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Abstract: Image classification is a fundamental task in deep learning, and recent advances in quantum
computing have generated significant interest in quantum neural networks. Traditionally, Convolu-
tional Neural Networks (CNNs) are employed to extract image features, while Multilayer Perceptrons
(MLPs) handle decision making. However, parameterized quantum circuits offer the potential to
capture complex image features and define sophisticated decision boundaries. In this paper, we
present a novel Hybrid Quantum—Classical Neural Network (H-QNN) for image classification, and
demonstrate its effectiveness using the MNIST dataset. Our model combines quantum computing
with classical supervised learning to enhance classification accuracy and computational efficiency. In
this study, we detail the architecture of the H-QNN, emphasizing its capability in feature learning and
image classification. Experimental results demonstrate that the proposed H-QNN model outperforms
conventional deep learning methods in various training scenarios, showcasing its effectiveness in
high-dimensional image classification tasks. Additionally, we explore the broader applicability of
hybrid quantum-—classical approaches in other domains. Our findings contribute to the growing body
of work in quantum machine learning, and underscore the potential of quantum-enhanced models
for image recognition and classification.

Keywords: quantum computing; machine learning; Hybrid Quantum Neural Networks; MNIST dataset

MSC: 81P99

1. Introduction

Image classification [1] is a cardinal task in computer vision, which involves the
assignment of images to predefined categories or labels. Accurate object recognition
is critical in various applications, including medical imaging, social media analytics [2],
and autonomous driving systems [3]. Traditionally, binary classification (i.e., distinguishing
between two distinct categories) has been achieved using handcrafted features or, more
recently, deep learning methods such as Convolutional Neural Networks (CNNs), which
automatically learn hierarchical features from images.

In recent years, the emergence of quantum machine learning (QML) [4,5] has opened
new avenues for improving data processing, optimization, and classification tasks. The rel-
evance of QML has grown significantly in the Noisy Intermediate-Scale Quantum (NISQ)
era, which bridges machine learning principles [6-8] with the computational advantages
of quantum systems [9-11]. Quantum computing’s ability to handle complex, high-
dimensional data efficiently makes it particularly suitable for applications requiring proba-
bilistic and computationally intensive operations like image interpretation.
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While several models leveraging parameterized quantum circuits (PQCs) [12,13]
and quantum annealers have been proposed, the potential of quantum neural networks
(QNNSs) [14,15] to surpass conventional machine learning models remains an open question.
Despite advancements in quantum computing, the practical applicability of QML is cur-
rently constrained by hardware limitations, including qubit coherence and fault tolerance,
which have restricted most quantum algorithms to small-scale simulations.

The ongoing development of hybrid quantum-—classical models (e.g., Hybrid Quan-
tum Neural Networks (H-QNNs) [16]) offers a promising approach to overcoming these
limitations. By combining classical deep learning techniques with quantum computational
advantages, H-QNNs aim to enhance both the efficiency and performance of image clas-
sification tasks. This hybrid approach is particularly well-suited for energy-efficient and
computational resource-efficient applications. This hybrid approach make it a strong candi-
date for deployment in real-world scenarios as quantum technology matures. To evaluate
the efficacy of H-QNNs in binary image classification, we apply our model to the MNIST
dataset, which is a widely-used benchmark in machine learning. The dataset consists
of 28 x 28 grayscale images of handwritten digits. We focus specifically on the binary
classification of the digits ‘0’ and ‘1. This study demonstrates how H-QNNs can effectively
extract features and classify these digits, thereby offering potential improvements over
classical models. Our results add to the growing quantum machine learning literature
and highlight the potential of hybrid quantum-—classical methods in image recognition
and beyond.

The synergy between classical and quantum techniques in image classification has
shown promise not only in enhancing accuracy but also in improving computational
efficiency for large-scale datasets. Recent studies have explored the application of Quan-
tum Support Vector Machines (QSVMs) and Quantum k-Nearest Neighbors (QkINN) net-
works [17-19] in classifying high-dimensional image data. These quantum-inspired models
leverage the unique properties of quantum states and operations, such as superposition
and entanglement, to improve data separability, particularly in binary and multi-class
classification tasks. Additionally, optimization methods such as Quantum Gradient De-
scent and Quantum Approximate Optimization Algorithms (QAOAs) are contributing to
the robustness and scalability of hybrid approaches [20-22]. Integrating these quantum
techniques with classical image processing methods, as in H-QNNs, is anticipated to ac-
celerate the development of practical, scalable solutions for image classification tasks in
domains like medical diagnostics, autonomous driving, and smart surveillance systems.
As quantum hardware continues to improve, hybrid models are expected to play a central
role in bridging the gap between classical limitations and quantum capabilities.

1.1. Motivation and Contribution

Recent research works have demonstrated the potential of leveraging quantum com-
puting in conjunction with classical machine learning methods for various tasks [16,23,24].
Although these applications show promise, further optimization and comprehensive test-
ing are required to achieve peak performance. Future research should focus on improving
quantum circuit architectures, expanding to larger qubit systems, and exploring diverse
quantum algorithms to fully capitalize on quantum computing’s potential in enhancing
machine learning models.

The primary contributions of this work are as follows:

*  We presents a novel Hybrid Quantum—Classical Neural Network (H-QNN) model.
This architecture integrates fundamentals feature mapping with a classical neural
network to effectively improve image classification tasks, with a specific focus on
binary classification using the MNIST dataset.

*  The proposed work refines the quantum layer by using parameterized quantum cir-
cuits (VQCs) that contain RY rotation gates and CX entanglement gates, in conjunction
with the ZZFeature Map for efficient data encoding. This design reduces the circuit
depth while maintaining favorable computational efficiency.
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* By obtaining a score of 99.7% on the binary MNIST classification task, the proposed
H-QNN model shows that it is more accurate and needs a lot less computing power
than traditional CNNs and QCNNs.

e This paper underscores the broader applicability of hybrid quantum-—classical models
in different domains like finance, cybersecurity, and medical diagnostics and highlights
the potential for scaling these models to handle more complex data and tasks.

