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Lay Summary

The Standard Model of particle physics describes how three of the four
fundamental forces in Nature, i.e. the electromagnetic, the weak and the strong
forces, allow for elementary particles of matter, such as quarks and electrons,
to interact with each other via the force-carrier particles. With the discovery
of the Higgs boson in 2012, the Standard Model (SM) is currently known to be
the best theory describing subatomic particles and their forces of interaction.
However, there are limitations to SM as it cannot explain certain phenomena
such as gravitational interactions, dark matter or the abundance of matter over
antimatter in the universe, to name a few. For these reasons, Standard Model is
believed to only be the low energy limit of a more fundamental theory. Searches
for new physics beyond the SM are performed both directly at the high-energy
frontier, such as the LHC experiment at CERN, and indirectly at the precision

frontier, via experiments such as LHCb.

Charge and parity violation, is a lack of symmetry between particles and
antiparticles in the universe which may explain why the universe is made of
matter and not antimatter. The interesting structure of quark interactions in
the SM allows an asymmetry between matter and antimatter and is believed
to contain important information about physics at high energies. One of the
aims of the program in precision physics is to verify, using both theory and
experiment, whether the mechanism explaining this symmetry violation in the
SM is correct. Of particular interest is the heavy quark sector, where there are
possible tensions between SM predictions and the experimental data. Lattice
Quantum Chromodynamics (LQCD) is a major theoretical tool that, amongst

other applications, allows for probing the dynamics of heavy quarks at low



energies, using numerical simulations.

There are two mains parts to this work. The first part develops better
theoretical techniques for extracting numerical results from the simulations; in
particular with relation to heavy quarks that are nowadays being simulated on
the lattice more easily given the computational technology. The second part
involves measurements of observables such as masses and decay constants of heavy
particles, in order to compare the theoretical predictions with the experimental

results, in search of any possible tensions.
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Abstract

The Standard Model of particle physics is believed to be only the low energy
limit of a more fundamental theory. In order to determine its range of validity,
a major part of theoretical and experimental efforts in physics is dedicated to
precision tests of the Standard Model. Lattice QCD is a non-perturbative, first-
principles approach to Quantum Field Theory. It plays an important role in
flavor physics by providing calculations of non-perturbative strong interaction
contributions to weak processes involving quarks. Measurements of hadronic
quantities can be used to constrain the Standard Model as well as theories Beyond
the Standard Model.

The first part of this thesis contains theoretical developments regarding non-
perturbative renormalization. A new renormalization scheme, RI/mSMOM, for
fermion bilinear operators in QQCD at non-vanishing quark mass is presented.
In order to investigate the properties of the mSMOM scheme, an explicit one-
loop computation in perturbation theory using dimensional regularization is
performed. Numerically, vertex functions are generated on the lattice, with an
appropriate projector, based on the RI/SMOM scheme and the renormalization
factors are extracted. Quantities measured include renormalization of the axial
current Z 4, required to renormalize the axial current entering the computation
of the decay constant and the renormalization of the bag parameter.

The second part of this report focuses on flavor physics phenomenology on
the lattice. It presents results of the first run of the RBC/UKQCD charm project
with (2+1)-flavor Domain Wall fermions. Observables and matrix elements are
measured on lattices with Iwasaki gauge action. There are two ensembles at the
physical point with inverse lattice spacings 1.73 and 2.36 GeV and a third finer
ensemble at 2.76 GeV as well as four other auxiliary ensembles with smaller

volumes and heavier pion masses which are used to perform the continuum
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extrapolations. The quantities measured in the region of the charm quark mass
are meson masses, decay constants, the matrix element of the Oy, 44 operator,

the neutral D-meson mixing parameter B and the SU(3) breaking ratio &.
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Chapter 1

Status of the Standard Model

1.1 Introduction

The Standard Model (SM) of particle physics is a description, based on quantum
field theory, of strong and electromagnetic interactions at energies of order 1 TeV.
With the discovery of the Higgs boson in 2012, SM has proved to be a highly
successful theory. However, there are limitations to SM. For example, SM does
not account for dark matter, gravitational interactions, the hierarchy problem or
matter-antimatter asymmetry in the flavor sector. These issues have led us to
believe SM should be viewed as an effective field theory (EFT) at the electroweak
scale. On the other hand, not having observed any significant indications of New
Physics (NP) at high energy colliders, so far, has imposed real challenges in
finding deviations from SM predictions. In the case of the matter-antimatter
asymmetry, the sources of CP violation provided by the SM do not fully explain
the large dominance of matter over antimatter in the universe. CP violation is
one motivation for this thesis and is addressed further in the coming chapters.
Flavor physics plays an important role in probing the limits of SM and
providing constraints for Beyond the Standard Model (BSM) theories. Absence
of deviations from the SM at TeV scale at the high-energy frontier, makes this
role even more prominent. Precision measurements of the flavor sector can give
access to physics at higher energy scales, of order 200 TeV or higher, by indirectly
searching for signatures of NP. Such experiments are complementary to direct
searches at the LHC, which was designed to have maximum collision energy of

14 TeV [I]. Precision, however, is required on both theoretical and experimental



1.2. Flavor physics and CP-violation in SM

fronts in order to resolve possible tensions between SM predictions and the data
[2H4]. On the theory side, higher order perturbative QCD calculation are being
performed for high energy scales while lattice QCD using dynamical fermions is
being used as non-perturbative, first-principles method for obtaining hadronic
quantities. These quantities include pion, kaon, D- and B-meson masses, decay
constants, form factors and particle-antiparticle mixing parameters which are
then used in determination of CKM matrix elements, allowing to further constrain
SM and BSM theories. Other measurements include, the electric dipole moments,

(g9 — 2), and the strong coupling constant o, [5].

This report focuses mostly on the heavy sector of flavor physics, in particular

D-mesons masses, decay constants and mixing parameters.

1.2 Flavor physics and CP-violation in SM

Before discussing flavor physics experimental and theoretical research currently
being carried out, it is worthwhile recalling the fundamental ingredients of the
flavor sector of the SM. These are required for describing CP-violation within the
SM.

1.2.1 The Standard Model Lagrangian

The gauge interactions in the SM are given by the gauge symmetry group
SU(3).xSU(2), x U(1)y which is spontaneously broken, by the non-zero vacuum
expectation value (VEV) of a Higgs scalar particle, to SU(3). x U(1)gy. The SM

Lagrangian reads as follows:
ESM = Ekinetic + EHiggs + ‘CYukawa' (11)

This is the most general, Lorentz and gauge invariant Lagrangian consistent with
nature in terms of particle content, gauge symmetries and the mechanism for
spontaneous breaking for the symmetry which gives rise to masses for heavy
gauge bosons and fermions. In SM, there are three generations of quarks and

leptons. With regards to electroweak interactions, the left-handed quarks and
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leptons are SU(2);, doublets:

. Ve v, Vr A U c t
L/L = ) ) and Qz = ) Y
e 0 T d s b
L L L L L L
(1.2)
The respective right-handed fermions, u% = (u,c,t)g and di% = (d,s,b)g,

transform as singlets under SU(2), and do not couple to the weak interactions.

For example, the kinetic part of the Lagrangian for left-handed quarks takes the

form:
o i ) _
£(QL) = Qi (au + 59.GiNa+ 5gWioy + ig Yo B )@JQL]- , (1.3)
—_—— ~- v
QCD Electroweak

where the hypercharge Yy = 1/6 for left-handed quarks, A,/2 are 3 x 3 Gell-
Mann matrices for triplets and 0,/2 are 2 x 2 Pauli matrices for doublets. G* are
eight gluons, W}' are three weak interaction bosons and B* is the hypercharge
boson. ¢;; is explicit to emphasise that this term is proportional to the identity
matrix in flavor space i.e. its interactions are flavor universal. A similar equation
holds for left handed leptons, but the main difference is that leptons do not
couple to gluons. Here, we restrict ourselves to terms containing quarks. The
SM Lagrangian is symmetric with respect to C'PT, i.e. the combined discrete
symmetry transformations, parity P, time-reversal T" and charge conjugation C.
Moreover, the part of the Lagrangian shown in Eq. is CP-conserving. The
Higgs potential term,

Liiiggs = W H'H — N(HTH)? | (1.4)
is also CP-conserving, where,

H+

HO
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is a complex doublet. On the other hand, the quark Yukawa term,

—L1 = Y;?QLZHdRJ + Y;;-LQLZ'I:IUR]' + h.c. y (16)

Yukawa

is flavor dependent and CP-violating. This is explicitly discussed in the next

section. Note that the indices ¢ and j refer to the 3 different generations, H =

q

I , .
io0oH* and Y;;’s are 3 x 3 Yukawa matrices. L3, wa

SU2) x U(1) [6-5].

is invariant under SU(3) x

1.2.2 The CKM matrix

Within the SM, mass for fermions and gauge bosons is generated via spontaneous

breaking of the SU(2), x U(1)y symmetry. Minimizing the Higgs potential,
Vg = —p*H'H + N(HTH)? | (1.7)

gives, apart from the trivial solution (H)y = 0, the non-trivial solution

v? 2
(H'H)y = — with ov=4/% - (1.8)
2 A
Therefore, after symmetry breaking, i.e. when H acquires a vacuum expectation

value

0
(H)o = (1.9)

o h(zx)

where h(zx) represents fluctuations around the minimum v. Focusing only on the

terms including v, Eq. contains the quark mass terms:

L = —dy Y+ =

V2 V2

where the equation is written in matrix form, with the up- and down-type quarks

upY"ug + h.c. | (1.10)

denoted by uiL/R = (u,¢,t)r/p and diL/R = (d,s,b)/r. These mass terms can be

diagonalized using unitary matrices S¥, S¢, S% 5% such that

Md = SJZLYdeR and Mu = SlLYuSuR s (111)
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where the matrices M, and M, are diagonal. The states then transform as follows:
ur, = Sjur , ur — Spur , dp — SzdL , dp — Sf%dR . (1.12)

Therefore the Lagrangian in Eq. in the mass basis reads,
—L,, = dpmydg + tymuup + h.c. | (1.13)

where my = v/v/2My, m, = v/v/2M,. More explicitely,

m,=| 0 m, 0 , mg=|0 m, 0 |- (1.14)
0 0 my 0 0 mp

This change of basis modifies the kinetic term, Eq. for left-handed quarks
that was written in the flavor basis. Note that hypercharge interactions are flavor
diagonal and remain unaffected. On the other hand, the off-diagonal element of
Wiop, i.e. W' and W? do mix the up- and down-type quarks in the doublets Q".
Defining,

_ WhEaw?

w* ,
V2

(1.15)
the off-diagonal terms can be written as

5 9 w1 2 _2)5 ,:L*,Jr.*._-
Qrigy (WMU +Wyo )%Qm \/§g<uLZW dri + W uL’)' (1.16)

Under transformations in Eq. [1.12] this takes the form,

1 i - Gy —
Eg(ﬂu (SlLSdL) jW+dLj +dy; (SJ;LSuL> ]W uLj> (1.17)
1 . _ o
:Eg<aLiVUW+dLj +dp (VYW uLj), (1.18)
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where V = ST, S,; is the Cabibbo-Koboyashi-Maskawa (CKM) matrix:

Vud Vus Vub
Vekn = | Vg Vs Vi |- (1.19)
Vie Vis Vi

Parameter counting allows us to indicate the source of CP-violation in the SM. A
general unitary matrix has 9 real degrees of freedom. The mass matrices remain
invariant under global U(1)® transformations similar to Eq. . More explicitly,
taking S,; = Sur = diag(e’,ei2 e'3) and Sg; = Sqr = diag(e, e, ),
there are 6 independent transformations that leave the mass matrices in Eq.
invariant. For the kinetic term, if V' is redefined as V;; — ei(—aﬁﬁj)vij, these
transformations can be used to eliminate phases in V. Only five phase differences
—a; + f3; are independent, leaving 9 — 5 = 4 degrees of freedom for V. Now,
if V' were real, it would have been a rotation matrix O(3), with three degrees
of freedom. Therefore, the matrix V' has four degrees of freedom consisting
of: 3 angles, denoted by 65, 053, 013 corresponding to rotations in the ij-flavor
space, and 1 complex phase denoted, by ¢ [§]. It is precisely this irremovable
phase that allows for CP-violation in the SM. This can be shown more explicitly
by observing the CP-violating term in the kinetic part of the Lagrangian,
fLLW+VdL+JL(VT)W_uL. Under CP, Appendix the terms in the Lagrangian

transform as follows:

’&L’}/'udL —C;P—> —dL’y“uL, (120)
diytu, S5 —agytdy,
cp _
wr == =W,
yielding overall,
aWhtvd, + & Vhu, L @ VTup +a Wt v, - (1.21)

In other words, CP-invariance requires V* = V| which cannot be the case for
non-vanishing complex phase §. It turns out that in order to have CP-violation
in the SM, we must have 615,053,613 # 0 or 7/2 and 0 # 0, 7.
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The CKM matrix can also be parameterized as follows:

@0

C12C13 512€13 S13€
— 0 0
Vekm —812C23 — C12523513€ C12C23 — S12823513€ S23C13 | ° (1'22)
o s o i6
512523 — €12€23513€ C12523 — 512€23513€ C23C13

where s;; = sin(6;;) and ¢;; = cos(6;;) with s;;, ¢;; > 0. The convention, known as
the standard parameterization, is chosen to agree with PDG (2016) [9] and it is
not independent of the phase convention. An alternative way of writing the CKM
matrix, known as the Wolfenstein parameterization can be used by defining four

other parameters A\, A, p,n such that:

S12 = )\, So3 — A)\Q, 813671.6 = A)\S(p — ’ln), (123)
p= o1 cos(d), mn= o1 sin(d) -
512523 512523

The reason behind this choice is that experimentally, it was found that si3 <
S93 K S12. In other words, mixing becomes smaller if one moves away from the
diagonal. This hierarchy can be viewed more explicitly by rewriting the CKM
matrix in Eq. in terms of parameters in Eq. and expanding each element
of the matrix in powers of A\. At order O(A*) the matrix takes the form:

1—X2/2 A AX3(p —in)
Vekw = Y 1—A2/2 a2 +O(\) - (1.24)
AN(1 —p—in) —AN? 1

There is another advantage to this parameterization. In its exact form i.e.
without any expansions in A, the unitarity condition of the matrix can be viewed
graphically as a unitarity triangle in some complex plane. More explicitly,
unitarity implies that the rows and columns of the CKM matrix are orthonormal.

For example, taking the standard choice,

ViV + VeV 4+ VigVis = 0 - (1.25)
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This equation states that three complex numbers are added to give zero. Dividing

through by the best experimental measurement of these quantities, V.4V, we get,

VuaViy n VeaVay,

+1=0"- 1.26
ViV, TVl (1.26)

Taking p and 7 are a reparameterization of p and 7 in such a way as to ensure

the relation

Vud u*b
)
VeaV},

pHin=— (1.27)
is independent of the phase convention [9], the triangle can be represented on the
p — 7 plane as in Fig. 1 [I0], with one side having unit length. Geometrically,
phase transformation correspond to the triangle being rotated in the p — 7
plane. Since the sides and the angles of the triangle remain invariant under
these transformations, they are independent of the phase conventions and hence

correspond to physical observables that can be measured by experiments [11].

A=(p,0)

C =(0,0) B =(1,0)

Figure 1.1: Unitarity Triangle in the p — 7 plane.

1.2.3 Leptonic decay constants

In this section we discuss how certain CKM matrix elements can be extracted,
given experimental measurement of branching fractions and precise theoretical
determinations of hadronic matrix elements. In our case, the focus is on leptonic
decays of D and D, mesons via charged W-boson exchange. The relevant matrix
elements under consideration are then V., and V.., which can be use to test the

unitarity of the second row of the CKM matrix.

In the SM, the decay constants fp and fp, are related to the branching ratios
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for leptonic decays via:

G%«“|chPTD m?
(s) p2 2 l
B(Dy — lu) = —— fbymi mp, (1- e (1.28)
(s)
where V,y = Viq, Voo for D and D, mesons respectively, D, is the D(,) meson

lifetime, and G is the Fermi coupling. The branching ratios on the left hand side
are measured experimentally, and later combined with results for meson masses
mp,,, and decay constants fp  from the lattice to extract the matrix elements
V.q and V. On the lattice, the decays constant fp and fp, are computed using

the axial current matrix element

(01A%, | Dq(p)) = ifp,PD, - (1.29)

with ¢ = d,s and AL, = ¢y,759. A major part of Chapter {l is dedicated to the

lattice computation of D and D, mesons masses and decay constants.

1.2.4 Neutral meson mixing

This section starts with a general formalism for neutral meson mixing, M° <> M.
Even though the formalism in describing mixing in neutral meson is similar, the
CP-violating phenomenology related to specific systems, i.e. kaon, D- and B-
mesons is very different. This is mainly due to the fact that these systems exhibit
different decay rates and oscillation. The details particular to each system are

discussed in the subsequent sections.

Let H be the effective 2-by-2 Hamiltonian for SM written as:
Hg = HQCD+QED + Hy (1.30)

governing the time-evolution of the two-state system

(1)) = = a(t)| M) +b(t)[M1") , (1.31)

which is the superposition of the eigenstates of Hqcpiqep, i-e. |[M?) and |MO>,
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being neutral mesons. In the absence of the electroweak interactions Hy,, the

Hamiltonian H takes the diagonal form:

mpo0 0
H— M= : (1.32)

0 mﬂo

with mpp = myo and the off-diagonal element being zero to preserve flavor
conservation. However, when electroweak interactions are present, flavor is
no longer conserved and quark mixing can occur. Therefore, the off-diagonal
elements of H.z are no longer zero and are associated with flavor changing
transitions M° <> M°. As well as that, weak interactions are responsible for
decays, forcing the Hamiltonian to be non-Hermitian, otherwise H.g can only
take into account oscillations and not decays. Requiring the above properties,
the two-state Hamiltonian H.g¢ can be written as:

Hy; = M;; — %Pij : (1.33)
where both matrices M and I' are Hermitian. Hence, the time evolution of the
state [1) is described by:

i) = (M- 20 () (1.34)
so that,
[(6)) = e ™20 (0)) - (1.35)

The effective Hamiltonian H.g in Eq.[1.30} to second order in perturbation theory

can be written as:

(MD|Hyw M) 1 (M| Hyw |n)(n| Hw| M)
Mg + Mg Z O _ 5 .. +
my, n 1 1€

n

HZV = mM(Sij -+
(1.36)

The mass-diagonal term, mysd;;, corresponds to Hgcep4+qep part of the Hamilto-
nian, taking into account the fact that M and " have the same mass, mys. The

second and third terms contribute to both diagonal and off-diagonal elements and

10
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correspond to the weak part of H.g. Note that E,, is the energy of the intermediate

state |n). Using Cauchy’s theorem,

1
—— X =P —imo(E, —w), 1.37
w— by, +ie (w—En) Zu (137)
N————— width term

mass term

where P (wan) is the principle value. Then, the off-diagonal elements become,

MO HAF:Z MO 1 MO HAF:I HAF:I MO
My = ORI | Lo OO il 0T |
2m 2my 4 m\Y — B,
(1.38)
and
1 -0
Ty = mzn}M%HW]n)(n\HmM V218 (B, — may) | (1.39)

where the first term in Eq. describes mixing between M and M with
change in flavor AF = 2. For example, for kaon mixing the operator would be
AS = 2 and for B-meson mixing it would be AB = 2. If the intermediate states
|n) are light, they can lead to long-distance contributions. The structure of the
matrix element (M°|HE" =2|71°), for the explicit cases of K, D and B mesons,

is discussed in the upcoming sections.
Returning to the Hamiltonian of Eq. [1.33] due to C'PT, we have Hy; = Ho
and Hy = Hj,. This allows us to write My; = Mss =m and I';; =T =T On

the other hand the hermiticity of M and I' implies My, = M7, and I'yy = I'},.

This gives the general form:
M--T= , (1.40)

for complex A, p?, ¢>. Under C'P the state transforms as

CP|M°) = nop| M), (1.41)

11
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where n¢p is a phase such that |pcp|*> = 1 and is allowed to be chosen. Here the

convention is nop = —1. If CP-invariance is assumed,
(M°|Hy | M"Y = (M°|(CP)"'CP Hy (CP)"'CP[M’) = (M°|Hy|M°), (1.42)

which yields p = ¢q. Given then M and I' are hermitian, it implies Mj, and I'y5
are real. However, this is not the case in reality since nature is not CP-invariant.
Therefore, to measure CP-violation one has to take into account the imaginary
parts of Mj, and T'2. Diagonalizing the matrix in Eq. [1.40] the mass eigenstates

are written as,

1
M) =

2 /Ip]? + g)?

My — i
P =2z, (1.44)
q My — 51,

For CP-violation, § # 1. Let us denote the two eigenvalues by m; — %Fl and

(plar®) g1, (1.43)

and

mo — %1}. Computing the eigenvalues and taking the difference between them we

get:
1
i 1/2 i 1/2
22éRM12 - i%F12 5 (147)

where the last approximation is valid if CP-violation is small, i.e. M9 < KM
and 3Ty < KI5, In other words,

Am=mqy —mo ~2RM, , AI'=T1y—-T7~ 2RI, (1.48)

Taking Am > 0, |M;) should be taken to be heavier than |M). Now, given
Eq. with ncp = —1, we can define the even and the odd CP eigenstates,

12
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|M?) and |M?):
CP|Mg) = [ M) | (1.49)

as a linear combination of the flavor eigenstates |M°) and \MO) states, i.e.
1
V2

If CP were to be conserved, i.e. (p = ¢), one would have [My) — |M?) and
|M;) — |M°) which are defined by,

M) = —=(1M°) % [71°) ) (1.50)

M) = 012 = — (130 7 (31", (1.5)

and are consistent with Eq. [1.41] In Nature however, |M2) are not pure CP-
1

eigenstates, since it is broken by the weak interactions. Since M° and M’ mix

under weak interaction, using Eq. [1.43, Eq. and Eq. one can write,

[My) :ﬁ(a e MO) £ (1 — g)|M°>) (1.52)
1 0 e MO
:\/?IGIQOMHFH M i)), (1.53)

where € is a small complex parameter such that,

e
s (1.54)
q

T 1-¢
Solving for € and using Eq. one can derive explicit expressions relating the
physical eigenstates, |M;) and |M>) to the flavor eigenstates |M°) and |M0>.

MO’ mixing can be observed experimentally. To obtain the time evolution

we start by writing the flavor eigenstates in terms of the mass eigenstates using
Eq. as:
pl* + g 770 pl* + g
a0y = VPN gy i)y = YL gy ),

2p 2q
(1.55)

13
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Then, the time-evolution of the flavor eigenstates is written as

() =L (3, 0) + o) (1.56)
_ VPP * ol |p|;p+ 9E (cmimiemritpy 4 cmimate o)) (157)
Substituting again for |M%> using Eq. [1.43| gives,
MO(t)) = g (£)| M°) + ]%g (t)[31°)- (1.58)
Similarly,
(1)) = §g<t>|M°> + g4 (H)[M"), (1.59)
with
g+ :% (e‘rltﬂe—imlt + e_FQt/Qe_im2t>. (1.60)

Therefore, the probability amplitude, P(M°(0) — MP°(t)), of starting with a pure
|MP) state at time ¢ = 0 and being at state M°(t) at some later time ¢, is equal
to |gy|?. Similarly, the probability amplitude, P(M°(0) — Mo(t)), of starting
with a pure |M?) state at time ¢t = 0 and being at state Mo(t) at some later time

t, is equal to |g_|*>. These probability amplitudes can be written as:

Tt AT
lg+|? = 62 (cosh (Tt> + Cos(Amt)), (1.61)

where Am =my —mg, AT =Ty — T, m = (m; +my)/2 and T = (I'; + 1) /2.

In general, there are two main types of contributions to mixing. One can

write,

AMigpeory = (AM)fory + (Am) i (1.62)

theory”

14
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The first term, i.e. the short distance component is

(Am)SP, . = 2R(MO|HE (1) M) - (1.63)

theory —

In the equation above, HP° can be written as:
Hp™ = C(n)0> =2 (u) (1.64)

where the change in the change in the particular fermion number is equal to two
for MO — M mixing. C(u) is the Wilson coefficient at a given order in QCD
perturbation theory, which is specified in the same renormalization scheme as the

operator O*F=2. The operator O*F=2, is a local four-quark operator. Specific

cases for kaons, D” and B” mesons are discussed in Sec. and Sec. [1.2.7
Generically, the short distance contribution (Am)§,,, can be represented by
box diagrams similar to Fig. and Fig. . It has been shown in Ref. [12],
that the formal way of integrating out the W bosons explicitly via the path
integral formulation leads to the same answer as writing down a 4-fermi effective

Hamiltonian.

Even though the formalism for meson mixing mentioned above is similar for
all neutral mesons, K°, D° B° and BY?, the different masses and weak coupling
strengths results in very different phenomenology, some of which are discussed in
the following sections. Chapter [ of this thesis focuses on the lattice computation

of such contributions to meson mixing.

1.2.5 Mixing in kaon systems

In the case of neutral kaons, MY and My are denoted by K and Kg which stand
for “long” and “short”, referring to their respective lifetimes. The ratio 7 /7g ~
571. If C'P was conserved, Kg, being a C'P-even state according to Eq. and
Eq. [1.51], would only decay to a C'P-even state i.e. 7w while Ky, being an odd
state, would only decay to the C'P-odd state mmm. Since the available phase for
final state of the former process (myx — 2m, =~ 220 MeV) is greater than that
of the latter (myx — 3m, ~ 80 MeV), Kg has a much shorter life-time than K.
However, Kg and K}, are not pure CP-eigenstates. Therefore, any observation of

Kp =~ K_ + éK,, decaying into a 77 states is a measure of CP-violation. This

15
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can be seen experimentally in Fig. |[1.2|[13], of the decay rate vs time in units of 7,
the life-time of K. The experiment starts with kaons in K° and K states, and
a fast decay to mm corresponding to Kg even-state. Given the short lifetime of
Kg, waiting long enough will result in Kg to have decayed away and one expects
to detect only w77 states corresponding to a pure K, state. However, w7 states
are also detected, which can only corresponding to transitions K; — 77 implying
CP-violation. This is known as indirect CP-violation and was first observed in
1964 by Fitch and Cronin where they observed 45 decays of K — 77 in a sample

of 22700 kaon decays a long time away from the production time [14].

Figure 1.2: CPLEAR experiment: Decay rate vs time in units of 7,. The open
circles correspond to kaon that started as K°, the closed circles correspond to
kaons that started as K.

Eq. can be used to plot the respective probabilities, P(K°(0) —
K°(t)) or P(K°(0) — Fo(t)), of starting with a beam in pure |K°) state at t = 0
and ending up in either |[K°(¢)) or |F0(t)) at time t. See the left hand plot in
Fig. 1.3 where the probabilities are plotted against time in units of 7g, assuming
CP-symmetry. Here, the values for Am, AI' and I" are taken from PDG as an
input to show a comparison between the probabilities. After a few Kg life-times,
one would expect all the K, to have decayed, leaving a K state which is half
|K°(t)) and half |F0(t)>. This is indeed observed in the plot, the probabilities

reach an equal value at large t/75. These probabilities can be used to construct the
P(K°5K9)—P(K°5K")
P(KO—K%)+P(KO—K")
as above is plotted below, on the right hand side of Fig. [[.3], again assuming no

asymmetry ratio . The probability for the same input values

CP-violation.
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P
10 Asymmetry
1.2
08 1.0
0.8
06p — P(K° - K
Y 0.6
[ P(K° - K))
04 04  P(KY— K% — P(KY - K"
P(KY — K% + P(K0 - &)
02f —— 02
.......... . .
10 15 20 /T‘
1 1 1 1 1 t/Ts
0 2 4 6 8 10 -0.2

Figure 1.3: The plot on the left shows probability amplitudes P(K 0t =0) —
Ko(t)) and P(Ko(t =0) — Ko(t)). The plot on the right, uses these ingredients

P(K°—>K%)—P(K'>K")

to construct the transition probability asymmetry fraction, PO KO) 1 PKO—T)

Both plots assume no C'P violation ¢.e. p = ¢q € R-

In fact, Am is computed experimentally as a fit parameter of data measuring
asymmetries in decay rates as a function of time. The result by CPLEAR allowing
for CP-violation in the fit, are presented below in Fig. [I.4, CP-violation is also
measured experimentally using such asymmetry ratios, with the form chosen in
such as way as to optimize this measurement [I5]. It was observed that, at large
times, K mesons decays more often to 7~ e*7, than to 77e v, with the decay

rate asymmetry of 0.3% [9).

é0.7 T
.
|
.
05 |
E 1
E e
04 |
Lo
03 - |
Eo
02 \
?
o1
[ . . :
I \ DO . . . X
(U q... aget-ty o g™, b“—’od"c. RN %%
. o
-0.1 E -..J!M‘ L , . [

10 15 20
Neutral—kaon decay time [14]
Figure 1.4: CPLEAR experimental results of the asymmetry ratio A vs ¢ in units

of 7,. The data is fitted to the theoretical prediction to obtain the value of Am,
using C'PT only.
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1.2.6 Short-distance contribution to kaon mixing

Returning to the theoretical description of the short-distance component of Am,

Eq. [L.63]

(Am)SD = 2R(KO|HLK), (1.65)

theory —

where to lowest order in electroweak theory, the contributions to K°® — K

oscillations arise from box diagrams presented in Fig. Calculations regarding
the long-distance contributions i.e. the second term in Eq. affecting the
dispersive part Mi,, and Eq. affecting the absorptive part I'y5, are not the
focus of the discussion here but are available in the literature e.g. [I6H19]. Fig.|1.6

shows these long-distance contributions via on-shell states.

d W 3 d 6,c,% 3
u,c,t A Y u,c,t 17,74 § § W
s W d s u, ¢t d

Figure 1.5: Box diagrams contributing to K° — e mixing.

KO 70, m,n KO KO KO

Hyy Hyw Hyy Hy
Figure 1.6: Long-distance contributions to K° — K mixing.

It is more common to write H.* as a AS = 2 operator, hence in the form
* -0 =
omp My = (K| HAS 2 KO). (1.66)

The above matrix element is computed using operator product expansion (OPE),
where one can factorize perturbative and non-perturbative effects. At a given
order in QCD perturbations theory, the Wilson coefficient C'(p) is computed using
the same renormalization scheme as the non-perturbative part, hence having the

same scale and number of flavors. Explicitely,

(K| Hy ()| K°) = C(u) (K" |Q45=(1)| K°), (1.67)

18



1.2. Flavor physics and CP-violation in SM

where the operator

Q7% = [57,(1 — 75)d][57u(1 — 75)d] = Ovviaa — Ovatav . (1.68)

is the four-fermion operator. The matrix element of the operator between the
mesonic states K° and KO, needs to be computed non-pertubatively on the lattice.
The loop integration for such box diagrams can be computed exactly. In the limit
that external momenta and external quark masses as well as mass of the up quark

go to zero, and pu < m,, the result can be written as [5]:

G203,

770 17AS=2| 770\ __

2o + N So(i)is + 20 AeSo(e, )|

(1.69)

() { [ a0 (32 2) } (RIQR5 ()| + e

In the above, G is the Fermi coupling, My is the W-boson mass and A\, = V"V,
with a = ¢,t. The functions Sy(z.), So(x;) and So(z.,z;) where x, = m?/M3,,
xy = m?/M3,, are the Inami-Lim functions [20] expressing electroweak loop
corrections without QCD corrections. Note that the most important contribution
to Am comes from the c-quark. This is because even though m? is large,
the factor |ViVia|? ~ A° according to Eq. [1.24] which is very small whereas
|VesVed|?> ~ X. The subscript R in gg(p) and Q3°72(u) is written to indicate
these quantities represent the renormalized coupling and the renormalized 4-
fermi operator in a given renormalization scheme. Typically this is chosen to
be the naive dimensional regularization (NDR) of MS [5]. 71,72, 73 contain QCD
corrections to the diagrams, explicit expressions can be found in [21H23]. The /-

and - functions are define in the usual sense

dgr dQ&>=?

g = Blgr) Y —(gr)QR" (1.70)
f— g3 J— g5 —_— . s e
B(g) = —bo (ar)? B (A (1.71)
— 92 g4 ..
7(9) = (12 +mn L +
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1.2. Flavor physics and CP-violation in SM

Explicit expression for fy, 81,7, 7 can be found in [5] for different numbers of
flavors Ny. Eq. is valid for Ny = 3.

The physical amplitude between the initial and final states cannot depend on
the scale p. As a result the dependence on the scale, p, must cancel between the
Wilson coefficient and operator (K |Q45=2(11)|K°). In lattice computations, it is
more convenient (see Sec. to express <FO]Q§S:2(M)\K ) in terms of the bag

parameter, By, defined as,

(K'|Q35=2(n)|K°)
S f2m3,

Br(p) = , (1.72)
where fx and mpy are the decay constant and mass of kaon respectively,
which can both be determined using lattice computations. The four-quark
operator (FO\Q%S:Q(;L)]K %) is renormalized in some regularization scheme such
as RI/SMOM non-perturbatively. The result is converted, via one- or two-loop
perturbative matching, to more commonly used schemes such as NDR-MS, or the

Renormalization Group Independent (RGI) scheme in which

B (934(:)2) e exp { /0 i dg (% + %) } Br(p)  (1.73)

is independent of the scale. At NLO in perturbation theory,

() B o

The details of the renormalization of operators on the lattice is discussed in
Chapter [2|

The computation of the kaon bag parameter is an ingredient required for the
measurement of CP-violation in K° — K" mixing which imposes a constraint on
the apex of the unitarity triangle, shown in green in Fig. [1.7] corresponding to
the approximate hyperbolas shown in green, ex. €k is the indirect CP violation
parameter of the neutral kaon system and receives its dominant contribution from
indirect CP violation via state-mixing. Therefore, computing the bag parameters

is a crucial ingredient in determining ex [24].
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Figure 1.7: CKM unitarity triangle in the p — 77 plane, by CKMfitter (2016).

