigm and shows the supe-

riority over classical DNN. Recent research [19–21] finds that well-designed QNNs are

able to achieve a higher capacity and faster training ability than comparable classical

feedforward neural networks.

However, research has yet to be done to explore the quantum advantages brought by

the QNNs through a performance comparison to classical DNNs on the same problem.

Therefore, a comparative study has been conducted to show the advantage of QNN

over classical DNN in data analysis, especially in the most commonly studied problem:

image classification. The experiment results show that QNNs do not show significant

advantages regarding model accuracy while they could achieve convergence much faster

than the classical DNNs. However, it is also noticed that the number of qubits that

quantum computers have is always not enough due to the current hardware limitation,

which often raises the issue that the input information/training data can not be fully

encoded. Furthermore, the performance of QNNs strongly depends on the methods used

for information compression. Thus an effective data compression method is needed to

reduce the dimensions of the input data so that the reduced data can fit into the qubits

of the quantum computers while retaining the most important information. Therefore,

a novel Transformer-GAN based model is developed to do information compression in

order to improve the performance of QNNs on quantum computers with the restriction

of a limited number of qubits.

Finally, we explore the new possibilities that the combination of quantum computing

and deep learning can bring to solving classical supercomputer problems, a novel QNN

method is proposed to solve partial differential equations (PDEs) which no previous

study has been done. The design of QNN allows for its efficient training and imple-

mentation on realistic, near-term quantum devices. The effectiveness of this method is

demonstrated through experiments on 1D Burgers’ equation and 2D Poisson equation,

which shows that a well-designed QNN can solve certain types of PDEs. Further, it

proves that the combination of quantum computing and deep learning can bring new

solutions and ideas to many problems that are bottlenecked by current algorithms and

computing power.

1.2 Contribution

The main contributions of this thesis focus on the conceptual design, the evaluation,

and the demonstration of effectiveness through real-world use cases. The details of the

contribution and its corresponding chapter are listed below:

Chapter 1. Introduction 6

1. Different techniques that enable the seamless execution of deep learning applications

on HPC are overviewed and taxonomized. Different methods and frameworks for envi-

ronment setup, orchestration, parallelization, and optimization are also explained and

compared.

2. A hybrid simulation and deep learning workflow on HPC is proposed, which solves the

problem of lacking data in deep learning and the problem of high demand for expertise,

and time-consuming in determining the validated parameters for the simulation. To

demonstrate the effectiveness of the hybrid workflow, a multi-task DNN is proposed

in combination with finite element method (FEM) simulations on HPC to identify the

characteristics of the material. Furthermore, this solution is generalized through the

implementation of an automatic machine learning method.

3. A comparative study is conducted to evaluate the performance of classical DNNs and

QNNs on the problem of image classification, which presents the advantage of quantum

neural networks on processing speed.

4. A novel Transformer-GAN based model is proposed as an effective data compression

technique, which can highly reduce the dimension of the input data while retaining

the most important information. The proposed method allows the reduced data to fit

into the limited qubits of the current quantum computers without sacrificing important

information.

5. A quantum neural network is proposed to solve the partial differential equations,

which no previous study, to the best of the author’s knowledge and through search in

peer-reviewed databases, has done before. The effectiveness of the QNN is demonstrated

by investigating its performance on two practical problems: 1D Burgers’ equation and

2D Poisson equation. The success of QNN opens up a promising paradigm by comple-

menting the physics-based DNN model with the emerging new development of quantum

computing, which can serve as the basis for further work towards quantum PDE solvers.

1.3 Experiments Overview

In this thesis, there are multiple experiments conducted from various directions to prove

the effectiveness of hybrid workflow and methodology of deep learning, HPC, and quan-

tum computing, which can address the problems of existing methods.

The first two experiments are designed to solve the main problems faced in deep learn-

ing and simulation: 1. lack of enough ground-truth data; 2. high demand for expertise,

resources, and time in determining the validated parameters for simulation. The whole

Chapter 1. Introduction 7

workflow is divided into three phases: data generation, training phase, and reverse

phase. The material characteristic identification is taken as the use case. In the first

experiment, a simulation is designed to generate the data. The generated data from the

simulation is then used as the training data for a multi-task learning neural network,

which can be further used to determine the material characteristics. In the second ex-

periment, the multi-task learning neural network is replaced with a neural architecture

search(NAS) based AutoML method, so that the effort in designing the network struc-

ture and hyperparameter is eliminated. The results prove that the combination of deep

learning and simulation can help solve complex problems that are not feasible with only

computational science or data science. For more details, please refer to Chapter 4.

Although simulation-enhanced deep learning can help solve a lot of problems, still some

problems cannot be solved with even the most advanced HPC system due to the physics

limitation, therefore the idea of introducing quantum computing is raised. The next

experiments are to evaluate the effectiveness of introducing quantum computing in deep

learning. Three types of variational quantum neural network are implemented on quan-

tum computers, and their performance on image classification are compared with their

corresponding classical neural network. The results show that there exist advantages of

QNN over classical DNN for tasks like data analysis, especially in the most commonly

studied problem: image classification. More details can be found in Chapter 5

When analyzing and discussing the experiments described in Chapter 5, it is discovered

that the performance of the quantum neural network strongly depends on the data

compression method, due to the fact that input data must be compressed and encoded

to fit into the limited number of the qubits of current quantum computers. Thus,

in Chapter 6, an experiment is conducted with the proposed novel data compression

method, which is based on the combination of Transformer and GAN. In this experiment,

the effectiveness of the method for image compression is tested on the dataset Cifar10

and Cityscape. The training strategies are also discussed for the proposed architecture

to achieve the best compression and best performance.

The final experiment aims to demonstrate the potential of combining quantum comput-

ing and deep learning in addressing challenging classical HPC problems. Specifically, a

QNN is proposed to solve PDEs. To evaluate its effectiveness, the QNN’s performance

is examined on two real-world problems: the one-dimensional Burgers’ equation and the

two-dimensional Poisson equation. The success of QNN opens up a promising paradigm

by complementing the physics-based DNN model with the emerging new development

of quantum computing, which can serve as the basis for further work towards quantum

PDE solvers. More details can be found in Chapter 7.

Chapter 1. Introduction 8

1.4 Organization and Publications

1.4.1 Organization

This thesis is organized in the following way. Chapter 1 provides the basic introduction

to the context of this thesis, where the motivation is given. Chapter 2 describes some

basic knowledge of deep learning, supercomputing, and quantum computing, which are

necessary to understand this thesis. This is followed by the survey of different methods

that drive the convergence of supercomputing and deep learning in Chapter 3. Chapter

4 presents the proposed method of hybrid simulation and deep learning workflow, which

is used to identify the material characteristics. In Chapter 5, the quantum advantage ob-

tained by quantum neural networks is evaluated through a comparative study of classical

DNNs and QNNs on image classification. Chapter 6 then presents a Transformer-GAN

based image compression method, which can be used to compress the input data to fit

into current quantum hardware. In Chapter 7, the proposed QNN method for solving

the PDEs is described. Finally, in Chapter 8, the concluding remarks as well as the

future outlook, are provided.

1.4.2 Publication

The contributions presented in Chapter 3 are closely related to the following publications

and mainly appear in (1):

(1) Li Zhong, Naweiluo Zhou, Dennis Hoppe, Sergiy Gogolenko, and Oleksandr Shcherbakov.

”Convergence of HPC and AI: A Survey.” In submission to Future Generation Computer

System.

(2) Li Zhong, Naweiluo Zhou, Dennis Hoppe, Sergiy Gogolenko, and Oleksandr Shcherbakov.

”Scaling Deep Learning Workloads on HPC: Approaches and Challenges.” In submission

to IJCNN: International Joint Conference on Neural Network 2024.

(3) Naweiluo Zhou, Yiannis Georgiou, Marcin Pospieszny, Li Zhong, Huan Zhou,

Christoph Niethammer, Branislav Pejak, Oskar Marko, and Dennis Hoppe. ”Container

orchestration on HPC systems through Kubernetes.” Journal of Cloud Computing 10,

no. 1 (2021): 1-14.

(4) Naweiluo Zhou, Yiannis Georgiou, Li Zhong, Huan Zhou, and Marcin Pospieszny.

”Container orchestration on HPC systems.” In 2020 IEEE 13th International Conference

on Cloud Computing (CLOUD), pp. 34-36. IEEE, 2020.

Chapter 1. Introduction 9

In Chapter 4, the contributions are closely related to the following publications and

mainly appear in (5):

(5)Li Zhong, Dennis Hoppe, Naweiluo Zhou, and Oleksandr Shcherbakov. ”Hybrid

workflow of Simulation and Deep Learning on HPC: A Case Study for Material Be-

havior Determination.” In 2021 IEEE International Conference on Cluster Computing

(CLUSTER), pp. 698-704. IEEE, 2021.

(6) Li Zhong, Oleksandr Shcherbakov, Dennis Hoppe, Michael Resch, and Bastian

Koller. ”Towards Seamless Execution of Deep Learning Application on Heterogeneous

HPC Systems.” In Data Science in Applications, pp. 233-252. Cham: Springer Interna-

tional Publishing.

The approaches detailed in Chapter 5 are closely related to the following publications

and mainly appear in (7):

(7) Li Zhong, Qifeng Pan, and Dennis Hoppe. ”Is QNN Really Beneficial in Image

Processing? A Comparative Study.” In submission to IJCNN: International Joint Con-

ference on Neural Network 2024.

In Chapter 6, the contributions are closely related to the following publications and

mainly appear in (9):

(8) Li Zhong. A Method for Stream Data Analysis. In: Resch, M.M., Wossough, M.,

Bez, W., Focht, E., Kobayashi, H. (eds) Sustained Simulation Performance 2019 and

2020. Springer, 2020.

(9) Li Zhong, Mark Zwisler. TransGAN: A Transformer-GAN Based Model for Image

Compression. In submission to The Asian Conference on Machine Learning (ACML).

In Chapter 7, the contributions mainly appear in:

(10) Li Zhong, Qifeng Pan, and Dennis Hoppe. ”Physics-informed Quantum Neural

Network for Solving Partial Differential Equations.” In submission to Nature Physics.

The following publications are not directly part of this thesis, but are generally on the

topic of hybrid HPC and deep learning, thus related to this thesis:

(11) Naweiluo Zhou, Li Zhong, Dennis Hoppe, Branislav Pejak, Oskar Marko, Javier

Cardona, Mikolaj Czerkawski et al. ”CYBELE: A Hybrid Architecture of HPC and Big

Data for AI Applications in Agriculture.” HPC, Big Data, and AI Convergence Towards

Exascale: Challenge and Vision (2022): 255.

Chapter 1. Introduction 10

(12) Ilias Gialampoukidis, Stelios Andreadis, Nick Pantelidis, Sameed Hayat, Li Zhong,

Marios Bakratsas, Dennis Hoppe, Stefanos Vrochidis, and Ioannis Kompatsiaris. ”Paral-

lel DBSCAN-Martingale Estimation of the Number of Concepts for Automatic Satellite

Image Clustering.” In International Conference on Multimedia Modeling, pp. 95-106.

Springer, Cham, 2022.

(13) Tianbai Chen, Li Zhong, Naweiluo Zhou, and Dennis Hoppe. ”Catch Weight

Prediction for Multi-Species Fishing using Artificial Neural Networks.” In 2021 20th

IEEE International Conference on Machine Learning and Applications (ICMLA), pp.

1545-1552. IEEE, 2021.

(14) Dennis Hoppe, Li Zhong, Stefan Andersson, and Diana Moise. ”On the Detection

and Interpretation of Performance Variations of HPC Applications.” In Sustained Sim-

ulation Performance 2018 and 2019, pp. 41-56. Springer, Cham, 2020.

(15) Yiannis Georgiou, Naweiluo Zhou, Li Zhong, Dennis Hoppe, Marcin Pospieszny,

Nikela Papadopoulou, Kostis Nikas et al. ”Converging HPC, Big Data and Cloud tech-

nologies for precision agriculture data analytics on supercomputers.” In International

Conference on High Performance Computing, pp. 368-379. Springer, Cham, 2020.

(16) Petros Anastasiadis, Nikela Papadopoulou, Goumas Goumas, Nectarios Koziris,

Dennis Hoppe, Li Zhong ” PARALiA: A Performance Aware Runtime for Auto-tuning

Linear Algebra on heterogeneous systems.” In ACM Transactions on Architecture and

Code Optimization, 2023.

Chapter 2

Background

This thesis describes the research on the hybrid workflow of DL workloads on HPC sys-

tems and quantum computers. Thus, it is necessary to understand the basics of deep

learning, supercomputing, and quantum computing. To make the research presented

from Chapter 3 and onwards accessible to people new to deep learning, HPC, and quan-

tum information, some basic definitions will be given and discussed in this chapter.

Chapter outline: This chapter is structured in 4 sections. Section 2.1 provides the

introduction to deep learning basics, including the basics concepts, the network struc-

tures, the optimization methods, etc. This is followed by the introduction of the basics

of supercomputing in Section 2.2, in which the HPC system architectures, the intercon-

nect network, the I/O and file systems, the batch system, and the HPC systems used for

this thesis are described. Section 2.3 explains the basics of quantum computing, includ-

ing qubits and superposition, quantum computation and quantum circuits, quantum

algorithms, etc. In Section 2.4, the concluding remarks are provided.

2.1 Deep Learning

A system is called intelligent if it can solve problems independently and efficiently. The

degree of intelligence depends on the degree of autonomy, the degree of complexity of

the problem, and the degree of efficiency of the problem-solving process [22]. Artificial

Intelligence (AI) provides systems with the ability to automatically learn and improve

from experience to solve complex problems independently [23]. In the past years, AI

has shown success in various fields, such as natural language processing (NLP) [24],

computer vision (CV) [25] and robotics [26]. The technologies and techniques developed

in AI research stem from four main aspects: cybernetics, symbolic and sub-symbolic,

and statistical machine learning (ML).

11

Chapter 2. Background 12

Figure 2.1: ML workflow: features are extracted and fed to the model which highly
depends on the features and some parameters, then the cost is calculated which is the
difference between the real output and the expected output. Afterwards, the model is

updated to reduce the cost, so that the accuracy could be improved.

ML, as a subset of AI, is a method that builds a mathematical model to perform predic-

tions or decisions without being explicitly programmed. The basic premise of machine

learning is to build algorithms that can receive input data, recognize patterns hidden be-

hind the data, and use statistical analysis to predict an output while updating outputs as

new data becomes available. ML algorithms are mainly divided into several categories,

e.g., supervised learning, unsupervised learning, reinforced learning, semi-supervised

learning, active learning, etc. Figure 2.1 illustrates how the ML models work.

Big Data is another term growing in popularity and is often mentioned together with ML.

It has been coined to describe the large amount of data generated and collected. Big data

analytics usually refers to discovering patterns from a tremendous amount of data, which

is often faced with several challenges, e.g., high dimensionality, scalability of algorithms,

fast-moving streaming data, noisy and poor quality data, etc. Therefore, it is difficult

for humans to understand and work on it, while ML algorithms can help overcome these

challenges by automatically detecting patterns in the data. ML techniques have been

widely deployed to explore the predictive feature of Big Data in many fields, such as

medicine, the Internet of Things (IoT), search engines, and much more. To deal with

Big Data analytics, a sub-field of machine learning known as deep learning is used to

extract useful data from the Big Data.

Deep learning (DL), now often regarded as a new research area, is a class of ML al-

gorithms that uses multi-layer neural networks, i.e., deep neural networks (DNNs), to

achieve the goal of ML. The underlying architecture of deep learning was inspired by

the structure of the human brain in order to create a system similar to how humans

learn. Compared with classical ML algorithms, DL algorithms have several advantages:

DL works with both structured and unstructured data, while ML usually works only

with sets of structured and semi-structured data; DL can perform much more complex

operations efficiently; DL algorithms can analyze the input data and extract features

automatically, while humans usually do this work for most ML algorithms. With the

Chapter 2. Background 13

Figure 2.2: Relationship among AI, machine learning, deep learning, data science,
and big data

great power provided by DL algorithms, DL algorithms have shown superior learning

and classification performance in various fields and become a powerful tool to drive

innovation and change across all aspects of our lives.

The relationship between AI, ML, DL and Big Data can be visualized in Figure 3.4. In

the following, the DNN will be introduced by explaining the building blocks and different

architectures of NNs in Section 2.1.1 and 2.1.2. Further, Section 2.1.3 will discuss the

optimization techniques used for training the DNN architectures.

2.1.1 Artificial Neurons

In the early stage of AI, much research was conducted to create systems to imitate how

humans learn based on the structure of the brain. A human brain is composed of billions

of interconnected nerve cells, namely neurons, which are involved in the processing and

transmitting of chemical and electrical signals. During the learning process, multiple

signals arrive at the dendrites and are then integrated into the cell body, and if the

accumulated signal exceeds a certain threshold, an output signal is generated that will

be passed on by the axon. Based on this, the fundamental terminologies within DL were

derived, and the computational unit within DL that allows the modelling of nonlinear

functions was developed. In 1943, Warren McCullock and Walter Pitts published their

first concept of a simplified brain cell, namely McCullock-Pitts (MCP) neuron, which

Chapter 2. Background 14

can be described as a simple logic gate with binary outputs [27]. Fourteen years later,

perceptron was introduced by Frank Rosenblatt in 1957 based on the original MCP

neuron [28], which is referred to as an artificial neuron today and is still used for DNN

as a basic component.

An artificial neuron is a mathematical function based on a model of biological neurons, as

illustrated in Figure 2.3, where each neuron takes N inputs {x1, x2, ..., xn} with separate

weights {w1, w2, ..., wn}, where wi ∈ R. In addition, the neuron is equipped with a bias

b ∈ R. They are summed up together, and then passed through a nonlinear function to

produce the output:

y = κ
∑
i

wixi + b (2.1)

where the nonlinear function is κ(z) is called activation function.

Similar to the way that a neuron works described above, the artificial neuron takes

the inputs as N arguments with different importance wi. Then the activation function

κ((z)) and the bias b define the threshold of the artificial neuron. If the weighted sum∑
iwixi + b is above the threshold, then the neuron is ’activated’, and the output is

propagated to the next neuron. Otherwise, it is ’deactivated’, and the propagation

stops here.

It can be easily drawn out that the activation function has a significant impact on the

output of the artificial neuron, even the same input and bias but with different activation

functions can have totally different outputs for a neuron. Therefore, choosing the right

activation is crucial for an expected training result. In the following, some of the most

commonly used activation functions will be discussed.

Binary Step Function: The binary step function was the activation function initially

adopted by Rosenblatt in perceptron [28]. As shown in Figure 2.4 (A) and Equation

2.2, the output of the step function is binary, either 0 or 1.

κ(x) =

1 if x > 0

0 if x < 0
(2.2)

However, the step function is non-differentiable at x = 0 and the derivative is always 0

when x ̸= 0, which means that that gradient descent won’t be able to make a progress

in updating the weights, so gradient-based optimization methods (which is how most

neural networks are trained, see Section 2.1.3) would not work. Furthermore, since the

main objective of the neural network is to learn the values of the weights and biases so

Chapter 2. Background 15

Figure 2.3: An artificial neuron which takes the sum of n input parameters and a
bias as input of the activation function κ, the output of the activation function is the

output of the neuron y

that the model could produce a prediction as close as possible to the real value, it is

required that a small change in the weight or bias to cause only a small corresponding

change in the output from the network. However, with step function, a small change

in the weights or bias would lead to a complete change of the output, which damages

the training process. Therefore, nowadays step function is rarely used as the activation

function, there exist several options to choose from.

Linear Function: The equation for a linear activation function is shown in Figure 2.4

(B), typically written as:

κ(x) = αx (2.3)

where α is the weight. It is quite obvious that the derivative of a linear function is

constant, which is not able to reflect how the model is changed according to the input

data when doing back-propagation. Besides, taking the linear function as activation

function does not introduce any non-linear change in the model, which means that the

model can only perform like a classical linear regression/classification algorithm.

Sigmoid Function: Sigmoid activation functions can map any real-valued number

to a value between 0 and 1, which is non-linear and able to capture more complex

relationships than linear functions. As shown in Figure 2.4 (C), the equation for a linear

Chapter 2. Background 16

activation function is typically written as:

κ(x) =
1

1 + e−x
(2.4)

However, Sigmoid activation functions suffer from the ”vanishing gradient problem”,

meaning that the output of the function can become very small as the input increases.

This can cause difficulty for the neural network to learn and adapt to new data. In

addition, Sigmoid functions can also be computationally expensive to compute as they

involve exponential.

hyperbolic tangens(TanH) Function: Tanh is another non-linear function com-

monly used in DL, which produces values ranging from -1 to 1. The equation for TanH

activation function is typically written as:

κ(x) =
1− e−2x

1 + e−2x
(2.5)

As shown in Figure 2.4 (D), it has a smooth gradient making it easier to backpropagate

errors during training. Further, it can help to prevent the issue of vanishing gradients.

However, Tanh can suffer from saturation, where the function’s output gets stuck at

either -1 or 1, leading to slow learning.

Softmax Function: The softmax function is an activation function that takes a vector

of real-valued inputs and squashes them to a range between 0 and 1, such that all the

outputs sum to 1. As shown in Figure 2.4 (E), the equation for Softmax activation

function is typically written as:

κ(xi) =
exi∑K
j=1 e

xj
(2.6)

It is invariant to monotonic transformation of inputs, meaning that the result of the

function does not depend on the scaling or shifting of the inputs. Softmax function is

often used as the activation function of output layers in classification problems. However,

it is prone to overfitting due to its ability to produce probability distributions.

ReLu Function: ReLu function deactivates the neuron if the output is smaller than

zero, otherwise performs as a linear function. The equation for ReLu activation function

is typically written as:

κ(x) = max(0, x) (2.7)

ReLu function is computationally efficient as compared to other activation functions.

However, as shown in Figure 2.4 (F), ReLU can result in a dead neuron if the input is

Chapter 2. Background 17

(a) Binary Step (b) Linear

(c) Sigmoid (d) Tanh

(e) Softmax (f) ReLU

Figure 2.4: Different kinds of activation functions

negative, which makes it difficult to learn in certain situations. In addition, it is not

suitable for the output layer in cases where a probability value is needed.

2.1.2 Network Architecture

Perceptron represents how a single neuron works. When a series of perceptrons are

stacked in a row and piled in different layers, it becomes a multi-layer Neural Network

(NN). The neurons in NN are arranged layerwise, as shown in Figure 3.4, where the first

layer of neurons is the input layer which, as the name indicates, takes the input data.

The last layer of neurons is named the output layer, which is the final output of the

network. The layers in between are called hidden layers. In this section, some popular

methods and architectures for building the multi-layer NN is introduced.

Chapter 2. Background 18

Figure 2.5: A feed-forward deep neural network

Feedforward Neural Network(FFNN) Feedfoward neural network is the most straight-

forward architecture of DNN. It is called a feedforward network because the data flows in

only one direction, from the input layer to the output layer, through the hidden layer(s).

The structure of the feedforward network is such that the information processed in each

layer is fed to the next layer, and it is not processed again in the previous layer.

Convolutional Neural Network(CNN) is one of the most common FFNN architec-

tures, which are widely used in computer vision and have become the state of the art

for many visual applications. The key idea behind CNNs is to extract features from an

image using multiple filters that scan the image in a sliding window manner and perform

a convolution operation. A convolution operation involves element-wise multiplication

of the values in the filter with the values in the image and then summing them up, which

generates a new feature map that highlights certain aspects of the image. Pooling is

another operation in CNNs that is used to down-sample the feature maps and reduce

the spatial dimensions while retaining the most important features. It also has the effect

of making the network more robust to small changes in the input, as well as reducing

the computational cost of processing large images.

Recurrent Neural Network(RNN) is specifically designed to handle sequential data,

such as time series data, speech signals, and text. Different from FFNN, the key feature

of RNNs is that they have a hidden state that is passed from one time step to the next,

allowing them to capture information from previous steps and use it to inform their

predictions. RNNs can be unrolled over time to form a deep network to capture long-

term dependencies in the sequential data. However, this can also lead to the gradient

vanishing or gradient exploding, where the gradients become very small or very large

during backpropagation, making it difficult for the network to learn. To overcome this

issue, variants of RNNs, such as LSTMs (Long Short-Term Memory) [29] and GRUs

Chapter 2. Background 19

Figure 2.6: Architecture of generative adversarial networks

(Gated Recurrent Units) [30], have been developed to use gates to control the flow of

information in the network.

Generative Adversarial Networks (GAN) is a generative model that was first intro-

duced by Ian J. Goodfellow in 2014 [31, 32]. The model is built to bypass the difficulties

of deep learning models with tasks of approximating many probabilistic computations,

and tackle problems using the advantage of piece-wise linear units in a generative con-

text. As illustrated in Figure 2.6, GAN contains two parts: the generative model, namely

generator, and the discriminative model, which is called the discriminator. The genera-

tor tries to fool the discriminator by generating real-like images, and the discriminator

tries to figure out if it is a real image or an image built by the generator, and gives

feedback accordingly. Mathematically the generator is described as the joint probability

distribution of the input variable and the output variable as seen in Equation 2.8.

min
G

max
D

V (G,D) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log (1−D(G(z))]

max
D

V (D) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log (1−D(G(z))]

min
G

V (G) = Ez∼pz(z)[log (1−D(G(z))]

(2.8)

Chapter 2. Background 20

Figure 2.7: Multi-head attention module

Transformer is a deep learning architecture initially used in natural language process-

ing tasks, such as machine translation, text generation, and text classification. It was

introduced in 2017 by Vaswani et al. in the paper ”Attention is All You Need” [33].

The key component of the Transformer is the Multi-Head Attention mechanism, which

is used to model relationships between different elements in a sequence of data, such as

words in a sentence. As illustrated in Figure 2.7

Mathematically, the attention mechanism can be represented as:

MultiHead(Q,K, V) = Concat(head1, ..., headh)W0

headi = Attention(QWQ
i ,KW

K
i , V W

V
i)

(2.9)

where Q is the query matrix, K is the key matrix and V is the value matrix.

Chapter 2. Background 21

2.1.3 Optimization

2.1.3.1 Loss Functions

For supervised tasks, the target of training DNN is to minimize the error between the

real result and predicted result, which is called lossfunction. There are several loss

functions that are commonly used in deep learning, depending on the type of problem

being solved. Some of the most commonly used loss functions are:

Mean Squared Error (MSE): This is a regression loss function that measures the

mean squared difference between the predicted and actual values.

L =
1

N

D∑
i=1

(yi − ỹi)2 (2.10)

where N is the number of samples, yi is the true value, and ỹi is the predicted value.

Cross-Entropy (CE): This is a classification loss function that measures the differ-

ence between predicted probabilities and actual labels. Binary Cross-Entropy(BCE) is

commonly used for binary classification problems:

L =
−1

N
∗
∑

(y log(ỹi) + (1− yi) log(1− ỹi)) (2.11)

And Categorical Cross-Entropy(CCE) is commonly used for multi-class classification

problems:

L =
−1

N
∗
∑∑

yi,j log(ỹi,j) (2.12)

Hinge Loss: This is a binary classification loss function that is used for maximum-

margin classification:

L =
1

N
∗
∑

max(0, 1− yi ∗ ỹi) (2.13)

Kullback-Leibler Divergence (KL divergence): This is a loss function that mea-

sures the difference between two probability distributions. KL divergence is commonly

used for problems such as generative adversarial networks (GANs) and variational au-

toencoders (VAEs):

L = DKL(p||q) =
∑

pi ∗ log(pi/qi) (2.14)

where p and q are the true and predicted probability distributions.

These are just some of the most commonly used loss functions, and there are many other

loss functions that have been developed for specific types of problems. The choice of loss

Chapter 2. Background 22

function will depend on the type of problem being solved. For more information about

different loss functions, please refer to [34].

2.1.3.2 Algorithms

Optimization algorithms are widely used during training to adjust the weights in the

network so as to minimize a loss function. There are several optimization algorithms

that are commonly used to train DNNs, including:

Stochastic Gradient Descent (SGD): SGD is a optimization algorithm that updates

the weights using the gradient of the loss with respect to the weights. The gradient is

estimated using a single randomly selected sample from the training data, which is why

the algorithm is called ”stochastic”. The weights are updated using the following rule:

w∗ = w − η ∗ ▽ (2.15)

where w is the weight, η is the learning rate, and ▽ is the gradient of the loss with

respect to the weight.

Mini-batch Gradient Descent: Mini-batch gradient descent is a variant of SGD that

updates the weights using a small batch of samples from the training data, rather than

a single sample. The gradient is estimated using the average of the gradients for each

sample in the batch.

Momentum: Momentum is an optimization algorithm that uses the past gradient to

give more importance to the recent updates. This can help the optimization converge

faster and avoid getting stuck in local minima. The weights are updated using the

following rule:

v∗ = momentum ∗ v − η ∗ ▽

w∗ = w + v
(2.16)

where v is the momentum and w is the weight.

Adagrad: Adagrad is an optimization algorithm that adapts the learning rate for each

weight based on its historical gradient. The idea is to give more importance to the

weights that have had larger gradients in the past, and reduce the learning rate for the

weights that have had smaller gradients. The weights are updated using the following

rule:
cache∗ = cache+▽2

w∗ = w − η ∗ ▽/(
√
cache+ ϵ)

(2.17)

Chapter 2. Background 23

where cache is the accumulated gradient square and ϵ is a small constant added to

prevent division by zero.

Adam: Adam is an optimization algorithm that combines the ideas of Momentum and

Adagrad to give an adaptive and efficient optimization algorithm. The algorithm keeps

track of both the average of the past gradients and their exponential moving average,

and uses these to adapt the learning rate for each weight.

These are just a few of the most popular optimization algorithms used in training DNNs.

The choice of optimization algorithm can have a significant impact on the performance of

the network, and the best algorithm for a particular problem can vary depending on the

specific details of the network and the data. For more details of different optimization

algorithms, please refer to [35].

2.2 High Performance Computing

In the 1960s, Seymour Roger Cray built the CDC6600 at the Control Data Corpora-

tion(CDC), which outperformed all other contemporary computers and was considered

as the first supercomputer in the world. Since then, supercomputers have been develop-

ing with a very high speed, the HPC systems are becoming larger(hundreds of thousands

of compute nodes), more heterogeneous(CPU, GPU, FPGA, etc.), and thus more com-

plex. Till now, HPC systems and their applications are playing a vital role in both

scientific research and industry.

In this section, an overview of such HPC systems and the environments is given, so that

the required background knowledge for this thesis is available.

2.2.1 HPC System Design Architectures

During the past two decades, many different conceptual architectures of supercomputers

have constantly evolved. HPC computer architectures are parallel computer architec-

tures. A parallel computer is built out of compute units, main memory, and a high speed

network.

For compute unit, CPUs are traditionally adopted in HPC platforms. Recently, GPUs

(Graphical Processing Units) or GPGPUs (General Purpose Graphical Processing Units),

which were originally used for image processing and displaying images, have been widely

utilized on HPC systems to provide very high peak floating-point operations per sec-

ond (FLOPs), especially for AI tasks. In addition, special devices like FPGAs (Field-

Programmable Gate Arrays) which were traditionally used for fixed-point digital signal

Chapter 2. Background 24

processing are also used in HPC systems. Although, FPGAs operate with a lower clock

frequency and have lower peak performances, it can be hardware optimized for each

specific application thus can achieve better performance efficiencies. Another point is

that FPGAs achieve in general higher power efficiencies compared to GPUs and CPUs.

Based on the main memory architecture which refers to an abstract level where the high

speed network connects compute units and main memory, several parallel computer

architectures have been developed.

Parallel Systems

SIMD MIMD

Distributed Memory

MPP Cluster

Shared Memory

UMA NUMA

• Single instruction, multiple data (SIMD): It is a single processor system which was

developed at the early stage of supercomputing, also known as array processors

or vector processors. SIMD based HPC systems are mainly used for the fast

execution of similar computing operations on several simultaneously arriving or

available input data streams. As its name indicates, one instruction is applied to

a bunch of information or distinct data at given moment. It can be easily drawn

out that SIMD is less efficient.

• Multiple Instruction Multiple Data (MIMD): Unlike SIMD, MIMD design applies

multiple directions over totally different information at the same time, thus is more

efficient in terms of performance than SIMD.