1.2. Organization

This article is organized as follows: Section 2 reviews related work on quantum
computing for image classification. Section 3 introduces quantum computing’s fundamental
concepts. Section 4 details the architecture of the H-QNN model and proposed methodology.
Section 5 covers the experimental setup. Section 6 provides the experimental analysis of
the model’s performance. Finally, Section 7 concludes with insights and future directions.

2. Related Work
2.1. Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) were introduced by LeCun in 1989 and have
since become a cornerstone in the field of image recognition, e.g., handwritten digit classifi-
cation tasks [25]. CNNs have evolved and been widely used in different artificial intelli-
gence (AI) domains such as image segmentation, classification, object detection, and noise
reduction. In fact, various canonical CNN architectures have been systematically devised
over time, e.g., LeNet [26], AlexNet [27], VGG [28], GoogLeNet [29,30], and ResNet [31,32].
Notably, in 2012, AlexNet won the ImageNet Large-Scale Visual Recognition Challenge
(ILSVRC), thereby marking CNNs’ breakthrough into mainstream computer vision tasks.

CNNs are capable of automatically learning hierarchical features from raw data
through a sequence of layers, which include convolutional, activation, and pooling layers.
To generate feature maps, the convolutional layer performs feature extraction by applying
filters (kernels) to the input image. The activation layer introduces non-linearity into the
model. Pooling layers then perform down-sampling operations to reduce the spatial di-
mensions of the feature maps. The pooling process attempts to retain essential information,
and improves computational efficiency and reduces the risk of overfitting. Overfitting can
be mitigated by techniques such as dropout and data augmentation, as demonstrated by
Levi and Hassner [33]. They showed that such strategies can achieve strong performance
even on small and unconstrained datasets for gender and age classification.

CNNs have also proven effective in large-scale image classification tasks. Karpa-
thy et al. [34] trained a CNN on a dataset of 1 million YouTube videos spanning 487 classes.
This demonstrated CNNs’ ability to learn robust features from vast and often poorly labeled
data. Their model showed substantial improvements, with a reported performance boost
of up to 63.3% on the UCF-101 Action Recognition dataset. Jmour et al. [35] explored CNNs
for traffic sign classification. They trained a CNN on the ImageNet dataset and showed
that the accuracy of the model was sensitive to hyperparameters like mini-batch size. They
achieved an accuracy of 93.33% on the test set with a mini-batch size of ten. Kang et al. [36]
applied CNNs to document image classification by using rectified linear units and dropout
for improved generalization. Their model outperformed previously established methods
by attaining a median accuracy of 65.37% on the Tobacco dataset and a perfect median
accuracy of 100% on the NIST tax-form dataset. Sermanet et al. [37] applied CNNs to house
number digit classification. They employed multi-stage feature extraction and Lp pooling
to reduce error rates by 45.2%. Their work on the SVHN dataset increased classification
accuracy to 94.85%. Wu [38] applied CNNs to the MNIST handwritten digit dataset using
the LeNet-5 architecture. The network consists of an input layer of 28 x 28 neurons that also
corresponds to the image dimensions, a hidden layer with 100 neurons, and an output layer
for classifying digits. The framework was trained using the Stochastic Gradient Descent
(SGD) algorithm, and achieved a testing accuracy of 94.00% after 100 epochs. Palvanov
and Cho [39] achieved a testing accuracy of 98.10% on the MNIST dataset using a CNN



Mathematics 2024, 12, 3684

4 0f 22

with two convolutional layers and two fully connected layers, employing a mini-batch size
of 50.

2.2. Quantum Neural Networks (QNNs)

In recent years, QNNs, widely used methods in QML, have garnered significant atten-
tion. Most of the work in this area has focused on designing quantum networks, which
mimic the structure of classical neural networks, with the goal of achieving competitive
results. Despite numerous challenges (e.g., hardware limitations and algorithmic complexi-
ties), research on QNNs has made notable progress. Jeswal and Chakraverty [40] provide a
comprehensive overview of recent QNN applications like breast cancer prediction, image
compression, and pattern recognition.

A significant body of work has also explored the efficacy of QNNs for image data
classification. For instance, Nguyen et al. [41] proposed a QNN architecture optimized for
current quantum hardware, and showed that QNN can classify images with reduced noise,
even with shallow circuits and optimized gate usage. One of the pioneering models in the
development of QNNSs is the Quantum M-P Neural Network by Zhou and Ding [42]. This
model extends the classical M-P Neural Network by using qubits as inputs, and each neuron
computed the weighted sum of the connected qubits. The network employs a weighted
learning algorithm for training like classical neural structures for quantum computation.

In addition to image classification, QNNs have been applied to various domains.
Safari et al. [43] explored the use of QNNs for weather prediction within smart systems.
Their research highlighted the benefits of combining QNNSs with classical models to form
hybrid architectures. Any such procedure could be advantageous for processing large-scale
data like the high-dimensional datasets required for weather forecasting in smart grids.
Paquet and Soleymani [44] introduced QuantumLeap, a hybrid quantum-—classical model
designed for financial time series analysis. The model utilizes a quantum encoder to trans-
form financial data into density matrices, a quantum network to forecast future matrices,
and a classical network to predict optimal security prices. Another innovative quantum
model is the quantum convolutional neural network (QCNN), which was presented by
Wei et al. [45]. The QCNN mimics the architecture of classical CNNs [46] by employing
quantum convolutional layers, pooling layers, and fully connected layers. To replicate
classical pooling operations, the QCNN reduces the dimensionality of quantum states
by eliminating qubits at the pooling layers. Furthermore, a parameterized Hamiltonian
is used in the fully connected layer, and its expectation value is computed and passed
through a non-linear activation function to introduce nonlinearity into the quantum model.
The Hamiltonian represents the total energy of the quantum system and is parameterized
to allow for dynamic adjustments during training. In terms of performance, classical CNN
models and QCNN have achieved an average accuracy of 97.2% and 96%, respectively, on
the MNIST-2 dataset. It is worth noting that QCNN operates with reduced computational
overhead and fewer parameters but is still able to deliver satisfactory outcomes.