1.2.7 Mixing in D and B systems

Experimentally, BY — Eg and B? — ES mixing were discovered by the Argus
experiment in 1987 [25] and the CDF collaboration in 2006 [26] respectively.
There are many possible decay modes for these systems. As a result I' is very
large as compared to the kaon system and so AT'/T" is small. For the BY system
[9] we expect mixing via oscillations rather than decays, taking AI' = 0. The
asymmetry between the probabilities P(B%(0) — B%(¢)) and P(B°(0) — Eo(t))
can again be constructed, by writing the probability of starting with a pure | B%)
state at ¢ = 0 and ending up in either |B%(¢)) or ]FO(t)) states at time ¢:
P(B} = BY) — P(B} = B,)

= cos(Amyt)- (1.75)
P(BY — BY) + P(B? — By)

This corresponds to the plot in Fig. [1.8] which is an oscillatory function such that
Amy is the frequency of oscillation. In fact Amy is determined experimentally
by measuring the oscillations frequency of the asymmetry ratio. An example
plot below shows the data by the BaBar experiment in 2001 where oscillatory
behaviour is observed and then fitted to determine Am, [27H29]. The most recent

results by the LHCb collaborations of Am, obtained using the asymmetry fraction
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1.2. Flavor physics and CP-violation in SM
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Figure 1.8: Transition probability asymmetry fraction,

assuming no CP-violation i.e. (p = ¢q) € R.
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Figure 1.9: Time-dependent asymmetry for B° — EO, fitted to determine Amy.
The x-axis label |At| refers to the time difference between two B-meson decays
inferred from the distance between their decay vertices along the beam line.

similar to Eq. can be found in [30]. CP-violation in B-mesons was reported
by Belle and BaBar collaborations in 2001 [31} [32] and the precision has been
improved since, with experiments measuring C'P both indirectly via mixing and

directly via decays.

Mixing in By and B; systems is dominated by short-distance contributions.
The reason for this is that the dominant weak coupling of the b quarks is to the
t quarks in the box diagrams, shown in Fig. is proportional to the square
of the mass of the intermediate quarks. As a result, B — B mixing is dominated

by the top intermediate state.
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Figure 1.10: Box diagrams contributing to B® — B’ mixing.

The transition amplitude, in a similar way to Eq. [1.69] can be written as

— _ G2, M2 2\ —70/(260)
(B2 BY) === (X2, Sole)man) (ng;(ﬁ ) ) (1.76)
gr(p)
’7(9) "o 501 ¢ 0
X exp { [ (50 ﬁ)} (B|Q4(0)|B") + hc.

where Q%(u) is the four-fermi operator and 7,5 contains short-distance QCD
corrections [21]. Note that Ay, = Vj;Vi. The other symbols have their usual
meanings. In a similar way to Bgx in Eq. [1.72] the bag parameter for the B-
system is

—0

(B,|Q%(1)|57)

BBq (:U“) = gf%mQB ’ (177)

Given this definition, the SM prediction for the Bg mass difference is written as

2 2
o GFmeBq

Amq - 672 |)\tq‘2SO(xt>772Bf]23qBBq’ (178)

where éBq is the renormalization group invariant (RGI) B parameter, which at

2-loops takes the form

b <gR<u>2)‘W‘”°> {1 L IR’ [mo — fon

T (4m)2 202

} }Bqu)- (1.79)

Given that Amg) are known experimentally from the oscillations frequencies
mentioned above, and the lattice calculation provides measurements of fp and
Bp,, Mg can be determined from Eq. [I.78 Lattice calculations of the flavor
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1.2. Flavor physics and CP-violation in SM

SU (3)-breaking ratio

IB.\/ BB,
_ BV OB 1.80
§ TN (1.80)

from which |V;4/Vis| can be extracted due to Eq. and Ay = Vi Vi, yields a
more precise result than the individual bag parameters. This ratio also has an
added advantage that for certain lattice fermion formulations, such as the Domain
Wall fermions (DWF), the renormalization factors cancel between the numerator
and the denominator and can be dropped. The determination of |V;y/Vis| via

this ratio, is used to constrain the apex of the CKM triangle corresponding the

orange circle in Fig. [I.7

Experimentally, charm D° — D’ mixing has been observed in recent years
[33]. However, since short- and long-distance effects presented in Fig. [I.11| and
Fig.|L.12|respectively are of the same order of magnitude, it is difficult to calculate
SM predictions for the mixing parameters Amp and AI'. The reason the short-
distance effects in this case are smaller is the following. The mass of the heaviest
quark my in the box diagram of Fig. [1.11]is not large enough to compensate for
the corresponding CKM matrix elements |V, Vip|? ~ (A*)? according to Eq. [1.24]
This implies that the light quarks dominate the mixing, which are of order
|VisVes|?m? ~ A*m? in the box diagram, resulting in small mixing parameters.
Therefore, the purpose of searches for D° -’ mixing is mostly viewed as a probe
for new physics rather than a method for constraining the CKM parameters. CP-
violation effects within SM are expected to be very small. As a results, observation
of CP-violation in these systems at a higher level than O(1073) indicates signals
for new physics [9]. There will be a programme dedicated to charm physics in

the upcoming Belle IT experiment [34].

c W U c d,s,b U
—)—/\/\/\/—>— > - >

d,s,by Ad s, b W w
—(—/\/\/\/—(— < — <t

i W ¢ i d,s,b g

Figure 1.11: Box diagrams contributing to D° — D’ mixing.
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Figure 1.12: Long-distance contributions to D° — D’ mixing.

1.3 Examples of anomalies in the flavor sector

To emphasize the role of probing the flavor sector, in this section we mention
examples of current important anomalies present in this sector, such as Lepton
Flavor Universality (LFU) ratios Rp, Rp«, Rk and Rg+. We do not go into much
detail as these particular anomalies, arising from semi-leptonic decays, are not
the subject of this thesis.

Lepton flavor universality in the SM refers to the equality of the electroweak

couplings of different flavors of leptons. The LFU ratios are defined as

q?mxd 2dl(B—Mptp™)
2

. dq2
Rt [ QsG] = =" —, (1.81)
a quf::x dqzdF(Bzg/ZleJre )

where T is the ¢g*-dependent partial width of the decay, ¢> = m} is the square of
the dilepton mass and M is the meson which is the result of the decay, such as K,
K*, D or D*. These semi-leptonic decays are sensitive to contributions from non
SM particles. In the SM, where there is LFU, one expects the ratio in Eq. to
be equal to one. However, measurements at the LHCb, Belle and BaBar [35H39]
show deviations from unity. For example, in the case of Rx, LHCDb results of
Ri[1 GeV?, 6 GeV?] = 0.75475020 +0.036 differ from the SM expectation by 2.60
[40]. There are also recent results by the LHCb collaboration on Ry« indicating
2.4-2.50 deviation from the SM [41].
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1.4 Current research and challenges

This project has involved lattice computation of D- and D,;-meson masses, decay

constants fp  extracted via the axial current matrix element
(014%| Dy(p)) = ifp,pp,, (1.82)

with ¢ = d, s and Af, = ¢y,75q, as well as bag parameters using Domain Wall
Fermion (DWF) formulation. The leptonic decays in the charm sector give
information on CKM matrix elements |V.4| and |V,s|. Computing the bag and ¢
parameters in this sector, with the aim of eventually extrapolating the results to
the B-sector using Heavy Quark Effective Theory (HQET), is an ingredient that
provides constraint on the apex of the unitarity triangle via the ratio |Viq/Vis|,

as discussed in the previous section.

Current research has the mass of the quarks being pushed to higher values, to
reach ¢ and b quarks, making lattice artefacts more visible. For example, lattices
that can be currently simulated have a cut off which is of the same order as the
b-quark mass. As a result, simulating b-quarks directly suffers from large cut-off
effects [42]. Charm physics on the lattice also allows us to gain more insight into
B-physics via direct application of HQET, by making an expansion in inverse

heavy quark mass and extrapolating from the charm to the bottom region.

At this stage, it seems necessary to invest more effort into reducing lattice
artefacts and improve measurements at the level of both resources and formalism.
The former involves e.g. developing better algorithms to be able to simulate
finer lattices with greater volumes, or using efficient averaging methods [43-
45]. The latter involves e.g. varying lattice actions, number of sea flavors and
using different techniques in extracting the observables etc. In terms of testing
a different formalism, a major part of this thesis is dedicated to discussing the
development of a new massive renormalization scheme, denoted by RI/mSMOM.
The aim here is that by using a massive renormalization scheme, some of the
lattice artefacts arising from masses of quarks and appearing as coefficients of
O(a?) terms would be reduced, giving a smoother extrapolation to the continuum

limit. This scheme is discussed in great detail in chapter [3]
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Chapter 2

Non-perturbative formulation of

QCD

The part of this chapter focuses mostly on the theoretical background required
to construct QFT on the lattice. The derivations presented here are done for a
free theory, i.e. not involving gauge fields. An important derivation is that of the
fermion propagator on the lattice. A naive discretisation of the Dirac operator
leads to extra poles that have no continuum analogue. This implies the need for
constructing other types of lattice fermions, such as Wilson, Domain Wall and
Overlap fermions to describe the physics correctly. Domain Wall fermions are the
type used later on in the simulations and are explained in more detail later in

this chapter.

2.1 The Basics

In order to construct QFT on the lattice, one has to perform a Wick rotation from
Minkowski to Euclidean space-time. The conventions, starting from the space-
time 4-vector xz* and including Dirac gamma matrices and Fourier transforms
are written in Appendix [B] This section starts with the naive discretization of
the Euclidean action for scalar fields. The propagator is computed as an explicit
example and the result is compared with the usual continuum propagator. A
similar calculation for the naive fermion propagator is then performed and the

problem with the so-called doublers is discussed.
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2.1.1 Free Field Scalar Propagator on the Lattice

In this section, we derive the lattice scalar field propagator starting in momentum
space from the discretized Euclidean action. By integrating the 4th component,
we examine the pole structure and the large time behaviour of the propagator.

We also show the usual continuum dispersion relation is recovered as a — 0.

The continuum Euclidean action in 4 dimensions for the free scalar field reads

as follows

Seldl = [ a'o (J0u0(010,000) + ge?(o)) 21

1

=5 [ @' (~o()o@) + m** (@),

Discretizing and taking the Fourier transform, according to the derivation in

App. [B.3], the scalar field propagator can be written as

w/a d*k eik.x

wazwuwmnzf

—rfa (2T) P m2a? + Y, 4sin?(Me2)

d*k dk, pikz
- 2.2
/ (2m)? / (2m) m?a® + 3 (2 — 2 cos(kya)) (2:2)
_ / ﬂeik‘x/ dky etkaza
= (277)3 (27T) 2M(k)2 —9 COS(/{J4a> ’

where we have defined 2M (k)* = m?a® + 8 — >, 2 cos(k;a) noting that m2a® +
8 — >, 2cos(k;a) is a positive quantity. The poles are at the points where the

denominator vanishes:

2M (k)* — 2cos(ksa) = 2M (k)* — (™ + e ™) = 2M (k)* — 2 — 27" =0 -
(2.3)

In other words, the integral over k, can be performed using a contour integration
in the z plane with an anti-clockwise contour, |z| = 1, and the change of variable

2z = ™2 5o that dks = Z—Z. The z in the denominator of the latter expression

multiplies Eq. which yields,

22 —2M*24+1=0, (2.4)
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and hence,
=M +£VM*—1- (2.5)

This quantity is real since M > 1. However, since the contour |z| = 1, is the unit

Im

L=

Figure 2.1: z = e contour

circle in the z-plane, only one of the poles i.e. z = M? — \/M#* — 1 contributes
while the other one lies outside the unit circle, Fig. 2.1, Because z is real and

“® where w is a positive quantity associated with the

positive, one can write z = e~
energy, as shown in Eq. [2.10] Indeed, the non-contributing pole can be written

as,

1 M? +/M*—1
X =M?>+ VM —1=¢e"". 2.6
M2 —/MY—1 M24++/M*—1 (26)

Hence the integral in Eq. 2.2] is evaluated

/(d?’k: ik 2m1 | / (d3k ik e @.7)

27)3 —ia2me—we —evs g | (27)3 2 sinh(wa)

Also, from Eq. [2.4] it can readily been seen that,

1
cosh(wa) = E(ewa +e ¥ = M? . (2.8)
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Expanding the both sides of the equation above up to order O(a?) yields,

<ki2a)2) = % [m2a2 +2+ k2a2] - (2.9

Ly 9o
1+ 5 =5 |ma —1—8—;2(1—

Therefore, in the continuum limit am < 1, ak; < 1, we recover Lorentz invariance

and the expected dispersion relation:
wk) = vVm?2 + k2, (2.10)

and the expression for the energy in the continuum is recovered. Moreover,
observing Eq. , which is a sum of exponentials exp(—wt), implies that for
large t = n;a the exponential with the smallest value of w i.e. w = m dominates.

Therefore,
Dy — e7™ ™ for t — oo - (2.11)
This gives the correlation length & as:
E=—- (2.12)

This is also true for the interaction theory. Note that we wish the continuum
limit m to remain finite. Comparing the above to the notion of correlation length
in statistical physics, we see that there is a critical point, 7.e. a — 0, where the
correlation length & diverges. In other words, the continuum limit corresponds to

a second order transition of a statistical system.

2.1.2 Restoration of rotational invariance in 2-dimensions

It would be interesting to see, in a simple example, how rotational invariance is
restored when the continuum limit is taken. We take a 2-dimensional example
for simplicity, and show explicitly discretization effects in the form of O(a?) and

O(a") terms for this case.

Let us now consider the propagator for the free scalar field in 2-dimensions
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which can be written as follows in lattice units [46],

d2 D eip.a:

(27)2m2 + 4 — 2 cos(py) — 2cos(ps)

Di(a) = (6(2)6(0)) = / (2.13)

Consider two cases: x — oo along a lattice direction where x = nt,t — oo with
n = (1,0) or along the diagonal with n = (1,1)/v/2:
1. For n = (1,0) and denoting 2b = m? + 4 — 2 cos(p2), Eq. reads
D / dpy / dpy et _ /ﬂ dpy e
m 27 2b—2cos(p)  J_, 2w 2sinh(w)
_ / dps 1 —t[m(ee2)+/bp2—D)]
. 27 2sinh(w) ’

(2.14)

where the first integral is done by finding the relevant pole in exactly
the same way as in the previous section with cosh(w) = b and w =
In (b—i—x/ﬁ). For t large, one can use the saddle point method
to evaluate the leading contribution to the integral. To this end, we
need to find the point(s) at which the first derivative of w (b(ps)) =
In (b(pg) + 1/b(p2)? — 1) with respect to p, vanishes. Note that in order
to keep the algebra simpler, there is no need to derive an explicit form for
the derivative. It merely suffices to identify the point at which the derivative
vanishes. Taking

dw 0w 0b 1+ %

db b ps b(p2) + /b(p2)* — 1

sin(pe) =0 - (2.15)

It is clear from the definition of b that b > 1 meaning the fraction in the
above expression is always greater that zero. Hence, within the Brillouin
zone, the solution to the equation corresponds to p, = 0. This implies

2 2

b0:%+1 = Cosh(w):m?le- (2.16)

Eq. is then equal to

1

Dr = 5 o)

o t(bo) / P2 30 o) bip2)—b0)? o p—tes(bo)
bo=m?2/2+1 2T

(2.17)
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The correlation length £(n) in direction n is identified by Dg oc e=/¢(™ 5o

in this case, £1(n) = w.

2. For n = (1,1)/+/2, changing variables to ¥ = 222 and A = 2222 Fq.[2.13

becomes

™ dpldp2 eit(pl+p2)/\/§
/,r (2m)2 m? + 4 — 4 cos(B5E2) cos(PP2)

m2+4 —4cosAcosX

x / dAg(A)e_tﬁln(b(A)—H/bQ(A)_I)

V23t
x / dxdA < x / dAg(A)e™ V2 (2.18)

where

m? + 4
"=In(b+vb2-1 b= . 2.1
W =+ ) 4cos A (2.19)

Using the same saddle point method as in the previous part, the integral is

dominated by Ag such that sin Ag = 0 i.e. cos Ay = 1 implying

Dp oc e” V2 (2.20)

with

2
cosh(w') =by =1+ mT . (2.21)

In this case, the correlation length, &'~1(n) = v2w'.
Taking the ratio of the two correlation lengths,

£ w m? 4
In non-lattice units m — ma and at this finite lattice spacing, the ratio is
away from unity, with the discretization effects identified explicitly at order
a®. However, % — 1 as ma — 0 which implies the recovery of the rotational

mvariance.
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Figure 2.2: 1-D Lattice and Continuum Scalar Propagators

2.1.3 Comparison of Lattice and Continuum Propagators

We now compare the lattice formulation of the scalar propagator to the continuum
in infinite volume. It is known that the continuum scalar field propagator in four
dimensions can be written in terms of the modified Bessel function K [47]. Here

we merely quote the results for the continuum case,

. —n/2
00 dnp elpx B (.2?2)1/2 1
C _ _ n/2 2\1/2
DF(:L‘7n) - /OO (27'(')” m2 _|_p2 - (27T> / |: m Kl—n/2 [m(w ) ] )

(2.23)

and the lattice case

w/a dn ipx o0 n 1 )
p e 2 _2a Q@
DL — - d mea T ]xu = ,
F(z,n) /ﬁ/a (2m)" m2 + p2 /0 € {”6 (a) a<a2>}

where

4 & pLa
2 i 2 14
P =g oo () (229
pn=1
and Jz. is the modified Bessel function of the first kind. The plot in Fig.

shows the Mathematica [48] implementation of the above propagators in one

dimension for particular values of x. As it can observed, the discretized lattice
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Figure 2.3: Relative difference between lattice and continuum scalar propagators

points, in red, agree with the continuum propagator drawn in blue. Examining
the deviation of the lattice points from the continuum one would be able to
analyse the discretization errors properly and recover the full continuum limit.
In order to discuss continuum physics properly, one has to work in a region where
the physics is insensitive to the cut off (i.e. of order < 1/a). This is better
illustrated with an example: Let us take ma to be fixed at a value say, a = muz,

change the ratio § = £ which takes different values over a range, in which case

5
results. This is presented in the following graph for a particular value of a. As

am = £ and then compare the relative difference between lattice and continuum

it can be seen in Fig. 2.3 the relative difference, i.e. the error, decrease as x

mcreases.

2.1.4 Free Field Naive Fermion Propagator on the Lattice

In this section, we examine the dispersion relation for the case of the naive fermion

propagator in the continuum limit and discuss the problem of “fermion doublers’.

The continuum FEuclidean action in four dimensions for the free fermion field

reads as follows:
el i) = [ d'a (ayidub(a) + milo)i (@) (2.26)

The continuum action can be discretized using the Finite Difference Approxima-
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tion for the derivatives discussed in Appendix [B] This gives,

Sl ] =a' 3" () {%w(m +aj) —v(x — aﬂ)]

2a
:% Z/kk/ e—z‘kx{@z(k)%% [<6ik’(w+aﬂ) ik (@—ajt )] 1;( /)

+mi) ()i ()

me"'“ﬂ(k)?/?(k')}
= 1 . 7.t o ~ (227)
—zkx = ik jikye _ —ikja /
| e e (et — ) (k)
+ me—ikx—&-ikx’,@(k)&(k/)
— ) (Lopsin(hg )8+ md 5 08)
: isin(kya) | ~
[m ) g
a
where z = na and index p is summed over. Therefore, the lattice fermion
propagator in momentum space is:
Dp(k) = ! (2.28)
F m]H—z’y sm(kua) ’

In the continuum limit Minkowski space, one must recover the usual fermion

propagator. Therefore in the limit as a — 0,

~ 1 Minkowski 1 1
Dp(k) — ; _ , 2.99
r (k) m+ iv,k, —(Yoko — 7.k —m) F—m (2.29)

where we have used the conversion conventions for v matrices and the momentum
4-vector as spelled out in Appendix The results agree with Eq. as

expected.

In order to examine the dispersion relation, we start by finding the inverse

Fourier transform of the lattice propagator. Note that the integral is over the
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first Brillouin zone and we work in infinite volume.

B _ d*k etk m — Lsin(k,a)y,
Dp = 0)) = : i
F <w($)w< )) / (2#)4 m + éSinUfua)'Vu x m — ésin(kua)’yu
B / d_k:4 &’k ma® —iasin(k,a)V ipiw. ikx
) 2m (27)3 m2a2 + o sin®(k,a) ’

(2.30)

where the p index is summed, 7,7, = [ is used and we have multiplied top and
bottom by a?. Now the relevant poles in the denominator have to be identified.
Note, however, that we are integrating with respect to dk?, so the contour in the
k* space need to be considered. Because the integral is over the first Brillouin
zone, the real part of k* must satisfy —7/a < k* < m/a. Defining z = e*1¢ the
denominator becomes

3
—1

2q? § in?(k;a) +— (2> +22—-2)=0- 2.31

m-a +ilsln(a)+4(z +z ) (2.31)

M2

J/

The numerator and the denominator are then multiplied by —4z2? and equation
2 —2(1+2M*)*+1=0, (2.32)

is solved to obtain
2= (1+2M?) £ 2MVM? +1=(—M £ 1+ M?)*. (2.33)

Hence the four solutions for z are:

(
M+ 1+ M? = ¢+
M= T IR = —¢vn
z= (2.34)
M4+ VIFIE = e

—M =1+ M2 = —eva |

where w is defined such that M + /1 4+ M? = ¢¥*. The main task now is to
identify the relevant poles. We are changing variables from & — 2z, which means
that the relevant poles have to be identified in the complex z plane. The limits of

the k integral run from —/a to w/a which correspond to z running once around
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the unit circle. Note that,

_ &

dk (2.35)

1az
Therefore, using Eq. and Eq. we have an overall factor of z in the

numerator. Clearly, the only poles that contribute are the ones that lie within

Im

L=

Figure 2.4: z = €% contour

the unit circle 0 < |z| < 1, i.e. z = e “*. We now use the residue theorem.

Finding the coefficients for the poles at:

1. z = e'*% = ¢ the numerator becomes,

3
1
—4 2 - : kz i_'_ —wa __ wa
z [ma za;sm( a)y tag: e e ]74]
; (2.36)
= — 4e~W" [ma2 —ia Z sin(k;a)7y; + asinh(wa)%] ,
i=1

and the denominator,

(Z . 6wa)<z + e—wa)(z + 6Lua) :26—wa(6—wa . ewa)(e—wa + ewa) (237)
= — 4e “*sinh(2wa) - (2.38)
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tksa _

2. z=ce —e " the numerator becomes,

3
(=)l e | ma® — ia Z sin(k;a)y; — asinh(wa)ys | - (2.39)

i=1

ka _

Note that since e’ —e~ ¥ raising both sides to the power of z4/a yields

gikra — (_)r4/ap-wrs  The denominator reads
)

—2e79 (W ) (—e Y 4 e¥) = 4e”“" sinh(2wa) - (2.40)

Finally, summing the residues results in

~ d3k eik‘x—wmél . 3 . .

r :/ (27)3sinh(2wa) | |7 ;Sm(’w)% + sinh(wa) 7y (2.41)
3

+ (—)M/a [ma —1 sin(k;a)y; — sinh(wa)%] }

=1

For e™* = —M + v/1+ M? where M = \/m2a2 + 3% sin®(k;a), expanding
both sides for lattice spacing a — 0 up to order a? yields,

1 —wa=—avm?+k2+/1+a2(m? +k?) = —avm?2 +k2+1+0(da?),
(2.42)

wk) = vVm?2 + k2 - (2.43)

So far, we have seen that the free naive lattice fermion propagator satisfies the
continuum limit, Eq. as well as the seemingly correct dispersion relation.
However, let us observe the denominator of Eq.[2.30] explicitly written in Eq.[2.31]
In the massless limit, the denominator vanishes when k; = n;7/a where n; can
only be either 0 or 1, on the spacial direction as well as ks = n;7/a for the same
values, given that k € (—m/a,7/a]. This leads to 2% poles, in contrast to the
continuum case where there is a single pole at k* = (0,0,0,0). Hence the energy
w is equal to zero at more points than just the rest frame. This is known as the

“fermion doubler problem”. In the next sections we discuss methods to overcome
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this problem.

2.1.5 Free Field Wilson Fermion Propagator

Consider the following lattice action for massless fermions,
§=3"0(0)D( ~ )uly) - (2.44)
T,y

According to the Nielsen-Ninomiya theorem, the properties below cannot hold

simultaneously [49]:

1. D(x) is local i.e. D(p) is a periodic, analytic function of p,,.

2. D(p) o yupy for alp,| <1

3. D(p) is invertible for p, # 0

4. {7, D(p)} =0

Note that violating locality results in discontinuities in the derivatives of the
propagator. The second and third cases are related to having a single flavor of
Dirac fermions in the continuum limit. We have come across the third case in
our discussion of the doubling problem. Any attempt to solve this issue involves
violation of one of the other conditions. The last point is a statement about chiral

symmetry which will be discussed later on.

There is a simple method by which one can resolve the doubling problem. This
method involves adding a term to the mass. It is clear that introducing a mass
term breaks chiral symmetry. As a result, the Nielsen-Ninomiya theorem still
holds. However, we still need to check that the continuum fermion propagator
and the continuum dispersion relation still hold with the addition of this term.
Let

4 3
1 1 1 1
M(k) = - 1- k = - 1-— k; — ——cos(kqa) ,
(k) =m+ a;( cos(kya)) =m + a;( cos(k;a)) + " aCOS( 40)
(k)

(2.45)
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where the ks-independent part is denoted by €2(k). Note that the Wilson term

in position space, found by taking inverse Fourier transform, takes the form:

4
Optjym — 204,y + Oz—jiy
— : : : 2.46
3 > , (2.46)

which is a discretization of —(a/2)0,0,. Therefore, due to the pre-factor a, the
Wilson term goes to zero when the continuum limit @ — 0 is taken. Using the
relabelling in Eq. [2.45] one can observe that the form of the propagator is the
same as that in Eq. i.e.

dk' &’k Ma® —iasin(k,a)v,
2m (2m) M2a® + 37, sin?(k,a)

Dr = ((x)#(0)) = / gk kx . (9.47)

The denominator can be written as follows:

M?a* +) " sin®(k,a) =a® [92 — —Qcos(kaa) + — COSQ(k4“>]

I

+ Z sin®(k;a) + 1 — cos®(kya) (2.48)
3
=a’Q? — 2aQ cos(kya) + Z sin?(ksa) + 1,
i=1

which vanishes when the right hand side is zero. Therefore,

a?0? + 3" sin®(kia) + 1

cos(ksa) = 204
_ [ma +32,(1 — cos(k;a)) +1)° + 1+ 3, sin?(k;a) = cosh(wa) -
2[ma+3Y".(1 — cos(k;a)) + 1] B
(2.49)

One can check that with the above identification, the energy w makes sense
by taking the continuum limit of the above expression (also see Eq. . Note
however, that the exact relation between w and k, is more subtle and is addressed
in detail when the poles are computed below. Expanding the left hand side for

small a gives,
1
1+ §(k2 +m?)a® + O(a*) - (2.50)
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w?a?
5 -

On the other hand the expansion of cosh(wa) = 1 + Comparing the two

equations implies

wk) = vVm? + K2, (2.51)

as required. Now, as before, we start by changing variables to z = e in
Eq.[2.48] Note that the relevant integral is now over a unit circle in the complex
dz
iaz

term in Eq. to give

z plane and dk* = 22, The z in the denominator of the measure multiplies the

2 <a292 —aQ(z+27") + Z sin?(k;a) + 1) =0

~ a?Q? + > sin?(kia) + 1
2af)

-

A

(2.52)

)z+z2+1:0,

J/

which in turn implies,

p=A+VN2—1- (2.53)

=1
a2Q”

Note that it is important to keep track of the factor At this stage, a few

checks need to be made:

1. Because 2 > 0, it immediately implies that A > 0. For z to be real, we must
have A > 1. This condition is also satisfied for a2 > 0 which can be easily
verified by plotting A as a function of af). This is shown in Fig. [2.5(a)[]

2. Only one pole i.e. z = A — /A2 — 1 lies within the unit circle for A > 1,
right graph in Fig. 2.5(b).

3. Now, we need to consider how to write z as a function of w correctly.
z = +e* results in a divergent integral for large time due to the term

etkite = ewea  Therefore, z # +e“?.

4. The only other possibilities are z = +e ™ corresponding to k£ = iw and
k = iw + m. Since the solution 0 < A — VA2 —1 < 1 for A > 1 (from the

ITo plot the graph, ) is merely treated as a mathematical function of a{) without considering
its dependence on any physical parameter such as m. When k; = 0 or 7, sin(k;a) in the
numerator for A vanishes while af) takes a minimum or a maximum value respectively.
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20

05: 0.5

Figure 2.5: Plots of A vs af) and 2z vs A

plot), z # —e™“* leaving only one possibility: z = e “* i.e. k = iw.

Hence, there is only one contributing pole corresponding to z = A — VA2 —1 =
e~ Substituting back into Eq. and using the residue theorem,

D =((2)¥(0)) (2.54)
1 @k Qa® — acosh(wa) —ia y";_, sin(ka)y; + avasinh(wa) _ 0 ac

" 242 / (2m)3 2 sinh(wa) ©oe
(2.55)

The leading contribution to the integral, as x4 = t increases, corresponds to the

lowest possible value of w.
Dp — e ™™ for t — oo - (2.56)

We can explicitly check that the doubling problem has been solved. Observing
Eq. and Eq. [2.48] we see that in the massless limit, the denominator only
vanishes for k* = (0,0,0,0) and there are no doublers. With the mass present,
expanding both sides of e “* = z = A — /A2 — 1 for small a gives,

l-wa=1-ma+0(*) = wk=0)=m, (2.57)

as expected.
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2.2 Chiral Symmetry and Domain Wall Fermions

2.2.1 Chiral Symmetry

Before discussing what chiral symmetry is, let us recall the representations of the
Lorentz group for spin-1/2 particles. Using the chiral (Weyl) representation of

the gamma matrices in Minkowski space [50]

0 ot
= , (25%)
ot 0
where
o' =(1,0) and " =(1,—0) - (2.59)

The generators for infinitesimal boost and rotations are:

0i Lo i i —g* 0 o
o =10 =3 =357 (2.60)
0 o
. . i€ 0
.. 72 . . 72 ijkUk 1
o = Ly = -1 g (26
0 20€10%

The fact that both of these have a block-diagonal form implies that the Dirac
representations is reducible. Therefore, one can consider each block separately

and form a 2-dimensional representation,

V= v : (2.62)

VR

where 17, and 1 are known as left-handed and right-handed Weyl spinors, each
transforming under a separate irreducible representation of the Lorentz group.
Then an invariant Lagrangian can be built, using combinations of spinor fields

and the gamma matrices, from which the Dirac equation can be derived. For the
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case of the massless Dirac equation we have,

wL 0 2'0“6 wL
(iv"0,,) =0 = : =0- (2.63)
YR 1010, 0 VR
In other words,

(E—appr=0 = (cp)Vr=+EYr = (ap)¥r=+vr, (2.64)

where we have used that fact that for massless particles |p| = E. Similarly,

(@p)r = = (2.65)

meaning that ¢, and ¢ are eigenstates of the helicity operator

1{ap O
h=g : (2.66)

0 o.p,

13>

with eigenvalues —1/2 and +1/2 respectively. The existence of a mass term in the
Lagrangian would mix the two components which is the reason the massless case
is being considered here. It is important to note that since massless particles have
no rest frames, if a particle has helicity 1/2 in one frame, it will have the same
value in all frames. Therefore it can be said that for massless particles helicity
(i.e. chirality) is an intrinsic property. This is clearly not the case for massive
particles, since observers in different frames can measure different helicities. It is
also worth mentioning that using the basis in Eq. for the gamma matrices
made the reducibility manifest which would not have been the case if we had

chosen a different basis. As well as that, v° takes the diagonal form:

7 = : (2.67)
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with the usual relation {7°,7*} = 0. We can now construct the projection

operators Pr and Pp, such that:

1 5 00
Pr = 27 - , (2.68)
0 1
1 —~5 10
Py = 27 - : (2.69)
00
It is easy to see,
Yr 0
Pg = , (2.70)
VR VR

i.e. Pr project to the right-handed component. Similarly

U, Y,
P, _ , (2.71)
(o 0
and
0 0
v _ o vr) V). (2.72)
YR YR 0 0

The massless Dirac Lagrangian takes the form

0 a’”a# 7,/)[,

L=ipPp=i (@ ¢,§> = ko Dybg + i) o Dy, -
5“(% 0 YR

(2.73)
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However, including a mass term would mix the right- and left-handed parts:

mibtp = m (Wl + v}vn) - (2.74)

The Dirac Lagrangian has an exact U(1) symmetry ¢» — €'y under which the
left- and right-handed components rotate with the same phase. This is known
as the “vector symmetry”. According to Noether’s theorem, we can associate
to every symmetry a conserved current. In other words for an infinitesimal field
transformation ¢ — ¢ + €d¢:

Y.
0(9u9)

In this case ¢y — (I + i)Y = +iarp = d = iyp , therefore

=

¢ and 0,J"=—-4L - (2.75)

JE =gy BTt =0, (2.76)

where we have used the Dirac equation when computing the divergence of J. The

associated conserved charge is of the following form:

Q= [ @0 r0= [@o vt = [ @ @i+ vhon) = (Vo - ¥ + (Ve - N
(2.77)

Hence,
Q= (Np+ Ng) — (N + Ng) - (2.78)

Physically this means that the fermion number is conserved. For the case m =
0, the Lagrangian has yet another symmetry where the left- and right-handed
components rotate with opposite phase ¢ — €54, This is known as “axial

symmetry” U(1)a.
Jh =0y 9Tl = 2imayst) - (2.79)

The corresponding classically conserved charge is
Q= [ @avirsw = [ dailin - vl (2:80)
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Therefore,
Q4= (N, — Np) — (Ng — Np) - (2.81)

This implies that when the divergence of J vanishes, the difference in the number

of (unpaired) left- and right-handed fermions remains constant.

2.2.2 The axial anomaly

It is possible to relax the condition for chiral symmetry written in Sec. 2.1.5] i.e.
{D,~5} = 0, on the lattice according to the Ginsparg-Wilson relation [51]:

{D,vs} =aDysD , (2.82)

for a given Dirac operator D. This condition allows for the recovery of the correct
chiral symmetry in the continuum limit as @ — 0. An example of a lattice Dirac

operator satisfying this relation is discussed in Sec. [2.2.6] in more detail.