• Symmetric multiprocessor (SMP): It is a shared memory system that all compute

units can directly access the whole main memory. This implies that memory access

is symmetric and the time it takes to access any memory address is the same for

all compute units. Therefore, the relative gain of performance keeps decreasing

when the number of CPUs increase due to the memory-bus bottleneck.

• Non-Uniform Memory Architecture (NUMA): To avoid the problems of SMPs,

NUMA was developed. It is built out of nodes that have their own memory while

enable to directly access memory of other nodes.

• Massively Parallel Processings (MPP): In a distributed memory system each com-

pute node can only access its own memory directly, while different nodes can

Chapter 2. Background 25

Figure 2.8: HPC cluster architecture

exchange data via the network. Compared with cluster systems, MPP systems are

more tightly-integrated since individual nodes cannot run on their own and they

are connected by a specialized network.

• Cluster: A cluster system is more standardized compared to MPP. It is a parallel

computer system comprising an integrated collection of independent nodes, each of

which is a system in its own right, capable of independent operation and derived

from products developed and marketed for other stand-alone purposes [36]. A

typical cluster HPC system is illustrated in Figure 2.8, where the details of each

component are described in Section 2.2.2 to Section 2.2.4.

• Constellation: It is a specialized system which is usually based on a blade center

structure: there are several nodes in one chassis and the whole chassis is considered

as a single unit.

Figure 2.9 reveals the trend of the design concepts development for the Top500 HPC

systems in the past 30 years, from 1993 to June, 2023. As can be seen, SMP, SIMD,

and single processor systems all disappeared from the list in the 1990s. Constellations

systems were quite popular in the 2000s, but have not been adopted by the Top500

systems any more since 2007. Nowadays, it is clearly visible that only MPP and cluster

systems are in the TOP 500, while the percentages of MPP continues declining and most

of the Top500 systems are clusters.

Chapter 2. Background 26

Figure 2.9: The development of design architectures of HPC systems within the TOP
500 List from 1993 to 2023. Image source: Top500 [1]

2.2.2 Interconnection Network

High-performance interconnection network is a critical part of the HPC system. With

continuous development of HPC systems, the scale of computing cores and nodes con-

tinues to increase and the network scale of the interconnection network of HPC systems

also continue to expand. For HPC systems with an enormous number of cooperating

computing cores and nodes, the performance of large-scale interconnection networks

inevitably become the bottleneck to limit the overall performance of HPC systems, be-

cause the execution time depends more and more on the communication time rather

than on the calculation time. Therefore, the interconnection network has become the

key to realizing high-speed, collaborative, parallel computing in a HPC system.

Chapter 2. Background 27

To evaluate the usefulness and performance of the interconnection network, a huge set of

metrics can be adopted. Among them, the main performance properties can be network

bandwidth, latency, switch radix, reliability, and power consumption. Bandwidth is the

maximum amount of data transmitted over an internet connection in a given amount

of time. Latency measures the amount of time required for a packet to travel from a

source node to a destination node. Switch radix is the number of switch ports through

which it connects to other nodes. Reliability describes the security in case of failure of

individual components. It is obvious that additional resources are needed for redundancy

to increase the reliability of a network. With the increased number of nodes in the

petascale era, the reliability has become more important, and all interconnection network

are required to tolerate the faults of individual nodes without any significant performance

degradation [37]. And the power consumption measures how much power the connection

network consumes since the power consumed on the inter-chip connection has become a

significant portion of the total power usage of an exascale computing system. An ideal

interconnect should maximizes the FLOPs spent doing useful application work, and

minimizes the number spent waiting for data or performing processor communication.

The performance of a high-performance interconnection network is dependent on various

parameters, among which the most significant are the network topology, the routing, and

the flow-control algorithms [37]. While the routing and flow-control algorithms have

advanced to a state where efficient techniques are known and used, it is still not reached

at an equal level of sophistication in the development of topologies [38]. Therefore, only

the network topologies will be discussed here and the taxonomy of network topologies

[39] is listed as below:

Network Topologies

Dynamic

Crossbar Fat Tree

CBB

BUS

Hybrid

Dragonfly

Static

Fully Connected Torus Hypercube Ring Grid

• Ring network topology is a static topology, where each node is only connected to its

neighbours, thus forming a closed ring, as depicted in Figure 2.10 (A). Messages

from one node to another then travel from origin to destination via the set of

intermediate nodes. The intermediate nodes serve as active repeaters for messages

intended for other nodes, thus no switching components are needed.

• Fully connected network topology is a static topology where each node is connected

to each other, as depicted in Figure 2.10 (B). Messages can be transferred from

Chapter 2. Background 28

the origin to the destination through the direct connection. When a connection is

blocked and fails, the message can be redirected and the network is still operational.

This mechanism ensures very high reliability with the cost that a node has n− 1

networking cards, where n is the number of the nodes in the network. So this

topology is only practical for a very small number of nodes.

• Fat Tree network topology is a universal dynamic network for very efficient com-

munication, as illustrated in Figure 2.10 (F). It is one of the most widely used

topologies, since it provides low latency and enables a variety of throughput op-

tions. However, for large scale clusters, it is relatively costly due to the large

number of switches and links.

• Torus network topology is a switch-less static network topology, which directly

interconnects a node to several of its neighbors in a k-dimensional lattice, as il-

lustrated in Figure 2.10 (E). It can provide low network throughput for adversary

traffic patterns. A torus is suitable for stencil applications, but due to its blocking

nature and higher latency, it is not a preferred option for supercomputers that

need to support a variety of applications.

• Hypercube network consists of 2n nodes, which form the vertices of squares to

create an inter-network connection, see Figure 2.10 (D). A generalization of the

k-ary n-cube [40] is the generalized hypercube where rather than being connected

to the immediate neighbors in each dimension, each node is connected to every

node in each dimension.

• Dragonfly is based on groups of connected compute elements, where all the groups

are connected in a full graph, see Figure 2.10 (C). One can create any inner-group

structure, such as a full graph (Dragonfly), a generalized hypercube (GHC), or

a Fat-Tree. Dragonfly provides good performance for a variety of applications,

specifically, it reduces network costs compared to other topologies, by reducing

the number of long links.

Nowadays, the most frequently used interconnection network topologies in the Top500

include direct k-ary n-cubes, fat tree, torus and mesh, and dragonfly.

2.2.3 I/O and File Systems

For HPC systems, I/O usually refers to the storage and retrieval of persistent data to

and from the file system. There are three main file system architectures used in clustered

HPC systems: local file system, distributed file system, and parallel file system.

Chapter 2. Background 29

(a) Ring (b) Fully connected (c) Dragonfly

(d) Hypercube (e) Torus (f) Fat Tree

Figure 2.10: Different kinds of network topologies

Local file systems can be provided on nodes that are equipped with disks. Only the

node itself can access its disks. Local file systems are useful for (heavy) scratch I/O.

The advantage of local disks is that I/O performance scales perfectly with the number

of nodes. The disadvantage is that for an overall view data has to be collected from all

the nodes it is stored on. Because disks are a major source of failures, many clusters

have diskless nodes.

Distributed (or network) file systems are provided by a file server which is integrated

into the cluster. These file systems are available on all nodes. A typical example is

the /home file system. While all nodes can read concurrently from a distributed file

system without interference, care must be taken in concurrent writing. In general, a file

should only be written or modified by a single process at a time. A classic distributed

file system is the Network File System (NFS), which is not designed for high I/O loads.

For most HPC applications, it is difficult to run a program on several distributed com-

puters with their own local storage, if the processes have to work on shared data. Fur-

thermore, a lot of HPC applications require a very high I/O load from the file system.

Hence, clustered file systems with parallel I/O are designed, which are supposed to ab-

stract from this problem of coordinating accesses and consistency problems. The file

system is usually a parallel file system(PFS), which is designed for parallelism, scala-

bility, and high-performance. PFS enables concurrent access to individual data chunks

from tens of thousands clients through efficient N-to-1 and N-to-N access pattern with

Chapter 2. Background 30

high-performance interconnect and protocol stack. Although the files and storage ele-

ments are distributed, parallel file systems abstract from this distribution and provide

a Portable Operating System Interface (POSIX) [41]. Logically, a PFS is composed of

there main components:

• PFS Client: it is provided the access to the file system and often available as a

kernel module. Further, it is allowed to mount the global file system through the

client software.

• metadata services: it manages all metadata operations on the file system, including

providing client the access to the file system namespace using metadata such as

directory hierarchy, file names, and access permissions.

• I/O server: it provides the I/O services connecting to the Object Storage Tar-

gets(OST), where OST can be almost anything from local disks to shared storage

to high-end SAN fabric.

Some of the most commonly used PFSs by HPC centers are listed below:

• Lustre [42] is an open source parallel file system that provides high throughput and

low latency storage for tightly coupled HPC workloads. In addition to the stan-

dard POSIX mount points in Linux, Lustre also supports data and I/O libraries

such as NetCDF, HDF5, and MPI-IO, enabling parallel I/O to various application

domains.

• BeeGFS [43] is a hardware-independent POSIX parallel file system developed with

a strong focus on performance and designed specifically to manage I/O intensive

workloads in performance-critical environments. BeeGFS is a software-defined

storage based on the POSIX file system interface, which means applications do

not have to be rewritten or modified to access the data inside the file system, com-

municate with the storage servers via network, via any TCP/IP based connection

or via RDMA-capable networks.

• GPFS [44] is high-performance clustered file system software developed by IBM.

It provides concurrent high-speed file access to applications executing on multiple

nodes of clusters. GPFS provides a global namespace, shared file system access

among GPFS clusters, simultaneous file access from multiple nodes, high recover-

ability and data availability through replication, the ability to make changes while

a file system is mounted, and simplified administration in large environments.

Chapter 2. Background 31

The above mentioned PFSs can provide HPC applications general access directly via the

POSIX file system API, however, for some applications, it is far from enough. Therefore,

some higher-level I/O libraries are specially designed for scientific I/O. For example,

MPI-IO [45] supports collective I/O operations, where groups of processes use the API to

concurrently execute a read or write operation. As an optimization, MPI-IO servers can

perform global write buffering and aggregation to match the I/O pattern of clients to the

layout of data on the data servers. Libraries such as HDF5 [46] and ADIOS [47] provide

higher-level storage management capabilities. For instance, HDF5 provides its own

directory structure, with files being replaced with typed, multidimensional numerical

arrays called dataset. I/O libraries may be layered, e.g., HDF5 can be layered on top

of MPI-IO to enable collective access to datasets; and, in turn, MPI-IO can be layered

on top of POSIX. This layering generates complex I/O access patterns that may differ

greatly from the I/O access patterns one would deduce from examining the scientific

application code.

2.2.4 Scheduling and Resource Management

A scheduler is software that implements a batch system on a HPC cluster, which is

responsible for receiving and parsing the user submitted jobs. HPC users usually cannot

not run their jobs directly and interactively, instead they submit non-interactive batch

jobs to the scheduler. The scheduler stores the batch jobs, evaluate their resource re-

quirements and priorities, and distributes the jobs to suitable compute nodes. Without

a scheduler, an HPC cluster would just be a bunch of servers with different jobs inter-

fering with each other. When you have a large cluster and multiple users, each user is

not aware of which compute nodes and CPU cores to use, nor how much resources are

available on each node. To solve this, cluster batch control systems are used to manage

jobs on the system using HPC schedulers. They are essential for sequentially queue-

ing jobs, assigning priorities, distributing, parallelizing, suspending, killing, or otherwise

controlling jobs cluster-wide.

The resource manager is the part of a batch system, which is typically used to control

resource usage policies, such as the number of cores or requested memory. It allows users

and administrators to access and manage the status of various computing resources

like processors, memory, network, and storage. The resource manager provides the

infrastructure to control and monitor the job and collect the statistics of all the processes

running all of the tasks in the job. These statistics are gathered, aggregated, and

ultimately saved to a database which will contain a record of that job’s run. Moreover,

a mechanism called job prologue and epilogue is designed to enable the resource manager

Chapter 2. Background 32

to prepare the nodes for the next job, so that a resource manager is able to to clean,

prepare or test the full functionality of the allocated nodes.

There exist various software which performs scheduling and resource management for

HPC clusters, some of them are listed as below:

• The Simple Linux Utility for Resource Management (SLURM) [48] is an open-

source, fault-tolerant, and highly scalable cluster management and job scheduling

system for clusters of all sizes. Slurm requires no kernel modifications for its oper-

ation and is relatively self-contained. As a cluster workload manager, it provides

a rich set of features for managing resources, scheduling jobs, and tracking job

status. It also supports plugins for customizing its behavior and integrating with

other tools.

• Moab HPC Suite [49] is a workload and resource orchestration platform that auto-

mates the scheduling, managing, monitoring and reporting of HPC workloads on

massive scale. It includes tools for managing resources, scheduling jobs, and mon-

itoring performance. It also provides features for managing policies and quotas,

enforcing service-level agreements, and optimizing resource utilization.

• TORQUE (Tera-scale Open-source Resource and QUEue manager) [50] is a re-

source manager providing control over batch jobs and distributed compute nodes.

It is a community effort based on the original PBS project and has incorporated

significant advancements in the areas of scalability, fault tolerance, and feature

extensions. It can be integrated with other HPC tools, such as Moab.

• The Portable Batch System(PBS) [51], is another workload management solution

for HPC systems and Linux clusters. From the initial design forward, PBS has

included innovative new approaches to resource management and job scheduling,

such as the extraction of scheduling policy into a single separable, completely cus-

tomizable module. PBS provides a simple interface for submitting jobs, managing

resources, and monitoring job status. It also supports advanced features such as

job arrays, checkpoint/restart, and resource reservations

2.2.5 HPC Systems at HLRS

The Hawk system at HLRS [52] is composed of 5,632 CPU nodes and 24 GPU nodes

(Apollo 6500 nodes with 8 NVIDIA A100 GPUs per node), deploys an Infiniband HDR

based interconnect with a 9-dimensional enhanced hypercube topology. Infiniband HDR

has a bandwidth of 200 Gbit/s and a MPI latency of 1.3us per link. Hawk has a peak

Chapter 2. Background 33

Table 2.1: Technical Specification of Hawk and Vulcan

System HPE Apollo (Hawk) Apollo 6500 Cray CS-Storm

Number of compute nodes 5632 24 8

Peak performance 26 Pflops 120 Pflops (AI) 8 Pflops (AI)

CPU type AMD EPYC 7742 AMD EPYC 7702 Intel CLX 6240

GPU type - Nvidia A100 Nvidia Tesla V100

Number of cores 720,896 (CPU) 1,327,104 (CUDA) 327,680 (CUDA)

CPU frequency 2.25 GHz 2.0 GHz 2.6 GHz

Interconnect
InfiniBand
HDR200

InfiniBand
HDR200

InfiniBand
HDR100

performance of 26 Petaflops and its GPU accelerator extension has a peak performance

of 120 Petaflops for DL training.

In addition, Cray CS-Storm [53] (part of Vulcan cluster) is also provided to users. It

is composed of 8 NVIDIA Tesla V100 GPU nodes for DL workloads and 8 Intel Xeon

Gold 6230 CPU nodes (CS-500) for big data workloads. To address the demand for

processing-intensive applications in the realms of ML and DL, the Vulcan and Hawk-

AI partitions support a wide variety of well-known and established AI frameworks and

tools, such as Apache Spark, Python-based data science libraries like scikit-learn, and

frameworks steered toward DL like TensorFlow and PyTorch. The detailed configuration

of Hawk and Vulcan are listed in Table 2.4.

The storage of HPC systems is available globally through distributed parallel file sys-

tems like Lustre or Network File System (NFS). The Lustre at HLRS, which provides

about 25 PB of storage to its users, is accelerated with DDN IME to achieve highest

performance especially when dealing with large amount of small files. And the abil-

ity of providing high performance solution for small files is utmost important for DL

applications.

2.3 Quantum Computing

As described in the section 2.2, with the great power of storage and computation, su-

percomputers have been a significant tool to address the most challenging problems

faced by scientists, business leaders and governments. However, even with the most

advanced supercomputers, many problems remain intractable because of the great re-

quirement of storage and computation power. There are many approaches adopted to

innovate the infrastructure and to meet the ever increasing requirements: one popu-

lar method is the memory-driven computing [54], where each processor in a system is

Chapter 2. Background 34

given access to an enormous reservoir of shared memory; another approach is to offer

greater flexibility, control and customization at the hardware level through chiplets and

field-programmable gate arrays (FPGAs) [55], which are used to accelerate HPC com-

putation. However, these methods are still within the realm of classical computers and

limited by the intrinsic boundaries of classical computers. The space for storage and

the time for computation are restricted by the architecture and physical implementation

of the classical computers, which is incapable of solving many problems. For instance,

the description of more sizeable quantum systems is still impossible on today’s classical

supercomputers since the dimension of quantum systems scales exponentially with the

number of basic building blocks.

A completely new approach is an entirely different paradigm: quantum computing. Com-

pared to the modest performance gains expected from the above approaches, quantum

computing offers the possibility of revolutionary breakthroughs such as transforming

computationally unsolvable problems into manageable ones. For example, problems

that would take too long to compute on a classical computer due to exponential or sub-

exponential time complexity can be computed on a quantum computer in a reasonable

amount of time (polynomial time) [56].

The history of quantum computing dates back to the early 20th century when physicists

such as Max Planck and Albert Einstein introduced the concept of quantum mechanics.

In the 1930s, Paul Dirac developed the mathematical foundations of quantum mechanics,

which enabled the development of quantum theory [57]. In 1982, physicist Richard

Feynman proposed the idea of using quantum computers to simulate quantum systems,

which are difficult to simulate using classical computers [58]. Since then, the field of

quantum computing evolved in the last decades and is now one of the most rapidly

developing research areas. In 1985, physicist David Deutsch developed the first quantum

algorithm, known as the Deutsch-Jozsa algorithm [59]. In 1994, mathematician Peter

Shor developed a quantum algorithm for factoring large numbers, which would have

significant implications for cryptography [60]. In 1996, Grover developed the Grover’s

algorithm which can search an unsorted database by using quantum parallelism and

interference to amplify the amplitude of the desired state in the quantum state [61].

Till now, quantum computing is still in its infancy and the key developments remain

on the more theoretical side. Even the fastest quantum computers today have no more

than 1000 qubits, and are plagued by random errors. These first quantum computers are

called noisy intermediate-scale quantum (NISQ) devices, comprise up to a few hundred

quantum bits and give the opportunities to test quantum algorithms for their behaviour

Chapter 2. Background 35

Figure 2.11: Bloch sphere: qubit states can be represented as points on the surface
of the sphere

under high noise levels. In 2019, Google demonstrated that its 54-qubit quantum com-

puter could solve in minutes a problem that would take a classical machine 10,000 years,

roughly 158 million times faster [62].

To make the research presented this work accessible to people new to quantum infor-

mation, the basic definitions will be discussed in this section, including quantum bit

and superposition, quantum computation and quantum circuits, quantum algorithms,

etc. For a more detailed introduction to quantum information and quantum computing,

please refer to [63].

2.3.1 Qubits and Superposition

In classical computation and classical information, the bit is the fundamental concept

which can only have one of the two values, either 0 or 1. This is because of the limitation

of the implemented device, since classical hardware devices have only two states. Dif-

ferent from classical computation and classical information, quantum computation and

information is built upon an analogous concept, namely quantum bit, or qubit for short.

Similar to classical bit which has a state(either 0 or 1), a qubit also has a state, which

is often denoted in terms of |0⟩ and |1⟩. The difference between a bit and a qubit is

that a qubit can be in a coherent superposition of both levels |0⟩ and |1⟩ simultaneously,

while a classical bit can either be 0 or 1. For more mathematical description of Dirac

Notation, please refer to [64].

A qubit can be described as a normalised vector |ψ⟩ in a two-dimensional complex

Hilbert space H = C2, which can be expressed as superposition:

|ψ⟩ = α |0⟩+ β |1⟩ (2.18)

Chapter 2. Background 36

where α and β are complex numbers and |α|2+|β|2 = 1. Since this description is a vector

with norm 1, it is easy to depict a qubit state on the surface of a sphere. Therefore, a

qubit state can be rewritten as:

|ψ⟩ = eiγ(cos(
θ

2
) |0⟩) + eiφ sin (

θ

2
) |1⟩) (2.19)

As is visualized in Figure 2.11, which is named as Bloch Sphere.

For multiple qubits, n qubit state can be expressed as the superposition

|ψ⟩ =
∑

q1,...,qn∈0,1
αq1,...,qn |q1...qn⟩ (2.20)

in H = C2n with complex coefficients αq1,...,qn .

2.3.2 Quantum Computation and Circuits

Quantum gates are basic building blocks of quantum algorithms and quantum circuits.

They manipulate the quantum states of qubits and are used to encode quantum algo-

rithms and perform quantum computations. In Table 2.2, some of the commonly used

quantum gates are listed. For example, applying the Pauli-X gate on a quantum state

of ψ gives:

X |ψ⟩ = X(α |0⟩+ β |1⟩) = β |0⟩+ α |1⟩ = |ψ′⟩ (2.21)

Since X |ψ⟩ = |ψ′⟩, and for every gate U that fulfills U |ψ⟩ = |ψ′⟩, specifically ⟨ψ|ψ⟩ =

1 = ψ′|ψ′, the gate has to be unitary defined through U †U = 1, where U † denotes the

adjoint of the matrix U . For more information about unitary gates, please refer to [65].

Except from the quantum gates listed above, there are also some commonly used quan-

tum gates which can be adjusted by the parameters, namely parameterized quantum

gates. In Table 2.3 a selection of parameterized quantum gates are listed and explained.

Here is a brief introduction to them:

• P gate: The P gate, also known as the ”phase gate,” adds a phase to the state of

a qubit. It is represented by the unitary matrix:

P (θ) =

[
1 0

0 eiθ

]
(2.22)

where i is the imaginary unit and θ is the phase angle.

Chapter 2. Background 37

Gates Operators Matrix

I Identity

[
1 0
0 1

]

X Pauli-X

[
0 1
1 0

]

Y Pauli-Y

[
0 −i
i 0

]

Z Pauli-Z

[
1 0
0 −1

]

S S

[
1 0
0 i

]

H Hadamard 1√
2

[
1 1
1 −1

]

• CNOT 1√
2


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



Table 2.2: A selection of quantum gates

Gates Operators Matrix

P [θ] P (θ)

[
1 0
0 eiθ

]

RX[θ] RX(θ)

[
cos θ

2 −i sin θ
2

−i sin θ
2 cos θ

2

]

RY [θ] RY (θ)

[
cos θ

2 − sin θ
2

sin θ
2 cos θ

2

]

RZ[θ] RZ(θ)

[
e−i θ

2 0

0 ei
θ
2

]

Table 2.3: Parameterized Gates

Chapter 2. Background 38

• RX gate: The RX gate, also known as the ”rotation-X gate,” rotates the state of

a qubit around the X-axis in the Bloch sphere representation. It is represented by

the unitary matrix:

RX(θ) = cos(θ/2)I − i sin(θ/2)X (2.23)

where I is the identity matrix and X is the Pauli-X matrix.

• RY gate: The RY gate, also known as the ”rotation-Y gate,” rotates the state of

a qubit around the Y-axis in the Bloch sphere representation. It is represented by

the unitary matrix:

RY (θ) = cos(θ/2)I − i sin(θ/2)Y (2.24)

where Y is the Pauli-Y matrix.

• RZ gate: The RZ gate, also known as the ”rotation-Z gate,” rotates the state of

a qubit around the Z-axis in the Bloch sphere representation. It is represented by

the unitary matrix:

RZ(θ) = cos(θ/2)I − i sin(θ/2)Z (2.25)

where I is the identity matrix and Z is the Pauli-Z matrix.

The quantum gates stated above describe the basic operations on quantum state, then

the questions arise: how can complex operations be done? Can a complex operation

be approximated by breaking down into sequences of elementary gates? The Solovay-

Kitaev theorem [66] states that every unitary U can be approximated with an accuracy

of ε by a sequence of gates from G of length (O)(logc(1ε)), where G is finite universal

gate set and c is a constant based on the choice of U .

The quantum operations built from sets of gates can be represented in a quantum circuit.

Figure 2.12 illustrates a sample quantum circuit composed of a Hardamad gate and two

CNOT gates, where every horizontal line depicts a qubit and following the lines from

left to right depicts the evolution in time.

2.3.3 Quantum Algorithms

Quantum algorithms are a class of algorithms that can be run on quantum computers,

taking advantage of the unique properties of quantum mechanics to solve problems more

efficiently than classical algorithms, or cannot be solved in any feasible time by today’s

classical computer. One advantage of quantum algorithms lie in the exponential memory

capacity, since the state space grows with 2b, where b is the number of computational bits

on classical computers, while in quantum computers it grows in a polynomial manner.

Chapter 2. Background 39

Figure 2.12: A sample quantum circuit with three qubits, one Hardamard gate and
two CNOT gates

Another quantum advantage is the quantum parallelism, which can be achieved by

quantum superposition and inference.

Here are some of the most well-known quantum algorithms:

Deutsch-Jozsa algorithm [59]: This is one of the earliest quantum algorithms and

is designed to solve a specific type of problem known as the Deutsch-Jozsa problem.

This problem can be formulated as follows: given a function f that takes a string of

bits as input and returns either 0 or 1, determine whether the function is constant or

balanced. The Deutsch-Jozsa algorithm works by exploiting the properties of quantum

superposition and interference. It takes advantage of the fact that a quantum computer

can evaluate a function on many inputs simultaneously by creating a superposition of

all possible inputs. The algorithm then applies a series of quantum gates that depend

on the function being evaluated to create interference between the different inputs in

the superposition. Finally, it measures the output of the quantum circuit and uses it to

determine whether the function is constant or balanced.

Shor’s algorithm [60]: This is a quantum algorithm designed to solve the problem of

factoring large numbers into their prime factors, which is believed to be computationally

intractable for classical computers. The Shor algorithm works by exploiting the prop-

erties of quantum superposition and entanglement to evaluate the period of a function

called the modular exponentiation function. This function is used in classical factoring

algorithms and plays a key role in the Shor algorithm. Shor’s algorithm can factor an

N − bit integer in O((logN)3) time, which is much faster than the best known classical

algorithms, which require O(e(logN)
1
3 ∗(log logN)

2
3) time.

Grover’s algorithm [61]: This is a quantum search algorithm that can be used to find

a particular item in an unsorted database. The key to the algorithm’s speed is that it

uses a combination of quantum superposition and interference to search the database for

the desired item. It does this by initializing a quantum register in a superposition of all

Chapter 2. Background 40

Table 2.4: Technical Specification of IBM Quantum System One at Ehningen

Index Values

Number of qubits 27

Coherence time ≈ 150us

Single qubit gate error ≈ 0.025%

Two qubit gate error ≈ 0.7%

Operation time of 2 qubit gate ≈ 300ns for CNOT

Quantum Volume QV 64

possible states, applying a series of quantum gates to the register, and then measuring

the register to obtain the desired item with high probability. The algorithm requires

a number of iterations that scales with the square root of the number of items in the

database. Each iteration amplifies the amplitude of the item being searched for while

suppressing the amplitudes of the other items. This process continues until the desired

item is found with high probability. Grover’s algorithm can search through a database

of N items With O(
√
N) queries, which is much faster than classical search algorithms

that require O(N) queries.

2.3.4 IBM Quantum System One at Ehningen

The experiments in this dissertation related to quantum computing are conducted on

the IBM Quantum System One at Ehningen [67], which is the world’s first integrated

gate-based quantum computer system. The specification of IBM Quantum System One

can be found at Table 2.4.

2.4 Conclusion

In conclusion, this chapter has provided a comprehensive overview of the context and

key factors that are relevant to the topic being studied. Overall, this chapter has set the

stage for the research by providing a solid understanding of the historical, theoretical,

and empirical context in which the study takes place. This understanding will be vital

for interpreting the findings and drawing meaningful conclusions from the study.

Chapter 3

Methods for Scaling Deep

Learning Workloads on HPC

This chapter reviews the techniques that bridge the gap between HPC and deep learning

workloads, e.g., environment setup, orchestration/scheduling, frameworks, etc. Further-

more, various optimization methods are described and compared from different aspects,

which enable the seamless execution of deep learning applications on HPC, including

parallelization methods, communication optimization, etc.

Chapter outline: This chapter is divided into sixsections. In Section 3.1, the introduc-

tion to the research scenario is provided. Section 3.2 describes the key technologies that

are commonly used for setting up the environment in the HPC system for DL workloads.

In Section 3.3, different parallelization methods that enable distributed training of DL

workloads on HPC are described, followed by the review of communication optimization

methods in Section 3.4. In Section 3.5, different tools and frameworks which are used for

distributed deep learning training are summarized and compared. Lastly, the conclusion

of this chapter is given in Section 3.6.

3.1 Introduction

HPC systems are traditionally employed to perform large-scale financial, engineering

and scientific simulations. The efficient implementation of such simulations requires

good knowledge of the underlying hardware architectures, network topologies, program-

ming environments and libraries to exploit the systems. With the recent advent of AI,

specifically High-Performance Data Analytics (HPDA) and DL, there is an increasing

41

Chapter3. Methods for Scaling Deep Learning Workloads on HPC 42

Table 3.1: Comparison of HPC and DL stack

Type HPC Deep Learning

Scheduling
Batch Scheduler:

PBS/Torque, Slurm
VM/Container Management

Frameworks OpenMP, MPI, OpenFoam, ..
Tensorflow, Pytorch,

...

Programming Language C/C++, Fortran Python, C++, Java

Network Infiniband,OPA fabrics Ethernet

Storage Storage&I/O nodes, NAS Local Storage, NAS/SAN

Processors CPUs, GPUs, FPGAs CPUs, GPUs, TPUs, FPGAs

demand for HPC infrastructures [68]. Challenges such as climate simulation, green en-

ergy, smart transportation and autonomous driving require a close interplay between AI

and simulations. For instance, climate simulation needs a fine mesh resolution and incor-

porates many complex atmospheric components to accurately predict cloud behaviour

that can be learnt with given physical constraints. A trained AI model thus can act as

a surrogate to replace the traditional physics-based model, which reduces model com-

plexity and improves prediction accuracy; meanwhile, execution time on HPC systems is

significantly reduced to a small fraction of the simulation with the physics-based model.

Conventionally, HPC focuses on complex and compute-intensive tasks that are highly

parallelizable. It has grown its own legacy software stacks powered by programming

languages such as C++/Fortran and parallel programming paradigms such as OpenMP

[69], and Message Passing Interface (MPI) [70]. Per contra, AI applications are usually

developed with high-level scripting languages or frameworks, e.g., TensorFlow [71], and

PyTorch [72], which require flexible development environments.

To scale DL model training and fully utilize the computation and storage resources on

HPC is often challenging because there exist several gaps between the two workflows.

For example, the schedulers of HPC are often batch schedulers, e.g., PBS, Slurm, etc.

which evaluates a job’s resource requirements and priorities and distributes the job to

suitable compute nodes. While in DL training, such work is often done by VM/container

management, and DL schedulers often refer to how to map the DL training processes

to the processing nodes in the infrastructure. A detailed description of the difference

between HPC and DL is shown in Table. 3.1.

There have been several surveys that are complementary to this chapter which focus

on more specific aspects such as containerization [73, 74], container orchestration [75–

77], cloud orchestration[78], scaling up machine learning[79], scaling up DL [80], high-

performance big data [81–83]. In particular, Liao et al. [74] and Bhatia et al. [73] provide

Chapter3. Methods for Scaling Deep Learning Workloads on HPC 43

a review of Docker technologies, one of the most used containers. Casalicchio [75] surveys

the state-of-the-art solutions and research challenges in the autonomic orchestration of

containers. Bengio [80] surveys scaling deep learning from various perspectives, focusing

on models, optimization algorithms and datasets. Furthermore, it also overviews some

aspects of distributed computing, including asynchronous and sparse communication.

Contribution: There is no study yet provides a broad view of the interplay and conver-

gence of AI and HPC. Thus, the convergence of AI and HPC, including the techniques

used to deploy AI applications on HPC has been studied in this chapter. Moreover, the

benefits of utilizing HPC for AI applications with respect to parallelism, communication

and scheduling are summarized. These aspects are crucial when applying HPC for AI

applications.