2.3. Hybrid Quantum—Classical Neural Networks (HQNNSs)

Hybrid Quantum—Classical Neural Networks (HQNNs) have gained significant at-
tention due to their potential to outperform classical approaches across different complex
problem domains. These models blend quantum algorithms with classical neural networks,
and enhance performance in domains like image recognition, finance, molecular dynamics,
and cybersecurity. This section highlights recent advancements and key contributions in
the development of HQNNSs with a focus on classification problems.

HQNN:Ss leverage the computational power of quantum algorithms while maintaining
the stability and reliability of classical architectures. For example, Xia et al. [47] demon-
strated the utility of HQNNSs in quantum chemistry to determine molecular ground state
energies. The hybrid approach exhibited notable improvements over classical models in
certain scenarios. Similarly, Drain and Senderowicz’s expanded the use of HQNNSs in
several machine learning tasks to showcase their adaptability and problem-solving efficacy
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across domains. Hellstem [48] proposed a hybrid quantum-—classical architecture for the
classification of both structured financial data and unstructured datasets, including MNIST
digits. The study also highlighted the versatility of HQONNSs in solving both classical and
quantum classification tasks. While, Fan et al. [24] explored the integration of quantum
layers within conventional CNN architectures to process large-scale image datasets. Their
findings revealed that hybrid models can match or even surpass the efficiency of pure
CNNss while utilizing fewer computational resources. Likewise, Bokhan et al. [49] applied
quantum convolutional layers alongside classical learning algorithms for multiclass image
classification tasks and indicated the suitability of quantum models for high-dimensional
image data. Xu et al. [50] further investigated parallel quantum circuits to optimize the per-
formance of hybrid models in image classification and demonstrated improved scalability
and efficiency. Furthermore, Ling et al. [51] examined the fusion of quantum and classical
backpropagation techniques within HQNNSs, and achieved competitive results on standard
large-scale image datasets. Finally, Islam et al. [52] proposed a hybrid quantum-—classical
model to detect cyberattacks on cloud-supported vehicular networks, and demonstrated
that the hybrid architecture effectively enhances anomaly detection. The techniques used
along with the highlights and limitations of the various discussed schemes are summarized
in Table 1.

Table 1. Summarized related work.

Reference Technique Used Highlights Limitations
In this article, an innovative LeNet-5 The shortcomings of the paper include a
CNN is deveiope d and implemented low miss rate of 25%, meaning that there
for pedestrian detection in V2X-driven is potential for further refinement. It is
Zhang et al. [26] LeNet systems at a 25% miss rate, surpassing not tested on other kinds of data apart
SA-Fast R-CNN and the e)éis ting from pedestrians, and it may perform
LeNet-5 CNN poorly on complex scenes or if a system
' must work faster computationally.
To improve feature extraction and assist Some of the weaknesses in this work
in image retrieval, this paper employs are that the .large ngmber of p ar.ameters
AlexNet, which is good for capturing may result in overfitting, espec1all'y.
Yuan and Zhang [27]  AlexNet complicated image features, increasing with t}}e.use of AlexNet. Furthe.zr, 1t. 1S
retrieval precision, and surpassing not gff1c1ent when th'e dataset size is
more conventional image classification xilsﬁlfiéi,:g;l:eﬁd;:;m compared
and retrieval techniques. - nporary
architectural designs.
The paper also applies and enhances e .
SNN s to deeper architectures such as The mamn limitations .Of this work.
VGG and ResNet to lift the accuracy of include implementation complexity,
Spiking Neural e . ) data dependence, generalization
Sengupta et al. [28] visualization jobs like CIFAR-10 and . o
Networks (SNNs) ImaceNet while utilizing lesser concern, requirement of specific
reqligests of hardware thfough hardware, and interpretability of deep
event-driven neuromorphic design. spiking neural networks.
Specifically, the paper evaluates Such weaknesses of this work consist of
network width compared to depth in the absence of the generic investigation
Wau et al. [31] Residual Network certain ResNet architectures and of other architectures apart from
’ (ResNet) suggests a shallow architecture over ResNet, signs of overfitting in more

deep tasks such as image classification
or segmentation.

extensive networks, and a lack of
validation across more diverse datasets.
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Table 1. Cont.