The axial transformation on the lattice takes the form:

1 — exp <z'cw5 (]l — gD)) v, Y —dexp (z’a (]1 — gD) 75> . (2.83)
This transformation leaves the Lagrangian for massless fermions, i.e. D1,
invariant, given Eq. Generalizing the above transformation to multiple
flavors with M being the flavor matrix, taking a infinitesimal transformation for

small o and keeping only the leading term in «;, we have
b — (]1 +iaMns (11 . gD>> TR (]1 +iaM (11 . gD> 75> C(2.84)

The flavor matrix M, can be chosen to be the identity 1y,, representing the
singlet case or one of the generators of SU(Ny) for the non-singlet case. Noting
that 1 and 1) are Grassmann variables, the fermionic measure in the path integral

transforms as,

D, d] — D, P det [11 +iaMys (]1 - gDﬂ det []1 +iaM (11 - %D) 75}
(2.85)
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— Db, ) det []1 +iaMn (]1 . gD>]2 : (2.86)

To obtain the second line, we have multiplied the argument of the second
determinant in the first line by 1 = 42 and used the cyclic property of the
determinant. Using the formula det[A] = exp(tr[ln A]), expanding the logarithm

in powers of o and then expanding the exponential to leading order we obtain

det []1 +iaMns (]1 - gD)]Q —1+ 2ia tr [M% (]1 - gDﬂ + 0% (2.87)

—1— %a x g trp[M]tr[ys D]

Note that the first trace, over M, is only over flavor indices while the second
is over position, Dirac and color matrices. We have also used trace over the
Dirac indices trp[ys] = 0 to write the last equation. For the flavor non-singlet
case, where M is one of the SU(Ny) generators, try[M] = 0. However, the flavor-
singlet case M = 1y, is non-trivial as the trace does not vanish. Here, we clearly
observe the non-invariant term which makes the transformation of the measure
non-trivial for the flavor-singlet case, making it the source of the axial anomaly.
It can be shown that this term is equivalent to the topological charge [52], which
is the lattice QFT version of the classical charge derived in Eq. 2.81]

2.2.3 Domain Wall: The Model

The following is based on the Shaposhnikov-Rubakov model [53]. Consider a
Minkowski space with four spatial dimensions and one time component with
ordinary particles confined inside a potential-well which is flat in the three spatial
dimensions and very narrow in the extra spatial dimension. The extra dimension
is denoted by the index “5” to avoid confusion. A particle created in a high
energy collision whose energy exceeds the depth of the well can come out of the
well and propagate in the extra direction as well. This particle, however, cannot
be detected by our measuring apparatus since it is sitting inside the well and the
process will seem to violate energy-momentum conservation. Note that the usual
four dimensional space-time plane now acts like a “Domain Wall”, as shown in
Fig. [2.6] splitting the extra dimension into two parts i.e. section above or below
the 4D plane.
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Domain Wall

Figure 2.6: Domain Wall

To understand this model more, consider the following scalar Lagrangian El:

1 1 A
L= 50,00"0 + §m2¢2 — Z¢4 , 1=0,1,2,35" (2.88)
Note that the potential
L oyg Ay
V(@) = gm™é™ + 7¢°, (2.89)

is the familiar Higgs potential. Suppose that ¢(x®) in the extra spatial dimension

x° is independent of ¢ at the other three x = (z',2% 2%). The energy of the

system in the extra direction can then be written as

1 (de(x%)\® A m?\?
H—§< o5 ) +Z(¢2_T) : (2.90)

where we have completed the square and ignored the shift in the energy by

—m?2/4\. Since H is greater than or equal to zero, we can solve a first order
differential equation for ¢(z°) to obtain its value at the minimum of H i.e. when
H =0,

2Note there is no index “4”, the time direction is indexed by “0” and the extra spatial
dimension is indexed by “5”.
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Hence,

o(2°) = % tanh (%) : (2.92)

For sufficiently large m, the above functions takes the form a step function and

H, which involves the first derivative of ¢(x®), takes the form of a delta function.

Using the Euler-Lagrange equations, the equation of motion for ¢(x°) is
0*¢(z°) — m*p(2°) + A\p*(2°) = 0 - (2.93)

Since ¢(z°) is the classical solution for the extra independent direction, it is from

now on denoted by ¢ so that
=9 +¢, (2.94)

where ¢’ describes the fluctuations about the classical solutions. The equation of

motion for ¢’ now reads:
o —m?¢/ () + A (67) ¢/ =0, (2.95)

where we have used 92¢ — m2¢ + X\(¢)® = 0 and kept only first order terms
in ¢’ for the cubic part. One can check by substitution that one solution to the

above equation is of the form

¢(2°, %, 2°) = <d¢;la(:5x5)) o ikx+iBa? B2 =12 (2.96)
The planewave part of the solution (the massless Klein-Gordon equation),
corresponds to a massless scalar particle living in 3+1-dimensions i.e. confined
to the domain wall. Indeed the derivative of ¢(z°) in Eq. looks like a
narrow bump at a point in 2° and nearly flat otherwise. At low energies the
particle cannot escape this bump in the 5th direction and remains confined to

3-+1-dimensions.

There are two other solutions to Eq. [2.95] one describing massive particles
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which are also confined inside the wall and another which corresponds to massive
particle that are not confined. However, for the purpose of our discussion, we are

only interested in the massless case explained above.

2.2.4 Domain Wall Fermions in Euclidean Space-Time

The model in the previous section can be extended to account for massless
fermions living in 3+1-dimensions [49] 54, 55]. We start by treating the classical
field ¢<!(2°) = hV (s) as a potential in the extra dimension, calling the coordinate

along the latter s, and writing the Dirac equation as
[V Dy + %05 + hV (s)] (2, 8) = 0 - (2.97)

This equation has a solution:

(%, s) = exp (—h/os V(s’)ds’> x h(xt x) (2.98)

where A > 0 and so it is normalizable. One can easily check by substitution that
P(xt,x, s) satisfies the above equation if and only if ¥ (2%, x) is a right-handed
spinor, ¥ (z*, x) = r(z?, x) satisfying the corresponding massless Dirac equation,
0,D,r(2°,x) = 0, which is clearly confined to domain wall i.e. the usual 3+1-
dimensions. Note that there is nothing special about 1 (z*, x) being right-handed.
If we had chosen the potential term such that A < 0 then the exponent would
have had an opposite sign, requiring a left-handed massless spinor v (z°,x) for

the equation to be satisfied.

The potential can now be taken to be of the form of a step function. Moreover

we can choose it to be a function of mass such that

m s>0
m(s) = (2.99)
—-m s<0

where m > 0. Now let ¢, (x) be an eigenstate of the covariant derivative operator

:
Dby = =Mty - (2.100)
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Then, using Eq. 7?7 and Eq. 7?7 one has

UuDuwR,n($) = _/\an,n(x) )
5—MD/L¢L,n($) = _)\nwL,n(aj) :

(2.101)

At this stage, we can expand the right- and left-handed components in 5-
dimensions i.e. ¥g(x,s) and v (z,s) in the eigenstates of ) and make use
of separation of variables to separate the usual 3+1-dimension from the extra

component s:

bu(;8) =32, bu(s)¥rn(e) ,

(2.102)
Vr(w,8) =32, fu(s)YRrn(2) -
Eq. can now be written out explicitly to give
0 o,D, -1 0 m(s) 0 Yr(z, s)
+ 85 + = O ’
o.D, 0 0 1 0 m(s) Yr(x,s)
(2.103)
which implies
D,o x,8)+ (—0s +m(s r,8) =0
T, 5) + (=0, + m(s) Yl ) 2108

D, e, (x,s) 4+ (0s +m(s)) Yr(x,s) =0

Expanding above in eigenbasis of I) using Eq. [2.102 and separation of variables
yields,

[=0s + m(s)]bn(s) = Anfu(s)
[0s +m(s)] fn(s) = Anbn(s)

(2.105)

So far it can be said that the spectrum consists of an infinite tower of massive
Dirac fermions with mass of order m. However, the solution when the eigenvalue
A=0is,
S
fo(s) = Nexp (—/ m(s’)ds') — Ne™™lsl (2.106)
0
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which is localised near s = 0 falling off exponentially on either side. Hence, there
is a single massless right-handed fermion localised near the mass defect (i.e. the
domain wall) as mentioned earlier in Eq. [2.98, Moreover, the other solution,

bo(s) = N exp (+ /0 Sm(s')ds'), (2.107)

is of course not normalizable since it grows exponentially in |s| and it is discarded.
Having said that, this is no longer an issue if we consider finite volume with
periodic boundary conditions such that ¢ (x,,s + 2s9) = ¥ (z,,s) where s is

defined to be —sg < s < sg9. The two zero mode solutions are now given by:

Jols) = N exp (— / ;m(s')ds')  bo(s) = Nyexp <+ / m(sf>dsf).
(2.108)

Analysing the second equation further, for

s<0:[° —m=—m(s+s9) = e ™50 is1 when s=—sg,
L (5 +50) ° (2.109)

S . .
s>0:f0m:ms:ems is maximum when s = sg -

Therefore, we accept both solutions at finite volume.

2.2.5 Domain Wall Fermions on the Lattice

The aim of this section is to use the Domain Wall formalism discussed in Sec.[2.2.3]
and Sec. to construct the theory of Domain Wall Fermions on the lattice
[49]. If the discretization is done naively, one again ends up with doublers just as
in the naive case discussed in Sec. However, adding a Wilson term §V*V,
as in Eq. [2.46] for each of the dimensions and treating it is as a mass term,
removes the doublers. In this notation, V and V* are the forward and backward
lattice difference operators respectively. Let the Wilson term be a mass term,
independent of s but dependent on the wavenumber k& denoted by Am(k). In
other words, Am(k) is a k-dependent spatially constant mass which is added to

the step function mass m(s) = me(s). Thus, for an infinite extra dimension,

fo(s, k) = Nexp (— /Os m(s')ds' + Am(k)) (2.110)
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2.2. Chiral Symmetry and Domain Wall Fermions

One can check that for |[Am| < m Eq. [2.110| is normalizable for all s. However,
for [Am| > m and s < 0, the solutions becomes more and more extended in the
extra dimensions until it fails to be normalizable. Let us examine this in more

detail. Using separation of variables, the zero-mode solutions take the form,

(. 5) = P hu(s)u(r)  with  ys¢u(a) = £P(2) (2.111)

where . (x) are constant 4-component chiral spinors satisfying the usual
massless 4-d Dirac equation. Note that ¢4 are eigenstates of v5 and transform
independently under Lorentz transformations. Then for » = 1 in the Wilson term
sV*V,

Pe=0 and  —¢i(sF 1)+ (meg + 1)g(s) =0, (2.112)

where meg = me(s) +3_,(1 —cosp,) = me(s) + F(p), and F(p) = Am, with €(s)
being the step function. To derive the latter, the Wilson term %V*V is added
for each direction. The s dependent part of the equation of motion, together
with the Wilson term in the other four directions in momentum space, takes the

following form:

0= 2 [(6als + f1s)) — (du(s — )]

2a
_53 fis,s’ 55 s 657,&3 s’ -
+ me(s) + +is,s’ T 22a, , +é2(1 — cos(k;a)) | o+(s)
=t [(62(5 + 1)) — (D5 — )] + me(s)d(s)
+ ~Oe(st 1) + Q;bz(s) — 0uls = i) + 2 ;(1 — cos(k;a))¢+(s)

= —¢1(s F 1)+ (meg(s) + 1)p+(s) ,
(2.113)

where the + is due to the action of 75 on .. The solutions take the form

¢+(s) = z1 where

zi = (1 + meg(s))T = (1 4+ me(s) + F(p))* - (2.114)
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2.2. Chiral Symmetry and Domain Wall Fermions

This can be readily seen by substituting for ¢4 (s) = 2% with 2z = (1 + meg(s))T
in the RHS of Eq. [2.113, The solutions are normalizable if |z|*®) < 1 since

For s >0 |z|] <1 sothat ¢ = 2° is normalizable.
(2.115)

For s <0 ﬁ <1 sothat ¢ =271 is normalizable.

Examining the ¢_ solution, one can see that for s > 0, |1 +m + F(p)| > 1 and
for s < 0, |1 +m + F(p)| could be less than 1 when F(p) = 0 which implies
¢_(s) is not a valid solutions. The same check shows that the normalizablity
condition is always satisfied for ¢ (s) when s > 0. For s < 0, for the solution
to be normalizable, one would need |71‘ < 1li.e. |1 —m+ F| <1 resulting in the

following constraint for the value of m:
F(p)<m <2+ F(p) (2.116)

the case where 0 < m < 2 corresponds to a single right-handed mode at p = 0.

For the details of how the spectrum behaves see chapter 3 of [49].

2.2.6 Overlap fermions

In the continuum, the massless QCD Lagrangian has a global symmetry given
by the transformation ¢ — e*%1) as discussed in an earlier section. This can be

summarized as:
{D,y5} =0, (2.117)

where D = 7,(d, + iA,) is the massless Dirac operator. The corresponding
equation for chiral fermions on the lattice was derived by Ginsparg and Wilson
[51]:

{D,~5} = aDvsD , (2.118)

where D is the massless lattice Dirac operator. Such an operator leads to a chirally

symmetric action in the continuum limit. It was later shown by Neuberger [56]
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2.2. Chiral Symmetry and Domain Wall Fermions

that the solution to the Ginsparg-Wilson Eq. [2.11§]is given by

aD =1 + yse(H(—m)) (2.119)
_ (=m)
=ty (2.120)
14 Dy —m (2.121)

Vv (Dy —m){(Dy —m)

which is known as the overlap operator. In the above, ¢(H(—m)) is the sign-
function and H(—m) = y5(Dw — m) =75 (i) — £D? — m) where D, and D? are
the symmetric covariant derivative and covariant Laplacian Wilson term on the

lattice respectively. The doublers are taken care of by the Wilson term.

It can be checked explicitly that in the continuum limit Eq. [2.121| reduces to
the usual massless continuum Dirac operator as expected. In the case of the free
theory, H(—m) =5 (§ — 20* — m) so that,

) [0 3-) (0= )
|

a2 r a2 T2 o] 1/2
m 8+m@+2m8 m$+2m8 +m

—-1/2

0* —
0% —
2 —1/2
<¢—fa2—m> {_0_+ﬁ+182_ﬁ+1}
m

2 " m m  m

(2.122)

Therefore, the massless overlap operator in continuum limit reduces to the usual

massless Dirac operator:

Dy, — LA , (2.123)
am

where am is a finite multiplicative factor. The key point here is that Nielsen-
Ninomiya no-go theorem can be bypassed by taking the chiral transformation
not to have their usual definition of continuum on the lattice as in Eq. 2.117], but
instead a different form as in Eq. 2.118] whilst insisting only on producing the
continuum result when a — 0 [57]. The locality of the overlap operator, however,

is not immediately obvious due to the inverse square root term. Strict locality
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2.2. Chiral Symmetry and Domain Wall Fermions

condition implies that the non-zero terms in the sum

Dip(x) = a*>_ D(w,y)¢(y) , (2.124)

come from the points y in a finite neighbourhood of x, and that the kernel D(z, y)
only depends on the gauge fields variables near x. Due to the form of the overlap
operator Eq. [2.12]] containing the inverse square root term, it is clear that the
operator is not local in the above restricted sense. Having said that, this definition
of locality can be generalised. It has been proved in [58], that D,, is local with
exponentially decaying tails. As long as the decay rate can be shown to be
proportional to 1/a, this generalised form of locality is as good as the strict sense

from the point of the continuum limit.

In our simulations, we have used Shamir and Mobius domain wall fermions,
discussed in the next section. It has been demonstrated in [59] that there
exists a regime, in terms of the inverse lattice spacing, such that DWF's have
the acceptable degree of locality. It is also worth mentioning that that the
overlap formulation of lattice fermions can also be derived from the domain wall

formulation [60].

2.2.7 Shamir and Mobius Domain Wall Fermions

The particular type of domain wall fermions used for simulation of the physical
point lattices in the recent RBC/UKQCD charm project is known the Mdbius
domain wall fermions [61H63]. This has had the effect of suppressing residual
chiral symmetry breaking whilst reducing the computational cost of having a
large domain wall height L. We state some of the key properties in this section.
The details are discussed in [64]. The Mébius kernel is,

(b4 c)Dy,

e 2.125

Hy =5
with D, (M) being the usual Wilson matrix
1
D) = M 4= L (1= 3 )Up()dry + (43U 0)0) - (2126)
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2.3. QCD path integral

Then, Dy is taken to be

1+m 1—m (1+Hy)" —(1— Hy)"

Dyisp, = : 2.127
Mob 9 + 9 75(1+HM)LS+(1_HM)LS ( )

which is an approximation to the massive overlap operator. Notice that

(14 Hu)bs — (1 — Hpp)e
e(Hy, Ls) = 2.128
(Har, L) (1+ Hpy)Ps 4+ (1 — Hpp)te ( )
is an approximation to the sign function, such that

lim e(Hpr, Ls) = sgn(Hyy) (2.129)

Ls—o0

To see this, one can simply consider the two cases where Hy; > 0 and Hjy; < 0.

In the former case, we can divide the numerator and denominator by (1+ Hpy)%s.
Ls

Then the ratio S=H2° 5 0 as I — oo implying e(Hy;) — +1. On the other

(1+Hnr)
hand, if Hy; < 0, we can divide the numerator and denominator by (1 — Hj)%
so that % — 0 as L — oo implying ¢(H ) — —1, leading to the definition

of the sign function. Another point to note is that changing Mébius parameters
b+ ¢ while fixing b — ¢ = 1, makes the Mobius kernel proportional to the Shamir
kernel [54], 55, [65] used for the non-physical point ensembles in our simulations. In
other words, the two formulations merely differ in their approximation to the sign
function and in the limit where Ly — oo, both Mébius and Shamir formulations
in the action reduce to the action formed using the overlap operator [64]. For a
review of the properties of generalized DWF's with Mobius kernel and the mapping

between such fermions and overlap fermions see Ref. [63].

2.3 QCD path integral

Given the fermionic Sr and gauge Sg actions, the Euclidean QCD path integral

1s written as:

7 = / D, Y| D[U]e~ Srlw#UI=56lU] (2.130)

29



2.3. QCD path integral

where

= H H d¢(f)<x>a,c dlz(f) (Z)ae > DUl = H f[ dU,(z) , (2.131)

z foc z p=1

with = being the lattice sites, f the fermion flavor, o the spinor index and ¢ the
color index. v and 1) are Grassmann variables which are integrated out and end
up as a fermionic determinant. The quark flavors included in the computation
of this determinant are knows as the sea quarks which are interpreted as those
particles that participate in virtual creation and annihilation in the loops. In this
context, we refer to the quark flavors not included in this determinant as valence
quarks, meaning they are too heavy to be generated from the vacuum as particle

anti-particle pairs. The path integral as a function of the gauge fields is now:

Z = H / dU,, det D[U]e~5¢l1 | (2.132)

where D is the Dirac matrix. A generic correlator of fields (O) can be expressed

o) =11 / dU,, det D[U]e~5¢WIO[U] - (2.133)

The integral can be viewed as a sum over all possible gauge field configurations.

Using a Monte Carlo simulation, the above expression can be approximated by

taking an average over N gauge field configurations U;, where i =1,--- | N
| XN
~ > o] (2.134)
i=1

with U;’s drawn according to the Boltzmann probability distribution
P[U;] = det D[U;]e~5cUil, (2.135)

There are different types of Monte Carlo algorithms that can be used for
generating the gauge fields configurations. For the charm project, the exact
hybrid Monte Carlo (HMC) algorithm has been used. Discussing the properties

and techniques used are beyond the scope of the current thesis. For details and
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2.4. RBC/UKQCD charm project - Run I

the choice of parameters, see Ref. [64].

Computing the fermionic determinant in Eq. is non-trivial. Setting
the determinant to unity is known as the quenched approximation. Most of
lattice results in the 1980s and 1990s were obtained in this approximation and
predicted the ground state spectrum of hadrons with light quarks [66]. However,
as mentioned before, this approximation ignores the quarks in the sea sector
and there is an unknown systematic error of order 15% empirically [67), [68]. A
simulation which includes the determinant and hence the vacuum structure of

fermions is knowns as a dynamical simulation.

2.4 RBC/UKQCD charm project - Run I

In this section we state the parameters used in our RBC/UKQCD charm project
simulations and list the ensembles used to perform fits of meson masses and bag

parameters.

The gauge field ensembles used are generated with the Iwasaki gauge action
[69, [70]. These ensembles are isospin symmetric and have Ny = 2 + 1 dynamical
flavors. There are three different lattice spacing in the range 0.11 — 0.07 fermi
which we denote by Course, Medium and Fine. As mentioned in Sec. [2.2.7] for
the quark fields we have used domain wall fermion actions with Shamir (SDWF)
or Mobius (MDWF) kernels. Performing the continuum extrapolation whilst
having different actions has been discussed and justified in Ref. [64] in great
detail. For the case of Wilson fermions, the explicit symmetry breaking allows
for a dimension-5 clover term, which introduces O(a) discretization effects. The
equivalent to such a term, in the DWF formulation, is of order O(a*m,es) which is
always less than 1073 or even smaller [71], hence it can be neglected. Furthermore,
the existence of chiral symmetry for DWF, implies all terms containing odd
powers of the lattice spacing can be ignored. Apart from the O(a?) terms that are
explicitly fitted in the global fit ansatz, the next to leading order discretization
effects enter at O(a?), and are shown to be negligible in Ref. [64]. Moreover, in
section II.A of Ref. [64], the equivalence of Shamir and Mébius DWF are discussed

in great detail. Finally, additional numerical evidence for the closeness of Shamir
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2.4. RBC/UKQCD charm project - Run I

Name type L/a T/a a'[GeV]  m;[MeV] hits/conf confs total
Co MDWEF 48 96  1.7295(38) 139.15(36) 48 88 4224
C1 SDWF 24 64  1.7848(50) 339.789(12) 32 100 3200
C2 SDWF 24 64  1.7848(50) 430.648(14) 32 101 3232
MO MDWF 64 128 2.3586(70) 139.35(46) 32 80 2560
M1 SDWF 32 64 2.3833(86) 303.248(14) 32 83 2656
M2 SDWF 32 64  2.3833(86) 360.281(16) 16 7 1232
F1 MDWF 48 96 2.774(10)  234.297(10) 48 82 3936

Table 2.1: The parameters used in simulating the Ny = 241 ensembles. C stands
for coarse, M for medium and F for fine. Note that amongst the large lattices,
CO0 and MO are at the physical point while F1 is at a heavier pion mass. The
column “hits/conf” gives the number of measurement on each configuration where
“hits” is the number of time planes used as sources, with the quark propagators
computed using Z(2) x Z(2) stochastic wall sources. These measurements are
averaged into one bin before any fits are performed. The label “confs” gives the
total number of configurations. The column “total” is the product of the two.

and Mobius ensembles were found by comparing the renormalization factors of
quark masses Z,, and the kaon bag parameter Zp, , computed on both ensembles
with Shamir and Mobius fermions in their action. The difference was observed
to be very small, i.e. , 0.2% or less for Z,, and 0.25% for Zp, [64].

Parameters of the ensembles and quarks used in the simulation are presented
in Tables and [2.2] The details of parameters and properties for all the stated
ensembles, apart from F1, can be found in Ref. [64], where m,, mg and mq
has been used as experimental input in order to determine the lattice scale and
the physical light-quark masses. More specifically, given a fixed bare coupling,
m, = mg and my are adjusted until m, /mq and mg/mgq take on their physical
values [64]. The F1 ensemble was generated specifically for the RBC/UKQCD
charm and bottom physics programs, the details of which can be found in Ref. [72].
The quark propagators have all been computed using Z(2) x Z(2) stochastic wall
sources [73].

The simulation parameters in the valence sector for light and strange quarks
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2.4. RBC/UKQCD charm project - Run I

uni uni sim phys Am,
Name DWF Ms L, amy am} ams anvs ~hvs

Co0 MDWF 18 24 0.00078 0.0362 0.0362 0.03580(16
C1 SDWF 18 16 0.005 0.04 0.03224, 0.04 0.03224(18
C2 SDWF 1.8 16 0.01 0.04 0.03224 0.03224(18

0.0112(45)

M1 SDWF 1.8 16 0.004 0.03 0.02477, 0.03 0.02477(18
M2 SDWF 18 16 0.006 0.03 0.02477 0.02477(18

(16)
(18)
(18)
MO MDWF 1.8 12 0.000678 0.02661  0.02661  0.02539(17) 0.0476(70)
(18)
(18)
(17)

F1 MDWEF 1.8 12 0.002144 0.02144 0.02144 0.02132(17) -0.0056(80)

Table 2.2: Domain wall parameters for the light and strange quarks of all
ensembles. am; and am, are bare quark masses in lattice units. The suffix

[43 :9

uni” refers to the sea and valence quark having the same mass.

are presented in Table [2.2] while those for the heavy quarks near the charm
mass region are shown in Table 2.3 The light quarks masses are unitary i.e. sea
quarks and valence quarks have the same mass. For ensembles C1, C2, M1 and
M2 where the value of the physical strange quark mass was known [64] prior
to running the measurements, the simulated strange quark mass was partially
quenched to agree with the physical value. For the other ensembles the unitary
value was chosen. To determine the charm parameters, Ms, Ly and the charm
mass range for the simulations, quenched DWF studies were performed [74, [75].
Altering Ms, the negative mass parameter in the 4D Wilson operator, changes
the cut-off effects while L, affects the residual breaking of chiral symmetry. These
studies, which focused on the pseudoscalar heavy-heavy and strange-heavy decay
constants, indicated that the cut-off effects are minimal for M5 ~ 1.6 while the
residual chiral symmetry breaking effects are suppressed for Ly, = 12. Rapid
increase in discretization effects were observed as the mass of the input heavy
quark was increased to values above am; = 0.4. For this reason, all the valence

heavy quark masses are chosen to be m;, < 0.4, as it can been seen from Table [2.3]
We state the lattice Ward Identities for DWFs and a measure of chiral

symmetry breaking, known as the residual mass, in Sec. After explaining

the RI/SMOM renormalization scheme, we present numerical results of the
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Name My Ly amgare
Co 1.6 12 0.3, 0.35, 0.4
C1l 1.6 12 0.3, 0.35, 0.4
C2 1.6 12 0.3, 0.35, 0.4

MO 1.6 12 0.22,0.28, 0.34, 0.4
Ml 1.6 12 0.22,0.28, 0.34, 0.4
M2 1.6 12 0.22,0.28, 0.34, 0.4
F1 1.6 12 0.18,0.23,0.28, 0.33, 0.4

Table 2.3: Mobius domain wall parameters for the heavy quarks of all ensembles.
The bare quark masses amy, are in lattice units.

renormalization factors on each ensemble. These renormalization factors are
required for renormalizing matrix elements such as the axial current and the
bag parameter obtained from these simulations in Sec. [3.11] The data analysis
and fitting procedures leading to the predictions for the meson masses and the

decay constants as well as the bag and ¢ parameters are presented in Chapter [4]

2.5 Statistical Methods

In this section we discuss statistical techniques used in calculation and propaga-
tion of statistical errors in our fitting analyses. To this end, we use a resampling
method such as jacknife and boostrap. A resampling is a procedure in which
a distribution of N independent raw measurements of a quantity {y; ; i =
1,---, N}, is resampled in a particular way to create a new distribution of means
{g,; i =1,---,N}. For jackknife, we discard one of the original N original
measurements and take an average over the remaining N — 1 measurements. We
repeat this for all the N samples resulting in N = N new sample of averages ;.

The error on this mean is estimated as,

n

= G- @) (2.136)

i=1
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In bootstrap resampling, we draw N samples from the original raw data, randomly
and allowing for replacement. This process is repeated N = Npoo; times, with
Nboot ~ O(500). To obtain the error on the mean, the {7;; i = 1,- -+, Npoots }
are sorted in ascending order. The 16" and 84" percentiles are then selected

bounding the 68% confidence region.

The fitting procedure for a Green’s function is then as follows:

1. Given that successive gauge field configurations are generally correlated,
groups of such measurements are averaged together, known as binning,
leaving a set of N measurements which are taken to be independent for

the rest of the analysis.

2. Measurement of the Green’s functions are made on each of these configu-

rations.

3. The covariance matrix M,y
N
Myy = Ny~ (C (1) =T (1) (C™(¥) = CL1)) (2.137)
n=1

is then computed. In our analysis, frozen covariance is used i.e. the
covariance matrix is built once using the binned raw data, for which
N = m in Eq.[2.137, and is then kept fixed and used to perform the fits.
Some analysis codes have the frozen covariance matrix computed using the

bootstrap or jackknife resampled data, after step four below. In such cases,
the normalization factor is N' = (N — 1)/N for jackknife, and N' = 1/Npeot
for bootstrap resampling. The sums is also over the corresponding sample
number. The average, C(t), in these cases corresponds to jackknife or
boostrap average. Alternatively, if the covariance matrix is recomputed
for every 7;, then the matrix is said to be unfrozen or dynamical. This is

not used in any part of our analysis.

4. The binned data are resampled using jackknife or bootstrap procedures

explained above.
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5. The fit is performed by minimizing the x? function:

X2(p1p2, ) = Z <@i(t) —(y(t.p1,p2, - )))Mtit} (@i(t/) — (Yt p1.p2, - )>) ;

tt

(2.138)

with respect to the parameters of the fit, p; and p, etc. and the function
in minimized for every resampled data point 7; i.e. N times. This gives
a distribution for parameters p;, ps etc., from which an estimate of the
average and standard error can be derived using the appropriate formula

for jackknife or bootstrap.

The diagonal elements of the covariance matrix Eq. [2.137| give the variance

M, = o for each time t. The correlation matrix is then defined as:

My = ——, (2.139)

which is equal to the covariance matrix normalized by the variances, having unity
for the diagonal elements. A correlated fit is one that takes into account the full
correlation between the time slices fitted in Eq.|2.138| for Mtjt}. If the estimate of
the covariance matrix is poor due to not having sufficient data, then the inversion
will be unstable for correlated fits. For our analyses, we use frozen uncorrelated
fits which implies replacing the correlation matrix with the identity matrix i.e.

ignoring the off-diagonal elements of M, ;.
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Chapter 3
Renormalization

Lattice QCD is a method by which Quantum Field Theory can be regulated
non-perturbatively, with a momentum cut-off that is inversely proportional to
the lattice spacing a. When the continuum limit is eventually taken, one
encounters the usual ultraviolet divergences at high frequencies unless they
have been removed via a certain renormalization scheme. Non-perturbative
renormalization Momentum Subtraction (MOM) schemes have been introduced
in [76, [77] and have been in use for a number of years. These schemes specify
conditions, at the chiral limit of QCD, to determine the renormalization of
the fermions wave function, fermion mass and composite operators such as
the fermions bilinears. In other words, these schemes are mass-independent
implying that the renormalization conditions are independent of the fermion
mass. The renormalization scale p in MOM schemes should be within the so-

called “renormalization window”:
alqep € ap L 1, (3.1)

where aAqcp can be thought of as e.g. as the mass of the heaviest quark involved
in the simulations or the corresponding meson mass being measured in lattice
units a. The upper bound exist to guarantee the discretization effects are under
control, by taking u < m/a, where the inverse lattice spacing a~! defines the
UV cut-off. The reason for the lower bound is related to the fact that a physical

amplitude A, as a weak matrix element between physical initial and final states,
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|i) and |f), can be written using operator product expansion (OPE) as,

A= (f|Hwli) = C (MLW) (O} (3.2)

where Wilson coefficient C' is scale dependent and takes into account the short-
distance processes and are computed in perturbation theory. The second term
in the right hand side of Eq. is a long-distance quantity which can be
computed non-perturbatively on the lattice. The subscript R denotes the
fact that the operator O(p) has been renormalized. The scale dependence
from the renormalized operator must therefore cancel that of the coefficient
C(p) to render the physical amplitude A independent of scale. An explicit
example of such a quantity was mentioned in Eq. for kaon mixing. C'(u)
is a perturbative quantity, which is computed at a scale p with p > Aqep,
implying the lower bound to the renormalization window in Eq. Moreover,
C(u) has to be computed in the same scheme as the operator Ogr. Recent
lattice studies have begun investigating the nonperturbative dynamics of heavy
quarks like charm and bottom. In current simulations the mass of the heavy
quarks is often of the same order of magnitude as the UV cutoff, a=!. As
a consequence, it is not possible to reach a regime where there is a clear
separation between the fermion mass, the renormalization scale, and the cutoff.
Therefore, when studying heavy quarks, it may be interesting to introduce a
massive scheme, i.e. a scheme where the renormalization conditions are imposed
at some finite value of the renormalized mass. We have developed such a massive
renormalization scheme, denoted by RI/mSMOM, for fermion bilinear operators
in QCD with non-exceptional momentum kinematics similar to the standard
RI/SMOM scheme. The momenta are said to be non-exceptional if no partial
sum of the incoming momenta p; vanishes [7§]. In contrast to RI/SMOM where
the renormalization conditions are imposed at the chiral limit, our scheme allows
for the renormalization conditions to be set at some mass scale m, which we
are free to choose. In the limit where m — 0, our scheme reduces to SMOM.
Using a mass dependent scheme for a theory containing massive quarks has the
benefit of preserving the continuum WI by taking into account terms of order
m/u, which would otherwise violate the WI when a massless scheme is used.

We have shown that the WI for the case of both degenerate and non-degenerate
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3.1. The kinematics

masses are satisfied non-perturbatively, giving Zy = 1 and Z4 = 1. In order
to gain a better understanding of the properties of the mSMOM scheme we
have performed an explicit one-loop computation in perturbation theory using
dimensional regularization. RI/mSMOM can be implemented numerically, in
order to obtain non-perturbative determinations of the renormalization constants
of certain composite operators. The details of the operators are discussed on the
upcoming sections. The massive renormalization constants will automatically
subtract some lattice artefacts O(a*m?), and could potentially lead to smoother
extrapolations to the continuum limit of phenomenologically relevant observables.

However, to verify this statement, a dedicated numerical study is required.

The first part of this chapter starts by summarizing the kinematics and the
form of the vertex functions used. This is followed by presenting the vector and
axial Ward Identities (WI) from which the renormalization conditions for the
RI/mSMOM scheme are derived. Afterwards, some of the important features
of the perturbative calculation using Dimensional Regularization (dim-reg) are
discussed and certain calculations are presented in detail. In the second part of
this chapter, numerical results for the renormalization of vertex functions and the

4-quark operators in the SMOM scheme are presented.

3.1 The kinematics

Let us start by summarizing the kinematics used. Starting with the correlators

of fermion bilinears with two external off-shell fermions in momentum space:

Gr(ps, p2) = <O%(Q)7E(p3)w(l?2)>a (3.3)

where O% = I't™) is a flavor non-singlet fermion bilinear, and I' spans all the
elements of the basis of the Clifford algebra, which we denote as I' =S, P, V, A T.
Note that 7% denotes a generic generator of rotations in flavor space. The
corresponding vertex function in position-space together with conventions for the
propagator, the Fourier transforms and the Dirac gamma matrices are spelled out
in detail in App. [C.I The four dimensional vectors p; and p3 are respectively
the incoming and outgoing momenta of the external fermions, and momentum

conservation requires ¢ = py — p3. The kinematics adopted in this work is the one
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used in Ref. [77]:

2 2, (3.4)

o
I
W
I
()
|
|
=

P =D

Note that asymmetric or exceptional kinematics where p3 = p2 = —u?, py = p3
and g = 0, suffers from infrared effect that are substantially suppressed using the
non-exceptional kinematics in Eq. [77, [78]. Following the convention in the
paper above, we denote this symmetric point by the shorthand “sym”. These are

presented pictorially in Fig. 3.1}

p2 p3

Figure 3.1: Kinematics used for the correlators of fermion bilinears.

