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Abstract
The three-body problem is reexamined in the framework of general relativity. The
Newtonian three-body problem admits Euler’s collinear solution, where three bodies
move around the common center of mass with the same orbital period and always line
up. The solution is unstable. Hence it is unlikely that such a simple configuration
would exist owing to general relativistic forces dependent not only on the masses
but also on the velocity of each body. However, we show that the collinear solution
remains true with a correction to the spatial separation between masses.

1 Euler’s collinear solution in the Newton gravity

The location of each mass MI (I = 1, 2, 3) is written as XI ≡ (xI , 0). Without loss of generality, we
assume x3 < x2 < x1. Let RI define the relative position of each mass with respective to the center of
mass XG ≡ (xG, 0), namely RI ≡ xI − xG (RI 6= |XI | unless xG = 0). We choose x = 0 between M1

and M3. We thus have R3 < R2 < R1, R3 < 0 and R1 > 0.
It is convenient to define an important ratio as R23/R12 = z. Then we have R13 = (1 + z)R12. The

equation of motion in Newton gravity becomes
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where we define

RIJ ≡ XI − XJ , (4)
RIJ ≡ |RIJ |. (5)

First, we subtract Eq. (2) from Eq. (1) and Eq. (3) from Eq. (2) and use R12 ≡ |X1 − X2| and
R23 ≡ |X2 − X3|. Next, we compute a ratio between them to delete ω2. Hence we obtain a fifth-order
equation as [1]

(M1 + M2)z5 + (3M1 + 2M2)z4 + (3M1 + M2)z3 − (M2 + 3M3)z2 − (2M2 + 3M3)z − (M2 + M3) = 0. (6)

Now we have a condition as z > 0. Descartes’ rule of signs : the number of positive roots either equals
to that of sign changes in coefficients of a polynomial or less than it by a multiple of two. According to
this rule, Eq. (6) has the only positive root z > 0, though such a fifth-order equation cannot be solved
in algebraic manners as shown by Galois. After obtaining z, one can substitute it into a difference, for
instance between Eqs. (1) and (3). Hence we get ω.

2 What happens in GR ?

2.1 The EIH equation of motion for a many-body system

In order to include the dominant part of general relativistic effects, we take account of the terms at the
first post-Newtonian order. Namely, the massive bodies obey the Einstein-Infeld-Hoffman (EIH) equation
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Figure 1: Schematic figure for a classical configuration of three masses denoted by M1 , M2 and M3.

of motion as [2, 3]
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2.2 The seventh-order equation

Similarly to the above Newtonian case, we obtain a seventh-order equation as [4]

F (z) ≡
7∑

k=0

Akzk = 0, (7)

where we define the mass ratio as νI ≡ MI/M for M ≡
∑

I MI and
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This seventh-order equation is symmetric for exchanges between ν1 and ν3, only if one makes a change
z → 1/z. This symmetry seems to validate the complicated form of each coefficient.

Figure 2 shows a numerical example for M1 : M2 : M3 = 1 : 2 : 3, R12 = 1 and a/M = 100, where
the post-Newtonian correction is of the order of one percent. In this figure, we employ the inertial frame
(x̄, ȳ) but not the corotating frame (x, y). We assume x3 < x2 < x1 throughout this paper. This figure
suggests that as an alternative initial condition we can assume x1 < x2 < x3, which is realized at t = T/2
(T=orbital period) in this figure. It is natural that this is a consequence of the parity symmetry in our
formulation. It should be noted also that the location of each mass at t = T/2 is advanced compared
with that at t = TN/2 (a half of the Newtonian orbital period). This may correspond to the periastron
advance (in circular orbits).

Finally, we focus on the restricted three-body problem so that we can put z = zN (1 + ε) for the
Newtonian root zN . Substitution of this into Eq. (7) gives the post-Newtonian correction as

ε = −
∑

k APNkzk
N∑

k kANkzk
N

, (8)

where ANk and APNk denote the Newtonian and post-Newtonian parts of Ak, respectively. For a binary
system of comparable mass stars, the correction ε is O(M/a). This implies that a corrected length is of
the order of the Schwarzschild radius.
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Fig 2: M1 : M2 : M3 = 1 : 2 : 3 , a/M = 100

For the Sun-Jupiter system, general relativistic corrections to L1, L2 and L3 become +30, −38, +1
[m], respectively, where the positive sign is chosen along the direction from the Sun to the Jupiter. Such
corrections suggest a potential role of the general relativistic three (or more) body dynamics for high
precision astrometry in our solar system and perhaps also for gravitational waves astronomy.

3 Conclusion

We obtained a general relativistic version of Euler’s collinear solution for the three-body problem at the
post-Newtonian order [4]. Studying global properties of the seventh-order equation that we have derived
is left as future work.

It is interesting also to include higher post-Newtonian corrections, especially 2.5PN effects in order to
elucidate the secular evolution of the orbit due to the gravitational radiation reaction at the 2.5PN order.
One might see probably a shrinking collinear orbit as a consequence of a decrease in the total energy and
angular momentum, if such a radiation reaction effect is included. This is a testable prediction.

It may be important also to search other solutions, notably a relativistic counterpart of the Lagrange’s
triangle solution (so-called L4 and L5 in the restricted three-body problem). Clearly it seems much more
complicated to obtain relativistic corrections to the Lagrange orbit.
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