

Sgr A* as a potential source of galactic PeV neutrinos

Sabyasachi Ray^{1,*}, Rajat K Dey¹, and Tamal Sarkar²

¹*Department of Physics, University of North Bengal,
Siliguri-734013, West Bengal, INDIA and*

²*High Energy and Cosmic Ray Research Centre,
University of North Bengal, Siliguri-734013, West Bengal, INDIA*

Introduction

PeV protons in the galactic center (GC) was detected by H.E.S.S. collaboration [1]. The highest possible energy of the proton from the Sgr A* is proposed to be 170 PeV [2]. Proton having this much energy will interact with the molecular hydrogens present in plenty near the origin and background photons. The time scale of p-p interaction is very small compared to the p- γ interaction time scale [3]. Also plenty molecular hydrogen presents in the Galaxy makes the p-p channel more efficient than other possible channels. p-p interactions will generate pions (π^0, π^+, π^-). Neutral pions will decay into gamma rays, whereas charged pions produce various neutrinos and anti neutrinos. In the mechanism $p \rightarrow \pi^0 \rightarrow 2\gamma$ and $p \rightarrow \pi^\pm \rightarrow 3\nu$, the number ratio $\gamma : \nu \sim 1 : 3$ and the corresponding energy ratio is $\frac{E_\gamma}{E_\nu} \sim 2$ [4]. So maximum possible gamma energy and neutrino energy in this process will be [$E_\gamma \sim \frac{1}{10}E_p$] 17 PeV and [$E_\nu \sim \frac{1}{20}E_p$] 8.5 PeV respectively.

π production

High energy protons which are accelerated via LLCD mechanism [5], interacts with the cold ambient ISM, gives rise to γ and ν through the decays of produced pions. We considered isotropic distribution of the accelerated proton $dn(E_p)/dE_p$, which gives rise to π^0 emissivity given by [4], $Q_{\pi^0}^{pp}(E_{\pi^0}) =$

$$cn_H \int_{E_p^{th}}^{E_p^{max}} \frac{dn(E_p)}{dE_p} \frac{d\sigma_{pp}(E_{\pi^0}, E_p)}{dE_{\pi^0}} dE_p \quad (1)$$

where n_H is the ambient hydrogen number density. The energy dependent pp cross-section expressed by [3] $\sigma_{pp} = 34.3 + 1.88\ln(E_p/1\text{TeV}) + 0.25(\ln(E_p/1\text{TeV}))^2$ mb.

E_p -independent approximations in scaling model with a parameterization of the differential cross section gives, [4]

$$\frac{d\sigma_{pp}(E_{\pi^0}, E_p)}{dE_{\pi^0}} \simeq \frac{\sigma_{pp}}{E_{\pi^0}} f_{\pi^0}(x) \quad (2)$$

where, $x \equiv E_{\pi^0}/E_p$ and $f_{\pi^0}(x)$ is expressed as [3, 4]

$$f_{\pi^0}(x) = 8.18x^{1/2} \left(\frac{1 - x^{1/2}}{1 + 1.33x^{1/2}(1 - x^{1/2})} \right)^4 \times \left(\frac{1}{1 - x^{1/2}} + \frac{1.33(1 - 2x^{1/2})}{1 + 1.33x^{1/2}(1 - x^{1/2})} \right) \quad (3)$$

Using all those parameterization π^0 emissivity can be rewritten as,

$$Q_{\pi^0}^{pp}(E_{\pi^0}) = cn_H \sigma_{pp} \frac{dn(E_p)}{dE_p} \times Z_{p\pi^0}(\alpha) \quad (4)$$

here α is the spectral index of the cosmic-ray spectrum and $Z_{p\pi^0}(\alpha)$ is the spectrum-weighted moment of the inclusive cross section, also named as Z-factor and is given by [4],

$$Z_{p\pi^0}(\alpha) = \int_0^1 x^{\alpha-2} f_{\pi^0}(x) dx \quad (5)$$

PeV neutrino and gamma ray flux

The emissivity for the production of gamma ray from pp interaction is expressed by the following [4] equation,

$$Q_{\gamma}^{pp}(E_\gamma) \simeq Z_{\pi^0\gamma}(\alpha) Q_{\pi^0}^{pp}(E_{\pi^0}) \quad (6)$$

*Electronic address: rs_sabyasachi@nbu.ac.in

here, $Z_{\pi^0\gamma}(\alpha) = 2/\alpha$, let us term this as Z_0 .