For the purpose of illustration, we can consider the case of a fermion doublet

P1 — _
Y = ,wz(% %>, (3.5)
Py
with mass matrix
my 0
M = ) (3.6)
0 mo

Note that in the mass degenerate case, we simply have M = m1. If we choose
T4 =7t = % = 1 (0 +io?), then the bilinear Of = ¢T't%) takes the form

OF = ElFQ/JQ-

The infinitesimal vector and axial non-singlet SU(2) chiral transformation are

as follows
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3.2. Vector and axial Ward Identities

and

Su(x) = i|aa(e)ry?|vle), (@) = @) jaa@)T]. (38)

In our conventions, bare quantities are written without any suffix, while their
renormalized counterparts are identified by a suffix R. The renormalization

conditions are usually expressed in terms of amputated correlators

AL (pa2, ps) = S(ps) ' G (ps, p2)S(p2) ', (3.9)

where S(p) is the fermion propagator in Minkowski space:

?

T hm () tic (3.10)

S(p)

Note that for each leg being amputated, the fermion propagator with the

corresponding flavor needs to be used.

3.2 Vector and axial Ward Identities

We now show, as an example, the derivation of the axial WI for the amputated
vertex function in Minkowski space, under the symmetry transformation Eq. 3.8
The corresponding computation in the Euclidean space is presented in App. [C.3]

as well as Minkowski and Euclidean vector Wls.

Let us consider the Dirac Lagrangian,
L= —mipy (3.11)
where the covariant derivative D, is:
D,=0,+ 199, - (3.12)
We take the probe to be the operator,

O(x3,x2) = ¥(3)1(xa), (3.13)
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3.2. Vector and axial Ward Identities

and apply the infinitesimal axial transformations in Eq. Under the symmetry

transformation, the change in the expectation value 6(O(z3, z2)) = 0:

- J SEO(xs, x
0— )(O( 3,L2)) = [/wa O(3, 2)]

/Dw PletE 5O($(3’x2 /Dw PletE 55[5]0@3,1:2) .

For the variation in the operator we have,

(50(1‘37 ZL’Q)

Sale) i0(x — x3) Y 1 (x3)(22) + i0(x — 22)0(23) 0 (22)7° - (3.15)

For the variation of the action,

502@ [/d%/( — (@(;ﬂ)é@z(ﬁ),ﬁ)(@ + zgéﬂ)w(x/) — z/‘}(x/)(a + zg%) (oz(x')’flb(:r:’))

— 2mi da(x') le(xl)’fw(x/))]

7y S50 0 4,0 / Wit n 5
= ()" Dmmm[ [ da@)0,44()| = @)1 Dwta)

— 2mig ()Y (x)
= — (@) {°, 7"} Dub(x) + 0, A" — 2min(x)7°(x)
= 0, A" — 2mir(x)y") (),

(3.16)

where we have denoted the axial operator A*(z) = 1 (z)y"*7°(x). Note that
in getting to the last line we have assumed {v°,4*} = 0 which is true in
4-dimensions. However, using dimensional regularization, the dimensions are
extended to a generic value d which is then set to be d = 4 — 2¢. In this
case, 7 is ill-defined and must be generalized to d-dimensions. The general
form of 75 was proposed by 't Hooft and Veltman [79]. Calculations using
this convention are discussed in detail, later in this chapter. However, since
we are mostly interested in flavor non-singlet quantities, we do not need to worry

about extending the definition of 5 to arbitrary dimensions [79, [80]. If one were
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3.2. Vector and axial Ward Identities

interested in flavor singlet currents, then a precise definition of 75 in dimensional

regulation is mandatory.

Therefore, the Minkowski axial WI in position space can be written as:

i6(x — )7 (W(23)(22)) + 86(x — 22) () P(22))” (3.17)
— — 0 A (@) ()b (2)) + 2milb ()i (@) ()b (2) (3.18)

In terms of the quark propagator S(zz — m2) = (¥(x3)Y(z2)) and the vertex
function as in Eq. [3.3] the above reads,

i0(x — 23)7° S (23 — 12) +i6(x — 29) S (25 — T2)° (3.19)
= —i0,G\ (r3 — x, 190 — x) + 2miGp(x3 — T, 29 — T) (3.20)

Taking the Fourier transform according to Eq. and placing the operator
at the origin x = 0, i.e. an implicit [ d*zd(x), the LHS of Eq. becomes,

/d4952d41‘3 (ié(—x3)755(1~3 — x9) +i6(—x2)S (23 — x2)75> R

:/d4$2 i°S(—xg)e P 4 /d4$3 iS(w3)y P33

=iv°S(p2) +iS(ps)y” -
(3.21)

For the first term on the RHS of Eq. we have the following, which we evaluate

at x = 0 after differentiation,
; 4o dt H ip3.T3 ,—1p2.T2
—zﬁu/d xod 3 G\ (x5 — x, 09 — X)e e

_ ; A 0 A 1 o ips.(xhtx)  —ipe.(zh+T)
= —z@u/d xhd xy Gy (xf, xh)eP* 3T 2

(3.22)
——ilip — ipa) [ dlapd'al G ap)em bk
= CI-GA(P3>P2) )
giving the axial WI in momentum space,
q.Ga(ps, p2) = 2miGp(ps, p2) — i7°S(p2) — iS(ps)y” - (3.23)
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3.3. Non-perturbative renormalization

Multiplying on the left by S(p3)~! and on the right by S(p2)~!, the Ward identity

for the amputated vertex function in momentum space takes the form:

q.Ma(p2, p3) = 2milAp(pa, ps) — iS(ps) """ —iv°S(p2) ™" - (3.24)

To obtain the vector WI, one starts from the transformations in Eq.
computes the change in the action and the probe, similar to what we have done

above. The result of the amputated vertex function in momentum space reads:

q.Av(p2,ps) = iS(p2) ™" —iS(ps)~" - (3.25)

The explicit computation for both Minkowski and Euclidean spaces are presented

in App. and App. [C.3

3.3 Non-perturbative renormalization

The vector and axial Ward identities in terms of the fermion propagator and the
amputated vertex function in Euclidean momentum space is repeated below for

clarity:

q- Ay =1iS(p2)~" —iS(ps) ™", (3.26)
q- A = 2miAp — 515 (p2) ™ — iS(ps) s - (3.27)

The quark mass breaks chiral symmetry explicitly. This breaking is visible in the
axial WI, Eq. Note that the vertex functions are all taken to be non-singlet
for the rest of this discussion, and the flavor index a is suppressed to keep the
notation simple. In this section, all the vertex functions are mass-degenerated
i.e. either both quarks are light (massless) or both are heavy. As a result the
fermions propagators entering the WI in each case are the same in terms of the
quark fields but differ in terms of their momentum associated to each external

legs only. The renormalized quantities are defined as follows:

VR =2, mp=Zym, Mp=2ZyM Org= ZrOr, (3.28)
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3.3. Non-perturbative renormalization

where m and M denote the masses of the light and heavy quark respectively. The
renormalized propagator and amputated vertex functions are

Zr

Sr(p) = Z,S(p), Arr(p2,p3) = 7Ar(p2,p3) (3.29)

q

where ¢ = [, H for light and heavy quarks respectively. Note that our conventions
for defining the fermion propagator are slightly different from the ones used in

Ref. [77]; using our own conventions, the RI/SMOM conditions are

Jim 2 Tr [iSr(p) ™" #] T 1, (3.30)
Jin o 0 (iS00 o~ T Aa) el f =1 (33D
Jim ST (0 Ave) =1 (3.32)
Jim ST ((g A )35 = 1 (3.33)
%;IEO%TF [AP,R%Hsym =1, (3.34)
i T (s, = 1 (3.5)

There are several important properties to note about these conditions.

Firstly, RI/SMOM is a momentum-subtraction scheme. This means that the
renormalization conditions are set by projecting the vertex functions in such a way
that the renormalization constants satisty their tree-level value. Take Eq. as

an example. At tree-level, using Eq. [3.10],

I Te lis 1 - 1 Tr [iS(p) ™" 3.36

mll%go 12p2 I‘|:/l R(p) ﬂ] p27_ ) m;lggo 12p2 r|:Z (p) ﬁ} p2*—l.t2 ( )
Z—l

= lm T | = im0 =1

mpr—0 12p2 p2*—u2 mr—0 !

as expected. Then, for the vector at tree-level we have,

Zyg

1
Tr [(q- Av,r) dllym = n}Requzz_vTr [(q-AV) Dy (3:37)
Z

q = —_

im
mR—>0 12q2
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3.3. Non-perturbative renormalization

where we have used A{; = v* at tree-level. Given that Z, = 1 at tree-level, as
shown in Eq. [3.36] it implies that Zy = 1 at tree-level. Similar arguments hold
for all the other conditions.

Secondly, these renormalization conditions ensure that the renormalized
bilinears obey vector and axial renormalized Ward identities like the ones in
Eqs. [3.26] and [3.27] and the renormalization constants satisfy the same properties

as in the MS scheme, namely
Ly =Jx=1, ZIp=1ZLs, ZnZp=1. (3.38)

These properties have been clearly shown in Ref. [77]. Here we present Z, = 1
and the conservation of the renormalized axial WI as examples. Starting from

Eq.3.27, and writing the bare quantities in terms of the renormalized ones using
Eq. 328 gives,

1 1

0 As =
Z, AR

2mRZ.Ap7R — ’}/5iSR(p2)_1 - iSR(pg)_l’Y5 s (339)

where the Z, factors have cancelled from both sides of the equation. Multiplying
both sides by 7° ¢ and —L5, taking the trace yields and the limit mp — 0,

121q2 ZLATJr (@ Aar) %5 Moy =752 [(= 5iSr(p2) ™" = iSr(ps)5) 5 4] |y
(3.40)
:121q2Tr [(iSr(p2) ™" — iSa(ps) ™) d] |,
:%QQTr [(iSr(@)™) ]|y = 1

where the last equality comes from Eq.[3.30] Therefore, using the renormalization
condition for the axial vertex function Eq. for the LHS of Eq. [3.40] we get
Zx = 1. If instead, we multiply Eq. by 7, and apply the same procedure,
we obtain Z,,Zp = 1 using the condition in Eq. 3.31] Plugging Z, = 1 and
ZmZp = 1 into Eq. we see that the renormalized WI is clearly satisfied:

q-Aar = mpgilp r — 5iSr(p2) " — iSr(ps) s - (3.41)

A similar procedure can be performed to obtain Zy = 1. Starting from the bare
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3.3. Non-perturbative renormalization

vector WI Eq.[3.26} and rewriting the bare quantities in terms of the renormalized

ones we obtain,

1 . _ . _
Z—Vq Ay g = iSr(p2) ' —iSr(ps)™* (3.42)

Multiplying the above equation by ¢, taking the trace and using the condition in
Eq. we get,

I 1
im —
Mp—m Zy 12¢2

Tr [iSr(0) ™ ]|y =1

Tr [(¢- Av.gr) g’]|sym = lim aym
(3.43)

MR—>m ]_2q2

Finally, using the vector renormalization condition in Eq. [3.32] one obtains that
Zy = 1. Again, it can be observed that with Zy = 1, the renormalized vector
WI, Eq. is indeed satisfied. All These properties have been checked using a

one-loop calculation in massless continuum perturbation theory in Ref. [77].

While the renormalization conditions in the RI/SMOM scheme are imposed
in the chiral limit, the RI/mSMOM scheme is defined by imposing a similar set
of conditions at some fixed value of a reference renormalized mass that we denote
by m [81]:

li Tr [d - =1 A4

i o 1 [9R () A P (3:44)
1

. . —1 .
MI;,IEWIZMR {Tr [—iSr(p)~"] ‘pzz—;ﬂ b Tr[(q- Aa.r) 75]|Sym} =1, (3.45)
Ml}iglqu?rﬁ (¢ Av.r) Al =1, (3.46)
]\/Ilérilm12q2 Tr [(q . AA,R - QMRZ'ARR) V5 d”sym =1 s (347)

. 1
Ml,iIBml_QiTr [Ap,rY5]lgm =1, (3.48)

lim 4 S Tr[Ags] — —Tr [20MpA prisd] —1 (3.49)
Masm ) 127 SR 6q2 v M rAprysg S '

sym

Comparing with the SMOM prescription where the renormalization conditions

were imposed at the chiral limit mgr — 0, the renormalization conditions in the
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3.3. Non-perturbative renormalization

mSMOM scheme are imposed at Mz — m, a new scale that one is free to choose.
It can be observed that only the renormalization conditions for the axial and
scalar vertex functions have been modified by terms proportional to Mg, which
therefore vanish in the chiral limit. Therefore, the mSMOM prescription reduces
to the SMOM one as m is set to zero. As usual the renormalization conditions
are satisfied by the tree-level values of the field correlators. The properties listed
in Eq. also hold for the mSMOM scheme. This implies that the renormalized

Wls are satisfied. We now show all of these features in more detail.

Let us first focus on the modified conditions for the axial vertex function,
Eq. 347, and check Zy =1 at tree-level:

Ml;glm 1242 Tr [(¢- Aa,r — 2MRiAp R) 5 d)l iy (3.50)
. 5 5
= Jim_ 12q2Tr [(Za 0° + 220 Ze MA) 5 ]|,
= lim ZA =1 y
Mpr—m

as required, where we have used Z, = 1, Ap = i7° and Ax = 77 at tree-level.
We follows the same procedure as Eq. but now it is repeated for the massive
scheme. Two independent equations can be obtained by multiplying Eq. by

~® ¢ and by 75 respectively, taking the trace, and evaluating correlators at the
symmetric point. In the first case, using Eqgs. (3.44)) and (3.47)), we obtain

Z
Zy—1)=(1- Cnp, 3.51
-1 = (1= 505 ) G (351)
where

CmP — ]\};I_I:m 12q2 TI' [Q’l’MRAP’R’)/g) q”sym . (352)

The second equation instead gives

1 2Mp .
A Tr[(q - Aar) V5l gym A Tr [(iAp,r) 5]l sym (3.53)
— Tr [45iSr(P2) ™ 5] |y — T [iSR(03) "] | -
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3.3. Non-perturbative renormalization

For the first term on the RHS of Eq. [3.53, we can use the renormalization in
Eq. and for the second term, we can use Eq. for each propagator. This
yields,

ZLA Tr[(q - Aar) Vs)lyym = —;jj\éi +24Mp + Tr[(q - Aar) V5)lgym - (3:54)
Rearranging gives,
(Za = 1)Cps = —274 (1 1 > , (3.55)
ZyZp
where we have introduced one more constant
Cor = Ml,ililm 12MRTr [ Aa,rY5) |y - (3.56)

It is easy to verify that Z, = 1, ZyZp = 1 is a solution of the system.
Rearranging for Z, /(Zy Zp) in Eq. and substituting the result into Eq.[3.51]
gives Zx = 1. Substituting back to any of the two equations results in Z;Zp = 1
making the solution unique. Notice that because of the modified renormalization
condition for the renormalization of the axial vertex function, the computation
of Zx and Zy Zp are coupled in the mSMOM scheme. The results Z, = 1,
ZyZp = 1 imply that the renormalized axial W1, using the modified condition in
the massive scheme is satisfied. In particular, Z, = 1 implies that Z, does not

depend on the renormalization scale pu.

The renormalization condition for the scalar vertex function Ag in Eq. [3.49]
however, has been determined by performing a 1-loop computation in pertur-
bation theory, as discussed in Sec. [3.4.9] To prove Zp = Zg we start from the
non-degenerate vector Ward identity, which is an extension of Eq. with

mq 7£ ma,
q-Av = (m1 —ma)Ag +iSy, (po, ml)fl — 1Sy, (s, m2)71> (3.57)

where ¢; and ¢y refer to two different quark flavors with masses m; and ms
respectively. Note that since the field renormalization condition is set in the limit

m — m and the momenta are symmetric, Z, is the same for both quark fields ¢;
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3.4. Perturbative computation I

and ¢o. Writing the above equation in terms of the renormalized quantities, we

have

q- 2, Zy ANg =2, ZngZs(ma,g — mar)As g (3.58)
+iZ;15q17R(p2’ ml)il - iZ(;15427R(p37 m2)717

where we have used the property that the mass difference (m; — msy) is
renormalized by Zj;, given that it is obtained in the limit m — m for both
quarks, as shown in Ref. [7§]. Since it is already shown that Zy = 1 and the
renormalized WI is satisfied, it implies that Z);Zs = 1. Using Zy Zp = 1,
we finally obtain Zp = Zs. Hence we recover the equality between the two
renormalization constants. This also holds non-perturbatively in the SMOM
scheme (its validity had been previously shown at 1-loop in perturbation theory
in Ref. [77]).

We have showed that mSMOM inherits the good properties of the SMOM
scheme presented in Eq. in particular the renormalized WIs at all scales u

are satisfied.

3.4 Perturbative computation I

In order to understand the details of the RI/mSMOM scheme we present an
explicit one-loop computation of the fermions self-energy and all the bilinear
vertex functions. For simplicity we regularize the theory using dimensional
regularization, and evaluate the relevant diagrams including their dependence
on the bare mass m. Because we are mostly interested in flavor non-singlet
quantities, we do not need to worry about extending the definition of -5
to arbitrary dimensions [79, B0]. Using the naive definition of 75 keeps the
computation simpler. However, if one were interested in flavor singlet currents,
then a precise definition of 75 in dimensional regulation is mandatory. To this
end, we also present a 1-loop calculation using the 't Hooft-Veltman convention
for 5 in this chapter. This leads to extra Feynman diagrams that have to be

computed and is discussed in detail.

The 1-loop diagram, Fig. [3.3] in the perturbative calculation of the vertices
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3.4. Perturbative computation I

corresponds to the following integral:

Vulpy — K+ mLp, — k +m]y*
k2[(p2 — k)? — m3[(ps — k)2 —m?] ’

AY = —ig?Cy(F) / (3.59)
k

where I' = S,P,V,A. The strategy for computing these vertex functions is

Figure 3.2: Diagram representing the non-amputated vertex function at 1-loop
in perturbative QCD.

as follows: First, the scalar, vector and tensor parts of the above integral are
extracted and the integrals are written in terms of scalar integrals. Then, all the
scalar master integrals are computed and are used to calculate each vertex Al(ﬂl). It
is important to organize the terms in the numerator with respect to their unique
Dirac structure. The loop integration is a standard computation, performed in
D = 4 — 2¢ using dimensional regularization, while for the integration over the
Feynman parameters we have used certain techniques which have been developed
in the past few years, see Ref. [82-H84]. We discuss some of the techniques in the

upcoming sections.

3.4.1 The basis integrals

We list the set of scalar basis integrals that are ingredients to the full vertex
function integrals. As discussed later, there are several methods by which one
can compute some of these integrals. As a result this set may not be the minimal
basis, however it is complete. All the other integrals can be written as a linear

combinations of the basis integrals. Observing Eq. |[3.59] one of the integrals
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3.4. Perturbative computation I

required is

1

e (o e (3.60)

which turns out to be the most complex integral to compute and its calculation
is discussed in detail. Let us first explain the notation. In what follows, the
subscripts on each integral Ixy refer to the power of each propagator present
in the denominator. More explicitly, the first subscript counts the powers of
k% in the denominator, the second counts that of (p, — k)> — m? and the third
(ps — k)* — m?. For example in Eq. there is one power of each propagator
in the denominator, hence the notation [;;;. Powers of the propagator in the
numerator are written in the subscript with a negative sign. The other scalar
integrals required are: Ioi1, I101, loo1, [-111, [1—11- It turns out that the last two
integrals can be written as a linear combination of the other 4. Notice also that
LIi01 = Iq19 if p3 is relabelled to py. The same is true for Iygy = Ip19. Hence the
minimal basis would be {1111, Io11, 101, Loo1 }. The calculation of the first of these
is discussed in the next section while the rest are standard integrals with the
results shown in App. [C.4]

3.4.2 The scalar integral

We wish to compute the integral in Eq. |3.60 Introducing as usual a set of

Feynman parameters x, xs, x3, the integral can be recast in the following form:

I, = ¢°T(3) /k/o1 (E[ dxi) ) (1 — zip) (3.61)

1
8 (x1k? + 29 [(p2 — k)% — m?] + 3 [(ps — k)? — m?])

3

The denominator can be written as a polynomial in k. The coefficients are then
simplified using the symmetric kinematics p3 = p3 = (ps — p3)* = —p?, implying

also that py.ps = —% 1%, Making the change of variable,

[:k_w7 (3.62)
T1+ To + X3
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introducing the function,

M2 - (Izpz + T3p3 )2 To + 23

2 2
+m?) 3.63
ttmtas) Tmtm i ) (3:63)

and performing a Wick rotation to Euclidean space yields:

.92 ! ’ 1
I = —ig F<3)/o (E dxi) J (1 N le) (x1 + xg + x3)3 /g(€2 + M?)?

(3.64)

The loop integral can now be performed in closed form in D dimensions. We can

use,

1 1 > 2 2
— d/\)\2 —A(lI°+M?) ‘
@ mp T / ¢ ’ (3.65)

to first perform the gaussian integral over [ and then the integral over A. In this
particular case the integral is finite, there are no 1/e singularities as e — 0. This

gives,

Ly = —z— (H dxz> (1 - Zx) T # , (3.66)

where we defined g — gu® and o = ¢g?/4w to obtain the previous equation. The

denominator in the integrand can be expressed as

P2 (z1 + 29 + 3) [ Tolg + T1Xo + X173 + U (xlxg + T3 + 75 + 75+ 2x2x3)} ,
(3.67)

where we have introduced v = m?/u?. Using the Cheng-Wu theorem Ref. [82],
applied to the case where we choose the constraint to be §(1—x3), two integrations

over the Feynman parameters can be easily done, yielding

a 1
li1=—i—— 3.68
111 247T/L X ( )

/°° 4y, —log[ulzs +1) — o] +log [~ (w2 + 1)(u+ )] + log(z2 +1)
0 2 .TQ(.Q?Q + 1) +1
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3.4. Perturbative computation I

Note that this integral can be readily computed numerically for the case where
m = 0. The result of the numerical integration of the above integral is 2.34239
which agrees with the number quoted in Ref. [77].

For our purposes the analytic expression for I;;; as a function of the mass
is actually desirable. We find the two roots, di,ds, of x5 in the denominator
and use the symmetry between the roots i.e. d; = 1/ds to reduce the number of
parameters in the integral. This makes the computation easier for Mathematica

and the packages used within. Similarly, the numerator takes the form,

log(z® 4+ 2z + 1+ gx) + log(—u) — 2log(z + 1) — log(—u — 1)
u

=log(z® + (2 + g)x +1) — 2log(x + 1) + log(u) — im — log(u + 1) +im ,
u
(3.69)

which is shown not to have any imaginary parts. Defining 7 = 1/u = p?/m?, the

roots of the argument of the log are

1 1
n1:§<—2—r—\/r2+47“> ; n2:§(—2—r+v7’2+47“)- (3.70)

Again, there is a symmetry between the roots: n; = niz The numerator can

therefore be written as,

1
log(z — ny) + log(x — ny) = log(x — ny) + log(z — n_) (3.71)
1

=log(x — ny) + log(nix — 1) — log(ny) - (3.72)

The integral becomes, —i4—% X
™ p

/°° i log(z —n1) +log(niz — 1) —log(n1) — 2log(z + 1) + log(u) —log(u + 1)
0 (z—d)(z - )
(3.73)

In order to avoid later complications with the upper limit of the integral being

at infinity, we make the change of variables:

rT=Yy, T=-—"—:
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The problem is then reduced to an integral that can be computed explicitly:

L =iy Hz X

/1 1 log(1¥, — n1) +log(ni7%, — 1) — log(ny) — 2log(%, + 1) + log(u) — log(u + 1)
0 (v + (= D)y + ) |
(3.74)

where d; = 3 (=1+4v3) ,ny = 1 (—2 —1/u—+/1/u? —|—4/u>. The final result

is a lengthy expression, which we report for completeness,

al 1
]111 —4—;7{ ( 227?—210g(1+u))
{ u+1—M}b 4+ (V3= 1)(1 — Vau+ 1)
Sla- A - VT
{ 1+m)]lo 4+ (iV3—1)(1 +Vau + 1)
— (V3 + 1)(1 + VAu+1)

. 4o 4u
+2L1[4u—(i\/§—1)(1+\/4u+1) du+ (iV3+1) (1+VAu+1)
L du+242v/4u+1 du+ (iV3+1) (1+VIu+1)

du+ (iV3+1) (1+VAu+1) 4(1 + u)

(3.75)

As a partial check of our massive computation, the limit « — 0 of the expression
above is numerically evaluated, and shown to reproduce again the value 2.34391

from Ref. [77]. Here we denote

i 1 m?
L= -2 (2 .
m = 2 5 Co (MQ) , (3.76)

so that Colm=o = 2.34391.

3.4.3 Integral with £* in the numerator
The integral with k* in the numerator,

B2 K
"=y / P — 17— m2[(ps — F)? —mi?]

(3.77)
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can be reduced to scalar integrals by taking all possible linear combinations and
solving simultaneous equations. The only two scales in the problem with a vector

index are p§ and pf§. Therefore, we expect I* to be of the form
I" = Aply + Bpl - (3.78)

Dotting with p§ and p§ gives the following simultaneous equations:

ol = p* (~A=3B) (3.79)
puud® =4 (-8~ 34)
One computes the LHS of Eq. starting with
k
" =g / b2 : 3.80
Pl =0 P = 1P = ml[(pa — K7 — 7] (350
Using —2(p2.k) = (p2 — k)* —m? — pj — k* + m?,
2 2 2
—g 1 ue+m
=
P 2 / Pllps — k) —m?] | K2(pa — k) — m?][(ps — k)2 — 7]
+ 1 (3.81)

[(p2 = k)2 = m?][(ps — k)? — m?]

([101 + (1* +m?) i — [011) :

DO | —

The second term is the scalar integral computed in Sec. 3.4.2] We also have
the results for the first and the last terms in Appendix [C| Due to the symmetry

between py and p3 we only need to compute this integral once. Going back to
Eq. and solving for A and B gives,

. 2])2‘&]“ . 2]?3“]”
=32 =32

2V]1/M H
1= A+ oy = 2B EIA) (g )

A=B
—3p2

o
"= % (Lo — (> +m*) 111 + Iona) - (3.83)
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3.4.4 Integral with £#k” in the numerator
Using a similar method to Sec. the integral

) Ktk
g / K2[(ps — k)2 — m2[(ps — k)2 — m?]

" =

(3.84)

can be reduced to scalar integrals by taking all possible linear combinations and
solving simultaneous equations. Knowing the possible scales in the problem, we

expect I*” to be of the form
1" = Ag" + B(phpy + psps) + C(phps + psps) - (3.85)

To obtain the coefficients A, B and C, Eq. is contracted with ¢", phpy
and php%. On the LHS, each integral is then written as a linear combination of
the basis integrals which are already computed. This gives three simultaneous
equations with three unknowns, for which we solve. The details of this
computation is presented in App.

3.4.5 Fermion self-energy

The fermion self energy at 1-loop

(1) 9 7@[@2_;6"“7”}7&
i = — 20y (F) /k s (3.86)

shown in Fig. 3.3) can be computed directly by using the Feynman parame-
terization, writing the denominator as a polynomial in k£ and making a change

of variable in the standard way. However, the computation simplifies if one,

Figure 3.3: Fermion self-energy at 1-loop in perturbative QCD.

instead, notes that the integrand can be written as a linear combination of the

basis integrals which have already been computed. To this end, the coefficient F'
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has to be determined:

k;/‘
2 — Fpt 3.87
glw@—w—W1 P2 (3.87)

with p§ being the only external scale appearing in the integral that can carry the
index p. The computation is very similar to that in Sec. [3.4.3] as is not repeated
here. The details are written out App. [C.6] Using

YFvy=d , Yy =02-dn, (3.88)

The final answer is:
o 1 m?  m? m? m? +
Y(p) = —COy(F | —+—In|{ — In [ ——
#) = g7 )P( € +7E+u2+u4n(m”+ﬁ)%_n< I ))

4 4m? m? m? +
efore e ) (3]

(3.89)

where ~g is the Euler-Mascheroni constant, we have replaced p? = —pu?,
and denoted i the scale introduced by dimensional regularization through the

rescaling of the gauge coupling ¢ — g, This scale can later on be set to equal

L.

Eq. (3.44) yields the renormalization constant for the fermion field in the
mSMOM scheme:

a 1 m?  mt m? m? + p?
Z,=14+—Cy(F) |- +1-9p————In|— ) —In|—— || .
e PR 2 u4n(mkﬂﬂ) n( i? ﬂ

(3.90)

The effect of the change of scheme is a redefinition of the finite part of
the renormalization constant Z,. As expected on dimensional grounds, the
dependence on the reference mass m only enters via the dimensionless ratio m/ .
The limit for m — 0 is well defined and reproduces the result of the massless
scheme [77].
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3.4.6 Vector vertex

Let us now consider the vertex functions, and discuss how the ingredients of the
previous sections are used in this computation. We also discuss in detail the
structure of the vector correlator Ay. The one-loop contribution to the vertex for

the case of massive fermions is

Yo [ls= K+m]y [ K+ m]y™
k2 [(ps — k)* — m?] [(p2 — k)* — m?

A (g, pg) = —ig? Co(F) / (3.91)
k

As mentioned before, the first step in the computation of the above vertex
function is to organize the terms in the numerator in such a way that the full
integral can be written in terms of a scalar, a vector and a tensor integral in k*,

1.€.
I7 = Ka(p%p?))jlll + Ko-’u[,u + KUH[W(anpS)[;w : (392)

After some manipulations,
K7 (p2,p3) = [ — 203, — 205, — 127 — 20”77 y,7 psapas (3.93)

+ 4mp3 + dmp — 2m27"] : (3.94)

K% (p, ps) = [(2 — 2¢) [(pg + PV + (P, + py) 97" — (ph +p§‘)7"]
(3.95)

+ (=2 — 2€)i€™*Y,7° (P30 — P2a) — (8 — 46)mg’“’] :
and

K7 (pa, p3) = (=2 + 2¢€) (¢"77" + ¢7"+" — g""77) - (3.96)

The integrals Iry1, I, I, have been calculated. See Eq. [3.74) Eq. 3.83] and

Eq. together with Eq. C.77] Putting all the ingredients together, the
integral Eq. which transforms as a four-vector under Lorentz transformations
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can be expressed in terms of just five form factors.

o o 1 - _opo o 1 o o
AS) (p2,p3) = ECE(F) AVE (ZE P ﬂ7p75p3ap25) + By’ + CVP (p5 Yo+ 3 ¥s) +

1 1
‘|‘DVE (PS5 #s + 3 ¥y) + Ev; (P + %)
(3.97)

The form factors Ay,..., Eyv only depend on the Lorentz invariants, and are
computed analytically. At the symmetric point, they are given by the following

expressions.
41 /1 m? m? m? m?
Avy==||=——=)C | — 1+— )1 _—
' 3[<2 /ﬂ) 0(u2>+< +u2) Og(m2+u2)
2 ,/1+4m—;—1
— 1+4m—210g -
\ 1 V6I+4m 41

where the expression for C (’S—;) can be found in Eq.[3.75/and Eq.|3.76] Although

the last two terms in the expression are separately divergent in the massless limit,

(3.98)

Y

these divergences cancel, yielding a finite expression when m — 0, which agrees

with the results in Ref. [77]. Similarly for the other form factors we find:

1 1 m? m? m? m2\ m?
s () (1o sy
c 3 12 12 L W2 ) 02
_2 m? + p?
2

(i)
)

,_
o
o

— N
=
. [\]

90



3.4. Perturbative computation I

m? m? m? m? +
— (1 — 4?) log (?) + (1 — 4?) log ( 2 )] ; (3.100)

2 m? m? m2\ m? m?
Pv=3 K”C’O <?>) (1_2F> ‘4”?)?“ (—mumﬂ ;
(3.101)
4m m? m? m? m? m?
Ey=——|Cy)| — 1-2— 21 _ 2—1 _—
Y3 0(M2>( M2)+ Og(m2+u2)+ e 0g<m2+u2)

; (3.102)

2 ,/1+4m—22—1
-2 1+4m—210g a
\ H 14472 41

e
which all agree with the results in Ref. [77] when the limit m — 0 is taken.

3.4.7 Pseudoscalar vertex

For the pseudoscalar vertex function at one-loop we have:

Yo [P35~ K +m] o8 [#o— K+ m]y” ‘
2 [(ps — 4 = me2] [(ps — K" — 2]

A o) = ) | (3.103)

Decomposing the integral into scalar, vector and tensor parts with respect to the

loop-momentum k*,
19 = K5(p2,p3) 11 + KEI, + KE (p2, p3) L (3.104)
with

Ks(p2.ps) =" [2(w —2)p® + (d — Dp,p, + (2 — dym(p, — p,) — de], (3.105)
K{(p2,ps) =" [ — 4(ph +pf) — (d = 4)p,y" — (d - 4)7%] : (3.106)
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and
KL (pa,p3) = 7° (49“” +(d— 4)%%) : (3.107)

Putting the ingredients together and setting d = 4 — 2¢, we see the one-loop

structure of this vertex is simpler as compared to the vector case:

A (pa, ps) = %OQ(F) [BP (+°) +Ep%(75) (#y— pg)] . (3.108)

The form factors are:

1 3 1 m? m? m? m? +
Bo=d|=—mt2—=Co [T + ™r0g () —og (EEETY
; e T 0(u2)+u2 Og(m2+u2> Og( i? ﬂ ’

(3.109)

m m?
Ep = ——-2C, (—2) . (3.110)

! fu
Using the renormalization condition Eq. (3.48)), we have
1 1 [Ze. .
Ml;glml_Tr [Ap,rY5]lgym = ml;r_r}m—z_Tr {ZAPV } =1, (3.111)
sym

giving

Tp = {1 + %@(F)

1 2
—3(2—7E>—5+200( )+31n< “‘)
—2 2 —2
_m (1—41n<1+ﬁ—2) —ﬁln(H“—Q))
n m)

(3.112)
The above result reduces to Ref. [77] in the massless limit. Note that Zp is

)

scale dependent; setting ft = p, we find that the dependence on the scale only

appears through the combination /.
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3.4.8 Axial vertex

The computation of the axial vertex follows very closely the one of the vector

vertex presented above. The starting expression

o : Yo [Bs— K+ m]177° [By— K+ m]y°
AR (p2, ps) = —zg2Cz(F)/ ; s K ; ] 5 7 5 ]2 (3.113)
kk [(pg—k) —m} [(p2—k) —m} ,
It is decomposed as follows:
17 = KZ(p2.p3) iy + K" 1, + K™ (p2, ps) L (3.114)
where, with d = 4 — 2e,
12
K (p2,ps) = |27° (pé'?g +P5pP, + 7V”) — 2i€”%,,p3apag
(3.115)

+ 4m~°pg — 4mr°p] — 2m275v"] :

K" (p2,ps) = | (2 +2€)7° ((pé’ 5V ()9 — (0 + péf)v”)
— (2 4 26)ie” 7y, (P3a — P2a) — 2emy° ", ﬂ] :
(3.116)
K7 (py,p3) = (2 = 26)9° (¢"79" + g7+ — ¢""77) - (3.117)

The integral can again be parametrized in terms of five form factors, which

we denote Ap, ..., Fa,
(1o o 1 - _opaf .5 1 5 (.0 o
AL (P2 ps) = - Ca(F) AAE (1€7°*y,p3ap2s) + Bay’y +CAE7 (P5 ¥y + 15 ¥s)

1 g g 1 (o2 g
+ DAEVE’ (pS #s+ 5 ) + EA;’VE’ (p§ — p?)

