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Abstract

The general formula for the dispersion equation used to draw the stability diagram
for Landau damping with two-dimensional betatron tune spread from octupoles is
given for the nth order distribution function. It is solved in the particular case of the
15" order distribution function fJJ)e[1=(J, +J,)/(185%)]", which is consistent
with the nominal collimator settings in the LHC at top energy, i.e. extending up to 6o
in transverse space. The new stability diagram is compared to the ones already
obtained with both the 2™ order distribution function £ (J,,J De[l=(J, +J )/ (501,
which extends up to 3.20 in transverse space, and the Gaussian distribution
f (Jx,J y) s , which extends to infinity. The case of a distribution extending
up to 60 in transverse space but with more populated tails than the Gaussian is also
discussed. This case may apply in reality in proton machines, where several diffusive
mechanisms can take place.
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1 INTRODUCTION

Beam stability from Landau damping in the LHC is usually evaluated for the case
of the 2™ order (called quasi-parabolic) distribution function, which extends up to
3.20 in transverse space [1]. This distribution function therefore underestimates the
beam stability if the transverse beam profile extends up to 60, as it is foreseen to be
the case in the LHC at top energy with the nominal collimator settings. The Gaussian
distribution extends to infinity in transverse space and thus overestimates the beam
stability. In this paper the beam stability is analyzed for the distribution function
consistent with the collimator settings at top energy, i.e. extending up to 6o in
transverse space, and the results are compared to the ones already obtained with the
above two distributions [1].

The general dispersion relation to be solved with two-dimensional betatron tune
spread is given in Section 2. In Section 3, the nd order, the 15 order, and the
Gaussian distributions are reviewed and compared. The general formulae to compute
the stability diagram for the nth order and Gaussian distribution functions are given in
Section 4, and solved for the 2™ and 15" orders. Finally, the case of a distribution
extending up to 60 in transverse space but with more populated tails than the
Gaussian is discussed in Section 5.

2 GENERAL DISPERSION RELATION

Considering the case of a beam having the same normalized rms beam size o = \/?
in both transverse planes, the Landau damping mechanism from octupoles of coherent
instabilities, e.g. in the horizontal plane, is discussed from the following dispersion
relation [2,3]
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Here, Q. is the coherent betatron tune to be determined, J, , are the action variables in
the horizontal and vertical plane respectively, with f(J,,J,) the distribution function,
AQy, is the horizontal coherent tune shift, 0 (J,,/,) is the horizontal tune in the
presence of octupoles, m is the head-tail mode number, and Q, is the small-amplitude
synchrotron tune (the longitudinal spread is neglected).



3 NTH ORDER AND GAUSSIAN DISTRIBUTION FUNCTIONS

The nth order distribution function is given by
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where a and b are constants to be determined by normalization. The normalization of
the distribution function to unity gives
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The average of the action variable is equal to the emittance (< .J > = ¢ ), which gives
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It can be deduced from Egs. (4) and (5) that
b=(n+3)e,  and g lrr)n+2) (6)
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Following Ref. [1], the transverse beam profile, e.g. in the horizontal plane, is given
by
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As seen in Eq. (7), the profile extends up to ,/25. In the case of a beam profile

extending up to 60 (due to collimator settings) the condition /26 =65 has to be
satisfied, i.e. using Eq. (6), the distribution of order » =15 has to be considered.

The Gaussian distribution function is given by [1]
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The corresponding transverse beam profile is given by

g(x)= ! e 9)



The transverse beam profiles for n = 2, n = 15, and for the Gaussian distribution are
plotted in Fig. 1. As can be seen, the 15" order distribution function is very close to
the Gaussian, which is not surprising as the closed expression for the 15™ order
distribution is, from Egs. (3) and (6),

7(0.0,) = %;jiﬁ’f;%- (‘;":3‘;; j - (10)

This expression tends to Eq. (8), i.e. the Gaussian distribution function, when » tends
to infinity. This can be easily found by taking the logarithm of Eq. (10) and expanding
it. A zoom of the tails of the transverse beam profiles is shown on Fig. 2. It shows that
the tails of both 15th order and Gaussian distributions extend further than the quasi-
parabolic distribution by more than half a o, while the tails of the 15" order
distribution remain below that of the Gaussian distribution.
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Figure 1: Transverse beam profile for the 15™ order distribution (full curve), the quasi-
parabolic distribution (dashed curve) and the Gaussian distribution (dotted curve).
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Figure 2: Zoom of the tails of the transverse beam profiles for the 15" order
distribution (full curve), the quasi-parabolic distribution (dashed curve) and the
Gaussian distribution (dotted curve).