3.2 Environment Setup

Configuring and maintaining installed software on HPC clusters is often difficult because

of the complex dependencies among libraries, particularly, updating and installing new

packages can often cause dependency conflicts. When training of DL models on HPC

clusters, such complexity becomes increasingly evident, especially considering the differ-

ent programming languages, libraries, frameworks and workflows. Solutions to address

the above issues should meet the following requirements:

• give users the freedom to customise working environments without affecting the

host systems. This is often not an option on HPC systems where users often have

limited access privileges, (e.g., no root access).

• make it possible to move around the applications easily among HPC clusters.

This section depicts different technologies which can circumvent the above issues and

facilitate implementation of DL processes on HPC systems.

3.2.1 Containerization

A container encapsulates programs together with their libraries, data and configuration

files [84] in an isolated environment, ensuring package compatibility and enabling users

to move and deploy programs easily among clusters. Containerization is a virtualization

technology [85]. Rather than simulating the holistic kernel as in a Virtual Machine (VM),

a container shares its host’s underlying kernel. Different from the VM, the host merely

Chapter3. Methods for Scaling Deep Learning Workloads on HPC 44

Figure 3.1: Scalable deep neural network training on HPC through container and
container orchestrator

needs to start new processes that are isolated from its own to boot a new container [86],

thus making start-up time of a container similar to that of a native application. Apart

from their portability, containers can also guarantee reproducibility.

Figure 3.1 illustrates how scalable DL workloads are executed on HPC cluster. Users

prepare and submit their workloads as jobs to the HPC scheduler; based on request,

policies, and availability of resources, HPC scheduler reserves certain compute nodes and

executes the job script submitted by user; job script prepares required environment and

deploys a container orchestrator on (all) reserved nodes; last one deploys containers with

DL processes managed by DL scheduler. HPC cluster are usually multi-tenant systems

where some resources (especially network) are shared between tenants. Depending on

security restrictions and available features container orchestrator can be represented by a

simple script for deploying containers, or by a more complex orchestrator like Kubernetes

or its more restricted implementations (k3s[87], usernetes[88]).

There are multiple technologies for implementing the concept of containers, e.g., Docker

[89], Singularity [90], Linux LXC [91], Shifter [92], etc. AI models can be easily imple-

mented in containers like Singularity [93] with its dependencies prepared for running

on HPC clusters. However, when running on HPC infrastructure, container’s nature

Chapter3. Methods for Scaling Deep Learning Workloads on HPC 45

of hardware- and platform-agnostic prevents the containerized application from detect-

ing and leveraging any specialized hardware and software in the system, such as GPU

accelerators, vendor-specific MPI implementations that unlock the full performance of

interconnect technologies like InfiniBand and Cray’s AriesTM. Therefore, containers

which specifically target at deploying AI applications on HPC need to be researched.

NVIDIA offers NGC container registry 1 which provides fully integrated DL framework

containers that are optimized for NVIDIA GPUs. Compared with other containers,

NGC containers provides monthly DL container releases offering latest features and

superior performance on NVIDIA GPUs [94]. The supported DL frameworks include

TensorFlow, PyTorch, MXNet, NVIDIA TensorRT, etc. Besides, it supports Docker and

Singularity runtimes and can run flexibly in different HPC environments. In addition,

NGC offers HPC containers supporting visualization tools, e.g., ParaView with NVIDIA

IndeX volume renderer.

Benedicic et al. [95] presented an extension to the container runtime of Shifter that pro-

vides containerized applications with a mechanism to access GPU accelerators and MPI

resources from the host system, effectively enabling performance portability of containers

across HPC resources. Their experiment of containerzed TensorFlow on HPC systems

proved that the Shifter extension allows accelerated and distributed DL applications to

achieve native performance when executed from a container.

Charliecloud [96], developed at Los Alamos National Laboratory (LANL), is a lightweight

open source user-defined software stacks (UDSS) implementation based on the Linux

user namespace for HPC sites with strict security requirements. Brayford et al. [97]

described a mechanism that employs Charliecloud to deploy TensorFlow and trained a

complex neural network at scale on a secure HPC system with utilization of MPI and

Horovod.

Regarding the impact of container technologies on AI workloads running on conventional

HPC systems, different studies have proven that HPC users and AI experts should feel

free to containerize their AI applications without concern about performance degra-

dation, regardless of the container technology used [93, 98, 99]. It is an encouraging

development on the path towards greater adoption of user-defined software stacks to

increase the portability and reproducibility of HPC.

1https://ngc.nvidia.com

Chapter3. Methods for Scaling Deep Learning Workloads on HPC 46

3.2.2 Container Orchestration

Containers are dedicated to run micro-services, with one container typically hosting

just one application. Nevertheless, containerized applications can become complex, as

thousands of separate containers can sometimes be required in production. The tra-

ditional HPC workload managers, e.g., Slurm [100], Torque [101], lack efficiencies in

container scheduling and management, and often do not provide integrated support for

environment provisioning [102]. Moreover, HPC applications are hardware specific, and

their applications are specifically optimized for the nodes. This is not the case for con-

tainerized applications. Regarding the deployment of AI applications on HPC, an AI

application needs to parallelize its workloads and scale to more HPC compute nodes in

order to speed up the whole process [97].

The state-of-art trend is to optimize the containerized AI frameworks to better suit HPC

infrastructure, e.g., containerize the DL framework Horovod [103] (see Section 3.5.2), as

Horovod adopts the concepts of MPI that is a typical model for writing parallel applica-

tions for HPC. Considering that performance is the sine qua non for HPC applications,

it poses the key question for massive usage of containerized applications on HPC clusters

[104–106]

Kubernetes [107] is a widely-adopted container orchestrator on cloud clusters. Some

tools are developed which enables scheduling of containers from cloud to HPC systems.

WLM-operator [108] enables submitting and monitoring container jobs to HPC clusters

managed by Slurm from cloud clusters controlled by Kubernetes, while takes advantages

of Kubernetes features, such as smart scheduling and volumes. Zhou et al. [102] im-

plemented a Torque-Operator that extended WLM-operator with Torque support and

proposed an architecture which can provide a unique interface for job submission and

management for HPC and cloud.

With the development of container and orchestration, it is noticed that more and more

domains of science begin to use container technology to deploy AI applications on HPC

systems, such as climate analytics [109], cancer detection [110], computational fluid

dynamics [95], etc.

3.2.3 Other Methods

Conda [111]: Conda focuses on quick installation of software and ease of use, and

enables users create a conda environment in which they can install one or more packages.

These packages are usually pre-built generic binaries, which may significantly impact

the performance of the installations. Despite wide adoption in the scientific community

Chapter3. Methods for Scaling Deep Learning Workloads on HPC 47

conda is not a good fit for HPC systems for a number of reasons, including poor support

for multi-user environments, a lack of focus on performance, heavily relying on the

home directory (which usually is limited in size on HPC systems), etc. There is also

no guarantee that it will install libraries that are compatible with the hardware of the

cluster, so the Conda-installed software may not always work properly with the cluster

interconnect or resource manager.

Virtualenv [112]: Virtualenv is a tool for creating isolated Python environments.

With virtualenv, users can install specific versions of packages and dependencies without

affecting the system Python installation. Virtualenv is a lightweight tool and can be

useful in HPC environments where users have limited permissions to install software.

EasyBuild [113]: EasyBuild is a tool for automating the installation and management

of software on HPC clusters. With EasyBuild, users can easily install and manage

complex software stacks and dependencies. EasyBuild supports a wide range of software

packages and HPC systems, making it a versatile tool for managing software in HPC

environments.

Spack [114]: Spack is a free, open-source package manager designed to make it easy to

install and manage software on a wide range of computing platforms. Its support for mul-

tiple architectures, compilers, and operating systems, as well as its ability to create and

manage environments, make it an ideal tool for scientific computing, high-performance

computing, and data science applications. One of the key features of Spack is its ability

to create and manage software environments. Users can create isolated environments

for different projects, each with its own set of installed packages and dependencies. This

makes it easy to switch between different software stacks, and to ensure that different

projects do not interfere with each other. Spack also supports the creation of custom

packages, which can be shared with others or kept private. Packages can be created

using a simple configuration file format, and can be versioned and published to online

repositories for easy sharing.

3.3 Parallelization

In deployment of distributed deep learning, there exist many possibilities for paralleliza-

tion, especially when used in conjunction with HPC. In order to fully utilize the compu-

tational resources in HPC, different parallelization algorithms and strategies have been

developed. Here, the four predominant parallelization methods in ML & DL, namely

data, model, pipeline and local parallelism, as well as hybrid forms of parallelism are

introduced.

Chapter3. Methods for Scaling Deep Learning Workloads on HPC 48

3.3.1 Model Parallelization

Model parallelization [115, 116] is a commonly used strategy where parameters of DNN

models are partitioned to different workers and undergo concurrent iterative updates.

Here, a subset of parameters on each worker is updated in parallel using either all data

or different subsets of the data [117]. The updates from each subset must be highly

compatible in order to ensure correctness. However, because model parameters are dis-

tributed to different workers, and these arbitrary parameter subsets are dependent on

each other, independent updates will break the simplex constraint and lead to incorrect

estimates. To solve such problems, algorithms that support sophisticated constraint

and consistency satisfiability mechanisms have been developed: Bradley et al. [117] pro-

posed model-parallel coordinate descent, which allows updating of multiple parameters

in parallel. Scherrer et al. [118] updated groups of independent parameters in parallel

to avoid interference and loss of correctness during concurrent parameter updates.

More specifically, there are two main challenges for the parallelization of DL models.

The first is splitting the model into partitions assigned to the parallel workers [119].

A common approach to find a good model splitting is to use reinforcement learning

[120, 121]: Starting from some initial partitioning, permutations on that partitioning are

performed, and performance is measured(e.g., for one training iteration). If performance

is improved, the permutation is maintained, and further permutations are performed,

until the measured performance converges [122].

The second challenge is how to reduce communication costs between workers. Muller

et al. [123] proposed an idea to introduce redundant computations to neural networks.

In particular, this method partitions a DNN such that each processor is responsible for

twice the neurons (with overlap), and would thus need to compute more but commu-

nicate less. Another proposal is to use Cannon’s matrix multiplication algorithm to

reduce communication in fully connected layers, modified for DNNs [124]. It is reported

that Cannon’s algorithm outperforms simple partitioning on small-scale multilayer fully

connected networks in both efficiency and speed.

The main advantage of model parallelism is to conserve memory. Because the entire

model is not stored in one place and the model is split into multiple workers, less memory

is needed for each worker. This is useful when the complete model is too large to fit on

a single device, which can occur, for example, when the device consists of specialized

hardware such as GPUs or TPUs. The disadvantages of model parallelism are the heavy

communication that is needed between workers. This is a critical issue, especially when

training of DL models, as complex neural networks are hard to split effectively, and

Chapter3. Methods for Scaling Deep Learning Workloads on HPC 49

...

...

...

...

...

... ...
...
...

...

...

Model is split and distributed
to different workers

Worker n

Worker 1

Worker 2
Loss

Parameter Synchronization

Figure 3.2: Model parallelism

stalling of workers can occur because of communication overhead and synchronization

delays.

3.3.2 Data Parallelization

Different from model parallelization, data parallelization [125, 126] implies that the

training data is split into non-overlapping chunks and fed into the model replicas of

the workers for training, while an identical copy of the DNN model is loaded in the

workers. Each worker performs the training independently on its shard of the batch,

leading to updates of the model parameters. Two main methods are employed in data

parallelism: synchronous training and asynchronous training. As the name infers, syn-

chronous training pools the parameter updates after each iteration; in asynchronous

training, the models are updated on each work completely independently from each

other. In data parallelism, several challenges in synchronization and communication

exist. Especially when the model has many parameters, synchronization becomes the

bottleneck [115, 127].

The scaling of data parallelism is naturally defined by the minibatch size. When per-

forming stochastic gradient descent (SGD), it is common to decrease the number of

weight updates by computing the sample loss in minibatches, averaging the gradient

Chapter3. Methods for Scaling Deep Learning Workloads on HPC 50

...

...

...

...

...

... ...

...
...

...

...

...

... ...

...

...

...

...

...

... ...

Data is split and fed to
different workers

...

...

...

...

...

... ...

Each worker has an
identical copy of the

model

Worker 1

Worker 2

Worker n

Parameter Synchronization

Loss

Loss

Loss

Figure 3.3: Data parallelism

concerning subsets of the data [128]. The minibatch method aims to achieve a bal-

ance between SGD and batch methods [129], where the whole dataset is used in each

iteration, suggesting that the use of minibatches could be regarded as a form of data

parallelism. Additional approaches for data parallelism using MapReduce are proposed

[130][131][132][133] .

When trying to achieve data parallelism in HPC, several works have shown how high-

performance communication interfaces, e.g., MPI can be used to implement fine-grained

parallelism features. Gaunt et al. [134] revealed how to reduce latencies via asyn-

chronous execution and pipelining. Further, Zhao et al. [72] and Renggli et al. [135]

introduced how to utilize allreduce in Kylix [72] and SparCML [135] to achieve better

performance through sparse communication. In Kylix, a nested, heterogeneous-degree

butterfly allreduce network is implemented to synchronize models, maintain distributed

datasets, and perform operations on distributed data. In SparCML, sparse allreduce op-

erations are generalized by allowing processes to contribute arbitrary sparse input data

vectors. In addition, it is able to switch a sparse and dense representation automatically

by a simple performance model. Oyama et al. [136] and Zlateski et al. [137] studied how

to exploit parallelism within a given computational resource through decomposing [136]

or computing [137] micro-batches (fragmented from minibatches). Doing so makes it

possible to reduce the required memory footprint and enable further hybrid CPU-GPU

inference.

Chapter3. Methods for Scaling Deep Learning Workloads on HPC 51

...

...

...

...

...

... ...

...

...

...

...

...

...

...
Data is split into batches
and fed into the model

Model is split and distributed to
different workers

Loss

Worker 1 Worker 2 Worker n

Parameter Synchronization

Figure 3.4: Pipeline parallelism

3.3.3 Pipeline Parallelization

Pipeline parallelism [138][139][140] can be viewed as a combination of model parallelism

and data parallelism, as the model is split into different workers for training and the

training data is also split into micro batches. In particular, when training of DL model,

data are processed through the network in parallel (data parallelism) and the length

of the pipeline is determined by the DNN structure (model parallelism) [141]. This

methodology is widely adopted by most DL frameworks, e.g., TensorFlow [142], Torch

[143] and Caffe [144] through overlapping forward evaluation, backpropagation, and

weight updates. Colin et al. [145] proved that using randomized smoothing [146][147]

in pipeline parallelism which replaces the usual gradient information with an average of

gradients sampled around the current parameter, is particularly effective in specific fields

such as few-shot learning [148], deep reinforcement learning [121][120] or adversarial

learning [149][150].

Gpipe [138] and Pipedream [151][152] are scalable pipeline parallelization framework

that provide a solid and efficient way of applying pipelining techniques to neural network

training. Here, network layers are partitioned and training samples flow across them,

only waiting for the next layer to be free, increasing the overall efficiency in a nearly

linear way [145].

3.3.4 Local Parallelization

The parallelism methods mentioned above are trying to make the backpropagation more

efficient, which also brings the limitation that the network parameters of each layer can

only be updated in turn after completing the full forward pass(backward locking). This

backward locking results in increased memory overhead, and precludes efficient parallel

processing across layers [153]. To overcome these challenges and scale more efficiently

with compute than backpropagation, local parallelization was proposed by Laskin et al.

Chapter3. Methods for Scaling Deep Learning Workloads on HPC 52

Figure 3.5: Local parallelism

[154], which parallelizes the training of individual layers in deep networks by replacing

global backpropagation with truncated layer-wise backpropagation. As illustrated in

Figure 3.5, the layers of a deep neural network are divided into a sequence of blocks,

which may contain one or more layers. Each block is trained independently with an

auxiliary objective on an individual worker, and receives the output of the activation

by the previous block as input. Their study shows that local parallelism enables fully

asynchronous layer-wise parallelism with a low memory footprint and requires little

communication overhead compared with model parallelism.

3.3.5 Hyrbid Parallelization

DNN models are complex and different DNN models usually require different paralleliza-

tion methods. To overcome the drawbacks of each scheme, a variety of combinations

of multiple schemes for parallelization have been introduced. Below, hybrid approaches

that mix model, data and pipeline parallelism are surveyed.

Different hybrid parallelism systems have been developed for distributed machine learn-

ing. For example, SystemML [155][156][157] is a systematic approach for combining dif-

ferent kinds of parallelism for large-scale machine learning on top of MapReduce. The

core idea is to employ a dedicated ParFOR (Parallel FOR) construct, as known from

HPC, to create optimal parallel execution plans. Angel [158] is a hybrid, large-scale ma-

chine learning system deployed by Tencent to accelerate performance while reducing the

Chapter3. Methods for Scaling Deep Learning Workloads on HPC 53

Table 3.2: Comparison of different parallelism strategies

Strategies
Data Parallelism

(DP)
Model Parallelism

(MP)
Pipeline Parallelism

(PP)

Data Split x x

Model Split x x

Communication
Synchronization of
model parameters

Very high
Less communication
overhead than MP

CPU/GPU
Resources

High
memory usage

Less
memory usage

The more pipelines,
the less memory

usage on each worker

Downsides
Not applicable

for large models

High communication cost;
device underutilization;

hard to split model effectively

Device
underutilization

network latency by overlapping parameter pulling and update computing, and utilizing

the sparseness of data to avoid the pulling of unnecessary parameters.

In addition to the algorithms mentioned above, several frameworks that utilize hybrid

parallelism to empower the training of large-scale DL models have been proposed. Gaunt

et al. [134] proposed a framework called AMPNet which implements asynchronous

parallelism; tasks between layers are scheduled asynchronously and dynamic control flow

is executed asynchronously. DistBelief [159] combines all three parallelism strategies,

performing training on multiple model replicas simultaneously. Based on this idea,

a distributed system called Adam [160], designed by Microsoft, exploits asynchrony

throughout the system to improve not only the performance but also the accuracy of

trained models.

3.4 Communication

In the training of DNN models on large-scale CPU and GPU clusters, communication is

considered the most important bottleneck of performance as it requires much more time

than computation. This is particularly true when using a data parallelism strategy on

a large dataset or model parallelism for extremely large models. In HPC environments,

such communication problems can be optimized due to HPC techniques for stencil com-

putations such as MPI Neighborhood Collectives [161] or optimized Remote Memory

Access programming [162]. However, due to the data-intensive nature of DNN train-

ing, traffic between nodes is hefty, and the performance-optimized interconnect of HPC

cannot be fully utilized. For example, TensorFlow enables distributed training through

Google’s GRPC protocol [163], which is unsuitable for HPC as it requires at least one

server and utilizes network protocols such as TCP/IP. Messages from such protocols

Chapter3. Methods for Scaling Deep Learning Workloads on HPC 54

require more bandwidth than HPC interconnect messages, which downgrades the per-

formance of the overall I/O pipeline in HPC.

Therefore, different technologies have been developed to offer good distributed training

performance at minimum implementation overhead for DNN on HPC. Hoefler et al.

[164] studied the communication requirements for training modern DNNs on HPC and

developed an open-source library called Aluminum to enable optimized, asynchronous,

GPU-aware communication on HPCs with distributed GPU systems using CUDA and

MPI. Techniques that enable overlapping of communication and computation, which is

a standard approach to reduce communication overheads, are employed. Additionally,

a solution is proposed for solving the semantic mismatch between MPI and CUDA that

leads to overheads increase and asynchrony limits. The NVIDIA Collective Communi-

cations Library(NCCL) [165] implements multi-GPU and multi-node collective commu-

nication primitives that are performance optimized for NVIDIA GPUs. NCCL provides

routines such as all-gather, all-reduce, broadcast, reduce, and reduce-scatter that are op-

timized to achieve high bandwidth and low latency over PCIe and NVLink high-speed

interconnect. Intel(R) Machine Learning Scaling Library(MLSL) [166] is a library de-

veloped by Intel that provides an efficient implementation of communication patterns

used in deep learning.

3.5 Tools and Frameworks

3.5.1 Deep Learning Frameworks

Since the rise of DL, many different DL frameworks and tools have been developed, in

which different concepts of parallelization and distribution are implemented. Table 6.1

provides a detailed overview of DL frameworks.

TensorFlow [167], developed by Google and community contributors, is one of the most

widely used ML/DL frameworks. It natively supports distributed and parallel training

through both model parallelism and data parallelism. In data parallelism, it supports the

centralized approach via parameter servers, using either asynchronous or synchronous

training. TensorFlow can efficiently work with mathematical expressions involving multi-

dimensional arrays. And it shows high scalability of computation across machines on

huge data sets.

PyTorch [168], developed by Facebook and community contributors, is another popular

DL framework. In PyTorch, distributed, data-parallel training as well as model-parallel

training are supported out-of-the-box. For data-parallel training, PyTorch supports both

Chapter3. Methods for Scaling Deep Learning Workloads on HPC 55

synchronous and asynchronous training through implementation of its both centralized

and decentralized architecture. Compared with TensorFlow, Pytorch is easier to use, still

it is more popular amongst researchers, not regularly used as a production framework

in industry.

CNTK (Microsoft Cognitive Toolkit) [169] is a DL framework developed by Microsoft

and community contributors. It provides a built-in mechanism for data-parallel and

distributed training. CNTK has a centralized architecture with parameter servers, using

asynchronous training. Currently it does not support model parallelism.

Deeplearning4j [170] is a DL framework developed by Skymind and community contrib-

utors organized by the Eclipse Foundation. Its data-parallel training is realized using

both decentralized asynchronous and centralized synchronous approach. Model paral-

lelism is currently not supported by Deeplearning4j. Distributed and parallel training

are supported by using Spark/Hadoop, thus Deeplearning4j is able to process a huge

amount of data without sacrificing speed.

MXNet [171] is a DL framework and an Apache project (incubating). MXNet supports

model parallelism for multiple GPUs on a single node, although model parallelism for

multi-node is not supported though. Data parallelism is implemented though the cen-

tralized architecture. MXNet supports synchronous and asynchronous training. To be

noted here, MXNet has a dynamic dependency scheduler which enables auto parallelism.

And its very good computational scalability with multiple GPUs and CPUs makes it

shine with big, industrial style projects.

SINGA [172] is a DL framework and Apache project (incubating) which is developed

by community contributors. SINGA supports distributed, data-parallel and model-

parallel training, as well as hybrid parallelism out-of-the-box. Data parallelism is re-

alized through a centralized approach. However, the decentralized architecture can also

be emulated. Both synchronous and asynchronous training are supported. Although it

is less popular compared with other DL frameworks, different studies have shown that

SINGA has a great training scalability for big deep learning models over large datasets

[173].

With so many frameworks mentioned above, it is important to bear in mind that there

is no clear winner for all use cases due to the sensitiveness to different choices and

problem settings [174]. And it is always not so easy to decide which one suits you

better from the myriad of frameworks. Users need to be cautious as the performance

of DL frameworks are highly dependent on the applicable area, the datasets as well

as the hardware. Although hardware like CPU, GPU, TPU, FPGA and ASIC all can

support DL training, some of them only support one specific framework, for example,

Chapter3. Methods for Scaling Deep Learning Workloads on HPC 56

Table 3.3: Comparison of open source DL frameworks and libraries

Property
TensorFlow

[167]
PyTorch

[168]
CNTK
[169]

DL4j
[170]

MXNet
[171]

SINGA
[172]

Written in
C++,

Python
C, Lua C++ C, C++ C++

C++,
Python

Supported
languages

C++,
Python,

Go,
JavaScript,

Swift,
Java

C++,
Python

C++,
Python,

C#,
BrainScript

Java

C++,
JavaScript,

Julia,
Matlab,
Python,
Scala, R,
Wolfram,

Go,
Perl

C++,
Python

Hardware
Support

CPU,
GPU,
TPU,
Mobile

CPU,
GPU

CPU,
GPU

CPU,
GPU

CPU,
GPU,
Mobile

CPU,
GPU

Synchronized x x x x x x

Asynchronized x x x x x x

Centralized x x x x x x

Decentralized x x x x

Parallelism Mode
Data,

Model,
Pipeline

Data,
Model,
Pipeline

Data Data
Data,

Model,
Pipeline

Data,
Model,
Hybrid

CUDA Support x x x x x x

OpenMP Support x x x

Communication
gRPC,
NCCL

MPI,
NCCL

MPI ,
NCCL

Spark,
Aeron

NCCL
MPI,

NCCL,
ZeroMQ

ONNX Support x x x x

TPU only supports TensorFlow. One good thing is that CNTK, PyTorch, MXNet all

support Open Neural Network Exchange (ONNX) [175] format, which is co-developed

by Microsoft and Facebook and allows to easily transform models between them and

other DL tools.

3.5.2 Scaling DL Frameworks on HPC Systems

Although the frameworks mentioned above offer native support for distributed com-

putation, most of them are not suited for HPC architectures. Mathuriya et al. [163]

showed that native support of distributed training from TensorFlow was accompanied

by a decrease in the efficiency on the worker when it is scaled up to 128 nodes. To

Chapter3. Methods for Scaling Deep Learning Workloads on HPC 57

overcome this obstacle and achieve better performance, several frameworks that can be

regarded as distributed training middleware sitting between the DL framework and the

communication runtime have been developed.

Horovod[103], developed at Uber, is seamlessly integrated into TensorFlow and PyTorch

programming. It uses MPI as a mechanism for communication to allow multi-node

training, enabling benefits from optimizations made in the underlying MPI library, such

as allgather and allreduce during handling of cross-replicas communication and weight

updates. This is different from the TensorFlow hierarchical architecture in which a cen-

tralized parameter server is utilized to pass parameter updates. Mesh-TensorFlow [176]

is a language extension for TensorFlow which targets at specifying a general class of

distributed tensor computations. It allows for combining data parallelism and model

parallelism. Through Mesh-TensorFlow, batch-splitting problems that occur when scal-

ing TensorFlow in HPC including the inability to train very large models (due to memory

constraints), high latency, and inefficiency at small batch sizes are solved through the

combination of data parallelism and model parallelism. With MPI-allreduce across mesh

dimensions, the operations can be particularly efficient. Cray Programming Environ-

ment (CPE) ML Plugin [177] is another solution for scaling DL frameworks to HPC,

especially on Cray XC supercomputers. This deep learning framework portable commu-

nication plugin based on MPI. It couples itself to a TensorFlow graph with a provided

custom TensorFlow operation. Similar to Horovod, it is able to directly operate on

in-graph memory. HyPar-Flow [178] is a scalable, practical, and user-transparent sys-

tem for hybrid-parallel training on HPC that exploits MPI, Keras, and TensorFlow.

Data, model, and hybrid parallel training of any Keras model at scale can be provided

through a single API. Further, it exploits pipelining to improve performance and lever-

age efficient MPI primitives for scalable communication. HPDL [179] and HeAT [180]

are other frameworks for high-performance distributed ML and DL that are compatible

with existing frameworks and adaptive to HPC.

Except from the frameworks mentioned above, Jacobs et al. [181] introduced work

related to the development of the Livermore Big Artificial Neural Network (LBANN),

an open-source deep learning toolkit for training DNNs at scale on HPC resources.

Appropriate DL algorithms can be selected, trained and optimized through LBANN so

as to achieve the best possible results in network quality and parallel performance. It

supports model parallelism using distributed matrix operations, and data parallelism

using distributed mini-batches.

Some recent work and frameworks for distributed deep learning training is also reviewed

and summarized in Table 3.4.

Chapter3. Methods for Scaling Deep Learning Workloads on HPC 58

Table 3.4: An overview of recent researches on distributed DL frameworks and li-
braries

Property Data Parallelism Model Parallelism Pipeline Parallelism

Pytorch DDP [182] x - -

DeepSpeed ZeRO-3 [183] x - -

Megatron [184] x x -

Pytorch Gpipe [185] - - x

DeepSpeed 3D [186] x x x

FlexFlow [187] x x -

PipeDream [188] x - x

DAPPLE [189] x - x

Unity [190] x x x

Alpa [191] x x x

Galvatron [192] x x x

3.6 Conclusion

This chapter profoundly reviews the techniques that bridge the gap between HPC and

deep learning workloads. It compares the differences between the typical HPC and

DL workloads, which is followed by the description of different technologies that are

commonly used for setting up the environment for DL workloads on the HPC system.

Furthermore, various optimization methods are described and compared from different

aspects, which enable the seamless execution of deep learning applications on HPC,

including parallelization methods, communication optimization, etc. In addition, it

evaluates and compares different frameworks and tools for distributed training of DL

workloads which are widely utilized in both academia and industry.

Chapter 4

Hybrid Workflow of HPC and

Deep Learning for Material

Characteristic Identification

This chapter proposes a novel hybrid workflow combining a multi-task neural network

and the simulation on HPC systems, which can address the problem of data sparsity for

deep learning workloads and reduce the demand for expertise, resources, and time in

determining the validated parameters for the simulation. Nowadays, machine learning

(ML), especially deep learning(DL) methods, provide promising solutions in many real-

life problems. However, the lack of training data is often a crucial issue for these learning

algorithms, the performance accuracy of which relies on the amount and the quality of

the available data. This is particularly true when applying DL-based methods for specific

areas e.g., material characteristics identification, as it requires a huge cost of time and

manual power to get observational data from real life. In the meanwhile, simulations

on HPC have already been commonly used in computational science due to the fact

that it has the ability to generate sufficient and noise-free data, which can be used for

training the DL-based models. However, to achieve accurate simulation results, the input

parameters usually have to be determined and validated by many tests. Furthermore,

the evaluation and validation of such input parameters for the simulation often require a

deep understanding of the domain-specific knowledge, software and programming skills,

which can, in turn, be solved by DL-based methods. This work is demonstrated through

experiments on the identification of material characteristics, and the results prove a

promising performance (MSE = 0.0386) through such a workflow.

Chapter outline: This chapter is organized into five sections. In Section 4.1, the intro-

duction to the problem is provided. Section 4.2 reviews the related work. The proposed

59

Chapter 4. Hybrid Workflow of HPC and Deep Learning for Material Characteristic
Identification 60

methodology, including the workflow, the simulation, the DNN model, the experiment,

and the optimization, is explained in Section 4.3. In Section 4.4, a general approach

which is implemented through the AutoML, namely multi-task network architecture

search, is described, which is followed by the concluding remarks in Section 4.5

4.1 Introduction

Machine learning, specifically deep learning methods, revolutionized several application

domains in the past decade. While deep learning has demonstrated strong abilities at

extracting high-level representations of complex processes, the need for sufficient ground

truth data is often a critical issue faced in various areas. In fact, it is almost impossible

to generate enough data in real life for supervised learning in many real-world problems,

which are limited by scientific instruments, the physical phenomenon itself, or the com-

plexity of modelling. Nowadays, different methods have been developed to solve this

problem, e.g., transfer learning, data augmentation, usage of synthetic data, generation

of new data through GAN, etc. Recently, scientists and engineers have begun experi-

menting with a relatively new approach to understanding complex systems using DNNs,

trained by the virtually unlimited data sets produced by simulations [193]. Studies have

proven that these ”synthesis models,” combining ML and traditional simulation, can

improve accuracy, accelerate time to solution, and significantly reduce costs [194].

Input parameters have to be determined and validated by a large number of tests to

expect accurate simulation results [195]. Furthermore, the evaluation and validation

of such input parameters for the simulation often require a deep understanding of the

domain-specific knowledge, software and programming skills. Thus, how to efficiently

define and validate the input parameters for the simulation becomes the key factor in

the development and design of numerical models. While simulation can solve the data

sparsity problem for DNN models, DL-based methods can, in turn, solve the difficulty

in the determination and validation of the input parameters for simulation by training

DNN models. However, both pieces of training of DNN model and the running of

simulations are compute-intensive tasks in which the supercomputers can manifest their

computation efficiency.

Contributions: In this chapter, a hybrid workflow of deep learning and simulations on

HPC is proposed to address the problem: i) lack of sufficient ground-truth training data

for deep learning; ii) difficulties in definition and validation of the input parameters for

the simulation; The effectiveness of the workflow is demonstrated through the experi-

ment on the identification of material characteristics. Further, the time consumption

of each process within the deep learning workload is analyzed, based on which several

Chapter 4. Hybrid Workflow of HPC and Deep Learning for Material Characteristic
Identification 61

optimization approaches are adopted to improve the compute efficiency significantly. In

addition, a Neural Architecture Search (NAS) based AutoML approach is implemented,

which generalizes the workflow and enables it to be data- and use-case- independent.