(3.118)
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All the possible Lorentz structures expected for an axial vertex function are
included such that o is the free index, unless the form factor turns out to be
zero, e.g. in this case the term proportional to ¥Y50#*. For the non-zero axial form

factors we find:

4 1 m? m? m? m? m? + u?
Ax==||=——)Co | — —1 — ) =1 —_—
* 3[(2 /ﬂ) 0(u2)+u2 Og(m2+u2) Og( 2 )
2 ,/1+4m—22—1

— 1+4Elog -
V1442 +1

112

1 1 m? m?  _m? m?
BA:__7E+_|:_CO <—2> <1+8—2—2—4)+<3——2
€ 3 7 1 I I

m? m?
2 ()
2 2 2
T (1 _4m_2) log (ﬁ) 4 (1 - m_) log
H f 1%

2 2 14472 —
- (1—2m—2) (J1+45 1og . . (3.120)
H p J1+4% 41

% log

1/1—}—4’”—22— 2 2 2 2
- —<2—m—)+200(m—2)m <1+1)
V31+45 +1 K

m? m? m? m? + p?
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2
Ex = 240, (ﬁ?) . (3.123)
o m

Again, in the massless limit m — 0, the above coefficients coincide with the

corresponding results in Ref. [77].

3.4.9 Scalar vertex

In this section we discuss the mSMOM renormalization condition for the scalar

vertex.

(3.124)

(1) — —ig? Yo [B3— K+ m][po— F+m]*
A3 (P2 s) = “Mmlwwrm%mﬂw—W—WT

Decomposing gives,

A (py, ps) = —ig?Ca(F)

K(p2, ps) i1 + K"I, + K’W(pg,pg)fw,] . (3.125)

where,

K(p2,ps) = [2(w = 2% + (d = )p,p, + (2 = dymlp, + p,) + dm?|, (3.126)

K"(pa,p3) = [ —4(py +p3) — (d—4p" — (d—4"p, —2m(2 - d)v“] :

(3.127)
K (3, ps) = (49" + (d = 4)77") - (3.128)

We set d = 4 — 2e. The one-loop structure of this vertex is
A (p2.p3) = %Cz(F) {BS + ES% (#ot 2’?53)] : (3.129)

The form factors are:
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3.130
4m? m? m? + u? ( )
+ n —41n — ,
12 m? + 12 e
4m m? 1 m? m? m?
Es= "o (M) (<2 + ™) — (14 ™ Y1og (2
’ 3ulo<u2>< 2+M2> (+M2>Og(m2+xﬂ)
(3.131)

2 v/ 1+ 4me ]
+4/1+ 422 log -
\ 1 J1+4% +1
Using the renormalization condition Eq. (3.49)), and the fact that Z,,Zp = 1,
yields

. 1 Zs 1 ZmZp ..
mﬁiffm{ﬁﬂ {ZAS] +6—q2“[ Z, Q””AP%A }
sym

1 2 2
4(——7E)+6—(8m—2+2)00(ﬁ2)
€ u p
4 2 2 2 2 2 2
+ ln( T 2)—41n<mf;”>>+8ﬂ200(%>”:1.
u m? + pu ji u u

(3.132)

mpRr—m

. _ [0
= lim_Z, 1{25 <1 +Co(F) -

After introducing

P = 1+02(F)%

1 m? 4m? m?
41 - — 6 —2C) | — |
(6 7E)+ O(u2)+ 12 n(mzﬂﬂ)
2, 2
_41n(m:i;u)
fi

9

(3.133)
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we obtain
Zg (P - %CQ(F)SM—”;‘QCO (Z—j) ) =7, (1 - Ziqu<F)%8%2)
_z (1 _ CQ(F)%%TZLQ 0(a2>>
Hence,
Zs

We can rewrite the above expression explicitly as:

Zg :{1 + L 0y(F)
47

1 2 2 2
_3(——%) — 5420, (%)Jrsln(m fr“)
¢ "

2

2 =2 2
m % m %
:ZP7

(3.135)

which clearly depends on the ratio Z‘—; It is possible to show non-perturbatively

that Z,,Zs = 1 using the vector WI with a suitable probe. See e.g. Ref. [78] for
a detailed discussion.

3.4.10 Mass Renormalization

The mass renormalization can be computed following the mSMOM prescription:

1
lim Tr
mr—m 12mp

1
—iSg!| - o

qu Ay =Y =1.

(3.136)

sym

97



3.4. Perturbative computation I

; }

— i Zm {Zq1(12m)(1+zs(p2)>—%ZAZJUQ)@(F)%MCO (TZ_;)}

We prove that Z,,Zp has to be equal to 1, i.e.

1
—iZ 1S = ST Za 2 quly )

1
I T
o 122, m { g

sym

sym

(3.137)

Setting Zx = 1, we have
« 1 4m? m?
14+ —Cy(F) 4| -— 1
el )< <6 7E>+6+ I n<m2+u2>
2 2 2
o (24) 0 ()
f It
1 2
3(——7E>+5—200 (%) (3.138)
€ It
m? m? m? m?
+7(1+41n(m2+u2)_ﬁm<m2+u2))
=2 2
—3In (m :ZM)
o

3.4.11 Vector Ward identity

-1
T =2

(0%
=1+ = Cy(F)

=75,

The results in the Sec. and Sec. need to satisfy the vector Ward identity.
This requirement provides a stringent test of our computations. At one-loop the
Ward identity, Eq. [3.26] becomes

q- AV = (ps) — S(pa) - (3.139)
Using the results in Sec. (3.4.6)), the LHS of Eq. [3.139|is readily evaluated

«

—Cy(F) Q/{%—’VE—I—l—lOg(

m2 + MQ)
[i2

m? ] m? ] m? | m?
——(1-—|1——=log| —— :
112 12 112 S\ 2t 112

47
(3.140)
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Likewise, for the RHS of Eq.[3.139] the results in Sec. [3.4.5] yield exactly the same
expression, so that the vector Ward identity is indeed satisfied.

As discussed in the previously, the vector Ward identity implies that Zy, =
1. This can be checked explicitly from our one-loop calculation. Using the
renormalization condition Eq. yields

lim

Tr [ﬁ(q -Av) d]

T ((g Av) dllyy, = Tim Z
q

mp—m 12¢>

sym

which, using Eq. (3.90), implies

-1
a 1 m?  mt m? m? + u?
1+ —CoF)| = 4+1—yp— — — —1 —In | ——
e (e o () - ()

(3.142)

Zy =7,

=1.

3.4.12 Axial Ward identity

The axial Ward identity also needs to be fulfilled in our check at 1-loop. This

constraint becomes
q-AY) = 2midp + 152(p2) + Z(ps)rs (3.143)

Using the results in Sec. (3.4.8)), the LHS of Eq. (3.143) can be evaluated
a 5 1 4m? m? m?*  m? m?

2 2 2
() | ama ()}

Similarly, for the RHS of Eq. (3.143]) , the results in Sec. and Sec. yield

exactly the same expression, so that the axial Ward identity is indeed satisfied.

(3.144)

As discussed in the previous section, the axial Ward identity implies that

Zx = 1. This can be checked explicitly from our one-loop calculation. Note that
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the modified renormalization condition Eq. (3.47)) is critical to get Z = 1.

J\}plgrgm o Tr [(q - Aa,r — 2mpilAp ) V5 ]| (3.145)
T ZA ZPZm . 5
g (B )
sym
1 1 o) 4m? m? m?
= li —Tr Za| ¢ + —Ca(F)g* | - — 1-—0C| = || ——
Vg 122 Z, r{ A<q T " 2 <u2> w

a ,4m? m?
- o (5 }

where we have used Z,,Zp = 1. Substituting Eq. (3.90)), yields

Zy=1. (3.146)

3.5 Perturbative computation 11

The 't Hooft-Veltman convention for 75, generalizes this matrix for arbitrary

dimensions d [79]:

{37}, ifp=0,1,2,3, (3.147)
[vs,7"],  otherwise,

(15)2=1, + =5

This is only Lorentz invariant for the first four dimensions and not the entire
space, however it also gives the correct axial anomaly. When considering
the flavor-singlet axial current, it is essential to use this convention for ~s.
Even though we have not considered the flavor-singlet case, as a check, we
redo the 1-loop computation for the pseudoscalar and axial vertices using this
convention. Such a 1-loop calculation also gives insight for attempting to extend
the mSMOM renormalization scheme for flavor-singlet operators. Due to the

different commutation and anti-commutation relations depending on whether
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i < 3 or pu > 3, the axial WI needs to be re-derived and now contains extra

terms corresponding to extra 1-loop diagrams that have to be recomputed.

We follow the notation first introduced by Breitenlohner & Maison in Ref. [80]
and re-expressed in [85]. Dimensions p < 3 are denoted with a bar and p > 3 are

denoted with a hat. Explicitly:

G, ifp,v>4

G = (3.148)
0, otherwise;
and
v, if pv < A4,
G = I . (3.149)
0, otherwise.
For a vector:
ok = g v
ree (3.150)
pH — g/“/pl/.
Furthermore, let
. ob it pv>4
or = (3.151)
0, otherwise;
and
_ or it pv <4
= (3.152)
0, otherwise;

Appendix is dedicated to the manipulation of the ~ matrices in this
convention, in particular those that are required in the 1-loop computation of

the pseudoscalar, the axial and other vertices appearing in the axial WI.

3.5.1 Axial WI in the ’t Hooft-Veltman convention

Returning to Sec. where we derived the axial WT explicitly starting from the

variation of the action, we see that the term appearing in the line before last in
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Eq. B.16}, i.e.
G AN D) + A — i () P(e) , (3153)

contains an anti-commutator term. This term is no longer zero for u > 3 but

instead equals

—20(2)y° 4" Db () + 9, A" — 2minh(x)y () - (3.154)

This yields the axial WI:

i0(z — 23)7° (W (w3)1)(22)) + 10 (x — 22) (Y (3) 1 (22))7 (3.155)
— 10, (A" (2)¥(23)P(x2)) + 2mi (Y (2)ir* () (w3)1) (w2))
+i(0(0)7" 4" (0u(2)) ) (w3) P (w2)) — i{(0 () V4" () (w3) 1 (2))

=2g((2)7°4" ()1 ()0 () -

-
new Feynman rules needed

The terms indicated appear as a result of the 't Hooft-Veltman convention and
yield new vertices that have to be computed. Let us start with the first term and

perform a Wick contraction,

(Y(x ) ( u@b( ))@0(1“3)@5(172))

=+ (Y(@3)Y (@074 (01 (2)) P (x2)) -

The momentum space value, placing the operator at the origin using a delta

function becomes,
/d4LE d(x) /d4x2d4:£3 S (x5 — x)y 4" (Qﬂ(z — 3;2)) P33 g—ip2.x2
:/d433 6(x) [/d4$3 S(xg — 2)e 441 % (=)(=)(—ip2) /d4x2 S(x — xq)e P2

_Z'pgu/d4;p3 S( 3) ip3.23 ’7 ’7 /d4ZL‘2 S(—:Eg)e_im'@

— ip2,S(p3) v°4* S(p2) -
(3.157)
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This has to be multiplied by an overall factor ¢ in Eq. [3.155] giving,

+p2,5(ps3) 4" S(ps) - (3.158)

Following a similar procedure for the other vertex, <(8M@/;($))75’3/“1/)($)¢(273)1/;($2)>,
gives +ip3,S(p3) 7°4* S(p2) which will be multiplied by —i according to Eq. [3.155|
After amputation, i.e. multiplying on the left with S(p3)~! and on the right with

S(ps)~!, the tree-level value for this vertex becomes,

+ (p2 + p3)u*A" (3.159)

corresponding to the diagram in Fig. [3.4]
* q=PpP2—DP3

> ‘ >

P2 P3

Figure 3.4: Diagram representing the tree level contribution to the operator

V(@) Db ().

Returning to Eq. [3.155| the contribution to (¢ ()4~ D,tb(z)(x3)(x2)) at

tree-level is in fact zero since in the absence of any poles we can simply take

p = 0. The 1-loop contribution is then expressed as

W e Yalpy — K+ ml(p, +p, — 2077 p, — F +my
Mo = =P | o
(3.160)

which corresponds to the diagram:

Figure 3.5: Diagram representing one loop contribution to the operator

(V(@)A"y° Db ().
The last term in the WI Eq. i.e. —2g((z) VP4 e b(x)(3)(x2)), has
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(I_Pv-’m q—pz ps

p3—k

W W

(b) (c)

Figure 3.6: Diagrams representing one loop contribution to the operator

—2g(1 ()T 4" A (2)1) (w3) 1 (22)).
its first contribution appearing at 1-loop in the following combination:

(—ig)(=29) / d'z §(z) d*zy e P d'zy €73 4tz

U(2) ()7 ()Y ()74 ()b (2 (w3) 1 (2) -

(3.161)

Performing the contractions, setting x = 0 using a delta-function and taking the

Fourier transform, we get,

@) [ S S(os — P35 02) D) - (3162)
P
For the details of the computation see App. [C.7.3 After amputating the vertex
by multiplying on the left with S(ps3)~! and on the right with S(p;)~!, we have,

N = i) ()) [T B

Similarly, for the other equivalent contribution,

A 5 _ A
0 o WP, — F+mly
AD 25620y (F) /k T (3.164)

(3.163)

These vertices are shown in Fig.[3.6] We discuss the computation of these vertices

in the upcoming sections.
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3.5. Perturbative computation IT

3.5.2 Axial and pseudoscalar vertices recomputed

The axial current contribution has to be recomputed using the new convention,

AV (pa, ps) = —ig?Cy(F) /k ;s Hz;g _kl; m];

}7 (o= K+ m]y (3.165)

[PQ—’f)Z—mﬂ '

Using the previous calculation in the naive case, we know that the coefficients
multiplying the scalar and the vector terms in k, i.e. K¢ and K" in Eq. ,
are finite. This implies that there is no need to recompute these using the new
convention since parts proportional to ;}32,;’33 can be safely set to zero in the
absence of any 1/¢ poles. We therefore need to consider the term in the numerator
of the form k,k,. Again, the part of the integral proportional to (p§ ¥, + p3 ¥s)
and (p3 #; + p§ P,) are finite and we can carry forward the result from the naive
case. This shows that we only need to recompute the contribution proportional

to g,, which contains a 1/e pole. The result is:

«

1 - _OpQ ag
—Cy(F) AAE (i€7”*" 7 psapas) + Bay™y +

Ass,l)a(pm p3) = Ar

1 ag g
"‘CAE’Y5 (pz Py + P3 ]53) +

1 1
+DAE75 (pS #s+ D5 ¥o) + EA/: (5 — p%)
(3.166)

where coefficients Ax, Ca, Da and Ej are the same as in Sec. [3.4.8] while the

coefficient of 479 now becomes,

BA:1_7E+4+ { (—22)( 8__2_‘?)
(3 - _> ;Z (mjfug)
(e () o) ()

(3.167)
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3.5. Perturbative computation IT

The extra number, “4” above, is the only extra addition to the naive case
Eq. [3.167, which means the change in the convention has had a finite, non-zero

contribution to the integral.

Similar arguments hold for the pseudoscalar integral using the new convention.

The result is similar to Sec. [3.4.7]
AL _ ) | Be (F) + Bot () (4s — 7 3.168
b’ (D2, D3) = »(F) P(’Y)‘i‘ PM(’Y)(% 153) ) (3.168)
with a different form factor Bp as compared to Eq. [3.169]

1 7 1 m? m? m? m? +
Bo=4|-—qmt O (™) + Mrog () —log (T |
; e T °(u2)+u2 Og<m2+u2) Og( [ )}

(3.169)
Again, we see a finite contribution that is different compared to the naive case.

3.5.3 Integral AW

a anom

One of the main ingredients in computing

%é[p:a —k+m] @2 +@3 B 2%)75[}]}2 —k+my”

AV = POy (F / :
oo =) Tk~ (s — 2 ]
(3.170)
is the term containing three ks in the numerator,
kH kT kY
v = . 3.171
| P = G4

This integral is symmetric both under the exchange of p; <+ p3 and permutations

of indices pu, o, v. Therefore it is expected to be of the form:

"7 =A [g“" ( +p5) + g™ (p3 +05) + 97" (py + 1S )} +B {p’z‘p‘z’pé + pé‘p%pé]
v, K, O o Vv, M1

+C [(p’g‘p‘;ps + pypsps + pIpsPh ) 4+ (P5PSPS + paphps + PIPyDh )} :
(3.172)
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3.5. Perturbative computation IT

The constants A, B and C' can be determined by appropriately contracting the
indices and solving a set of simultaneous equations in the same spirit as Sec.
and Sec. [3.4.4 The full detail of this computation can be found in App. [C.7.4
The terms containing two k’s in the numerator have a divergent contribution

proportional to g"” as we have seen before, hence have to be computed. The

details of the calculations can be seen in App. The final result of AL

is:
AL = g7502(F>

a anom A7

: (3.173)

%@2 _'_ﬁ:s) + 2@3 _352) +8m

3.5.4 Integrals Aél) and A

anom ¢ anom

For the integral Aélinom in Eq. [3.164] we use the results Eq. |C.81 computed for
Eq. [C.79] Simplifying the numerator,

AT+ AT =9 (T + AA78) = ((4 — )y + (6 - d)ﬁ")

=7 (267” + 2+ 26)’?0)

(3.174)
Therefore, the term in the numerator with p, gives
o slop 12 17

where the finite part vanishes as py — 0. The —f part gives,

T

5+ 25, |- (3.176)
471.7 p2 6?2 ’
The m part gives,

s

o
47r7

% + ﬁnite] (d—4)m = ol (—2m) - (3.177)
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3.5. Perturbative computation IT

Putting it all together we obtain,

Aélinom ZOZ 5|~ + 1 9 2 (3 178)
_vanom _ 9 _ —2m/- .
iCo(F) an ! e 6%

For A

¢ anom’

Eq.|3.163, in the numerator we have the term

TN + 3575 =7 (= 397 + 5.7") = 75( —(4—-d)y7 + (6 - d)&")

=y (—267 +<2+26)ﬁ)

(3.179)
The P, part becomes,
(Yo _ 2.
E,Y [ — 2, + Epg . (3.180)
The —F part gives
_ _,y [ P+ };}3 , (3.181)
and the m part remains the same as the previous case. Therefore,
AW re} _ 1-
—Lamom — 9 A5 — —p. —2 3.182
iCo(F) ar ! Pst ep?’ " ( )
Adding the two graphs,
(1) ny _ o 5 - N
A AL om = ECQ(F)fy —2(p, — py) — Z% +p,) +8m|-  (3.183)
3.5.5 Bare axial WI check at 1-loop
The bare axial WI at 1-loop it takes the form
q'Aix(l)(pl,pQ) :2miAa(1)(p1;p2) + T(L%E(m) +X(p3)T" s (3.184)
+ Aa anom + Ab alr)lom + Ac anom
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3.6. The ’t Hooft-Veltman modified renormalization conditions

For the propagator terms at 1-loop we have,

Y52 (p2) + B(p3)7s

a —4 — (p, +9,)
:4_,_)/502(17) g p2 ZZ)3
7 €
- m?  m? m? m? + u?
1 M g () g (A
+g( +7E+/ﬂ+u4n(m2+u2)+n( 2 )>
1 4m? m> m? + p?
2 4( - — 6 1 —4In| ———
i m< (6 VE)+ i n(m2+u2) n( i >) ’
(3.185)
and
5 _ 1 4m? m? + p? m?
iA=L oso, ) g - - oy +log () T
q-Ny ] o(F) | ¢ 6+7E‘|‘ 2 o + log 2 +M2
) (3.186)

g (s25)
+ " s —5)+4m00

Given the ingredients, it is easy to check that the WI, Eq.|3.184] is indeed satisfied.

3.6 The ’t Hooft-Veltman modified renormal-

ization conditions

The renormalization conditions for the axial current and the mass have always
been derived starting from considering the axial WI and multiplying it with an
appropriate projector, i.e. 75g and 7° respectively. Afterwards, simplifications
may be made using the other renormalization conditions such as those for the
field and pseudoscalar vertex. Here, we carry the same logic forward. Firstly, note
that the conditions for the field, vector, pseudoscalar and scalar renormalization
will remain unaltered. However, we have seen that using the 't Hooft-Veltman ~°
conventions changes the finite part of the pseudoscalar vertex which means that

Zp will be different; explicitly, starting from

=1, (3.187)

sym

1 1 Z
lim —Tr [AP7R"}/5”Sym = lim —Tr {—PAP’yﬂ

Mpr—m 127 mpr—m 127 Zq
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3.6. The ’t Hooft-Veltman modified renormalization conditions

we obtain

«

1 2
—3(——%9) 13420, (%)
€ m
2 12 772 12
_F (1—4111(1—1—%) —Fln(l—i-%))
—2 2
+3In (u) } (3.188)

i2
Finally let us write out the new set of renormalization conditions for the mass

and the axial current. For the axial current we have

]\}élilm 12q2 Tr [(q . AA,R - 2MRZAP7R> 75 q”sym
= ]\/jlérilm 12q2 Tr [( — ’y5iSR(p2)_1 — iSR(pg)_l’Y5>’}/5 g’} sym (3189)
. —1
+ J\/[llir—l;lﬁ 12(]2 Tr |:Zq <A& anom T A[, anom T Ag anom) Vs Q/:| sym

The first term on the right hand side is indeed the term that reduces to unity in the
naive 7° convention. However, in the "tHooft-Veltman convention, passing the ~°
through the inverse propagator introduces hatted terms corresponding to v* with
@ > 4. It is important to note that as far as the usual four dimensional, 7.e. barred,
termed are concerned, there is no difference between this condition and what we
previously had for the naive case. The extra terms are purely an artefact of the
definition of 7°. Since we have designed the conditions directly using the bare
WI, the hatted terms arising from commuting the +* with the inverse propagator
cancel with the corresponding terms coming from Ag anom +A; 0 +Aé anom order

by order in perturbation theory. Note also that these terms are zero at tree-level.
More explicitly, the left hand side of Eq. |3.189 at 1-loop now reads

A};Iilm 12(]2 Tr [(q : AA,R - QmRZ.ApvR) V5 q”sym (3190)
T 1 ZA ZPZm . 5
| (B - o)
sym
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3.6. The ’t Hooft-Veltman modified renormalization conditions

1 « 1
=1 —Tr Za| ¢+ —Co(F)g?
ziglm 12¢% Z, r{ A <q * 4T 2(F)q €

a ,4m? m?

where we have taken Z,,Zp = 1, checked to be consistent in Eq.|3.193] The right
hand side of Eq. [3.189| takes the form

+% B (1732 +;5B3)

€

lim
MR—>ﬁ 12q2

1 a
7 Tr{l + -Ca(F)

where the Z ! cancels on both sides of the equation and gives Z, = 1.

Finally, to obtain the mass renormalization and check that Z,,Zp = 1, we
modify Eq. keeping in mind bare WI with a ~® projector. This gives,

) 1 .
lim — {Tr q - AA,R%qu:,uz —2Tr [MRZAP,RVSHSym}

MR%W ]_2
) 1 . _ . _
= lim —Tr [( — v5iSg(p2) ' — iSr(p3) 175>75} (3.193)
Mr—m 12 sym
. 1 1
+ Z\/};Iilﬁ ETI‘ [Zq (Afz anom T AB anom T Ag anom) '75] sym
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3 m2 m4 m2 m2+'u2
— (-1 Iy | +1
51( +7E+u2+u4n(m2+u2)+n< /l2 )>
1. - i}




3.7. Mass non-degenerate scheme

Using Z4 = 1, the LHS of Eq. |3.193| at 1-loop becomes,

. ) o
Ml;}crgm Zq { 4T Ca(F) (4mC’0>

1
m+4gm<4 (__'YE) + 14 — 20,
€

™
m2 m2 m2 +M2
i (em) - e (5 )|

The RHS of Eq. [3.193] takes the form,

+ 22 Zp

Pt

€

1 m2 m2 m2_|_lu2

Prt ¥ }

—= + 16m
Putting them together, Zq_1 on both sides cancels giving Z,,Zp = 1.

. _ «
lim Z, 1{2m + E@(F)

Mpr—m

(6%
+ EOQ(F)

€

(3.194)

3.7 Mass non-degenerate scheme

We will now consider the renormalization scheme for the case of non-singlet,
mass non-degenerate vertex functions in Minkowski space. Note that according
to Eq. we collect the two fermion fields in a flavor doublet:

o= i=(m 1), (3.195)

with the non-degenerate mass matrix
M = . (3.196)
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3.7. Mass non-degenerate scheme

In what follows we will be interested in fermion bilinears of the form Ot = HT

by choosing the flavor rotation matrix to be 7¢ = 7+ = 2= = L (¢! +i0?). For

clarity, we will leave the flavor index “+ 7 explicit in the Ward identities, but
will suppress it for the rest of the section to keep the notation simple. We have
used curly letters (V, A, P,S) to denote the heavy-light bilinears. The vector and

axial Ward identities are as follows:

q- Ay = (M —m)AL +iSy(p)~" —iSi(ps)~". (3.197)

q- Ny = (M +m)iNy —25iSu(p2) " — iSi(ps) s, (3.198)

where M and m are masses of the heavy and the light quarks respectively.

3.7.1 Modified renormalization conditions

The RI/mSMOM scheme for the heavy-light mixed case is defined by imposing

the following set of conditions at some reference mass m:

ml}l%IgO 12q2 Tr [(q . AV,R - (MR - mR)A&R) q”sym (3199)
Mp—m
= ml}ia%g 12q2T1“ [(i¢ S r(p2) ™" —iCSur(ps) ™) 4]
MR%m

Jim T e Aan = (et mn)ip.) 35 Ml

Mp—m
= 12q2T1"[( — iy’ S r(p2) ™ — iCSLR(P3) ') s 4]
MRHm
(3.200)
w}zla%g_iTr [Ap, R V5] |gym (3.201)
R—M
= im T i ) |- 2 Tl A ]l
mn0 | 12(Mp + mp) A e T P
R—M
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3.7. Mass non-degenerate scheme

1 , . 1
200 T mn) {Tr [=iSLa() ]| oy = 5 Trlla- Aur) 75]ysym} } .

(3.202)

where ( denotes the ratio of the light to the heavy field renormalizations, i.e.
( = \/% In the degenerate mass, ( = 1 and the mixed mSMOM prescription
reduces to the mSMOM and SMOM one. The renormalization conditions for
Zy, Zy and Z,, remain unaltered as they are independently determined from the
corresponding degenerate, massive and massless schemes of the previous sections.
As usual the renormalization conditions are satisfied by the tree level values of

the field correlators.

3.7.2 Renormalization constants

The properties of the renormalization constants in this scheme are obtained once
again from the Ward identities. We multiply the vector Ward identity Eq.
by ¢, take the trace and write the bare quantities in terms of the renormalized
ones as follows:

1
Z}LI/Zle/le" [Z_ (q . Avﬂ) g’]
%

Mg _ mg (3.203)
:leq/QZzl/QTr (iC_ISH,R(M)_l —iCSir(ps) " + %AS,R> !1] :

Using Eq. [C.I54] we get

1 o _ ) _
(Z_v - 1) Tr [(i¢" Su,r(p2) ™" — iCSur(ps) ") 4]
Mp  m (3.204)
—(Mr—mR) 7y ~ Zm
= = | Tr [A
( ZV -+ ZS r[ S,R gq )
which has a solution when Zy, = 1 and
go
Jg =AM =m 3.205
=Dt (3.205)

For the axial current we follow a similar procedure, starting from the bare
mixed axial Ward identity Eq. [3.198] Multiplying by v° 4 and ~5 respectively
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3.7. Mass non-degenerate scheme

and taking the trace gives two independent equations. In the first case, we use

Eq. and obtain

(1= T ("¢ Suanlp) ™ = iCSialn) 1) 7" o
_ (MR+mR B ( Mp . _mr )> N (3.206)
Z 4 IyZp  ZmZp
The latter equation is satisfied by Z4 = 1 and
hits T 7k
Zp = BV (3.207)

Note that in the degenerate mass limit, we recover Z,,Zp = 1.

In the second case, where we take the trace with v, we make use of Eq.|C.157]

giving

1 (Z ; ng )

M &P m&p
—_—— Tr -A 5
Za Mp +mpg (@ Aar) 7]

(3.208)

which has solutions Z4 = 1 and Zp as in Eq. One can easily check that

this solution is unique.

3.7.3 Finiteness of the ( ratio

We need to show that the ratio ¢ is finite since it appears together with the
renormalized propagators on the right hand sides of Eq. and Eq.
while the left hand sides of these equations only contain renormalized vertices
and mass. For ( = \/% to be finite, the coefficient of the divergent part Zg has
to be mass independent in order to cancel with the same term in Z;. We will

argue that this has to be the case order by order in perturbation theory.
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3.8. Lattice regularization

The fermion propagator can be written as:

?

Slp) = , 3.209
P = T (3.209)

where the self-energy ¥(p) is decomposed into
S(p) = pSv(p?) + mEs(p?) . (3.210)

Assuming that the theory is regulated using dimensional regularization, let us
examine all possible coefficients multiplying the divergent terms that can appear
in the self-energy at any given order in perturbation theory. Note that Xy (p?)
and Yg(p?) are dimensionless scalars, which means the terms appearing in the
coefficient of the divergent part can only be a function of In (f;—é), 5722, ’;—22 or a
number.

As argued in Ref. [86], all UV divergences can be subtracted using local
counter-terms only. In other words, the field renormalization used to remove the
divergences cannot contain terms which are functions of In (5722) and %2, since
these are non-local. The term ;‘;—22 cannot occur either since it is IR divergent in
the limit m — 0 whereas we had used off-shell conditions from the beginning
and therefore do not expect any IR divergences. The only remaining option is a
coefficient proportional to 1 which has be the same number in both the massive
and massless cases since in the absence of IR divergences Zy to reduces to Z;.

Another way to argue that the divergent part of the massive self-energy has to
be mass independent is the fact that a massless renormalization scheme removes
all the divergences. Therefore Zy and Z; must have the same coefficient for their

divergent terms as argued in Ref. [87].

3.8 Lattice regularization

We start this section by showing that, when dealing with composite operators,
power divergent mixings with lower dimensional operators are independent of
the renormalization scale p, following Ref. [88]. This is true order-by-order in
perturbation theory. We then discuss the statement in the case of chiral symmetry

being broken by a regulator which appears as part of the axial WI.
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3.8. Lattice regularization

3.8.1 Power divergent operators

Consider a composite operator O(z) which we need to renormalize in order to
make it finite. In this process the operator will mixing with other equal or lower
dimensional operators with the same symmetry properties. For simplicity, we take
an example of an operator O(x) that only mixes with another lower dimensional

operator O(z):

o | N\

Or(x) = Zo |O(x) + =O0(z) | - (3.211)

The coefficients Zp and Z are dimensionless and are chosen such that the Green’s

function

G(OR’n)(J%flfl, ey Tp) = [Z¢(90,GM)]n/2 (Ordo(z1)..-0(20)) (3.212)

is finite for @ — 0 and a massless theory is assumed. We could then apply
the Callan-Symanzik differential operator, ,u%]go,a on both sides of the above
equation. The RHS of Eq. [3.212] gives,

n dZ¢

. Ezg/z—l<OR($)¢O(x1),..¢0($n)>

+ [“%ZO] Zo' ZoZ"*(O(x)do(w1)...do (1))

_|_Z;L/2% [u%Z} (O(x)gbo(m)ﬁbo(xn»

= (nvs(9) +70(9)) GOR™ (2, 21, ..., 1) + ZZ/Z% {u%Z} (Orpo(x1)...00())
(3.213)

where 74(9) = 3445190, 108(Z5(90, @) and 70(9) = p kg0 108(Zo(g0, @)). The
LHS becomes,

g
which is a finite quantity. This would imply that the right hand side must also be

0 0
(,u@ + B(g) ) G(OR’”)(m,xl, ey ) (3.214)

finite and so the term proportional to 1/a, which diverges as a — 0, must vanish:

d .
umgoﬁa Z=0- (3.215)
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3.8. Lattice regularization

Hence, power divergent mixings with lower dimensional operators are independent

of the renormalization scale p and do not contribute to anomalous dimensions.

3.8.2 Axial WI with operator insertions on the lattice

Continuum chiral symmetry is broken when lattice is used as a regulator. For
Wilson fermions the breaking arises from higher-dimensional operators that are
present in the action [78]. For DWF fermions the breaking corresponds to
finiteness of the fifth dimension and is exponentially suppressed [49]. Generically,

we expect the non-singlet axial WI on the lattice to be of the form:

Vi (AS(2)0() (=) = 2m(P* (@) (y)(2)) + contact terms
X (@ )i(2)) (3.216)

such that the chiral symmetry breaking term arising from regularization, X“(z) =
aOs(z), is at least of order a. The reason for this is that if the lattice discretized
quantities, such as the Dirac operator, are to agree with those in the classical
continuum limit, the chiral symmetry breaking terms due to this discretization
must go to zero as a — 0. The operators appearing in Eq. need to be
renormalized. Power divergences arising from mixing of the higher dimensional

operator, Os(x), are required to be subtracted. In this case [88]:

Zp—1

o (2) = 7 og(x)+?Pa(x> + VoA ()] (3.217)

a
As we have seen in Sec. [3.8.1] such power divergences do not depend on the
renormalization scale p. Hence the axial current renormalization Z, can only
depend on the coupling, the regulator and the mass of the fermions involved,

entering as a dimensionless parameter am, i.e. ,
AR, = Za (g, am) A} - (3.218)

The same argument holds if we use local currents rather than the conserved one on
the lattice. Again, the local current is expected to be different from the conserved
one by operators appearing at O(a). These operators need to be renormalized as

well but the final results yields a Z, that is independent of .
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3.9. WI for domain wall fermions

3.9 WI for domain wall fermions

The non-singlet vector and axial Ward Identities (WI) in domain wall frame work
has been derived for Shamir [55] and Mobius fermions [64]. We are not going to

reproduce all the results here, but merely summarize the main points.