4 STABILITY DIAGRAMS FOR THE NTH ORDER AND
GAUSSIAN DISTRIBUTION FUNCTIONS

For the nth order distribution function, the dispersion equation of Eq. (1) can be re-
written as
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For the quasi-parabolic distribution function (n = 2), which extends up to
4 100 =3.20 in transverse space, Eq. (12) gives
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For the 15th order distribution function, which extends up to 6o in transverse
space, Eq. (12) has been solved using Mathematica [4] (see Eq. (A1) of Appendix 1).

In the case of the Gaussian distribution function, the dispersion equation of Eq. (1)
can be re-written as
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Equation (17) can be solved analytically and is given by (for ¢#0) [1]
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where



dt (19)

is the exponential integral function.

The L.h.s of Eq. (11) or (15) contains information about the beam intensity and the
impedance. The r.h.s contains information about the beam frequency spectrum.
Calculation of the Lh.s is straightforward. For a given impedance, one only needs to
calculate the complex mode frequency shift, in the absence of Landau damping.
Without frequency spread, the condition for the beam to be stable is thus simply
Im(AQ%,)>0 (oscillations of the form e/“" are considered).

Once its Lh.s is obtained, Eq. (11) or (15) can be used to determine the coherent
betatron tune Q. in the presence of Landau damping when the beam is at the edge of
instability (i.e. O, real). However, the exact value of Q. is not a very useful piece of
information. The more useful question to ask is under what conditions the beam
becomes unstable regardless of the exact value of O, under these conditions, and
Eq. (11) or (15) can be used in a reversed manner to address this question. To do so,
one considers the real parameter Q, - Q, -mQ, (stability limit) and observes the locus
traced out in the complex plane by the r.h.s of Eq. (11) or (15), as Q. - Q, -mQ, 1is
scanned form —oo to +oo. This locus defines a “stability boundary diagram”. The
L.h.s of Eq. (11) or (15), a complex quantity, is then plotted in this plane as a single
point. If this point lies on the locus, it means the solution of Q, for Eq. (11) or (15) is
real, and this Q. - Q, -mQ, is such that the beam is just at the edge of instability. If it
lies on the inside of the locus (the side which contains the origin), the beam is stable.
If it lies on the outside of the locus, the beam is unstable. The stability diagrams for
the 2" order, 15" order and Gaussian distribution functions are plotted in Fig. 3 for
the case of the LHC at top energy (7 TeV) with maximum available octupole strength
(£=0.5nm,|a,|=270440 and c =-0.65).

S DISTRIBUTION WITH MORE POPULATED TAILS THAN
THE GAUSSIAN

It is clear from Fig. 2 that the transverse beam profile of the Gaussian distribution
is always above the one of the 15™ order distribution. The latter has indeed all its
derivatives up to order 16 equal to zero at 6o. A simple way to populate the tails is to
add a distribution with a smaller exponent to the nth order distribution, i.e.

Jo+J,Y Jo+J, Y
f(7,7,)=a|1- p +d| 1- : (20)

