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Abstract 
 

The general formula for the dispersion equation used to draw the stability diagram 
for Landau damping with two-dimensional betatron tune spread from octupoles is 
given for the nth order distribution function. It is solved in the particular case of the 
15th order distribution function 152 ])18(/)(1[),( σyxyx JJJJf +−∝ , which is consistent 
with the nominal collimator settings in the LHC at top energy, i.e. extending up to 6σ 
in transverse space. The new stability diagram is compared to the ones already 
obtained with both the 2nd order distribution function 22 ])5(/)(1[),( σyxyx JJJJf +−∝ , 
which extends up to 3.2σ in transverse space, and the Gaussian distribution 
( ) ( ) 2/, σyx JJ

yx eJJf +−∝ , which extends to infinity. The case of a distribution extending 
up to 6σ  in transverse space but with more populated tails than the Gaussian is also 
discussed. This case may apply in reality in proton machines, where several diffusive 
mechanisms can take place. 
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1  INTRODUCTION 

Beam stability from Landau damping in the LHC is usually evaluated for the case 
of the 2nd order (called quasi-parabolic) distribution function, which extends up to 
3.2σ in transverse space [1]. This distribution function therefore underestimates the 
beam stability if the transverse beam profile extends up to 6σ, as it is foreseen to be 
the case in the LHC at top energy with the nominal collimator settings. The Gaussian 
distribution extends to infinity in transverse space and thus overestimates the beam 
stability. In this paper the beam stability is analyzed for the distribution function 
consistent with the collimator settings at top energy, i.e. extending up to 6σ in 
transverse space, and the results are compared to the ones already obtained with the 
above two distributions [1]. 

The general dispersion relation to be solved with two-dimensional betatron tune 
spread is given in Section 2. In Section 3, the 2nd order, the 15th order, and the 
Gaussian distributions are reviewed and compared. The general formulae to compute 
the stability diagram for the nth order and Gaussian distribution functions are given in 
Section 4, and solved for the 2nd and 15th orders. Finally, the case of a distribution 
extending up to 6σ  in transverse space but with more populated tails than the 
Gaussian is discussed in Section 5. 

2  GENERAL DISPERSION RELATION  

Considering the case of a beam having the same normalized rms beam size εσ =  
in both transverse planes, the Landau damping mechanism from octupoles of coherent 
instabilities, e.g. in the horizontal plane, is discussed from the following dispersion 
relation [2,3] 
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with 

 ( ) ., 000 yxyxx JbJaQJJQ ++=  (2) 

Here, cQ  is the coherent betatron tune to be determined, yxJ ,  are the action variables in 
the horizontal and vertical plane respectively, with ),( yx JJf  the distribution function, 

x
cohQ∆  is the horizontal coherent tune shift, ),( yxx JJQ  is the horizontal tune in the 

presence of octupoles, m is the head-tail mode number, and sQ  is the small-amplitude 
synchrotron tune (the longitudinal spread is neglected). 
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3  NTH ORDER AND GAUSSIAN DISTRIBUTION FUNCTIONS  

The nth order distribution function is given by 
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where a and b are constants to be determined by normalization. The normalization of 
the distribution function to unity gives 
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The average of the action variable is equal to the emittance ( ε=>< J ), which gives  
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It can be deduced from Eqs. (4) and (5) that 
 

              ( ) ,3 ε+= nb           and          ( ) ( ) .21
2b
nna ++

=  (6) 

Following Ref. [1], the transverse beam profile, e.g. in the horizontal plane, is given 
by  
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As seen in Eq. (7), the profile extends up to b2 . In the case of a beam profile 
extending up to 6σ (due to collimator settings) the condition σ62 =b  has to be 
satisfied, i.e. using Eq. (6), the distribution of order 15=n  has to be considered. 

The Gaussian distribution function is given by [1] 
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The corresponding transverse beam profile is given by 

 ( ) .
2
1 2

2

2σ

σπ

x

exg
−

=  (9) 



 3

The transverse beam profiles for n = 2, n = 15, and for the Gaussian distribution are 
plotted in Fig. 1. As can be seen, the 15th order distribution function is very close to 
the Gaussian, which is not surprising as the closed expression for the 15th order 
distribution is, from Eqs. (3) and (6), 
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This expression tends to Eq. (8), i.e. the Gaussian distribution function, when n tends 
to infinity. This can be easily found by taking the logarithm of Eq. (10) and expanding 
it. A zoom of the tails of the transverse beam profiles is shown on Fig. 2. It shows that 
the tails of both 15th order and Gaussian distributions extend further than the quasi-
parabolic distribution by more than half a σ, while the tails of the 15th order 
distribution remain below that of the Gaussian distribution. 
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Figure 1: Transverse beam profile for the 15th order distribution (full curve), the quasi-
parabolic distribution (dashed curve) and the Gaussian distribution (dotted curve). 
 