Reference Technique Used Highlights Limitations
The paper provides a discussion of the The drawbacks of the work include the
development of quantum neural relatively recent development of
networks (QNNs), including ways that Y P .
. quantum neural networks, a possible
Jeswal and QNN quantum concepts are incorporated roblem of scalabilitv, a dependency on
Chakraverty [40] with neural structures and possible P yracep y
g . . complex quantum circuits,
uses for QNNis in fields including .
. e and minimum tests on
image classification and search for . -
. : . various applications.
superior learning algorithms.
This paper assesses the depth of .Some Of. the shottcomlngs. (.)f this work
. include issues with the ability to extend
quantum neural networks for image .
P the work to bigger sets, the quantum
classification that encompasses circuit implementation problem
Nguyen et al. [41] QNNs encoding techniques and circuits with P P !
. the lack of many experiments and
respect to the MNIST dataset of varying . . ; .
. . instead using simulations, and an
diverse neural networks with respect to
- overdependence on theory and not
hardware efficiency. -
much application of models.
The work has some limitations,
Deep CNN, YOLOvV7, and LeNet-5 and concludes a simple scenarios e;n ddo no’f
Sarmah et al. [53] YOLOV7, and maximum accuracy of 99.38% using P
. L demonstrate actual real-world
LeNet-5 LeNet-5 for handwritten digits on . .
. complexity; performance evaluation
various datasets. . . .
involves small sample sizes, which may
lead to overfitting.
The paper employs convolutional Some of the drawbacks are as follows:
neural networks, known as CNNSs, the used dataset is very modest,
when categorizing the MNIST and the complexity of the real world is
Choudhuri et al. [54] CNN handwritten digit, and several not reflected; overfitting may occur due
architectures and optimizers are to choices of the model architecture and
examined with respect to accuracy and  the amount and types of the
efficiency. data augmentation.
The paper extends the use of vision
transformers (ViTs) to challenges This work’s main weakness is the
associated with dense prediction, such  applicability of vision transformers
as semantic segmentation. It (ViTs), which are inherently more
Zhang et al. [55] ViT demonstrates that ViTs can achieve expensive in terms of data and
better global contextual learning than computational power needed for
that of traditional CNNs to enhance the  training, especially for relatively
recognition of visuals at an small-scale tasks, than CNNs.
enhanced level.
The comparative study of ViT and The mam drawba.ck. of this work is that
. the efficiency of vision transformers
CNN on glaucomatous optic TN s . .
. (ViTs) is high, but it requires a large
neuropathy detection from fundus fd d ional
hotographs of the eyes is presented in amount of cata and computationa
Hwang et al. [56] ViT P power. Furthermore, it can be noted

the paper. The paper shows that both
the ViT and CNN are effective for
medical image classification across
various datasets.

that model performance is likely to be
different when working with patients
of different ages and sexes, as well as

with images of different quality.
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Table 1. Cont.

Reference Technique Used Highlights Limitations
The weakness of this work is the
The paper briefly assesses capsule consequence of the relatively large
networks (CapsNets) in computer computational complexity and training
vision, highlighting their consistencies  time of the used capsule networks
Choudhary et al. [57] CapNet in preserving spatial hierarchies as well ~ (CapsNets). They also have difficulties
as the enhanced performance of when working with large datasets, so it
CapsNets in object detection and turns out that for some large-scale
segmentation beyond CNNs. applications, the rate at which CNNs
work is better.
The drawback of this work includes the
The paper offers an approach that dependence on quantum computing
embeds quantum circuits and classical ~ facilities that are still under
Hellstem [48] H-ONNs neural networks for measuring the construction both in terms of

performance of the former on the
MNIST images and financial data and
how it may outperform other methods.

technology and implementation and
that it may be challenging to
incorporate quantum and conventional

models.

3. Basic Preliminaries
3.1. Superposition

Superposition is a foundational principle of quantum mechanics, describing the phe-
nomenon where a quantum system can exist in multiple states simultaneously. It arises
from the linearity of the Schrodinger equation, where if two solutions 1; and ¢, exist, any
linear combination of these solutions, given by

P =11 + 22, )

is also a valid solution. Here, c; and ¢, are complex coefficients. More generally, for wave
equations with multiple solutions, combinations of all such solutions remain legitimate.

This principle underpins many quantum phenomena, including interference and
entanglement. Superposition is not limited to quantum computing; it applies broadly
across quantum physics, from atomic and molecular systems to quantum fields [58—60].
In essence, superposition enables quantum systems to exhibit behaviors that have no
classical analog, such as the simultaneous existence of multiple pathways in quantum
interference experiments.

3.2. Qubits

In quantum computing, a qubit is the fundamental unit of quantum information that
directly applies the principle of superposition. Unlike classical bits, which exist solely in
one of two states, 0 or 1, a qubit can simultaneously represent both states. Mathematically,
the state of a qubit is expressed as follows:

) = «[0) + B1), (2)

where |0) and |1) are the basis states, and « and p are complex numbers known as proba-
bility amplitudes. These amplitudes satisfy the normalization condition:

&> + B> = 1. 3)

The coefficients « and B determine the probabilities of measuring the qubit in the |0)
or |1) state. Upon measurement, the qubit collapses to one of these basis states, with prob-
abilities |a|? and |B|?, respectively. Qubits are realized using various technologies, such
as superconducting circuits, trapped ions, and photonic systems [61-63]. Their ability
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to exist in superposition enables quantum computers to perform complex computations,
such as searching databases or factoring large numbers, exponentially faster than classical
computers in certain cases.

3.3. Quantum Gates

Quantum gates serve as the rudimentary building blocks of quantum circuits like
conventional logic gates. They operate on qubits to perform functions such as state flipping,
entanglement, and superposition creation. Key quantum gates include the Pauli-X gate that
acts like a classical NOT gate by flipping a qubit’s state, the Hadamard gate that generates
superposition, and the CNOT (Controlled-NOT) gate that entangles two qubits. Quantum
circuits often involve a combination of these gate operations to manipulate the quantum
states of qubits [64,65].

3.4. Entanglement

Entanglement is a fundamental property of quantum mechanics, where two or more
quantum systems become linked such that their states cannot be described independently.
This phenomenon is mathematically represented by a quantum state of multiple particles.
For instance, a general two-qubit state can be expressed as follows:

) = «[00) + B|01) + [10) + 4]11), 4)

where «, , 7, and é are complex coefficients satisfying the normalization condition
a2 + B2 + [ [? + 132 = 1.

A key characteristic of entanglement is the inseparability of the quantum state. For a
state to be entangled, it must not be expressible as a tensor product of the individual states
of the subsystems. Mathematically, the state |¢) is separable (not entangled) if and only if
it can be written in the form:

[¥) = |pa) @ |¢B), (5)

where |$4) and |¢pp) are states of the individual subsystems (qubits).