b

where a, b, d, and p are constants to be determined by normalization. Here we impose
that the distribution extends up to 60, i.e. »=18¢. The normalization of the distribution
function to unity gives
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Figure 3: Stability diagrams (positive and negative detunings ag) for the LHC at top
energy (7 TeV) with maximum available octupole strength, for (a) the 2" order,
(b) the 15™ order, (c) the Gaussian, and () all the distributions.
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It can be deduced from Egs. (21) and (22) that
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As a and d must be positive to guarantee a positive density, it is seen from Eq. (23)
that n must be larger than 15 and p must be smaller than 15. The case n = 15, p =0
corresponds to that examined in the previous sections. Using Eq. (7), the horizontal
beam profile is
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Let’s take as an example the case where n = 16 and p = 2, i.e. the smallest integers
which can be considered. The case p = 2 corresponds to the most populated tails. The
distribution which is quasi-parabolic encompasses 2% of the particles. The transverse
beam profiles for the case n = 16 and p = 2, and for the Gaussian distribution are
plotted in Fig. 4. As can be seen in Fig. 4, this function is very close to a Gaussian
distribution. The more populated tails are apparent on Fig. 5, where the growth below
60 is much faster than the exponential in this range. Actually the new distribution
passes below the Gaussian for a distance larger than 5.920. The new distribution
provides a good example of a distribution more populated than the Gaussian in the
tails. Choosing a value of p larger than 2, would provide a distribution closer to the
Gaussian at larger amplitudes.

X/o
2 4 6 /

Figure 4: Transverse beam profile for the case n = 16 and p = 2 (full curve) and the
Gaussian distribution (dotted curve).
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Figure 5: Zoom of the tails of the transverse beam profiles for the case n = 16 and
p = 2 (full curve) and the Gaussian distribution (dotted curve).

For the case where a pth order distribution function is added to an nth order
distribution, the dispersion equation of Eq. (1) can be re-written as

a, /b

_naln(c,q)+pdlp(c,q) ' (23)
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In the case where n = 16 and p = 2, I,(c.q) is given by Eq. (14), while 7, (c.q) is
given by (using Mathematica [4]) Eq. (A2) of Appendix 2.

The stability diagram for the case n = 16 and p = 2 is plotted in Fig. 6 for the case
of the LHC at top energy with maximum available octupole strength, and is compared
to the Gaussian case in Fig. 7. It can be seen from Fig. 7 that the stability diagram has
been considerably enlarged compared to the Gaussian case, even if the transverse
beam profile extends only up to 6o (compared to infinity for the Gaussian distribution)
and that there is no visible difference between the two profiles on Fig. 4.
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Figure 6: Stability diagrams (positive and negative detunings ao) for the LHC at top
energy (7 TeV) with maximum available octupole strength, for the case » = 16 and

p=2.
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Figure 7: Stability diagrams (positive and negative detunings ao) for the LHC at top
energy (7 TeV) with maximum available octupole strength, for the case » = 16 and
p =2 (full curve) and the Gaussian distribution (dotted curve).

6 CONCLUSION

The stability diagram for Landau damping with two-dimensional betatron tune
spread from octupoles has been computed for the 15™ order distribution function,
whose transverse beam profile extends up to 6¢; as it is foreseen to be the case in the
LHC at top energy with the nominal collimator settings. The new result has been
compared to the ones already obtained with the 2™ order and Gaussian distribution
functions. As expected the stability diagram of the 15™ order distribution lies between
the 2™ order and the Gaussian distributions, but now beam stability is computed with
the “self-consistent” beam distribution, i.e. set by the collimator settings (at 60). It is
seen in Fig. 3(d) that a factor of 2 is gained for the real part of the coherent tune shift
compared to the case with the 2™ order distribution function. As already mentioned in
Ref. [3], the presence or not of the high-amplitude tails in the distribution can
substantially affect the amount of Landau damping. These stability diagrams should
therefore be used with great care for beam stability analyses/predictions in real
machines. The case of a distribution extending up to 6 (as the 15™ order distribution)
but with more populated tails than the Gaussian distribution has been considered and
revealed a significant enhancement of the stable region compared to the Gaussian case
(see Fig. 7). This may be the case in reality in proton machines due to diffusive
mechanisms.
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APPENDIX 1: Dispersion integral for the 15" order distribution
function solved using Mathematica [4]

Iis(c, ) = — (€ (360360 (=1 + ¢) * + 5405400 (-1 + ¢) " g + 60 (=1 + ¢)
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APPENDIX 2: Dispersion integral for the 16™ order distribution
function solved using Mathematica [4]

1
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