Given the choices of simulation parameters such as the heavy valence quark
masses am, the extent of the fifth dimension L,, and the negative Wilson mass
My, we quote the result for the axial WI:

Al (P(2)AL(y)) = (P(2) 2amP(y) + 25,(n)),  (3.219)

m

where P(z) = q(x)y°q(x) is the pseudoscalar density, with ¢(x) being the surface
4-D fields. A5?"(y) is the domain wall 5-D conserved axial current, which depends
on the link between the two sites x and = + p. A is the lattice backward
derivative and am is the bare quark mass in lattice units. The quantity Js, is the
pseudoscalar density of the center of the 5th dimensions. Explicit expressions for
these quantities can be found in [55, R9]. The residual mass, which provides an

estimate of residual chiral symmetry breaking due to finite L, is defined as:

> o (Isq(x) P(0)) .
> (P(x)P(0)) (3.220)

We expect the renormalization factors for conserved quantities such as vector

AMyes =

and axial currents satisfying the corresponding Wls, to be independent of scale
pt. More details have been discussed in Sec. Often, in lattice simulations,
local currents are also simulated and are later used to extract the relevant
renormalization constants. These local currents differ from the conserved ones
by operators appearing at O(a), see for example [78] for Wilson fermions. For
DWF, Z gcons = 1 + O(mres) and the renormalization constant for the local 4-D
current A% = q()y,757%q(x), defined on the lattice sites x can be extracted via

the ratio:

Z oca ACOHS t P 0
ZAlocal ~ Al : - <Zw <m7 ) ( )> : (3221)

ZAcons <Z$ Alocal(m’ t)P(O))
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The conserved and local current correlation functions,
1 cons
C (t + 5) = (;A (x, 1) P(0)) (3.222)
and

L(t) = () A“"(x,t)P(0)) , (3.223)

are not defined at the same temporal coordinate, with the former being defined
at the midpoint of the links and the latter and the sites. By taking appropriate
ratios of the two, O(a) terms can be removed, whilst also reducing the error at
O(a?) level [64, R9]:

1[Ct—-1/2)+C(t+1/2) 2C(t+1/2)
2 2L(t) Lt —1)+ L(t+1)

Zlowl _ : (3.224)

3.10 Numerical implementation for mSMOM

In lattice studies involving D- and B-mesons, the renormalization of the axial
current is of particular importance since it is required to normalize correctly the
matrix element entering the computation of the decay constant. For example,

the decay constants of D-mesons fp and fp, are determined using

(044D, (p)) = fo,v,.

where ¢ = d, s and the axial current AL = ¢v,75q has to be renormalized. Since
the quark content contains a heavy and a light quark, we can use the mass-
non-degenerate mSMOM scheme introduced in Sec. 3.7 The renormalization
conditions in Euclidean space are specified in App. Our aim is to extract
the axial current renormalization Z4 for the mixed heavy-light vertex function.
We start by writing all the ingredients needed before giving the final answer.
The field renormalizations Z; and Zy are computed using SMOM and mSMOM
schemes respectively. If the local axial current is simulated on the lattice, the
corresponding renormalization factor, Z,iwca, for the heavy-heavy and light-

light vertex functions can be extracted by taking appropriate ratios of the
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3.10. Numerical implementation for mSMOM

respective local and conserved hadronic expectations values. Note that the
correlations functions of the local and conserved axial currents only differ by
finite contributions which vanish in continuum limit.

Here we will now take the assumption that both quarks are constructed with
chiral fermion actions, for which an explicit representation of their partially
conserved, point split, axial current is available [64, [89]. We will use this to
renormalize the mass degenerate local axial current bilinear operators via the WI
as a component in our numerical strategy to determine the renormalization of
the mixed axial current. For domain wall fermions Z1¢®! is obtained by fitting
Eq. to a constant in the temporal extent. To obtain Z,;, we use the

mSMOM renormalization condition Eq. to write

75t

Ty =
M= Tom

(S0 320 Tl Al G229
where Z, is the renormalization constant for the heavy-heavy local current, if that
is chosen, and is computed as in Eq.[3.224] The trace of the bare vertex functions
and the propagators with an appropriate projector is numerically evaluated on
the lattice. Similarly for Z,,, which is obtained from the SMOM scheme and
the corresponding value of Z4 for the light-light current. The renormalization

constant for the mass degenerate pseudoscalar density, Zp which can be obtained

using Eq. and Eq. in the mSMOM scheme:

1 Tr ZS -1 2_ .2
Zp = — 50)7 Ay (3.226)
p Tr [AP’}%Hsym

Now, we can write down the equation which allows us to extract Z4. Recall

that curly letters refer to heavy-light mixed vertices. From the renormalization

conditions stated in Eq. and Eq. we have

<CA(Mm) + CMm'P

=1=(C Care ) Catomm 3.227
AH*L )mixed ( A(MM)+ MP) M ) ( )

where the numerator of the left hand side contains the heavy-light mixed
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3.10. Numerical implementation for mSMOM

vertex functions

Carmy = N o 5Tr - Aarys dllym (3.228)
MR—>1’7’L
Cump = Tr})j%rgo 1242 Tr [(MR + mR)AP7R75 q”sym ) (3.229)
Mp—m

and the difference between the inverse propagators

) . B _ . _ 1,
Ap_r = n},lgo 12q2T1" [(+i7°C S r(p2) ™" +iCSir(ps) ') s 4] = D) (¢ +9).
Mp—m
(3.230)

On the right hand side of Eq.|3.227| we have the heavy-heavy vertex functions,

Caguan = Jim 55T (g A i (3.231)

Cup = Jim_ o 5Tr 2MpAp 15 g (3.232)
and the light-light vertex function

Cagmmy = Jim 55T g Aars Ly - (3.233)

The quantity ¢ appearing in Ag_; is computed using the renormalization
conditions for the light and heavy fields Eq. and taking the ratio:

TS Al |
= (Tl" [iSH(p)_l 125]|p2u2> . (3234)

We rewrite the renormalized quantities in terms of the bare ones. Note that the
aim is to extract Z4. On the left hand side of Eq. we have

Zy Pz (Tr (Za a- Ma+ (ZuM + Zum) ZpAp) vs d]lsym> . (3235)

with Z; and Zg are already computed using SMOM and mSMOM schemes
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3.10. Numerical implementation for mSMOM

respectively, together with Agy_; which we have computed using Eq. [3.234]
Let us now focus on the right hand side of Eq. [3.227],

Z3'Z7 T [((Za g+ Aa+ ZnZp 2MAp) s |

Tr [(Za q- A .
LT l(Zaa-Aar) s Al
(3.236)

Sym | 47

Therefore, all the quantities appearing in Eq. are known apart from two,
Z 4 which is the main quantity we are looking for and Zp, which are yet to
be extracted. They can both be obtained by solving the set of simultaneous
equations using Eq. and the renormalization condition for the pseudoscalar
Eq.

CaZa+CpZp=C,

(3.237)
ChWZp+ CpZp=C",
with
O = gV 5m12 2
A= 4g l < r [(q ’ AA) s q”sym) Cil +C ’ (3238)
“1/2 ,—1/2 2
Co= 227 (T ((ZusM + 2 Zo9) 5 M) i - (8:239)
C = (OA(MM) + CMP) CA(mm) . (3.240)

where all the ingredients in C' have already been computed. Together with,

Cly == Tr[(ig - Aa) slloym (3.241)
] 1
Cp = ETT [AP%Hsym ) (3.242)
0= {T [Su(p) ]| T Si0) e o (3243)
12<MR + mR) p2=—p? p2=—pu?

Putting then all together, Eq. is solved to obtain Zp and Z 4.
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3.11. Lattice results for NPR

3.11 Lattice results for NPR

As mentioned earlier, in order to describe continuum physics, quantities regulated
on the lattice have to be renormalized before the cut-off is removed. One such
quantity, in the case of the charm project, is the axial current matrix element
from which the decay constant is extracted. This can be done using in massless
renormalization scheme, RI/SMOM, conditions if the conserved current is used.
However, since we have simulated the local axial current, we would need to extract
Za according to Eq.[3.224] The results are shown in Sec. [3.11.1] We then present
results for the amputated bilinear vertex functions, in the RI/SMOM scheme,
and discuss some of their features. Finally, we discuss the renormalization of the
4-quark operator in RI/SMOM and its matching the the MS-bar scheme.

3.11.1 Axial current renormalization

Table shows the results for the local light-light axial vertex function
renormalization, for all the ensembles, according to Eq. [3.224] These results are
in agreement with their previous determinations, Ref. [64]. The renormalization
constants are used to renormalize the corresponding axial current matrix element
required to compute the decay constants. An example of a fit to a constant for
Za(t) in the light-light limit, for the CO ensemble, is shown in Fig. 3.7, Given
that we have used a mixed action current, in the sense that a different value of
M5 has been used for the light and strange quarks i.e. M5 = 1.8 as compared
with the heavy quarks 7.e. M5 = 1.6, the usual domain wall axial Ward identity
Eq. is not satisfied. In the free theory, this modification in the action
imposes a modest change, in for example the fermion propagator, appearing at
next to leading order i.e. O(a?). As a result, one might hope that the impact on
the renormalization constants is small. To measure this difference, we compute
the projected amputated axial vertex function, denoted by P[AA], in the non-
exceptional RI/SMOM scheme for the following three cases where both legs of
the vertex have My = 1.6 or both have My = 1.8 or when one side has My = 1.6
and the other has Ms; = 1.8. We then take the ratio of these. The deviation
from unity is taken has a systematic error associated with the mized choice in the
action. The details of this measurement are presented in Sec. 3.11.2]
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Ensemble Z0
Co 0.711970(66)
C1 0.71721(12)

C2 0.71790(10)
MO 0.743441(37
M1 0.744868(85
M2 0.745190(84
F1 0.761108(34

S— | N N

Table 3.1: Axial vertex renormalization factor Z for all the ensembles. The
results are obtained by fitting time dependence in Eq. [3.224] to a constant. The
fit for the CO ensemble has been plotted in Fig. [3.7 as an example.
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Figure 3.7: Za fit on the CO ensemble. That data is folded with respect to the
middle of the time extent.

3.11.2 Bilinear vertex functions

In this section, we describe the steps involved in generating the projected
amputated vertex functions. We take the axial vertex as a particular example.
The process for the other vertices is similar. We then present the numerical results

for some of the vertex functions and the renormalization constants extracted.

The projected axial vertex functions are generated according to the SMOM
renormalization condition Eq. [3.33}

Jim o T (0 M) %l = 1 (324

where A g is the amputated axial vertex function and the subscript R, as before,
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3.11. Lattice results for NPR

denotes a renormalizzed quantity. The momentum ¢ out of the vertex satisfies the
symmetric non-exceptional condition p3 = p3 = ¢*. The momenta are determined
by

2T
Pu =T Ja
o

(3.245)

for every lattice size L such that the magnitude of p is around 2 GeV for an integer

n. Note that in order to reach the intermediate momenta we use twisting [90-92]:

0 2
ap,, = (”u + EN) L.ja’ (3.246)
I

with some details discussed in App. [B.4] Eq. [3.244] can be written in terms of

the bare amputated vertex function, the field renormalization Z, and the axial

operator renormalization Z,4 as follows,

1 Za
tm 7 80l =1 p2rm
The bare amputated projected vertex:
PlAa] = lim T [(a- An)vsfl] | (3.248)

is what is computed numerically on the lattice, for equal light quark masses |,

assumed to be sufficiently close to the chiral limit.

In our case, the measurement of P[A 4] has been taken on each of the ensembles
C2, M1 and F1. Tables[3.2] and present the ratios of P[A,], for different
combinations of actions i.e. (M3, M2) = (1.8,1.8),(1.6,1.8),(1.6,1.6) at around
2 GeV. The data has been generated using ten gauge field configurations which
leads to sufficiently precise results. We see that the ratio %
the ensembles has the largest deviation from unity as compared to the other ratio

on each of

combinations, which is expected since both the quark fields entering the bilinear
have different actions between the numerator and the denominator.

The main feature emerging from this study is that the deviation from unity is
at most of order 0.4% across a range of momenta around 2 GeV. This is negligible

on the scale of our other uncertainties and for the purposes of the present charm
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() plGeV] BRAISTH  Fndmels  piaiieis
1.037  1.817  0.996816(35) 0.998149(32) 0.998664(12)
1.133  1.900  0.996878(41) 0.998180(33) 0.998695(14)
1.234  1.982  0.996943(37) 0.998220(29) 0.998721(17)
1.339  2.065 0.997009(31) 0.998263(23) 0.998743(17)
1.448 2,148  0.997084(28) 0.998312(20) 0.998770(15)

Table 3.2:  The ratios of projected amputated vertex function for the axial
currents with different actions on the C2 ensemble. The quark mass for both
fields is taken to be am; = 0.01.

() p[GeV] FRAEPIS  Pinairors  pinalrors

0.583  1.820 0.996774(55) 0.998139(53) 0.998508(24)
0.637 1.903  0.996805(66) 0.998132(45) 0.998516(32)
0.694 1.985 0.996773(66) 0.998143(34) 0.998520(28)
0.753  2.068  0.996702(88) 0.998143(28) 0.998522(26)
0.814 2.151  0.996658(85) 0.998138(22) 0.998524(22)

Table 3.3:  The ratios of projected amputated vertex function for the axial
currents with different actions on the M1 ensemble. The quark mass for both
fields is taken to be am; = 0.004.

project, we can simply include it as a sub-dominant systematic error.

For completeness, we present some of the other numerical results related to the
vertex function. For SMOM, Zx = Zy and Zs = Zp = 1/Z,, in the continuum
limit. This implies that, given the renormalization conditions in Eq. to
Eq. 3.35] we expect P[Ay] = P[As] and P[As] = P[Ap] at high momenta.
This is confirmed in Fig. [3.8] taking F1 ensemble as an example, where the
projected amputated vertex functions simulated are plotted vs momenta ranging
from around 2 to above 3 GeV. Notice that the vector and axial vertex functions
are almost scale invariant while pseudoscalar and scalar vertices clearly show a
scale dependence. As well as that, we observe that for large values of momentum,

i.e. getting closer to the continuum, P[Ap| approaches P[Ag].

3.11.3 4-quark operator renormalization

As already mentioned in Chapter , the bare four-quark operator e.g. <F0 |QR5=2 K°)

has to be renormalized in some regularization scheme such as RI/SMOM non-
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9 PIAA](1.8,1.8) P[AA](1.6,1.8) P[AA](1.8,1.8)
(ap)* p[GeV] 3 Ra (1.6,1.6) Plhs (1.6,1.6) Plhs (1.6,1.8)

0.482 1.926  0.996779(23) 0.9982202(85) 0.998555(11)
0.516  1.990 0.996744(26) 0.9982053(99) 0.998539(12)
0.548  2.054  0.996728(24) 0.9981981(91) 0.998525(97)
0.583  2.118  0.996716(19) 0.9981914(85) 0.9985203(79)
0.619  2.183  0.996719(19) 0.998189(10) 0.9985242(64)

2
19
19

Table 3.4:  The ratios of projected amputated vertex function for the axial
currents with different actions on the F1 ensemble. The quark mass for both
fields is taken to be am; = 0.002144.

T T T T T T T T T T T T T T T T
1.36 — —
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1.24 * _
® 121 . —
[y

Figure 3.8: Projected amputated vertex functions on the F1 ensemble plotted
agains momentum in GeV.

perturbatively. The result is then converted, via one- or two-loop perturbative
matching, to a more commonly used schemes such as NDR-MS. In this section,
we first state the renormalization condition for 4-quark operators in RI/SMOM
and then present the corresponding numerical results on the F1 ensemble as well
as the conversion to NDR-MS.

The RI/SMOM renormalization condition for the 4-quark operator, Oyv,aa,

in e.g. By, involves amputating four fermionic fields. We therefore have [24],

1 1
lim —Tr [P shor|| = lim =Tr |Z°Z0P sho|| =1, (3.249)
mR ijkl gm0 ikl sym

where the projectors onto tree-level value are given in two schemes known as v
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and q schemes are as follows:

(v _ 1 v y
P%Zf - 256N(N—|— 1) [(’7 )ﬁa(’%/)&'y + (7 75),304(’)@’75)57} 5ij5kl ) (3250)
@ 1 5 5 -~
P%J@glg = GIEN(V 1) () sad)sy + (47 5a (@ )5y ] 6ijOri (3.251)

where N = 3 is the number of colors. The non-exceptional symmetric condition
implies the in and out momenta should satisfy p3 = p2 = (py — p3)? = ¢* where

we take,

d(p2)s(—ps) — d(—p2)s(ps) - (3.252)

In other words having computed the bare projected amputated vertex function
P[Ao], the relation

29PNl =1, (3.253)

can be used to extract the 4-quark operator renormalization factor Zg, where in
our case O=VV+AA operator discussed in Sec. [[.2.5] We now recall the kaon

bag parameter:

(K°(AT)|Ovvan()|E"(0))

—0 )

S(KO(AT — 1) Ag(0)) (Ao (1)K (0))

Bbare —

(3.254)

where AT is the time separation between the source and sink operators, see
Sec. for the details. The renormalization Zp, is obtained, using RI/SMOM
conditions Eq. for the 4-quark operator and Eq. for the axial vertex

function, and taking the ratio:

7 _ Zvviaa _ P[A4]?
B

— = . 3.255
® z3 PlAvviaal ( )

Note that the factors of Z, have cancelled between the numerator and the

denominator.

We have generated vertex functions with light quarks on the F'1 ensemble with
momenta starting from 2 GeV to more than 3 GeV. Fig. 3.9 shows Zp, for each
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of the momenta simulated.

= k B
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Figure 3.9: Zp, for four different values of momenta on the F1 ensemble.

By fitting the last three data point to a line, we determine the value
Zgh = 0.952766(35) (3.256)

in RI/SMOM, at precisely 3 GeV on the F1 ensemble. It now remains to obtain
the equivalent value in the more commonly used NDR-MS scheme. The non-

amputated vertex function is renormalized as:
O} = 780 | (3.257)

where the label “RI” refers to the renormalization in the RI/SMOM scheme. In

a similar way, the renormalization in NDR-MS is generically written as:
OMS = ZM5() . (3.258)

Taking the ratio of these two equations gives rise to the definition of the conversion

factor between the two schemes, denoted by Cp, i.e.

NS
ZO

Ok (1) = Co(*/1*)OR(P) » Cp= gz - (3.259)
0]

Using the RI/SMOM renormalization condition for the amputated vertex func-

130



3.11. Lattice results for NPR

D 23, T
2.56, 3.08, 3.50 | 0.953680(35) | 0.957781(35)
3.08,3.59 | 0.952766(35) | 0.956864(35)
2.56,3.59 | 0.954393(41) | 0.958498(41)

Table 3.5: Zp, in RI/SMOM and MS at 3 GeV fitted using different momenta
points.

tion, Eq. [3.253]

RI MS
Z [0

PlAos™ = (Z;H)Q'P[AO] =1 and P[Aog™® = (Zﬁs )27?[/\0] . (3.260)
g
we obtain I
Cp = Z5° Z;?f;l = 73[/\0,R]MS(é‘;m))2 : (3.261)
Hence,
%P”’“Afﬁjﬁ?“ =1 (3.262)

NS

where C, = % At one loop order C, is known at 1- and 2-loops [24. 77, 03, 94],
q

therefore, the above equation can be used to compute the matching coefficient

Cp. Our final results for Zp, at 3 GeV is therefore,

ZMS = 0.956864(35) - (3.263)

In order to check the results further, we have examined performing the above
fit and interpolation while taking different momenta points into account. More
specifically, we have performed the interpolation to 3 GeV in three different ways.
First by taking the last three points, resulting in Eq. and Eq. and
then taking only the last two points into account, as well as taking the two
middle points. Table. [3.5 summarizes the results. As it can be seen, the results
only differ at sub-percent level, implying the final interpolation to be independent

of the momenta chosen to perform the fit.
Finally, it is possible to obtain the Renormalization Group Invariant (RGI)

factors ZE9!. Following the discussion in Sec. [1.2.6, we can related the ZE<!

renormalization factor to Zj (u) in some scheme A, here RI/SMOM, via a
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perturbative factor according to using Eq. and Eq. which we denote

by wy'(u) for simplicity. Therefore, we write,
Z' = wi' (1) 25, (n) - (3.264)

Note that the perturbative factor wy* (1) has to be computed in the same scheme
as Z ﬁK (1) in order to cancel the p dependence. ZEE’I has been computed
numerically for the previous momenta, and the result of the interpolation to 3
GeV is marked in red in Fig. We observed that the RGI points do not lie on a
completely flat line. This can be due to truncation in the perturbative series or the
fact that perturbation theory breaks down at low energies. The same behaviour is
seen in other analyses, e.g. Ref. [95], where Zg,_ in different RI/SMOM schemes is
analysed extensively. As the momentum increases, however, the slope is expected
to decrease until it becomes flat, i.e. , independent of scale . For more details
see Ref. [95].

1.39 ¢ RGl vertex function
r - Extrapolated Z Rall
K

g - -

o135 . .
N =

134 . %

131 —

P U I U I NN N AN NI AU NI AU MR
1.
32.4 25 26 27 28 29 3 31 32 33 34 35 36 37
p (GeV)

Figure 3.10: The black points denote Z5-! for the three values of momenta, used
for interpolation to 3GeV, on the F'1 ensemble. The red point is the interpolated
value at 3 GeV.
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Chapter 4
Lattice Phenomenology

For all the ensembles listed in Sec. [2.4] quantities such as meson masses, decay
constants, bag and ¢ parameters are extracted. In order to gain a better
understanding of the numerical results, we discuss analytical computations of
meson two-point and three-point functions from which masses and matrix element
can be extracted. We then use these, to describe how the fits over the data points
are performed. Parts of this analysis, including the mesons masses and decay
constants have led to the results in our charm paper, Ref. [72], while the bag and

¢ parameters will potentially appear as part of a future publication.

4.1 Meson Correlator

4.1.1 Numerical simulation of the meson correlator

A two-point correlator Crr can be constructed using interpolating operators
Or(t,y) and O}, (0,x) as follows:

Crro(t) = ) _{Or(t,y)O}(0,x)) (4.1)
where,
O(y) = g (y)Falch’g (v) (4.2)
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4.1. Meson Correlator

O (2) = Gos (0) 5,15 (0) - (1.3)

In this notation, the Greek subscripts «, 8 indicate spinor indices while Latin
subscripts ¢1, ¢ correspond to color indices. I' and I are chosen to be any
combination of I'y = 7975 and I'p = 75, for our simulations of pseudoscalar

correlators. Let us focus on the expectation value,

(O()O" () =Tas Thy, (G (4) s, (1) Goz (2) 45, () (44)
c1 2 c2
= - Falﬁl ;262Dq_1(x - y)%gllD(;l(y - I)%g;

=—tr|I'D; (& —y)T D, (y — )|,

where the minus sign is due to Grassmann algebra. In the second equality we
have used the fact that the Wick contraction between quark-antiquark pairs can
only be performed within the same flavor. Hence the fermionic expectation value
factorizes with respect to each flavor ¢, ¢/, leading to the two, inverse Dirac
matrices 7.e. propagators above. This relation can be simplified further using
75 hermiticity for 4D propagators, ¥*D~14° = D=1, Therefore, in numerically
computing the pseudoscalar correlation function Eq. [£.1I, we need to compute
quark propagators. The quark propagators are computed with Z(2) x Z(2)
stochastic wall sources [73]. In order to improve the statistics, different number of
time planes are used as sources and the results, on a given gauge configuration, are
averaged into one bin before any fits are performed. The number of time planes
on each configuration is stated in Table. [2.1] with column under the heading
“hits/conf’. In general, the process of inverting the Dirac matrices to obtain
the propagators can have a high numerical cost. In our simulations, light and
strange quark propagator inversions were performed using the HDCD algorithm
[43] while for heavy quarks a CG inverter was used. We will not delve into the
details of these algorithms and their properties, as it is beyond the scope of this

thesis.

4.1.2 Analytical form of the meson correlator

Let us now examine how meson masses and matrix elements can be extracted.

Consider the following two-point function, constructed from interpolating opera-
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tors as in Eq. and Eq. [L.3}
(OW)0"(x)) = Clz —y) , (4.5)
which is a function of z — y due to translational invariance. So we can write it as
(O(2)0"(0)) = C(z) - (4.6)

Inserting a complete set of hadronic states gives,

ol = [ 5o —md)nnitnsl = [ Glist sl @)

Note that |n) are the eigenstates of the Hamiltonian operator, therefore they must
be physical and on-shell. Given that quarks are confined and the observables
are mesons and baryons, these states describe composite particles such as pion,

p,1n, . Therefore, with zero momentum projection in Minkowski space, we have
3 [ dx Q0@ eI 010 = 3 [ x 000 n) (10" 0)0)
dp 1 , 4
=3 [ (oo | X000 0" O
- Zn: 2En<

(0)|n, p = 0)(n, p = 0]0"(0)|0)e "t .

(4.8)

In order to obtain the third equality, the integral over spatial x is performed to
give a delta function, followed by the integral over d*p leading to the 3-momentum
being p = 0. After performing the Wick rotation, with ¢t = —itg, the Euclidean

space correlator at large t takes the form,

C(t) = §<0|0<o>|n,p = 0)(n,p = 0[O (0)]0)e ™" + - = Ne™™® 4 ... |
(4.9)

where the pre-factor Ay,

N = <0\O( )In,p = 0){n, p = 0[0"(0)[0) - (4.10)
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In other words, when ¢ becomes large, the major contribution comes from the
lowest energy state Ey = m, where m is the mass of the lightest pseudoscalar

meson given the specific quark structure ¢, ¢'.

4.1.3 Pseudoscalar masses and decay constants

As mentioned before in Sec. , the operators O, Eq. and O'f, Eq. can
have any combination of I', T = {T's,'p}. The coefficient, N, of the exponential
decay from which we extract the pseudoscalar meson mass in Eq.[4.9] can be any
of Npp,Naa, Nap with the generic form stated in Eq. Note that Eq.
could have been also derived directly in Euclidean space, for periodic finite time

extent T', starting from the FEuclidean correlator
1 N N
(00" ()7 = 5T e_(T_t)HO(X)e_tHOT(O)] , (4.11)

where Z = tr [6_TH } is the partition function and H is the hamiltonian. Inserting
a complete set of states, applying a zero momentum projection as above, pulling
out a factor E~7F0 and expanding the numerator and denominator gives, as a

leading term:

C(t) = NPRAAG_mt + NPP’AAe_m(T_t) = QNPP,AAG_mT/2 COSh((T/Q — t)m) ,
(4.12)

for PP and AA channels that are symmetric under T reversal. For the AP

channel, which picks up a minus sign under time reflection [66],
C(t) = Nape ™ — Nape ™D = 2N pe ™2 sinh((T/2 — t)m) - (4.13)

C(t) is computed numerically as discussed in Sec. . One has to fit this
data a correct fit function to extract the meson mass m and the matrix elements
stated above. For example, in the range where cosh can be approximated by an
exponential, i.e. away from the centre where ¢t &~ T'/2, one can define a quantity

known as the effective mass,

c()

SR (4.14)

Meg = 1N
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where the contributions of the excited states are neglected since the fit is taken to
be over an effective mass plateau at me.g = Ey. Another, perhaps more accurate,
method of extracting the mass is to take into account the periodicity and fit
using hyperbolic cosine for PP and AA channels, or hyperbolic sine for the AP

channel, rather than a logarithm:

Ct+1)+C(t—1)
20(t)

(4.15)

Meg = cosh ™

Having extracted the mass the fit code can plug in the numbers and obtain the
coefficients in Eq. and Eq. [£.13] In our analysis however, we have directly
fitted the correlator. In the case of a one-state fit, which only takes into account
the ground state meson mass m whilst ignoring the excited states, we fit directly
for two parameters m and the coefficient N with ansatz as stated on the LHS of
Eq. and Eq. [£.13] Tt is also possible to perform simultaneous multi-channel
fits including all PP, AA and AP to improve the statistics. Moreover, instead of
taking the ground state into account only, one can perform a two-state fit which
takes into account the effect of the first excited state. The ansatz, taking into

account the next to leading order term in Eq. [4.8] is expected to be of the form:
C(t) = N @ g=mot L Af(0) g=mo(T—t) o Ar(1) g—mat 4 Ar(D)g=mi(T—) 4 .. ., (4.16)

which would be a four parameter fit. To capture the effect the excited states, the
two-state fit must begin at lower values of t,,;,. We discuss the details of the fits

in Sec. , where we present the numerical results.

In the Standard Model the decay constant for pseudoscalar mesons M? is

obtained as follows:
(01g'voy5q| M (0))

fu = - : (4.17)

For the particular case of the charmed mesons we are measuring,

C D
I, = (0[E70759(Dq(0)) . where g =d, s - (4.18)
mp

q

Therefore, we need to extract the axial matrix elements as well as the meson
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mass to obtain the decay constant. Suppose we have already performed a fit to
extract the matrix element V44 and the meson mass in Eq.[£.12] Then, the decay

constant in lattice units can be computed using

| 2Naa
fp, = N3—me’ (4.19)

where m is the meson mass in lattice units and N = N, = N, = N, is the
number of lattice points in a particular spatial direction. The latter arises due
to the lattice being of a finite volume, Eq.[B.33] An equivalent way of extracting

the decay constant is via the ratio

2./\/313
=4 [ - 4.20
fDq N3 ml)qNPP ( )

1
Qme

Since the pseudoscalar matrix elements N = 1{0|e59(0)|n, p = 0)]* cancel

between the numerator and the denominator, the expression reduces to Eq. [4.20]

4.2 Numerical results for mp, and fDq

In this section, we present numerical results for charmed meson masses and decay
constants on the 7 ensembles listed in Sec. 2.4l These are shown in Table. [4.1] for
heavy-light mesons, and Table. for the heavy-strange mesons. Fig. shows
an example of the plot of effective mass vs time in lattice units for am, = 0.3 on
the CO ensemble. Note that it is the two-point correlator that is simultaneously
fitted for AA, PP and AP channels according to fit functions stated in Eq.
and Eq. [4.13] However we plot the effective mass to demonstrate the plateau
better. The fit range is chosen such that it has t,,;, away from the excited states,
well within the plateau region, while ¢,,,« is away from the center of the lattice
where there is more noise. The behaviour of x? is notated not to fluctuate too
much whilst varying ¢.,;, and t,.. As mentioned earlier, alternatively, one can
perform a double exponential fit taking into account the effect of the excited
states according to Eq. [£.16] Examples of the excited states contributions in our
cases include e.g. D, s + 27 and 2K + 7, for more details see Ref. [96]. A double
exponential fit has been plotted in Fig. as an example for the heavy-light
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4.2. Numerical results for mp, and fp,

meson with am;, = 0.3 on the CO ensemble. One may wish to perform double
exponential fits, since the data is generally less noisy further away from the center
of the lattice. The result of the double exponential fit in our case, however, was
in good agreement with the single exponential fit without a significant increase
in the precision of the fit result. Therefore, for the rest of the analysis we use
single exponential fits to extract the meson masses. It is also worth noting that
correlated fits were also attempted. However, the correlation matrix turned out
not to be stable for a reliable inversion. The fits presented here are, therefore, all

uncorrelated fits with the correlation matrix assumed to be diagonal.
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Figure 4.1: Heavy-light (left) and heavy-strange (right) effective mass plots, for
heavy quark mass am; = 0.3, on the CO ensemble. The two-point correlator in
AA, PP and AP channels have been fitted simultaneously.
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Figure 4.2: Heavy-light effective mass plot with am; = 0.3 on the C0O ensemble.
The two-point correlator has been fitted using a double exponential fit form, for
AA, PP and AP channels simultaneously.
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4.2. Numerical results for mp, and fp,

] Name ‘ [tmin, tmax] ‘ amp a fgaro ‘ mp (GeV) 55" (GeV) ‘
14-24 | 0.82208(74) 0.16260(74) | 1.4233(34) 0.2002(10)
CO | 14-24 | 0.90023(92) 0.16486(93) | 1.5570(37) 0.2030(12)
14-24 | 0.9736(11) 0.1661(11) | 1.6838(42) 0.2045(15)
16-27 | 0.83122(95) 0.1686(11) | 1.4836(45) 0.2153(15)
Cl | 16-27 | 0.9077(12)  0.1709(14) | 1.6201(50) 0.2188(19)
16-27 | 0.9805(15) 0.1723(18) | 1.7498(56)  0.2206(24)
16 -27 | 0.84125(69) 0.17466(80) | 1.5014(44) 0.2238(12)
C2 | 16-27 |0.91700(82) 0.17654(99) | 1.6367(48) 0.2262(14)
16-27 | 0.98891(96) 0.1772(13) | 1.7650(52) 0.2271(17)
19 - 32 0.63073(66) 0.11482(67) | 1.4876(47) 0.2013(13)
MO 19 - 32 0.72602(86) 0.11609(91) | 1.7124(55) 0.2036(17)
19 - 32 0.8146(11) 0.1162(12) | 1.9213(63) 0.2037(22)
19 - 32 0.8972(14) 0.1153(16) | 2.1161(71) 0.2021(29)
17 - 30 0.63756(86) 0.12121(84) | 1.5195(59) 0.2152(17)
M1 17 - 30 0.7326(11) 0.1229(11) | 1.7460(68) 0.2181(21)
17 - 30 0.8205(14) 0.1229(14) | 1.9554(78) 0.2183(25)
17 - 30 0.9020(17) 0.1215(17) | 2.1497(88) 0.2157(32)
17 - 30 0.64267(79) 0.12464(75) | 1.5317(58) 0.2214(16)
M2 17 - 30 0.73773(93) 0.12651(92) | 1.7582(67) 0.2247(18)
17 - 30 0.8258(12) 0.1267(11) | 1.9681(77) 0.2251(21)
17 - 30 0.9076(14) 0.1254(14) | 2.1631(85) 0.2228(25)
20-40 | 0.53755(48) 0.10000(42) | 1.4912(55) 0.2110(12)
20-40 | 0.62004(60) 0.10165(55) | 1.7200(64) 0.2146(14)
F1 | 20-40 | 0.69678(74) 0.10223(73) | 1.9329(73) 0.2158(17)
20-40 | 0.76870(90) 0.10194(92) | 2.1324(81) 0.2152(21)
20 - 40 0.8618(12) 0.1002(12) | 2.3906(92) 0.2115(26)

Table 4.1: Fit results for D meson masses and decay constants on all the
ensembles. The correlator has been fitted simultaneously in the AA, AP and
PP channels with the fit range as indicated. Generally PP shows a later plateau
as compared to the other two channels and so it has its fit range starting at
tmin + 1. The first two columns show results in lattice units. The renormalization
factors used in obtaining the renormalized decay constants, in the last column,
are taken from Table. [3.1]

140



4.2. Numerical results for mp, and fp,

’ Name ‘ [tmin, tmax) ‘ amp, a f pbare ‘ mp, (GeV)  fp, (GeV) ‘
18-32 | 0.83232(13) 0.18829(15) | 1.5260(34) 0.23184(54)
Co | 18-32 | 0.95679(15) 0.19100(18) | 1.6548(37) 0.23520(56)
18-32 | 1.02780(17) 0.19249(22) | 1.7776(39)  0.23703(58)
18-30 | 0.87670(43) 0.18652(52) | 1.5647(45) 0.23875(94)
Cl | 18-30 | 0.95125(47) 0.18924(60) | 1.6978(48)  0.2422(10)
18-30 | 1.02230(51) 0.19074(71) | 1.8246(52)  0.2442(11)
18-30 | 0.87815(44) 0.18835(55) | 1.5673(45) 0.24134(98)
C2 | 18-30 | 0.95246(50) 0.19080(67) | 1.7000(49)  0.2445(11)
18-30 | 1.02322(57) 0.19195(82) | 1.8262(52)  0.2459(13)
23 - 40 0.678191(92) 0.13594(12) | 1.5996(48) 0.23836(74)
MO 23 - 40 0.77132(11) 0.13833(16) | 1.8192(54) 0.24256(78)
23 - 40 0.85820(14)  0.13902(20) | 2.0242(60) 0.24376(81)
23 - 40 0.93935(17)  0.13824(27) | 2.2156(66) 0.24239(86)
18 - 30 0.67418(37)  0.13568(32) | 1.6068(59) 0.2409(10)
M1 18 - 30 0.76724(38) 0.13796(38) | 1.8286(67) 0.2449(11)
18 - 30 0.85383(43)  0.13840(46) | 2.0349(74) 0.2457(12)
18 - 30 0.93437(51)  0.13717(56) | 2.2269(81) 0.2435(13)
18 - 30 0.67496(39) 0.13657(36) | 1.6086(59) 0.2425(11)
M2 18 - 30 0.76819(81)  0.13899(41) | 1.8308(69) 0.2469(11)
18 - 30 0.85499(47)  0.13960(47) | 2.0377(74) 0.2479(12)
18 - 30 0.93576(55)  0.13852(56) | 2.2302(82) 0.2460(13)
97-42 | 0.57226(20) 0.11356(21) | L5874(58) 0.23976(99)
27 - 42 0.65276(24) 0.11562(27) | 1.8108(66) 0.2441(11)
F1 97 -42 | 0.72801(27) 0.11631(33) | 2.0195(73)  0.2456(11)
9742 | 0.79869(31) 0.11586(41) | 2.2156(80)  0.2446(12)
97-42 | 0.89031(39) 0.11350(53) | 2.4697(90)  0.2396(14)

Table 4.2: Fit results for D, meson masses and decay constants on all the

ensembles.