4.2 Related Work

Virtual data generated by simulations have been widely used for improving the perfor-

mance of DNN models in various areas: education [196], medical [197], computational

imaging [198], computational mechanics [199], climate modeling [200], etc. In the other

way round, the ML/DL aided simulation has also developed very fast, many studies

and researches have been done. Hu et al. [201] proposed a Long Short-Term Memory

(LSTM) network to help improve the simulation of rainfall-runoff, so that potential flood

can be predicted. Yeo et al. [202] developed a DNN model, DE-LSTM, to model the

nonlinear dynamics so as to be used for the simulation of stochastic processes. Other

researches on ML/DL aided simulations have also been reported [203–205].

In the area of computational materials science, it is more and more common to train

learning algorithms with such virtually generated data due to the fact that Finite El-

ement Method(FEM) [206] simulation can provide as much noise-free data as required

[207, 208]. Traditional methods e.g., finite element model updating (FEMU) [209], Vir-

tual Field Method (VFM) [210], iDIC [211], etc. have been used for a long time to

determine and validate the input parameters for FEM simulation. Recently, due to the

swift development of machine learning especially deep learning, methods based on ma-

chine learning algorithms have also been developed . Gorji et al. [212] proposed a three

hidden layer neural network model to reproduce the force-displacement curves of the

tensile tests with a prediction accuracy around 93%. Koch et al. [213] designed a simple

neural network model for the estimation of yield curve parameters with the data from

a tensile test. Chheda et al. [214] proposed a neural network based method for predict-

ing forming limit curves based on chemical composition and rolling process parameters

of sheet metals. Mozaffar et al. [215] presented a recurrent neural network model to

model the complicated path-dependent plasticity behavior, which demonstrated a very

promising performance.

4.3 Methodology

In this section, it will be discussed how the simulation and the DNN model for predic-

tion are defined. As illustrated in Figure 4.2, the proposed method is consisted of three

Chapter 4. Hybrid Workflow of HPC and Deep Learning for Material Characteristic
Identification 62

Figure 4.1: General workflow of deep learning aided simulation on HPC

phases: data generation phase, training phase and inverse phase. In the data generation

phase, a set of material tests were simulated using a variety of material parameters as

inputs and recorded the results of the simulation. In the second phase, a DNN model

is trained with the simulation outputs as inputs and the material parameters which

are simulation inputs as outputs. In the third phase, the prediction values and the

real input values are compared to improve the DNN model and the simulation perfor-

mance. Therefore, the FEM simulation can address the problem of data sparsity and

the introduction of machine learning methods can reduce the high demand of expertise,

furthermore, both the performance of simulation and DNN model are improved.

4.3.1 Simulation

The Barlat-3 parameter model [216] was employed in the data generation phase to define

the anisotropic material behavior. In combination with the three anisotropy values (r0,

r45, r90), other 5 parameters (M, Enorm, Sratio, c mult, n pow) are also included to set

up the simulation, where the value ranges of these material parameters were defined in

such a way that the calculation effort is manageable and the generated data set contains

sufficient information for the feasibility study of the approach. It has to be noted here

that all FE simulations in this study were calculated using a predefined flow curve.

The specimens were stretched by 3 mm, giving a maximum value of about 0.1 for the

equivalent plastic strain. Three tensile specimens were considered in rolling, transverse

Chapter 4. Hybrid Workflow of HPC and Deep Learning for Material Characteristic
Identification 63

Figure 4.2: Hybrid workflow of simulation and distributed deep learning on HPC for
material characterization

and diagonal directions. Due to the orthogonal symmetry of the material behaviour,

only a quarter of the tensile specimen was modelled. The strain values of the elements

located in the yellow area of the tensile specimen were extracted. This narrowest region

of the tensile specimen is stretched the most. Details of the selected finite element model

can be obtained from [217].

4.3.2 Multi-Task Neural Network

As the input parameters for the simulation are individual values and the prediction of

such individual values can be regarded individual tasks, a multi-task neural network

is proposed based on the fact that multi task learning (MTL) can help improve the

performance by introducing an inductive bias, leveraging the domain-specific information

[218], increasing the sample size, and focusing its attention on those features that actually

matters. The network structure is designed by hard parameter sharing, which is the most

commonly used approach to MTL in neural networks that can greatly reduce the risk of

overfitting [219]. The overall structure of the model is depicted in Figure 4.3. The whole

network is composed of two main parts: the shared network and individual network for

each parameter output. In the shared network, 1D CNN layer and max-pooling layers

are used to extract the global features. When designing the part of individual network

for each output, it is noticed that for the outputs(M, R00, R45, R90), 1D CNN layers and

max-pooling layers followed by two fully connected layers could give out best prediction

performance, while for individual network of the other outputs(Sratio, c mult, n pow,

Enorm), a more complicated network which have more convolution and max-pooling

layers should be designed to better learn the features. This is also reflected in Figure

Chapter 4. Hybrid Workflow of HPC and Deep Learning for Material Characteristic
Identification 64

4.5, where the loss for the outputs(Sratio, c mult, n pow, Enorm) are higher than for

the outputs(M, R00, R45, R90) even with the more complicated network structure. In

the mean while, Batch Normalization is employed here to stabilize the learning process

and Dropout layers are used to avoid overfitting.

In terms of training the network, the primary loss function used is the Mean Squared

Error between the between the real field y rand the predicted field ŷ. To train the

networks, a weighted MSE is employed as the loss function. As the 8 outputs are

weighted equally, the loss function is described as:

L =

N∑
1

I∑
i=1

1

I
(yi − ŷi)2 (4.1)

where N denotes the number of outputs to be predicted.

4.3.3 Experiment

The training dataset was created using FEM simulations of tensile tests, which contains

the values of the x-strains in the first half and the values of the y-strains in the second

half . Each third of these halves refers to a specimen with 18 elements. For each element,

10 consecutive strain values from 10 time steps are taken. For each finite element, the

longitudinal and transverse strains were exported for 10 time steps. A total of 1080

strain values were thus obtained per FE simulation, which means that each record of

the FM simulation output is a 1080 size vector, and the total dataset is around 3 TB

composed of 4,941,258 records, where train and test dataset are split from with a ratio

(0.9,0.1). One record of the simulation output is as illustrated in Figure 4.4, which can

be regarded as a sequence of features from 6 dimensions coming in 10 time steps.

In this section, the performance of the model is evaluated by inspecting the change of

losses during training and testing it on the validation dataset. The losses of each output

and as a whole during the training process are shown in Figure 4.5, the total training

loss is around 0.0343 and the total validation loss is around 0.0386. The error histogram

shown in Figure 4.6 indicates that the normalized maximum error of the values for

outputs (R90, Enorm, Sratio, c mult and n pow) are about 0.2, whereas about 90 % of

the errors are below 0.1. The maximum error of the values for outputs (M, R00, R45) of

the error histogram is only 0.02, whereas about 90 % of the errors are below 0.01. It was

shown that the input material parameters for simulation can be approximated relatively

well by our MTL model, and the performance of our MTL model keeps improving along

with the increase of simulation data, which leads to the fact that both the simulation

and DNN performance can be improved through such workflow.

Chapter 4. Hybrid Workflow of HPC and Deep Learning for Material Characteristic
Identification 65

Figure 4.3: DNN model structure

Chapter 4. Hybrid Workflow of HPC and Deep Learning for Material Characteristic
Identification 66

Figure 4.4: Visualization of the dataset generated by FEM simulation

(a) Training loss (b) Validation loss

Figure 4.5: The training and validation loss of the multi-task regression dnn model

Chapter 4. Hybrid Workflow of HPC and Deep Learning for Material Characteristic
Identification 67

Figure 4.6: Errors between the predicted values and the real value of the 8 parameters

4.3.4 Optimization

As the whole dataset is around 3 TB and the DNN is trained on multiple nodes in a

distributed manner, different optimization methods are required to improve the training

performance, e.g., learning rate schedule, data I/O optimization, etc.

(a) Time consumption analysis of
each process

(b) Time consumption analysis
when reading from file system

Figure 4.7: Profile of DNN model training process

4.3.4.1 Learning Rate Schedule

In the training of DNN, most of the models use stochastic gradient descent (SGD) for

optimization. It is usually difficult to decide a adequate learning rate, as a large learning

rate will lead to overshooting loss minimum and a small learning rate will lead to a

extremely slow convergence. Therefore, a well designed learning rate scheduler is gaining

popularity in gradient based optimization, which has the ability of achieving optimal

asymptotic convergence rate and escaping from poor local minima [220]. Compared with

static learning rate, a learning rate scheduler usually uses larger learning rate values at

Chapter 4. Hybrid Workflow of HPC and Deep Learning for Material Characteristic
Identification 68

the beginning of the training procedure which makes large changes, and decreases the

learning rate such that a smaller rate and therefore smaller training updates are made

to weights later in the training procedure. In this work, a exponential decay sine wave

learning rate [221] is applied, which scans a range of learning rate in each epoch and

varies in sine wave way in the training process. The control of the learning rate is

according to:

lr(t) = lr0e
−αt
T (sin(β

t

b2π
) + e

−αt
T + 0.5) (4.2)

where t is the number of epochs, lr0 is the initial learning rate, T denotes the total

number of eopchs and b is the number of batches. α and β can control the decay and

oscillation nature of the learning rate. So that the learning rate would vary in a sine

way during the training process, while the maximum value of sine wave would decay

exponentially along with training epochs.

4.3.4.2 Distributed Strategy

In order to take advantage of the great computation power provided by Vulcan, it is

necessary to do the training distributedly. To achieve this goal, a data parallelism

strategy is adopted, where the whole dataset is split into different batches and assigned

to different GPUs. In the meanwhile, a replica of the model is created per GPU, each

variable in the model is mirrored across all the replicas. All variables are synchronized

by applying identical updates. As the code is implemented in Tensorflow 2, efficient all-

reduce algorithms implemented in NVIDIA Collective Communication Library(NCCL)

are used to do the communication across all GPUs which can reduce the overhead of

the synchronization significantly.

4.3.4.3 Data Pipeline Optimization

As is shown in Figure 4.7, input pipeline of dataset from file system takes the longest

to execute during the whole training process. The input pipeline performs actual I/O,

decoding and pre-processing, among which the read and pre-process take the longest

to execute. Thus, to achieve the peak performance, it is necessary to implement an

efficient input pipeline, especially a efficient read and pre-process, that delivers data for

the next step before the current step has finished. The common approach is to optimize

this process by overlapping the input pipeline with the computation pipeline [222]. In

this work, further optimization methods have been adopted:

• Parallel I/O: Input files are read and pre-processed individually with individual

outputs as a embarrassingly parallel process. The parallelization of the I/O of

Chapter 4. Hybrid Workflow of HPC and Deep Learning for Material Characteristic
Identification 69

many files (343 in our case) can be done by mapping the list of the file names

for transformation. The I/O will be executed by threads that are spawned by the

runtime, where the number of threads is specified manually.

• Prefetching: Prefetch is used here to ensure there will be a specified number of

batches ready for the consumption, where the data from the previous pipeline

is ’prefetched’. The prefetcher runs as a background thread and a consumption

function, which contains an infinite loop waiting for a condition variable.

• Caching: The cache of data in memory or on local storage can save some of the

operations like file opening and data reading from being executed during training.

By applying the cache method, the transformations before the cached one are

executed only during the first epoch, the following epochs will reuse the data

cached.

The comparison of execution time between the training before optimization and after

optimization is shown in Figure 4.8. As can be seen that, by applying the optimization

methods listed above, the execution time of the whole process is decreased from around

179 minutes on 1 GPU, 25 minutes on 32 GPUs to 35 minutes on 1 GPU and 40 seconds

on 32 GPUs.

Figure 4.8: Comparison of the training time before and after data pipeline optimiza-
tion

Chapter 4. Hybrid Workflow of HPC and Deep Learning for Material Characteristic
Identification 70

4.4 AutoML through NAS

In the sections above, a hybrid workflow of multi-task neural network and FEM simu-

lation for identifying the material characteristics is introduced. Although the result is

promising and demonstrates the effectiveness of the workflow, it still requires a lot of

effort and expertise for manual designing and definition of the neural network structure,

optimization, hyperparameters, etc. Therefore, further studies are required to bridge

the gap between the expertise of mechanics and machine learning. In this section, an

AutoML approach is described to replace the manual designed multi-task neural network

in the workflow, which eliminates the need for manual tuning.

AutoML, which aims to automate a machine learning system, has attracted a lot of atten-

tion in the research community. Compared with traditional machine learning, AutoML

automates many of the time-consuming and repetitive tasks involved in traditional ML,

such as feature engineering and model selection, thus it is more time-saving. Moreover,

AutoML algorithms can automatically search for the best hyperparameters, eliminating

the need for manual tuning, therefore requires less technical expertise and makes it easier

for non-experts to apply ML algorithms to their data.

To fulfil this, an multi-task-learning neural architecture search(MTL-NAS) which devel-

oped by Gao et al. [6] is implemented here to replace the multi-task NN in the work-

flow. NAS aims to automatically design well-performing neural network architectures

for specific target task, to explore neural network architectures that outperform the ones

designed by human experts, and largely reduce the human efforts [223]. The MTL-NAS

incorporates NAS into general-purpose multi-task learning (GP-MTL), which are disen-

tangled into single-task backbones to adapt to different task combinations. In addition,

hierarchical and layer-wise features sharing/fusing scheme is extricated across single-

task backbones to enable a general task-agnostic search space, which inserts cross-task

edges into fixed single-task network backbones. Some description about the MTL-NAS

can be found in Appendix A, for more information please refer to [6].

The error histogram shown in Figure 4.9 indicates that the normalized maximum error

of the values for outputs (Enorm, Sratio, c mult and n pow) are about 0.2, whereas

about 90 % of the errors are below 0.1. The maximum error of the values for outputs

(M, R00, R45, R90) of the error histogram is only 0.05, whereas about 90 % of the errors

are below 0.01.

Chapter 4. Hybrid Workflow of HPC and Deep Learning for Material Characteristic
Identification 71

Figure 4.9: Errors between the predicted values given by the MTL-NAS model and
the real value of the 8 parameters

4.5 Conclusion and Outlook

This chapter proposes and investigates a hybrid workflow composed of a FEM simulation

and a DNN model on HPC. For the FEM simulation, the Barlat-3 parameter model is

adopted to generate virtual data. Afterwards, the simulation outputs would then be

fed as inputs to the DNN model which can predict the simulation input parameters in

return. The DNN model is designed with a multi-task network architecture and scaled

to multi nodes to accelerate the training. In order to improve the performance, several

optimization methods are also discussed here. The conducted experiments successfully

prove that such a workflow can improve the performance of the simulation and the DNN

model.

In future work, more work will be carried on to improve the performance of the neural

network, especially when scaling on an HPC environment. In addition, although the

performance of MTL-NAS is promising, it is also noticed that the training time for NAS

is extremely long. Therefore, more work should be done to further optimize the NAS

algorithm, especially for the distributed environment, to accelerate the training.

Chapter 5

Evaluation of Variational

Quantum Neural Networks for

Image Classification

In the previous chapter, the description of the hybrid workflow of simulation and DL on

HPC systems have been provided. However, even with the most advanced supercom-

puters, many problems in computational fields still need to be addressed. The need to

solve these problems, combined with the ever-increasing complexity of issues, is faced

by researchers. A radically new innovative approach is through a completely different

paradigm: quantum computing. Quantum computing offers the possibility of revolution-

ary breakthroughs, such as turning computationally inaccessible problems into tractable

ones.

This chapter evaluates the effectiveness of introducing quantum computing in DL through

a comparative study. Experiments are conducted to show the advantage of QNN over

classical DNN in data analysis, especially in the most commonly studied problem: im-

age classification. The experiment results present that the convergence speed is highly

improved with the involvement of a quantum layer or quantum neural networks, while

there is no significant proof that it can improve the accuracy. Furthermore, due to the

current hardware limitation, the number of qubits that quantum computers have is not

always enough, which often raises the issue that the input information/training data can

not be fully encoded.

Chapter Outline: This chapter is structured into four sections. Section 5.1 provides

the introduction to the problem and explains the contributions. This is followed by the

introduction of variational quantum machine learning in Section 5.2, which is followed by

72

Chapter 5. Evaluation of Variational Quantum Neural Networks for Image
Classification 73

Section 5.3, giving an overview of different quantum data encoding methods. Section 5.4

describes the comparative experiment and result analysis of several popular quantum

neural network models and their corresponding classical DNNs. In Section 5.5, the

concluding remarks are provided.

5.1 Introduction

In the past decades, quantum computing is anticipated to outperform classical comput-

ing. For example, problems that would take too long or are impossible to calculate on

a classical computer could be calculated on a quantum computer within a reasonable

amount of time. Therefore, many algorithms have been developed to obtain quantum ad-

vantages even with the current noisy intermediate-scale quantum computation (NISQ).

Among them, Variational quantum machine learning (VQML) has drawn much attention

since it can achieve linear or sublinear complexity as opposed to the polynomial com-

plexity of conventional ML. In addition, a novel, useful and applicable concept has been

proposed recently, known as quantum neural network (QNN). QNN has been developed

by combining the basics of DNN with a quantum computation paradigm which is supe-

rior to the traditional DNN. Recent research finds that well-designed QNNs can achieve

a higher capacity and faster training ability than comparable classical feedforward neural

networks [224]. Moreover, compared to classical DNN, QNNs have various advantages

[225], including 1) quantum parallelism; 2) memory capacity increased exponentially

as compared to classical counterpart; 3)capacity to learn is faster as compared to tra-

ditional one; 4) higher and good stability and reliability; 5) performance is high with

less number of hidden neurons; 6) single layer network solution of linearly inseparable

problems; 7) information processing speed is high.

Although variational QNNs have become a leading strategy to obtain a near-term quan-

tum advantage, important challenges in trainability, accuracy, and efficiency still exist.

Accounting for all constraints imposed by NISQ computers with a single strategy requires

an optimization-based or learning-based approach. Variational QNNs use parametrized

quantum circuits that run on the quantum computer and then outsource the parameter

optimization to a classical optimizer [56]. Compared to quantum algorithms developed

for the fault-tolerant era, this approach makes quantum circuits shallower, thereby miti-

gating noise. Another challenge imposed by the QNNs is the barren plateaus, a notorious

problem in QNN that occurs when the number of qubits increases. The barren plateaus

vanish the gradients of the QML, making it impossible to guarantee trainability [226].

As a solution, Pesah et al. [227] proved that utilizing a quantum convolutional neural

network (QCNN) with proper initialization can reduce the barren plateaus.

Chapter 5. Evaluation of Variational Quantum Neural Networks for Image
Classification 74

However, no research has been done before to thoroughly explore the quantum advan-

tages brought by the QNNs in image processing, especially image classification. There-

fore, in this chapter, the idea of QNNs is described, and experiments are conducted to

evaluate the performance of QNNs compared to classical DNNs.

Contributions: In this chapter, several hybrid quantum-classical deep neural networks

are evaluated and compared with corresponding classical DNN models. The quantum

transfer learning based on Resnet18 is implemented to compare its performance with

the original Resnet18. A Quanvolutioanl Neural Network is implemented, which adds

a quanvolutioanl layer before CNN to encode the input image into four channels. Its

performance is compared with the classical CNN model without this quanvolutional

layer. In addition, a quantum CNN is implemented, which uses entanglement to fulfil

the concept of convolution and pooling in classical CNNs. Their performance is evaluated

and compared through experiments.

5.2 Variational Quantum Machine Learning

VQML [228] is a subfield of quantum machine learning that combines the principles of

quantum computing with the techniques of variational optimization. It involves the use

of quantum algorithms and quantum circuits to find approximate solutions to complex

machine learning problems.

In VQML, a quantum circuit is designed to represent a parameterized quantum state,

and the parameters are optimized to minimize a cost function that measures the quality

of the solution. The optimization is performed using classical algorithms, such as gradi-

ent descent, and the quantum circuit is executed on a quantum computer or quantum

simulator, as illustrated in Figure 5.1

VQML can be mathematically represented as an optimization problem. The main idea

behind VQML is to find the parameters of a parameterized quantum state that minimize

a cost function. Let’s consider a cost function J that measures the quality of a quantum

state |ψ(θ)⟩ represented by a parameterized quantum circuit. The goal of VQML is to

find the parameters θ that minimize J , such that:

θ∗ = arg min
θ
J(|ψ(θ)⟩) (5.1)

The cost function J can be defined based on the specific problem being solved, e.g, it

could be the mean squared error (MSE) in a regression problem, or the cross-entropy

loss in a classification problem. The optimization problem can be solved using classical

Chapter 5. Evaluation of Variational Quantum Neural Networks for Image
Classification 75

Figure 5.1: Variational quantum machine learning

optimization algorithms, such as gradient descent or stochastic gradient descent. The

gradient of the cost function with respect to the parameters can be estimated using

techniques such as finite differences or the quantum gradient, and the parameters can

be updated in the direction of the negative gradient. In practice, the optimization is

performed iteratively until convergence, or a stopping criterion is reached. The final

parameters θ∗ represent the optimal solution to the optimization problem, and the cor-

responding quantum state |ψ(θ)⟩ can be used to make predictions or perform other tasks,

such as quantum feature extraction or quantum generative modeling.

VQML is a powerful technique for solving complex machine learning problems, as it

combines the expressiveness of quantum states with the efficiency of classical optimiza-

tion algorithms. One of the main benefits of VQML is that it enables the representation

of quantum states that can capture complex and high-dimensional relationships between

variables, which can be difficult to model with classical neural networks. Additionally,

VQML algorithms are designed to be scalable and can be executed on current and future

quantum hardware, making them a promising approach for solving real-world problems.

By leveraging the unique features of quantum mechanics, such as superposition and en-

tanglement, VQML has the potential to solve problems that are intractable for classical

machine learning algorithms.

5.3 Data Encoding

As illustrated in Figure 5.1, a classical input information must first be encoded into

quantum state to be processed by quantum computers. Data encodings for quantum

computing define how data is represented by the state of a quantum system. Loading

Chapter 5. Evaluation of Variational Quantum Neural Networks for Image
Classification 76

data is not a trivial task in quantum computing as a variety of data encodings can be

used depending on the requirements of the proper unitary transform of the algorithm.

Every data encoding is essentially a trade-off between three major forces [229]:

• the number of qubits needed for the encoding should be minimal because of the

limited qubits that current device can provide

• the number of parallel operations needed to realize the encoding should be minimal

to minimize the width of the quantum circuit

• the data must be represented in a suitable manner for further calculations

In this section, an overview of different patterns for data encoding in quantum computing

is presented.

Basis Encoding [230]: Basis Encoding represents data by encoding it as basis states

of a quantum system. By this, each data point is associated with a specific basis state,

and the quantum state is represented as a superposition of these basis states, with the

coefficients of the superposition being the parameters that need to be optimized. In

basis encoding, the quantum state is described by the probabilities of measuring each

basis state, and these probabilities are used as the features of the data.

Basis encoding has the advantage of being simple and intuitive, as it directly maps data

points to quantum states. It also has the advantage of being well-suited for encoding

discrete data, as each data point is associated with a specific basis state. However,

basis encoding also has the limitation that it may not be able to represent complex

relationships between data points, as it only considers the probabilities of measuring

each basis state and does not take into account the correlations between basis states.

Amplitude Encoding [230]: Amplitude encoding represents data by encoding it as

amplitudes of quantum states. In this method, each data point is mapped to a quan-

tum state, and the probability of measuring a particular state is proportional to the

magnitude of the corresponding amplitude. The quantum state can be represented as a

superposition of basis states, with the amplitudes of each basis state being the parame-

ters that need to be optimized.

Angle Encoding [231]: Angle encoding represents data by encoding it as rotation

angles of quantum states. In this method, each data point is mapped to a quantum

state, and the quantum state is then rotated by a specified angle to encode the data.

The angle encoding can be performed by applying unitary quantum gates to the quantum

state, and the rotation angles are the parameters that need to be optimized.

Chapter 5. Evaluation of Variational Quantum Neural Networks for Image
Classification 77

Figure 5.2: Quantum transfer learning with Resnet18

Quantum Random Access Memory(QRAM) Encoding [232]: QRAM encoding

represents data by encoding it in a QRAM structure. In this method, data is stored

in a quantum state that can be accessed efficiently by a quantum algorithm, and the

quantum state is used as the input to a quantum circuit.

And there exist many more quantum encoding methods, for more information, please

refer to [230].

5.4 Experiment

5.4.1 Quantum Transfer Learning

Transfer learning is a well-established technique for training artificial neural networks

[233], which is based on the general intuition that if a pre-trained network is good at

solving a given problem, then, with just a bit of additional training, it can be used to

solve a different but related problem. Based on this idea, a hybrid transfer learning

which introduces quantum neural layers into classical DNNs is developed by Mari et al.

[234]. In their work, a hybrid DL model is described, which consists of using exactly

those classical pre-trained models as feature extractors and then post-processssing such

features on a quantum computer. Such hybrid approach can process high-resolution

images since the quantum computer is applied only to a limited number of abstract

features, which is extracted by the pre-trained classical DNN model from the original

input. In this experiment, a Resnet-18 [235] is adopted as the pretrained classical DNN

model, through which the initial input images from Cifar10 [236] (restricted to the classes

of cats and dogs) dataset can be downscaled from 128*128*3 to 4 qubits. After that, a

Chapter 5. Evaluation of Variational Quantum Neural Networks for Image
Classification 78

(a) Comparison of training loss
between quantum transfer learning

and Resnet18

(b) Comparison of accuracy between
quantum transfer learning and

Resnet18

Figure 5.3: Comparison between the performance of transfer learning and quantum
transfer learning based on Resnet18

quantum circuit is applied, which is composed of Hardamard, CNOT, and Ry gates. In

the last part of the model, it is a classical dense layer which will outputs the result and

give the prediction whether the input image is a cat or dog. The details of the model is

depicted in Figure 5.2

The experiment result in Figure 5.3 suggests that the hybrid model which consists of pre-

trained DNN model and QDNN layer is capable of classifying highly non-linear dataset.

However, it is remarkable that the accuracy of the classification given by the hybrid

model does not show any advantages over the classical model. However, this is only a

particular example, any general and rigorous comparison would require a much more

complex and detailed analysis.

5.4.2 Quanvolutional Neural Network

A quanvolutional neural network is a type of neural network that incorporates the prin-

ciples of quantum computing to perform convolutional operations, which were first pro-

posed by Henderson et al. [2]. The idea behind Quanvolutional networks is exactly the

same as for the classical convolution: to extract relevant features from a localized space

in an image. Instead of applying learner filters, quanvolutional neural network adopts a

quantum circuit to access a higher-dimensional space. Thus, such QNN consists of two

parts: a quanvolutional layer and CNN.

A quanvolutional layer is designed to be able to replace the classical convolution and be

stacked on top of the classical layers. The key difference is that quanvolutional filters

extract features from input data by transforming spatially-local subsections of data using

random quantum circuits [237].

Chapter 5. Evaluation of Variational Quantum Neural Networks for Image
Classification 79

Figure 5.4: Quanvolutional neural network, revised from [2]

The workflow of quanvolutional neural network can be divided into 3 main steps: The

same as described in Section 5.2, in order to enable quantum computer process the

input image, the input classical images must be first encoded into quantum state. Some

simple methods can be found in Section 5.3. After the input data transformed into

quantum state, the quantum circuit is applied to fully explore the potential of quantum

computing. As is shown in Figure 5.4, some parameterizable and trainable unitary

gates can be deployed to extract specific features. In the last step, the quantum state is

converted back to a scalar output

In the work done by Wilson et al. [238], it is proved that quantum transformations

feeding into a linear model could give a performance enhancement over linear models

built on the data directly. In this experiment, rather than a linear model, a DNN model

is applied after the quanvolutional circuit which will output the enhanced four channel

feature map of input. Some sample of enhanced four channel feature map input images

are shown in Figure 5.5.

The results of Figure 5.6 extend the scope of quantum features applicability further.

However, it is also obvious that the introduction of the quanvolutional layer does not

show any advantages over classical DNN when comparing the accuracy of their predic-

tion. Still, it is observed that the involvement of the quantum circuit could accelerate

the convergence, since Figure 5.6 B reveals that the QNN model could achieve the same

level of training loss with less number of epochs.

Chapter 5. Evaluation of Variational Quantum Neural Networks for Image
Classification 80

Figure 5.5: The output of the quanvolutional layer, which are four channel feature
maps

(a) Comparison of accuracy
between quanvolutional neural
network and classical CNN

(b) Comparison of training loss between
quanvolutional neural network and

classical CNN

Figure 5.6: Comparison between the performance of classical CNN and quanvolu-
tional neural network

Chapter 5. Evaluation of Variational Quantum Neural Networks for Image
Classification 81

Figure 5.7: Workflow of quantum convolution neural network

Figure 5.8: Quantum convolution neural network, image revised from [3]

5.4.3 Quantum Convolution Neural Network

The above mentioned two QNN models are hybrid, which means that the model is a

combination of quantum layers and classical layers. In this section, Quantum Convolu-

tional Neural Networks (QCNN) [239] are described, which is composed of only quantum

gates and layers, as is shown in Figure 5.7.

QCNNs are a type of neural network architecture that incorporates the principles of

quantum computing to perform convolutional operations on data. In traditional CNNs,

convolutional operations are performed using digital computing techniques. However,

in QCNNs, these operations are performed using quantum circuits, which involve the

manipulation of quantum states. As illustrated in Figure 5.8, the basic building block

of a QCNN is a quantum convolution layer and a quantum pooling layer. The quantum

convolution layer consists of a quantum circuit that performs the convolution operation

on the input data. This circuit typically includes quantum gates, such as the Hadamard

Chapter 5. Evaluation of Variational Quantum Neural Networks for Image
Classification 82

(a) Comparison of accuracy between
QCNN and classical CNN

(b) Comparison of training loss
between QCNN and classical CNN

Figure 5.9: Comparison between the performance of classical QCNN and CNN

gate, CNOT gate, and rotation gates, and uses entanglement to perform the convolution

operation in parallel. The input data is encoded into a quantum state, which can be

represented as a vector of qubits. The quantum convolution layer applies a series of

quantum gates to this state to produce a new quantum state that represents the output

of the convolution operation.

To perform the pooling operation, which is used to reduce the size of the feature map.

Quantum pooling layers are designed to extract useful information from the data, while

reducing the number of qubits that need to be processed in subsequent layers. This can

be achieved through a variety of methods, such as entangling qubits or applying specific

quantum gates. QCNNs also adopts a quantum activation function, which is used to

introduce non-linearity into the network. This activation function is typically based on

the threshold gate, which introduces a non-linear transformation to the quantum state.

The model is evaluated by experimenting on the Cifar10 dataset. As is shown in Figure

5.9, it can be drawn out that the QCNN and CNN have almost the same explicit results

regarding accuracy. However, it can also be seen that compared to the corresponding

classical CNN model, QCNN can achieve the same level of training loss with less epochs.

5.5 Conclusion

In this chapter, three hybrid quantum DNN models, namely the quantum transfer learn-

ing (Resnet18 based), the Quanvolutional network, and the quantum convolution net-

work, are evaluated by comparing their performance on the Cifar10 dataset to their

corresponding classical DNN models. It is observed that adding a quantum circuit to

a model could not significantly improve its accuracy or reduce its loss value. How-

ever, it is also proved that with the involvement of quantum circuits, DNN models can

Chapter 5. Evaluation of Variational Quantum Neural Networks for Image
Classification 83

get convergence with fewer epochs compared to the models without quantum circuits,

which indicates that the quantum advantage could be obtained at some level without

sacrificing the accuracy of DNN models. However, these are only experiments on a spe-

cific dataset. Any general and rigorous comparison would require a more complex and

detailed analysis.