To determine entanglement, the partial transpose criterion (Peres—Horodecki criterion)
provides a necessary condition [66,67]. For the density matrix p of a two-qubit system,
if the partial transpose p® has any negative eigenvalues, the state is entangled. This can be
summarized as follows:

o™ =Y pixjili) (k| @ 1) (jl, (6)
ij ki
where pji ;; are the elements of the original density matrix p.
For example, the Bell state

1
V2

is an entangled state because it cannot be expressed as a product of individual qubit states.
Its density matrix

|®F) = —(|00) + [11)), )

o oo O
o O O

pa = [@7)(@] = 5 : ®)

_ o O -
_ o O

00

has a partial transpose with negative eigenvalues, confirming entanglement.

3.5. Measurement

In quantum computing, measurement is the process of extracting information from
a qubit, which leads to the collapse of its superposition into a definitive state of either 0
or 1. The qubit’s superposition coefficients determine the probabilities of these outcomes.
Measurement alters the operational state of the qubit and is typically confined to a compu-
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tational basis like the Z-basis [68]. For instance, in IBM quantum computers, measurements
are performed along the Z-axis of the Bloch sphere to determine whether the qubit collapses
to |0) or |1). To measure in other bases, such as the X-basis or Y-basis, additional quantum
gates are required to rotate the qubit states into the desired computational basis. This
approach simplifies the measurement process while enabling flexibility in basis selection.
The architecture of a quantum neural network (QNN) is illustrated in Figure 1.

Qlll;;:tlm @ Measurement]

= Feature
=
Ansatz
E" Map
o J N

=

Data Data
Encoding Processing Measuremen

Figure 1. The architecture of QNNs.

3.6. CNNs and QNNs: Foundations, Architectures, and Recent Advancements in Quantum
Machine Learning

A CNN has convolutional layers, pooling layers, and a fully connected layer that deter-
mines the image’s class. The convolution operation involves applying a convolving kernel
to the image, and sliding it according to a specified step size (e.g., often set to 1). Mathe-
matically, if the input image A is of size s X t and the kernel P is m x m, the convolution
can be expressed as follows:

f=0c(AiitmjjrmP) ©9)

where o represents the nonlinear function. Padding is often employed in the convolutional
layer to match the dimensions of feature maps with the input image. Following convolution,
the feature map is passed to the pooling layer for dimensionality reduction by employing
techniques like max pooling or average pooling. The final classification is performed in the
fully connected layer.

Recent years have seen significant momentum for QNNs as a key method in QML.
The predominant focus has been on designing quantum networks that emulate classical
neural networks while delivering similar performance [69-71]. While challenges and ongo-
ing refinement are necessary, significant advancements have been made in the development
and application of QNNs. For instance, recent work by Waris et al. (2024) explored a diverse
array of applications for QNNs, including breast cancer prediction, image compression,
and pattern recognition. The architecture of CNNs is depicted in Figure 2.

Convolution
layer

Mix
Pooling

Figure 2. The architecture of CNNs.



Mathematics 2024, 12, 3684

10 of 22

4. Materials and Methodology for Proposed Method
4.1. MNIST Dataset Description

In this work, we utilized the MNIST dataset, which has been considered as a bench-
mark for evaluating machine learning algorithms in handwritten digit classification. It
consists of 60,000 training examples and 10,000 test examples of grayscale images of digits
(0 to 9). For our experiments, we selected a subset comprising 10,000 training images and
2000 test images. Each image is a 28 x 28 pixel grayscale matrix, with pixel intensity values
ranging from 0 to 255. There are 784 pixels per image. The dataset is balanced across the
ten digit classes, and ensures even representation of each class. Figure 3 provides sample
images from the MNIST dataset.

Figure 3. Sample images from the MNIST dataset.

4.2. Hybrid Quantum-Classical Architecture

The proposed hybrid quantum-—classical model consists of three parts: the quantum
layer, variational quantum circuit (VQC), and classical layer. They work together to address
two-class classification problems using both classical and quantum computing. A simplified
structure is shown in Figure 4.

Input

Classical

Measurement1 {¢h4|

Measurement2 9’52‘

Quantum

Output

\
= p(j1hz + jz hy)

N

Classical

Figure 4. Hybrid Quantum—Classical Neural Network model.

In Figure 4, p is a nonlinear function, h;, is the value of neuron n in each hidden layer,
and R(hy,) is a rotation gate that rotates by h,,. The final prediction value from the hybrid
network is denoted by y. Tables 2 and 3 show the layer type, output shape, and number of
parameters in the PyTorch and quantum neural networks.
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Table 2. Structure of the PyTorch neural network.

Layer Type Output Shape Number of Parameters
Conv2D (1,2,5 x 5) (None, 2, 24, 24) 52
BatchNorm2d (2) (None, 2, 24, 24) 4
Conv2D (2,16,5 x 5) (None, 16, 8, 8) 816
BatchNorm2d (16) (None, 16, 8, 8) 32

Max Pooling (None, 16, 4, 4) 0
Dropout2d (None, 16, 4, 4) 0

Flatten (None, 256) 0

Dense (Linear) (None, 64) 16,448
Dense (Linear) (None, 2) 130
TorchConnector (QNN) (None, 1) Depends on QNN
Dense (Linear) (None, 1) 2

Table 3. Structure of the quantum neural network (QNN).

Layer Type Output Shape Number of Parameters
ZZFeatureMap (2 qubits) (None, 2) 2
Real Amplitudes (2 qubits) (None, 2) 4
EstimatorQNN (None, 1) 6

*  Quantum Layer: The quantum layer serves as a bridge between classical and quantum

processing by transforming classical data into quantum states. Using quantum feature
maps, it encodes data into a higher-dimensional quantum space, enabling complex
relationships to be captured that might be hidden in classical representation. This map-
ping enhances the model’s ability to identify intricate patterns by leveraging quantum
properties, ultimately improving the performance of hybrid quantum-—classical algo-
rithms. Through this transformation, classical inputs gain access to the computational
advantages of quantum mechanics.
Quantum Feature Mapping: We use the ZZFeature map to encode the conventional
feature vector into a quantum state. Quantum states process information through
unitary gates by enabling the model to learn more complex and non-linear patterns
than classical models. After encoding, the quantum state is passed to the variational
quantum circuit (VQC) for further processing.