 2.25 2.5 2.75 3 3.25 3.5 3.75 4
x ê s

0.002

0.004

0.006

0.008

0.01
s g H x L

 
Figure 2: Zoom of the tails of the transverse beam profiles for the 15th order 
distribution (full curve), the quasi-parabolic distribution (dashed curve) and the 
Gaussian distribution (dotted curve). 
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4  STABILITY DIAGRAMS FOR THE NTH ORDER AND 
GAUSSIAN DISTRIBUTION FUNCTIONS  

For the nth order distribution function, the dispersion equation of Eq. (1) can be re-
written as  
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For the quasi-parabolic distribution function (n = 2), which extends up to 
σσ 2.310 ≈  in transverse space, Eq. (12) gives 
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For the 15th order distribution function, which extends up to 6σ in transverse 
space, Eq. (12) has been solved using Mathematica [4] (see Eq. (A1) of Appendix 1). 

 
In the case of the Gaussian distribution function, the dispersion equation of Eq. (1) 

can be re-written as 
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Equation (17) can be solved analytically and is given by (for 0≠c ) [1] 
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is the exponential integral function.  

The l.h.s of Eq. (11) or (15) contains information about the beam intensity and the 
impedance. The r.h.s contains information about the beam frequency spectrum. 
Calculation of the l.h.s is straightforward. For a given impedance, one only needs to 
calculate the complex mode frequency shift, in the absence of Landau damping. 
Without frequency spread, the condition for the beam to be stable is thus simply 

0)(Im ≥∆ x
cohQ  (oscillations of the form tje ω  are considered).  

Once its l.h.s is obtained, Eq. (11) or (15) can be used to determine the coherent 
betatron tune cQ  in the presence of Landau damping when the beam is at the edge of 
instability (i.e. cQ  real). However, the exact value of cQ  is not a very useful piece of 
information. The more useful question to ask is under what conditions the beam 
becomes unstable regardless of the exact value of cQ  under these conditions, and 
Eq. (11) or (15) can be used in a reversed manner to address this question. To do so, 
one considers the real parameter sc QmQQ −− 0  (stability limit) and observes the locus 
traced out in the complex plane by the r.h.s of Eq. (11) or (15), as sc QmQQ −− 0  is 
scanned form ∞−  to ∞+ . This locus defines a “stability boundary diagram”. The 
l.h.s of Eq. (11) or (15), a complex quantity, is then plotted in this plane as a single 
point. If this point lies on the locus, it means the solution of cQ  for Eq. (11) or (15) is 
real, and this sc QmQQ −− 0  is such that the beam is just at the edge of instability. If it 
lies on the inside of the locus (the side which contains the origin), the beam is stable. 
If it lies on the outside of the locus, the beam is unstable. The stability diagrams for 
the 2nd order, 15th order and Gaussian distribution functions are plotted in Fig. 3 for 
the case of the LHC at top energy (7 TeV) with maximum available octupole strength 
( nm5.0=ε , 270440|a| 0 =  and 0.65-c = ). 