Looking into the future, developing more application-specific quantum network models

is important. Better ansatzes shall be designed to enhance gradient magnitudes to

improve trainability and enable promising performance for a specific problem, e.g., image

processing, etc. Hybrid quantum-classical models are a natural extension of VQMLs

where one parameterizes both a classical and quantum ansatz, and such models could

also facilitate near-term applications [240]. In addition, analytical and heuristic scaling

analysis of VQML, especially VQNNs will be increasingly important, and better methods

of scalability to show the quantum advantage are anticipated in the future.

Chapter 6

TransGAN: A Transformer-GAN

Based Model for Image

Compression

A novel DNN model based on GAN and Transformer for data lossy compression is pre-

sented in this chapter. Since the amount of data is increasing faster than ever, new and

better compression methods must be researched and implemented continuously. Fur-

ther, due to the limitation of current quantum technology, a more effective compression

method is needed to reduce the input data dimension while retaining sufficient informa-

tion to fit the limited number of the qubits of current quantum computers. Therefore,

a novel DNN model based on Transformer and GAN is developed, which takes both

advantages of the Transformer and GAN to obtain visually pleasing results at bitrates.

The approach is tested on the dataset Cifar10 and discussed training strategies for the

proposed architecture to achieve the best compression and best performance, including

the loss function, quantization, number of residual blocks, etc. This proposed method

is then evaluated on the benchmark dataset Cityscape [241] to compare with other data

compression methods based on compression ratio, computational resources, and quality

of the rendered images. The results prove that this method has advantages in compu-

tational resources and recovered image quality in the range of extreme compression.

Chapter outline: This chapter is structured in 5 sections. Section 6.1 introduces the

problem and explains the contributions. This is followed by the review of related work

in Section 6.2. Section 6.3 explains the proposed method, which is followed by the

experiment and result analysis in Section 6.4. In Section 6.5, the concluding remarks

are provided.

84

Chapter 6. TransGAN: A Transformer-GAN Based Model for Image Compression 85

6.1 Introduction

Due to the rapid progress in digitalization, more and more data are generated yearly.

Between 2016 and 2021 alone, the amount of data processed via the Internet increased

almost by a factor of three [242]. This leads to heavy pressure on storage space, com-

puting power and network bandwidth, as they can grow at different rates. Further, due

to the limitation of current quantum technology, a more effective compression method

is needed to reduce the input data dimension while retaining sufficient information to fit

the limited number of the qubits of current quantum computers. As a result, data com-

pression, especially image compression, is becoming increasingly important to diminish

the size of the files required to be stored, transmitted, and processed.

Traditional compression algorithms, e.g., JPEG, JPEG2000, WebP, etc. rely on hand-

crafted encoder/decoder pairs(codecs), which lack adaptability and have poor perfor-

mance against complex textures and unexpected signals. Furthermore, since they are

designed to faithfully reproduce signals based on the peak signal-to-noise ratio (PSNR),

they suffer from visual artefacts such as blurring, ringing, and blocking at low bit rates

[243]. To overcome this obstacle, new methods are continuously being researched. One

of these new approaches is to use CNNs with parts of traditional compression algorithms.

There exist several methods based on CNNs perform end-to-end optimization using flex-

ible nonlinear analysis by CNN-based autoencoders, and it has been reported that they

show higher performance than conventional image compression systems. However, CNNs

do have some limitations. For example, the convolutional filter can only characterize

short-range spatial correlation within the receptive field. At the same time, the global

positional information is also significant, which is very difficult for CNNs to learn. Some

recent work [244, 245] proved that doing so may potentially constrain the image recon-

struction performance since the stacked convolutional layers have natural constraints on

the effectiveness of the receptive field and over-parameterized redundant filter issues.

To overcome these drawbacks, methods using GANs have been developed to improve

subjective image quality. Motivated by the great success that GANs have achieved

in image processing, several GAN-based methods have been proposed for image/video

compression. And these methods have been shown to outperform traditional codecs in

various aspects [246]. GANs can produce high-quality compressed images that closely

resemble the original images. This is because GANs learn to generate images that are

visually similar to the training images, which helps in maintaining the quality of the

compressed image [247]. In addition, GANs can achieve variable compression, which

means that the compression rate can be adjusted to achieve a desired trade-off between

image quality and compression ratio. This is particularly useful in scenarios where the

available bandwidth is limited or fast image transfer is required [7].

Chapter 6. TransGAN: A Transformer-GAN Based Model for Image Compression 86

However, these GAN-based methods are mostly centred around CNN and still suffer from

its inbuilt disadvantages. In recent work, Transformers, which excel in NLP, have been

shown to perform better than CNN on a variety of computer vision tasks. Moreover,

compared to CNN, Transformers have several advantages [33]. Transformer models can

attend to specific parts of an image using a self-attention mechanism, which helps the

model to focus on the important features of an image. Transformers are permutation-

invariant, which means they are able to handle input sequences of different lengths,

making them well-suited for image processing tasks where the size of the image can vary.

In addition, Transformer models can better handle long-range dependencies, which is

useful when the relationship between pixels in the image is complex. Moreover, it can

handle inputs of varying sizes, thus eliminating the need for many customized building

blocks common in CNN-based pipelines.

Although the Transformer has shown multi advantages in computer vision tasks, it is

mainly used for tasks like image classification. No studies have been done to explore

the possibility of using GAN and Transformer in combination to do image compres-

sion. Therefore, this chapter describes an image compression method which is based on

a combined mechanism of Transformer, GAN, and conventional compression methods.

The model takes both advantages of Transformer and GAN to gain high-performance

reconstruction for images and obtain visually pleasing results at bitrates. The experi-

mental results demonstrate that the proposed method obtains superior reconstruction

quality and noise robustness compared with other methods.

Contributions: The main contributions of this chapter are the following:

• A novel Transformer-GAN based model is proposed for image compression

• Experiments on the Cifar10 and Cityscape dataset are conducted to show the

effectiveness of the proposed method

• The effects of compression for the proposed method and other methods are com-

pared and analyzed

6.2 Related Work

Classical methods: The majority of compression methods are composed of similar

stages, which include color transformations, block splitting, scalar quantization, and

coding [248]. The JPEG (Joint Photographic Experts Group) [249] method is a widely

used lossy compression technique for digital images. It uses a discrete cosine transform

(DCT) to transform the image into frequency components, which are then quantized

Chapter 6. TransGAN: A Transformer-GAN Based Model for Image Compression 87

to reduce the amount of data. The compressed image is stored as a series of blocks.

JPEG2000 [250] is an image compression standard that was developed as an improve-

ment over the original JPEG method. It uses a discrete wavelet transform(DWT) to

transform the image into frequency components, which are then quantized and com-

pressed. JPEG2000 offers higher compression ratios than JPEG, while maintaining

better image quality. WebP codec [251] is a image compression format developed by

Google, which uses a combination of techniques, including prediction, variable-length

coding, and a lossless compression method called WebP-Lossless. WebP offers high

compression ratios and good image quality, and is especially useful for web-based appli-

cations where image loading times are critical.

DNN based methods: With the concept of data compression in combination with

DL, several models have been developed in recent years. One of the more successful

models are compression models based on GAN architectures [247, 252, 253]. Especially

for extremely low bit rates (below 0.1 bpp) these models can be used successfully [246].

Agustsson et al. [7] trained a GAN to generate compressed images, which were then

decompressed using a decoder network. The results showed that their approach outper-

formed existing image compression methods in terms of image quality and compression

ratio. Song et al. [254] demonstrated the use of unified binary GAN (BGAN+) for image

compression and image retrieval. The result exhibited that BGAN+ can achieve better

visual quality of the reconstructed image than JPEG and JPEG-2000 at low bit-rate

(0.15 bpp).

6.3 Methodology

The proposed method adopts the AutoEncoder architecture. For the Encoder part,

it starts with the preparation of the images. Since words can be represented as one-

dimensional tokens while images are two-dimensional vectors, directly processing images

with Transformer can lead to problems due to the complexity of the attention, which

is O(n2 ∗ d) with d as representation dimension and n as the sequence length. This

ends up in large matrices with bigger sequence lengths n by bigger two-dimensional

inputs [33]. These large matrices then require enormous computing power which is

expensive and inefficient. To solve this problem, the input image must be processed to

meet the requirement. One method for this is to tokenize the image into a projected

representation, through which, the image is firstly divided to small parts or patches.

These patches are then labelled and paired with positional information [255, 256].

For extracting patches, the original image x with the resolution H(Height), W (Width)

and the number of channels(C) must be transformed into the flattened extracted patches

Chapter 6. TransGAN: A Transformer-GAN Based Model for Image Compression 88

xp ∈ RN∗(p2∗C) ← x ∈ RH∗W∗C

N = HW/P 2
(6.1)

The number of patches N can be calculated through H, W , and the resolution of the

Patches P . To connect the shaped patches with the positional embeddings. For this

purpose, for each patch a suitable positional information must be created and added to

the patch. Firstly, the number of patches is determined by:

NumPatches = (SizeImage//SizePathes)
2 (6.2)

The following operation is the embedding of the patches and the addition of the em-

beddings to the original patches. After this preparation, the dimension of the vector is

reduced and the transformer layer is enabled to process the image[257].

Motivated by the work done by Wu et al. [258], a connection of convolutions and

transformer architectures is introduced in the proposed method. Since convolutions

are especially good at identifying and extracting low level features, such as corners

and edges, but they are usually overwhelmed by spatially-distant concepts. This is

where transformer architectures have their strengths [256]. After forming the patches,

transformer layer is connected before and after to ensure best performance [259]. It

uses the first step of the previous vision transformer [258], in addition it uses image

segmentation for a bigger variety of data [260]. With this connection, a small number of

visual tokens can then be sufficient to describe high-level concepts in an image. These

tokens can then be reused as a representation or in the form of an attention map [259].

After an attention map is created, the tensor can be further processed into a token

representation.

The transformer layer consists of a combination of normalizations, multi-head attention

modules, and multilayer perceptron [33]. Multi-head attention is an attention mechanism

module that passes an attention mechanism several times in parallel. The independent

attentional outputs are then linked and linearly transformed into the expected dimen-

sion. Intuitively, multiple attention heads allow for different treatment of parts of the

sequence. The learnable parameters Query(Q), Key(K), and Value(V) are represented

in the parameter matrices W as

Multihead(Q,K, V) = [head0, head1, ..., headh]W0

headi = Attention(QWQ
i ,KWiQ,W

K
i , V W

V
i ,)

(6.3)

Chapter 6. TransGAN: A Transformer-GAN Based Model for Image Compression 89

Figure 6.1: The workflow of the proposed TransGAN model

Image representation now takes place in between of a series of transformer operations.

For this, an attention map is formed, which is then converted into a token representation.

After this step, the encoding process is complete, and the elements representing the

image have been significantly reduced. At this point, conventional compression methods,

such as vector quantization [261], can also be applied.

To rebuild the image from the compressed representation, a decoder is applied. The

first step for the initial decoding is to get a form from which the ground state can be

restored. This consists of transposed convolutional and normalization layers [7]. In

addition, residual blocks are inserted, which improve the performance of the model and

make it more robust [261]. These consist of weight layer with relu activation which

feeds information x into the next layer as well as into the layer two or three steps

further, to improve performance and robustness. In some methods, stochastic noise is

added to the feature maps. Since when the tensor offseted with trainable, stochastic

noise, it provides a greater flexibility and can increase the performance [32]. After the

performance enhancing residual blocks, the image can be rebuilt from the representation

with a series of transposed convolutions.

The last part of this method is the discriminator, which is used to distinguish whether

the image receives, is a real one or one reproduced by the generator and gives feedback

accordingly [32]. In the proposed model, convolutions and normalizations are used,

which have a dense or convolution layer with only one filter at the end, adopted from

the idea introduced by Agustsson et al. [7].

The whole workflow is illustrated in Figure 6.1 and the configuration of the designed

model can be found in Appendix A.

Chapter 6. TransGAN: A Transformer-GAN Based Model for Image Compression 90

(a) Encoding

(b) Decoding

Figure 6.2: Data encoding and decoding process

6.4 Experiment and Analysis

6.4.1 Experiment Settings

The proposed method is implemented on top of Tensorflow and evaluated on the Cifar10

and Cityscapes dataset. The Cityscapes dataset consists of 2975 annotated images for

training, 500 annotated images for validation and 1525 annotated images for testing.

To evaluate the presented approach, several metrics have been adopted. Peak signal-

to-noise ratio (PSNR), which is the pixel-wise MSE between the original and the re-

constructed image in decibel. Thus, this metric is very sensitive to variations in single

image pixels. Another metric to be used is the structural similarity (SSIM), which aims

at predicting the human-perceived image quality. It compares the luminance, the con-

trast, and the structure of the original and the reconstructed image. Another metric

adopted is the bits per pixel (bpp) to measure the bit rate, which refers to the sum of

the ”number of bits per color channel” i.e., the total number of bits required to code

the color information of the pixel. For comparison, the image compression standards

JPEG has been used as the baseline.

Chapter 6. TransGAN: A Transformer-GAN Based Model for Image Compression 91

The experiment is conducted on the HPC system Vulcan, for more technical specifica-

tions of this system, please refer to Section 2.2.5.

6.4.2 Result and Analysis

This section describes the experimental results and hyperparameter tuning of the de-

scribed architecture. The parameters that will be examined are whether it makes sense

to add noise, what the optional quantization means in terms of system performance,

and what number of residual blocks and tokens are optimal. The model is measured

according to the parameters, quality of the recovered image in the form of SSIM method.

In addition, the computational resources are compared with each other by comparing

the number of elements between the ground tensor and the image representation tensor.

The basic settings for experimental training are 50000 training images with the size

(32*32*3). The architecture is trained over 100 epochs with the Adam Optimizer.

Noise The first experiment is to test whether to add stochastic noise to the token

representation and whether this can improve the restored image quality. When adding

stochastic noise to an input of a GAN, it can have a variety of effects on the output image,

such as potentially introducing new variations into the generated images, making them

less predictable and potentially more diverse. In some cases, adding stochastic noise to

the input of a GAN can improve the stability and convergence of the training process,

as it can help to break symmetry and prevent the generator from getting stuck in a

local minimum. However, if the added noise is too strong, it may cause the generated

images to become distorted or unrealistic. One common way to add stochastic noise to

the input of a GAN is through the use of a random noise vector, which is concatenated

with the input image and then fed into the generator network.

The first image sequence shown in Figure 6.3 is the base image, the second row is the

generated images without noise and the bottom row is the generated images with noise

added. By comparing the SSIM and PSNR values in the Table 6.2, it is evident that the

variability introduced by the addition of stochastic noise greatly improves the quality

without creating disadvantages in the other categories.

Quantization Quantization is the process of reducing the number of bits used to rep-

resent the values of an input vector in GAN, which can have an impact on the quality

of the generated images and the stability of the training process. Although quantization

can reduce the accuracy of the model and increase the level of noise in the generated

images, quantization can also have some benefits, such as reducing the memory and com-

putational requirements of the GAN. This can make the GAN more efficient to train

and deploy.

Chapter 6. TransGAN: A Transformer-GAN Based Model for Image Compression 92

(a) Original images

(b) Rebuilt image with noise added

(c) Rebuilt image with noise added

Figure 6.3: Comparison of the rebuilt image with and without adding stochastic noise
to the iuput

As is shown in Figure 6.4, the first series of images are the original images, the images

in the row below are quantized input vectors without added noise. and the images in

the last row are quantized input vectors with added noise. By comparing the SSIM

and PSNR values in the Table 6.2, it is obvious that that quantization causes a strong

degradation of the reproduced images. Also, it is observed that in this case the addition

of noise causes a deterioration of the quality with otherwise unchanged parameters.

Residual Blocks Residual blocks can be used to improve the quality of the generated

images by allowing for the creation of deeper generator networks, which have the po-

tential to capture more complex relationships in the data, leading to more detailed and

realistic generated images. Residual blocks can also help alleviate the vanishing gradi-

ents problem, which can occur when training deep networks, by allowing the gradients

to flow more easily through the network. Additionally, residual blocks can also be used

in the discriminator network to improve its ability to distinguish between real and re-

produced images. This is because residual blocks can allow for the creation of deeper

discriminator networks, which can capture more nuanced and complex features in the

images.

In this experiment, the influence of different numbers of residual blocks on the final

rebuilt image is studied. The first row of the displayed images in Figure 6.5 are the

baseline images, the rows below are generated images with one, three and six residual

Chapter 6. TransGAN: A Transformer-GAN Based Model for Image Compression 93

(a) Original images

(b) Quantization without noise

(c) Quantization with noise

Figure 6.4: The effect of quantization with and without adding noise

blocks. Table 6.2 describes that the highest quality performance is obtained with the

quantity of three residual blocks. These also consume a considerably shorter time com-

pared to six or nine blocks. The lowest calculation power is needed with only one block,

but this is at the expense of the quality. Based on this result, the optimal number of

residual blocks for dataset cifar10 is three.

Tokens The number of tokens used in a Transformer and a GAN can influence the

quality of the generated images. For a Transformer, the number of tokens can impact

its capacity to represent and generate complex relationships in the data. A larger number

of tokens can allow for the creation of a more powerful model, which can better capture

the structure and patterns in the data. However, a larger number of tokens can also

increase the computational and memory requirements of the model, making it more

challenging to train and deploy. For a GAN, a larger number of tokens can allow for

the creation of a more powerful generator, which can capture more complex patterns in

the data and generate more detailed images. Similarly, a larger number of tokens in the

discriminator can allow to better distinguish between real and fake images by capturing

more nuanced and complex features.

In this experiment, the influence of different numbers of tokens on the final rebuilt image

Chapter 6. TransGAN: A Transformer-GAN Based Model for Image Compression 94

(a) Original images

(b) 1 Residual Block: SSIM 93.898

(c) 3 Residual Block: SSIM 94.902

(d) 6 Residual Block: SSIM 93.862

Figure 6.5: Comparison of the proposed method with different residual blocks

is researched. The first row of the displayed images in Figure 6.6 are the baseline images,

the rows below are generated images with 8, 2 and 1 tokens. The representation with

8 tokens is almost indistinguishable from the original image to the naked eye and with

an SSIM value of 97.932% coming closest to the maximum value in this experiment as

seen in Table 6.2. However, this is at the expense of the compression ratio, which is

three, the lowest of all the variations examined in this experiment. it is also noticed

that a downward trend of the quality with higher compression, but despite a strongly

increased compression rate the quality did not decrease to the same extent.

The proposed model is furthered evaluated with the dataset Cityscape [262]. This

provides a good basis for comparison with other compression methods, since it is more

detailed and has a larger data volume. The size it is mapped with is (256*256*3) and

it is trained with a number of 2688 images.

Chapter 6. TransGAN: A Transformer-GAN Based Model for Image Compression 95

(a) Original images

(b) 8 tokens: SSIM 97.932 bpp 0.33333

(c) 2 tokens:SSIM 89.083 bpp 0.08333

(d) 1 token:SSIM 86.361 bpp 0.04166

Figure 6.6: Comparison of quantity representation with different numbers of tokens

Table 6.1: Performance of the predicted model with different model configurations

Characteristic Features Quality SSIM (%) Time per epoch (s) Compression rate (bpp)

No Noise 86..099 189 0.16666

Noise 93.861 190 0.16666

Quantized without noise 43.339 191 0.16666

Quantized with noise 28.454 197 0.16666

1 Residual Block 93.898 90 0.16666

3 Residual Blocks 94.902 120 0.16666

6 Residual Blocks 94.862 156 0.16666

8 Tokens 97.932 118 0.33333

2 Tokens 89.083 118 0.08333

1 Token 86.361 118 0.04166

Chapter 6. TransGAN: A Transformer-GAN Based Model for Image Compression 96

Table 6.2: Comparison of the performance of the proposed model, Deep Generative
Model [7], and JPEG

Characteristic Features Quality SSIM (%) Compression rate (bpp)

Proposed model with 32 tokens 53.178 0.0208

Deep Generative Model [7] 10 0.1

JPEG(4:2:0) <10 0.3

The rebuilt image from the proposed model is compared with two other commonly used

methods: the conventional JPEG [263] method and a lossy method based on an DNN

codec principle presented by Minnen et al. [264], which has been widely used to do

comparative study in other generative compression models [7].

In order to fit the proposed method into different dataset, several changes have been

done: 1. Additional upsample layers are added to the decoder to get to the desired size.

2. Data papallelism has been adopted to work efficiently in HPC. 3. In addition, the

loss functions must be equipped with a reduction. Based on the experiments, a variant

must be found that is well suited for a comparison with the other methods. To get a

similar bpp rate two token numbers are experimented, 64 tokens would give a bpp value

of 0.04166 and 32 would give a value of 0.0208.

Since this network is primarily designed for extreme compression, compression is firstly

tested with 32 tokens and trained on 50 epochs following the strategy described in [7].

And quality of the rebuilt image, compression rate, and computational resources are

measured.

It can be seen from Figure 6.7 that the proposed method has a good performance in

extreme compression. Especially in the SSIM values, the comparison in Table 6.2 shows

that this model possesses advantages over the model proposed in [7] and JPEG. The

comparison with JPEG makes little sense in these areas of extreme compression since

the performance decreases significantly from a compression rate of 10 or 0.5 bpp

6.5 Conclusion and Discussion

The Transformer and GAN architectures are steadily gaining popularity in image com-

pression due to their performance. More and more research has been done to efficiently

take advantage of the Transformer and GAN structure. However, work has yet to be

done before to develop a model which combines the GAN and Transformer for image

compression. This work has developed a model that inserts Transformer into a GAN

architecture, which creates an image compression codec by combining Transformers and

Chapter 6. TransGAN: A Transformer-GAN Based Model for Image Compression 97

(a) Original image

(b) SSIM 71.176 bpp 0.0833

(c) SSIM 65.784 bpp 0.0417

(d) SSIM 53.178 bpp 0.0208

Figure 6.7: Comparison between the original and rebuilt image with different model
configurations

convolutions. The encoder is implemented by preparing the image information and ap-

plying it to Transformer architectures. Afterwards, the image information is processed

into an attention map and further into a compressed token representation. Experiments

were also conducted to investigate if conventional compression-type vector quantization

could be employed to improve the performance. The decoder is consisted of a set of

convolutions to rebuild the image. And the discriminator is well designed to distinguish

between original and reconstructed images. The result has proven that it is possible to

rebuild the images into a token representation and to restore them almost perfectly to

their original state. Overall, the architecture has advantages, especially in extreme data

compression.

Looking into the future, further optimization in model training could be done, especially

Chapter 6. TransGAN: A Transformer-GAN Based Model for Image Compression 98

in parallelization. In addition, different compression rates would be worthwhile to in-

vestigate since it is presented in the experimental chapter how to change certain metrics

for the desired result. Conventional methods, such as quantization, could also be better

integrated into the system for better compression. For future appliances, bringing more

and more Transformer and attention modules into the model will be the way to go,

as they prove to have the potential to relieve bandwidth and make data traffic more

efficient.

Chapter 7

Quantum Neural Network for

Solving Partial Differential

Equations

In this chapter, a well-designed Quantum Neural Network (QNN) is introduced, which

uses automatic differentiation to solve partial differential equations (PDEs) on quantum

computers (QC). The design of QNN allows for its efficient training and implementation

on realistic, near-term quantum devices. Its performance is investigated on two practical

problems to explicitly demonstrate its capabilities: 1D Burgers’ equation and 2D Poisson

equation. The potential experimental realizations and generalizations of QNN are also

discussed.

Chapter outline: This chapter is organized as follows: Section 7.1 provides the intro-

duction to the problem and explains the contributions. In Section 7.2, the state of the

art of DNN solver for PDEs will be briefly reviewed. The corresponding methods and

algorithms of QNN will be explained in Section 7.3 and 7.4. The QNN solution to two

specific problems, namely Burger’s equation and Poisson equation, will be discussed in

Section 7.5. The experimental setup and corresponding result will be discussed in detail

in this section. The last section summarizes the results, and an outline for future work

will be presented.

7.1 Introduction

In the field of science and engineering, various mathematical models have been devel-

oped to describe physical phenomena. Many of these models are naturally expressed in

99

Chapter 7. Quantum Neural Network for Solving Partial Differential Equations 100

differential equation form, mostly as time partial differential equations. Solving these

differential equations is of enormous importance for problems in all numerical disciplines,

such as weather prediction, astronomical simulations, molecular modelling, or jet engine

design.

However, solving PDEs numerically is difficult and has long been a computational chal-

lenge. Solving most of the important equations is analytically difficult and usually based

on numerical approximation methods. Hand-crafted solvers are required and always

tailored to the equation at hand to obtain accurate solutions to bounded errors with

minimal computational effort. Recently, research has been conducted on DNN-based

solvers, where DNNs are trained to satisfy the differential operator, initial condition

and boundary conditions using stochastic gradient descent on randomly sampled spatial

points. This approach transforms the PDE solution problem into a machine learning

problem, usually data-driven rather than numerical. Therefore, training deep neural

networks is computationally intensive and requires a lot of storage and communication.

Exciting new opportunities are emerging due to the imminent advent of quantum com-

puting devices that directly exploit the laws of quantum mechanics to circumvent the

technological and thermodynamic limitations of classical computation.

Therefore, a novel method based on QNN is proposed to solve the partial differential

equations, which enables fast optimization with reduced memory requirements. The

designed QNN is inspired by the Quantum Convolutional Network (QCNN) [239], where

a convolutional layer applies a single quasi-local unit in a translation-invariant manner

for finite depth, and a pooling layer applies a fraction of qubits. Convolution and pooling

layers are performed until the system size is sufficiently small. And the circuit result is

obtained by measuring a fixed number of output qubits, which are trained by learning

the data generated on HPC systems.

The main contributions of this work are as follows:

• A QNN is proposed and developed for solving PDEs, which no previous study, to

the best of author’s knowledge and through search in peer-reviewed databases, has

done before.

• The effectiveness of the QNN is demonstrated by investigating its performance on

two practical problems: 1D Burgers’ equation and 2D Poisson equation.

• The success of QNN in this work opens up a promising paradigm by complementing

the physics-based DNN model with an emerging new development of quantum

computing, as well as providing a vivid reference for fusing QC and DL algorithms,

which can serve as the basis for further work towards quantum PDE solvers.

Chapter 7. Quantum Neural Network for Solving Partial Differential Equations 101

7.2 Related Work

7.2.1 DNN Solver for PDE

In recent years, there has been growing interest in using DNNs to solve PDEs due to

their ability to approximate complex nonlinear functions. The idea is to use DNNs to

represent the solution to a PDE as a mapping from the spatial and temporal domains

to the solution space. This representation can be trained using data generated from

either numerical simulations or experimental observations. Yu et al. [265] proposed

the DNN-based Deep Ritz Method(DRM) to approximate the solutions of PDEs by

minimizing the energy function associated with the PDE. Li et al. [266] described

the DNN-based Neural Operator Method that approximates the solution of PDEs by

learning the underlying differential operator. Another work is to use the GAN to solve

PDE [267], which is composed of a generator and a discriminator. The generator is

trained to produce solutions that are consistent with the governing equation, while the

discriminator is trained to identify solutions that are inconsistent with the equation.

A recent work [268] demonstrates that U-Net, which is a CNN-based model, can be

trained using flow fields computed by computational fluid dynamics (CFD) simulations

to approximate the solution of PDEs. Rassi et al. [269, 270] introduced the physics-

informed neural network (PINN), which enforce physical constraints during the training

process for inferring latent solution to a PDE system. [268]

7.2.2 QNN

Quantum neural networks are a subclass of variational quantum algorithms comprising

of quantum circuits that contain parameterized gate operations [271]. In QNN, a vari-

ational model containing parameterized gates is applied and optimized for a particular

task [272–274]. Farhi et al. [275] defined the formalism of a gate-model quantum neu-

ral network to classify the classical data sets consisting of bitstrings with binary labels.

Wiebe et al. [276] found that the application of quantum computing can reduce the time

required to train a deep-restricted Boltzmann machine and lead to significant perfor-

mance improvements in comparison to classical computing. Kwok et al. [277] defined a

quantum generalization of feedforward neural networks, which can be trained efficiently

using gradient descent to perform quantum generalizations of classical tasks. Cong et

al. [239] proposed a quantum convolutional neural network(QCNN) which combines the

multi-scale entanglement renormalization ansatz and quantum error correction. The

QCNN only makes use of O(log(N)) variational parameters for input sizes of N qubits,

allowing for its efficient training and implementation on realistic, near-term quantum

Chapter 7. Quantum Neural Network for Solving Partial Differential Equations 102

devices. Beer et al. [20] proposed a truly quantum analogue of classical neurons, which

form quantum feedforward neural networks capable of universal quantum computation.

Abbas et al. [21] demonstrated numerically that a class of quantum neural networks is

able to achieve a considerably better effective dimension than comparable feedforward

networks and train faster, suggesting an advantage for quantum machine learning.

7.3 Mathematical Preliminaries

7.3.1 Data Driven PDE Solver

The general form of a PDE system can be given as:

∂ku

∂tt
(x, t) +D[u(x, t);λ] = 0, x ∈ Ω, t ∈ [0, T] (7.1)

where the spatial domain Ω ∈ Rd, D is the nonlinear operator parameterized by λ. The

PDE system is subject to the boundary condition:

B[u(x, t)] = h(x, t), x ∈ ∂Ω (7.2)

where where ∂Ω is the domain boundary, B is the differential operator for boundary

conditions, h(x, t) : R(d+1) → R is the given function and u(x, t) is the latent solution of

this PDE system.

To solve the equation through DNN, this equation can be rewritten as

f(u; t, x) =
∂ku

∂tt
(x, t) +D[u] = 0 (7.3)

where u = uθ(t, x); this gives the a physics-informed neural network parameterized by θ

L = Lu + Lf ,

Lu =
1

Nu

Nu∑
i=1

|u(tiu, x
i
u)− ui))|2,

Lf =
1

Nf

Nf∑
i=1

|f(tif , x
i
f))|2

(7.4)

{tiu, xiu, ui}
Nu
i=1 denote the initial and boundary training data on u(t, x), {tif , xif}

Nf

i=1 spec-

ify the collocation points for f(u; t, x), the solution of Equation 7.4 can be obtained by

employing a DNN as an approximated solution, i.e., ũ = uNN (x⃗; w⃗∗, b⃗∗), where uNN is

a neural network output with respective weights and biases w⃗, u⃗. Then the target is to

Chapter 7. Quantum Neural Network for Solving Partial Differential Equations 103

find:

ũ = uNN (x⃗; w⃗∗, b⃗∗) (7.5)

such that

w⃗∗, b⃗∗ = arg min(L(w⃗, b⃗)) (7.6)

7.3.2 QNN

A QNN implemented on a gate-model quantum computer with a quantum gate structure

usually contains quantum links between the unitaries and classical links for the propa-

gation of classical side information. The classical information is encoded into quantum

information, and then the quantum information is propagated forward to the output.

A QNN can be formulated as a collection of N unitary gates, and the i-th unitary gate

is defined as:

Ui(θi) = exp(−iθiP) (7.7)

where P is a generalized Pauli operator formulated by a tensor product of Pauli operators

X, Y, Z, while θ is the gate parameter. Therefore, the QNN can be defined as a sequence

of unitary operators:

U(θ⃗) =
L∏
i=1

U i(θi) (7.8)

where θ⃗ represents the gate parameter vectors. Acting the unitary gates on a particular

input |ψ, ϕ⟩, the output is

|Y ⟩ = U(θ⃗) |ψ, ϕ⟩ (7.9)

The goal is, therefore, to find the optimal gate parameters θ⃗∗:

θ⃗∗ = arg min
θ∈C
L(θ⃗,F) (7.10)

where C ⊆ Rd is a constraint set, L(θ⃗,F) is the loss and F refers to the objective

function. In the simplest form of the gradient-descent method, the parameters are

updated according to the following:

θ := θ − η▽θ L(ψ, ϕ, θ) (7.11)

where η is the learning rate.

Chapter 7. Quantum Neural Network for Solving Partial Differential Equations 104

7.4 Method

Data Encoding In order to apply quantum algorithms and process the data in quantum

computers, it is necessary to transform the classical data into a quantum representation

at first. Thus, feature maps are adopted to represent the features of the data in a

quantum state. A feature map can be thought of as a mapping from the original data

to a new space where the features of the data can be more easily manipulated so that

quantum algorithms can perform operations more efficiently.