*  Variational Quantum Circuit (VQC): A VQC is a quantum circuit with parameterized
quantum gates, forming the foundation of the quantum layer in hybrid quantum-
classical models. These gates contain trainable variables, allowing the circuit’s param-
eters to be adjusted. During training, these parameters are iteratively optimized based
on a cost function, enabling the VQC to learn patterns or solutions. This iterative
process allows VQCs to approximate complex functions and contribute to quantum
machine learning and optimization tasks.

1. Parametric Quantum Gates: The VQC employs RY rotation gates to rotate qubit
states on the Y-axis of the Bloch sphere and CX entanglement gates to establish
qubit correlations.

2. Real Amplitudes Ansatz: This ansatz is employed in our VQC design, which
includes RY rotations and CX gates in sequential layers. The circuit depth and
number of trainable parameters can be adjusted based on the complexity of the
problem. For efficiency and to capture complex patterns, only one repetition of
the circuit is used. During training, classical optimization methods such as the
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Adam optimizer are applied to minimize the loss function and align the VQC’s
output with the target labels.

*  (lassical Layer: The VQC produces quantum measurements, which are then processed
by a classical layer to make decisions:

1.  Measurement: Quantum circuits are measured to collapse quantum states into
classical data, which yield the system’s state probabilities. These probabilities
are then fed into the classical model for further processing.

2. Classical Neural Network: A feed-forward neural network (or another classifier like
SVM) takes the quantum probabilities as input, and produces a binary output
(‘0" or ‘1"). It allows the model to combine quantum feature encoding with
classical decision-making.

4.3. Dataset Preprocessing

As mentioned above, the MNIST dataset contains 70,000 handwritten digits (0-9)
at 28 x 28 pixels, and considered as a benchmark for image classification. We used
10,000 training and 2000 testing records focused on digits 0 and 1 for binary classifica-
tion. Its simplicity and common use in hybrid quantum-—classical modeling showcase the
benefits of quantum machine learning. All simulations were performed using the Jupyter
Notebook environment, which permitted efficient and dynamic exploration.

After choosing the dataset, preprocessing was performed in order to prepare the data
for quantum computing as well as to increase the learning efficiency of the quantum model.

4.3.1. Data Splitting

We divided the dataset into two parts. The Training Set (80%) comprises 800 samples.
This set has features and labels to use for model training. The Testing Set (20%) features
200 samples. This set includes only features for the sake of validating model generaliza-
tion to new data. This splitting strategy is crucial to assess the model’s performance on
previously unseen data and its overall effectiveness.

4.3.2. Standard Scaling

Following the data split, we applied standard scaling to normalize the pixel intensity
values to ensure they have zero mean and unit variance. This step is important because
most machine learning models, including quantum models, assume that input features
are normally distributed. Standard scaling is useful to prevent issues like vanishing or
exploding gradients. It allows the learning algorithm to remain robust against variations in
feature distribution, ultimately improving performance.

4.4. Quantum Circuit Design

We then focus on the quantum circuit layout by first discussing state preparation to
represent the preprocessed data in quantum form. Figure 5 shows the quantum circuit
design. The idea is to employ quantum-based techniques to extract features and thereby
enhance the learning algorithm’s efficiency through quantum parallelism.

do —0 -0 -
ZZFeatureMap RealAmplitudes

x[0], x[1] 8[0], 6[1], 8[2], 6[3), 6[4], 6[5), 6[6], 6[7)
g —1 -1 -

Figure 5. Quantum circuit.
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4.4.1. State Preparation (ZZFeature Map)

State preparation is an important step in quantum machine learning, as it involves

mapping classical data onto quantum states.

To encode data, the ZZFeature Map was used, inspired by traditional machine learning
kernel methods. This approach non-linearly transforms classical datasets into a higher-
dimensional quantum space.

The feature map generates quantum states. The function states |@(x)) describe a larger
feature space that enables the classifier to spot a separating hyperplane in the extended
quantum area. The unitary operation creates a circuit of circuit of Hadamard gates (H)
interleaved with entangling gates to achieve the encoding.

Up(y) = | [Up) H*" Ugp(x) = H*" (10)
d

This approach improves the learning of non-linear data patterns through the use of
quantum feature mapping.

4.4.2. Real Amplitudes Ansatz

The Real Amplitudes Ansatz from the Qiskit library was utilized to generate the

variational quantum circuit in our hybrid model.

This ansatz is made of single-qubit rotation gates Ry and two-qubit entanglement
gates CX. First, the parameterized Ry gates are applied to each qubit, and then the
entangling gates CX are executed.

A second parameterized Ry rotation is performed as a fourth step after the entangle-
ment wall. This setup allows for slow and accurate encoding of data into the quantum
states. Moreover, circuit depth was reduced by selecting a single repetition of the CX
gates and Ry rotations.

Algorithm 1 illustrates the hybrid quantum-—classical cricuits.