5  DISTRIBUTION WITH MORE POPULATED TAILS THAN 
THE GAUSSIAN 

It is clear from Fig. 2 that the transverse beam profile of the Gaussian distribution 
is always above the one of the 15th order distribution. The latter has indeed all its 
derivatives up to order 16 equal to zero at 6σ. A simple way to populate the tails is to 
add a distribution with a smaller exponent to the nth order distribution, i.e.   
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where a, b, d, and p are constants to be determined by normalization. Here we impose 
that the distribution extends up to 6σ, i.e. ε18=b . The normalization of the distribution 
function to unity gives   
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  (d) 
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Figure 3: Stability diagrams (positive and negative detunings a0) for the LHC at top 
energy (7 TeV) with maximum available octupole strength, for (a) the 2nd order, 
(b) the 15th order, (c) the Gaussian, and (d) all the distributions. 
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The average of the action variable is equal to the emittance ( ε=>< J ), which gives 
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It can be deduced from Eqs. (21) and (22) that 
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As a and d must be positive to guarantee a positive density, it is seen from Eq. (23) 
that n must be larger than 15 and p must be smaller than 15. The case n = 15, p = 0 
corresponds to that examined in the previous sections. Using Eq. (7), the horizontal 
beam profile is 
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Let’s take as an example the case where n = 16 and p = 2, i.e. the smallest integers 
which can be considered. The case p = 2 corresponds to the most populated tails. The 
distribution which is quasi-parabolic encompasses 2% of the particles. The transverse 
beam profiles for the case n = 16 and p = 2, and for the Gaussian distribution are 
plotted in Fig. 4. As can be seen in Fig. 4, this function is very close to a Gaussian 
distribution. The more populated tails are apparent on Fig. 5, where the growth below 
6σ is much faster than the exponential in this range. Actually the new distribution 
passes below the Gaussian for a distance larger than 5.92σ. The new distribution 
provides a good example of a distribution more populated than the Gaussian in the 
tails. Choosing a value of p larger than 2, would provide a distribution closer to the 
Gaussian at larger amplitudes.   

 -6 -4 -2 2 4 6
x ê s

0.1

0.2

0.3

0.4
s g H x L

 

Figure 4: Transverse beam profile for the case n = 16 and p = 2 (full curve) and the 
Gaussian distribution (dotted curve). 
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Figure 5: Zoom of the tails of the transverse beam profiles for the case n = 16 and 
p = 2 (full curve) and the Gaussian distribution (dotted curve). 

 
For the case where a pth order distribution function is added to an nth order 

distribution, the dispersion equation of Eq. (1) can be re-written as  
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In the case where n = 16 and p = 2, ( )qcI p ,  is given by Eq. (14), while ( )qcI n ,  is 
given by (using Mathematica [4]) Eq. (A2) of Appendix 2. 

The stability diagram for the case n = 16 and p = 2 is plotted in Fig. 6 for the case 
of the LHC at top energy with maximum available octupole strength, and is compared 
to the Gaussian case in Fig. 7. It can be seen from Fig. 7 that the stability diagram has 
been considerably enlarged compared to the Gaussian case, even if the transverse 
beam profile extends only up to 6σ (compared to infinity for the Gaussian distribution) 
and that there is no visible difference between the two profiles on Fig. 4. 
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Figure 6: Stability diagrams (positive and negative detunings a0) for the LHC at top 
energy (7 TeV) with maximum available octupole strength, for the case n = 16 and 
p = 2. 
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Figure 7: Stability diagrams (positive and negative detunings a0) for the LHC at top 
energy (7 TeV) with maximum available octupole strength, for the case n = 16 and 
p = 2 (full curve) and the Gaussian distribution (dotted curve). 

6  CONCLUSION 

The stability diagram for Landau damping with two-dimensional betatron tune 
spread from octupoles has been computed for the 15th order distribution function, 
whose transverse beam profile extends up to 6σ, as it is foreseen to be the case in the 
LHC at top energy with the nominal collimator settings. The new result has been 
compared to the ones already obtained with the 2nd order and Gaussian distribution 
functions. As expected the stability diagram of the 15th order distribution lies between 
the 2nd order and the Gaussian distributions, but now beam stability is computed with 
the “self-consistent” beam distribution, i.e. set by the collimator settings (at 6σ). It is 
seen in Fig. 3(d) that a factor of 2 is gained for the real part of the coherent tune shift 
compared to the case with the 2nd order distribution function. As already mentioned in 
Ref. [3], the presence or not of the high-amplitude tails in the distribution can 
substantially affect the amount of Landau damping. These stability diagrams should 
therefore be used with great care for beam stability analyses/predictions in real 
machines. The case of a distribution extending up to 6σ (as the 15th order distribution) 
but with more populated tails than the Gaussian distribution has been considered and 
revealed a significant enhancement of the stable region compared to the Gaussian case 
(see Fig. 7). This may be the case in reality in proton machines due to diffusive 
mechanisms. 
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APPENDIX 1: Dispersion integral for the 15th order distribution 
function solved using Mathematica [4] 

 
 

I15 Hc, qL = -
1

86486400 H-1 + cL2 c15  Hc H360360 H-1 + cL c14 + 5405400 H-1 + cL c14 q + 60 H-1 + cL c13H-1355479 + 1986109 cL q2 + 280 c12 H1115239 + c2 H-3931302 + 2816063 cLL q3