In order to embed n-dimensional classical data on n qubits, the unitary gates introduced

in [278] are adopted, which is defined as:

Fϕ(x⃗) = exp(i
∑
S⊆[n]

ϕS(x⃗)
∏
i∈S

Zi),

ϕi(x) = xi,

ϕi,j(s) = (π − x0)(π − x1)

(7.12)

the quantum circuits illustrated in Table 7.1 is utilized, which encodes 2-dimensional

classical information into quantum state. First, the featuremap applies Hadamard gate

on each of the input qubits, followed by a layer of phase gate. Then a phase gate between

two CNOT gates is implemented. For an input vector x⃗, after encoding through the

feature map, the output is:

Fϕ(x⃗) = exp(ix0Z0 + ix1Z1 + i(π − x0)(π − x1)Z0Z1) (7.13)

H P (2.0 ∗ ϕ(x[0])) • •

H P (2.0 ∗ ϕ(x[1])) P (2.0 ∗ ϕ(x[0], x[1]))

Table 7.1: Two qubit unitary circuit F, which is used to encode the classical infor-
mation into quantum information

Quantum Convolutional Layer In order to extract the features from the encoded

data(quantum state), additional circuits appended to the feature map need to be de-

signed. Motivated by the optimal two qubits gates proposed by Vatan et al. [279], the

definition of the unitary gate for constructing a quantum convolutional layer is:

U = (A1 ⊗A2) ·N(α, β, γ) · (A3 ⊗A4),

Ai ∈ SU(2)

N(α, β, γ) = exp(i[αδxδx + βδyδy + γδzδz])

(7.14)

Chapter 7. Quantum Neural Network for Solving Partial Differential Equations 105

The construction of the optimal two qubits gates is based on an optimal circuit for

computing N(α, β, γ). As proved by Bullock et al. [280], at least 15 elementary one-

qubit gates are needed to implement a generic two-qubit gate, which is able to span the

whole Hilbert space. Thus, it implies that each unitary in our QCNN must contain 15

parameters. Tuning this large amount of parameters would be difficult and would lead

to long training times. To overcome this problem, the ansatz is restricted to a particular

subspace of the Hilbert space and define the two qubit unitary gate as depicted in Table

7.2. These two-qubit unitaries are applied to all neighbouring qubits in each of the layers

in the QCNN, as illustrated in Figure C.3.

q0 Rz(θ) • Rz(π2)

q1 Rz(−π
2) • Rz(ϕ) Ry(λ) •

Table 7.2: Two-qubit unitary circuit U, which is used to construct the quantum
convolutional layer

Quantum Pooling Layer In addition to the quantum convolutional layer described

above, the pooling operation is also performed using quantum gates that can be designed

to capture different properties of the input data and to reduce the dimension.

The pooling layer applies parameterized quantum gates to two qubits and traces out one

of the qubits to reduce the two-qubit states to one-qubit states. Similar to the choice of

ansatz for the convolutional filter, there exists a variety of choices of two-qubit circuits

of the pooling layer. In this work, a simple form of a two-qubit circuit consisting of three

free parameters is chosen for the pooling layer. Table 7.3 illustrates the unitary gate

used to build the pooling layer. It applies the rotation to the Z axis, which is followed

by a CNOT gate. After that, Rz gates, are applied to do rotation about the Z axis.

Then the output is given out after operation in another CNOT and Ry gate.

q0 Rz(θ) •

q1 Rz(−π
2) • Rz(ϕ) Ry(λ)

Table 7.3: Two-qubit unitary circuit V, which is used to construct the quantum
pooling layer

Both the unitary gate of convolution and pooling are used to build the QCNN. A distinct

feature of the QCNN architecture is the translational invariance, which forces the blocks

of parameterized quantum gates to be identical within a layer. Considering the unitary

gate composed of quantum convolution Ui and the gate part of pooling Vi, the quantum

state resulting from an ith layer of QCNN can be expressed as:

Chapter 7. Quantum Neural Network for Solving Partial Differential Equations 106

|ψi(θi)⟩ ⟨ψi(θi)| = TrBi(Ui(θi)Vi(θi)) |ψi−1⟩ ⟨ψi−1| (Ui(θi)Vi(θi))
† (7.15)

where TrBi(·) is the partial trace operation over subsystem Bi ∈ C
n

2i , Ui is the parame-

terized convolution unitary gate operation, and Vi is the parameterized pooling unitary

gate operation; and |ψi(0)⟩ = |0⟩⊗n.

Cost Function The choice of a cost function of QCNN solver for PDEs is a crucial

factor in the performance of the solver. The cost function determines how the network

is trained and, ultimately, the accuracy of the solution it produces. In this study,

mean squared error (MSE), a simple and commonly used cost function that measures

the average difference between the predicted output and the true output, is chosen.

Moreover, the loss of the QCNN can be expressed as:

L =
1

2N

M∑
i=1

(yi − f{F,Ui,Vj}(|ψi⟩))2 (7.16)

Here, f{F,Ui,Vj}(·) refers to the operation of QCNN that includes feature map, quantum

convolution and pooling. f{F,Ui,Vj}(|ψi⟩)) denotes the expected QCNN output value

for input |ψi⟩. The learning process is done by firstly initializing all unitaries, and

successively optimizing them until convergence by iteratively updating the parameters

based on optimization methods.

Optimization The optimization of the gate parameters can be carried out by iteratively

updating the parameters based on the gradient of the cost function until some condi-

tion for the termination is reached. In this study, Limited Memory Broyden-Fletcher-

Goldfarb-Shanno Bound Constraints (L-BFGS-B) is adopted as the optimization. L-

BFGS-B is a limited-memory quasi-Newton code for bound-constrained optimization,

e.g., for problems where the only constraints are of the form l <= x <= u. It is in-

tended for problems in which information on the Hessian matrix is difficult to obtain or

for large dense problems. It is used to minimize a function that is expressed as the sum

of a differentiable function and a convex, lower-semicontinuous function.

However, like other quasi-Newton methods, it can be sensitive to the choice of initial con-

ditions and may converge slowly for some functions. Furthermore, as a BFGS method,

it can only ensure their convergence if their functions appear with nearly optimum

quadratic Taylor expansion.

Chapter 7. Quantum Neural Network for Solving Partial Differential Equations 107

7.5 Experiments

In this section, some examples of PDEs that have been addressed in recent articles are

considered and treated as benchmark problems in order to compare against the proposed

algorithms with respect to approximation accuracy and computation time.

7.5.1 Burgers’ Equation

Burgers’ equation is a fundamental PDE, which is often regarded as the simplification of

a more complex and sophisticated model, e.g., it can be derived from the Navier-Stokes

equations for the velocity field by dropping the pressure gradient term. Therefore, it

is used here to understand the work and demonstrate the performance of the proposed

QCNN method.

The Burgers’ equation is considered:

∂u

∂t
+ λu

∂u

∂v
= v

∂2u

∂x2
, x ∈ [0, L], t ∈ [0, τ] (7.17)

u(x, 0) = ϕ(x), x ∈ [0, L] (7.18)

u(0, t) = ζ1(t), u(L, t) = ζ2(t), t ∈ [0, τ] (7.19)

where u, x, t and υ are the velocity, spatial coordinate, time and kinematic viscosity,

respectively. ϕ, ζ1 and ζ2 are prescribed functions of variables depending upon the

specific conditions for the problem to be solved. For the QCNN, the solution of Equation

7.17 is given by:

u(x;ϕ) = fF,Ui,Vj (

∫
θ;ϕ(x′)) (7.20)

In this experiment, it is considered to generate the training dataset by configuring the

following parameters: λ = 0.5, µ = 0.01, λ = 0.5, µ = 0.02, λ = 0.5, µ = 0.03, λ = 0.5,

µ = 0.04, λ = 0.5, µ = 0.05, and it is defined that x = 20, t = 20, so the dataset

generated on the 20 ∗ 20 grid, thus it is composed of 20 ∗ 20 = 400 data points.

In the model for solving 1D Burgers’ equation, an input size of sin = 2 is adopted,

output size sout = 1 and d = 20 trainable parameters. The model is trained for 70

training iterations. The details of the model adopted for training are depicted in Figure

C.5. To examine the performance of the proposed model, an analytic solution is also

generated by using the method proposed by Sacha et al. [4], where all the process of

calculation is based on pseudo-spectral method and, more particularly, by using the Fast

Fourier Transform(FFT).

Chapter 7. Quantum Neural Network for Solving Partial Differential Equations 108

Figure 7.1: Observable loss over training iterations for 1D Burgers’ equation

Figure 7.2: Comparison between the analytical solution [4] and the predicted solution
by QCNN of the 1D Burgers’ equation on some random points.

The predicted value given by QCNN and the analytical solution on some random sampled

data points are studied and compared, and the result is shown in Figure 7.2. Figure

7.1 shows the change of loss during the training process, as can be easily seen that the

QCNN gets convergence at epoch 10 with a loss around 0.01. For better visualizing the

performance of the proposed QCNN, it is shown that the analytic solution and QCNN

solution on 20∗20 equidistributed isometric grid points by colour, as shown in Figure 7.4.

To compare these two solutions more intuitively, the difference between the two solutions

at each point is calculated, and the error is visualized by a heatmap, i.e., as the error

Chapter 7. Quantum Neural Network for Solving Partial Differential Equations 109

increases, the colour changes from red to blue. As can be seen, the predicted solution

given by QCNN and the analytical solution have little deviations, which demonstrates

that the proposed QCNN has the potential to give an accurate solution to 1D Burgers’

equation.

7.5.2 Poisson Equation

As another fundamental PDE, the Poisson equation is widely adopted in mechanical

engineering, electrostatics, etc. The theoretical solution of Poisson equation was also

well studied in many previous researches [281, 282]. Therefore, it is utilized to evaluate

the performance of the proposed QCNN model.

The general form of the 2D Poisson equation can be written as:

−∇ · (a(x, y)∇u(x, y)) = f(x, y) in Ω (7.21)

u = g(x, y) on ∂ΩD (7.22)

∂u

∂n
= h(x, y) on ∂ΩN (7.23)

The diffusivity parameter a is a spatial dependent variable, and the right-hand side

term f is the source term or force term. ∂ΩD and ∂ΩN represent the Dirichlet and

Neumann boundaries of the domain Ω respectively. In the experiment setup, two sets

of experiments will be performed: the first one assumes the diffusivity parameter is

constant within the whole domain, while in the second set of experiments, the diffusivity

is homogeneous through the whole domain.

It is considered solving the Equation 7.21 in domain Ω = [0, 1]×[0, 1] under the following

boundary condition:

f(x, y) = sin(π ∗ x)sin(π ∗ y) (7.24)

u(0, y) = u(1, y) = u(x, 0) = 0 (7.25)

∂u

∂n
= 0 for y = 1 (7.26)

In the first experiment, the diffusivity is set as a = 1 in the whole domain. Furthermore,

it is considered to generate the training dataset by configuring the following parameters:

grid = 5 ∗ 5, grid = 7 ∗ 7, grid = 9 ∗ 9 and grid = 11 ∗ 11.

In the model for solving 2D Poisson equation, an input size of sin = 5, output size

sout = 1 and d = 59 are used as trainable parameters. Moreover, the model is trained

Chapter 7. Quantum Neural Network for Solving Partial Differential Equations 110

Figure 7.3: Observable loss over training iterations for 2D Poisson equation

for 70 training iterations. The details of the model adopted for training are depicted in

Figure C.6.

Figure 7.3 shows the change of loss during the training process, as can be easily seen that

the QCNN gets convergence at epoch 10 with a loss around 0.1. For better visualizing

the performance of the proposed QCNN, the analytic solution and QCNN solution are

visualized in 3D by colour in Figure 7.5. As can be seen, the predicted solution given by

QCNN and the analytical solution have little deviations, which demonstrates that the

proposed QCNN has the potential to give an accurate solution to 2D Poisson equation.

7.5.3 Trainability

The proposed QCNN architecture can be efficiently implemented on several state-of-the-

art experimental platforms. The experiments were first conducted on the simulator to

examine the trainability of the proposed models. Further, the hardware experiment is

conducted on IBM Q System One Ehningen 27-qubit device [67] via Qiskit [283].

7.6 Conclusion and future work

Fully parameterized quantum convolutional neural networks pave promising avenues for

near-term quantum machine learning and data science applications. In this work, a

QCNN model is proposed for solving PDEs. The advantage of the QCNN is that it can

better handle complex and nonlinear data by processing data in a higher-dimensional

feature space, which enables them to capture more complex patterns and relationships

Chapter 7. Quantum Neural Network for Solving Partial Differential Equations 111

in the data. It is speculated that the advantage of QCNN lies in the ability to exploit

entanglement, which is a global effect, while a classical neural network is only capable

of capturing local correlations. For illustration, QCNN approach is used for solving

Burgers’ equation and Poisson equation, and it is shown that the QCNN can be well-

trained to approximate the correct solution. Moreover, the QCNN can guide us on

taking advantage of the combination of quantum computing and deep learning to solve

the physical PDEs.

Though the good results are shown above, there are many important problems with

efficiently using QNN to solve PDE for future works. Firstly, how to generalize the

QNN model to fit into more PDEs is still under research, and a careful design and

building of the architecture are needed. For the data part, whether noisy data will

have the same good regularization effect is also significant work to be done. Another

important work that remains to be done is to decide how much data should be used to

enable an accurate solution while fitting in the current limited number of qubits that

the current quantum computer has. In addition, another interesting future work is to

optimize the data encoding. Moreover, understanding the underlying principle for the

quantum advantage demonstrated remains to be done.

Chapter 7. Quantum Neural Network for Solving Partial Differential Equations 112

Solution given by solver Solution given by QCNN
Error between the two

solutions

(a)
m =
0.5, µ =
0.01

(b)
m =
0.5, µ =
0.02

(c)
m =
0.5, µ =
0.03

(d)
m =
0.5, µ =
0.04

(e)
m =
0.5, µ =
0.05

Figure 7.4: Comparison between the solution given by analytical solver and proposed
QCNN model for 1D Burgers’ Equation

Chapter 7. Quantum Neural Network for Solving Partial Differential Equations 113

Solution given by solver Solution given by QNN

(a)
Grid
5x5

(b)
Grid
7x7

(c)
Grid
9x9

(d)
Grid
11x11

Figure 7.5: Comparison between the solution given by analytical solver [5] and QCNN.
The left column is the visualization of the solution give by analytical solver and the

right column is the solution given by the proposed QCNN

Chapter 8

Concluding Remarks

There is no doubt that deep learning methods will continue to drive revolutions in var-

ious areas, where HPC and quantum computing will play more and more important

roles in these revolutions due to the fast-increasing model and data size. This disserta-

tion explores the impact and potential development trend of hybrid workflows and DL

methods on HPC and quantum computers, with the objective of addressing the main

challenges encountered by current deep learning methods, namely the scarcity of data

and the constraints of computing and storage resources. At first, the potential of deep

learning methods in revolutionizing engineering simulations is explored, using material

science as a practical example. A novel hybrid data analysis methodology that combines

deep learning and simulation on HPC clusters is proposed to address the problem of data

sparsity for deep learning and reduce the demand for expertise and time in determining

validated parameters for simulation. The thesis also investigates the advantages of quan-

tum computing in DNN by conducting a comparative study of QNN and classical DNN,

showing that QNN can achieve higher capacity and faster training ability. To address

hardware limitations in quantum computing, an effective data compression approach is

proposed that reduces the dimensions of input data while retaining the most important

information. In addition, a novel QNN method is proposed to give a potential solution

to PDEs. The work presented in this thesis can open up a promising paradigm of hybrid

DL methods on HPC systems and quantum computers and provide an explicit reference

for fusing quantum and DL algorithms, which can serve as the basis for further work.

In this chapter, the chapters in this thesis are summarized. Moreover, the key takeaways

and lessons from this thesis are described, and finally, ideas that could not be explored

due to time limitations but will be pursued as future work are presented.

114

Chapter 8. Concluding Remarks 115

8.1 Summary

The main contributions of this dissertation are:

• A profound review is done in Chapter 3 on the techniques that drive the interplay

and convergence of HPC and deep learning workloads, e.g., environment setup, or-

chestration/scheduling, frameworks, etc. Furthermore, various optimization meth-

ods are described and compared from different aspects, which enable the seamless

execution of deep learning applications on HPC, including parallelism methods,

communication optimization, etc.

• In Chapter 4, a novel hybrid workflow combining a multi-task neural network and

the simulation on HPC system is proposed, which can address the problem of data

sparsity for deep learning and reduce the demand for expertise, resources, and time

in determining the validated parameters for the simulation. To demonstrate the

effectiveness of the hybrid workflow, a multi-task deep neural network is developed

to identify the characteristics of the material, where the model is trained based on

the data generated by the FEM simulation on HPC. Further, the time consumption

of each process within the deep learning workload is analyzed, based on which

several optimization approaches are adopted to improve the computing efficiency.

In addition, a NAS-based AutoML approach is implemented, which generalizes the

workflow and enables it to be data- and use-case-independent.

• The quantum advantage is evaluated through a comparative study of classical

neural network and quantum neural network on the problem of image classification

in Chapter 5. Three popular hybrid quantum DNN models, namely the quantum

transfer learning (Resnet18 based), the Quanvolutional network, and the quantum

convolution network, are studied by comparing their performance on the Cifar10

dataset to their corresponding classical DNN models. It is observed that adding a

quantum circuit to a model could not significantly improve its accuracy or reduce

its loss value. However, it is also noticed that with the involvement of quantum

circuits, DNN models can converge with fewer epochs than those without quantum

circuits. This indicates that the quantum advantage could be obtained at some

level without sacrificing the accuracy of DNN models.

• A novel model is presented in Chapter 6 that inserts Transformer into a GAN

architecture, which combines Transformers and convolutions to create an image

compression codec. The encoder was implemented by preparing the image infor-

mation and making it applicable to Transformer architectures. Afterward, the

image information is processed into an attention map and further into a com-

pressed token representation. The result has proven that it is possible to rebuild

Chapter 8. Concluding Remarks 116

the images into a token representation and to restore them almost to their original

state.

• A novel QNN method is proposed for solving PDEs in Chapter 7. The effectiveness

of the QNN is demonstrated by investigating its performance on two practical

problems: 1D Burgers’ equation and 2D Poisson equation. The success of QNN in

this work provides a definitive reference for fusing QC and DL algorithms, which

can serve as the basis for further work toward quantum PDE solvers.

In conclusion, this dissertation comprehensively examines different hybrid deep learning

methods on HPC and quantum computers. The findings of this study give valuable

insights for integrating different technologies to create a hybrid approach that can take

advantage of the strengths of each technology. These results have important implications

for DL, HPC, and quantum computing convergence and provide a foundation for future

research.

8.2 Discussion and Future Work

In the future, with a convergence of high-performance computing, quantum computing,

and deep learning, it is possible to tackle currently intractable problems. However,

realizing this will require significant hardware, software, and algorithm breakthroughs.

Towards this, emerging trends like DL-aided simulation, variational quantum DL, and

hybrid simulation on quantum computers and supercomputers will likely continue and

gather momentum. This thesis provides several solutions that drive the convergence of

HPC, DL, and quantum computing in different areas addressing several requirements

that arise from or are strengthened by these developing trends. Therefore, these solutions

are relevant and might serve as the basis for further work towards designing future hybrid

systems. The possible extension and future works can be:

• Optimization of DL training on HPC system: HPC systems may have a variety of

hardware configurations, including different processors, memory sizes, and storage

devices. This heterogeneity can pose challenges for scaling deep learning; thus,

deep learning frameworks and libraries must be designed to take advantage of the

heterogeneous hardware, and workloads must be efficiently scheduled and paral-

lelized. In addition, load-balancing techniques shall be developed to help distribute

the workloads more evenly and optimize resource usage since DL workloads are of-

ten imbalanced, which can lead to inefficient resource utilization. Communication

among nodes is also critical when scaling deep learning on HPC systems. As the

Chapter 8. Concluding Remarks 117

number of nodes increases, the communication overhead can become a bottleneck.

Efficient communication protocols and parallelization techniques are required to

minimize communication overhead and achieve scalable performance.

• Performance improvement of DNN: Regarding the hybrid workflow proposed in

Chapter 4, the neural network’s performance shall be further improved due to the

increasing demand for high accuracy of model predictions. In addition, although

the performance of MTL-NAS is promising, it is also noticed that the training

time for NAS is extremely long. Therefore, further optimization of the NAS al-

gorithm should be done, especially for the distributed environment, to accelerate

the training.

• Better information compression method: In Chapter 6, a Transformer-GAN based

DNN model is developed to compress the data, so that the input data to a quan-

tum computer can be dimension reduced to fit into the limited number of qubits

of current quantum computers. However, the Transformer-GAN method involves

complex encoding and decoding algorithms that can be computationally intensive,

which can be a challenge for applications that require real-time compression, such

as video streaming or live video conferencing. It is also noted that different appli-

cations have different requirements for image compression in terms of compression

ratio, image quality, and computational complexity. Thus, a more generalized

method that can be used for data compression without losing much information

shall be developed.

• Improving quantum scalability: One of the challenges with QNNs is that they are

difficult to scale up to larger problems due to a phenomenon known as quantum

decoherence [284], which causes errors and instability in quantum computations

as the number of qubits increases. Future work in this area could focus on de-

veloping more efficient and scalable methods for training and using QNNs, which

is essential to unlocking the full potential of quantum computing and enabling

new applications in areas such as cryptography, machine learning, and materials

science.

• Development of quantum hardware: One of the biggest challenges with QNNs is

requiring specialized hardware to run. However, many challenges are associated

with quantum hardware, e.g., quantum noise, the limited number of qubits, cali-

bration and error correction, and cost. One major future work is to develop new

and more accessible quantum hardware, which could make it easier to use and

study QNNs.

Appendix A

Multi-Task Neural Architecture

Search

Figure A.1 illustrates the problem formulation of the general-purpose MTL-NAS de-

veloped by Gao et.al. It disentangles the GP-MTL networks into fixed task-specific

single-task backbones and general feature fusion schemes between them. This allows to

define a general task-agnostic search space compatible with any task combinations, as

shown in the leftmost subfigure. The right-top subfigure illustrates the inter-task fusion

operation. The initialization of the fusion operation is shown in the right-bottom sub-

figure. New edges are inserted between the fixed and well-trained single-task network

backbones, in order to make a minimal impact on the original output at each layer at

initialization.

Figure A.1: Task-agnostic neural architecture search towards general-purpose multi-
task learning[6]

118

Appendix B

TransGAN Structure

Figure B.1: Configuration of discriminator part of TransGAN for image compression

119

Appendix B. TransGAN Structure 120

Figure B.2: Configuration of generator part of TransGAN for image compression

Appendix C

Details of QDNN PDE Solver

Model

In the following, the chosen models Chapter 7 is explained in more detail.

Figure C.1 illustrates a parametrized two qubit unitary circuit, which will be applied

to all neighboring qubits as is shown in Figure C.3, where the two qubit unitary gates

are appliedto all even pairs of qubits followed by applying to odd pairs of qubits in a

circular coupling manner, i.e., the as well as neighboring qubits being coupled, the first

and final qubit are also coupled through a unitary gate. Thus the convolutional layer is

constructed.

Figure C.2 shows the two qubit unitary, which transforms the two qubit system to one.

After applying this two qubit unitary circuit, the first qubit (q0) is neglected in future

layers and only use the second qubit (q1) in our QCNN. Further, this two qubit pooling

layer is applied to different pairs of qubits to create our pooling layer for N qubits,

which is shown in Figure C.4 . This layer therefore has the overall effect of ‘combining’

the information of the two qubits into one qubit by first applying the unitary circuit,

encoding information from one qubit into another, before disregarding one of qubits for

the remainder of the circuit and not performing any operations or measurements on it.

The quantum neural networks considered in Chapter 7 are of the form given in Figure C.5

and Figure C.5, which are composed of the quantum convolutional layers and quantum

pooling layers.

121

Appendix C. Details of QDNN PDE Solver Model 122

Figure C.1: Details of the convolutional unitary gate

Figure C.2: Details of the pooling unitary gate

Figure C.3: Details of the quantum convolutional layer

Figure C.4: Details of the quantum pooling layer

Appendix C. Details of QDNN PDE Solver Model 123

Figure C.5: The QNN structure adopted for solving the 1D Burgers’ Equation

Figure C.6: The QNN structure adopted for solving the 2D Poisson Equation

Bibliography

[1] Top500, 2022. URL https://top500.org/.

[2] Maxwell Henderson, Samriddhi Shakya, Shashindra Pradhan, and Tristan Cook.

Quanvolutional neural networks: powering image recognition with quantum cir-

cuits. Quantum Machine Intelligence, 2(1):2, 2020.

[3] Seunghyeok Oh, Jaeho Choi, and Joongheon Kim. A tutorial on quantum convo-

lutional neural networks (qcnn). In 2020 International Conference on Information

and Communication Technology Convergence (ICTC), pages 236–239. IEEE, 2020.

[4] Sacha BINDER. tude de lobservation et de la modlisation des ondes de surface en

eau peu profonde. Physique-Informatique, 2021.

[5] Alexander Heinlein, Axel Klawonn, and Oliver Rheinbach. A parallel implemen-

tation of a two-level overlapping schwarz method with energy-minimizing coarse

space based on trilinos. SIAM Journal on Scientific Computing, 38(6):C713–C747,

2016.

[6] Yuan Gao, Haoping Bai, Zequn Jie, Jiayi Ma, Kui Jia, and Wei Liu. Mtl-nas:

Task-agnostic neural architecture search towards general-purpose multi-task learn-

ing. In Proceedings of the IEEE/CVF Conference on computer vision and pattern

recognition, pages 11543–11552, 2020.

[7] Eirikur Agustsson, Michael Tschannen, Fabian Mentzer, Radu Timofte, and

Luc Van Gool. Generative adversarial networks for extreme learned image com-

pression. In Proceedings of the IEEE/CVF International Conference on Computer

Vision, pages 221–231, 2019.

[8] Myeongsuk Pak and Sanghoon Kim. A review of deep learning in image recogni-

tion. In 2017 4th international conference on computer applications and informa-

tion processing technology (CAIPT), pages 1–3. IEEE, 2017.

124

https://top500.org/

Bibliography 125

[9] Keerthana Rangasamy, Muhammad Amir As’ari, Nur Azmina Rahmad, Nu-

rul Fathiah Ghazali, and Saharudin Ismail. Deep learning in sport video anal-

ysis: a review. TELKOMNIKA (Telecommunication Computing Electronics and

Control), 18(4):1926–1933, 2020.

[10] Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy

considerations for deep learning in nlp. arXiv preprint arXiv:1906.02243, 2019.

[11] Yongjun Xu, Xin Liu, Xin Cao, Changping Huang, Enke Liu, Sen Qian, Xingchen

Liu, Yanjun Wu, Fengliang Dong, Cheng-Wei Qiu, et al. Artificial intelligence: A

powerful paradigm for scientific research. The Innovation, 2(4), 2021.

[12] Luciano Floridi and Massimo Chiriatti. Gpt-3: Its nature, scope, limits, and

consequences. Minds and Machines, 30:681–694, 2020.

[13] Fei Wang, Hao Wang, Haichao Wang, Guowei Li, and Guohai Situ. Learning

from simulation: An end-to-end deep-learning approach for computational ghost

imaging. Optics express, 27(18):25560–25572, 2019.

[14] Andreas Tolk. The next generation of modeling & simulation: integrating big

data and deep learning. In Proceedings of the conference on summer computer

simulation, pages 1–8, 2015.

[15] Fei Wang, Hao Wang, Haichao Wang, Guowei Li, and Guohai Situ. Learning

from simulation: An end-to-end deep-learning approach for computational ghost

imaging. Opt. Express, 27(18):25560–25572, Sep 2019. doi: 10.1364/OE.27.025560.

URL https://opg.optica.org/oe/abstract.cfm?URI=oe-27-18-25560.

[16] Iulia Buluta and Franco Nori. Quantum simulators. Science, 326(5949):108–111,

2009.

[17] Michael Jünger, Gerhard Reinelt, and Giovanni Rinaldi. The traveling salesman

problem. Handbooks in operations research and management science, 7:225–330,

1995.

[18] Carlos Bravo-Prieto, Ryan LaRose, Marco Cerezo, Yigit Subasi, Lukasz Cin-

cio, and Patrick J Coles. Variational quantum linear solver. arXiv preprint

arXiv:1909.05820, 2019.

[19] Siddhant Garg and Goutham Ramakrishnan. Advances in quantum deep learning:

An overview. arXiv preprint arXiv:2005.04316, 2020.

[20] Kerstin Beer, Dmytro Bondarenko, Terry Farrelly, Tobias J Osborne, Robert Salz-

mann, Daniel Scheiermann, and Ramona Wolf. Training deep quantum neural

networks. Nature communications, 11(1):1–6, 2020.

https://opg.optica.org/oe/abstract.cfm?URI=oe-27-18-25560

Bibliography 126

[21] Amira Abbas, David Sutter, Christa Zoufal, Aurélien Lucchi, Alessio Figalli, and

Stefan Woerner. The power of quantum neural networks. Nature Computational

Science, 1(6):403–409, 2021.

[22] Klaus Mainzer and Mainzer. Künstliche Intelligenz-wann übernehmen die Maschi-

nen? Springer, 2016.

[23] D. M. Hutton. The quest for artificial intelligence: A history of ideas and achieve-

ments. Kybernetes, 2011.

[24] Christopher Manning and Hinrich Schutze. Foundations of statistical natural lan-

guage processing. MIT press, 1999.

[25] David Forsyth and Jean Ponce. Computer vision: A modern approach. Prentice

Hall, 2011.

[26] Ian Lenz, Honglak Lee, and Ashutosh Saxena. Deep learning for detecting robotic

grasps. The International Journal of Robotics Research, 34(4-5):705–724, 2015.

[27] Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent

in nervous activity. The bulletin of mathematical biophysics, 5(4):115–133, 1943.

[28] Frank Rosenblatt. The perceptron: a probabilistic model for information storage

and organization in the brain. Psychological review, 65(6):386, 1958.

[29] Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. Learning to forget: Con-

tinual prediction with lstm. Neural computation, 12(10):2451–2471, 2000.

[30] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Em-

pirical evaluation of gated recurrent neural networks on sequence modeling. arXiv

preprint arXiv:1412.3555, 2014.

[31] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-

Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adver-

sarial networks. Commun. ACM, 63(11):139–144, oct 2020. ISSN 0001-0782. doi:

10.1145/3422622. URL https://doi.org/10.1145/3422622.

[32] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial net-

works. Communications of the ACM, 63(11):139–144, 2020.

[33] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need.

Advances in neural information processing systems, 30, 2017.

https://doi.org/10.1145/3422622

Bibliography 127

[34] Katarzyna Janocha and Wojciech Marian Czarnecki. On loss functions for deep

neural networks in classification. arXiv preprint arXiv:1702.05659, 2017.

[35] Derya Soydaner. A comparison of optimization algorithms for deep learning. Inter-

national Journal of Pattern Recognition and Artificial Intelligence, 34(13):2052013,

2020.

[36] J. Dongarra, T. Sterling, H. Simon, and E. Strohmaier. High-performance comput-

ing: clusters, constellations, mpps, and future directions. Computing in Science

Engineering, 7(2):51–59, 2005. doi: 10.1109/MCSE.2005.34.

[37] Roman Trobec, Radivoje Vasiljević, Milo Tomašević, Veljko Milutinović, Ramon

Beivide, and Mateo Valero. Interconnection networks in petascale computer sys-

tems: A survey. ACM Computing Surveys (CSUR), 49(3):1–24, 2016.

[38] Jose Duato, Sudhakar Yalamanchili, and Lionel Ni. Interconnection networks.

Morgan Kaufmann, 2003.

[39] Ananth Grama, Vipin Kumar, Anshul Gupta, and George Karypis. Introduction

to parallel computing. Pearson Education, 2003.

[40] William J. Dally. Performance analysis of k-ary n-cube interconnection networks.

IEEE transactions on Computers, 39(6):775–785, 1990.

[41] Stephen R Walli. The posix family of standards. StandardView, 3(1):11–17, 1995.

[42] Lustre file system, 2022. URL https://www.lustre.org/.

[43] Beegfs, the leading parallel file system, 2022. URL https://www.beegfs.io/c/.

