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Yo < 2. TEASCRAMAGEER T, FRUEGES S
99% LA LMl T H o A K p kil 4 8 20 X TE] Sy
%55 9 40 AN IX TR, IR AT BAIRAR — 5K 45 37 N 20 %
A0 B, JFR ke B R (5800 1 o 28 I 45 [ N
e ZNRKI, HBERMBUATE A IR E PR,
ANt 4 T HER P I R KIS . — 5T, AR
FIEII RN, BIREAME Z AU RLI o R p, 30 B 45
Ky AR 5 F2 K15 B8 yo A p, 73 A ) — e 45 (5
B RO, WRRRIERRKR, MR R AR



%4

NGRS RIRIAREE S S 0T B SO RS T s

- 827 -

4 o A1 py BT FEDBRAR /0N, B DCRIE 1868 2 21 3B 3R
T B AT RRER, MABKKE. ZAikE
SR A FPRE TR BT SR MR R A 2 57
K 2 o 1 REALEEIE ) FLAS AR ROR S T (A
I/ NER R R ) 1 o - po i AR DL RN Haniz i FE
AR Z BENLAZ 7% TRl DL T a6 A0 I 7 R Tk v
WA, AR RS AR o X HA

1.0

04r

02r

0.0

AutAu E,, = 0.4 GeV/nucleon

b=5fmHM
3' .'. ° .'
-.' b2 sl
PR At o " O
R T &
o ? 5 ‘ ‘ﬁg.
[ 3 “q?
'%%‘ﬂ '
b=5fm SM
e v » f: . I
o8 ‘o,":‘. .o:' w %
’,-;'o’w-' : ° °p 4o ¥
. 3 & 'w.:;:. i i e f A2
R ¢ g3 . Tt e SN .
. o oo, (2 ol LA oo,:&?w.. e #’
s o TP Ty v AR YT
AR S Y XA o TR S .
-2.0-15-1.0-05 00 05 1.0 1.5 -20-1.5-1.0-05 0.0 0.5 1.0 1.5 2.0
Yo
Bl 2 (TELEE) BEIPOE LA FHNRER T yo- p iU E

HWHFEOLN, BB CRAR, SRICE R )T
B, AT AW S 55 BE HTLBK & P ROt 25 R 52, &

FIRESTT RS 0 as R, PIIRAR A AR A5 X
K, RS HON 0 fm (58150 A EZR A O R E
X3, AL ZH0N 5 fm N H A E R g, = +1
Ao XFERINb =0 fm I, K2 HORT A2 34
BELIE, By DURE 7 (R PR JBE £ o A2 FR o PR BEBRAE, T b =
5 fm I, K2 MR T2 D ARl OEUR 2, TR 5 R
R HI R (£1).

A LA FAEUI R AR AN FPAR ST R R
T, WEEALBEIL 20 N FAF BN DA, SR

B A FAIRS T RERI I . EAR T, EEEMN DA Aol K 3 2R S HON 5 fm 1,

AutAu E, = 0.4 GeV/nucleon

0.0

=2.0-15-1.0-0.5 0.0 05 1.0 1.5 -2.0-1.5-1.0-0.5 00 0.5 1.0 15 2.0

13 (FELBRE) b=>5 fm i, AFEARETTHE T 34120 DHEAFBINE BIFEA T yo- p 0 A1

.
| b:5fmSM‘

p )

Yo

50.0
40.5
30.5
20.5
10.5
0.5



- 828 . R 7 &Y H T’

37 %

20 MHEBINERBIRT8 yo-p A . GBI,
JUE A FIREA Z 18] V&8 B ikgss (R AN RPIRAS T #E
A RERVIRA WS R 4D iR
TAEAR RS B IX 7 PR E A R R
T20MFEARIS R . BAR, IRWIRAEA RIS X