Algorithm 1 Hybrid quantum—classical module.

e e e T T T = T S S S Y
¥ X NGy o

N N N DN
= W N =

R A R o e

N
=

Class GradCalc(Hybrid Gradient Function)

Integrates and Computes Gradient Graphs

procedure FORWARD_PASS(input, ansatz, qc, ZZF)
Backward_Pass — calculate expectation values
return Backward_Pass

end procedure

procedure BACKWARD_PASs(Grad_Output)
Calculate gradients of the expected values
return Expected values

end procedure

Hybrid Class extends NN. Module

: procedure INITIALIZE_PASS(input, Backward, qc, ZZF)

Call superclass initializer
Quan_Circuit < INITIALIZER(back,qc,ZZ)
Self .Shift <+ ZZ

: end procedure

procedure FORWARD(input)
if input.shape # (1,1) then
input < torch.squeeze(input)
return 1
end if
outcome invalid.
return FORWARD_ PASS

: end procedure
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4.5. Optimization

We used the Adam optimizer to fine-tune the model parameters. This highly efficient
optimization method is efficient for large-scale problems with extensive data and numerous
parameters. Adam combines two optimization algorithms, i.e., ‘gradient descent with
momentum’ and ‘RMSProp’. The momentum component in gradient descent accelerates
convergence to minima by considering the exponentially weighted average of past gradi-
ents, whereas RMSProp adjusts the learning rate utilizing the exponential moving average
of squared gradients leading to enhanced AdaGrad’s performance. These features together
make Adam a powerful optimization tool in machine learning.

5. Experimental Setup

Figure 6 illustrates the flowchart of a quantum-—classical hybrid model pipeline for
binary classification of the MNIST dataset with sub-sampling of only classes 0 and 1.
Below is a step-by-step explanation of the components and the process flow:

e MNIST Dataset: It starts with MNIST, which consists of handwritten digit images.
Subsampling Classes 0 and 1: A portion of the MNIST data is chosen, composed solely
of images of the digits “0” and “1”. This simplifies the classification task to a binary
classification. Labeled and predicted images from the MNIST dataset are shown in
Figure 7.

* Data Splitting: The subsampled dataset is divided into two sets: training set (i.e.,
this includes all records used to train the model) and testing set (i.e., a portion is
used for validations and other part is reserved for model validation after construction
and development).

*  Simulation (Training and Testing): The training set introduces the hybrid quantum
classical model. It refines weights and quantum circuit parameters to improve image
classification. After that, the test set evaluates the model’s generalization by running
it on new data to assess its accuracy in predicting images as “0” or “1”.

*  Libraries used: The following libraries were used for the simulation:

PyTorch: A classical framework widely used for training neural networks data process-
ing tasks

Scikit-Learn (Sk-Learn): A Python 13.11.0 library for dataset splitting , model evaluation,
and classical machine learning.

Qiskit: It is an IBM programming framework utilized to build and simulat quantum
circuits in a hybrid quantum-—classical architecture.

*  Running on Jupyter Notebook: All computation, data processing, training, testing,
and evaluation were conducted in Jupyter Notebook, which is widely used for running
Python code interactively.

e Evaluation Metrics: After testing the model, several evaluation metrics were com-
puted to assess the model’s performance:

Training Time: measures the duration taken to complete the model training.

Accuracy: The proportion of correctly identified images by classifier out of total testing set.
F1-Score: The average mean of precision and recall that is useful for handling
class imbalance.

Precision: The percentage of true positive identifications, e.g., correctly identifying
images of “1”.

Recall: The ratio of true positive identifications to all actual positive cases in the
testing dataset.
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Figure 6. Experimental Setups.
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Figure 7. Labeled (1) and Predicted (2) images of MNIST.

6. Results and Discussion

This section evaluates the performance of the Hybrid Quantum-Classical Neural
Network (H-QNN) on focusing on classifying digits 0 and 1 in the MNIST dataset. The
10,000 training images and 2000 testing images were used. Due to current quantum hard-
ware limitations, we resized the 28 x 28 images to 4 x 4 pixel images for practical quantum
simulation. Here, we outline the experiment’s configuration and compare the results to
standard CNNs.

6.1. Performance Metrics

We evaluated the performance of our H-QNN model over ten epochs for training and
validation. We used a test set to calculate accuracy and loss. Figures 8 and 9 represent the
efficiency and loss as a function of the number of epochs. Training loss is shown in Figure 9.
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The training loss steadily decreased from —4.5 to —7.5 over the epochs, which indicates
that the model was learning effectively. Validation loss loss decreased from —4.8 to —7.7
that demonstrates that the model not only learned from the training data but also adapted
well to new data. Both training and validation losses are falling and this reflects that the
model was reliable and detected valuable data patterns.

Accuracy vs Epochs

0.9998 1
0.9996
0.9994 1
> /
v [ \
T 0.9992 1 / A
5 kY b g \
[¥] . [
g \
0.9990 1
0.9988
0.9986 / 3 f — Training Accuracy
/ Validation Accuracy
vV = Test Accuracy (final epoch)
0.9984
T T T T T
0 2 4 6 8
Epochs

Figure 8. Accuracy vs. Epochs.

Loss vs Epochs

= Training Loss
~1.54 - Validation Loss
= Test Loss (final epoch)

0 2 4 6 8
Epochs

Figure 9. Loss vs. Epochs.

6.2. Accuracy Metrics

The training accuracy consistently improved, and reached a peak of 99.96%. Validation
accuracy showed minor shifts across epochs, while consistently remaining high between
99.84% and 99.96%. These outcomes indicate that the model effectively distinguished
between the digits 0 and 1.



Mathematics 2024, 12, 3684

17 of 22

6.3. Confusion Matrix

The model’s performance is shown using the confusion matrix in Figure 10. It displays
the true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN)
for the binary classification task. With a precision of 99%, recall of 99%, and an F1-score
of 98.9%, the metrics indicate that the model effectively identified a significant proportion
of digit images while maintaining a low rate of false positives and negatives. All in all,
these results demonstrate the model’s excellent accuracy and recall, as also reflected in its
strong Fl-score.

Real Label

Positive Negative

FP

Positive

FN

Predicated Label

Negative

Figure 10. Confusion matrix.