[44] Ibm general parallel file system documentation, 2022. URL https://www.ibm.

com/docs/en/gpfs.

[45] Peter Corbett, Dror Feitelson, Sam Fineberg, Yarsun Hsu, Bill Nitzberg, Jean-

Pierre Prost, Marc Snirt, Bernard Traversat, and Parkson Wong. Overview of the

mpi-io parallel i/o interface. In Input/Output in Parallel and Distributed Computer

Systems, pages 127–146. Springer, 1996.

[46] Mike Folk, Albert Cheng, and Kim Yates. Hdf5: A file format and i/o library

for high performance computing applications. In Proceedings of supercomputing,

volume 99, pages 5–33, 1999.

[47] William F Godoy, Norbert Podhorszki, Ruonan Wang, Chuck Atkins, Greg Eisen-

hauer, Junmin Gu, Philip Davis, Jong Choi, Kai Germaschewski, Kevin Huck,

et al. Adios 2: The adaptable input output system. a framework for high-

performance data management. SoftwareX, 12:100561, 2020.

https://www.lustre.org/
https://www.beegfs.io/c/
https://www.ibm.com/docs/en/gpfs
https://www.ibm.com/docs/en/gpfs

Bibliography 128

[48] Slurm workload manager, 2022. URL https://slurm.schedmd.com/

documentation.html.

[49] Moab hpc suite, 2022. URL https://adaptivecomputing.com/

moab-hpc-suite/.

[50] Torque, 2022. URL https://github.com/adaptivecomputing/torque.

[51] Openpbs, 2022. URL https://github.com/openpbs/openpbs.

[52] Hpe apollo (hawk), 2022. URL https://www.hlrs.de/systems/

hpe-apollo-hawk/.

[53] Cray cs-storm, 2022. URL https://www.hlrs.de/systems/cray-cs-storm/.

[54] Kimberly Keeton. Memory-driven computing. In FAST, 2017.

[55] Wim Vanderbauwhede and Khaled Benkrid. High-performance computing using

FPGAs, volume 3. Springer, 2013.

[56] Marco Cerezo, Andrew Arrasmith, Ryan Babbush, Simon C Benjamin, Suguru

Endo, Keisuke Fujii, Jarrod R McClean, Kosuke Mitarai, Xiao Yuan, Lukasz Cin-

cio, et al. Variational quantum algorithms. Nature Reviews Physics, 3(9):625–644,

2021.

[57] Paul AM Dirac. The lagrangian in quantum mechanics. In Feynman’s Thesis—A

New Approach To Quantum Theory, pages 111–119. World Scientific, 2005.

[58] Richard P Feynman. Quantum mechanical computers. Found. Phys., 16(6):507–

532, 1986.

[59] David Deutsch and Richard Jozsa. Rapid solution of problems by quantum com-

putation. Proceedings of the Royal Society of London. Series A: Mathematical and

Physical Sciences, 439(1907):553–558, 1992.

[60] P.W. Shor. Algorithms for quantum computation: discrete logarithms and factor-

ing. In Proceedings 35th Annual Symposium on Foundations of Computer Science,

pages 124–134, 1994. doi: 10.1109/SFCS.1994.365700.

[61] Lov K. Grover. A fast quantum mechanical algorithm for database search. In

Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Com-

puting, STOC ’96, page 212–219, New York, NY, USA, 1996. Association for

Computing Machinery. ISBN 0897917855. doi: 10.1145/237814.237866. URL

https://doi.org/10.1145/237814.237866.

https://slurm.schedmd.com/documentation.html
https://slurm.schedmd.com/documentation.html
https://adaptivecomputing.com/moab-hpc-suite/
https://adaptivecomputing.com/moab-hpc-suite/
https://github.com/adaptivecomputing/torque
https://github.com/openpbs/openpbs
https://www.hlrs.de/systems/hpe-apollo-hawk/
https://www.hlrs.de/systems/hpe-apollo-hawk/
https://www.hlrs.de/systems/cray-cs-storm/
https://doi.org/10.1145/237814.237866

Bibliography 129

[62] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C Bardin, Rami

Barends, Rupak Biswas, Sergio Boixo, Fernando GSL Brandao, David A Buell,

et al. Quantum supremacy using a programmable superconducting processor.

Nature, 574(7779):505–510, 2019.

[63] Michael A. Nielsen and Isaac Chuang. Quantum computation and quantum in-

formation. American Journal of Physics, 70(5):558–559, 2002. doi: 10.1119/1.

1463744. URL https://doi.org/10.1119/1.1463744.

[64] Roderich Tumulka. Dirac notation. In Compendium of Quantum Physics, pages

172–174. Springer, 2009.

[65] Johannes Jisse Duistermaat and Johan AC Kolk. Lie groups. Springer Science &

Business Media, 2012.

[66] Christopher M Dawson and Michael A Nielsen. The solovay-kitaev algorithm.

arXiv preprint quant-ph/0505030, 2005.

[67] Ibm quantum system one at ehningen germany, 2023. URL https:

//www.fraunhofer.de/content/dam/zv/de/institute-einrichtungen/

Kooperationen/kompetenznetzwerk-quantencomputing/brochure_

fraunhofer-v10.pdf.

[68] Sardar Usman, Rashid Mehmood, and Iyad Katib. Big data and hpc convergence

for smart infrastructures: A review and proposed architecture. Smart Infras-

tructure and Applications: Foundations for Smarter Cities and Societies, pages

561–586, 2020.

[69] Leonardo Dagum and Ramesh Menon. Openmp: an industry standard api for

shared-memory programming. IEEE computational science and engineering, 5(1):

46–55, 1998.

[70] William Gropp, William D Gropp, Ewing Lusk, Anthony Skjellum, and Argonne

Distinguished Fellow Emeritus Ewing Lusk. Using MPI: portable parallel program-

ming with the message-passing interface, volume 1. MIT press, 1999.

[71] Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Man-

junath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray,

Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan

Yu, and Xiaoqiang Zheng. Tensorflow: A system for large-scale machine learning.

In Proceedings of the 12th USENIX Conference on Operating Systems Design and

Implementation, OSDI’16, page 265–283, USA, 2016. USENIX Association. ISBN

9781931971331.

https://doi.org/10.1119/1.1463744
https://www.fraunhofer.de/content/dam/zv/de/institute-einrichtungen/Kooperationen/kompetenznetzwerk-quantencomputing/brochure_fraunhofer-v10.pdf
https://www.fraunhofer.de/content/dam/zv/de/institute-einrichtungen/Kooperationen/kompetenznetzwerk-quantencomputing/brochure_fraunhofer-v10.pdf
https://www.fraunhofer.de/content/dam/zv/de/institute-einrichtungen/Kooperationen/kompetenznetzwerk-quantencomputing/brochure_fraunhofer-v10.pdf
https://www.fraunhofer.de/content/dam/zv/de/institute-einrichtungen/Kooperationen/kompetenznetzwerk-quantencomputing/brochure_fraunhofer-v10.pdf

Bibliography 130

[72] Huasha Zhao and John Canny. Kylix: A sparse allreduce for commodity clusters.

In 2014 43rd International Conference on Parallel Processing, pages 273–282, 2014.

doi: 10.1109/ICPP.2014.36.

[73] Gaurav Bhatia, Arjun Choudhary, and Vipin Gupta. The road to docker: a survey.

International Journal of Advanced Research in Computer Science, 8:8, 2017.

[74] Weidong Liao and Jesse Draper. Cloud computing and docker containerization:

A survey. In Proceedings of the West Virginia Academy of Science, volume 91. 91,

2019.

[75] Emiliano Casalicchio. Container orchestration: a survey. Systems Modeling:

Methodologies and Tools, pages 221–235, 2019.

[76] Tarik Taleb, Konstantinos Samdanis, Badr Mada, Hannu Flinck, Sunny Dutta,

and Dario Sabella. On multi-access edge computing: A survey of the emerging

5g network edge cloud architecture and orchestration. IEEE Communications

Surveys & Tutorials, 19(3):1657–1681, 2017.

[77] Maria A Rodriguez and Rajkumar Buyya. Container-based cluster orchestration

systems: A taxonomy and future directions. Software: Practice and Experience,

49(5):698–719, 2019.

[78] Denis Weerasiri, Moshe Chai Barukh, Boualem Benatallah, Quan Z Sheng, and

Rajiv Ranjan. A taxonomy and survey of cloud resource orchestration techniques.

ACM Computing Surveys (CSUR), 50(2):1–41, 2017.

[79] Diego Peteiro-Barral and Bertha Guijarro-Berdiñas. A survey of methods for

distributed machine learning. Progress in Artificial Intelligence, 2(1):1–11, 2013.

[80] Yoshua Bengio. Deep learning of representations: Looking forward. In Inter-

national conference on statistical language and speech processing, pages 1–37.

Springer, 2013.

[81] Xue-Wen Chen and Xiaotong Lin. Big data deep learning: challenges and per-

spectives. IEEE access, 2:514–525, 2014.

[82] Giang Nguyen, Ján Astaloš, and Ladislav Hluchỳ. Considerations about data

processing, machine learning, hpc, apache spark and gpu. In 11th Workshop on

Intelligent and Knowledge Oriented Technologies in conjunction with 35th confer-

ence Data and Knowledge, pages 241–247, 2016.

Bibliography 131

[83] HamidReza Asaadi, Dounia Khaldi, and Barbara Chapman. A comparative survey

of the hpc and big data paradigms: Analysis and experiments. In 2016 IEEE In-

ternational Conference on Cluster Computing (CLUSTER), pages 423–432. IEEE,

2016.

[84] Malik Khan, Tobias Becker, Permural Kuppuudaiyar, and Anne C. Elster.

Container-based virtualization for heterogeneous hpc clouds: Insights from the eu

h2020 cloudlightning project. In 2018 IEEE International Conference on Cloud

Engineering (IC2E), pages 392–397, 2018. doi: 10.1109/IC2E.2018.00074.

[85] Maria A. Rodriguez and Rajkumar Buyya. Container-based cluster orchestra-

tion systems: A taxonomy and future directions. Software: Practice and Ex-

perience, 49(5):698–719, 2019. doi: https://doi.org/10.1002/spe.2660. URL

https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2660.

[86] Jack S. Hale, Lizao Li, Christopher N. Richardson, and Garth N. Wells. Contain-

ers for portable, productive, and performant scientific computing. Computing in

Science Engineering, 19(6):40–50, 2017. doi: 10.1109/MCSE.2017.2421459.

[87] RANCHER, 2022.

[88] Akihiro Suda. Usernetes: Kubernetes without the root privileges. URL https:

//github.com/rootless-containers/usernetes.

[89] Dirk Merkel. Docker: Lightweight linux containers for consistent development and

deployment. Linux J., 2014(239), mar 2014. ISSN 1075-3583.

[90] Gregory M. Kurtzer, Vanessa Sochat, and Michael W. Bauer. Singularity: Sci-

entific containers for mobility of compute. PLoS ONE, 12(5), 5 2017. doi:

10.1371/journal.pone.0177459.

[91] S Senthil Kumaran. Practical LXC and LXD: linux containers for virtualization

and orchestration. Springer, 2017.

[92] Lisa Gerhardt, Wahid Bhimji, Shane Canon, Markus Fasel, Doug Jacobsen,

Mustafa Mustafa, Jeff Porter, and Vakho Tsulaia. Shifter: Containers for

HPC. Journal of Physics: Conference Series, 898:082021, oct 2017. doi:

10.1088/1742-6596/898/8/082021. URL https://doi.org/10.1088/1742-6596/

898/8/082021.

[93] Marvin Newlin, Kyle Smathers, and Mark E. DeYoung. Arc containers for ai

workloads: Singularity performance overhead. In Proceedings of the Practice and

Experience in Advanced Research Computing on Rise of the Machines (Learning),

PEARC ’19, New York, NY, USA, 2019. Association for Computing Machinery.

https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2660
https://github.com/rootless-containers/usernetes
https://github.com/rootless-containers/usernetes
https://doi.org/10.1088/1742-6596/898/8/082021
https://doi.org/10.1088/1742-6596/898/8/082021

Bibliography 132

ISBN 9781450372275. doi: 10.1145/3332186.3333048. URL https://doi.org/

10.1145/3332186.3333048.

[94] Scott McMillan. Making Container Easier with HPC Container Maker. HPC-

SYSPROS18: HPC System Professionals Workshop, Dallas, TX, 2018.

[95] Felipe A. Cruz Alberto Madonna Benedicic, Lucas and Kean Mariotti. Portable,

high-performance containers for hpc. preprint, 2017.

[96] Reid Priedhorsky and Tim Randles. Charliecloud: Unprivileged containers for

user-defined software stacks in hpc. In Proceedings of the International Confer-

ence for High Performance Computing, Networking, Storage and Analysis, SC

’17, New York, NY, USA, 2017. Association for Computing Machinery. ISBN

9781450351140. doi: 10.1145/3126908.3126925. URL https://doi.org/10.1145/

3126908.3126925.

[97] David Brayford, Sofia Vallecorsa, Atanas Atanasov, Fabio Baruffa, and Walter

Riviera. Deploying ai frameworks on secure hpc systems with containers. In

2019 IEEE High Performance Extreme Computing Conference (HPEC), pages 1–

6, 2019. doi: 10.1109/HPEC.2019.8916576.

[98] David Brayford and Sofia Vallecorsa. Deploying scientific ai networks at petaflop

scale on secure large scale hpc production systems with containers. preprint, 2020.

[99] Alfred Torrez, Timothy Randles, and Reid Priedhorsky. Hpc container run-

times have minimal or no performance impact. In 2019 IEEE/ACM Interna-

tional Workshop on Containers and New Orchestration Paradigms for Isolated

Environments in HPC (CANOPIE-HPC), pages 37–42, 2019. doi: 10.1109/

CANOPIE-HPC49598.2019.00010.

[100] Andy B Yoo, Morris A Jette, and Mark Grondona. Slurm: Simple linux utility

for resource management. In Workshop on job scheduling strategies for parallel

processing, pages 44–60. Springer, 2003.

[101] Garrick Staples. Torque resource manager. In Proceedings of the 2006 ACM/IEEE

conference on Supercomputing, pages 8–es, 2006.

[102] Naweiluo Zhou, Yiannis Georgiou, Li Zhong, Huan Zhou, and Marcin Pospieszny.

Container orchestration on hpc systems. In 2020 IEEE 13th International Con-

ference on Cloud Computing (CLOUD), pages 34–36, 2020. doi: 10.1109/

CLOUD49709.2020.00017.

[103] Alexander Sergeev and Mike Del Balso. Horovod: fast and easy distributed deep

learning in tensorflow. arXiv preprint arXiv:1802.05799, 2018.

https://doi.org/10.1145/3332186.3333048
https://doi.org/10.1145/3332186.3333048
https://doi.org/10.1145/3126908.3126925
https://doi.org/10.1145/3126908.3126925

Bibliography 133

[104] Miguel G. Xavier, Marcelo V. Neves, Fabio D. Rossi, Tiago C. Ferreto, Timoteo

Lange, and Cesar A. F. De Rose. Performance evaluation of container-based virtu-

alization for high performance computing environments. In 2013 21st Euromicro

International Conference on Parallel, Distributed, and Network-Based Processing,

pages 233–240, 2013. doi: 10.1109/PDP.2013.41.

[105] Max Plauth, Lena Feinbube, and Andreas Polze. A performance survey of

lightweight virtualization techniques. In European Conference on Service-Oriented

and Cloud Computing, pages 34–48. Springer, 2017.

[106] Jie Zhang, Xiaoyi Lu, and Dhabaleswar K. Panda. Is singularity-based container

technology ready for running mpi applications on hpc clouds? UCC ’17, page

151–160, New York, NY, USA, 2017. Association for Computing Machinery. ISBN

9781450351492. doi: 10.1145/3147213.3147231. URL https://doi.org/10.1145/

3147213.3147231.

[107] Brendan Burns, Joe Beda, and Kelsey Hightower. Kubernetes: up and running:

dive into the future of infrastructure. O’Reilly Media, 2019.

[108] V. Pisaruk and Sasha. Yakovtseva. Wlm-operator, October 2020. URL https:

//github.com/sylabs/wlm-operator.

[109] Thorsten Kurth, Sean Treichler, Joshua Romero, Mayur Mudigonda, Nathan

Luehr, Everett Phillips, Ankur Mahesh, Michael Matheson, Jack Deslippe, Massi-

miliano Fatica, Prabhat, and Michael Houston. Exascale deep learning for climate

analytics. In Proceedings of the International Conference for High Performance

Computing, Networking, Storage, and Analysis, SC ’18. IEEE Press, 2018.

[110] Paola Buitrago, Nicholas Nystrom, Rajarsi Gupta, and Joel Saltz. Delivering

Scalable Deep Learning to Research with Bridges-AI, pages 200–214. 02 2020.

ISBN 978-3-030-41004-9. doi: 10.1007/978-3-030-41005-6 14.

[111] Amiya K Maji, Lev Gorenstein, and Geoffrey Lentner. Demystifying python pack-

age installation with conda-env-mod. In 2020 IEEE/ACM International Workshop

on HPC User Support Tools (HUST) and Workshop on Programming and Perfor-

mance Visualization Tools (ProTools), pages 27–37. IEEE, 2020.

[112] Virtualenv, 2022. URL https://virtualenv.pypa.io/en/latest/.

[113] Kenneth Hoste, Jens Timmerman, Andy Georges, and Stijn De Weirdt. Easy-

build: Building software with ease. In 2012 SC Companion: High Performance

Computing, Networking Storage and Analysis, pages 572–582. IEEE, 2012.

https://doi.org/10.1145/3147213.3147231
https://doi.org/10.1145/3147213.3147231
https://github.com/sylabs/wlm-operator
https://github.com/sylabs/wlm-operator
https://virtualenv.pypa.io/en/latest/

Bibliography 134

[114] Todd Gamblin, Matthew LeGendre, Michael R Collette, Gregory L Lee, Adam

Moody, Bronis R De Supinski, and Scott Futral. The spack package manager:

bringing order to hpc software chaos. In Proceedings of the International Confer-

ence for High Performance Computing, Networking, Storage and Analysis, pages

1–12, 2015.

[115] Alex Krizhevsky. One weird trick for parallelizing convolutional neural networks.

arXiv preprint arXiv:1404.5997, 2014.

[116] Seunghak Lee, Jin Kyu Kim, Xun Zheng, Qirong Ho, Garth A Gibson, and Eric P

Xing. On model parallelization and scheduling strategies for distributed machine

learning. Advances in neural information processing systems, 27, 2014.

[117] Joseph K Bradley, Aapo Kyrola, Danny Bickson, and Carlos Guestrin. Par-

allel coordinate descent for l1-regularized loss minimization. arXiv preprint

arXiv:1105.5379, 2011.

[118] Chad Scherrer, Ambuj Tewari, Mahantesh Halappanavar, and David Haglin. Fea-

ture clustering for accelerating parallel coordinate descent. Advances in Neural

Information Processing Systems, 25, 2012.

[119] Ruben Mayer, Christian Mayer, and Larissa Laich. The tensorflow partitioning

and scheduling problem: it’s the critical path! In Proceedings of the 1st Workshop

on Distributed Infrastructures for Deep Learning, pages 1–6, 2017.

[120] Azalia Mirhoseini, Hieu Pham, Quoc V Le, Benoit Steiner, Rasmus Larsen, Yue-

feng Zhou, Naveen Kumar, Mohammad Norouzi, Samy Bengio, and Jeff Dean.

Device placement optimization with reinforcement learning. In International Con-

ference on Machine Learning, pages 2430–2439. PMLR, 2017.

[121] Azalia Mirhoseini, Anna Goldie, Hieu Pham, Benoit Steiner, Quoc V Le, and Jeff

Dean. A hierarchical model for device placement. In International Conference on

Learning Representations, 2018.

[122] Ruben Mayer and Hans-Arno Jacobsen. Scalable deep learning on distributed

infrastructures: Challenges, techniques, and tools. ACM Computing Surveys

(CSUR), 53(1):1–37, 2020.

[123] UA Muller and A Gunzinger. Neural net simulation on parallel computers. In Pro-

ceedings of 1994 IEEE International Conference on Neural Networks (ICNN’94),

volume 6, pages 3961–3966. IEEE, 1994.

[124] Ludvig Ericson and Rendani Mbuvha. On the performance of network parallel

training in artificial neural networks. arXiv preprint arXiv:1701.05130, 2017.

Bibliography 135

[125] Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr Ahmed, Vanja

Josifovski, James Long, Eugene J Shekita, and Bor-Yiing Su. Scaling distributed

machine learning with the parameter server. In 11th USENIX Symposium on

Operating Systems Design and Implementation (OSDI 14), pages 583–598, 2014.

[126] Leslie G Valiant. A bridging model for parallel computation. Communications of

the ACM, 33(8):103–111, 1990.

[127] Zhihao Jia, Matei Zaharia, and Alex Aiken. Beyond data and model par-

allelism for deep neural networks. In A. Talwalkar, V. Smith, and M. Za-

haria, editors, Proceedings of Machine Learning and Systems, volume 1,

pages 1–13, 2019. URL https://proceedings.mlsys.org/paper/2019/file/

c74d97b01eae257e44aa9d5bade97baf-Paper.pdf.

[128] Rajat Raina, Anand Madhavan, and Andrew Y. Ng. Large-scale deep unsupervised

learning using graphics processors. In Proceedings of the 26th Annual International

Conference on Machine Learning, ICML ’09, page 873–880, New York, NY, USA,

2009. Association for Computing Machinery. ISBN 9781605585161. doi: 10.1145/

1553374.1553486. URL https://doi.org/10.1145/1553374.1553486.

[129] Stephen J. Nocedal, Jorgeand Wright, editor. Sequential Quadratic Program-

ming, pages 526–573. Springer New York, New York, NY, 1999. ISBN 978-0-

387-22742-9. doi: 10.1007/0-387-22742-3 18. URL https://doi.org/10.1007/

0-387-22742-3_18.

[130] Markus Weimer Lihong Li Zinkevich, Martin and Alex Smola. Parallelized stochas-

tic gradient descent. In Advances in neural information processing systems, 23:

2595–2603, 2010.

[131] Jiawei Jiang, Bin Cui, Ce Zhang, and Lele Yu. Heterogeneity-aware distributed

parameter servers. In Proceedings of the 2017 ACM International Confer-

ence on Management of Data, SIGMOD ’17, page 463–478, New York, NY,

USA, 2017. Association for Computing Machinery. ISBN 9781450341974. doi:

10.1145/3035918.3035933. URL https://doi.org/10.1145/3035918.3035933.

[132] Quoc V. Le, Jiquan Ngiam, Adam Coates, Abhik Lahiri, Bobby Prochnow, and

Andrew Y. Ng. On optimization methods for deep learning. In Proceedings

of the 28th International Conference on International Conference on Machine

Learning, ICML’11, page 265–272, Madison, WI, USA, 2011. Omnipress. ISBN

9781450306195.

[133] Kunlei Zhang and Xue-Wen Chen. Large-scale deep belief nets with mapreduce.

IEEE Access, 2:395–403, 2014. doi: 10.1109/ACCESS.2014.2319813.

https://proceedings.mlsys.org/paper/2019/file/c74d97b01eae257e44aa9d5bade97baf-Paper.pdf
https://proceedings.mlsys.org/paper/2019/file/c74d97b01eae257e44aa9d5bade97baf-Paper.pdf
https://doi.org/10.1145/1553374.1553486
https://doi.org/10.1007/0-387-22742-3_18
https://doi.org/10.1007/0-387-22742-3_18
https://doi.org/10.1145/3035918.3035933

Bibliography 136

[134] Matthew A. Johnson Maik Riechert Daniel Tarlow Ryota Tomioka Dimitrios Vy-

tiniotis Gaunt, Alexander L. and Sam Webster. Ampnet: Asynchronous model-

parallel training for dynamic neural networks. preprint, 2017.

[135] Cedric Renggli, Saleh Ashkboos, Mehdi Aghagolzadeh, Dan Alistarh, and Torsten

Hoefler. Sparcml: High-performance sparse communication for machine learning.

In Proceedings of the International Conference for High Performance Computing,

Networking, Storage and Analysis, SC ’19, New York, NY, USA, 2019. Association

for Computing Machinery. ISBN 9781450362290. doi: 10.1145/3295500.3356222.

URL https://doi.org/10.1145/3295500.3356222.

[136] Yosuke Oyama, Tal Ben-Nun, Torsten Hoefler, and Satoshi Matsuoka. Accel-

erating deep learning frameworks with micro-batches. In 2018 IEEE Interna-

tional Conference on Cluster Computing (CLUSTER), pages 402–412, 2018. doi:

10.1109/CLUSTER.2018.00058.

[137] Aleksandar Zlateski, Kisuk Lee, and H. Sebastian Seung. Znni: Maximizing the

inference throughput of 3d convolutional networks on cpus and gpus. In SC ’16:

Proceedings of the International Conference for High Performance Computing,

Networking, Storage and Analysis, pages 854–865, 2016. doi: 10.1109/SC.2016.72.

[138] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia

Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V Le, Yonghui Wu, et al. Gpipe:

Efficient training of giant neural networks using pipeline parallelism. Advances in

neural information processing systems, 32, 2019.

[139] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi,

Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al.

Google’s neural machine translation system: Bridging the gap between human and

machine translation. arXiv preprint arXiv:1609.08144, 2016.

[140] Chi-Chung Chen, Chia-Lin Yang, and Hsiang-Yun Cheng. Efficient and robust

parallel dnn training through model parallelism on multi-gpu platform. arxiv.

preprint, 2018.

[141] Tal Ben-Nun and Torsten Hoefler. Demystifying parallel and distributed deep

learning: An in-depth concurrency analysis. ACM Comput. Surv., 52(4), aug

2019. ISSN 0360-0300. doi: 10.1145/3320060. URL https://doi.org/10.1145/

3320060.

[142] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-

jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,

https://doi.org/10.1145/3295500.3356222
https://doi.org/10.1145/3320060
https://doi.org/10.1145/3320060

Bibliography 137

Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Leven-

berg, Dan Mane, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike

Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul

Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viegas, Oriol Vinyals,

Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.

Tensorflow: Large-scale machine learning on heterogeneous distributed systems,

2016. URL https://arxiv.org/abs/1603.04467.

[143] Ronan Collobert, Koray Kavukcuoglu, and Clement Farabet. Torch7: A matlab-

like environment for machine learning. 01 2011.

[144] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long,

Ross Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional

architecture for fast feature embedding. In Proceedings of the 22nd ACM In-

ternational Conference on Multimedia, MM ’14, page 675–678, New York, NY,

USA, 2014. Association for Computing Machinery. ISBN 9781450330633. doi:

10.1145/2647868.2654889. URL https://doi.org/10.1145/2647868.2654889.

[145] Igor Colin, Ludovic Dos Santos, and Kevin Scaman. Theoretical Limits of Pipeline

Parallel Optimization and Application to Distributed Deep Learning. Curran As-

sociates Inc., Red Hook, NY, USA, 2019.

[146] Peter L. Bartlett Duchi, John C. and Martin J. Wainwright. Randomized smooth-

ing for stochastic optimization. SIAM Journal on Optimization, 22(2):674–701,

2012.

[147] Francis Bach Sébastien Bubeck Laurent Massoulié Scaman, Kevin and Yin Tat

Lee. Optimal algorithms for non-smooth distributed optimization in networks. In

Advances in Neural Information Processing Systems, pages 2740–2749, 2018.

[148] Kevin Swersky Snell, Jake and Richard Zemel. Prototypical networks for few-shot

learning. In Advances in neural information processing systems, pages 4077–4087,

2017.

[149] Daniel Lowd and Christopher Meek. Adversarial learning. In Proceedings of

the Eleventh ACM SIGKDD International Conference on Knowledge Discovery

in Data Mining, KDD ’05, page 641–647, New York, NY, USA, 2005. Association

for Computing Machinery. ISBN 159593135X. doi: 10.1145/1081870.1081950.

URL https://doi.org/10.1145/1081870.1081950.

[150] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation

learning with deep convolutional generative adversarial networks, 2015. URL

https://arxiv.org/abs/1511.06434.

https://arxiv.org/abs/1603.04467
https://doi.org/10.1145/2647868.2654889
https://doi.org/10.1145/1081870.1081950
https://arxiv.org/abs/1511.06434

Bibliography 138

[151] Aaron Harlap, Harlap, Deepak Narayanan, Amar Phanishayee, Greg Ganger

Vivek Seshadri, Nikhil Devanur, and Phil Gibbons. Pipedream: Fast and effi-

cient pipeline parallel dnn training. arxiv. preprint, 2018.

[152] Deepak Narayanan Amar Phanishayee Vivek Seshadri Gregory R. Ganger Harlap,

Aaron and Phillip B. Gibbons. Pipedream: Pipeline parallelism for dnn training.

In Conference on Systems and Machine Learning, 2018.

[153] Max Jaderberg, Wojciech Marian Czarnecki, Simon Osindero, Oriol Vinyals, Alex

Graves, David Silver, and Koray Kavukcuoglu. Decoupled neural interfaces us-

ing synthetic gradients. In Proceedings of the 34th International Conference on

Machine Learning - Volume 70, ICML’17, page 1627–1635. JMLR.org, 2017.

[154] Michael Laskin, Luke Metz, Seth Nabarro, Mark Saroufim, Badreddine Noune,

Carlo Luschi, Jascha Sohl-Dickstein, and Pieter Abbeel. Parallel training of deep

networks with local updates, 2020. URL https://arxiv.org/abs/2012.03837.

[155] Shirish Tatikonda Tian, Yuanyuan and Berthold Reinwald. Scalable and numeri-

cally stable descriptive statistics in systemml. In InIEEE 28th International Con-

ference on Data Engineering, pages 1351–1359. IEEE, April 2012.

[156] Rajasekar Krishnamurthy Edwin Pednault Berthold Reinwald Vikas Sindhwani

Shirish Tatikonda Yuanyuan Tian Ghoting, Amol and Shivakumar Vaithyanathan.

Systemml: Declarative machine learning on mapreduce. pages 231–242. IEEE 27th

International Conference on Data Engineering, April 2011.

[157] Shirish Tatikonda Berthold Reinwald Prithviraj Sen Yuanyuan Tian Douglas

R. Burdick Boehm, Matthias and Shivakumar Vaithyanathan. Hybrid paralleliza-

tion strategies for large-scale machine learning in systemml. In Proceedings of the

VLDB Endowment, pages 553–564, 2014. 7(7).

[158] Lele Yu Jiawei Jiang Yuhong Liu Jiang, Jie and Bin Cui. Angel: a new large-scale

machine learning system. National Science Review, 5(2):216–236, 2018.

[159] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin,

Mark Mao, Marc' aurelio Ranzato, Andrew Senior, Paul Tucker, Ke Yang,

Quoc Le, and Andrew Ng. Large scale distributed deep networks. In

F. Pereira, C.J. Burges, L. Bottou, and K.Q. Weinberger, editors, Ad-

vances in Neural Information Processing Systems, volume 25. Curran Asso-

ciates, Inc., 2012. URL https://proceedings.neurips.cc/paper/2012/file/

6aca97005c68f1206823815f66102863-Paper.pdf.

[160] Trishul Chilimbi, Yutaka Suzue, Johnson Apacible, and Karthik Kalyanaraman.

Project adam: Building an efficient and scalable deep learning training system.

https://arxiv.org/abs/2012.03837
https://proceedings.neurips.cc/paper/2012/file/6aca97005c68f1206823815f66102863-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/6aca97005c68f1206823815f66102863-Paper.pdf

Bibliography 139

In 11th USENIX Symposium on Operating Systems Design and Implementation

(OSDI 14), pages 571–582, Broomfield, CO, October 2014. USENIX Association.

ISBN 978-1-931971-16-4. URL https://www.usenix.org/conference/osdi14/

technical-sessions/presentation/chilimbi.

[161] Torsten Hoefler and Jesper Larsson Traff. Sparse collective operations for mpi.

In 2009 IEEE International Symposium on Parallel Distributed Processing, pages

1–8, 2009. doi: 10.1109/IPDPS.2009.5160935.

[162] Vinod Tipparaju Manojkumar Krishnan Nieplocha, Jarek and Dhabaleswar K.

Panda. High performance remote memory access communication: The armci ap-

proach. The International Journal of High Performance Computing Applications,

20(2):233–253, 2006.