The neutrino emissivity for different flavours takes these form [4],

$$Q_{\nu_\mu}^{pp}(E_{\nu_\mu}) \simeq 2[Z_{\pi^0\nu_\mu}(\alpha) + Z_{\mu\nu_\mu}(\alpha)]Q_{\pi^0}^{pp}(E_{\pi^0}) \quad (7)$$

$$Q_{\nu_e}^{pp}(E_{\nu_e}) \simeq 2Z_{\mu\nu_e}(\alpha)Q_{\pi^0}^{pp}(E_{\pi^0}) \quad (8)$$

factor 2 in the above equation implies that we are considering the sum of the neutrino and antineutrino emissivity. let us name $Z_{\pi^0\nu_\mu}(\alpha)$ as Z_1 , $Z_{\mu\nu_\mu}(\alpha)$ as Z_2 and $Z_{\mu\nu_e}(\alpha)$ as Z_3 . These are the Z-factor corresponding to ν_μ production from pion decay, muon decay and ν_e production from muon decay. They are evaluated following the equations[4] :

$$Z_1 = \frac{(1-r)^{\alpha-1}}{\alpha} \quad (9)$$

$$Z_2 = \frac{4[3-2r-r^\alpha(3-2r+\alpha-\alpha r)]}{\alpha^2(1-r)^2(\alpha+2)(\alpha+3)} \quad (10)$$

$$Z_3 = \frac{24[\alpha(1-r)-r(1-r^\alpha)]}{\alpha^2(1-r)^2(\alpha+1)(\alpha+2)(\alpha+3)} \quad (11)$$

where, $r = (m_\mu/m_\pi)^2 = 0.467$

From eq. 4 the total neutrino emissivity for all flavours combined can be written as,

$$Q_\nu = cn_H Z \sigma_{pp} \frac{dn(E_p)}{dE_p} \times Z_{p\pi^0}(\alpha) \quad (12)$$

where, $Z = 2[Z_1 + Z_2 + Z_3]$

Now, $N_p = \frac{4\pi}{c} J_p$ is the steady state density $= \frac{dn(E_p)}{dE_p}$ and $R_{eff} \equiv \int dV/(4\pi r^2)$ is the effective radius, which is calculated to be between 1kpc to 10 kpc depending the shape of the halo considered around the galactic center[6]. The observed neutrino flux can be driven using[6],

$$J_\nu = J_\nu(E_\nu) = \frac{1}{4\pi} \int_0^1 dV \frac{Q_\nu}{4\pi r^2} = \frac{R_{eff}}{4\pi} \times Q_\nu \quad (13)$$

from equation 12 and 13 we derived the equation for the calculation of the neutrino flux,

$$J_\nu = n_H \sigma_{pp} Z R_{eff} J_p \times Z_{p\pi^0}(\alpha) \quad (14)$$

The gamma ray flux is expressed by,

$$J_\gamma = n_H \sigma_{pp} Z_0 R_{eff} J_p \times Z_{p\pi^0}(\alpha) \quad (15)$$

Results

$n_H = 1\text{cm}^{-3}$ [3, 6] is considered. Although in various paper GC region ISM density is considered to be much higher $n_H = 120\text{cm}^{-3}$ [7]. J_p is calculated from cosmic ray spectra[8] comes $\frac{2 \times 10^3}{E^{2.6}}$ in $\text{GeV}^{-1}\text{cm}^{-2}\text{s}^{-1}\text{sr}^{-1}$

TABLE I: Flux calculation for different values of n_H and R_{eff} with spectral index value 3.

n_H ^a	R_{eff} ^b	J_ν ^c	$E_\nu^{-2} J_\nu$ ^d	$E_\gamma^{-2} J_\gamma$ ^d
1	1	2.7×10^{-28}	2×10^{-14}	9.3×10^{-14}
120	1	3.2×10^{-26}	2.3×10^{-12}	1.1×10^{-11}
1	10	2.7×10^{-27}	2×10^{-13}	9.3×10^{-13}
120	10	3.2×10^{-25}	2.3×10^{-11}	1.1×10^{-10}

^ain cm^{-3}

^bin kpc

^cin $\text{GeV}^{-1}\text{cm}^{-2}\text{s}^{-1}\text{sr}^{-1}$

^din $\text{GeV}\text{cm}^{-2}\text{s}^{-1}\text{sr}^{-1}$

Conclusions

Higher flux value is observed for lower spectral index values. Sgr A* can be a source of PeV neutrinos. Much higher sensitive detector may detect those neutrinos in near future.

References

- [1] A. Abramowski et al. phys. rev. lett. **117** 111301 (2016).
- [2] Z. Osmanov et al. The ApJ **835** 164 (2017).
- [3] N. Gupta, Astropart. Phys. **48** 75-77 (2013).
- [4] L. A. Anchordoqui et al. Phys. Rev. D **75** 063001 (2007).
- [5] Rajat K. Dey et al. EPL **136** 69001(2021)
- [6] J. C. Joshi et al. MNRAS, **439** 3414-3419 (2014).
- [7] S. R. Kelner et al. Phys. Rev. D **74** 34018 (2006).
- [8] G. Karagöz ,PhD thesis 2 (2016)