6.4. Comparison with CNN and QCNN

The H-QNN architecture was evaluated against a standard CNN model for the binary
MNIST classification task. As shown in Table 4 and Figure 11, the H-QNN outperformed
both traditional CNNs and QCNNSs. Using the simulation’s limited quantum hardware,
our H-QNN produced superior results with fewer parameters and minimal computational
effort. The most important finding of this work is that the H-QNN model has higher
performance compared with other state-of-art models when applied to the MNIST dataset,
including CNNs, ResNet, DenseNet, Vision Transformer (ViT), and Capsule Network (Cap-
Net). A comparison as to these models is presented below demonstrating the advantage of
H-QNN. The performance of the different models, including their accuracies and strengths
are summarized in Table 4. In Figure 11, we show the accuracy comparison of the above
mentioned models and the performance of H-QNN against it peers.

¢  CNNs have been reported to give very good results when used with MNIST dataset
with an accuracy of 99.2% with LeNet architecture [54]. Although CNNs easily learn
stacked features using convolutional layers, they may be brittle to other forms of
features compared to these more complex networks. However, to overcome this
limitation H-QNN uses the concept of the quantum feature mapping so that it can
learn the complex representations effectively.

*  ResNet, which uses residual connection, gives a 99.6% accuracy of the MNIST. It
performs well in training deep networks due to helping solve the vanishing gradient
problem but is precluded by classical computation that limits its ability to learn
intricate data representation patterns [53]. Like other quantum neural networks, H-
ONN takes advantage of parallelism within the quantum computer, thus making
it capable of solving more complex patterns in a shorter time than is possible in
classical computers.
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DenseNet achieves an accuracy of 99.7% by dense connections enabled with efficient
feature reuse and gradient flow. While this architecture is very powerful in many ways,
it requires more memory and more computation than the network depth grows [53,54].
By allowing quantum circuits to perform more effective complex feature mapping,
H-ONN obtains similar accuracy with fewer resources.

Furthermore, self-attention mechanisms are used in Vision Transformers (ViT) and are
able to work better with larger datasets. Despite such accuracy ranges between 98.6%
and 99.2% on MNIST. ViT is computationally expensive and lacks specialization to
smaller datasets [55,56]. Compared to datasets of medium size, H-QNN is particularly
efficient at extracting rich information using quantum features.

CapNet preserves spatial hierarchies and has strong performance, which achieves
99.65% accuracy on MNIST. Despite that, CapNet’s dynamic routing is a hindrance to
training and adds computational load [57]. Its hybrid approach, similar to H-QNN,
achieves the same accuracy in a lower complexity.

Table 4. Performance comparison of models on MNIST dataset.

Model Accuracy on MNIST  Key Strengths Key Weaknesses

CNN 99.2% Effective for hierarchical feature extraction — Struggles with complex patterns

ResNet 99.6% Efficient training with residual connections ~ Higher computational demand

DenseNet 99.7% Efficient gradient flow and feature reuse Requires more memory

ViT 98.6-99.2% Self-attention for long-range dependencies High resource demand, requires
large datasets

CapNet 99.65% Preserves spatial hierarchies, handles Complex training process

viewpoint changes

H-QNN (Our Model)

99.7%

Quantum feature mapping, reduced Limited by current
computational cost quantum hardware

Overall, the H-QNN model outperforms all classical alternatives because it takes

advantage of quantum parallelism and feature mapping to learn complex patterns quickly
with fewer resources than the classical alternatives. Once H-QNN scales, it should
scale effectively as quantum hardware advances and could make use of large, high-
dimensional datasets.

Accuracy (%6)

100.0

99.5 4

99.0 4

98.5 4

98.0 1

97,5

Comparison of Model Accuracies on MNIST Dataset

99.7% 99.65% 99.7%

99.6%

99.2%

CNN ResNet DenseNet WiT CapNet H-QNN
Models

Figure 11. Comparison of accuracy.



Mathematics 2024, 12, 3684

19 of 22

References

6.5. Discussion

Experimental results indicate that hybrid quantum-—classical approaches may enhance
the reliability and performance of image classification tasks. The use of quantum feature
encoding and variational quantum circuits enabled the H-QNN model to recognize com-
plex patterns compared to classical CNNs. Low loss and high accuracy reveal that the
hybrid model benefits from quantum parallelism in its quantum layers while reducing
resources needed for effective learning. Nonetheless, the trend in validation accuracy
indicates potential for more improvements, e.g., through learning rate scheduling or higher
regularization. Despite minor differences in results, the overall performance remains good,
thus proving that quantum computing can help improve the conventional machine learning
models. Overall, the proposed H-QNN model exhibits robust performance in image classi-
fication. It produced high accuracy, precision, and recall. Thus, this work further supports
recent findings on the effectiveness of quantum-—classical hybrid generative models in
machine learning.

7. Conclusions and Future Work

This paper presented a new Hybrid Quantum—Classical Neural Network (H-QNN) for
binary image classification using the MNIST dataset. By integrating quantum technology
within traditional neural network structures, we showed some significant opportunities
to enhance classification accuracy and efficiency. The H-QNN achieved an accuracy of
99.7% and outperformed conventional CNNs and QCNNSs. The hybrid model proficiently
applied quantum feature encoding to transform classical data into a transform space, which
facilitated the discovery of complex patterns that conventional models typically have
trouble recognizing. The consistent performance observed in both training and validation
datasets emphasize the unique advantages of quantum computation in machine learning
for complex datasets. High precision and recall demonstrate the H-QNN's capability in
correctly recognizing digits while ensuring minimal false positive and negative rates. It is
appropriate for critical applications such as medical diagnostics and autonomous systems.
Allin all, there are still certain limitations like reduced image resolution and variations in
validation accuracy. Future efforts should focus on addressing these challenges through
improved data resolution and refined quantum circuit designs.
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