[163] Amrita Mathuriya, Thorsten Kurth, Vivek Rane, Mustafa Mustafa, Lei Shao,

Debbie Bard, Prabhat, and Victor W Lee. Scaling grpc tensorflow on 512 nodes

of cori supercomputer, 2017. URL https://arxiv.org/abs/1712.09388.

[164] Nikoli Dryden, Naoya Maruyama, Tim Moon, Tom Benson, Andy Yoo, Marc Snir,

and Brian Van Essen. Aluminum: An asynchronous, gpu-aware communication

library optimized for large-scale training of deep neural networks on hpc systems.

pages 1–13, 11 2018. doi: 10.1109/MLHPC.2018.8638639.

[165] NVIDIA. Nvidia collective communications library (nccl), 2022. URL https:

//developer.nvidia.com/nccl.

[166] Intel. Intel machine learning scalability library (mlsl), October 2021. URL https:

//github.com/intel/MLSL.

[167] TensorFlow Developers. Tensorflow. Zenodo, 2022.

[168] Nikhil Ketkar, Jojo Moolayil, Nikhil Ketkar, and Jojo Moolayil. Introduction

to pytorch. Deep Learning with Python: Learn Best Practices of Deep Learning

Models with PyTorch, pages 27–91, 2021.

[169] Frank Seide and Amit Agarwal. Cntk: Microsoft’s open-source deep-learning

toolkit. In Proceedings of the 22nd ACM SIGKDD international conference on

knowledge discovery and data mining, pages 2135–2135, 2016.

[170] KONDUIT. Eclipse deeplearning4j (dl4j), 2022. URL https://github.com/

deeplearning4j/deeplearning4j.

[171] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun

Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. Mxnet: A flexible and efficient

https://www.usenix.org/conference/osdi14/technical-sessions/presentation/chilimbi
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/chilimbi
https://arxiv.org/abs/1712.09388
https://developer.nvidia.com/nccl
https://developer.nvidia.com/nccl
https://github.com/intel/MLSL
https://github.com/intel/MLSL
https://github.com/deeplearning4j/deeplearning4j
https://github.com/deeplearning4j/deeplearning4j

Bibliography 140

machine learning library for heterogeneous distributed systems. arXiv preprint

arXiv:1512.01274, 2015.

[172] Beng Chin Ooi, Kian-Lee Tan, Sheng Wang, Wei Wang, Qingchao Cai, Gang

Chen, Jinyang Gao, Zhaojing Luo, Anthony KH Tung, Yuan Wang, et al. Singa: A

distributed deep learning platform. In Proceedings of the 23rd ACM international

conference on Multimedia, pages 685–688, 2015.

[173] Wei Wang, Gang Chen, Haibo Chen, Tien Tuan Anh Dinh, Jinyang Gao,

Beng Chin Ooi, Kian-Lee Tan, Sheng Wang, and Meihui Zhang. Deep learn-

ing at scale and at ease. ACM Trans. Multimedia Comput. Commun. Appl., 12

(4s), nov 2016. ISSN 1551-6857. doi: 10.1145/2996464. URL https://doi.org/

10.1145/2996464.

[174] Jiayi Liu, Jayanta Dutta, Nanxiang Li, Unmesh Kurup, and Mohak Shah. Us-

ability study of distributed deep learning frameworks for convolutional neural net-

works. In Deep Learning Day at SIGKDD Conference on Knowledge Discovery

and Data Mining, 2018.

[175] ONNX. Onnx: Open standard for machine learning interoperability, 2022. URL

https://github.com/onnx/onnx.

[176] Noam Shazeer, Youlong Cheng, Niki Parmar, Dustin Tran, Ashish Vaswani, Pen-

porn Koanantakool, Peter Hawkins, HyoukJoong Lee, Mingsheng Hong, Cliff

Young, Ryan Sepassi, and Blake Hechtman. Mesh-tensorflow: Deep learning for

supercomputers. In Proceedings of the 32nd International Conference on Neu-

ral Information Processing Systems, NIPS’18, page 10435–10444, Red Hook, NY,

USA, 2018. Curran Associates Inc.

[177] Peter Mendygral, Nick Hill, Krishna Chaitanya Kandalla, Diana Moise, Jacob

Balma, and Marcel Schöngens. High performance scalable deep learning with the

cray programming environments deep learning plugin. 2018.

[178] Ammar Ahmad Awan, Arpan Jain, Quentin Anthony, Hari Subramoni, and Dha-

baleswar K Panda. Hypar-flow: exploiting mpi and keras for scalable hybrid-

parallel dnn training with tensorflow. In International Conference on High Per-

formance Computing, pages 83–103. Springer, 2020.

[179] Dongsheng Li, Zhiquan Lai, Keshi Ge, Yiming Zhang, Zhaoning Zhang, Qinglin

Wang, and Huaimin Wang. Hpdl: Towards a general framework for high-

performance distributed deep learning. In 2019 IEEE 39th International Con-

ference on Distributed Computing Systems (ICDCS), pages 1742–1753, 2019. doi:

10.1109/ICDCS.2019.00173.

https://doi.org/10.1145/2996464
https://doi.org/10.1145/2996464
https://github.com/onnx/onnx

Bibliography 141

[180] Markus Gotz, Charlotte Debus, Daniel Coquelin, Kai Krajsek, Claudia Comito,

Philipp Knechtges, Bjorn Hagemeier, Michael Tarnawa, Simon Hanselmann, Mar-

tin Siggel, Achim Basermann, and Achim Streit. HeAT – a distributed and GPU-

accelerated tensor framework for data analytics. In 2020 IEEE International Con-

ference on Big Data (Big Data). IEEE, dec 2020. doi: 10.1109/bigdata50022.2020.

9378050. URL https://doi.org/10.1109%2Fbigdata50022.2020.9378050.

[181] S A Jacobs, N Dryden, T Moon, B Van Essen, S He, and J Allen. Scaling deep

learning for cancer drug discovery on hpc systems. 2 2018. URL https://www.

osti.gov/biblio/1459129.

[182] Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng

Li, Adam Paszke, Jeff Smith, Brian Vaughan, Pritam Damania, et al. Pytorch

distributed: Experiences on accelerating data parallel training. arXiv preprint

arXiv:2006.15704, 2020.

[183] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Mem-

ory optimizations toward training trillion parameter models. In SC20: Inter-

national Conference for High Performance Computing, Networking, Storage and

Analysis, pages 1–16. IEEE, 2020.

[184] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared

Casper, and Bryan Catanzaro. Megatron-lm: Training multi-billion parameter

language models using model parallelism. arXiv preprint arXiv:1909.08053, 2019.

[185] Chiheon Kim, Heungsub Lee, Myungryong Jeong, Woonhyuk Baek, Boogeon

Yoon, Ildoo Kim, Sungbin Lim, and Sungwoong Kim. torchgpipe: On-the-fly

pipeline parallelism for training giant models. arXiv preprint arXiv:2004.09910,

2020.

[186] Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. Deepspeed:

System optimizations enable training deep learning models with over 100 billion

parameters. In Proceedings of the 26th ACM SIGKDD International Conference

on Knowledge Discovery & Data Mining, pages 3505–3506, 2020.

[187] Wenyan Lu, Guihai Yan, Jiajun Li, Shijun Gong, Yinhe Han, and Xiaowei Li.

Flexflow: A flexible dataflow accelerator architecture for convolutional neural net-

works. In 2017 IEEE International Symposium on High Performance Computer

Architecture (HPCA), pages 553–564. IEEE, 2017.

[188] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri, Nikhil R

Devanur, Gregory R Ganger, Phillip B Gibbons, and Matei Zaharia. Pipedream:

https://doi.org/10.1109%2Fbigdata50022.2020.9378050
https://www.osti.gov/biblio/1459129
https://www.osti.gov/biblio/1459129

Bibliography 142

Generalized pipeline parallelism for dnn training. In Proceedings of the 27th ACM

Symposium on Operating Systems Principles, pages 1–15, 2019.

[189] Shiqing Fan, Yi Rong, Chen Meng, Zongyan Cao, Siyu Wang, Zhen Zheng, Chuan

Wu, Guoping Long, Jun Yang, Lixue Xia, et al. Dapple: A pipelined data parallel

approach for training large models. In Proceedings of the 26th ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming, pages 431–445,

2021.

[190] Colin Unger, Zhihao Jia, Wei Wu, Sina Lin, Mandeep Baines, Carlos Efrain Quin-

tero Narvaez, Vinay Ramakrishnaiah, Nirmal Prajapati, Pat McCormick, Ja-

maludin Mohd-Yusof, et al. Unity: Accelerating {DNN} training through joint

optimization of algebraic transformations and parallelization. In 16th USENIX

Symposium on Operating Systems Design and Implementation (OSDI 22), pages

267–284, 2022.

[191] Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao Zhuang, Zhifeng Chen, Yanping

Huang, Yida Wang, Yuanzhong Xu, Danyang Zhuo, Eric P Xing, et al. Alpa:

Automating inter-and {Intra-Operator} parallelism for distributed deep learning.

In 16th USENIX Symposium on Operating Systems Design and Implementation

(OSDI 22), pages 559–578, 2022.

[192] Xupeng Miao, Yujie Wang, Youhe Jiang, Chunan Shi, Xiaonan Nie, Hailin Zhang,

and Bin Cui. Galvatron: Efficient transformer training over multiple gpus using

automatic parallelism. arXiv preprint arXiv:2211.13878, 2022.

[193] K. Kadupitige. Intersection of hpc and machine learning. Digital Science Center,

2017.

[194] Á Kerestély. High performance computing for machine learning. 2020.

[195] M. Abspoel, M. E. Scholting, M. Lansbergen, Y. An, and H. Vegter. A new

method for predicting advanced yield criteria input parameters from mechanical

properties. Journal of Materials Processing Technology, 248:161–177, 2017.

[196] V. Jadhao and J. C. S. (2020 Kadupitiya. November). Integrating machine learning

with hpc-driven simulations for enhanced student learning, pages 25–34, 2020.

[197] A. A. Sekh, I. S. Opstad, R. Agarwal, A. B. Birgisdottir, T. Myrmel, and B. S.

Ahluwalia. ... & prasad, d. K. Simulation-supervised deep learning for analysing

organelles states and behaviour in living cells. arXiv preprint, 2020.

[198] Fei Wang, Hao Wang, Haichao Wang, Guowei Li, and Guohai Situ. Learning

from simulation: An end-to-end deep-learning approach for computational ghost

imaging. Opt., 27:25560–25572, 2019.

Bibliography 143

[199] J. B. Hamrick. Analogues of mental simulation and imagination in deep learning.

Current Opinion in Behavioral Sciences, 29:8–16, 2019.

[200] S. Partee, M. Ellis, A. Rigazzi, S. Bachman, G. Marques, A. Shao, and B. Robbins.

Using machine learning at scale in hpc simulations with smartsim: An application

to ocean climate modeling. arxiv. preprint, 2021.

[201] C. Hu, Q. Wu, H. Li, S. Jian, N. Li, and Z. Lou. Deep learning with a long

short-term memory networks approach for rainfall-runoff simulation. Water, 10

(11):1543, 2018.

[202] K. Yeo and I. Melnyk. Deep learning algorithm for data-driven simulation of noisy

dynamical system. Journal of Computational Physics, 376:1212–1231, 2019.

[203] M. S. B. Othman and G. (2018 Tan. Machine learning aided simulation of pub-

lic transport utilization. In In IEEE/ACM 22nd International Symposium on

Distributed Simulation and Real Time Applications (DS-RT), pages 1–2. IEEE,

october 2018.

[204] B. Wörrlein, S. Bergmann, N. Feldkamp, S. Straßburger, M. Putz, and A. Schlegel.

Deep-learning-basierte prognose von stromverbrauch für die hybride simulation.

Simulation in Produktion und Logistik, pages 121–131, 2019.

[205] B. Moseley, A. Markham, and T. Nissen-Meyer. Fast approximate simulation of

seismic waves with deep learning. arxiv. preprint, 2018.

[206] Klaus-Jürgen Bathe. Finite element method. Wiley encyclopedia of computer

science and engineering, pages 1–12, 2007.

[207] D. Lorente, F. Mart́ınez-Mart́ınez, M. J. Rupérez, M. A. Lago, M. Mart́ınez-Sober,

and J Escandell-Montero, P.... & Mart́ın-Guerrero. A framework for modelling the

biomechanical behaviour of the human liver during breathing in real time using

machine learning. Expert Systems with Applications, 71:342–357, 2017.

[208] R. Luo, T. Shao, H. Wang, W. Xu, K. Zhou, and Y. Yang. Deepwarp: Dnn-based

nonlinear deformation. preprint, 2018.

[209] J. Kajberg and G. Lindkvist. Characterisation of materials subjected to large

strains by inverse modelling based on in-plane displacement fields. International

Journal of Solids and Structures, 41(13):3439–3459, 2004.

[210] F. Pierron and M. Grédiac. The virtual fields method: extracting constitutive me-

chanical parameters from full-field deformation measurements. Springer, Science

& Business Media, 2012.

Bibliography 144

[211] F. Mathieu, H. Leclerc, F. Hild, and S. Roux. Estimation of elastoplastic pa-

rameters via weighted femu and integrated-dic. Experimental Mechanics, 55(1):

105–119, 2015.

[212] M. B. Gorji and D. (2019 Mohr. November). towards neural network models

for describing the large deformation behavior of sheet metal. In IOP Conference

Series: Materials Science and Engineering, 651(1).

[213] D. Koch and A. Haufe. An investigation of machine learning capabilities to identify

consti-tutive parameters in yield curves. International Deep Drawing Research

Group, 2019, 2019.

[214] A. M. Chheda, L. Nazro, F. G. Sen, and V. (2019 Hegadekatte. November).

prediction of forming limit diagrams using machine learning. In IOP Conference

Series: Materials Science and Engineering (Vol., 651(1):012107.

[215] M. Mozaffar, R. Bostanabad, W. Chen, K. Ehmann, J. Cao, and M. A. Bessa. Deep

learning predicts path-dependent plasticity. Proceedings of the National Academy

of Sciences, 116(52):26414–26420, 2019.

[216] F. Barlat, H. Aretz, J. W. Yoon, M. E. Karabin, J. C. Brem, and R. E. Dick.

Linear transfomation-based anisotropic yield functions. International Journal of

Plasticity, 21(5):1009–1039, 2005.

[217] A. G”uner, C. Soyarslan, A. Brosius, and A. E. Tekkaya. Characterization of

anisotropy of sheet metals employing inhomogeneous strain fields for yld2000-2d

yield function. International Journal of Solids and Structures, 49(25):3517–3527,

2012.

[218] R. Caruana. Multitask learning. autonomous agents and multi-agent systems.,

1998.

[219] M. Crawshaw. Multi-task learning with deep neural networks: A survey. arxiv.

preprint, 2020.

[220] C. Darken, J. Chang, and J. Moody. Learning rate schedules for faster stochastic

gradient search. In Neural networks for signal processing, 2, August 1992.

[221] W. An, H. Wang, Y. Zhang, and Q. Dai. December). exponential decay sine wave

learning rate for fast deep neural network training. In IEEE Visual Communica-

tions and Image Processing (VCIP), pages 1–4, 2017.

[222] S. W. Chien, S. Markidis, C. P. Sishtla, L. Santos, P. Herman,

S. Narasimhamurthy, and E. (2018 Laure. Characterizing deep-learning i/o work-

loads in tensorflow. In 2018 IEEE/ACM 3rd International Workshop on Parallel

Bibliography 145

Data Storage & Data Intensive Scalable Computing Systems (PDSW-DISCS), 3:

54–63, November 2018.

[223] Haifeng Jin, Qingquan Song, and Xia Hu. Auto-keras: An efficient neural archi-

tecture search system. In Proceedings of the 25th ACM SIGKDD international

conference on knowledge discovery & data mining, pages 1946–1956, 2019.

[224] Maria Schuld and Nathan Killoran. Quantum machine learning in feature hilbert

spaces. Physical review letters, 122(4):040504, 2019.

[225] Alexandr A Ezhov and Dan Ventura. Quantum neural networks. Future Directions

for Intelligent Systems and Information Sciences: The Future of Speech and Image

Technologies, Brain Computers, WWW, and Bioinformatics, pages 213–235, 2000.

[226] Jarrod R McClean, Sergio Boixo, Vadim N Smelyanskiy, Ryan Babbush, and Hart-

mut Neven. Barren plateaus in quantum neural network training landscapes. Na-

ture communications, 9(1):4812, 2018.

[227] Arthur Pesah, Marco Cerezo, Samson Wang, Tyler Volkoff, Andrew T Sornborger,

and Patrick J Coles. Absence of barren plateaus in quantum convolutional neural

networks. Physical Review X, 11(4):041011, 2021.

[228] Maria Schuld, Ryan Sweke, and Johannes Jakob Meyer. Effect of data encoding

on the expressive power of variational quantum-machine-learning models. Physical

Review A, 103(3):032430, 2021.

[229] Manuela Weigold, Johanna Barzen, Frank Leymann, and Marie Salm. Expanding

data encoding patterns for quantum algorithms. In 2021 IEEE 18th International

Conference on Software Architecture Companion (ICSA-C), pages 95–101, 2021.

doi: 10.1109/ICSA-C52384.2021.00025.

[230] Manuela Weigold, Johanna Barzen, Frank Leymann, and Marie Salm. Data en-

coding patterns for quantum computing. In Proceedings of the 27th Conference on

Pattern Languages of Programs, pages 1–11, 2020.

[231] Frank Leymann and Johanna Barzen. The bitter truth about gate-based quantum

algorithms in the nisq era. Quantum Science and Technology, 5(4):044007, 2020.

[232] Eric R Johnston, Nic Harrigan, and Mercedes Gimeno-Segovia. Programming

Quantum Computers: essential algorithms and code samples. O’Reilly Media,

2019.

[233] Rajat Raina, Alexis Battle, Honglak Lee, Benjamin Packer, and Andrew Y Ng.

Self-taught learning: transfer learning from unlabeled data. In Proceedings of the

24th international conference on Machine learning, pages 759–766, 2007.

Bibliography 146

[234] Andrea Mari, Thomas R Bromley, Josh Izaac, Maria Schuld, and Nathan Killoran.

Transfer learning in hybrid classical-quantum neural networks. Quantum, 4:340,

2020.

[235] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning

for image recognition. In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 770–778, 2016.

[236] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from

tiny images. 2009.

[237] Korn Sooksatra, Pablo Rivas, and Javier Orduz. Evaluating accuracy and adver-

sarial robustness of quanvolutional neural networks. In 2021 International Con-

ference on Computational Science and Computational Intelligence (CSCI), pages

152–157, 2021. doi: 10.1109/CSCI54926.2021.00097.

[238] CM Wilson, JS Otterbach, Nikolas Tezak, RS Smith, AM Polloreno, Peter J Kar-

alekas, S Heidel, M Sohaib Alam, GE Crooks, and MP da Silva. Quantum kitchen

sinks: An algorithm for machine learning on near-term quantum computers. arXiv

preprint arXiv:1806.08321, 2018.

[239] Iris Cong, Soonwon Choi, and Mikhail D Lukin. Quantum convolutional neural

networks. Nature Physics, 15(12):1273–1278, 2019.

[240] Guillaume Verdon, Jacob Marks, Sasha Nanda, Stefan Leichenauer, and Jack

Hidary. Quantum hamiltonian-based models and the variational quantum ther-

malizer algorithm. arXiv preprint arXiv:1910.02071, 2019.

[241] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Scharwächter, Markus

Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The

cityscapes dataset. In CVPR Workshop on the Future of Datasets in Vision,

volume 2. sn, 2015.

[242] Laurie Rich. Cisco visual networking index, 2021. URL https://www.cisco.com/

c/dam/global/pt_br/assets/docs/whitepaper_VNI_06_09.pdf.

[243] Shinobu Kudo, Shota Orihashi, Ryuichi Tanida, Seishi Takamura, and Hideaki

Kimata. Gan-based image compression using mutual information for optimizing

subjective image similarity. IEICE TRANSACTIONS on Information and Sys-

tems, 104(3):450–460, 2021.

[244] Wenjie Luo, Yujia Li, Raquel Urtasun, and Richard Zemel. Understanding the

effective receptive field in deep convolutional neural networks. Advances in neural

information processing systems, 29, 2016.

https://www.cisco.com/c/dam/global/pt_br/assets/docs/whitepaper_VNI_06_09.pdf
https://www.cisco.com/c/dam/global/pt_br/assets/docs/whitepaper_VNI_06_09.pdf

Bibliography 147

[245] Aaditya Prakash, James Storer, Dinei Florencio, and Cha Zhang. Repr: Improved

training of convolutional filters. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pages 10666–10675, 2019.

[246] Fabian Mentzer, George D Toderici, Michael Tschannen, and Eirikur Agustsson.

High-fidelity generative image compression. Advances in Neural Information Pro-

cessing Systems, 33:11913–11924, 2020.

[247] Lirong Wu, Kejie Huang, and Haibin Shen. A gan-based tunable image compres-

sion system. In Proceedings of the IEEE/CVF Winter Conference on Applications

of Computer Vision, pages 2334–2342, 2020.

[248] Jonas Löhdefink, Andreas Bär, Nico M Schmidt, Fabian Hüger, Peter Schlicht, and

Tim Fingscheidt. Gan-vs. jpeg2000 image compression for distributed automotive

perception: Higher peak snr does not mean better semantic segmentation. arXiv

preprint arXiv:1902.04311, 2019.

[249] Gregory K Wallace. The jpeg still picture compression standard. IEEE transac-

tions on consumer electronics, 38(1):xviii–xxxiv, 1992.

[250] Michael W Marcellin, Michael J Gormish, Ali Bilgin, and Martin P Boliek. An

overview of jpeg-2000. In Proceedings DCC 2000. Data Compression Conference,

pages 523–541. IEEE, 2000.

[251] Zhanjun Si and Ke Shen. Research on the webp image format. In Advanced graphic

communications, packaging technology and materials, pages 271–277. Springer,

2016.

[252] Xi Zhang and Xiaolin Wu. Near-lossless l-infinity constrained multi-rate image

decompression via deep neural network. CoRR, 2018.

[253] Byeongkeun Kang, Subarna Tripathi, and Truong Q Nguyen. Toward joint image

generation and compression using generative adversarial networks. arXiv preprint

arXiv:1901.07838, 2019.

[254] Jingkuan Song, Tao He, Lianli Gao, Xing Xu, Alan Hanjalic, and Heng Tao Shen.

Unified binary generative adversarial network for image retrieval and compression.

International Journal of Computer Vision, 128:2243–2264, 2020.

[255] Boyu Wang, Kevin Yager, Dantong Yu, and Minh Hoai. X-ray scattering image

classification using deep learning. In 2017 IEEE Winter Conference on Applica-

tions of Computer Vision (WACV), pages 697–704. IEEE, 2017.

Bibliography 148

[256] Jean-Baptiste Cordonnier, Andreas Loukas, and Martin Jaggi. On the relationship

between self-attention and convolutional layers. arXiv preprint arXiv:1911.03584,

2019.

[257] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-

aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg

Heigold, Sylvain Gelly, et al. An image is worth 16x16 words: Transformers for

image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

[258] Bichen Wu, Chenfeng Xu, Xiaoliang Dai, Alvin Wan, Peizhao Zhang, Zhicheng

Yan, Masayoshi Tomizuka, Joseph Gonzalez, Kurt Keutzer, and Peter Vajda. Vi-

sual transformers: Token-based image representation and processing for computer

vision. arXiv preprint arXiv:2006.03677, 2020.

[259] Michael Ryoo, AJ Piergiovanni, Anurag Arnab, Mostafa Dehghani, and Anelia

Angelova. Tokenlearner: Adaptive space-time tokenization for videos. Advances

in Neural Information Processing Systems, 34:12786–12797, 2021.

[260] Lei Zhang, Xun Wang, Nicholas Penwarden, and Qiang Ji. An image segmentation

framework based on patch segmentation fusion. In 18th International Conference

on Pattern Recognition (ICPR’06), volume 2, pages 187–190. Ieee, 2006.

[261] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep

neural networks with pruning, trained quantization and huffman coding. arXiv

preprint arXiv:1510.00149, 2015.

[262] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus En-

zweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The

cityscapes dataset for semantic urban scene understanding. In Proceedings of the

IEEE conference on computer vision and pattern recognition, pages 3213–3223,

2016.

[263] Alain M Leger, Takao Omachi, and Gregory K Wallace. Jpeg still picture com-

pression algorithm. Optical Engineering, 30(7):947–954, 1991.

[264] David Minnen, Johannes Ballé, and George D Toderici. Joint autoregressive and

hierarchical priors for learned image compression. Advances in neural information

processing systems, 31, 2018.

[265] Bing Yu et al. The deep ritz method: a deep learning-based numerical algorithm

for solving variational problems. Communications in Mathematics and Statistics,

6(1):1–12, 2018.

Bibliography 149

[266] Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik

Bhattacharya, Andrew Stuart, and Anima Anandkumar. Fourier neural opera-

tor for parametric partial differential equations. arXiv preprint arXiv:2010.08895,

2020.

[267] Yaohua Zang, Gang Bao, Xiaojing Ye, and Haomin Zhou. Weak adversarial net-

works for high-dimensional partial differential equations. Journal of Computational

Physics, 411:109409, 2020.

[268] Matthias Eichinger, Alexander Heinlein, and Axel Klawonn. Stationary flow pre-

dictions using convolutional neural networks. In Numerical Mathematics and Ad-

vanced Applications ENUMATH 2019: European Conference, Egmond aan Zee,

The Netherlands, September 30-October 4, pages 541–549. Springer, 2020.

[269] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed

neural networks: A deep learning framework for solving forward and inverse prob-

lems involving nonlinear partial differential equations. Journal of Computational

physics, 378:686–707, 2019.

[270] Maziar Raissi, Alireza Yazdani, and George Em Karniadakis. Hidden fluid me-

chanics: Learning velocity and pressure fields from flow visualizations. Science,

367(6481):1026–1030, 2020.

[271] Maria Schuld, Alex Bocharov, Krysta M Svore, and Nathan Wiebe. Circuit-centric

quantum classifiers. Physical Review A, 101(3):032308, 2020.

[272] Christa Zoufal, Aurélien Lucchi, and Stefan Woerner. Quantum generative ad-

versarial networks for learning and loading random distributions. npj Quantum

Information, 5(1):103, 2019.

[273] Jonathan Romero, Jonathan P Olson, and Alan Aspuru-Guzik. Quantum autoen-

coders for efficient compression of quantum data. Quantum Science and Technol-

ogy, 2(4):045001, 2017.

[274] Vedran Dunjko and Hans J Briegel. Machine learning & artificial intelligence in

the quantum domain: a review of recent progress. Reports on Progress in Physics,

81(7):074001, 2018.

[275] Edward Farhi and Hartmut Neven. Classification with quantum neural networks

on near term processors. arXiv preprint arXiv:1802.06002, 2018.

[276] Nathan Wiebe, Ashish Kapoor, and Krysta M Svore. Quantum deep learning.

arXiv preprint arXiv:1412.3489, 2014.

Bibliography 150

[277] Kwok Ho Wan, Oscar Dahlsten, Hlér Kristjánsson, Robert Gardner, and MS Kim.

Quantum generalisation of feedforward neural networks. npj Quantum informa-

tion, 3(1):36, 2017.

[278] Vojtěch Havĺıček, Antonio D Córcoles, Kristan Temme, Aram W Harrow, Abhinav

Kandala, Jerry M Chow, and Jay M Gambetta. Supervised learning with quantum-

enhanced feature spaces. Nature, 567(7747):209–212, 2019.

[279] Farrokh Vatan and Colin Williams. Optimal quantum circuits for general two-

qubit gates. Physical Review A, 69(3):032315, 2004.

[280] Stephen S Bullock and Igor L Markov. An arbitrary twoqubit computation in 23

elementary gates or less. In Proceedings of the 40th Annual Design Automation

Conference, pages 324–329, 2003.

[281] Parviz Ghadimi, Abbas Dashtimanesh, and Hossein Hosseinzadeh. Solution of

poisson’s equation by analytical boundary element integration. Applied Mathe-

matics and Computation, 217(1):152–163, 2010.

[282] Selçuk Yıldırım. Exact and numerical solutions of poisson equation for electrostatic

potential problems. Mathematical problems in engineering, 2008, 2008.

[283] Gadi Aleksandrowicz, Thomas Alexander, Panagiotis Barkoutsos, Luciano Bello,

Yael Ben-Haim, David Bucher, F Jose Cabrera-Hernández, Jorge Carballo-

Franquis, Adrian Chen, Chun-Fu Chen, et al. Qiskit: An open-source framework

for quantum computing. Accessed on: Mar, 16, 2019.

[284] Maximilian Schlosshauer. Quantum decoherence. Physics Reports, 831:1–57, 2019.

	Abstract
	Kurzfassung
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Motivation
	1.2 Contribution
	1.3 Experiments Overview
	1.4 Organization and Publications
	1.4.1 Organization
	1.4.2 Publication

	2 Background
	2.1 Deep Learning
	2.1.1 Artificial Neurons
	2.1.2 Network Architecture
	2.1.3 Optimization
	2.1.3.1 Loss Functions
	2.1.3.2 Algorithms

	2.2 High Performance Computing
	2.2.1 HPC System Design Architectures
	2.2.2 Interconnection Network
	2.2.3 I/O and File Systems
	2.2.4 Scheduling and Resource Management
	2.2.5 HPC Systems at HLRS

	2.3 Quantum Computing
	2.3.1 Qubits and Superposition
	2.3.2 Quantum Computation and Circuits
	2.3.3 Quantum Algorithms
	2.3.4 IBM Quantum System One at Ehningen

	2.4 Conclusion

	3 Methods for Scaling Deep Learning Workloads on HPC
	3.1 Introduction
	3.2 Environment Setup
	3.2.1 Containerization
	3.2.2 Container Orchestration
	3.2.3 Other Methods

	3.3 Parallelization
	3.3.1 Model Parallelization
	3.3.2 Data Parallelization
	3.3.3 Pipeline Parallelization
	3.3.4 Local Parallelization
	3.3.5 Hyrbid Parallelization

	3.4 Communication
	3.5 Tools and Frameworks
	3.5.1 Deep Learning Frameworks
	3.5.2 Scaling DL Frameworks on HPC Systems

	3.6 Conclusion

	4 Hybrid Workflow of HPC and Deep Learning for Material Characteristic Identification
	4.1 Introduction
	4.2 Related Work
	4.3 Methodology
	4.3.1 Simulation
	4.3.2 Multi-Task Neural Network
	4.3.3 Experiment
	4.3.4 Optimization
	4.3.4.1 Learning Rate Schedule
	4.3.4.2 Distributed Strategy
	4.3.4.3 Data Pipeline Optimization

	4.4 AutoML through NAS
	4.5 Conclusion and Outlook

	5 Evaluation of Variational Quantum Neural Networks for Image Classification
	5.1 Introduction
	5.2 Variational Quantum Machine Learning
	5.3 Data Encoding
	5.4 Experiment
	5.4.1 Quantum Transfer Learning
	5.4.2 Quanvolutional Neural Network
	5.4.3 Quantum Convolution Neural Network

	5.5 Conclusion

	6 TransGAN: A Transformer-GAN Based Model for Image Compression
	6.1 Introduction
	6.2 Related Work
	6.3 Methodology
	6.4 Experiment and Analysis
	6.4.1 Experiment Settings
	6.4.2 Result and Analysis

	6.5 Conclusion and Discussion

	7 Quantum Neural Network for Solving Partial Differential Equations
	7.1 Introduction
	7.2 Related Work
	7.2.1 DNN Solver for PDE
	7.2.2 QNN

	7.3 Mathematical Preliminaries
	7.3.1 Data Driven PDE Solver
	7.3.2 QNN

	7.4 Method
	7.5 Experiments
	7.5.1 Burgers' Equation
	7.5.2 Poisson Equation
	7.5.3 Trainability

	7.6 Conclusion and future work

	8 Concluding Remarks
	8.1 Summary
	8.2 Discussion and Future Work

	A Multi-Task Neural Architecture Search
	B TransGAN Structure
	C Details of QDNN PDE Solver Model
	Bibliography