PERUI AR EE A S A, (HA2, IR REA (52
20 MR EIN) AR E X A RE, TIRRMENR
REPIRE TR LM 22 5 @IS B 2~4 WSS, FIEL
RKIL, ANERBFIE S 20 N EAFBINE 1SR R,
WRZS T RER AR LS04 B A0 22 5 AR AR AE X 0

AutAu E,, = 0.4 GeV/nucleon b = 5 fm

0.00<p,<0.05 GeV/c

0.05<p<0.10 GeV/c

0.10<p,<0.15 GeV/c

0.30<p<0.35GeV/c

0.45<p,<0.50 GeV/c

dn/dy,
| (=] — [\8) (=} — [\8) (=} —_ [\e] S — [\8) w
— T —— ——

0.35<p,<0.40 GeV/c

0.50<p<0.55GeV/c

0.40<p,<0.45 GeV/c

0.55<p<0.60 GeV/c

0 1 -2 -1 0 1 2
Yo

K4 (FEERE) AR p XRS5 EBETREE yo B A DL B SR T 20 MEA R4 R

3 HBIHEZTME (CNN) # Light GBM

CNN F Z A4 A JZ (input layer), HEHZE (con-
volutional layer), Jh{k)Z (pooling layer), 4 #% =
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Wy MANEEAR AT LR . CASRER . &
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B RT A  OREHE SR S S B . AT T 45
Bz, SN EREPRERZEEE N 128, KNS x5,
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bR AU LeakyReLU A JAL R o H% i 5 42 745 = A 4
JE2Z 08, BATIEIMN T Dropout 2. W& B $ softmax.

bRtz Ab, ASGEAER T H T & 2 ) i I
o REEZ — o An AABA 1R TH 5 (Light GBM,
Light Gradient Boosting Machine)®*. LightGBM #&
FH AR 2 | FF R ) BT 86 FE R B (GBDT, Gradient
Boosting Decision Tree) I —#i5 k. HELAHE. #
86 R FE 7% (GOSS,  Grandient-based One-Side
Sampling) Fl # — K E £ 5% (EFB, Exclusive Fea-
ture Bundling). GOSS & Zfi#Ff | Light GBM ] leaf-
wise AL BRI, VelUCEA ORI 23 R B AT 02,
38 1F max-depth SR BR #R B LA it #9145 . 10 EFB
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AT FOR 7 5 #2 % B BE AL EL 20 5 F4F (3
40 J3) HRRIZREE, 7R UITZREE h SCBENLAh B A i) 20%
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Using Deep Learning to Study the Equation of State of Nuclear Matter

LI Fupeng!?, WANG Yongjia'f, LI Qingfeng!*

(1. School of Science, Huzhou University, Huzhou 313000, Zhejiang, Ching;
2. College of Science, Zhejiang University of Technology, Hangzhou 310023, China;
3. Institute of Modern Physics, Chinese Academy of Science, Lanzhou 730000, China)

Abstract: The equation of state (EOS) of nuclear matter is essential for studying the properties of nuclei and the
evolution of universe and astro-objects. Heavy-ion collisions at intermediate energies permit creating nuclear mat-
ter with high density and temperature, by comparing transport model simulations with the corresponding experi-
mental data offers one of the most important way to study the nuclear EOS. Unfortunately, different models do
not always give the same results. In this work, a deep convolutional neural network (CNN) is used to identify the
nuclear EOS from the spectra in transverse momentum and rapidity of protons. It is found that the network can be
taken as a useful decoder to extract the nuclear EOS from the transverse momentum and rapidity distribution of
protons. By using the Prediction Difference Analysis method, the most sensitive region of the transverse mo-
mentum and rapidity distribution to the nuclear EOS can be found out, which may offer an alternative strategy for
experimental and theoretical studies of heavy-ion collisions. In addition, a gradient boosting framework (Light-
GBM) that uses tree based learning algorithms is also applied, and it is found that the accuracy obtained with the
LightGBM is similar to that with CNN.

Key words: equation of state of nuclear matter; heavy ion collisions; deep learning; convolutional neural network
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