+ 910 c11 H935059 + c3 H-4280776 + 3345717 cLL q4 + 10920 c10 H158183 + c4 H-890014 + 731831 cLL q5

+ 20020 c9 H134159 + c5 H-895044 + 760885 cLL q6 + 28600 c8 H113567 + c6 H-876050 + 762483 cLL q7

+ 32175 c7 H95549 + c7 H-836464 + 740915 cLL q8 + 257400 c6 H8837 + c8 H-86540 + 77703 cLL q9

+ 108108 c5 H12059 + c9 H-130600 + 118541 cLL q10 + 216216 c4 H2627 + c10 H-31172 + 28545 cLL q11

+ 30030 c3 H6061 + c11 H-78192 + 72131 cLL q12 + 120120 c2 H337 + c12 H-4696 + 4359 cLL q13

+ 180180 c H31 + c13 H-464 + 433 cLL q14 + 360360 H1 + c14 H-16 + 15 cLL q15L +

360360HHc + qL16 Log@1 + qD - Hc + qL16 Log@c + qD -

q2 H120 c14 + 560 c13 q + 1820 c12 q2 + 4368 c11 q3 + 8008 c10 q4 + 11440 c9 q5 + 12870 c8 q6

+ 11440 c7 q7 + 8008 c6 q8 + 4368 c5 q9 + 1820 c4 q10 + 560 c3 q11 + 120 c2 q12 + 16 c q13

+ q14 - 16 c15 H3 + q H3 + qLL H1 + q H1 + qL H2 + qL H1 + q H1 + qL2L H2 + q H2 + qLLL H5
+ q H10 + q H10 + q H5 + qLLLL

+ c16 H120 +

qH1120 +

q H5460 + q H17472 + q H40040 + q H68640 + q H90090 + q H91520 + q H72072 + q H43680
+ q H20020 + q H6720 + q H1560

+ q H224 + 15 qLLLLLLLLLLLLLLLH-Log@qD + Log@1 + qDLLL.
  (A1) 
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APPENDIX 2: Dispersion integral for the 16th order distribution 
function solved using Mathematica [4] 

 
 

I16 Hc, qL = -
1

98017920 H-1 + cL2 c16  IcI95055452c14 q2 + 393595660c13 q3 + 1163170610c12 q4 + 2578262050c11 q5

+ 4413221540c10 q6 + 5933879380c9 q7 + 6322305275c8 q8 + 5348932875c7 q9 + 3578318172c6 q10

+ 1871673804c5 q11 + 750011262c4 q12 + 222492270c3 q13 + 46066020c2 q14 + 5945940cq15

+ 360360q16 -

c15I360360+

qI5765760+

17q I13726712+

q I81328740+ q I312266920 + 13q I65454130 + q I132873720+ 11q I18782260 + q I22713400 +

3q I7166175+ 2q I2651100
+ 7q I217062 + q I94572+

5q I6061+ 2q I674
+ 93q + 6q2MMMMMMMMMMMMMMM +

c16H360360+

qH5765760+

q H138298652+ q H988992920 + q H4145367030 + 13q H914392360+ q H1919374660
+ 11q H277802760 + q H341915875+ 6q H54678300

+ q H40898166 + 7q H3378420+ q H1482847
+ 10q H47814 + q H10691

+ 6q H247
+ 16qLLLLLLLLLLLLLLLLM +

360360IHc+ qL17 Log@1 + qD - Hc + qL17 Log@c + qD -

q2 I136c15 + 680c14 q + 2380c13 q2 + 6188c12 q3 + 12376c11 q4 + 19448c10 q5

+ 24310c9 q6 + 24310c8 q7 + 19448c7 q8 + 12376c6 q9 + 6188c5 q10 + 2380c4 q11

+ 680c3 q12 + 136c2 q13 + 17cq14 + q15 - 17c16 H2 + qL H2+ q H2 + qLL H2
+ q H2 + qL H2+ q H2 + qLLL H2 + q H2+ qL H2 + q H2 + qLL H2 + q H2 + qL H2+ q H2 + qLLLL +

c17H136+

q H1360+

q H7140+ q H24752 + q H61880 + q H116688+ q H170170 + q H194480 + q H175032
+ q H123760 + q H68068+ q H28560

+ q H8840 + q H1904
+ q H255 + 16qLLLLLLLLLLLLLLLMH-Log@qD + Log@1+ qDLMM.

 (A2) 

 
 