The correlator has been fitted simultaneously in the AA, AP and

PP channels with the fit range as indicated. Generally PP shows a later plateau
as compared to the other two channels and so it has its fit range starting at
tmin + 1. The first two columns show results in lattice units. The renormalization

factors used in obtaining the renormalized decay constants, in the last column,
are taken from Table. 3.1l
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4.3. Neutral meson mixing parameter B

It is worth presenting a theoretical argument for the exponential growth in
time of the noise to signal ratio, observed in the above figures. We have previously
derived that the meson correlator goes as C'(t) ~ e ™' for meson M. The

variance of the correlator can be written as
2
oy o ((O(z)0%(0))") — C(t)* - (4.21)

For charm-light meson correlators, the quarks and anti-quarks produced by the
square of O(x)OT(0) come together in pairs to form an 7, and a pion. Since
the pion mass is small due to chiral symmetry, this combination is much lighter
, % grows rapidly with distance.
This also explains why the charm-light meson correlators decay into noise more

than 2mp. As a result the noise to signal ratio

quickly than the charm-strange correlators, due to the error on the latter having
the mass of 7. 4+ s in the exponent which is heavier than 7. + 7, for more details
see Ref. [97H99].

Before we close this section, we present the final results for the analysis of
the masses and decays constants which were obtained after a global fit was
performed. The global fit ansatz involves a simultaneous fit to the continuum
limit, the pion mass dependence and heavy quark dependence. The ansatz for
this fit, as well as the numerical work has been performed by other members of
the collaboration and is not part of this work. For more details regarding the
global fit see Ref. [72]. However, for completeness we include the final results:
fo = 208.7(2.8)stat (f%;;)sys MeV and fp, = 246.4(1.3)sa (t};g)sys MeV and
fo./fp = 1.1667(77)stat (tﬁg)sys. Fig. shows a comparison between our results
and the previous determinations, in including the most recent FLAG report [5].

Our results are in good agreement with the literature.

4.3 Neutral meson mixing parameter B

In the first part of this section, we aim to derive an expression for the meson
bag parameter, taking kaon as an example, from the corresponding three-point
function. The details of this step are necessary to understand the shape of the

numerical data plotted.
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Figure 4.3: This figure shows our results, indicated by blue circles, as compared
the most recent FLAG report [5].

4.3.1 The 3-point correlator

Using similar steps to Sec. [£.1.2] we can write an expression for the meson 3-point
correlator. Recall that the three-point function in finite volume can be written

as:

(O(ty)Q(t,)0(0)) = %TI [6_(T_ty)ﬁ0(0)e_(ty_tx)ﬁQ(O)G—txﬁO(O)
:% Z <n|€7(T—ty)HO(O)€7(ty*tz)I:I|m> (m|Q(0) |l> <l|7tzHO(0) |n>

n,l,m

1
=— D (nlOm)(m|QI1){1|Ofn)eT=1)Fr e (vl B te
n,l,m

(4.22)

for some choice of operator O. The lowest order contribution as 7" becomes large
is when n = 0, | = K% = d5, m = K° = sd. The 4-fermi operator Qaa vy has

the following form:

Qaarvv = (57d)(57.d) + (57,75d) (57, 75d) - (4.23)
Therefore, the the ground state matrix element of the operator () becomes,

(K°|QansvvIK") = (K7 (57,d) (57d) + (57u750) (57,,75) [ K°) (4.24)
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4.3. Neutral meson mixing parameter B

One has to choose the creation or annihilation operator O with the correct
quantum numbers such as strangeness. For the kaon the operator O can be

chosen to be
O = dvyoyss (4.25)

which has the correct strangeness number, the axial structure is chosen to give
cancellation of matrix elements once the full ratio for the bag parameter is
constructed. As well as that, for the matrix element on the right, i.e. (K°|0|0),
O must be such that in can create an 5 and a d when acting on the vacuum.
Similarly for the matrix element on the left hand side, i.e. (0]O]K°).

The leading contribution to the ground state is
(OIOIK ) (K|QIK°)(K°[O0)e (vt Broetebue (4.26)

In order to find the bag parameter which is directly related to the matrix element
of the @ operator, Eq. [1.72] the above equation needs to be divided by two two-
point functions. This cancels the exponentials carrying the time dependance for
certain values of time allowing for a constant fit to the plateau to be performed.
Moreover, we choose the two point functions to be in the axial channel since this
combination is what appears in the denominator of Eq. or Eq. for the
bag parameter. This can be seen if we rewrite the decay constant according to

Eq. and cancel the meson mass.

4.3.2 Generic shape of the bag parameter plot

To gain a full understanding of the shape of the plot, we consider all the possible

different time ranges and examine what happens in each region, indicated in

Fig. (4.4

1. For 0 < t, < t, < T/2 and using translational invariance, we wish to find

the combination,

(O(t,)Q(t:)0(0))
f

(071, — 1,)0(0)){01 (£,)O0)) (4.27)
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Figure 4.4: Generic shape of a bag parameter vs ¢ plot, for fixed ¢,, here chosen
to be t, = 28. Here t = t, is the time dependence of the operator ). The
corresponding regions discussed are labelled 1-4 respectively.

For the ground state, ignoring the contribution of the first excited state, we

have

(O] K)(K°|Q|K®) (K°|00)
[(K°[57075d|0) 2 [{K°[57075d]0) |2
e—(ty—tz)Ego p—taEgo

(efEko(tyftz) _|_ 67Ek0(T*ty+tz)) (6*EK0tz _|_ efEKo(TftI))

C(t) =
(4.28)
X

in the given time range. This is because T' > t, — t,, and so in the
denominator of the above expression, the two terms without a 7" in the
exponent will dominate over the other ones. As a result, all time dependent
terms in the numerator and denominator cancel with each other, resulting
in a plateau in the plot which can be fitted to give the ground state value
for the bag parameter. For example, in the case of the plot above, the time
extend T' = 96, ¢, = 28 is fixed and ¢, is fitted over the range ¢, = 10 — 18.

The values away from the plateau in region (1) are due to the excited states.

2. Let us now consider the case where 0 < ¢, < t, < T/2. From this region
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4.4. Numerical results for Bp, and §

onwards, the time ordering of the three-point function changes. In other

words, we now have

(Q(L)O(1,)0(0)) = 2 3 (nlQulm) (|, [ Olm)e (7t (e - ta8

n,l,m

(4.29)

where the operators are now time independent, and this index is merely to
remind the reader of the associated initial time dependance. Given that
O = dvyyss, we now have |n) = |K°) = |ds) so that it is annihilated by O,
|I) = 10) and |m) = |K°) = |d5). Now, since ¢, > t,, with the correct time
ordering OY(T — t, + t,), the ratio becomes,

(K°|QIK") (K°|0]0) (0|0 K*)

[(K°|57075d]0) [ [(K°|57075d]0)[?
e—(T—tx)EKO e—(tx _ty)EKO

(e—EI—(o(T—tm—i-ty) + e—Eko(T—T—l-t.z—ty)) (e_EKOtm + e_EKO(T—tm)>
TV 4 ~ TV - \_v_/ \H/_/

a b c d
(4.30)

O(t) =

X

For this time range, term (b) dominates over (a) while (¢) dominates over
(d), in which case the time dependence in the numerator and denominator

will not cancel which each other, as seen in the Fig. [4.4]

3. For0 <t, <T/2<t, <T/24t,, term (b) dominates over (a) however now,
(d) dominates over (c¢) cancelling the time dependence in the numerator

giving a constant plateau as observed.

4. For0<t, <T/2<T/2+t,<t,, (a) and (d) dominate and the expression
is not longer time independent which is confirmed by the shape of the plot.

4.4 Numerical results for Bp, and ¢

The numerical results of the bare bag parameters,

(MO(AT)|Oyy 1 an(t)|M(0))

0

Bbare — ‘
5(MO(AT — 1) Ag(0)){Ao(t)[M(0))

(4.31)
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4.4. Numerical results for Bp, and §

for all the ensembles listed in Sec. are presented in Table. [£.3] The notation is
chosen to emphasize the time separation between the source and sink operators,
AT, which is fixed at a given value, while the time dependence of the Oyviaa
is simply denoted by ¢, over which a fit is performed. In the previous notation,
these were denoted by ¢, and t, respectively. The numbers in Table. are
bare quantities. Representative plots of the bag parameter vs time for heavy-
light and heavy-strange mesons, with am; = 0.3 on the CO ensemble have been
shown in Fig. [£.5] These correspond to the region labelled by “1” in Fig. [4.4] i.e.
where the time dependence cancels between the numerator and denominator of
Eq.[£.31} The simulation data contains different values of AT from which the bag
parameter can be extracted. For small source-sink separation, AT, there may be
not sufficient time for the plateau to be reached, and the fit to a constant may
suffer from the effect of excited states. On the other hand, large AT contains less
precise data as the noise grows with time separation, in particular, this is most
visible for the heaviest data points. Therefore, we try to search for a particular
AT, such that a visible plateau is reached while the statistical error is small. The
plots of bag parameters for different values of AT on the larger ensembles can be
seen in Fig. 1.7 Fig. and Fig. 4.9 We indeed observed the trend described
above, with the error bars getting larger for large values of AT. The particular
choice of AT on each ensemble is given in the second column of Table [4.3], chosen
in such a way that a plateau similar to those in Fig. are visible on all the

ensembles.
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Figure 4.5: Heavy-light (left) and heavy-strange (right) bag parameter fits, for
heavy quark mass am;, = 0.3, on the C0O ensemble.
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4.4. Numerical results for Bp, and §

| Name || AT/a || [tmin, tmax] | Bp™ || ltmins tmad | BP™ |
24 7-17 0.3944(17) 9-15 [ 0.404259(71)
Co 24 7-17 0.4015(23) 9-15 | 0.411509(81)
24 7-17 0.4075(32) 9-15 | 0.417930(96)
24 7-17 | 0.39748(99) 8-16 0.40418(27)
C1 24 7-17 0.4054(13) 8-16 0.41159(30)
24 7-17 0.4124(17) 8-16 0.41815(35)
24 7-17 [ 0.39839(59) 8-16 0.39839(59)
C2 24 7-17 | 0.40619(71) 8-16 0.40619(71)
24 7-17 | 0.41311(89) 8-16 0.41311(89)
28 9-19 0.3831(13) 11-17 ] 0.393369(77)
MO 28 9-19 0.3939(19) 11-17 | 0.404409(88)
28 9-19 0.4020(27) 11-17 | 0.41332(11)
28 9-19 0.4083(38) 11-17 | 0.42094(14)
28 9-19 | 0.38543(92) 11-17 | 0.39257(25)
N 28 9-19 0.3972(12) 11-17 | 0.40377(27)
28 9-19 0.4068(16) 11-17 | 0.41282(30)
28 9-19 0.4151(22) 11-17 | 0.42055(36)
28 9-19 0.3859(10) 11-17 | 0.39206(24)
N 28 9-19 0.3975(13) 11-17 | 0.40322(40)
28 9-19 0.4067(17) 11-17 | 0.41218(47)
28 9-19 0.4145(22) 11-17 | 0.41978(59)
34 10-24 [ 0.37714(92) 13-21 [ 0.38519(15)
34 10-24 | 0.3885(13) 13-21 | 0.39635(17)
F1 34 10-24 | 0.3975(18) 13-21 | 0.40523(20)
34 10-24 | 0.4050(26) 13-21 | 0.41269(25)
34 10-24 | 0.4139(40) 13-21 | 0.42162(35)

Table 4.3: Bag parameters for heavy-light and heavy-strange mesons

ensembles for given AT.

on all
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Figure 4.6: Heavy-light
all heavy quark masses, on the CO ensemble.
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Figure 4.7: Heavy-light (left) and heavy-strange (right) bag parameter for

different values of AT on the CO ensemble.

amyp, = 0.3, and heaviest, am;, = 0.4, are chosen as representatives.

The mesons with the lightest,

The results for heavy-light and heavy-strange bag parameters are plotted

against inverse meson masses in lattice units, in Fig. 4.10l As can be observed

from the plots, the bag parameter depends linearly on inverse meson mass,

suggesting that very few terms in an HQET expansion are required to describe

our data at the current, percent scale, precision. Final conclusions are deferred

until we have performed the mass and continuum extrapolations analyses for this

quantity.

Finally, we present the results for the £ parameter in the charm mass region,

given our evaluation of the meson decay constants and bag parameters. Recall
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4.4. Numerical results for Bp, and §
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Figure 4.8: Heavy-light (left) and heavy-strange (right) bag parameter for
different values of AT on the MO ensemble. The mesons with the lightest,
amyp, = 0.22, and heaviest, am;, = 0.4, are chosen as representatives.
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Figure 4.9: Heavy-light (left) and heavy-strange (right) bag parameter for
different values of AT on the F1 ensemble. The mesons with the lightest,
amyp = 0.18, and heaviest, am; = 0.4, are chosen as representatives.

150



4.5. Gauge link smearing
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Figure 4.10: Heavy-light (left) and heavy-strange (right) bag parameter vs the
corresponding inverse meson mass, in lattice units, on ensembles CO, MO, F1.
Note that the dotted line is simply drawn to guide the eye and this is not how
we fit the bag parameter in practice.

that the & parameter is defined according to Eq. [1.80;

IB.\/ B,
OB, 4.32
/B (4.32)

As already stated Chapter. [T} this quantity is defined for B-mesons. Given that

our simulations only covers the charm mass region, it is essential for the global

£ =

fit to include an anzats for extrapolation to the B mass region, see Sec. [4.5
Fig. summarizes our results so far. Note the insensitivity of £ to the heavy
quark mass. The largest theoretical uncertainty in £ to date has arisen from
the chiral extrapolation [100-102]. We emphasize that these small errors have
been obtained directly at physical pion masses which removes the need for such
extrapolation. The dependence on the lattice spacing will be removed by a

continuum extrapolation in a global fit in future work.

4.5 Gauge link smearing

Since the £ parameter is a quantity which is defined for B mesons, an extrapolation
to the heavy B mesons mass has to be included in a future global fit ansatz. As
it can be observed in Fig. [£.11] this extrapolation is rather far at the moment
which would lead to a less precise result for £&. Therefore, it would be beneficial

to find the optimal heavy domain wall fermion action that would give access to
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4.5. Gauge link smearing
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Figure 4.11: £ parameter on all ensembles vs inverse heavy-strange meson mass
in physical units. The solid line represents the value of inverse physics D, meson
mass, while the dotted line represent the value of inverse physical B, meson mass.

heavier quark masses i.e. closer to the physical point for B physics studies. In
order to achieve this, we have tested the effect of gauge link smearing on the axial
current renormalization factor Z, with heavy-heavy quarks. The tests involved

generating propagators on a 163 x 32 lattice with a=!

= 1.78 and pion mass
m, = 430 MeV. Different stout smearing parameter p and number of smearing
hits [I03] were used as well as altering the domain wall height Mj in the action.
We seek minimum amount of smearing while still maintaining the light quark
mass near its physical point. The simulated heavy quark mass is am; = 0.45.
Fig. shows the effect of different number of stout hits, with standard stout
parameter p = 0.1. We observe that 3 hits of smearing reduces the residual mass
to per mille level. Furthermore, it allows for simulation of even heavier masses
whilst preserving the chiral properties of the domain wall formulation.

This study was then continued in more detail by other members of our
collaboration to obtain the optimal heavy quark action on each of the ensembles
C0 to F1 with smeared gauge links. Currently the second run of the charm project

is underway with data being analysed in due course.
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4.5. Gauge link smearing
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Figure 4.12: Effect of different number of levels (hits) of stout smearing on the
residual mass with heavy quark input mass am; = 0.45 and M5 = 1.0 on a
163 x 32 lattice with a=! = 1.78.
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Chapter 5
Conclusions and Outlook

Interest in heavy quark physics as a probe to New Physics beyond the Stan-
dard Model has resulted in lattice QCD simulations to investigate their non-
perturbative dynamics in recent years. Some of the quantities and observables
that can be used to constrain the CKM matrix elements and hence act as probes
to the SM were discussed in Chapter [1] of this thesis. In Chapter [2] we described
some of the previous theoretical works, such as the domain wall formulation
and the choice of parameters, used in the current RBC/UKQCD charm project

simulations.

As discussed earlier, with a heavy quarks masses currently being the same
order as the UV cut-off it is difficult identify the renormalization window
clearly. This led us to develop a massive renormalization scheme to reshuffle
lattice artefacts of O(a?m?) in order to potentially remove some of these
artefacts. In Chapter [3] we presented a mass dependent renormalization
scheme, RI/mSMOM, for fermion bilinear operators in QCD with non-exceptional
momentum kinematics similar to the standard RI/SMOM scheme. In contrast to
RI/SMOM where the renormalization conditions are imposed at the chiral limit,
this scheme allows for the renormalization conditions to be set at some mass scale
m, which we are free to choose. In the limit where . — 0, our scheme reduces to
SMOM. Using a mass dependent scheme for a theory containing massive quarks
has the benefit of preserving the continuum WI by taking into account terms
of order m/u, which would otherwise violate the WI when a massless scheme is

used. We have shown that the WIs for the case of both degenerate and non-
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degenerate masses are satisfied non-perturbatively, giving Z,, = 1 and Z4 = 1.
In order to gain a better understanding of the properties of the mSMOM scheme
we have performed an explicit one-loop computation in perturbation theory using
dimensional regularization. We also reperformed the 1-loop computation using
the 't Hooft-Veltman convention for 5. These the results can be particularly
useful for extending the renormalization conditions to the singlet quark flavor.
The programme to generate vertex functions numerically, with an appropriate
projector in the massive scheme, has be written. The vertex functions are now
being generated. The renormalization factors will be extracted in the near future,
in order to examine whether or not the new schemes allows for a smoother

trajectory to the continuum limit.

In Chapter [4] lattice results for meson masses and decays constants as well
as the bag and & parameters near D and Dy meson regions were presented. The
global fits for mesons masses and decay constants, in which the continuum limit
dependence, the pion mass dependence and the heavy quark dependence where
simultaneously fitted using an ansatz, were performed by other members of the
collaboration. The details can be found in Ref. [72].

In terms of the future of this project, we have explored changes in the
formulation of the domain wall action, such as gauge link smearing, in order
to increase the reach in the heavy quark mass. An example was given in the last
section of Chapter [ After completely investigating the reach in heavy-light and
heavy-strange meson masses using the parameters of the adapted action, by other
members of the collaboration, the second large scale run for the RBC/UKQCD is
on the way. This have allowed us to reach mesons heavier than the charm region,

allowing to better constrict the extrapolation to the B sector.
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Appendix A

Charge and Parity symmetries

Charge and parity symmetries are amongst discrete symmetry transformations.

Under parity, the space-time coordinates transform as [104]:

r=(2"x) = rp= (v

0
The charged W-boson, under parity, transform as:
P
Wéi) LN W(i)“(xp) :
and under charge conjugation, C', as:

Wlsi) <, — () -

Putting the two transformations together,

P

W!Ei)(x) on —W(:F)“(xp) .

In the chiral basis,
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where
o*=(l,0) and " =(1,—0q) -
Under parity, the Dirac spinor

¢L P ¢R
(o ()

i€,
P
U(x) = A P(xp) -
Under charge conjugation,
C, : 2.07T

V(@) = iy (2)
leaving the space-time coordinate unaffected. Therefore, under C'P
7/JL CP _iUsz

—

(x)
() iy,

<
I

(zp) -

(A.6)

(A7)

(A.10)
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Appendix B

Conventions

B.1 Minkowski to Euclidean conventions

In this section the conventions for going from Minkowski to Euclidean space are
stated and the fermion propagator is written as an example. Starting with the

space-time 4-vector:

o)t = —ixy , 2™ =gl (B.1)

which means x; = —z¥ and we do not distinguish between upper and lower indices

in Euclidean space. Similarly for momentum £* we have
k= —ikl ) EM =EF (B.2)
The relation for the vector potential becomes
A =AY . AM = _AF (B.3)
Therefore the covariant derivative in Minkowski space
D, =0, +1i94%9, (B.4)
maps to

D' =iD} , DM =-Df (B.5)

1
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B.1. Minkowski to FEuclidean conventions

and the Euclidean covariant derivative becomes
E_ AaE |, . JE

D, =0, +iga, .
The gamma matrices map in the following way:

E 1,2,3M

7(1)\/[ =% 5 7 :WiE,z,s‘

For convenience we also take
pM =yt P ="
The fermionic part of the action in Minkowski space is
SM, ) = /d4x D (iy" Dy — m)ep.
Using the maps defined above, the Euclidean action becomes
S°(0.0] = [ ata® 0F [LEDE + ] o,
where

iSM = —SF.

The inverse Fourier transform in Minkowski space is given by:

d4pM —ipm.am £
Fla) = [ G e o),

The consistent inverse F'T in Euclidean space is then

d4pE ipE-TE £
f(ag) = /W e"" 7 f(pg).

Therefore, analytics continuation implies that

flpm) = —if(pe).

(B.6)

(B.7)

(B.8)

(B.10)

(B.11)

(B.12)

(B.13)

(B.14)
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B.2. Fourier transform and derivatives on the lattice

The inverse fermionic propagator at tree-level, using Euclidean F'T

Flow) = [ ates e fa) (B.15)
becomes
S5 () = (ip, + m) (B.16)
One can check that
FL)B(0)] = —iF [(6(@)5(0)] (B.17)
is satisfied:
o T B

B.2 Fourier transform and derivatives on the

lattice

In this section we introduce basic mathematical tools and conventions required

for the formulation of Quantum Field Theory on the lattice.

Given lattice spacing a, the lattice coordinates can be written as:
z,=n,a n=0,1,... p=12.,D inD dimensions (B.19)

for finite volume box of size L = Na, n takes the values n =0,1,..., N — 1. For

a smooth function f(x) in D dimensions one has, in the limit a — 0:

Zf(x) = aDZ — /de f(z) (B.20)

again, for a finite volume lattice of side L, the corresponding integral would range
from 0 to L.
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B.2. Fourier transform and derivatives on the lattice

We define the forward and backward derivatives on the lattice as follows:

¢(x + ap) — ¢(x)

a

Vuo(z) = (B.21)

¢(z) — ¢p(x — ajt)

a

Vig(z) = (B.22)

so that V, = 0, + O(a). In principle, one can increase the accuracy of the
calculations involved by defining derivatives in different ways. The Central

Difference formulation takes the form

¢(r +a) — ¢(z —a)
2a

Vmiad(x) = + O(a?) (B.23)

which means that the central difference derivative will have smaller discretisation
errors (since it is O(a?)) compared to the forward derivative (O(a)). Therefore,
one can see that there is an ambiguity in the way derivatives can be defined on
the lattice. Having derivative formulations which contain higher orders of a will
naturally increase accuracy. The drawback however, is that it will become more

computationally expensive. For the second derivative we have

¢(x +a) = 2¢(x) + ¢(x — a)

a?

¢ (x) = + O(a?) (B.24)

which can be easily proved by taylor expanding both sides up to order a*.Note
that the latter definition of the first derivative i.e. of order O(a?) as in equation
B.23| is the one that is used in Chapter [2] section [2.1.4] when constructing the

fermion propagator. The same is used for the scalar field.

To construct the discretized inverse Fourier transform, let us start with

recalling the integral representation of the Kronecker delta function (i.e. discrete),

1 z"

which is simply due to the residue theorem. Making a change of variables z = e
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B.2. Fourier transform and derivatives on the lattice

where —m < k < 7 results in
5 = L / " dheiktnn) (B.26)
nn 2’7T .

Note that the limits make sense because if we set n = n’ on the LHS we get 1

from the delta and on the right hand side g—; = 1. Making another change of
variable k — ak yields
a m/a . ’
Oy = — ekan=m) g . (B.27)
27 —7/a

Now consider the discretized Fourier transform which is of the form,
f(k) = az f(na)e *na . (B.28)

Multiplying both sides of the equation by e*" and integrating with respect to k

from —7/a to 7/a gives

T w/a
€

/a
Fk)e™ ' dk =ay /

—7/a

—tha(n=n") £ (na)dk (B.29)

w/a

=27 Z O f(na) =27 f(n'a) -

This yields the discretized inverse Fourier transform:

w/a B '
f(na) = / 9K F gk (B.30)

—7/a 27

where we are in fact integrating over the first Brillouin zone. Generalization to
higher dimensions is trivial. In all the above, the volume was considered to be
infinite. If however, we wish to work in a finite volume we would need to impose

certain boundary conditions. For periodic boundary conditions:

flan+aN) = f(an) , (B.31)
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B.3. Free scalar field propagator

where there are N points in total. Defining n’ = N + n, we must have
fk) =a) " f((N +n)a)e ™ =a> " f(n'a)e” " =Ne (B.32)
—a Z f(n/a>€fikn’a€ikNa .

2mm

aN *
Eq. m and observing the limits, we conclude that m must run from % +1

to % since we cannot have more than N points. Replacing dk by its discretized

equivalent i.e. the “fundamental” unit k& which is k = 27 /aN, we get

meaning e**V = %™ where m is an integer and so k = Going back to

N/2

1 ~ 2mm 2mimn
f(na)zzm:%:/mf( Ty (B.33)

where we have used L = a/N. The above can be easily generalised to d dimensions.

B.3 Free scalar field propagator

The continuum Euclidean action in 4 dimensions for the free scalar field reads as

follows
eld] = [ s (J0,00000,0(0) + gm*e*(o)) (B34

=5 [ s (~o@ola) + mPdt(w)).
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B.4. Twisted boundary conditions

Discretizing space-time and using for the definition of the derivative we get

Sell =2 3 (_ o) S P 0) = 20() 0w —ai) s ¢2(x))

a?

:% {/ (_ e;];xé(k) Z |:€ik’.(x+aﬂ) _9eik @ eik’.(xfaﬂ)] &(k”)

I

:%/k [¢(k) <m2 + L (2 — QCos(k:Ma))> (k)

a2
m

L / [¢(k;) <m e zcos<kua>>> ¢<k>] ,

I

(B.35)

where k.4 = kl‘ and fkk/ denotes (2?)11(%;]::)4'

variables from k& — —k and the integral is over the first Brillouin zone. The

In the last line we have changed

inverse scalar propagator on the lattice, in momentum space, takes the form:

1
- m2+a2 >-,(2 —2cos(kya)) '

Ds(k) (B.36)

B.4 Twisted boundary conditions

Here we discuss a different boundary condition for fermions on a finite lattice
which turns out to be very useful [90]. The fact that momentum is quantized on
the lattice, leads to limitations in different phenomenological applications. Take
the 2-body hadron decay as an example. The energies of the decay products
is related to the masses of the particles involved by 4-momentum conservation.
However, they cannot take their physical value unless the masses are consistent

with the momentum quantisation rule. This issue can be resolved by choosing
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B.4. Twisted boundary conditions

different boundary conditions. The momentum quantization rule for periodic

boundary conditions is well-known:
v(x+el)=1Yx) , i=1,2,3, (B.37)
for spacial directions. Taking the Fourier transform
/d4p e”p(“eiL)&(p) = /d4p eipsz(p) ., 1=1,2,3 (B.38)

which implies

271'77,7;

ePl=1 — p= T ., 1=1,2,3- (B.39)
Now, define the #-boundary conditions as
(x4 e;L) = eip(x) (B.40)
similar to above, taking the Fourier transform gives
Gt/ _ 1 = % n 27;7%‘ =123 (B.41)

In other words, the spacial momenta are still quantised for periodic boundary
condition but also shifted by an arbitrary amount 6;/L which is continuous. It is
shown [90] that 0/L does indeed act as a true physical momentum, in particular

the physical energy of the mesonic state can be written as

6

Eyj(6,a) = \| M2 + (Z)Q , (B.42)

where M;; is the mass of the pseudoscalar meson made of an ¢ and a j quark anti-
quark pair. It is also shown that the continuum extrapolation gives the correct

relativistic dispersion relations.
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Appendix C

Renormalization

C.1 Conventions
e The fermion propagator in position space is
S(as — x2) = (V(w3)Y(22)), (C.1)
and the Minkowski Fourier convention we use is
S(p) = / iz S (z). (C.2)

The Mikowski fermion propagator in momentum space is written as

?

S(p) = ) C.3
Q P —m+ie— X(p) (€.3)
and the fermion self-energy ¥ (p) is decomposed into
2(p) = pSv(p?) + mBs(p?). (C.4)
e The gluon propagator in Feynman gauge is

—ighv
. C.5
k2 + ie (C.5)
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C.2. Vector WI in Minkowski space

e Note that the one-loop self-energy 3(p) in this convention is

- i3() = —igCo() [ B ()

e The basis of the Clifford algebra is chosen to be:

i

L =1(8), iv*(P), v (V), 177" (4), " = S [y, 7" (1) - (C.7)
e The vertex function in position space is
Go(as — 00 — ) = (Y(23)OF(2)1(22)) (C.8)

where we have used translational invariance and Of = ¥I't%) is a flavor

non-singlet fermion bilinear operator.

C.2 Vector WI in Minkowski space

To derive the non-singlet vector WI in Minkowski space, we start by applying the

vector transformation on fermions fields,

6U(2) = i|av(2)r"| (@), () = —ib(@)|av@)r|  (C9)

In what follows we suppress the flavor index for simplicity. The Lagrangian under

consideration is,
L=y —miy (C.10)
where the covariant derivative is as usual,
D,=0,+ 1999, - (C.11)
We choose the operator insertion to be
O(w3,2) = P(3)1(x2) (C.12)
and evaluate the change in the expectation value §(O(z3, x3)) = 0:
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C.2. Vector WI in Minkowski space

0= 0 (O(x3,12)) = %@) [/D[mzp]eis[do(x&%)

da(z) (C.13)
- ; 50(1‘3, LCQ) . - ; 5S[£]
o 1S[L] 1S[L] X
= [Pl i [ DA Oy )
For the variation in the operator we have,
PO 12) i — agyi(aias) — i0e — a)blaa)ia) - (C14

da(x)
For the variation of the action,

0 LSO W, ! . AR ZL‘/ i a ZL‘/ $/
W)[ / A4’ ((2")S0(a")) (D + i Yo ') — (') (@ + ggm( (') >)]

~5me) — s | [t (5,00 )i + 0y (DMx'))]

— (@) Py ()

=(x) PDyY(z) + 045 /d%’a(:v’)@uvﬂ(x’)

=0,V*(z) -
(C.15)

The vector WI in Minkowski space then reads:

i6(x — x3) (P (3)Y(12)) — i6(x — 22) (Y (w3)(22)) = —i0,GY (x5 — z, 23 — 2) -
(C.16)

Taking the Fourier transform, placing the operator at the origin x = 0, i.e. an
implicit [ d*zd(z), the LHS or Eq. becomes,

/d4£€2d4$3 <i5(—x3)5(x3 — x9) — i6(—x2)S (x5 — x2)>eip3"”?’eip2'x2

:/d4x2 iS(—xy)e P22 — /d4x3 iS(x3)ePs s

=iS(p2) — iS(p3) -

(C.17)
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C.3. Vector and Axial WI in Euclidean space

For the first term on the RHS of Eq. we have the following, which we will

evaluate at x = 0 after differentiation,

— 10y, / d*rodirs G (x5 — 1,19 — 1)ePs78 272

= Za /d4 G” SL’3, 132) ip3. (ac3+x)e ipa.(xh+x)

(C.18)
= —i(ips — ipa2), / Azl d zly Gl (), o) e™Ps- e ipees
=—q.Gv(p3; p2) -

We therefore have,
el ) = 1(0w) ~ 15(02) - c.19

Multiplying on the left with S(p3)~! and on the right with S(p2)~!, the vector

Ward identity for the amputated vertex function in momentum space becomes,

q.Av(pQ,pg) = iS(pg)_l - iS(pg)_l . (020)

C.3 Vector and Axial WI in Euclidean space

Starting with the probe in Eq. and taking 0(O(z3,22)) = 0 under the

symmetry transformations under consideration are:

() = i[av(x)Ta] W(x), §9(x) = —ip(z) [av(xw} , (C.21)

and

SU(x) = i|aa(@)ry (@), (@) = i) [aa@)ry?|, (C22)

one has to compute the variation in the action and the probe in Euclidean space.
In what follows we suppress the flavor index for simplicity. The Lagrangian under

consideration in Euclidean space is:

L= G+ mipi - (C.23)
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C.3. Vector and Axial WI in Euclidean space

We have
0= 5045(1,) <O<I’3, ZL‘2)> = [/D[TZJ’ ¢]6_S[£]O(x37x2) (C 24)
_ 50 , s 0S[L
= /DWW] PR x3 x2 /Dl/J e x;O(Ig,ZLﬁ) '
For the variation in the operator according to Eq. we have,
) 5o - ax) (o) — Bla — cvle) ) . (C25)

and for the variation of the action,

—ip(x) Py () +1 Mix) - / d'a/ (@a(m'))&(m’wwu’) + a2y ()" (Dm(w'))]

/d4x’a(x’)8“V“(m') + i (x) P(x)

(C.26)

The Euclidean Vector WI in position space takes the form,

i0(x — x3)(P(x3)P(w2)) — i0(x — w2) (Y (w3) Y (w2)) = —iDu G- (w3 — w02 — ) -
(C.27)

Taking the Fourier transform, placing the operator at the origin x = 0, i.e.
inserting [ d*zd(z), the LHS of Eq. becomes,

/d4x2d4$3 (ié(—xg)S(:vg — Iy) —i6(—x9)S (x5 — :@)) e~ P3-T3 P22

=i5(pa) — 1S(p3) -

(C.28)
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C.3. Vector and Axial WI in Euclidean space

For the first term on the RHS of Eq. [C.27, and evaluating at x = 0 after

differentiation, we have the following,

. 4 4 1 7ip3.503 ipg.a?g
— z@u/d rad ws Gy (x3 — 2,29 — T)e e

= — 18 /d4 G“ x3, x2> 2p3~($§,+x)e+ip2.(gc’2+m)
(C.29)
=1(ips — ip2)p / Azl d zly Gl (o, xh)e P et Pah
=q.Gv(ps3, p2)
Therefore, the vector WI in momentum space can be written as,
q.Gv(ps, p2) = iS(p2) — iS(ps) - (C.30)

Multiplying on the left with S(p3)~! and on the right with S(p2)~!, the vector
Ward identity for the amputated vertex function in Euclidean momentum space

becomes,

q.Av(p2,ps) = iS(ps) " —iS(p2) " - (C.31)

If we now instead choose to vary the fields according to Eq. for the variation
in the prob we get,

50(1’3, [Eg)

Sa(z) 0 (x = 23)7 "W (@3)(22) +i0(x — w2)¥(w3)d(22)y”,  (C.32)

and for the variation of the action,

50293) [ / d'z" i((x") (2" )y )@ +ig (o) + i (') (P + igH) <a(x')75¢(x/)>
(C.33)
+ 2mida(x" ) (2" )y b (2)
@) A YD) — 10,4 + 2mid () () - o
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C.3. Vector and Axial WI in Euclidean space

Therefore we have,

i0(z — 23)7° (W (w3)1)(w2)) + 10 (x — 22) (Y (w3) ) (22))7 (C.35)
= — 10, (A" (w3)Y (w2)) + 2mi(¥ (@) ()1 (w3)) (22)) - (C.36)

In other words, the axial Ward identity in position space reads:

i0(x — 23)7°S (25 — T2) + i6(x — 22)S (23 — T2)7" (C.37)
=—10,G\(r3 — x,20 — ) + 2mGp(x3 — x, 20 — T) - (C.38)

Taking the Fourier transform, placing the operator at the origin x = 0, i.e.
inserting an implicit [ d*zd(z), the LHS of Eq. becomes,

/d4x2d4x3 <i5(—x3)755(x3 — Z9) + 16(—x9)S (x5 — 1:2)75) e~ P33 2.2

=iv°S(p2) + 1S (ps)y’
(C.39)

For the first term on the RHS of Eq. [C.37 and evaluating at z = 0 after

differentiation, we have the following:

- 4 4 1] —ip3.x3 1p2.T
—@3“/d xod wy G\ (x5 — x, 29 — )™ P>T3P2T2

= — Z(? /d4 G/'L 1‘3’ x2)e_iPB-($g+$)e-i-ipz.(:cé—l—x)
(C.40)
=i(ips — ip2), / d*zhyd izl G (o, o)) e Pros e tip2a
=q.Ga(ps, p2) -
giving,
—q.GA(ps3, p2) = 2mGp(ps, p2) — v S(pa) — iS(p3)y’ - (C.41)

Multiplying on the left with S(p3)~' and on the right with S(pz)~!, the Ward

identity for the amputated vertex function in momentum space becomes

—q.AA(pa, p3) = 2mAp(pa, p3) — iS(ps)~'° — iy°S(p2) " - (C.42)
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C.4. Computation of the basis integrals

C.4 Computation of the basis integrals

In the following sections, we use dimensional regularization, setting D = 4 —
2e. We denote 1 the scale introduced by dimensional regularization through the

rescaling of the gauge coupling. g — gji°.

C4.1 Integral 1001 = I()l()
For the integral

1
Lo — / |
O =9 ) s — k)2 —m?]

shifting p; — k — k gives and Wick rotating gives,

(C.43)

. 1 292 1—e ) 1—e¢
_ 2 _ 2 _ 2
[001 = g /]C 12 5 = ( )2F(€ 1) (m ) = ( )2 c 1 (m )

_da o (1 e (™

_47Tm (€+1 ’7E> |:1 6111(}12)} (C‘44)
i oL (M
“an L+1 E ln(fﬂ)}

C.4.2 Integral Iy; = Ii19

We wish to compute,

_ 2 1 = g¢° 1 x M-z —y)
Lion=g /ka[(pg—k>2_m2] =9 /0 dxdy /k($k2+y[(p3—k)2_m2])2>
(C.45)

where we have used Feynman parameterization in the last equality. In the

denominator we have,

(x + y)k* — 2y(ps.k) — y(u® +m?) - (C.46)
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C.4. Computation of the basis integrals

Changing variables to | = k — yp3 the denominator can be written as:

(x+y) l2—<ngy> — (@* +m?) v (C.A47)

. J

The integral then becomes

! 1 d(1—z—y)
Loy = 2/ dxd / : C.48
R il AT e

Performing the wick rotation {° = 4%, with d = 4 — 2¢ dimensions and taking

g% = o?[i* where [i carries the dimensions,

! d(1—z—1y) 1
I =ig® d
mlg/“” CEE [%+MW

“irria o e (5e)

o] [en T e (F)] e
i [y M L (M)

i | (1 m? m? m? + u
Lal - o () 1
4”[< 7E)+ T n(m2+u2) ( ji? )

C.4.3 Integral [y

For the integral,

1
2
o =9 / [(p2 = k)2 = m?[[(ps — k)? — m?]

C.50
_ /dxd / o1 —r—y) .
- V) Gl — k)2 = m? 4 ylps — k)2 — m?])?
in the denominator we have,
(x + y)k2 — 2k.(xpsy + yps) — (uQ + m2)(x +y) - (C.51)
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C.4. Computation of the basis integrals

Making a change in variables, | = k — 2221923 giyeg
T4y

2
(z+7) z?-(w;—jng) — (2 +m?)| (C.52)

(. S
v~

M2

The integral then becomes,

! 1 (l—z—y)
2 dxd / dot .
gté Y R ) e —arye P (0.53)

Performing the wick rotation {° = %, working in d = 4 — 2¢ dimensions and

taking ¢g> = o?i*¢ were [i carries the dimensions, a similar calculation as before

gives

! (l—z—y) 1
i :'2/ dxd /
011 =g 0 ray (x+y>2 l(l2E+M2)2
i T'(e) /1 ol —xz—y) <M2>_6
e dedy 22—~ Y) (220
wr@) Jo g
ia 1 ! d(1—x—1y) M?
e 7T Y e (2
i [e o] [ oo St [ ()
: 1 o 2
i dxdywll_,m_m (%)
f

47 J, (x+y)? |e 12
B (O A I Y
A | \ e 0 I
S (L) [ (s
A | \ € 0 [
ia | (1 2
= |-- —In| — 2
i (o) ()

_l’_
i/ —Am? — pPw In (1 B i/ w > e (1 N i/ w
2w

(C.54)
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C.5. Integral with k*k" in the numerator

C.4.4 Integral [ {1; and [1_q;

This integral has k? the numerator, hence the subscript —1:

]{32

Lo =0 | o (0.55)

It can be computed by writing the numerator as a polynomial in & and making
a change of variable in the standard way. However, given that this integral does
not belong to the minimal basis, it can be written as a linear combination of
those in the basis which have already been computed. It is possible to write the

integrand as:
k> = (py — k) —p5 —2po.k = [(p2 — k)* — m?] — 2p.k + (m* + p®) - (C.56)

The first cancels the first propagator in the denominator to give integrals
proportional to [yo; and the third term gives Ip;;. Both these integrals have
been computed. The integral proportional to with k* in the numerator can be
computed by writing it in terms of previously computed scalar integrals, using a
similar method as Sec. This can be done either by hand or automatically
using Mathematica packages such as Fire-5 [83] [105]. The result is:

2
I—lll :IOOI - (_m2 + ,M2 — %) 1011 . (057)

Similarly, the integral I;_1; can be written as,

Il—ll =g /k kQ[(pg, — ]{5)2 — m2] = 5]001 — §<m +u )]101 . (058)

C.5 Integral with £*k” in the numerator

The integral

P kHEY
I‘glw@—w—MWrMme

(C.59)
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C.5. Integral with k*k" in the numerator

can be written as a linear combinations of the possible scales in the problem,

carrying the indices:
1" = Ag™ + B(pyp + psp) + C(phps + p5p5) - (C.60)
1. Contracting with ¢g"”, the RHS of Eq. becomes,

dA —2u*B — 1i*C - (C.61)

The LHS becomes g* fk T 1 = Io11, which we have already

p2—k)2—m?][(ps—k)?—m?]
computed. Therefore,

Vi = g I = Ion - (C.62)

2. Contracting with phpy gives the RHS of Eq. |C.60}

2 5:“4 4
while the LHS becomes
k)2
pop 2/ (p2 . C.64
vpil =9 | o, R~ nif[(s — R — (C64)

Squaring —2(pe.k) = [(pg —k)? — mz} — (p3 — m?) — k? gives,

A2 k)2 =[(p2 — B — ]+ (03— m?)? &
~2 [(m —k)? — mﬂ (p3 —m?)

(C.65)
9 [(p2 — k)2 - mz} k2
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C.5. Integral with k*k" in the numerator

Eq. takes the form:

v 9 (p2.k)?
Papalu = /kk2[<p2—k)?—m?ﬂ(m—k)?—m?]

_9_2 (p2 — k) —m? 9_2 2 _ n2)2 1
T4 /ka[(Ps—k)Q—m2]+ e ) /k2[(pz—k’ —mZ][(pg—k)

— m?|

92 ]{72
+Z/k [(p2 — k)2 — m?[(ps — k)2 —m?] - / k2[(ps —

g9’ 1 g9’ 2 _ 2 .
‘EA[<p3—k>2—m21+5(p2 )/km—k) —mn<p3—k> ]

m?|

178

(C.66)
All the integrals have already been computed. We have,
o v 1 Lo 212 1
Vo = phpsl = 111—11 + é_l(m +p7) i + 11—111 (C.67)
1 1 1
+ §(m2 + ,UZ)[lol — 5[001 — 5(7712 + ,UQ)IOH . (C68)
. Finally, Contracting with php% gives, for the RHS of Eq. |C.60}
_ 2 5 4
Har 2o, (C.69)
2 4
while the LHS gives
Y p2.k)(ps3.k
PhDs L /2 2(2)2(3> 2 2
k K2[(p2 — k)? — m?][(ps — k)* — m?]
g [ [[(m — k)2 =) = K+ (m? = p3)] [ [(ps — )2 = m?] = K2 + (m? = p3)
4y k*[(p2 = k)* = m?][(ps — k)* — m?]
(C.70)
Therefore, using the symmetry between py and ps,
— KV 1 1 2 2
Vi=popsl, = — 51001 + 5(7” + 1) oy (C.71)
1 1 1
— §(m2 + ,UQ)IOH + 11_111 + Z(mQ + [L2)2[111 . (C?Q)



C.5. Integral with k*k" in the numerator

There for we have to solve for A, B and C, in terms of V;, V5 and Vi:

Vi = guI™ = dA — 22B — i°C
Vo = poupa M = —p? A+ %B + Ot (C.73)
Vs = poupa " = ZEA+ p*B + %0

The answer is

(A _ 3#2V1+8V2—4V3
- 3(—2+d)p? ’

2 _ —A(—
B — 432 Vi+( 92(43?;/)2“44( 14+d)V3) : (C.74)
O - _ 2(3p?Vi+8(—14d)V2+2(8—5d)V3)
(7 9(—2+d)pt
In terms of the basis integrals:
1+e
= ( 62 ) — 2Ioo1 + I 111 + 2111 + (11 — 2m?) [on
(C.75)
+ L (m? 4 p?)? + 2L (m? + p?) |
1 2 2 2 2 212
B = 3_,u4 < — 2Ioo1 + L1101 + 3111 — 2Igum” + 2(m” + p°) Loy + (m” + p7) Illl)
2¢ 9 9
+ 3( — 2001 + L1 + 2041 + 2(p" — m*) Ion
+2(p” + m?) o1 + (m® + M2)21111>] ;
(C.76)
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C.6. Fermion self-energy

1
C=—|2I,_ Ty 1
Bt [ 1—11 + Lot
+ %( — 2Igo1 + 111 + 2611 + Tou (—2m* + %) (C.77)

+2(m* 4+ 1) 11 + (m* + N2>21111>] .

C.6 Fermion self-energy
To compute the fermion self-energy,

. 9 ’Ya[% — -+ m]y"
LIS = — gCy(F) /k T (C.78)

at 1-loop in perturbation theory, one can calculate of the coefficient F

2 kH o
f /ka[(pz e R (C.79)

which appears as part of the self-energy integral. Multiplying both sides by py,

gives, on the left hand side,

92/ P2k _9_2/[(pz—k)2—m2]—p§+m2—k2
K K2[(p2 — k) — m?] 2 Jk k2[(p2 — k)? — m?] (C.80)
1 1
=— §(M2 +m?) 110 + 51001 :
This gives,
1p?+m? 1
F - élu M2 1110 - 2—/1/2[001 . (081)

Putting it all the ingredients to Eq. together and using

Yw=d V= 02-dy, (C.82)
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C.7. 't Hooft-Veltman convention

yields,
[ = —Cy(F) ((—2 +20)p, + (4 — 26)m> o
m? 1
—p(—1+¢€) ((1 + F) I — Efom) ] :
Therefore,

—pQ +4m

€

, —iQ
—ZZ(I) == ECQ(F)

(C.83)

m2 m4 m2 m2
+p2 (—1+7E+F+FID(W—+M2) —l—ln(

4m? m? m? + u
+m<6—47E+ e In <m2—|—,u2) —4111(

C.7 ’t Hooft-Veltman convention

C.7.1 v matrices manipulation

We wish to prove the following useful identities:

Before we proceed note that

A

9y, = 0py, = (d —4)

ﬁ/a’?a =
VYo = Gapg™ V' = 0,7 =4 -

gau
¥*Ya
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C.7. 't Hooft-Veltman convention

Now,

A4 50 =95 Guo Va5
=053 (29057 — ¥57a7")
=" (20057 — 189a7")
=20"7" — (d — 4)3"
=(6 —d)y",

A5, =025"" (290577 — V8YaY")
=25"" o577 — 402"
=0 — (d —4)y"

=(4—dn",

VA Ay =75 GuoVa 87"
=007"" (29087 — 187a7")
=27" — 47"
= -2,

T4 Y =3" 9" Guo e V87"
=029""(29as7” — 157a7")
=20559""7" — 4" 027"
= — 44 .

Using the above results we can see that

YT =TT + e A
=1"%7"7% = 7374
== 277" =7 (4= d)7"
=(d - 6)y°3"

(C.91)

(C.92)

(C.93)

(C.94)

(C.95)
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C.7. 't Hooft-Veltman convention

and

TPV =AY YT + Aa 4
= 75704;7“3/04 + 75:704:7“&0[

With four v matrices:

YoV VN =267V = VYN

—17 (" + (6 - D)3")
(10— )"

=27"7" + 293
=g,

YoV VA =N N

(C.96)

(C.97)

(C.98)

(C.99)

(C.100)

(C.101)

(C.102)
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C.7. 't Hooft-Veltman convention

) VAa:_AaAuAa—u
YoV YoV (C.103)
=(d —6)y"7",

A 94" =25 G — a4
—4g" — 24P5” — (6 — d)3"4" (C.104)
=4 + (d ~ 8)3"9
Finally, we need to consider five v matrices. For the integrals under
consideration, there two cases that need to be simplified: fyafy“‘y"fﬁ’y”fyo‘ and

5.0 Eq. [3.160]

Ya Y'Y’y y*. The former combination appears in integral AW
and the latter in the re-computation of the axial vertex using the new convention

a anom’

for ~s.

o Yo V*7 Y5 yYy%: For the cases we later consider, indices i, vo are implicitly

summed with ¢ > 4. We have,

=~ AUAOCZVZO | =~ ~HACAVZQ = AUAO VO =~ AUANC 2V

YoV T Y =y ['m YA+ YA A = AN AAAY = VYAV A

AAAAAAAA oAV AQ 2 AUNC V2O A AUAT AU A

— YV AY = AV THAY + AT + A 'y"’y”'ya]

+ (d — 6)¥"3°7" + 467" A" + (d — 8)¥'4°4" — 4¢"77”

— (d = 8)3"477" + 27"4"47 — 4§"79" — (d — 8)3" &‘W”]

:75[4‘@011,—)/#_49 ,y _4g;¢cr v 49;1,(7 y_|_4g,u1/ U+4g,u1/ o
+(d = 67977 + (d = 107477 — (d — 10)4"9°7

—(d - 143975

9

(C.105)
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C.7. 't Hooft-Veltman convention

where in the last line we have used

2,71/,—)/H,AYU — 4glw,3/a o 2,7#,71/;)/0 — 4g;w,3/a + 2,7;1,,3/0,71/ , (ClO6)
and
27T =4gMyT = 24047

e (C.107)

=4g" 7 = 4g7A" £+ 2979747

If the sum over p and v is symmetric, such as the case in Sec. [C.7.4] the

above simplifies to the following:

V| = 4G7A — 4gM7AY 4 4G AT + 4947 + (d — 6)7147FY — (d — 14)5"474Y |-
(C.108)

This can be shown by proving that when p is barred and v is hatted, or
vice versa, the sum of these terms vanishes leaving only symmetric sums in
which g and v are either both barred or both hatted.

Ny Ze '

Ya Y'Y’y y*: The indices p,v,o are implicitly summed with another

vectors or tensors but o only contains dimensions ¢ < 3. For our case
of the axial current, the € pole part only comes in as a coefficient of g,
so we only need to consider those term with the sum that are either both

barred or hatted in p and v i.e.

— A U=—OA~AV—Q A —U—O=—U~ 2 AU=O VAN

V| = oV VA Y* + YA VF T + TV A — YAV ]

=f-nvwv+@wv—mww“ww4WWW%nvwv+w—®wv¢]

= | = 277+ AT + 2T — (d = 4) (257 - V) — 294

— (d=6)74"7"
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C.7. 't Hooft-Veltman convention

When this expression multiplied by g,,, it gives,

Yl —8+4+2(d—4)—2(d—4) +4(d—4) —2(d—4) — (d—6)(d—4) |7

=(—4 — 8¢)y°3°
(C.110)

C.7.2 Reduction of scalar integrals to the minimal basis

Here we list all the possible scalar integrals required as ingredients to compute

the new terms appearing in the axial WI using the 't Hooft-Veltman convention.

2

I 111 = Iy + (m* — %)1011 (C.111)
1 1, ., 9
L= 51001 — §(m + 1) 1w (C.112)
(4 — d)ym? — 3du? (d —4)(m? + p?)?
Ii_o = 1 I A1
1-21 Nd—1) 001 + Hd—1) 101 (C.113)
I (—4 + 4d)m?* — 3du21 N (—4 + 4d)m* — (8 + 4d)m?p* + (d — 4)u4l
211 = 20d—1) 001 Wd—1) 011
(C.114)
1_101 = (m2 - ,u2)1001 <C115)
I—llO = (m2 - /LQ)]O()l (0116)
Io—11 = =PI (C.117)
1 1
L= 51001 — §(m2 + 1) Loy (C.118)
Io—11 = —p*Ioo (C.119)
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C.7. 't Hooft-Veltman convention

C.7.3 Derivation for A" and A integrals

b anom ¢ anom

The last term in the axial WI Eq. [3.155] i.e. —2g(u(2)v*4* o, (2)(23)(29)),

contributes at 1-loop as follows:

(—ig9)(—29) /d4x §(x) d*zy e7P2" day 3 dz
D (2) A (2)7 () (€))7 3" o () utp ()1 (3)9) (2)
=(2ig?) /d4x §(z) d*zy e P2 dzy P37 dz
Sz — 2)7"S(z — 2)y°4*S(x — 22) Ay (2 — )
_(2ig2)/d4x §(z) dag diws e~ P2r2tiPsT3gl,
/k B o p-(=) gk (w3 =2) gl (=) i1 =22) G ()P S (1) Y545 (k1 ) A (1)
Pk, Lk
=(2ig?) /d4x2 e~ P22 JAp, 3T gty
Jeme [ et [t [ a0y S 00 A0
P —ks 1
—(2ig?) [ 0= k)3t RSk — L= S S )
ka2, lLk

=(2ig?) / S(ps)y*S(ps — p)v° 4" S (p2) Apu(p) -

(C.120)

C.7.4 Integral /""" for AW

a anom

We are interested in the divergent part of the integral

pov _ kP ko kY
I - /k k2[(p2 — k:)2 _ m2][(p3 — /{:)2 — mz] ) (C.121)

that appears as in ingredient in the computation Aélzmom. Note that the finite
part goes to zero as 4 — 0 at the end of the calculation. For simplicity, we
denote the propagators in the denominator k? — [1], [(p2 — k)* — m?] — [2],
[(p3s — k)* — m?] — [3]. Note that Eq. is symmetric under the exchange

p2 <> p3 and permutations of indices u, o, v and therefore is expected to be of the
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C.7. 't Hooft-Veltman convention

form:

o =A {g‘“’ (P5 +p5) + 9" (P3 + p5) + 97" (Py + 1h )} +B [p‘épgpé + pé‘pgpé]
+C [(p’z‘pé’pé + pypsps + papsph ) + (P5psps + paphps + pSpaps )1 :
(C.122)

We now contract this with gu.poy, PauD2op2, and pa,psspa, to reduce to a set of
scalar integrals and solve a set of simultaneous equations in three variables to
obtain coefficients A, B and C.

1. Taking the scalar product with ¢,,ps, for the LHS gives

[ pok L[l b ]t )

(2 — k)2 =m?[(ps — k)2 —m?] 2 Ji [(p2 — k)2 —m?][(ps — k)2 — m?]
1 1 1
= - 5—]001 + 51—111 + 5(2?3 — m2)1011
32
S
4 011 »
(C.123)
since I_111 = Iogy + (m? — ”72)[011. On the RHS we have,
A (d+2)(p} + p2ps) + B((03) + i (p2.ps)
+ C<2(p2.p3)p§ + (P2-p3)p3 + 2(pa-p3)* + p%p%) (C.124)

2 4
——%(dm) A+3%B+3u40-
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C.7. 't Hooft-Veltman convention

2. The scalar product of pa,ps,pa, With the LHS of Eq. gives,

/ (p2-k)°® _ / (p2-k)*
k B21(p2 — k)2 = m?[(ps — k)? —m?] [AE2113]

G m—m—@—wog
QA)A(

2 1RIB)
(VB D s 2P 6i-m?) 30— md)
‘(2)[m ERCRED R 2]
32)(p3 — m?) L 30— m?)?  3(p3 —m?)?  (pi —m?)’®
1) 1) 23] RIB)

—1
= <—) [3]—101 — 1 911 —3lp—11 +i_o1 + 6(]93 - m2)1001 - 3(]93 - m2)1_111

—3(p3 — m*) 1,11 + 3(p5 — m*)*Lios — 3(p5 — m*)*Io11 — (p5 — m2)3]111] .
(C.125)

Writing the above integrals in therms of the minimal basis, App.
yields,

[ ()]

(12 = 9d)ym?* + 3dp*> 3 , 3,
Sm? - 22T
< A(d—1) amt T gk oo

(4 —Ad)m* + (8 +dd)m’y® — (d—4)p* 9 5 5
+< =1 —pH(m +u)>lon

+<u—®mﬂ+wv

3 2 2\2
° I
d—1) o +“)> o1

+ (m* + p?)’ L |-

(C.126)
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The RHS of Eq. contracted with po,pa,po, gives

3Ap; <p§ + p2-p3) +B ((1%)3 + (pz.p3)3> +3C ((p§)2(p2.p3) + p%(pz-p3)2>

4 6 6
T Wy I
2 8 4
(C.127)

3. The scalar product of py,pssp2, with the LHS of Eq. gives,

/ (p2-k‘)2(p3-k’) _ / (pz-kf)2(p3-k’)
k K2(p2 — K)? = m?[(ps — k)2 —m?] . [1][2][3]

(12~ - 03 - m2>)2([31 -1~ 63—

- (_71>/ [1213]

— I 911 + (H2 + m2)31111 + 3(M2 + m2)17111 + (M2 + m2)[1,11

+ (,u2 + m2)2[110 + 1 110+ Li—10 + 2(M2 + m2)2[101 +21_101

—3(p* +m?*)? Loy — To_11 — 6(p° + m2)foo1] :

(C.128)

Writing the above integrals in therms of the minimal basis, App.

yields,
-1 4 —AdYm? + 3du®>  m?  9u? 5
?[<( 2()d_1) lu _}_7_%)]001‘1— (§(m2+u2>2)]101
4 —4d)m* + (8 +4d)m?*u? — (d — H)p*  9u?
(Ut b 9 ),

+ (m2 + M2)3]111

(C.129)
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The RHS of Eq. contracted with po,p3,po, gives

[2(292 p3)(P3 + p2.p3) + p3(pa.p3 + p%)} A+ (zﬁ (p2-p3)p5 + (pa-p3)p3(po -p3)> B

+ (p§p§p§ + p3(p2-p3)* + (p2.p3)°p3 + (p2-p3)® + (2-p3)P3p5 + P3p3 (D2 -p3)> C
3u® 2145
=3u*A—-"-B— C
H A 8

(C.130)

Now, we use Mathematica to solve the set of simultaneous equations to obtain

the coefficients A, B, C'.

Vi = Guopan 1" = =32(d 4+ 2) A+ ¥ B + 34C
Va = Doppaopa [M77 = %A %0 g % ¢ (C.131)
‘/3 = p2up30p2ujuay = 3M4A - %B — 2—18&60

p

_ 1 .
A = - + finite;

B = finite; (C.132)

\C’ = finite -

Therefore,

v 1 a 1% 1% vV g a oV
Ive 2@[9“ (P5 +p5) + 9" (p3 +15) + g (p§‘+p§)]

. m2 g, v W o,V
~+finite B (—”2 ) {pgpﬂ% +p§p3p3]
m?
+inite C (F) {(p’;pg ps + Pspsps + papsph) + (Psp5ph + pspaps + pipsps)

(C.133)

The only term in the above equation that we need to consider, is the divergent

191



C.7. 't Hooft-Veltman convention

one, proportional to the g’s. We use Eq. to obtain:

ia P
_247r 196 —4—4(d—-4)+4—(d—14)(d—4)
—4(d—4)—4+4—(d—14)(d—4)
—4—4416+4(d —4) — 4(d — 6) — (d — 14)(6 — d) | (j, + p,)
i P . - a6, - -
= =20 75 X0, P = B )Y
(C.134)
C.7.5 Integral " for AEL Zmom
Having already computed the trip-k contribution to the integral,
A[(ilzmom - _29202(F) / = [pg — % . m] (zBZ . ZBS T 26{7)75 [pz — k i m],ya )
K k2[(p2 — k)? — m?][(ps — k)? — m?]
(C.135)

in Sec. [C.7.4] it remain to collect other terms that could contain divergent parts.
These are parts that would be proportional to g””. The relevant terms in the

numerator are,

2ap b1 K + 2myaby

27k P00+ 2y kR

k(P + PV K" (C.136)
= (YY) [2p3ukak,, + 2k kopoy + Kyu(pao + psg)ky)]

+2m [(7&”757“7“) koky + (%ﬁ ’V‘WW“) kuka] :

Let us first consider the term k,,(p2s + ps- )k, and use Eq. [C.105, We obtain,

;O‘Z —8+16+4(d—4) —4(d—6)+ (d—14)(d — 6) (%—i_}%)

e (C.137)
i VP N ~ a9

= EZ—€ X 36(,¢2 —l—pg) = i 6(}” }7}3>

For (2pgukaky), since k, is contracted with 47, the only terms in Eq. |C.105
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that survive are those which have v hatted as well i.e. ,
~° 4@””7“—4@’”?“—4§Wﬁ”+4§’”@(’+(d—10)7“7”@”—(d—14)@“@”ﬁ”]- (C.138)

We therefore get,

2%&75 4(d - 4)333 N 4(d - 4)355 - 4353 + 4@3 + (d N 10)(d B 4)335 - (d - 14)<d B 4>JB3]
_zgif‘ (d—6)(d — 4)p, — (d— 4)(d — 10)p,
zzgif’ dep, — 126;33] = % X 27,

(C.139)

where in the last equality we have used the fact that in the absence of 1/¢ poles,
we can safely send 3})3 — 0. Similarly for the term (Zkukgpgy), the only terms in
Eq. that survive are those which have p hatted i.e. |

"’ [ G — AR — AR AT — (d - 103577 — (d - 14)&#&0*] |

(C.140)
This gives,
ggif - 4p, — 4(d — 4)p, — 4d — 4)p, +4p, — (d = 10)(d — 4)p, — (d — 14)(d — 4)352]
zggif _ (d—6)(d—4)p, — (d—4)(d — 10)1:32]
zzgif _ dep, — 12¢p, | = % X (=2)7°p,

(C.141)

which, again, in the absence of 1/e poles, we we have taken ;;52 — 0.

For the terms containing masses, we first have 2m ('ya’y"vf"yﬂw‘l) kok,. Given

that one only need to consider the divergent parts and that these are proportional
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to g?*, one only needs to choose terms with hatted u’s i.e.
% [ —AaATA mww] = [ — 44T 4G (d - 8)&“&“] - (C142)

Contracting the coefficient gives,

0 2m 5 0 2m 00
— = —4(4—d)+4(4—d d—8)(d—4)| = —=—+° = —~°4
47r467[ ( ) +4( )+ (d —8)( )] 1 ac ) X 8e=yam

(C.143)

Similarly, for 2m <7a7“’?“75'y°‘> k. ks, again we only choose hatted p’s in the

sum over the indices which gives
o& [ — YY" + %?“‘V"’?‘J‘] =7 [ — 417 + 49" + (d — SWW"] - (C.144)

Multiplying the coefficient,

o 2m o 2m 16

——75[—4(4—d) +4(4 — d) + (d—8)(d—4)] = — " " x 8= —~4m -

41 4e 41 4e 4
(C.145)

Putting everything together from Sec. [C.7.4] and this section, we obtain the
final result for A"

a anom”

A / Yalpy — B+ m(p, + p, — 2;2)75[% — F+m]y°
Sy =

—iCy( K2 [(p2 — k)? — m?[[(ps — k)* — m?]
:%75 [— g(% +ﬁ3) * g(% +ﬁ3) + 2133 N 2332 +4m +4m|-
(C.146)
Therefore,
Ao = P CoF) |2 (b + ) + 2, — P,) +8m] (C.147)
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C.8 Minkowski to Euclidean convention for mSMOM

Following the conventions of Sec.[B.1] the RI/mSMOM renormalization condition

in Euclidean space are:

Jim i r [iSE(p) " B o = -1, (C.148)
i o { T SB[l A5l b =1 (C19)
Jim ST (g Avn) = 1. (C.150)
A};Igml% Tr [(¢- Aa,r + 2MprAp R) 75 d)l gy = 1 (C.151)
Jim T (A el = 1 (C.152)

The conditions are now defined at the symmetric point,

Py =ps=q¢ =’ (C.153)

The RI/mSMOM scheme for the heavy-light mixed case in Euclidean space now

reads:
) 1
lim STr (¢ Avr+ (Mg — mg)As r) dllgm (C.154)
mr—0 12¢ y
Mpr—m
. 1 o 1, _
= lim 2Tl" [(—ZC ISH7R(]?2) 1+ZCSZ,R(p3) 1) q] 5 (0155)
mr—0 12¢q
Mprp—m
) 1
iy Tog (@ Aan+ (Metma)Apr) sl =
Mpr—m
lim ——Tr[(+7°¢ Sur(p2) ™" +iCSLr(ps) )75 4] (C.156)
mr—0 12¢
MR—>m
1
Jim 1—22T r [Ap,rY5]lym (C.157)
Mpr—m
—dim o T [ S et 2 Tr (g A sl bt
ma—0 12(Mg + mpg) H,R\P p?=—p? ' 9 AR) T5]lsym
R—M
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12<MR1+ — {Tr [C&,R(p)*l] ‘p2=*ﬂ2 + % Tr[(iq - Aar) 75]|Sym} } )

(C.158)
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